Udilova, Natalia: Vergleichende Untersuchung von Methoden zum Nachweis von Superoxidradikalen in biologischen und Modellsystemen.

Literaturliste.

1. Bergmeyer, H.U. ed. Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie GmbH; 1974.

2. Activated forms of oxygen. In: R.V. Bensasson, E.J. Laud and T.G. Truscott, eds. Excited states and free radicals in biology and medicine. ; 101-141; 1997.

3. Afanas'ew, I. Production of Oxygen Radicals by Cells. In: Superoxide Ion: Chemistry and Biological Implications. Vol. II. ; 87-134; 1989.

4. Albrecht, D. and Jungi, T.W. Luminol-enhanced chemiluminescence induced in peripheral blood-derived human phagocytes: obligatory requirement of myeloperoxidase exocytosis by monocytes. J. Leukoc. Biol. 54(4); 300-306; 1993.

5. Allen, R.C. Phagocytic Leukocyte Oxygenation Activities and Chemiluminescence: A Kinetic Approach to Analysis. Methods of Enzymology 133; 449-493; 1986.

6. Allen, R.C., Yevich, S.J., Orth, R.W., and Steele, R.H. The superoxide anion and singlet molecular oxygen: their role in the microbicidal activity of the polymorphonuclear leukocyte. Biochem. Biophys. Res. Commun. 60(3); 909-917; 1974.

7. Antal M, Rozsnyay Z, Genti G, and Meretey K. Comparison of luminol and lucigenin-enhanced chemiluminescence of granulocytes. Study of antiinflammatory drugs. 11-17; 1985.

8. Araki, T., Chikamori, K., Sasaki, K., Kawata, S., Minami, S., and Yamada, M. Topographic estimations by component spectroanalysis of two formazans of nitroblue tetrazolium in tissue sections. Histochemistry 86(6); 567-572; 1987.

9. Arnhold, J., Mueller, S., Arnold, K., and Grimm, E. Chemiluminescence intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of hydrogen peroxide. J. Biolumin. Chemilumin. 6(3); 189-192; 1991.

10. Arnhold, J., Mueller, S., Arnold, K., and Sonntag, K. Mechanisms of inhibition of chemiluminescence in the oxidation of luminol by sodium hypochlorite. J. Biolumin. Chemilumin. 8(6); 307-313; 1993.

11. Azzi, A., Montecucco, C., and Richter, C. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochemical and Biophysical Research Communications 65(2); 597-603; 1975.

12. Babior, B.M., Kipnes, R.S., and Curnutte, J.T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52(3); 741-744; 1973.

13. Bagchi, D., Prasad, R., and Das, D.K. Direct scavenging of free radicals by captopril, an angiotensin converting enzyme inhibitor. Biochem. Biophys. Res. Commun. 158(1); 52-57; 1989.

14. Bannister, J.V. and Bannister, W.H. Production of Oxygen-Centered Radicals by Neutrophils and Macrophages as Studied by Electron Spin Resonance (ESR). Environmental Health Perspectives 64; 37-43; 1985.

15. Barbati, S., Clement, J.L., Olive, G., Roubaud, V., Tuccio, B., and Tordo, P. 31P Labeled cyclic nitrones: a new class of spin traps for free radicals in biological milieu. In: F. Minisci, ed. Free Radicals in Biology and Enviroment. Kluwer Academic Publishers; 39-47; 1997.

16. Barber, D.A. and Harris, S.R. Oxygen free radicals and antioxidants: a review. Am. Pharm. NS34(9); 26-35; 1994.

17. Beauchamp, C. and Fridovich, I. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J. Biol. Chem 245(18); 4641-4646; 1970.


102

18. Beauchamp, C. and Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 44; 276-287; 1971.

19. Bielski, B.H.J. Generation of Superoxide Radicals in Aqueous and Ethanolic Solutions by Vacuum-UV Photolysis. Methods of Enzymology 105; 81-88; 1984.

20. Bielski, B.H.J., Cabelli, D.E., and Arudi, R.L. Reaktivity of HO2/O2-. Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 14(4); 1041-1099; 1985.

21. Bielski, B.H.J., Shiue, G.G., and Bajuk, S. Reduction of nitro blue tetrazolium by CO2- and O2- radicals. J. Phys. Chem. 84; 830-833; 1980.

22. Bindoli, A., Deeble, D.J., Rigobello, M.P., and Galzigna, L. Direct and respiratory chain-mediated redox cycling of adrenochrome. Biochim. Biophys. Acta 1016(3); 349-356; 1990.

23. Bode, C., Goebell, H., and Stahler, E. [Elimination of errors caused by turbidity in the determination of protein by the biuret method]. Z. Klin. Chem Klin. Biochem. 6(5); 418-422; 1968.

24. Bolann, B.J., Tangeras, A., and Ulvik, R.J. Determination of manganese superoxide dismutase activity by direct spectrophotometry. Free Rad. Res. 25(6); 541-546; 1996.

25. Bors, W., Michel, C., Saran, M., and Lengfelder, E. Kinetic investigations of the autoxidation of adrenalin. Z. Naturforsch. C. 33(11-12); 891-896; 1978.

26. Bors, W., Michel, C., Saran, M., and Lengfelder, E. The involvement of oxygen radicals during the autoxidation of adrenalin. Biochim. Biophys. Acta 540(1); 162-172; 1978.

27. Bors, W., Saran, M., Michel, C., Lengfelder, E., Fuchs, C., and Spottl, R. Pulse-radiolytic investigations of catechols and catecholamines. I. Adrenaline and adrenochrome. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem Med. 28(4); 353-371; 1975.

28. Boveris, A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods of Enzymology 105; 429-435; 1984.

29. Brantley, R.E., Jr., Smerdon, S.J., Wilkinson, A.J., Singleton, E.W., and Olson, J.S. The mechanism of autooxidation of myoglobin. J. Biol. Chem 268(10); 6995-7010; 1993.

30. Britigan, B.E., Pou, S., Rosen, G.M., Lilleg, D.M., and Buettner, G.R. Hydroxyl radical is not a produkt of the reaktion of xanthine oxidase and xanthine. J. Biol. Chem. 265(29); 17533-17538; 1990.

31. Britigan, B.E., Roeder, T.L., and Buettner, G.R. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical. Biochim.


103

Biophys. Acta 1075(3); 213-222; 1991.

32. Buettner, G.R. On the reaction of superoxide with DMPO/.OOH. Free Radic. Res. Commun. 10(1-2); 11-15; 1990.

33. Buettner, G.R. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300(2); 535-543; 1993.

34. Buettner, G.R. and Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat. Res. 145(5); 532-541; 1996.

35. Buettner, G.R. and Mason, R.P. Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo.. Methods of Enzymology 186; 127-133; 1990.

36. Enzyme histochemistry. New York, London: Academic Press; 1962.

37. Butcher, R.G. The measurement in tissue sections of the two formazans derived from nitroblue tetrazolium in dehydrogenase reactions. Histochem. J. 10(6); 739-744; 1978.

38. Cadenas, E., Boveris, A., Ragan, C.I., and Stoppani, A.O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180(2); 248-257; 1977.

39. Carreras, M.C., Riobo, N.A., Pargament, G.A., Boveris, A., and Poderoso, J.J. Effects of Respiratory Burst Inhibitors on Nitric Oxide Production by Human Neutrophils. Free Rad. Res. 26; 325-334; 1997.

40. Castro, L., Alvarez, M.N., and Radi, R. Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence. Arch. Biochem. Biophys. 333(1); 179-188; 1996.

41. Catz, S.D., Carreras, C., and Poderoso, J.J. Nitric oxide synthase inhibitors decrease human polymorphonuclear leukocyte luminal-dependent chemiluminescence. Free Radical Biology & Medicine 19(6); 741-748; 1995.

42. Clifford, D.P. and Repine, J.E. Measurement of Oxidizing Radicals by Polymorphonuclear Leukocytes. Methods of Enzymology 105; 393-398; 1984.

43. Cuperus, R.A., Muijsers, A.O., and Wever, R. The superoxide dismutase activity of myeloperoxidase; formation of compound III. Biochim. Biophys. Acta 871(1); 78-84; 1986.

44. Faist, V. Parameter des Radikalstoffwechsels isolierter Skelettmuskelmitochondrien. Einflu von Duchenne-Muskeldystrophie, physischer Belastung und Alterns. 1995.(Abstract)

45. Feig, D.I., Reid, T.M., and Loeb, L.A. Reactive oxygen species in tumorigenesis. Cancer Res. 54(7 Suppl); 1890s-1894s; 1994.

46. Finkelstein, E., Rosen, G.M., and Rauckman, E.J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem Soc. 102; 4994-4999; 1980.

47. Finkelstein, E., Rosen, G.M., Rauckman, E.J., and Paxton, J. Spin trapping of superoxide. Mol. Pharmacol. 16(2); 676-685; 1979.

48. Florence, T.M. The degradation of cytochrome c by hydrogen peroxide. J. Inorg. Biochem. 23(2); 131-141; 1985.

49. Frejaville, C., Karoui, H., Tuccio, B., Le Moigne, F., Culcasi, M., Pietri, S., Lauricella, R., and Tordo, P. 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J. Med. Chem. 38(2); 258-265; 1995.

50. Fridovich, I. Quantitative Aspects of the production of superoxide anion radical by milk xanthin oxidase. The Journal of Biological Chemistry 245(16); 4053-4057; 1970.

51. Fujii, H. and Kakinuma, K. Direct measurement of superoxide anion produced in biological systems by ESR Spectrometry: a pH-Jump method. J. Biochem. 108; 983-987; 1990.

52. Gerber, C.E., Kuci, S., Zipfel, M., Niethammer, D., and Bruchelt, G. Phagocytic activity and oxidative burst of granulocytes in persons with myeloperoxidase deficiency. European Journal of Clinical Chemistry and Clinical Biochemistry 34(11); 901-908; 1996.

53. Gille, L. and Nohl, H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic. Biol. Med. 23(5); 775-782; 1997.

54. Goldstein, J.M., Ross, D., Kaplan, H.B., and Weissmann, G. Complement and Immunoglobulins Stimulate Superoxide Production by Human Leukocytes Independently of Phagocytosis. The Journal of Clinical Investigation 56(Nov.); 1155-1163; 1975.

55. Green, T.R. and Wu, D.E. The NADPH:O2 Oxidoreductase of Human Neutrophils. The Journal of Biological Chemistry 261(13); 6010-6015; 1986.

56. Grootveld, M. and Halliwell, B. An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance liquid chromatography (HPLC). Use to investigate the effect of EDTA on the Fenton reaction. Free Radic. Res. Commun. 1(4); 243-250; 1986.

57. Gutteridge, J.M.C. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide. FEBS Lett. 172(2); 245-249; 1984.

58. Gutteridge, J.M.C., Richmond, R., and Halliwell, B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem. J. 184(2); 469-472; 1979.

59. Free radicals in biology and medicine. Oxford: Clarendon Press; 1989.

60. Haseloff, R.F., Ebert, B., and Roeder, B. Generation of free radicals by photoexcitation of pheophorbide alpha, haematoporphyrin and protoporphyrin. J. Photochem. Photobiol. B. 3(4); 593-602; 1989.

61. Johansen, K.S. Nitroblue tetrazolium slide test. Use of the phorbol-myristate-acetate-stimulated NBT-reduction slide test for routine and prenatal detection of chronic granulomatous disease and diagnosis of heterozygous carriers. Acta Pathol. Microbiol. Immunol. Scand. C. 91(6); 349-354; 1983.

62. Kakinuma, K. and Minakami, S. Effects of fatty acids on superoxide radical generation in leukocytes. Biochim. Biophys. Acta 538(1); 50-59; 1978.

63. Kalyanaraman, B., Felix, C.C., and Sealy, R.C. Electron Spin Resonance-Spin Stabilisation of Semiquinones Produced durng Oxidation of Epinephrine and its Analogues. The Journal of Biological Chemistry 259(1); 354-358; 1984.

64. Karoui, H., Hogg, N., Frejaville, C., Tordo, P., and Kalyanaraman, B. Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite. ESR-spin trapping and oxygen uptake studies. J. Biol. Chem 271(11); 6000-6009; 1996.

65. Kettle, A.J. and Winterbourn, C.C. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem. J. 252(2); 529-536; 1988.

66. Klebanoff, S.J. and Waltersdorph, A.M. Prooxidant activity of transferrin and lactoferrin. J. Exp. Med. 172(5); 1293-1303; 1990.

67. Koppenol, W.H. The reaction of ferrous EDTA with hydrogen peroxide: evidence against hydroxyl radical formation. J. Free Radic. Biol. Med. 1(4); 281-285; 1985.

68. Kuppusamy, P. and Zweier, J.L. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem 264(17); 9880-9884; 1989.

69. Kuthan, H., Ullrich, V., and Estabrook, R.W. A quantitative test for superoxide radicals produced in biological systems. Biochem. J. 203(3); 551-558; 1982.

70. Laihia, J.K., Jansen, C.T., and Ahotupa, M. Lucigenin and linoleate enhanced chemiluminescent assay for superoxide dismutase activity. Free Radic. Biol. Med. 14(5); 457-461; 1993.

71. Cytochromes. London and New York: Academic Press; 1973.

72. Li, Y.B., Zhu, H., Kuppusamy, P., ROUBAUD, V., Zweier, J.L., and Trush, M.A. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J. Biol. Chem. 273(4); 2015-2023; 1998.

73. Liochev, S.I. and Fridovich, I. Superoxide from Glucose Oxidase or from Nitroblue Tetrazolium? Arch. Biochem. Biophys. 318(2); 408-410; 1995.

74. Liochev, S.I. and Fridovich, I. Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch. Biochem. Biophys. 337(1); 115-120; 1997.

75. Lissi, E., Salim Hanna, M., Pascual, C., and del Castillo, M.D. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radical Biology & Medicine 18(2); 153-158; 1995.

76. Lloyd, R.V. and Mason, R.P. Evidence against transistion metal-independent hydroxyl radical generation by xanthin oxidase. J. Biol. Chem. 265(28); 16733-16736; 1990.

77. Lokesh, B.R. and Cunningham, M.L. Further studies on the formation of oxygen radicals by potassium superoxide in aqueous medium for biochemical investigations. Toxicol. Lett. 34(1); 75-84; 1986.

78. Loschen, G., Azzi, A., Richter, C., and Flohe, L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42(1); 68-72; 1974.

79. Lynch, R.E. and Fridovich, I. Autoinactivation of xanthine oxidase: the role of superoxide radical and hydrogen peroxide. Biochim. Biophys. Acta 571(2); 195-200; 1979.

80. Markert, M., Andrews, P.C., and Babior, B.M. Measurement of o2- Production by Human Neutrophils. The Preparation and Assay of NADPH Oxidase-Containing Particles from Human Neutrophils. Methods of Enzymology 105; 358-364; 1984.

81. Matthews, S.B., Henderson, A.H., and Campbell, A.K. The adrenochrome pathway: the major route for adrenalin catabolism by polymorphonuclear leucocytes. J. Mol. Cell Cardiol. 17(4); 339-348; 1985.

82. Mayo, L.A. and Curnutte, J.T. Kinetic Microplate Assay for Superoxide Production by Neutrophils and Other Phagocytic Cells. Methods of Enzymology 186; 567-565; 1990.

83. McCord, J.M. and Day, E.D., Jr. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 86(1); 139-142; 1978.

84. McCord, J.M. and Turrens, J.F. Mitochondrial Injury by Ischemia and Reperfusion. In: AnonymousMolecular basis of mitochondrial pathology. San Diego: Academic Press, Inc. 173-195; 1994.

85. McNally, J.A. and Bell, A.L. Myeloperoxidase-based chemiluminescence of polymorphonuclear leukocytes and monocytes. J. Biolumin. Chemilumin. 11(2); 99-106; 1996.

86. Meerhof, L.J. and Roos, D. Heterogeneity in chronic granulomatous disease detected with an improved nitroblue tetrazolium slide test. J. Leukoc. Biol. 39(6); 699-711; 1986.

87. Merenyi, G., Lind, J., and Eriksen, T.E. The reactivity of superoxide (O2-.) and its ability to induce chemiluminescence with luminol. Photochem. Photobiol. 41(2); 203-208; 1985.

88. Merenyi, G., Lind, J., and Eriksen, T.E. Luminol Chemiluminescence: Chemostry, Exitation, Emmiter. J. Biolumin. Chemilumin. 5; 53-56; 1990.

89. Miesel, R., Hartung, R., and Kroeger, H. Priming of NADPH oxidase by tumor necrosis factor alpha in patients with inflammatory and autoimmune rheumatic diseases. Inflammation 20(4); 427-438; 1996.

90. Miller, D.M., Buettner, G.R., and Aust, S.D. Transition metals as catalysts of "autoxidation" reactions. Free Radic. Biol. Med. 8(1); 95-108; 1990.

91. Mishin, V., Pokrovsky, A., and Lyakhovich, V.V. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions. Biochem. J. 154(2); 307-310; 1976.

92. Misra, H.P. and Fridovich, I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry 247(10); 3170-3175; 1972.

93. Morehouse, L.A., Thomas, C.E., and Aust, S.D. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation. Arch. Biochem. Biophys. 232(1); 366-377; 1984.

94. Morel, F., Dianoux, A.C., and Vignais, P.V. Superoxide Anion Measurement by sulfonated Phenyl Isothiocyanate cytochrome c. Biochemical and Biophysical Research Communications 156(3); 1175-1181; 1988.

95. Nakamura, M. and Nakamura, S. One- and two-electron oxidations of luminol by peroxidase systems. Free Radic. Biol. Med. 24(4); 537-544; 1998.

96. Nohl, H. [Biological and gerontological significance of oxygen]. Aktuelle. Gerontol. 12(6); 195-199;


108

1982.

97. Nohl, H. Is redox-cycling ubiquinone involved in mitochondrial oxygen activation? Free Radic. Res. Commun. 8(4-6); 307-315; 1990.

98. Nohl, H. Nitric oxide and related radicals. In: G. Poli, E. Albano and M.U. Dianzani, eds. Free radicals from basic science to medicine. Basel: Birkhäuser; 38-46; 1993.

99. Nohl, H. Generation of superoxide radicals as byproduct of cellular respiration. Ann. Biol. Clin. Paris. 52(3); 199-204; 1994.

100. Nohl, H. Biologie und Toxikologie des Sauerstoffs. In: S. Uranüs, ed. Chirurgische Forschung. München, Bern, Wien, New York: Zuckerschwerdt Verlag; 59-80; 1994.

101. Nohl, H. and Hegner, D. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82(2); 563-567; 1978.

102. Nohl, H., Hegner, D., and Summer, K.H. Responses of mitochondrial superoxide dismutase, catalase and glutathione peroxidase activities to aging. Mech. Ageing Dev. 11(3); 145-151; 1979.

103. Nohl, H. and Jordan, W. The biochemical role of ubiquinon and ubiquinone-derivatives in the generation of hydroxyl-radicals from hydrogen peroxide. In: W. Bors, M. Saran and D. Tait, eds. Oxygen radicals in chemistry and biology. Berlin, New York: Walter de Gruyter; 155-163; 1984.

104. Nohl, H. and Jordan, W. The mitochondrial site of superoxide formation. Biochem. Biophys. Res. Commun. 138(2); 533-539; 1986.

105. O'Brien, P.J. Superoxide production. Methods of Enzymology 105; 370-378; 1984.

106. Papa, S. and Skulachev, V.P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell Biochem. 174(1-2); 305-319; 1997.

107. Parthasarathy, S. and Santanam, N. Mechanisms of oxidation, antioxidants, and atherosclerosis. Curr. Opin. Lipidol. 5(5); 371-375; 1994.

108. Pietri, S., Liebgott, T., Frejaville, C., Tordo, P., and Culcasi, M. Nitrone spin traps and their pyrrolidine analogs in myocardial reperfusion injury: hemodynamic and ESR implications. Eur. J. Biochem. 1998.

109. Piper, H.M., Noll, T., and Siegmund, B. Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc. Res. 28(1); 1-15; 1994.

110. Popov, I.N. and Lewin, G. Photochemiluminescent detection of antiradical activity: II. Testing of nonenzymic water-soluble antioxidants. Free Radical Biology & Medicine 17(3); 267-271; 1994.

111. Powis, G. Hepatic microsomal metabolism of epinephrine and adrenochrome by superoxide-dependent and -independent pathways. Biochem. Pharmacol. 28(1); 83-89; 1979.

112. Radi, R. Kinetic analysis of reactivity of peroxynitrite with biomolecules. Methods of Enzymology 269; 354-366; 1996.

113. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem 266(7); 4244-4250; 1991.

114. Radi, R., Cosgrove, T.P., Beckman, J.S., and Freeman, B.A. Peroxynitrite-induced luminol chemiluminescence. Biochem. J. 290(Pt 1); 51-57; 1993.

115. Radi, R., Turrens, J.F., and Freeman, B.A. Cytochrome c-Catalyzed Membrane Lipid Peroxidation by Hydrogen Peroxide. Arch. Biochem. Biophys. 288(1); 118-125; 1991.

116. Rembish, S.J. and Trush, M.A. Further evidence that lucigenin-derived chemiluminescence monitors mitochondrial superoxide generation in rat alveolar macrophages. Free Radic. Biol. Med. 17(2); 117-126; 1994.

117. Repine, J.E., Rasmussen, B., and White, J.G. An improved nitroblue tetrazolium test using phorbol myristate acetate-coated coverslips. Am. J. Clin. Pathol. 71(5); 582-585; 1979.

118. Rest, R.F. Measurement of human neutrophil respiratory burst activity during phagocytosis of bacteria. Methods of Enzymology 236; 119-136; 1994.

119. Robinson, E.E., Maxwell, S.R., and Thorpe, G.H. An investigation of the antioxidant activity of black tea using enhanced chemiluminescence. Free Radic. Res. 26(3); 291-302; 1997.

120. Rosen, G.M., Finkelstein, E., and Rauckman, E.J. A Method for the Detection of Superoxide in Biological Systems. Arch. Biochem. Biophys. 215(2); 367-378; 1982.

121. Rosen, H. and Klebanoff, S.J. Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy. J. Clin. Invest. 64(6); 1725-1729; 1979.

122. Roubaud, V., Sankarapandi, S., Kuppusamy, P., Tordo, P., and Zweier, J.L. Quantitative Measurement of Superoxide Generation Using the Spin Trap 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide. Anal. Biochem. 247(2); 404-411. 1997.


110

123. Samuni, A., Krishna, C.M., Riesz, P., Finkelstein, E., and Russo, A. Superoxide reaction with nitroxide spin-adducts. Free Radic. Biol. Med. 6(2); 141-148; 1989.

124. Sankuratri, N., Kotake, Y., and Janzen, E.G. Studies on the stability of oxygen radical spin adducts of a new spin trap: 5-Methyl-5-Phenylpyrroline-1-Oxide (MPPO). Free Radical Biology & Medicine 21(6); 889-894; 1996.

125. Sarafian, T.A. and Bredesen, D.E. Is apoptosis mediated by reactive oxygen species? Free Radic. Res. 21(1); 1-8; 1994.

126. Saran, M., Michel, C., and Bors, W. Reaction of NO with O2-. implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic. Res. Commun. 10(4-5); 221-226; 1990.

127. Schwartz, C.J., Valente, A.J., and Sprague, E.A. A modern view of atherogenesis. Am. J. Cardiol. 71(6); 9B-14B; 1993.

128. Segal, A.W. and Levi, A.J. Cell damage and dye reduction in the quantitative nitroblue tetrazolium (NBT) test. Clin. Exp. Immunol. 19(2); 309-318; 1975.

129. Seitz, R.W. Chemiluminescence detection of enzymically generated peroxide. Methods of Enzymology 57; 445-462; 1978.

130. Seki, H. and Imamura, M. The oxidation of ferrocytochrome c by Br2-, (SCN)2-, N3 and OH radicals studied by pulsed-electron and gamma-ray radiolysis. Biochim. Biophys. Acta 635(1); 81-89; 1981.

131. Seliger, H.H. Excited States and Absolute Calibrations in Bioluminescence. In: Methods in enzymology. Vol. LVII. Academic Press; 560-575; 1978.

132. Skulachev, V.P. [Nonphosphorylating respiration as the mechanism preventing the formation of active forms of oxygen]. Mol. Biol. Mosk. 29(6); 1199-1209; 1995.

133. Storch, J. and Ferber, E. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal. Biochem. 169(2); 262-267; 1988.

134. Suzuki, Y.J., Forman, H.J., and Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 22(1-2); 269-285; 1997.

135. Szabo, C. DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic. Biol. Med. 21(6); 855-869; 1996.


111

136. Szarkowska, L. and Klingenberg, M. On the role of ubiquinone in mitochondria. Spectrophotometrie and chemical measurements of its redox reaction. Biochem. J. 338; 674-697; 1963.

137. Thomson, L., Trujillo, M., Telleri, R., and Radi, R. Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch. Biochem. Biophys. 319(2); 491-497; 1995.

138. Thorpe, G.H. and Kricka, L.J. Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol. 133; 331-353; 1986.

139. Totter, J. The quantum yield of the chemiluminescence of dimethylbiacridinium nitrat and the mechanism of its enzymically induced chemiluminescence. Photochem. Photobiol. 3; 231-241; 1964.

140. Toyokuni, S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic. Biol. Med. 20(4); 553-566; 1996.

141. Toyokuni, S., Okamoto, K., Yodoi, J., and Hiai, H. Persistent oxidative stress in cancer. FEBS Lett. 358(1); 1-3; 1995.

142. Turrens, J.F. and McCord, J.M. How relevant is the reoxidation of ferrocytochrome c by hydrogen peroxide when determining superoxide anion production? FEBS Lett. 227(1); 43-46; 1988.

143. Mitochondria. New York, London: Plenum Press; 1982.

144. Udilova, N., Popov, I.N., Levin, G.I., and Vladimirov IuA, [Antioxidant properties of UV-irradiated blood plasma as determined by the photochemiluminescence method]. Biofizika. 42(1); 187-190; 1997.

145. Ueno, I., Kohno, M., Mitsuta, K., Mizuta, Y., and Kanegasaki, S. Reevaluation of the spin-trapped adduct formed from 5,5-dimethyl-1-pyrroline-1-oxide during the respiratory burst in neutrophils. J. Biochem. Tokyo. 105(6); 905-910; 1989.

146. Valentine, J.S., Miksztal, A.R., and Sawyer, D. Methods for the study of superoxide chemistry in nonaqueous solutions. Methods of Enzymology 105; 71-81; 1984.

147. Valerino, D.M. and McCormack, J.J. Xanthine oxidase-mediated oxidation of epinephrine. Biochem. Pharmacol. 20(1); 47-55; 1971.

148. Vasquez-Vivar, J., Hogg, N., Pritchard, J.K.A., Martasek, P., and Kalyanaraman, B. Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Letters 403; 127-130; 1997.


112

149. Weening, R.S., Wever, R., and Roos, D. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J. Lab. Clin. Med. 85(2); 245-252; 1975.

150. Winterbourn, C.C. and Sutton, H.C. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction. Arch. Biochem. Biophys. 244(1); 27-34; 1986.

151. Wiseman, H. and Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313(Pt 1); 17-29; 1996.

152. Zhao, B.L., Li, X.J., and Xin, W.J. ESR studies on active oxygen radicals produced in the respiratory burst of human polymorphonuclear leukocytes. Cell Biol. Int. Rep. 13(6); 529-536; 1989.


[Titelseite] [Widmung] [Abkürzungsverzeichnis] [1] [2] [3] [4] [5] [Bibliographie] [Danksagung] [Lebenslauf] [Anhang]

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.

DiML DTD Version 2.0
Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML - Version erstellt am:
Mon Nov 20 13:03:05 2000