[1] Ordway, G. A. and Garry, D. J. (2004): Myoglobin: an essential hemoprotein in striated muscle, J Exp Biol 207 [Pt 20], pp.3441-6.

[2] Denic, S. and Agarwal, M. M. (2007): Nutritional iron deficiency: an evolutionary perspective, Nutrition 23 [7-8], pp.603-14.

[3] Koeppen, A. H. (1995): The history of iron in the brain, J Neurol Sci 134 Suppl, pp.1-9.

[4] Moos, T. and Morgan, E. H. (2004): The metabolism of neuronal iron and its pathogenic role in neurological disease: review, Ann N Y Acad Sci 1012, pp.14-26.

[5] Zecca, L.; Youdim, M. B.; Riederer, P.; Connor, J. R. and Crichton, R. R. (2004): Iron, brain ageing and neurodegenerative disorders, Nat Rev Neurosci 5 [11], pp.863-73.

[6] Finch, C. A.; Deubelbeiss, K.; Cook, J. D.; Eschbach, J. W.; Harker, L. A.; Funk, D. D.; Marsaglia, G.; Hillman, R. S.; Slichter, S.; Adamson, J. W.; Ganzoni, A. and Biblett, E. R. (1970): Ferrokinetics in man, Medicine (Baltimore) 49 [1], pp.17-53.

[7] Cavill, I. and Ricketts, C (1974): Human iron kinetics, M., Jacobs A. and Worwood, Ed, Iron in biochemistry and medicine, p. 769, Academic Press, London.

[8] Hosain, F.; Marsaglia, G. and Finch, C. A. (1967): Blood ferrokinetics in normal man, J Clin Invest 46 [1], pp.1-9.

[9] Pollycove, M. and Mortimer, R. (1961): The quantitative determination of iron kinetics and hemoglobin synthesis in human subjects, J Clin Invest 40, pp.753-82.

[10] Nathanson, M. H.; Muir, A. and McLaren, G. D. (1985): Iron absorption in normal and iron-deficient beagle dogs: mucosal iron kinetics, Am J Physiol 249 [4 Pt 1], pp.G439-48.

[11] Berzuini, C.; Franzone, P. C.; Stefanelli, M. and Viganotti, C. (1978): Iron kinetics: modelling and parameter estimation in normal and anemic states, Comput Biomed Res 11 [3], pp.209-27.

[12] Stefanelli, M.; Bentley, D. P.; Cavill, I. and Roeser, H. P. (1984): Quantitation of reticuloendothelial iron kinetics in humans, Am J Physiol 247 [5 Pt 2], pp.R842-9.

[13] Vacha, J. ; Znojil, V.; Hola, J. and Dungel, J. (1982): The Internal Iron Kinetics in Mice, ACTA VET. BRNO 51, pp.3-22.

[14] Lao, B. J. and Kamei, D. T. (2006): A compartmental model of iron regulation in the mouse, J Theor Biol 243 [4], pp.542-54.

[15] Bothwell, T. H. and Finch, C.A. (1962): Iron Metabolism in Man, Boston: Little, Brown and Co..

[16] Jacobs, A. and Worwood, M. (1974): Iron in Biochemistry and Medicine, Academic Press, London and New York.

[17] Crichton, R. (2009): Iron Metabolism: From Molecular Mechanisms to Clinical Consequences, John Wiley & Sons.

[18] Ganz, T. (2005): Cellular iron: ferroportin is the only way out, Cell Metab 1 [3], pp.155-7.

[19] Morgan, E.H. (1974): Transferrin and transferrin iron, Worwood, A. Jacobs and M., Ed, Iron in Biochemistry and Medicine, pp. 29-71, Academic Press, London and New York.

[20] Allen, D. W. and Jandl, J. H. (1960): Kinetics of intracellular iron in rabbit reticulocytes, Blood 15, pp.71-81.

[21] Noyes, W. D.; Hosain, F. and Finch, C. A. (1964): Incorporation of Radioiron into Marrow Heme, J Lab Clin Med 64, pp.574-80.

[22] Ricketts, C.; Jacobs, A. and Cavill, I. (1975): Ferrokinetics and erythropoiesis in man: the measurement of effective erythropoiesis, ineffective erythropoiesis and red cell lifespan using 59Fe, Br J Haematol 31 [1], pp.65-75.

[23] Stevens, A. R., Jr.; White, P. L.; Hegsted, D. M. and Finch, C. A. (1953): Iron excretion in the mouse, J Biol Chem 203 [1], pp.161-5.

[24] Chappelle, E.; Gabrio, B. W.; Stevens, A. R., Jr. and Finch, C. A. (1955): Regulation of body iron content through excretion in the mouse, Am J Physiol 182 [2], pp.390-2.

[25] Kakhlon, O. and Cabantchik, Z. I. (2002): The labile iron pool: characterization, measurement, and participation in cellular processes(1), Free Radic Biol Med 33 [8], pp.1037-46.

[26] Zanninelli, G.; Loreal, O.; Brissot, P.; Konijn, A. M.; Slotki, I. N.; Hider, R. C. and Ioav Cabantchik, Z. (2002): The labile iron pool of hepatocytes in chronic and acute iron overload and chelator-induced iron deprivation, J Hepatol 36 [1], pp.39-46.

[27] Schumann, K.; Szegner, B.; Kohler, B.; Pfaffl, M. W. and Ettle, T. (2007): A method to assess 59Fe in residual tissue blood content in mice and its use to correct 59Fe-distribution kinetics accordingly, Toxicology 241 [1-2], pp.19-32.

[28] Vacha, J. (1975): Blood volume in inbred strain BALB/c, CBA/J and C57BL/10 mice determined by means of 59Fe-labelled red cells and 59Fe bound to transferrin, Physiol Bohemoslov 24 [5], pp.413-9.

[29] Barbee, R. W.; Perry, B. D.; Re, R. N. and Murgo, J. P. (1992): Microsphere and dilution techniques for the determination of blood flows and volumes in conscious mice, Am J Physiol 263 [3 Pt 2], pp.R728-33.

[30] Lee, S. H.; Starkey, P. M. and Gordon, S. (1985): Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80, J Exp Med 161 [3], pp.475-89.

[31] Blumenfeld, David (2001): Operations Research Calculations Handbook, 1. ed., CRC Press, Boca Raton, London, New York, Washington.

[32] Bates, G. W.; Billups, C. and Saltman, P. (1967): The kinetics and mechanism of iron (3) exchange between chelates and transferrin. I. The complexes of citrate and nitrilotriacetic acid, J Biol Chem 242 [12], pp.2810-5.

[33] Trinder, D.; Olynyk, J. K.; Sly, W. S. and Morgan, E. H. (2002): Iron uptake from plasma transferrin by the duodenum is impaired in the Hfe knockout mouse, Proc Natl Acad Sci U S A 99 [8], pp.5622-6.

[34] Bonnet, J. D.; Orvis, A. L.; Hagedorn, A. B. and Owen, C. A., Jr. (1960): Rate of loss of radioiron from mouse and man, Am J Physiol 198, pp.784-6.

[35] Lebeau, A.; Frank, J.; Biesalski, H. K.; Weiss, G.; Srai, S. K.; Simpson, R. J.; McKie, A. T.; Bahram, S.; Gilfillan, S. and Schumann, K. (2002): Long-term sequelae of HFE deletion in C57BL/6 x 129/O1a mice, an animal model for hereditary haemochromatosis, Eur J Clin Invest 32 [8], pp.603-12.

[36] Nathanson, M. H.; Saidel, G. M. and Mclaren, G. D. (1984): Analysis of Iron Kinetics - Identifiability, Experiment Design, and Deterministic Interpretations of a Stochastic-Model, Mathematical Biosciences 68 [1], pp.1-21.

[37] Breiman, L. and Friedman, J. H. (1985): Estimating Optimal Transformations for Multiple-Regression and Correlation - Rejoinder, Journal of the American Statistical Association 80 [391], pp.614-619.

[38] Hengl, S.; Kreutz, C.; Timmer, J. and Maiwald, T. (2007): Data-based identifiability analysis of non-linear dynamical models, Bioinformatics 23 [19], pp.2612-8.

[39] Maiwald, T. and Timmer, J. (2008): Dynamical modeling and multi-experiment fitting with PottersWheel, Bioinformatics 24 [18], pp.2037-43.

[40] Hentze, M. W.; Muckenthaler, M. U. and Andrews, N. C. (2004): Balancing acts: molecular control of mammalian iron metabolism, Cell 117 [3], pp.285-97.

[41] Ciechanover, A.; Schwartz, A. L.; Dautry-Varsat, A. and Lodish, H. F. (1983): Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents, J Biol Chem 258 [16], pp.9681-9.

[42] Cooperman, S. S.; Meyron-Holtz, E. G.; Olivierre-Wilson, H.; Ghosh, M. C.; McConnell, J. P. and Rouault, T. A. (2005): Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2, Blood 106 [3], pp.1084-91.

[43] Hentze, M. W.; Caughman, S. W.; Rouault, T. A.; Barriocanal, J. G.; Dancis, A.; Harford, J. B. and Klausner, R. D. (1987): Identification of the iron-responsive element for the translational regulation of human ferritin mRNA, Science 238 [4833], pp.1570-3.

[44] Meyron-Holtz, E. G.; Ghosh, M. C.; Iwai, K.; LaVaute, T.; Brazzolotto, X.; Berger, U. V.; Land, W.; Ollivierre-Wilson, H.; Grinberg, A.; Love, P. and Rouault, T. A. (2004): Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis, EMBO J 23 [2], pp.386-95.

[45] Bulik, S.; Grimbs, S.; Huthmacher, C.; Selbig, J. and Holzhutter, H. G. (2009): Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks, FEBS J 276 [2], pp.410-24.

[46] Heijnen, J. J. (2005): Approximative kinetic formats used in metabolic network modeling, Biotechnol Bioeng 91 [5], pp.534-45.

[47] Westerhoff, H. V. and Kell, D. B. (1987): Matrix method for determining steps most rate-limiting to metabolic fluxes in biotechnological processes, Biotechnol Bioeng 30 [1], pp.101-7.

[48] Savageau, M. A. (1969): Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J Theor Biol 25 [3], pp.365-9.

[49] Voit, E. O. and Radivoyevitch, T. (2000): Biochemical systems analysis of genome-wide expression data, Bioinformatics 16 [11], pp.1023-37.

[50] Liebermeister, W.; Uhlendorf, J. and Klipp, E. (2010): Modular rate laws for enzymatic reactions: thermodynamics, elasticities, and implementation, Bioinformatics.

[51] Wilkinson, S. J.; Benson, N. and Kell, D. B. (2008): Proximate parameter tuning for biochemical networks with uncertain kinetic parameters, Mol Biosyst 4 [1], pp.74-97.

[52] Nielsen, J. (1997): Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates, Biochem J 321 ( Pt 1), pp.133-8.

[53] Frazer, D. M.; Wilkins, S. J.; Becker, E. M.; Vulpe, C. D.; McKie, A. T.; Trinder, D. and Anderson, G. J. (2002): Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats, Gastroenterology 123 [3], pp.835-44.

[54] Ganz, T. and Nemeth, E. (2006): Iron imports. IV. Hepcidin and regulation of body iron metabolism, Am J Physiol Gastrointest Liver Physiol 290 [2], pp.G199-203.

[55] Lin, L.; Valore, E. V.; Nemeth, E.; Goodnough, J. B.; Gabayan, V. and Ganz, T. (2007): Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4, Blood 110 [6], pp.2182-9.

[56] Rouault, T. A. (2006): The role of iron regulatory proteins in mammalian iron homeostasis and disease, Nat Chem Biol 2 [8], pp.406-14.

[57] Morgan, E. H. and Baker, E. (1974): The interaction between transferrin and rabbit reticulocyte ghosts, Biochim Biophys Acta 363 [2], pp.240-8.

[58] Kaufman, R. M.; Pollack, S.; Anderson, P. and Crosby, W. H. (1964): Effect of Hemolysis on Excretion and Accumulation of Iron in the Rat, Am J Physiol 207, pp.1041-3.

[59] Wick M., Pinggera W., Lehmann P. (2003): Clinical Aspects and Laboratory Iron Metabolism.

[60] Fillet, G.; Cook, J. D. and Finch, C. A. (1974): Storage iron kinetics. VII. A biologic model for reticuloendothelial iron transport, J Clin Invest 53 [6], pp.1527-33.

[61] Kaufman, R. M.; Pollack, S. and Crosby, W. H. (1966): Iron-deficient diet: effects in rats and humans, Blood 28 [5], pp.726-37.

[62] Cavill, I. and Ricketts, C. (1978): Erythropoiesis and iron kinetics, Br J Haematol 38 [4], pp.433-7.

[63] Cavill, I.; Ricketts, C.; Napier, J. A.; Jacobs, A.; Trevett, D. and Bishop, R. D. (1976): The measurement of 59Fe clearance from the plasma, Scand J Haematol 17 [3], pp.160-6.

[64] Brodsky, I.; Dennis, L. H.; Kahn, S. B. and Brady, L. W. (1966): Normal mouse erythropoiesis. I. The role of the spleen in mouse erythropoiesis, Cancer Res 26 [2], pp.198-201.

[65] Cavill, I.; Ricketts, C. and Jacobs, A. (1977): Radioiron and erythropoiesis: methods, interpretation and clinical application, Clin Haematol 6 [3], pp.583-99.

[66] Finch, C. (1994): Regulators of iron balance in humans, Blood 84 [6], pp.1697-702.

[67] Horky, J.; Vacha, J. and Znojil, V. (1978): Comparison of life span of erythrocytes in some inbred strains of mouse using 14C-labelled glycine, Physiol Bohemoslov 27 [3], pp.209-17.

[68] Knutson, M. and Wessling-Resnick, M. (2003): Iron metabolism in the reticuloendothelial system, Crit Rev Biochem Mol Biol 38 [1], pp.61-88.

[69] Harrison, P. M. and Arosio, P. (1996): The ferritins: molecular properties, iron storage function and cellular regulation, Biochim Biophys Acta 1275 [3], pp.161-203.

[70] Frazer, D. M.; Wilkins, S. J.; Vulpe, C. D. and Anderson, G. J. (2005): The role of duodenal cytochrome b in intestinal iron absorption remains unclear, Blood 106 [13], p.4413; author reply 4414.

[71] Vacha, J.; Dungel, J. and Kleinwachter, V. (1978): Determination of heme and non-heme iron content of mouse erythropoietic organs, Exp Hematol 6 [9], pp.718-24.

[72] Hahn, P. F.; Bale, W. F.; Hettig, R. A.; Kamen, M. D. and Whipple, G. H. (1939): Radioactive Iron and Its Excretion in Urine, Bile, and Feces, J Exp Med 70 [5], pp.443-451.

[73] Dubach, R.; Moore, C. V. and Callender, S. (1955): Studies in iron transportation and metabolism. IX. The excretion of iron as measured by the isotope technique, J Lab Clin Med 45 [4], pp.599-615.

[74] Forrester, R. H.; Conrad, M. E., Jr. and Crosby, W. H. (1962): Measurement of total body iron in animals using whole-body liquid scintillation detectors, Proc Soc Exp Biol Med 111, pp.115-9.

[75] Ramey, G.; Deschemin, J. C.; Durel, B.; Canonne-Hergaux, F.; Nicolas, G. and Vaulont, S.: Hepcidin targets ferroportin for degradation in hepatocytes, Haematologica 95 [3], pp.501-4.

[76] Zhou, X. Y.; Tomatsu, S.; Fleming, R. E.; Parkkila, S.; Waheed, A.; Jiang, J.; Fei, Y.; Brunt, E. M.; Ruddy, D. A.; Prass, C. E.; Schatzman, R. C.; O'Neill, R.; Britton, R. S.; Bacon, B. R. and Sly, W. S. (1998): HFE gene knockout produces mouse model of hereditary hemochromatosis, Proc Natl Acad Sci U S A 95 [5], pp.2492-7.

[77] Huang, F. W.; Pinkus, J. L.; Pinkus, G. S.; Fleming, M. D. and Andrews, N. C. (2005): A mouse model of juvenile hemochromatosis, J Clin Invest 115 [8], pp.2187-91.

[78] Nicolas, G.; Bennoun, M.; Devaux, I.; Beaumont, C.; Grandchamp, B.; Kahn, A. and Vaulont, S. (2001): Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice, Proc Natl Acad Sci U S A 98 [15], pp.8780-5.

[79] Yamaji, S.; Sharp, P.; Ramesh, B. and Srai, S. K. (2004): Inhibition of iron transport across human intestinal epithelial cells by hepcidin, Blood 104 [7], pp.2178-80.

[80] Krause, A.; Neitz, S.; Magert, H. J.; Schulz, A.; Forssmann, W. G.; Schulz-Knappe, P. and Adermann, K. (2000): LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity, FEBS Lett 480 [2-3], pp.147-50.

[81] Park, C. H.; Valore, E. V.; Waring, A. J. and Ganz, T. (2001): Hepcidin, a urinary antimicrobial peptide synthesized in the liver, J Biol Chem 276 [11], pp.7806-10.

[82] Recalcati, S.; Alberghini, A.; Campanella, A.; Gianelli, U.; De Camilli, E.; Conte, D. and Cairo, G. (2006): Iron regulatory proteins 1 and 2 in human monocytes, macrophages and duodenum: expression and regulation in hereditary hemochromatosis and iron deficiency, Haematologica 91 [3], pp.303-10.

[83] Galy, B.; Ferring, D.; Minana, B.; Bell, O.; Janser, H. G.; Muckenthaler, M.; Schumann, K. and Hentze, M. W. (2005): Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2), Blood 106 [7], pp.2580-9.

[84] Hubert, N. and Hentze, M. W. (2002): Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function, Proc Natl Acad Sci U S A 99 [19], pp.12345-50.

[85] Galy, B.; Ferring, D. and Hentze, M. W. (2005): Generation of conditional alleles of the murine Iron Regulatory Protein (IRP)-1 and -2 genes, Genesis 43 [4], pp.181-8.

[86] Pritchard, L. and Kell, D. B. (2002): Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis, Eur J Biochem 269 [16], pp.3894-904.

[87] Edwards, J. S. and Palsson, B. O. (2000): Robustness analysis of the Escherichia coli metabolic network, Biotechnol Prog 16 [6], pp.927-39.

[88] Herrgard, M. J.; Lee, B. S.; Portnoy, V. and Palsson, B. O. (2006): Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae, Genome Res 16 [5], pp.627-35.

[89] Schuster, R. and Holzhutter, H. G. (1995): Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells, Eur J Biochem 229 [2], pp.403-18.

[90] Andrews, N. C. (1999): Disorders of iron metabolism, N Engl J Med 341 [26], pp.1986-95.

[91] Mendes, P. and Kell, D. (1998): Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation, Bioinformatics 14 [10], pp.869-83.

[92] Andrews, N. C. and Schmidt, P. J. (2007): Iron homeostasis, Annu Rev Physiol 69, pp.69-85.

[93] Bahram, S.; Gilfillan, S.; Kuhn, L. C.; Moret, R.; Schulze, J. B.; Lebeau, A. and Schumann, K. (1999): Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism, Proc Natl Acad Sci U S A 96 [23], pp.13312-7.

[94] Cavill, I. (1971): The preparation of 59 Fe-labelled transferrin for ferrokinetic studies, J Clin Pathol 24 [5], pp.472-4.

[95] Vácha J., Holá J., Dungel J., Znojil V. (1982): The distribution of erythropoiesis over the various anatomical regions of the erythropoietic system in some inbred strains of mice, Experimental Hematology 10, p.6.

[96] Klipp, E. (2009): Timing matters, FEBS Lett 583 [24], pp.4013-8.

[97] Donovan, A.; Brownlie, A.; Zhou, Y.; Shepard, J.; Pratt, S. J.; Moynihan, J.; Paw, B. H.; Drejer, A.; Barut, B.; Zapata, A.; Law, T. C.; Brugnara, C.; Lux, S. E.; Pinkus, G. S.; Pinkus, J. L.; Kingsley, P. D.; Palis, J.; Fleming, M. D.; Andrews, N. C. and Zon, L. I. (2000): Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter, Nature 403 [6771], pp.776-81.

[98] Glass, R. D. and Doyle, D. (1972): On the measurement of protein turnover in animal cells, J Biol Chem 247 [16], pp.5234-42.

[99] Haskins, D.; Stevens, A. R., Jr.; Finch, S. and Finch, C. A. (1952): Iron metabolism; iron stores in man as measured by phlebotomy, J Clin Invest 31 [6], pp.543-7.

[100] Cook, J. D.; Hershko, C. and Finch, C. A. (1974): Storage iron kinetics. IV. Cellular distribution of ferritin iron stores in rat liver, Proc Soc Exp Biol Med 145 [4], pp.1378-81.

[101] Hershko, C.; Cook, J. D. and Finch, C. A. (1974): Storage iron kinetics. VI. The effect of inflammation on iron exchange in the rat, Br J Haematol 28 [1], pp.67-75.

[102] Van Wyk, C. P.; Linder-Horowitz, M. and Munro, H. N. (1971): Effect of iron loading on non-heme iron compounds in different liver cell populations, J Biol Chem 246 [4], pp.1025-31.

[103] P. F. Hahn, W. F. Bale, R. A. Hettig, M. D. Kamen, and G. H. Whipple (1939): Radioactive iron and its excretion in the urine, bile and feces, Journal of Experimental Medicine 70 [5], p.8.

[104] Muckenthaler, M.; Roy, C. N.; Custodio, A. O.; Minana, B.; deGraaf, J.; Montross, L. K.; Andrews, N. C. and Hentze, M. W. (2003): Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis, Nat Genet 34 [1], pp.102-7.

[105] Vujic Spasic, M.; Kiss, J.; Herrmann, T.; Kessler, R.; Stolte, J.; Galy, B.; Rathkolb, B.; Wolf, E.; Stremmel, W.; Hentze, M. W. and Muckenthaler, M. U. (2007): Physiologic systemic iron metabolism in mice deficient for duodenal Hfe, Blood 109 [10], pp.4511-7.

[106] Hower, V.; Mendes, P.; Torti, F. M.; Laubenbacher, R.; Akman, S.; Shulaev, V. and Torti, S. V. (2009): A general map of iron metabolism and tissue-specific subnetworks, Mol Biosyst 5 [5], pp.422-43.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: