Aichele, P.; Zinke, J.; Grode, L.; Schwendener, R. A.; Kaufmann, S. H. und Seiler, P. (2003): Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses, J Immunol 171) [3], Seite 1148-55.

Aki, M.; Shimbara, N.; Takashina, M.; Akiyama, K.; Kagawa, S.; Tamura, T.; Tanahashi, N.; Yoshimura, T.; Tanaka, K. und Ichihara, A. (1994): Interferon-gamma induces different subunit organizations and functional diversity of proteasomes, J Biochem (Tokyo) 115) [2], Seite 257-69.


Akiyama, K.; Kagawa, S.; Tamura, T.; Shimbara, N.; Takashina, M.; Kristensen, P.; Hendil, K. B.; Tanaka, K. und Ichihara, A. (1994): Replacement of proteasome subunits X and Y by LMP7 and LMP2 induced by interferon-gamma for acquirement of the functional diversity responsible for antigen processing, FEBS Lett 343) [1], Seite 85-8.

Alvarez, P.; Leguizamon, M. S.; Buscaglia, C. A.; Pitcovsky, T. A. und Campetella, O. (2001): Multiple overlapping epitopes in the repetitive unit of the shed acute-phase antigen from Trypanosoma cruzi enhance its immunogenic properties, Infect Immun 69) [12], Seite 7946-9.

Ando, K; Guidotti, LG; Cerny, A; Ishikawa, T und Chisari, FV (1994): CTL access to tissue antigen is restricted in vivo, J Immunol 153) [2], Seite 482-488.


Auerbuch, V.; Brockstedt, D. G.; Meyer-Morse, N.; O'Riordan, M. und Portnoy, D. A. (2004): Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes, J Exp Med 200) [4], Seite 527-33.

Bachmair, A.; Finley, D. und Varshavsky, A. (1986): In vivo half-life of a protein is a function of its amino-terminal residue, Science 234) [4773], Seite 179-86.

Badovinac, V. P.; Porter, B. B. und Harty, J. T. (2004): CD8+ T cell contraction is controlled by early inflammation, Nat Immunol 5) [8], Seite 809-17.


Bancroft, G. J.; Schreiber, R. D. und Unanue, E. R. (1991): Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse, Immunol Rev 124), Seite 5-24.

Barton, L. F.; Cruz, M.; Rangwala, R.; Deepe, G. S., Jr. und Monaco, J. J. (2002): Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection, J Immunol 169) [6], Seite 3046-52.

Beekman, N. J.; van Veelen, P. A.; van Hall, T.; Neisig, A.; Sijts, A.; Camps, M.; Kloetzel, P. M.; Neefjes, J. J.; Melief, C. J. und Ossendorp, F. (2000): Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site, J Immunol 164) [4], Seite 1898-905.


Beninga, J.; Rock, K. L. und Goldberg, A. L. (1998): Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase, J Biol Chem 273) [30], Seite 18734-42.

Berruti, G. und Martegani, E. (2004): The Deubiquitinating Enzyme mUBPy Interacts with the Sperm-Specific Molecular Chaperone MSJ-1: The Relation with the Proteasome, Acrosome, and Centrosome in Mouse Male Germ Cells, Biol Reprod.

Bielecki, J.; Youngman, P.; Connelly, P. und Portnoy, D. A. (1990): Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells, Nature 345) [6271], Seite 175-6.


Boehmelt, G.; Wakeham, A.; Elia, A.; Sasaki, T.; Plyte, S.; Potter, J.; Yang, Y.; Tsang, E.; Ruland, J.; Iscove, N. N.; Dennis, J. W. und Mak, T. W. (2000): Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells, Embo J 19) [19], Seite 5092-104.

Boes, B.; Hengel, H.; Ruppert, T.; Multhaup, G.; Koszinowski, U. H. und Kloetzel, P. M. (1994): Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes, J Exp Med 179) [3], Seite 901-9.

Bose, S.; Brooks, P.; Mason, G. G. und Rivett, A. J. (2001): gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation, Biochem J 353) [Pt 2], Seite 291-7.


Bose, S.; Stratford, F. L.; Broadfoot, K. I.; Mason, G. G. und Rivett, A. J. (2004): Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon, Biochem J 378) [Pt 1], Seite 177-84.

Braun, B. C.; Glickman, M.; Kraft, R.; Dahlmann, B.; Kloetzel, P. M.; Finley, D. und Schmidt, M. (1999): The base of the proteasome regulatory particle exhibits chaperone-like activity, Nat Cell Biol 1) [4], Seite 221-6.

Bubert, A.; Kuhn, M.; Goebel, W. und Kohler, S. (1992): Structural and functional properties of the p60 proteins from different Listeria species, J Bacteriol 174) [24], Seite 8166-71.


Bulteau, A. L.; Lundberg, K. C.; Humphries, K. M.; Sadek, H. A.; Szweda, P. A.; Friguet, B. und Szweda, L. I. (2001): Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion, J Biol Chem 276) [32], Seite 30057-63..

Busch, D. H.; Kerksiek, K. und Pamer, E. G. (1999): Processing of Listeria monocytogenes antigens and the in vivo T-cell response to bacterial infection, Immunol Rev 172), Seite 163-9.

Cardozo, C.; Eleuteri, A. M. und Orlowski, M. (1995): Differences in catalytic activities and subunit pattern of multicatalytic proteinase complexes (proteasomes) isolated from bovine pituitary, lung, and liver. Changes in LMP7 and the component necessary for expression of the chymotrypsin-like activity, J Biol Chem 270) [38], Seite 22645-51.


Carrero, J. A.; Calderon, B. und Unanue, E. R. (2004): Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection, J Exp Med 200) [4], Seite 535-40.

Cascio, P.; Call, M.; Petre, B. M.; Walz, T. und Goldberg, A. L. (2002): Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes, Embo J 21) [11], Seite 2636-45.

Cascio, P.; Hilton, C.; Kisselev, A. F.; Rock, K. L. und Goldberg, A. L. (2001): 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide, Embo J 20) [10], Seite 2357-66..


Cech, N. B. und Enke, C. G. (2001): Practical implications of some recent studies in electrospray ionization fundamentals, Mass Spectrom Rev 20) [6], Seite 362-87.

Chapatte, L.; Servis, C.; Valmori, D.; Burlet-Schiltz, O.; Dayer, J.; Monsarrat, B.; Romero, P. und Levy, F. (2004): Final Antigenic Melan-A Peptides Produced Directly by the Proteasomes Are Preferentially Selected for Presentation by HLA-A*0201 in Melanoma Cells, J Immunol 173) [10], Seite 6033-40.

Chen, P. und Hochstrasser, M. (1996): Autocatalytic Subunit Processing Couples Active Site Formation in the 20S Proteasome to Completion of Assembly, Cell 86) [6], Seite 961-972.


Cheng, X.; Cole, R. N.; Zaia, J. und Hart, G. W. (2000): Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta, Biochemistry 39) [38], Seite 11609-20.

Comer, F. I. und Hart, G. W. (2001): Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II, Biochemistry 40) [26], Seite 7845-52.

Coux, O.; Tanaka, K. und Goldberg, A. L. (1996): Structure and functions of the 20S and 26S proteasomes, Annu Rev Biochem 65), Seite 801-47.


Cuervo, A. M.; Palmer, A.; Rivett, A. J. und Knecht, E. (1995): Degradation of proteasomes by lysosomes in rat liver, Eur J Biochem 227) [3], Seite 792-800.

Dahlmann, B.; Kopp, F.; Kuehn, L.; Niedel, B.; Pfeifer, G.; Hegerl, R. und Baumeister, W. (1989): The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria, FEBS Lett 251) [1-2], Seite 125-31.

Dahlmann, B.; Ruppert, T.; Kloetzel, P. M. und Kuehn, L. (2001): Subtypes of 20S proteasomes from skeletal muscle, Biochimie 83) [3-4], Seite 295-9.


Dahlmann, B.; Ruppert, T.; Kuehn, L.; Merforth, S. und Kloetzel, P. M. (2000): Different proteasome subtypes in a single tissue exhibit different enzymatic properties, J Mol Biol 303) [5], Seite 643-53.

Davy, A.; Bello, P.; Thierry-Mieg, N.; Vaglio, P.; Hitti, J.; Doucette-Stamm, L.; Thierry-Mieg, D.; Reboul, J.; Boulton, S.; Walhout, A. J.; Coux, O. und Vidal, M. (2001): A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome, EMBO Rep 2) [9], Seite 821-8.

De Mot, R.; Nagy, I.; Walz, J. und Baumeister, W. (1999): Proteasomes and other self-compartmentalizing proteases in prokaryotes, Trends Microbiol 7) [2], Seite 88-92.


Decatur, A. L. und Portnoy, D. A. (2000): A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity, Science 290) [5493], Seite 992-5.

Demasi, M.; Shringarpure, R. und Davies, K. J. (2001): Glutathiolation of the proteasome is enhanced by proteolytic inhibitors, Arch Biochem Biophys 389) [2], Seite 254-63.

Demasi, M.; Silva, G. M. und Netto, L. E. (2003): 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated, J Biol Chem 278) [1], Seite 679-85.


Deveraux, Q.; Ustrell, V.; Pickart, C. und Rechsteiner, M. (1994): A 26 S protease subunit that binds ubiquitin conjugates, J Biol Chem 269) [10], Seite 7059-61.

Dick, T. P.; Ruppert, T.; Groettrup, M.; Kloetzel, P. M.; Kuehn, L.; Koszinowski, U. H.; Stevanovic, S.; Schild, H. und Rammensee, H. G. (1996): Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands, Cell 86) [2], Seite 253-62.

Driscoll, J.; Brown, M. G.; Finley, D. und Monaco, J. J. (1993): MHC-linked LMP gene products specifically alter peptidase activities of the proteasome, Nature 365) [6443], Seite 262-4.


Edelson, B. T. und Unanue, E. R. (2000): Immunity to Listeria infection, Curr Opin Immunol 12) [4], Seite 425-31..

Egerer, K.; Kuckelkorn, U.; Rudolph, P. E.; Ruckert, J. C.; Dorner, T.; Burmester, G. R.; Kloetzel, P. M. und Feist, E. (2002): Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases, J Rheumatol 29) [10], Seite 2045-52.

Eggers, M.; Boes-Fabian, B.; Ruppert, T.; Kloetzel, P. M. und Koszinowski, U. H. (1995): The cleavage preference of the proteasome governs the yield of antigenic peptides, J Exp Med 182) [6], Seite 1865-70.


Eleuteri, A. M.; Kohanski, R. A.; Cardozo, C. und Orlowski, M. (1997): Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity, J Biol Chem 272) [18], Seite 11824-31.

Fehling, H. J.; Swat, W.; Laplace, C.; Kuhn, R.; Rajewsky, K.; Muller, U. und von Boehmer, H. (1994): MHC class I expression in mice lacking the proteasome subunit LMP-7, Science 265) [5176], Seite 1234-7.

Fernandez Murray, Pedro; Pardo, Patricia S.; Zelada, Alicia M. und Passeron, Susana (2002): In vivo and in vitro phosphorylation of Candida albicans 20S proteasome, Archives of Biochemistry and Biophysics 404) [1], Seite 116-125.


Ferrell, K.; Wilkinson, C. R.; Dubiel, W. und Gordon, C. (2000): Regulatory subunit interactions of the 26S proteasome, a complex problem, Trends Biochem Sci 25) [2], Seite 83-8.

Frentzel, S.; Pesold-Hurt, B.; Seelig, A. und Kloetzel, P. M. (1994): 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13-16 S preproteasome complexes, J Mol Biol 236) [4], Seite 975-81.

Gaczynska, M.; Rock, K. L. und Goldberg, A. L. (1993): Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes, Nature 365) [6443], Seite 264-7.


Gaczynska, M.; Rock, K. L.; Spies, T. und Goldberg, A. L. (1994): Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7, Proc Natl Acad Sci U S A 91) [20], Seite 9213-7.

Gao, Y.; Wells, L.; Comer, F. I.; Parker, G. J. und Hart, G. W. (2001): Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain, J Biol Chem 276) [13], Seite 9838-45.

Geginat, G.; Schenk, S.; Skoberne, M.; Goebel, W. und Hof, H. (2001): A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes, J Immunol 166) [3], Seite 1877-84..


Geier, E.; Pfeifer, G.; Wilm, M.; Lucchiari-Hartz, M.; Baumeister, W.; Eichmann, K. und Niedermann, G. (1999): A giant protease with potential to substitute for some functions of the proteasome, Science 283) [5404], Seite 978-81.

Glickman, M. H. und Ciechanover, A. (2002): The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol Rev 82) [2], Seite 373-428.

Gregory, S. H.; Sagnimeni, A. J. und Wing, E. J. (1996): Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils, J Immunol 157) [6], Seite 2514-20.


Greis, K. D.; Hayes, B. K.; Comer, F. I.; Kirk, M.; Barnes, S.; Lowary, T. L. und Hart, G. W. (1996): Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry, Anal Biochem 234) [1], Seite 38-49.

Griffin, T. A.; Nandi, D.; Cruz, M.; Fehling, H. J.; Kaer, L. V.; Monaco, J. J. und Colbert, R. A. (1998): Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits, J Exp Med 187) [1], Seite 97-104.

Groettrup, M.; Kraft, R.; Kostka, S.; Standera, S.; Stohwasser, R. und Kloetzel, P. M. (1996): A third interferon-gamma-induced subunit exchange in the 20S proteasome, Eur J Immunol 26) [4], Seite 863-9.


Groettrup, M.; Soza, A.; Eggers, M.; Kuehn, L.; Dick, T. P.; Schild, H.; Rammensee, H. G.; Koszinowski, U. H. und Kloetzel, P. M. (1996): A role for the proteasome regulator PA28alpha in antigen presentation, Nature 381) [6578], Seite 166-8.

Groettrup, M.; Standera, S.; Stohwasser, R. und Kloetzel, P. M. (1997): The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome, Proc Natl Acad Sci U S A 94) [17], Seite 8970-5.

Groll, M.; Bajorek, M.; Kohler, A.; Moroder, L.; Rubin, D. M.; Huber, R.; Glickman, M. H. und Finley, D. (2000): A gated channel into the proteasome core particle, Nat Struct Biol 7) [11], Seite 1062-7.


Groll, M.; Ditzel, L.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H. D. und Huber, R. (1997): Structure of 20S proteasome from yeast at 2.4 A resolution, Nature 386) [6624], Seite 463-71.

Groll, M. und Huber, R. (2003): Substrate access and processing by the 20S proteasome core particle, Int J Biochem Cell Biol 35) [5], Seite 606-16.

Hallermalm, K.; Seki, K.; Wei, C.; Castelli, C.; Rivoltini, L.; Kiessling, R. und Levitskaya, J. (2001): Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface, Blood 98) [4], Seite 1108-15.


Hart, G. W.; Greis, K. D.; Dong, L. Y.; Blomberg, M. A.; Chou, T. Y.; Jiang, M. S.; Roquemore, E. P.; Snow, D. M.; Kreppel, L. K.; Cole, R. N. und et al. (1995): O-linked N-acetylglucosamine: the "yin-yang" of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation, Adv Exp Med Biol 376), Seite 115-23.

Harty, J. T. und Bevan, M. J. (1995): Specific immunity to Listeria monocytogenes in the absence of IFN gamma, Immunity 3) [1], Seite 109-17.

Harty, J. T.; Schreiber, R. D. und Bevan, M. J. (1992): CD8 T cells can protect against an intracellular bacterium in an interferon gamma-independent fashion, Proc Natl Acad Sci U S A 89) [23], Seite 11612-6.


Helenius, A. und Aebi, M. (2004): Roles of N-linked glycans in the endoplasmic reticulum, Annu Rev Biochem 73), Seite 1019-49.

Hendil, K. B.; Khan, S. und Tanaka, K. (1998): Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes, Biochem J 332 ( Pt 3)), Seite 749-54.

Holt, G. D. und Hart, G. W. (1986): The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc, J Biol Chem 261) [17], Seite 8049-57.


Huang, S.; Hendriks, W.; Althage, A.; Hemmi, S.; Bluethmann, H.; Kamijo, R.; Vilcek, J.; Zinkernagel, R. M. und Aguet, M. (1993): Immune response in mice that lack the interferon-gamma receptor, Science 259) [5102], Seite 1742-5.

Huleatt, J. W.; Pilip, I.; Kerksiek, K. und Pamer, E. G. (2001): Intestinal and splenic T cell responses to enteric Listeria monocytogenes infection: distinct repertoires of responding CD8 T lymphocytes, J Immunol 166) [6], Seite 4065-73.

Iwafune, Y.; Kawasaki, H. und Hirano, H. (2002): Electrophoretic analysis of phosphorylation of the yeast 20S proteasome, Electrophoresis 23) [2], Seite 329-38..


Jiang, X.; Gregory, S. H. und Wing, E. J. (1997): Immune CD8+ T lymphocytes lyse Listeria monocytogenes-infected hepatocytes by a classical MHC class I-restricted mechanism, J Immunol 158) [1], Seite 287-93.

Kamemura, K.; Hayes, B. K.; Comer, F. I. und Hart, G. W. (2002): Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens, J Biol Chem 277) [21], Seite 19229-35.

Kania, M. A.; Demartino, G. N.; Baumeister, W. und Goldberg, A. L. (1996): The proteasome subunit, C2, contains an important site for binding of the PA28 (11S) activator, Eur J Biochem 236) [2], Seite 510-6.


Khan, S.; van den Broek, M.; Schwarz, K.; de Giuli, R.; Diener, P. A. und Groettrup, M. (2001): Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver, J Immunol 167) [12], Seite 6859-68.

Kimura, Y.; Saeki, Y.; Yokosawa, H.; Polevoda, B.; Sherman, F. und Hirano, H. (2003): N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome, Arch Biochem Biophys 409) [2], Seite 341-8.

Kimura, Y.; Takaoka, M.; Tanaka, S.; Sassa, H.; Tanaka, K.; Polevoda, B.; Sherman, F. und Hirano, H. (2000): N(alpha)-acetylation and proteolytic activity of the yeast 20 S proteasome, J Biol Chem 275) [7], Seite 4635-9..


Kisselev, A. F.; Akopian, T. N.; Woo, K. M. und Goldberg, A. L. (1999): The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation, J Biol Chem 274) [6], Seite 3363-71.

Kisselev, A. F.; Kaganovich, D. und Goldberg, A. L. (2002): Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings, J Biol Chem 277) [25], Seite 22260-70.

Kloetzel, P. M. (2001): Antigen processing by the proteasome, Nat Rev Mol Cell Biol 2) [3], Seite 179-87.


Kloetzel, P. M. (2004): Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII, Nat Immunol 5) [7], Seite 661-9.

Kloetzel, P. M. und Ossendorp, F. (2004): Proteasome and peptidase function in MHC-class-I-mediated antigen presentation, Curr Opin Immunol 16) [1], Seite 76-81.

Knolle, P. A. und Gerken, G. (2000): Local control of the immune response in the liver, Immunol Rev 174), Seite 21-34.


Knolle, P. A.; Germann, T.; Treichel, U.; Uhrig, A.; Schmitt, E.; Hegenbarth, S.; Lohse, A. W. und Gerken, G. (1999): Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells, J Immunol 162) [3], Seite 1401-7.

Knuehl, C.; Spee, P.; Ruppert, T.; Kuckelkorn, U.; Henklein, P.; Neefjes, J. und Kloetzel, P. M. (2001): The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide, J Immunol 167) [3], Seite 1515-21.

Kocks, C.; Gouin, E.; Tabouret, M.; Berche, P.; Ohayon, H. und Cossart, P. (1992): L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell 68) [3], Seite 521-31.


Kreppel, L. K.; Blomberg, M. A. und Hart, G. W. (1997): Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats, J Biol Chem 272) [14], Seite 9308-15.

Kreppel, L. K. und Hart, G. W. (1999): Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats, J Biol Chem 274) [45], Seite 32015-22.

Kuckelkorn, U.; Frentzel, S.; Kraft, R.; Kostka, S.; Groettrup, M. und Kloetzel, P. M. (1995): Incorporation of major histocompatibility complex--encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma, Eur J Immunol 25) [9], Seite 2605-11.


Kuckelkorn, U.; Ruppert, T.; Strehl, B.; Jungblut, P. R.; Zimny-Arndt, U.; Lamer, S.; Prinz, I.; Drung, I.; Kloetzel, P. M.; Kaufmann, S. H. und Steinhoff, U. (2002): Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity, J Exp Med 195) [8], Seite 983-90.

Kursar, M.; Bonhagen, K.; Kohler, A.; Kamradt, T.; Kaufmann, S. H. und Mittrucker, H. W. (2002): Organ-specific CD4+ T cell response during Listeria monocytogenes infection, J Immunol 168) [12], Seite 6382-7.

Ladel, CH; Flesch, IE; Arnoldi, J und Kaufmann, SH (1994): Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection [published erratum appears in J Immunol 1995 Apr 15;154(8):4223], J Immunol 153) [7], Seite 3116-3122.


Laemmli, U. K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227) [5259], Seite 680-5.

Lautscham, G.; Haigh, T.; Mayrhofer, S.; Taylor, G.; Croom-Carter, D.; Leese, A.; Gadola, S.; Cerundolo, V.; Rickinson, A. und Blake, N. (2003): Identification of a TAP-independent, immunoproteasome-dependent CD8+ T-cell epitope in Epstein-Barr virus latent membrane protein 2, J Virol 77) [4], Seite 2757-61.

Lefebvre, T.; Alonso, C.; Mahboub, S.; Dupire, M. J.; Zanetta, J. P.; Caillet-Boudin, M. L. und Michalski, J. C. (1999): Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line, Biochim Biophys Acta 1472) [1-2], Seite 71-81.


Lefebvre, T.; Ferreira, S.; Dupont-Wallois, L.; Bussiere, T.; Dupire, M. J.; Delacourte, A.; Michalski, J. C. und Caillet-Boudin, M. L. (2003): Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization, Biochim Biophys Acta 1619) [2], Seite 167-76.

Li, J.; Gao, X.; Ortega, J.; Nazif, T.; Joss, L.; Bogyo, M.; Steven, A. C. und Rechsteiner, M. (2001): Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta, Embo J 20) [13], Seite 3359-69.

Limmer, A.; Ohl, J.; Kurts, C.; Ljunggren, H. G.; Reiss, Y.; Groettrup, M.; Momburg, F.; Arnold, B. und Knolle, P. A. (2000): Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance, Nat Med 6) [12], Seite 1348-54.


Lottspeich, F. und Zorbas, H. (1998): Bioanalytik, Spektrum Akademischer Verlag.

Loukissa, A.; Cardozo, C.; Altschuller-Felberg, C. und Nelson, J. E. (2000): Control of LMP7 expression in human endothelial cells by cytokines regulating cellular and humoral immunity, Cytokine 12) [9], Seite 1326-30.

Lowe, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W. und Huber, R. (1995): Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution, Science 268) [5210], Seite 533-9.


Lubas, W. A.; Frank, D. W.; Krause, M. und Hanover, J. A. (1997): O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats, J Biol Chem 272) [14], Seite 9316-24.

Macagno, A.; Gilliet, M.; Sallusto, F.; Lanzavecchia, A.; Nestle, F. O. und Groettrup, M. (1999): Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation, Eur J Immunol 29) [12], Seite 4037-42.

Macagno, A.; Kuehn, L.; de Giuli, R. und Groettrup, M. (2001): Pronounced up-regulation of the PA28alpha/beta proteasome regulator but little increase in the steady-state content of immunoproteasome during dendritic cell maturation, Eur J Immunol 31) [11], Seite 3271-80.


Mason, G. G.; Hendil, K. B. und Rivett, A. J. (1996): Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity, Eur J Biochem 238) [2], Seite 453-62.

Mason, G. G.; Murray, R. Z.; Pappin, D. und Rivett, A. J. (1998): Phosphorylation of ATPase subunits of the 26S proteasome, FEBS Lett 430) [3], Seite 269-74.

Masopust, D.; Vezys, V.; Marzo, A. L. und Lefrancois, L. (2001): Preferential localization of effector memory cells in nonlymphoid tissue, Science 291) [5512], Seite 2413-7.


Matsuoka, T.; Dellamanna, D.; Isaacs, J.; Carroll, J.A.; Kreppel, L.K.; Cole, R.N.; Johnsson, G.V.W. und G.W., Hart (in prep).

McGregor, D. D.; Koster, F. T. und Mackaness, G. B. (1970): The short lived small lymphocyte as a mediator of cellular immunity, Nature 228) [5274], Seite 855-6.

Mizushima, N.; Ohsumi, Y. und Yoshimori, T. (2002): Autophagosome formation in mammalian cells, Cell Struct Funct 27) [6], Seite 421-9.


Moors, M. A.; Auerbuch, V. und Portnoy, D. A. (1999): Stability of the Listeria monocytogenes ActA protein in mammalian cells is regulated by the N-end rule pathway, Cell Microbiol 1) [3], Seite 249-57.

Morales, P.; Pizarro, E.; Kong, M. und Jara, M. (2004): Extracellular localization of proteasomes in human sperm, Mol Reprod Dev 68) [1], Seite 115-24.

Morel, S.; Levy, F.; Burlet-Schiltz, O.; Brasseur, F.; Probst-Kepper, M.; Peitrequin, A. L.; Monsarrat, B.; Van Velthoven, R.; Cerottini, J. C.; Boon, T.; Gairin, J. E. und Van den Eynde, B. J. (2000): Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells, Immunity 12) [1], Seite 107-17.


Mountz, J. D.; Wu, J.; Cheng, J. und Zhou, T. (1994): Autoimmune disease. A problem of defective apoptosis, Arthritis Rheum 37) [10], Seite 1415-20.

Murata, S.; Udono, H.; Tanahashi, N.; Hamada, N.; Watanabe, K.; Adachi, K.; Yamano, T.; Yui, K.; Kobayashi, N.; Kasahara, M.; Tanaka, K. und Chiba, T. (2001): Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta, Embo J 20) [21], Seite 5898-907.

Nickol, A. D. und Bonventre, P. F. (1977): Anomalous high native resistance to athymic mice to bacterial pathogens, Infect Immun 18) [3], Seite 636-45.


Niedermann, G.; Butz, S.; Ihlenfeldt, H. G.; Grimm, R.; Lucchiari, M.; Hoschutzky, H.; Jung, G.; Maier, B. und Eichmann, K. (1995): Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules, Immunity 2) [3], Seite 289-99.

Nil, A.; Firat, E.; Sobek, V.; Eichmann, K. und Niedermann, G. (2004): Expression of housekeeping and immunoproteasome subunit genes is differentially regulated in positively and negatively selecting thymic stroma subsets, Eur J Immunol 34) [10], Seite 2681-9.

Noda, C.; Tanahashi, N.; Shimbara, N.; Hendil, K. B. und Tanaka, K. (2000): Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats, Biochem Biophys Res Commun 277) [2], Seite 348-54..


Nussbaum, A. K.; Dick, T. P.; Keilholz, W.; Schirle, M.; Stevanovic, S.; Dietz, K.; Heinemeyer, W.; Groll, M.; Wolf, D. H.; Huber, R.; Rammensee, H. G. und Schild, H. (1998): Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1, Proc Natl Acad Sci U S A 95) [21], Seite 12504-9.

Okada, K.; Wangpoengtrakul, C.; Osawa, T.; Toyokuni, S.; Tanaka, K. und Uchida, K. (1999): 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules, J Biol Chem 274) [34], Seite 23787-93.

Orlowski, M. und Wilk, S. (2000): Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex, Arch Biochem Biophys 383) [1], Seite 1-16.


Orlowski, M. und Wilk, S. (2003): Ubiquitin-independent proteolytic functions of the proteasome, Arch Biochem Biophys 415) [1], Seite 1-5.

Ortiz-Navarrete, V.; Seelig, A.; Gernold, M.; Frentzel, S.; Kloetzel, P. M. und Hammerling, G. J. (1991): Subunit of the '20S' proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex, Nature 353) [6345], Seite 662-4.

Ortmann, B.; Copeman, J.; Lehner, P. J.; Sadasivan, B.; Herberg, J. A.; Grandea, A. G.; Riddell, S. R.; Tampe, R.; Spies, T.; Trowsdale, J. und Cresswell, P. (1997): A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes, Science 277) [5330], Seite 1306-9.


Ossendorp, F.; Eggers, M.; Neisig, A.; Ruppert, T.; Groettrup, M.; Sijts, A.; Mengede, E.; Kloetzel, P. M.; Neefjes, J.; Koszinowski, U. und Melief, C. (1996): A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation, Immunity 5) [2], Seite 115-24.

Pamer, E. G. (2004): Immune responses to Listeria monocytogenes, Nat Rev Immunol 4) [10], Seite 812-23.

Peters, B.; Bulik, S.; Tampe, R.; Van Endert, P. M. und Holzhutter, H. G. (2003): Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors, J Immunol 171) [4], Seite 1741-9.


Peters, B.; Janek, K.; Kuckelkorn, U. und Holzhutter, H. G. (2002): Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation, J Mol Biol 318) [3], Seite 847-62.

Peters, B.; Tenzer, S.; Bulik, S.; Schoor, O.; Lemmel, C.; Schatz, M.; Kloetzel, P. M.; Rammensee, H. G.; Holzhutter, H. G. und Schild, H. (submitted): Modelling the MHC class-I pathway by combining predictions of proteasomal cleavage, TAP-transport and MHC binding, in preparation.

Peters, J. M.; Cejka, Z.; Harris, J. R.; Kleinschmidt, J. A. und Baumeister, W. (1993): Structural features of the 26 S proteasome complex, J Mol Biol 234) [4], Seite 932-7.


Pfeffer, K.; Matsuyama, T.; Kundig, T. M.; Wakeham, A.; Kishihara, K.; Shahinian, A.; Wiegmann, K.; Ohashi, P. S.; Kronke, M. und Mak, T. W. (1993): Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection, Cell 73) [3], Seite 457-67.

Pickart, C. M. (2004): Back to the future with ubiquitin, Cell 116) [2], Seite 181-90.

Portnoy, D. A.; Auerbuch, V. und Glomski, I. J. (2002): The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity, J Cell Biol 158) [3], Seite 409-14.


Raasi, S.; Schmidtke, G.; de Giuli, R. und Groettrup, M. (1999): A ubiquitin-like protein which is synergistically inducible by interferon-gamma and tumor necrosis factor-alpha, Eur J Immunol 29) [12], Seite 4030-6.

Ramalho-Santos, J.; Schatten, G. und Moreno, R. D. (2002): Control of membrane fusion during spermiogenesis and the acrosome reaction, Biol Reprod 67) [4], Seite 1043-51.

Rammensee, H. G.; Friede, T. und Stevanoviic, S. (1995): MHC ligands and peptide motifs: first listing, Immunogenetics 41) [4], Seite 178-228.


Rape, M. und Jentsch, S. (2004): Productive RUPture: activation of transcription factors by proteasomal processing, Biochim Biophys Acta 1695) [1-3], Seite 209-13.

Realini, C.; Dubiel, W.; Pratt, G.; Ferrell, K. und Rechsteiner, M. (1994): Molecular cloning and expression of a gamma-interferon-inducible activator of the multicatalytic protease, J Biol Chem 269) [32], Seite 20727-32.

Rechsteiner, M.; Realini, C. und Ustrell, V. (2000): The proteasome activator 11 S REG (PA28) and class I antigen presentation, Biochem J 345 Pt 1), Seite 1-15.


Rechsteiner, M. und Rogers, S. W. (1996): PEST sequences and regulation by proteolysis, Trends Biochem Sci 21) [7], Seite 267-71.

Reits, E.; Neijssen, J.; Herberts, C.; Benckhuijsen, W.; Janssen, L.; Drijfhout, J. W. und Neefjes, J. (2004): A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation, Immunity 20) [4], Seite 495-506.

Rock, K. L.; York, I. A. und Goldberg, A. L. (2004): Post-proteasomal antigen processing for major histocompatibility complex class I presentation, Nat Immunol 5) [7], Seite 670-7.


Rogers, H. W.; Callery, M. P.; Deck, B. und Unanue, E. R. (1996): Listeria monocytogenes induces apoptosis of infected hepatocytes, J Immunol 156) [2], Seite 679-84.

Roquemore, E. P.; Chou, T. Y. und Hart, G. W. (1994): Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins, Methods Enzymol 230), Seite 443-60.

Rothe, J.; Lesslauer, W.; Lotscher, H.; Lang, Y.; Koebel, P.; Kontgen, F.; Althage, A.; Zinkernagel, R.; Steinmetz, M. und Bluethmann, H. (1993): Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes, Nature 364) [6440], Seite 798-802.


Rouquette, C.; de Chastellier, C.; Nair, S. und Berche, P. (1998): The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages, Mol Microbiol 27) [6], Seite 1235-45.

Saric, T.; Chang, S. C.; Hattori, A.; York, I. A.; Markant, S.; Rock, K. L.; Tsujimoto, M. und Goldberg, A. L. (2002): An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides, Nat Immunol 3) [12], Seite 1169-76.

Schagger, H. und von Jagow, G. (1987): Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal Biochem 166) [2], Seite 368-79.


Schmid, H. P.; Vallon, R.; Tomek, W.; Kreutzer-Schmid, C.; Pouch, M. N.; Badaoui, S.; Boissonnet, G.; Briand, M.; Briand, Y. und Buri, J. (1993): Glycosylation and deglycosylation of proteasomes (prosomes) from calf-liver cells: high abundance of neuraminic acid, Biochimie 75) [10], Seite 905-10.

Schmidtke, G.; Eggers, M.; Ruppert, T.; Groettrup, M.; Koszinowski, U. H. und Kloetzel, P. M. (1998): Inactivation of a defined active site in the mouse 20S proteasome complex enhances major histocompatibility complex class I antigen presentation of a murine cytomegalovirus protein, J Exp Med 187) [10], Seite 1641-6.

Schmidtke, G.; Kraft, R.; Kostka, S.; Henklein, P.; Frommel, C.; Lowe, J.; Huber, R.; Kloetzel, P. M. und Schmidt, M. (1996): Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis, Embo J 15) [24], Seite 6887-98.


Schrattenholz, A. (2001): Methoden der Proteomforschung, Spektrum Akademischer Verlag Gustav Fischer.

Schroder, K.; Hertzog, P. J.; Ravasi, T. und Hume, D. A. (2004): Interferon-gamma: an overview of signals, mechanisms and functions, J Leukoc Biol 75) [2], Seite 163-89.

Schubert, U.; Anton, L. C.; Gibbs, J.; Norbury, C. C.; Yewdell, J. W. und Bennink, J. R. (2000): Rapid degradation of a large fraction of newly synthesized proteins by proteasomes, Nature 404) [6779], Seite 770-4.


Schultz, E. S.; Chapiro, J.; Lurquin, C.; Claverol, S.; Burlet-Schiltz, O.; Warnier, G.; Russo, V.; Morel, S.; Levy, F.; Boon, T.; Van den Eynde, B. J. und van der Bruggen, P. (2002): The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome, J Exp Med 195) [4], Seite 391-9.

Schwartz, A. L. und Ciechanover, A. (1999): The ubiquitin-proteasome pathway and pathogenesis of human diseases, Annu Rev Med 50), Seite 57-74.

Schwarz, K.; van Den Broek, M.; Kostka, S.; Kraft, R.; Soza, A.; Schmidtke, G.; Kloetzel, P. M. und Groettrup, M. (2000): Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28 alpha/beta, enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope, J Immunol 165) [2], Seite 768-78.


Seifert, U.; Liermann, H.; Racanelli, V.; Halenius, A.; Wiese, M.; Wedemeyer, H.; Ruppert, T.; Rispeter, K.; Henklein, P.; Sijts, A.; Hengel, H.; Kloetzel, P. M. und Rehermann, B. (2004): Hepatitis C virus mutation affects proteasomal epitope processing, J Clin Invest 114) [2], Seite 250-9.

Seifert, U.; Maranon, C.; Shmueli, A.; Desoutter, J. F.; Wesoloski, L.; Janek, K.; Henklein, P.; Diescher, S.; Andrieu, M.; de la Salle, H.; Weinschenk, T.; Schild, H.; Laderach, D.; Galy, A.; Haas, G.; Kloetzel, P. M.; Reiss, Y. und Hosmalin, A. (2003): An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope, Nat Immunol 4) [4], Seite 375-9.

Seo, J. und Lee, K. J. (2004): Post-translational modifications and their biological functions: proteomic analysis and systematic approaches, J Biochem Mol Biol 37) [1], Seite 35-44.


Shedlock, D. J. und Shen, H. (2003): Requirement for CD4 T cell help in generating functional CD8 T cell memory, Science 300) [5617], Seite 337-9.

Shen, H.; Miller, J. F.; Fan, X.; Kolwyck, D.; Ahmed, R. und Harty, J. T. (1998): Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity, Cell 92) [4], Seite 535-45.

Shen, Y.; Naujokas, M.; Park, M. und Ireton, K. (2000): InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase, Cell 103) [3], Seite 501-10.


Shepherd, J. C.; Schumacher, T. N.; Ashton-Rickardt, P. G.; Imaeda, S.; Ploegh, H. L.; Janeway, C. A., Jr. und Tonegawa, S. (1993): TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective, Cell 74) [3], Seite 577-84.

Sijts, A. J.; Pilip, I. und Pamer, E. G. (1997): The Listeria monocytogenes-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. Implications for major histocompatibility complex class I antigen processing of bacterial proteins, J Biol Chem 272) [31], Seite 19261-8.

Sijts, A. J.; Ruppert, T.; Rehermann, B.; Schmidt, M.; Koszinowski, U. und Kloetzel, P. M. (2000): Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes, J Exp Med 191) [3], Seite 503-14.


Sijts, A. J.; Standera, S.; Toes, R. E.; Ruppert, T.; Beekman, N. J.; van Veelen, P. A.; Ossendorp, F. A.; Melief, C. J. und Kloetzel, P. M. (2000): MHC class I antigen processing of an adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells, J Immunol 164) [9], Seite 4500-6.

Sijts, A. J.; Villanueva, M. S. und Pamer, E. G. (1996): CTL epitope generation is tightly linked to cellular proteolysis of a Listeria monocytogenes antigen, J Immunol 156) [4], Seite 1497-503.

Sijts, A.; Zaiss, D. und Kloetzel, P. M. (2001): The role of the ubiquitin-proteasome pathway in MHC class I antigen processing: implications for vaccine design, Curr Mol Med 1) [6], Seite 665-76.


Slawson, C. und Hart, G. W. (2003): Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation, Curr Opin Struct Biol 13) [5], Seite 631-6.

Steinhoff, U.; Brinkmann, V.; Klemm, U.; Aichele, P.; Seiler, P.; Brandt, U.; Bland, P. W.; Prinz, I.; Zugel, U. und Kaufmann, S. H. (1999): Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells, Immunity 11) [3], Seite 349-58..

Stevanovic, S. und Schild, H. (1999): Quantitative aspects of T cell activation--peptide generation and editing by MHC class I molecules, Semin Immunol 11) [6], Seite 375-84.


Stohwasser, R.; Holzhutter, H. G.; Lehmann, U.; Henklein, P. und Kloetzel, P. M. (2003): Hepatitis B virus HBx peptide 116-138 and proteasome activator PA28 compete for binding to the proteasome alpha4/MC6 subunit, Biol Chem 384) [1], Seite 39-49.

Stohwasser, R. und Kloetzel, P. M. (1996): Cytokine induced changes in proteasome subunit composition are concentration dependent, Biol Chem 377) [9], Seite 571-7.

Stohwasser, R.; Salzmann, U.; Giesebrecht, J.; Kloetzel, P. M. und Holzhutter, H. G. (2000): Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28, Eur J Biochem 267) [20], Seite 6221-30.


Sumegi, M.; Hunyadi-Gulyas, E.; Medzihradszky, K. F. und Udvardy, A. (2003): 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster, Biochem Biophys Res Commun 312) [4], Seite 1284-9.

Sun, J. C. und Bevan, M. J. (2003): Defective CD8 T cell memory following acute infection without CD4 T cell help, Science 300) [5617], Seite 339-42.

Sun, Y.; Sijts, A. J.; Song, M.; Janek, K.; Nussbaum, A. K.; Kral, S.; Schirle, M.; Stevanovic, S.; Paschen, A.; Schild, H.; Kloetzel, P. M. und Schadendorf, D. (2002): Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells, Cancer Res 62) [10], Seite 2875-82.


Sykulev, Y.; Joo, M.; Vturina, I.; Tsomides, T. J. und Eisen, H. N. (1996): Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response, Immunity 4) [6], Seite 565-71.

Tanahashi, N.; Murakami, Y.; Minami, Y.; Shimbara, N.; Hendil, K. B. und Tanaka, K. (2000): Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis, J Biol Chem 275) [19], Seite 14336-45.

Tanaka, K.; Tamura, T.; Yoshimura, T. und Ichihara, A. (1992): Proteasomes: protein and gene structures, New Biol 4) [3], Seite 173-87.


Tang, K.; Page, J. S. und Smith, R. D. (2004): Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry, J Am Soc Mass Spectrom 15) [10], Seite 1416-23.

Tanioka, Toshihiro; Hattori, Akira; Masuda, Shinako; Nomura, Yoshihiro; Nakayama, Hiroshi; Mizutani, Shigehiko und Tsujimoto, Masafumi (2003): Human Leukocyte-derived Arginine Aminopeptidase: THE THIRD MEMBER OF THE OXYTOCINASE SUBFAMILY OF AMINOPEPTIDASES, J. Biol. Chem. 278) [34], Seite 32275-32283.

Tenzer, S.; Stoltze, L.; Schonfisch, B.; Dengjel, J.; Muller, M.; Stevanovic, S.; Rammensee, H. G. und Schild, H. (2004): Quantitative analysis of prion-protein degradation by constitutive and immuno-20S proteasomes indicates differences correlated with disease susceptibility, J Immunol 172) [2], Seite 1083-91.


Theobald, M.; Ruppert, T.; Kuckelkorn, U.; Hernandez, J.; Haussler, A.; Ferreira, E. A.; Liewer, U.; Biggs, J.; Levine, A. J.; Huber, C.; Koszinowski, U. H.; Kloetzel, P. M. und Sherman, L. A. (1998): The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope, J Exp Med 188) [6], Seite 1017-28.

Tilney, L. G. und Portnoy, D. A. (1989): Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J Cell Biol 109) [4 Pt 1], Seite 1597-608.

Toes, R. E.; Nussbaum, A. K.; Degermann, S.; Schirle, M.; Emmerich, N. P.; Kraft, M.; Laplace, C.; Zwinderman, A.; Dick, T. P.; Muller, J.; Schonfisch, B.; Schmid, C.; Fehling, H. J.; Stevanovic, S.; Rammensee, H. G. und Schild, H. (2001): Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products, J Exp Med 194) [1], Seite 1-12.


Torres, C. R. und Hart, G. W. (1984): Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem 259) [5], Seite 3308-17.

Ustrell, V.; Pratt, G. und Rechsteiner, M. (1995): Effects of interferon gamma and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases, Proc Natl Acad Sci U S A 92) [2], Seite 584-8.

Van den Eynde, B. J. und Morel, S. (2001): Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome, Curr Opin Immunol 13) [2], Seite 147-53.


van Hall, T.; Sijts, A.; Camps, M.; Offringa, R.; Melief, C.; Kloetzel, P. M. und Ossendorp, F. (2000): Differential influence on cytotoxic T lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28, J Exp Med 192) [4], Seite 483-94.

Van Kaer, L.; Ashton-Rickardt, P. G.; Eichelberger, M.; Gaczynska, M.; Nagashima, K.; Rock, K. L.; Goldberg, A. L.; Doherty, P. C. und Tonegawa, S. (1994): Altered peptidase and viral-specific T cell response in LMP2 mutant mice, Immunity 1) [7], Seite 533-41.

Varfolomeev, E. E. und Ashkenazi, A. (2004): Tumor necrosis factor: an apoptosis JuNKie?, Cell 116) [4], Seite 491-7.


Varshavsky, A. (1997): The N-end rule pathway of protein degradation, Genes Cells 2) [1], Seite 13-28.

Vazquez-Boland, J. A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Dominguez-Bernal, G.; Goebel, W.; Gonzalez-Zorn, B.; Wehland, J. und Kreft, J. (2001): Listeria pathogenesis and molecular virulence determinants, Clin Microbiol Rev 14) [3], Seite 584-640.

Wehren, A.; Meyer, H. E.; Sobek, A.; Kloetzel, P. M. und Dahlmann, B. (1996): Phosphoamino acids in proteasome subunits, Biol Chem 377) [7-8], Seite 497-503.


Weissman, A. M. (2001): Themes and variations on ubiquitylation, Nat Rev Mol Cell Biol 2) [3], Seite 169-78.

Wells, L.; Gao, Y.; Mahoney, J. A.; Vosseller, K.; Chen, C.; Rosen, A. und Hart, G. W. (2002): Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase, J Biol Chem 277) [3], Seite 1755-61.

Wells, L.; Kreppel, L. K.; Comer, F. I.; Wadzinski, B. E. und Hart, G. W. (2004): O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits, J Biol Chem 279) [37], Seite 38466-70.


West, C. M.; Van Der Wel, H.; Sassi, S. und Gaucher, E. A. (2004): Cytoplasmic glycosylation of protein-hydroxyproline and its relationship to other glycosylation pathways, Biochim Biophys Acta 1673) [1-2], Seite 29-44.

Whitby, F. G.; Masters, E. I.; Kramer, L.; Knowlton, J. R.; Yao, Y.; Wang, C. C. und Hill, C. P. (2000): Structural basis for the activation of 20S proteasomes by 11S regulators, Nature 408) [6808], Seite 115-20.

Witt, E.; Zantopf, D.; Schmidt, M.; Kraft, R.; Kloetzel, P. M. und Kruger, E. (2000): Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes, J Mol Biol 301) [1], Seite 1-9.


Wong, P. und Pamer, E. G. (2003): Feedback regulation of pathogen-specific T cell priming, Immunity 18) [4], Seite 499-511.

Yang, Y.; Fruh, K.; Ahn, K. und Peterson, P. A. (1995): In vivo assembly of the proteasomal complexes, implications for antigen processing, J Biol Chem 270) [46], Seite 27687-94.

Yoshida, Y.; Chiba, T.; Tokunaga, F.; Kawasaki, H.; Iwai, K.; Suzuki, T.; Ito, Y.; Matsuoka, K.; Yoshida, M.; Tanaka, K. und Tai, T. (2002): E3 ubiquitin ligase that recognizes sugar chains, Nature 418) [6896], Seite 438-42.


Yoshida, Y.; Tokunaga, F.; Chiba, T.; Iwai, K.; Tanaka, K. und Tai, T. (2003): Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains, J Biol Chem 278) [44], Seite 43877-84.

Yoshimura, T.; Kameyama, K.; Takagi, T.; Ikai, A.; Tokunaga, F.; Koide, T.; Tanahashi, N.; Tamura, T.; Cejka, Z.; Baumeister, W. und et al. (1993): Molecular characterization of the "26S" proteasome complex from rat liver, J Struct Biol 111) [3], Seite 200-11.

Young, P.; Deveraux, Q.; Beal, R. E.; Pickart, C. M. und Rechsteiner, M. (1998): Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a, J Biol Chem 273) [10], Seite 5461-7.


Zachara, N. E. und Hart, G. W. (2004): O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress, Biochim Biophys Acta 1673) [1-2], Seite 13-28.

Zaiss, D. M.; Standera, S.; Kloetzel, P. M. und Sijts, A. J. (2002): PI31 is a modulator of proteasome formation and antigen processing, Proc Natl Acad Sci U S A 99) [22], Seite 14344-9.

Zhang, F.; Su, K.; Yang, X.; Bowe, D. B.; Paterson, A. J. und Kudlow, J. E. (2003): O-GlcNAc modification is an endogenous inhibitor of the proteasome, Cell 115) [6], Seite 715-25.


Ziemba, H.; Bialy, L. P.; Fracki, S.; Bablok, L. und Wojcik, C. (2002): Proteasome localization and ultrastructure of spermatozoa from patients with varicocele--immunoelectron microscopic study, Folia Histochem Cytobiol 40) [2], Seite 169-70.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: