All references

Aichinger, H.M., Steffen, R., 2006. Maßnahmen zur CO2-Minderung bei der Stahlerzeugung. Chemie Ingenieur Technik 78 (4): 397-406.

Aichinger, H.M., Mülheims, K., Lüngen, H.B., Schierloh, U., Stricker, K.P., 2001. Ganzheitliche Bewertung und Potentiale der CO2 Emission bei der Hochofen-Konverter-Route. Stahl und Eisen 121 (5): 59-65.

Ameling, D., 2005. Erfolgsfaktoren für einen starken Industriestandort Deutschland – Das Beispiel Stahl. Stahl und Eisen 125 (4): 80-85.

Ameling, D., Aichinger, H.M., 2001. Beitrag von Wirtschaft und Stahlindustrie zur Minderung klimawirksamer Emissionen in Deutschland im Kontext der Klimavorsorgepolitik (Economy's and steel industry's contribution to climate effective emissions in Germany in the context of climate preventive policy). Stahl und Eisen 121 (7): 61-69.

Arbeitsgemeinschaft Energiebilanzen (AGEB), 1999. Energiebilanzen Deutschland (Energy Balances Germany) 1995. http://www.ag-energiebilanzen.de.

Azar, C., Dowlatabadi, H., 1999. A review of technical change in assessment of climate policy. Annual Review of Energy and the Environment 24: 513-544.

Barreto, L., 2001. Technological learning in energy optimisation models and deployment of emerging technologies. PhD Dissertation No. 14151. Swiss Federal Institute of Technology. Zürich.

Bataille, C., Jaccard, M., Nyboer, J., Rivers, N., 2006. Towards general equilibrium in a technology-rich model with empirically estimated behavioral parameters. The Energy Journal 27: 93-112 (Special Issue #2: Hybrid modeling of energy-environment policies: Reconciling bottom-up and top-down).

BMU (Federal Ministry of Environment), 2005. Umweltpolitik – Erneuerbare Energien in Zahlen – nationale und internationale Entwicklung, Berlin, www.bmu.de.

Böhringer, C., Löschel, A., 2006. Promoting renewable energy in Europe: A hybrid computable general equilibrium approach. The Energy Journal 27: 135-150 (Special Issue #2: Hybrid modeling of energy-environment policies: Reconciling bottom-up and top-down).

Böhringer, C., Löschel, A., 2006a. Computable general equilibrium models for sustainable impact assessment: Status quo and prospects. Ecological Economics 60 (1): 49-64.

Böhringer, C., 1998. The synthesis of bottom-up and top-down in energy policy modeling. Energy Economics 20 (3): 233-248.

Bosetti, V., Carraro, C., Galeotti, M., 2006. The dynamics of carbon and energy intensity in a model of endogenous technical change. The Energy Journal 27: 191-205 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Boston Consulting Group (BCG), 1968 Perspectives on experience, Boston Massachusetts, USA.

Boyd, G.A., Karlson, S.H., 1993. The impact of energy prices on technology choice in the United States steel industry. The Energy Journal 14 (2): 47-56.

Buonanno, P., Carraro, C., Galeotti, M., 2003. Endogenous induced technical change and the costs of Kyoto. Resource and Energy Economics 25: 11-34.

Buttermann, H.G., Hillebrand, B., 2005. Stahlwerkstoffe: "Rohstoffe" für die Wirtschaft in Deutschland. Stahl und Eisen 125 (8): 81-85.

Buttermann, H.G., Hillebrand, B., 2001. Klimagasemissionen in Deutschland in den Jahren 2005/07 und 2008/12. RWI: Materialien Heft 2.

Carraro, C., Galeotti, M., 1997. Economic growth, international competitiveness and environmental protection: R&D and innovation strategies with the WARM model. Energy Economics 19 (1): 2-28.

Clarke, L., Weyant, J., Birky, A., 2006. On the sources of technological change: Assessing the evidence. Energy Economics 28: 579-595 (Special Issue: Technological change in climate policy analysis).

Clarke, L., Weyant, J., Edmonds, J., 2006a. On the sources of technological change: What do the models assume? Energy Economics (in press).

Daniels, B., 2002. Transition path towards CO2 emission reduction in the steel industry. PhD thesis. Rijksuniversteit Groningen. Universal Press Veenendaal.

David, J., Herzog, H., 2000. The cost of carbon capture, in: Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies. CSIRO Publishing, Collingwood, Australia.

de Beer, J., Worrell, E., Blok, K., 1998. Future technologies for energy efficient iron and steel making. Annual Review of Energy and Environment 23: 123-205.

DeAngelo, B., de la Chesnaye, F. C., Beach, R. H., Sommer, A., and Murray, B. C., 2006. Methane and Nitrous Oxide Mitigation in Agriculture. The Energy Journal 27: 89-108 (Special Issue #3: Multi-greenhouse gas mitigation and climate policy).

Delhotal, K., de la Chesnaye, F. C., Gardiner, A., Bates, J., and Sankovski, A., 2006. Mitigation of Methane and Nitrous Oxide Emissions from Waste, Energy and Industry. The Energy Journal 27: 45-62 (Special Issue #3: Multi-greenhouse gas mitigation and climate policy).

DEWI, 1992-2006. DEWI Magazin, DEWI - Deutsches Windenergie-Institut (German Wind Energy Institute). Wilhelmshaven. http://www.dewi.de.

Diekmann, J., Hopf, R., Ziesing, H.J., Kleeman, M, Krey, V., Markewitz, P., Martinsen, D., Vögele, S., Eichhammer, W., Jochem, E., Mannsbart, W., Schlomann, B., Schön, M., Wietschel, M., Matthes, F.C., Cames, M., Harthan, R., 2005. Klimaschutz in Deutschland bis zum Jahre 2030. Endbericht zum Forschungsvorhaben Politikszenarien III. Im Auftrag des Umweltbundesamts.

DIW Berlin (German Institute for Economic Research), 2006. Economic Bulletin 12. Wochenbericht Nr. 12. CO2 Emissionen in Deutschland im Jahr 2005 deutlich gesunken. March 2006. www.diw.de.

DIW Berlin (German Institute for Economic Research), 2004. Economic Bulletin 10, Wochenbericht Nr. 10, März 2004. www.diw.de.

Edenhofer, O., Lessmann, K., Bauer, N., 2006. Mitigation strategies and costs of climate protection: Effects of ETC in the hybrid model MIND. The Energy Journal 27: 207-222 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Edenhofer, O., Lessmann, K., Kemfert, C., Grubb, M., Köhler, J., 2006a. Induced technological change: Exploring its implications for the economics of atmospheric stabilization: Synthesis report from the Innovation Modeling Comparison Project. The Energy Journal 27: 57-108 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Edmonds, J.A., Pitcher, H.M., Sands, R.D., 2004. Second Generation Model 2004: An Overview. Pacific Northwest National Laboratory, PNNL-14916.

Edmonds, J., Roop, J.M., Scott, M., 2001. Technology change and its effects on mitigation costs. In: Pew Center on Global Climate Change (Ed.), Climate Change - Science, Strategies & Solutions, Pew Center on Global Climate Change, Brill, Leiden, p. 209-226.

Edmonds, J.A., Pitcher, H.M., Barns, D., Baron, R., Wise, M.A., 1993. Modeling Future Greenhouse Gas Emissions: The Second Generation Model Description, in: Klein, L.R., Lo, F. (Eds), Modelling Global Change. United Nations University Press, New York.

Enquete, 2001. Prognos IER/WI, Szenarienerstellung Zwischenbericht: Basisdaten für die Szenarienerstellung, 21. Nov. 2001, Enquete Kommission ‘Nachhaltige Energieversorgung’ des Deutschen Bundestages.

Enquete, 2002. Endbericht „Nachhaltige Energieversorgung unter den Bedingungen der Globalisierung und der Liberalisierung“. Enquete Kommission, Deutscher Bundestag, 14. Wahlperiode.

Esso, 2001. Esso Energieprognose 2001. http://www.esso.de.

E3M Lab, 2003. European Union energy and transport trends to 2030. Study prepared for the Directorate General for Energy and Transport of the European Commission.

Fachinformationszentrum Karlsruhe (FIZ) (Eds.), 2003. IKARUS Data Base, Version 4.1, (CD-ROM), Karlsruhe 2003.

Fawcett, A.A., Sands, R.D., 2006. Non-CO2 Greenhouse Gases in the Second Generation Model. The Energy Journal 27: 305-322 (Special Issue #3: Multi-greenhouse gas mitigation and climate policy).

Fawcett, A.A., Sands, R.D., 2005. The Second Generation Model: Model Description and Theory. Pacific Northwest National Laboratory, PNNL-15432.

FEES (Forum für Energiemodelle und Energiewirtschaftliche Systemanalysen in Deutschland), 2007 (ed.). Energiemodelle zu Innovation und moderner Energietechnik – Analyse exogenen und endogenen technischen Fortschritts in der Energiewirtschaft. LIT-Publisher, Münster.

Freeman, C., Louca, F., 2001. As time goes by: From the industrial revolutions to the information revolution. Oxford University Press, Oxford.

Fruehan, R.J., 2005. New steelmaking processes: Drivers, requirement and potential impact. Ironmaking and Steelmaking 32 (1): 3-8.

Gerlagh, R., 2006. ITC in a global growth-climate model with CCS: Its value for climate stabilization. The Energy Journal 27: 223-240 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Gerlagh, R., Lise, W., 2005. Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change. Ecological Economics 54 (2 and 3): 241-260.

Gerlagh, R., van der Zwaan, B., 2004. A sensitivity analysis on timing and costs of greenhouse gas abatement, calculations with DEMETER. Climatic Change 65: 39-71.

Gerlagh, R., van der Zwaan, B., 2003. Gross world product and consumption in a global warming model with endogenous technological change. Resource and Energy Economics 25: 35-57.

Gielen, D., Moriguchi, Y., 2002a. CO2 in the iron and steel industry: An analysis of Japanese emission reduction potentials. Energy Policy 30: 849-863.

Gielen, D., Moriguchi, Y., 2002b. Modelling CO2 emissions for the Japanese iron and steel industry. Environmental Modelling and Software 5: 481-495.

Goulder, L., 2004. Induced Technological Change and Climate Policy. Pew Center on Global Climate Change, Washington DC.

Goulder, L., Mathai, K., 2000. Optimal CO2 abatement in the presence of induced technological change. Journal of Environmental Economics and Management 39: 1-38.

Goulder, L., Schneider, S., 1999. Induced technological change and the attractiveness of CO2 abatement policies. Resource and Energy Economics 21 (3-4): 211-253.

Grubb, M., Carraro, C., Schellnhuber, J., 2006. Technological change for atmospheric stabilization: Introductory overview to the innovation modeling comparison project. The Energy Journal 27: 1-16 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Grubb, M., Köhler, J., Anderson, D., 2002. Induced technical change in energy and environmental modeling: analytical approaches and policy implications. Annual Review of Energy and the Environment 27: 271-308.

Grubb, M., Hope, C., Fouquet, R., 2002a. Climatic Implications of the Kyoto Protocol: The Contribution of International Spillover. Climatic Change 54: 11-28.

Grubb, M., Edmonds, J., ten Brink, P., Morrison, M., 1993. The costs of limiting fossil-fuel CO2 emissions; a survey and analysis. Annual Review of Energy and Environment 18: 397-478.

Grübler A., Nakicenovic, N., Nordhaus, W.D. (Eds.), 2002. Technological Change and the Environment. Resources for the Future, Washington DC and International Institute for Applied Systems Analysis, Laxenburg, Austria.

Grübler, A., Nakićenović, N., Victor, D.G., 1999. Modeling technological change: Implications for the global environment. Annual Review of Energy and the Environment 24: 545-569.

Grübler, A. Messner, S., 1998. Technological change and the timing of mitigation measures. Energy Economics 20: 495-512.

Hall, G., Howell, S., 1985. The experience curve from the economist’s perspective. Strategic Management Journal 6 (3): 197-212.

Hedenus, F., Azar, C., Lindgren, K., 2006. Induced technological change in a limited foresight optimization model. The Energy Journal 27: 109-122 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Hidalgo, I., Szabo, L., Ciscar, J.C., Soria, A., 2005. Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model. Energy 30: 583-610.

Houghton, J., 2006. Introduction. Energy Economics 28: 535-538 (Special Issue: Technological change in climate policy analysis).

Hourcade, J.-C., Jaccard, M., Bataille, C., Ghersi, F., 2006. Hybrid modeling: New answers to old challenges – Introduction to the special issue of The Energy Journal. The Energy Journal 27: 1-11 (Special Issue #2: Hybrid modeling of energy-environment policies: Reconciling bottom-up and top-down).

Ibenholt, K., 2002. Explaining learning curves for wind power. Energy Policy 30 (13): 1181-1189.

International Energy Agency (IEA), 2004. Prospects for CO2 capture and storage, IEA/OECD.

International Energy Agency (IEA), 2000. Experience Curves for Energy technology policy. OECD/IEA.

International Energy Agency (IEA), 1997. Electricity Information 1996. OECD/IEA.

Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical Science Basis. IPCC Working Group I Fourth Assessment Report. Summary for policy makers. www.ipcc.ch.

Intergovernmental Panel on Climate Change (IPCC), 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de Coninck, H. C., Loos, M., Meyer, L. A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.

International Iron and Steel Institute (IISI), 2006. World Steel in Figures. Download at www.worldsteel.org.

International Iron and Steel Institute (IISI), 1998. Energy use in the steel industry. Committee on technology, Brussels.

International Iron and Steel Institute (IISI), 1996. Statistics on energy in the steel industry, 1996 update. Committee on technology, Brussels.

Jaccard, M., Nyboer, J., Bataille, C., Sadownik, B., 2003. Modeling the cost of climate policy: Distinguishing between alternative cost definitions and long-run cost dynamics. The Energy Journal 24 (1): 49-73.

Jacobsen, H.K., 2000. Technology diffusion in energy-economy models: The case of Danish vintage models. The Energy Journal 21: 43-72.

Jacoby, H.D., Reilly, J.M., McFarland, J.R., Paltsev, S., 2006. Technology and technical change in the MIT EPPA model. Energy Economics 28: 610-631 (Special Issue: Technological change in climate policy analysis).

Jaffe, A., Newell, R., Stavins, R., 2003. Technological Change and the Environment. In: Mäler, K.G. and J. Vincent (eds.), Handbook Environmental Economics, Vol. 1, Ch. 11, North-Holland/Elsevier Science, Amsterdam, pp. 461-516.

Junginger, M., Faaij, A., Turkenberg, W.C., 2005. Global experience curves for wind farms. Energy Policy 33 (2): 133-150.

Kemfert, C., 2005. Induced technological change in a multi-regional, multi-sectoral, integrated assessment model (WIAGEM) – Impact assessment of climate policy strategies. Ecological Economics 54: 293-305.

Kemfert, C., 2002. An integrated assessment model of economy-energy-climate – The model WIAGEM. Integrated Assessment 3 (4): 281-298.

Kim, Y., Worrell, E., 2002. International comparison of CO2 emission trends in the iron and steel industry. Energy Policy 30 (10): 827-838.

Klaassen, G., Miketa, A., Larsen, K., Sundqvist, T., 2005. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecological Economics 54: 227-240.

Knop, K., 2000. Wirtschaftlicher Vergleich der Rohstahlerzeugung auf Basis von Feinerzreduktion und Schachtofenreduktion. Stahl und Eisen 12 (11): 57-66.

Köhler, J., Grubb, M., Popp, D., Edenhofer, O., 2006. The transition to endogenous technical change in climate-economy models: A technical overview to the Innovation Modeling Comparison Project. The Energy Journal 27: 17-56 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Kouvaritakis, N., Soria, A., Isoard, S., 2000. Modelling energy technology dynamics: Methodology for adaptive expectations in models with learning by doing and learning by searching. International Journal of Global Energy Issues 14: 104-115.

Kouvaritakis, N., Soria, A., Isoard, S., Thonet, C., 2000a. Endogenous learning in world post-Kyoto scenarios: Application of the POLES model under adaptive expectations. International Journal of Global Energy Issues 14: 222-248.

Kverndokk, S., Rosendahl, K.E., Rutherford, T., 2004. Climate Policies and Induced Technological Change: Which to Choose, the Carrot or the Stick? Environmental and Resource Economics 27: 21-41.

Li, P.C., Hsu, S.H., Huang, C.H., Lin, H.H., 2003, Baseline forecasting for greenhouse gas reductions in Taiwan: a dynamic CGE analysis. In Chang, C., Meldensohn, R. and Shaw, D. (eds), Global Warming and the Asian Pacific, Edward Elgar, pp. 35-59.

Li, P.C., Huang, C.H., Hsu, S.H., 2000. Energy substitution in CGE modelling - Using the “Technology Bundle” approach: The case of Taiwan, downloadable from the Monash website, www.monash.edu.au/policy/conf/21Hsu.pdf.

Lise, W., Linderhoff, V., Kuik, O., Kemfert, C., Östling, R., Heinzow, T., 2006. A game theoretic model of the Northwestern European electricity market - market power and the environment. Energy Policy 34 (15): 2123-2136.

Löschel, A., 2004. Technologies, energy consumption and environmental policy in energy economy models. International Journal of Energy Technology and Policy 2 (3): 250-261.

Löschel, A., 2002. Technological change in economic models of environmental policy: A survey. Ecological Economics 43: 105-126.

Loulou, R., Lavigne, D., 1996. MARKAL model with elastic demands: Application to GHG emission control. In: Operations Research and Environmental Engineering, edited by C. Carraro and A. Haurie, 201-20. Boston: Kluwer Academic Publishers.

Lüngen, H.B., Mühlheims, K., Steffen, R., 2001. Stand der Direktreduktion und Schmelzreduktion von Eisenerzen (State of the art of direct reduction and smelting reduction of iron ores). Stahl und Eisen 121 (5): 35-47.

Lüngen, H.B., Steffen, R., 1998. Vergleichende Bewertung der Erzeugungskosten für Roheisen und Eisenschwamm. Stahl und Eisen 118 (3): 87-93.

Luiten, E., 2001. Beyond energy efficiency. Actors, networks and government intervention in the development of industrial process technologies. Utrecht: Universiteit Utrecht.

Lutz, C., Meyer, B., Nathani, C., Schleich, J., 2005. Endogenous technological change and emissions: The case of the German steel industry. Energy Policy 33 (9): 1143-1154.

MacCracken, C.N., Edmonds, J.A., Kim, S.H., Sands, R.D., 1999. The Economics of the Kyoto Protocol. In: Weyant, J., (Ed.), The Costs of the Kyoto Protocol: A Multi-Model Evaluation. The Energy Journal, special issue.

Manne, A.S., Richels, R.G., Mendelsohn, R., 1995. MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23: 17-34.

Manne, A.S., Wene. C.O., 1992. MARKAL-MACRO: A linked model for energy-economy analysis. Brookhaven National Laboratory.

Markewitz, P., Ziesing, H.-J. (Eds.), 2004. Politikszenarien für den Umweltschutz: Langfristszenarien und Handlungsempfehlungen ab 2012. Eine Untersuchung im Auftrag des Umweltbundesamtes, Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, Volume 50.

Mathiesen, L., Moestad, O., 2004. Climate policy and the steel industry: Achieving global emission reductions by an incomplete climate agreement. The Energy Journal 25 (4): 91-114.

McDonald, A, Schrattenholzer, L., 2001. Learning Rates for Energy Technologies. Energy Policy 29 (4): 255-261.

McFarland, J.R., Herzog, H.J., 2006. Incorporating carbon capture and storage technologies in integrated assessment models. Energy Economics 28: 632-652 (Special Issue: Technological change in climate policy analysis).

McFarland, J.R., Reilly, J.M, Herzog, H.J., 2004. Representing energy technologies in top-down economic models using bottom-up information. Energy Economics 26: 685-707.

Messner, S., 1997. Endogenized technological learning in an energy systems model. Journal of Evolutionary Economics 7 (3): 291-313.

Metal Bulletin, various years, January and July issues. Scrap and secondary metals. Ferrous scrap prices Germany.

NC3, 2002. 3rd national communication to the UNFCCC: Third Report by the Government of the Federal Republic of Germany in accordance with the Framework Convention of the United Nations. Annex I. http://unfccc.int/national_reports/annex_i_natcom/submitted_natcom/items/1395.php.

Neij, L., Andersen, P.D., Durstewitz, M., 2004. Experience curves for wind power. International Journal of Energy Technology and Policy 2 ( 1 and 2 ): 15-32.

Nemet, G., 2006. How well does learning-by-doing explain cost reductions in a carbon-free energy technology? Fondazione Eni Enrico Mattei (FEEM) Nota di Lavoro 143.2006. Milano.

Nil, J., 2003. Technological competition, time and windows of opportunity – the case of iron and steel production technologies. IÖW Discussion Paper 58/03.

Nordhaus, W.D., Boyer, J., 2000. Warming the world. Models of global warming. MIT Press, Cambridge Massachusetts. USA.

Ottinger Schaefer, D., Godwin, D., and Harnisch, J., 2006. Estimating Future Emissions and Potential Reductions of HFCs, PFCs and SF6. The Energy Journal 27: 63-88 (Special Issue #3: Multi-greenhouse gas mitigation and climate policy).

Otto, V., Löschel, A., Dellink, R., 2005. Energy biased technical change – a CGE analysis. Fondazione Eni Enrico Mattei (FEEM) Nota di Lavoro 90.2005, Milano.

Pant, H.M., 2002. GTEM: The Global Trade and Environment Model. Australian Bureau of Agricultural and Resource Economics, Canberra.

Pant, H.M., Fisher, B., 2004. Assessing the role of energy technology in mitigating GHG emissions Conference paper 04.26, ABARE, Canberra.

Papineau, M., 2006. An economic perspective on experience curves and dynamic economies in renewable energy technologies. Energy Policy 34: 422-432.

Perroni, C., Rutherford, T.F., 1995. Regular flexibility of nested CES functions. European Economic Review 39: 335-343.

Phylipsen, G.J.M., Blok, K., Worrell, E., 1998. Handbook on international comparisons of energy efficiency in the manufacturing industry. Department of Science, Technology and Society, Utrecht University, Netherlands.

Popp, D., 2006. ENTICE-BR: The effects of backstop technology R&D on climate policy models. Energy Economics 28: 188-222 (Special Issue: Technological change in climate policy analysis).

Popp, D., 2006a. Comparison of climate policies in the ENTICE-BR model. The Energy Journal 27: 163-174 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Popp, D., 2004. ENTICE – Endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management 48: 742-768.

Prognos/EWI (Energiewirtschaftliches Institut der Universität Köln), 1999. Energiereport III. Die längerfristige Entwicklung der Energiemärkte im Zeichen von Wettbewerb und Umwelt. Stuttgart.

Proost, S., van Regemorter, D., 2000. How to achieve the Kyoto target in Belgium – modelling methodology and some results. Working paper series no 2000-09. Katholieke Universiteit Leuven.

Rao, S., Kepp. I., Riahi, K., 2006. Importance of technological change and spillovers in long-term climate policy. The Energy Journal 27: 123-139 (Special Issue #1: Endogenous technological change and the economics of atmospheric stabilisation).

Rasmussen, Tobias N., 2001. CO2 abatement policy with learning-by-doing in renewable energy. Resource and Energy Economics 23: 297-325.

Rubin, E.S., Rao, A.B., Chen, C., 2004. Comparative Assessments of Fossil Fuel Power Plants with CO2 Capture and Storage. 7th Conference of Greenhouse Gas Control Technologies, Vancouver, Canada.

Ruth, M., Amato, A., 2002. Vintage structure dynamics and climate change policies the case of US iron and steel. Energy Policy 30 (7): 541-552.

Rynikiewicz, C., 2005. The climate change challenge and transitions for radical change in the European steel industry. Paper presented at the 10th European Roundtable on Sustainable Consumption and Production (ERSCP), Antwerp 5-7 October 2005.

Sands, R.D., 2004. Dynamics of Carbon Abatement in the Second Generation Model. Energy Economics 26 (4): 721-738.

Sands, R.D., Fawcett, A.A., 2005. The Second Generation Model: Data, parameters, and implementation. Pacific Northwest National Laboratory, PNNL-15431.

Saunders, H.D., 2000 a. A view from the macro side: rebound, backfire, and Khazzoom-Brookes. Energy Policy 28 (6-7): 439-449.

Saunders, H.D., 2000b. Does predicted rebound depend on distinguishing between energy and energy services? Energy Policy 28 (6-7): 497-500.

Schäfer, A., Jacoby, H.D., 2006. Experiments with a hybrid CGE-MARKAL Model. The Energy Journal 27: 171-177 (Special Issue #2: Hybrid modeling of energy-environment policies: Reconciling bottom-up and top-down).

Schäfer, A., Jacoby, H.D., 2005. Technology detail in a multi-sector CGE model: Transport under climate policy. Energy Economics 27 (1): 1-24.

Schnabel, S., 2004. Vom Eisenschwamm zum Qualitätsstahl (From direct reduced iron to high grade steel). Stahl und Eisen 124 (1): 39-42.

Schumacher, K., Sands, R., 2007. Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany. Energy Economics (in press).

Schumacher, K., Sands, R.D., 2006. Innovative energy technologies and climate policy in Germany. Energy Policy 34 (18): 3939-3941.

Schumacher, K., Sathaye, J., 1998. India's Iron and Steel Industry: Productivity, Energy Efficiency and Carbon Emissions, LBNL-41844, Lawrence Berkeley National Laboratory.

Scrieciu, S.S., 2007. The inherent dangers of using computable general equilibrium models as a single integrated modeling framework for sustainability impact assessment. A critical note on Böhringer and Löschel (2006). Ecological Economics 60 (4): 678-684.

Seebregts, A., Kram, T., Schaeffer, G.J., Bos, A., 2000. Endogenous learning and technology clustering: analysis with MARKAL model of the Western European energy system. International Journal of Global Energy 14: 289-319.

Shoven, J.B., Whalley, J., 1992. Applying General Equilibrium. Cambridge University Press.

Sijm, J.P.M., 2004. Induced technological change and spillovers in climate policy modeling. An assessment. Report ECN-C--04-073.

Solow, R.M., 1962. Technical Progress, Capital Formation, and Economic Growth, American Economic Review, Papers and Proceedings 52: 76-86.

Statistisches Bundesamt, 2006. Produzierendes Gewerbe. Eisen und Stahl. Fachserie 4 Reihe 8.1. Statistisches Bundesamt (Federal Statistical Office), Wiesbaden. February 2006.

Statistisches Bundesamt, 1995. Volkswirtschaftliche Gesamtrechnung, Input-Output Tabellen 1995. Wiesbaden: Statistisches Bundesamt.

Stubbles, J., 2000. Energy use in the U.S. steel industry: An historical perspective and future opportunities. Prepared for the U.S. Department of Energy.http://www.eere.energy.gov/industry/steel/pdfs/steel_energy_use.pdf.

Sue Wing, I., 2006. The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework. Energy Economics (in press).

Sue Wing, I., 2006a. Representing induced technological change in models for climate policy analysis. Energy Economics 28: 539-562 (Special Issue: Technological change in climate policy analysis).

UBA (Umweltbundesamt), 2005. Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 – 2004. Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen 2006 (German Greenhouse Gas Inventory: National Inventory Report. Submission under the United Nations Framework Convention on Climate Change 2006). http://www.uba.de.

UK Energy Research Centre (UKERC), 2006. The macro-economic rebound effect and the UK economy. Working paper July 2006. http://www.ukerc.ac.uk.

U.S. Energy Information Administration (EIA), 2002. Annual Energy Outlook. http://www.eia.doe.gov/oiaf/aeo.

U.S. Energy Information Administration (EIA), 2002a. International Energy Outlook 2002.

USGS (U.S. Geological Survey), 2006. Mineral commodity summaries 2006. http://minerals.usgs.gov/minerals/pubs/mcs/2006/mcs2006.pdf.

USGS (U.S. Geological Survey), 2004. Mineral yearbook 2004. Iron and steel scrap. http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_scrap/index.html#myb.

van Bergeijk, P.A., van Hagen, G.A., de Mooij, R.A., van Sinderen, J., 1997. Endogenizing Technological Progress: The MESEMET Model. Energy Modelling 14: 341-367.

van der Zwaan, B.C.C., Gerlagh, R., Klaassen, G., Schrattenholzer, L., 2002. Endogenous technological change in climate change modeling. Energy Economics 24 (1): 1-19.

VDMA, 2005. Presseinformation (press release) 28 July 2005. Verband Deutscher Maschinen- und Anlagenbau - German Engineering Federation, www.vdma.de.

VDMA, 2005a. Personal communication August 18, 2005. Verband Deutscher Maschinen- und Anlagenbau - German Engineering Federation.

Vollebergh, H. R. J., Kemfert, C., 2005. The role of technological change for a sustainable development. Ecological Economics 54: 133-147.

Welsch, H., 1998. Coal subsidization and nuclear phase-out in a general equilibrium model for Germany. Energy Economics 20 (2): 203-222.

Welsch, H., 1996. Klimaschutz, Energiepolitik und Gesamtwirtschaft. Eine allgemeine Gleichgewichtsanalyse für die Europäische Union. München.

Welsch, H., Hoster, F., 1995. A General Equilibrium Analysis of European Carbon/Energy Taxation: Model Structure and Macroeconomic Results. Zeitschrift für Wirtschafts- und Sozialwissenschaften 115: 275–303.

Weyant, J., 2004. Introduction and overview. Energy Economics 26: 501-515 (Special Issue: EMF 19 Alternative technology strategies for climate change policy).

Weyant, J., Olavson, T., 1999. Issues in modeling induced technological change in energy, environment, and climate policy. Environmental Modeling and Assessment 4 ( 2 and3 ): 67-85.

World Energy Council (WEC), 1995. Energy efficiency improvement utilizing high technology – an assessment of energy use in industry and buildings. London, UK.

Worrell, E., Biermans, G., 2005. Move over! Stock turnover, retrofit and industrial energy efficiency. Energy Policy 33 (7): 949-962.

Worrell, E., Price, L., Martin, N., 2001. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector. Energy 26: 513-536.

Worrell, E., Price, L., Martin, N., Farla, J., Schaeffer, R., 1997. Energy intensity in the iron and steel industry: a comparison of physical indicators. Energy Policy 25 (7-9): 727-744.

WV Stahl and VDEH (Wirtschaftsvereinigung Stahl und Verein Deutscher Eisenhüttenleute), 2005. Statistical Yearbook of the Steel Industry 2005/2006. Düsseldorf.

Young, A., 1991. Learning by doing and the dynamic effects of international trade. The Quarterly Journal of Economics 106(2): 369-405.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML generated:
29.08.2007