[Seite 83↓]


Ahn K, Erlander M. Leturcq D, Peterson PA, Früh K, Yang Y. In vivo characterization of the proteasome regulator PA28. J. Biol. Chem. 1996; 271: 18237-18242

Akopian TN, Kisselev AF, Goldberg AL. Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J. Biol. Chem. 1997; 272: 1791-1798

Arrigo AP, Tanaka K, Goldberg AL, Welch WJ. Identity of the 19S „prosome“ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 1988; 331: 192-194

Baumeister W, Walz J, Zühl F, Seemüller E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 1998; 92: 367-380

Benaroudj N, Goldberg AL. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell. Biol. 2002; 2: 833-839

Beninga J, Rock KL, Goldberg, AL. IFN- γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 1998; 273: 18734-18742

Ben-Shahar S, Cassouto B, Novak L, Porgador A, Reiss Y. Production of a specific major histocompatibility complex class I-restricted epitope by ubiquitin-dependent degradation of modified ovalbumin in lymphocyte lysate. slant="roman" color="#000000"/> J. Biol. Chem. color="#000000"/> 1997; slant="roman" color="#000000"/> 272(34): slant="roman" color="#000000"/> 21060-21066

Ben-Shahar S, Komlosh A, Nadav E, Shaked I, Ziv T, Admon A, De Martino GN,Reiss Y. 26S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J. Biol. Chem. 1999; 274(31): 21963-21972

Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The Proteasome. Ann. Rev. Biophys. Struct. 1999; 28: 295-317

Böhm G, Muhr R, Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992; 5: 191-195

Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel PM. Interferon- γ stimulation modulates the proteolytic activity and the cleavage site preference of 20S mouse proteasomes. J. Exp. Med. 1994; 179: 901-909

Brannigan JA, Dodson G, Duggleby HJ, Moddy PCE, Smith JL, Tomchick DR, Murzin AG. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 1995; 378: 416-419

Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell. Biol. 1999; 1: 221-226

Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL. 26S proteasomes and immunoproteasomes produce mainly N- extended versions of an antigenic peptide. EMBO J. 2001; 20(10): 2357-2366

Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989; 243: 1576-1583

Chiechanover A, DiGiuseppe J, Bercovich B, Orian A, Richter JD, Schwartz AL, Brodeur GM. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. 1991; 88: 139-143

Ciechanover A, Schwartz AL. The ubiquitine-proteasome pathway: the complexity and myriad function of protein death. Proc. Natl. Acad. Sci. USA 1998; 95: 2727-2730

Coffino P. Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell. Biol. 2001; 2: 188-194

[Seite 84↓]

Coux O, Tanaka K., Goldberg AL. Structure and function of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996; 65: 801-847

Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R, Baumeister W. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria . FEBS Lett. 1989; 251: 125-131

Dahlmann B, Kuehn L, Ishiura S, Tsukahara T, Sugita H, Tanaka K, Rivett AJ, Hough RF, Rechsteiner M, Mykles DL. The multicatalytic proteinase: a high- Mr endopeptidase. Biochem. J. 1988; 255: 750-751

del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide loaded major histocompatibility complex class-I molecules into the medial-Golgi compartment. J. Exp. Med. 1992; 176: 729-738

del Val M, Munch K, Reddehase MJ, Koszinowski UH. Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell 1989; 58: 305-315

del Val M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighbouring residues in the protein. Cell 1991; 66: 1145-1153

del Val M, Volkmer H, Rothbard JB, Jonjic S, Messerle M, Schickedanz J, Reddehase MJ, Koszinowski UH. Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. J. Virol. 1988; 62: 3965-3972

Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 1994; 269: 7059-7061

Dick LR, Aldrich C, Jameson SC, Moomaw CR, Pramanik BC, Doyle CK, DeMartino GN, Bevan MJ, Forman JM, Slaughter CA. Proteolytic processing of ovalbumin and β -galactosidase by the proteasome to yield antigenic peptides. J. Immunol. 1994; 152: 3884

Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanovic S, Wolf DH, Huber R, Rammensee HG, Schild, H. Contribution of proteasomal ß-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 1998; 273: 25637-25646

Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanovic S, Schild HJ and Rammensee HG. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 1996; 86: 253-256

Dubiel W, Pratt G, Ferrell K, Rechsteiner M. Purification of an 11S regulator of the multicatalytic protease. J. Biol. Chem. 1992; 267: 22369-22377

Eggers M, Boes B, Ruppert T, Kloetzel PM, Koszinowski UH. The cleavage preference of the proteasome governs the yield of antigenic peptides. J. Exp. Med. 1995; 182: 1865-1870

Falk K, Rötzschke O, Stevanovic S, Jung g, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290

Falk K, Rötzschke O. Consensus motifs and peptide ligands of MHC class I molecules. Semin. Immunol. 1993; 5: 81

Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995; 268: 726-731

Ferrington DA, Sun H, Murray KK, Costa J, Williams TD, Bigelow DJ, Squier TC. Selective degradation of oxidized calmodulin by the 20S proteasome. J. Biochem. 2001; 276: 937-943

Fruh, K, Ahn, K, Djaballah H, Sempe P, van Endert PM, Tampe R. A viral inhibitor of peptide transporters for antigen presentation. Nature 1995; 375: 415-418

[Seite 85↓]

Fu H, Doelling JH, Arendt C, Hochstrasser M, Vierstra R. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 1998; 149: 677-692

Gaczynska M, Rock KL, Spies T, Goldberg AL. Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc. Natl. Acad. Sci. USA 1994; 91: 9213–9217

Geginat G, Ruppert T, Hengel H, Holtappels R, Kozsinowski UH. IFN γ is a prerequisite for optimal antigen processing of viral peptides in vivo. J. Immunol. 1997; 158: 3303-3310

Ghoda L, van Daalen Wetters T, Macrae M, Ascherman D, Coffino P. Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science 1989; 243: 1493-1495

Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP 9-Signalosome and eIF3. Cell 1998b; 94: 615-623

Glickman MH, Rubin DM, Fried VA, Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 1998a; 18: 3149-3162

Grant EP, Michalek MT, Goldberg AL, Rock KL. Rate of antigen degradation by the ubiquitin-proteasome pathway influences MHC class I presentation. J. Immunol. 1995; 155: 3750-3758

Griffin TA, Nandi D, Cruz M, Fehling HJ, van Kaer l, Monaco J, Colbert RA. Immunoproteasome assembly: cooperative incorporation of Interferon γ (IFN γ )-inducible subunits. J. Exp. Med. 1998; 197: 97-104

Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski UH, Kloetzel PM. The interferon- γ -inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J. Biol. Chem. 1995; 270: 23808-23815

Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee HG, Koszinowski UH, Kloetzel PM. A role for the proteasome regulator PA28alpha in antigen presentation. Nature 1996; 381(6578): 166-180

Groettrup M, Standera S, Stohwasser R, Kloetzel PM. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc. Natl. Acad. Sci. USA. 1996; 94: 8970-8975

Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM, Huber R, Glickmann MH, Finley D. A gated channel into the proteasome cor particle. Nat. Struct. Biol. 2000; 7: 1062-1067

Groll,M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R. Structure of 20S proteasome from yeast at 2.4 Ǻ resolution. Nature 1997; 386: 463-471

Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf D. The active sites of the eukaryotic 20S proteasome and their involvement in the subunit precursor processing. J. Biol. Chem. 1997; 272: 25200-25209

Hengel H, Flohr T, Hammerling GJ, Koszinowski UH, Momburg F. Human cytomegalovirus inhibits peptide translocation into the ER for MHC class I assembly. J. Gen. Virol. 1996; 77: 2287-2296

Hershko A, Ciechanover A. The ubiquitin system. Annu. Rev. Biochem. 1998; 67: 425-479

Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375: 411-415

Hirai S, Kawasaki H, Yaniv M, Suzuki K. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS 1991; 287: 57-61

Hochstrasser M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 1996; 30: 405-439

[Seite 86↓]

Jariel-Encontre I, Pariat M, Martin F, Carillo S, Salvat C, Piechaczyk M. Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26S proteasome. J. Biol. Chem. 1995; 270(19): 11623-11627

Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL. Human cytomegalovirus US3 impairs transport and maturationof major histocompatibility complex class I heavy chains. Proc. Natl. Acad. Sci. USA 1996; 93: 11327-11333

Kalejta RF, Shenk T. Proteasome-dependent, ubiquitin- independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc. Natl. Acad Sci. USA 2003; 100: 3263-3268

Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S prroteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J. Biol. Chem. 2002; 277: 22260-22270

Kisselev, AF, Akopian TN, Castillo V, Goldberg AL. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol. Cell. 1999; 4: 395-402

Kisselev AF, Akopian TN, Goldberg AL. Ranges of sizes of peptide products generated during degradation of different proteins by archaeal proteins. J. Biol. Chem. 1998; 273: 1982-1989

Kloetzel PM. Antigen Processing by the Proteasome. Nat. Rev. Mol. Cell. Biol. 2001; 2: 179-187

Knowlton JR; Johnston SC, Whitby FG, Realini C, Zhang Z, Rechsteiner M, Hill CP. Structure of the proteasome activator REG α (PA28 α ). Nature 1997; 390: 639-643

Knuehl C, Spee P, Ruppert T, Kuckelkorn U, Henklein P, Neefjes J, Kloetzel, PM. The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide. J. Immunol. 2001; 167(3): 1515-1521

Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell. 2001; 7: 1143-1152

Kopp F, Dahlmann B, Hendil KB. Evidence indicating that the human proteasome is a complex dimer. J. Mol. Biol. 1993; 229: 14-19

Kopp F, Dahlmann B, Kuehn L. Reconstitution of hybrid proteasomes from purified PA700-20S complexes and PA28alphabetha activator: ultrastructure and peptidase activities. J. Mol. Biol. 2001; 313: 465-471

Kopp F, Hendil KB, Dahlmann B, Krisetensen P, Sobek A, Uerkvitz W. Subunit arrangement in the human 20S proteasome. Proc. Natl. Acad. Sci. USA 1997; 94: 2939-2944

Kuckelkorn U, Antunes Ferreira E, Drung I, Liewer U, Kloetzel PM, Theobald M. The effect of the interferon- γ inducible processing machinery on the generation of a naturally tumor-associated human cytotoxic T lymphocyte epitope within a wild type and mutant p53 sequence context. Eur. J. Immunol. 2002; 32: 1368-1375

Kuckelkorn U, Ruppert T, Strehl B, Jungblut PR, Zimny-Arndt U, Lamer S, Prinz I, Drung I, Kloetzel PM, Kaufmann SHE, Steinhoff U. Link between organ-specific antigen processing by 20 proteasomes and CD8+ T cell mediated autoimmunity. J. Exp. Med. 2002; 195: 983-990

Kuehn L, Dahlmann B. Proteasome activator PA28 and its interaction with the 20S proteasome. Arch. Biochem. Biophys. 1996; 329: 87-96,

Lam YA, Pickardt CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R. Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2000; 97(18): 9902-9906

Lam YA, Xu W, DeMartino GN, Cohen RE . Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997; 385: 737-740

[Seite 87↓]

Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P. The human cytomegalovirus US6 glycoprotein inhibits transported associated with antigen processing-dependent peptide translocation. Proc. Natl. Acad. Sci. USA 1997; 94: 6904-6909

Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at a 3.4Ǻ resolution. Science 1995; 268: 533-539

Lucchiari-Hartz M, Lindo V, Hitziger N, Gaedicke S, Saveanu L, Endert PM, Greer F, Eichmann K, Niedermann G. Differential proteasomal processing of hydrophobic and hydrophilic protein regions: Contribution to cytotoxic T lymphocyte epitope clustering in HIV-1-Nef. Proc. Natl. Acad. Sci. USA 2003; 100(13): 7755-7760

Lucchiari-Hartz M, van Endert PM, Lauvau G, Maier R, Meyerhans A, Mann D, Eichmann K, Niedermann G. Cytotoxic T lymphocyte epitopes of HIV-1 Nef: generation of multiple definite MHC class I ligands by proteasomes. J. Exp. Med. 2000; 191: 239-252

Ma CP, Slaughter CA, DeMartino GN. Identification, purification, and characterization of a protein aktivator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 1992; 267: 10515-10523

Madden DR. The three dimensional structure of peptide MHC complexes. Annu. Rev. Immunol. 1995; 13: 587-622

Meiners S, Laule M, Rother W, Guenther C, Prauke I, Muschick P, Baumann G, Kloetzel PM, Stangl K. Ubiquitin-proteasome pathway as a new target for the prevention of restenosis. Circulation 2002; 105: 483-489

Michalek MT, Grant EP, Gramm C, Goldberg AL, Rock KL. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 1993; 363: 552-554

Michalek MT, Grant EP, Rock KL. Chemical denaturation and modification of ovalbumin alters its dependence on ubiquitin conjugation for class I antigen presentation. J. Immunol. 1996; 157: 617-624

Miller CL, Pintel DJ. The NS2 protein generated by the parvovirus minute virus of mice is degraded by the proteasome in a manner independent of ubiquitin chain elongation or activation. Virol. 2001; 285: 346-355

Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL, Monsarrat V, van Velthoven R, Cerottini JC, Boon T, Gairin JE, van den Eynde BJ. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 2000; 12: 107-117

Murakami Y, Matsufuji S, Hayashi S, Tnahashi N, Tanaka K.Degradation of ornithine decarboxylase by the 26S proteasome. Biochem. & Biophys. Research. Commun. 2000; 267: 1-6

Murakami Y, Matsufuji S, Hayashi SI, Tanahashi N, Tanaka K. ATP-dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation. Mol. Cell. Biol. 1999; 19(10): 7216-7227

Murakami Y, Matsufuji S, Kameji T, Hayashi SI, Igarashi K, Tanaka K. Ornithine Decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 1992; 360: 597-599

Neefjes J.J, Gottfried E, Roelse J, Grommé , Obst R, Hämmerling GJ, Momburg F. Analysis of the fine specifity of rat, mouse and human TAP peptide transporters. Eur. J. Immunol. 1995; 25: 1133

Neisig A, Roelse J, Sijts AJ, Ossendorp F, Feltkamp MC, Kast WM, Melief CJ, Neefjes JJ. Major differences in transporter associated with antigen processing (TAP) - dependent translocation of MHC class I presentable peptides an the effect of flanking sequences. J. Immunol. 1995; 154: 1273-1279

Nied ermann G, Geier E, Lucchiari-Hartz M, Hitziger N, Ramsperger A, Eichmann K. The specifity of proteasomes: impact on MHC class I rpocessing and presentation of antigens. Immunol. Rev. 1999; 172: 29-48

[Seite 88↓]

Orlowski M, Cardozo C, Michaud C. Evidence for the present of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral aminoacids. Biochem. 1993; 32: 1563-1572

Orlowski M, Wilk S. Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Archives of Biochem. and Biophys. 2000; 383: 1-16

Pamer E & Cresswell P. Mechanisms of MHC class I- restricted antigen processing. Annu. Rev. Immunol. 1998; 16: 323-358

Pickart C & van Denmark AP. Opening doors into the proteasome. Nat. Struct. Biol. 2000; 7: 999-1001

Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell JW. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 2003; 18(3): 343-354

Realini C, Dubiel W, Pratt G, Ferrell K, Rechsteiner M. Molecular cloning and expression of a γ -interferon-inducible activator of the multicatalytic protease. J. Biol. Chem. 1994; 269: 20727-20732

Rechsteiner M, Realini C, Ustrell V. The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem. J. 2000; 345: 1-15

Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 1996; 21(7): 267-271

Reddehase MJ, Koszinowski UH. Redistribution of critical major histocompatibility complex and T cell receptor-binding function of residues in an antigenic sequence after biterminal substitution. Eur. J. Immunol. 1991; 21: 1697-1701

Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989; 337: 651-653

Reddehase MJ. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat. Rev. Immunol. 2002; 2: 831-844

Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 1999; 18(4): 1081-1091

Riddell S, Watanabe KS, Goddrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by adoptive transfer of T- cell clones. Science 1992; 257: 238-241

Rock KL&Goldberg AL. Degradation of cell proteins and the generation of MHC class I-presented peptides. Ann. Rev. Immunol. 1999; 17: 739-779

Rock KL, Gramm C, Rothstein K, Clark R, Stein L, Dick D, Hwang D, Goldberg AL. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell Immunol. 1994; 78: 761-771

Rubin DM, van Nocker S, Glickman M, Coux O, Wefes I, Sadis S, Fu H, Goldberg AL, Vierstra R, Finley D. ATPase and ubiquitin-binding proteins of the yeast proteasome. Mol. Cell. Biol. 1997; 24: 17-26

Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 Oncoprotein encoded by HPV 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129-1136

Schmidt M, Kloetzel PM. Biogenesis of eukaryotic proteasomes: the complex maturation pathway of a complex enzyme. FASEB J. 1997; 11: 1235-1243

Schmidtke G, Emch S, Groettrup M, Holzhütter HG. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J. Biol. Chem. 2000; 275(29): 22056-22063

[Seite 89↓]

Schmidtke G, Holzhütter HG, Bogyo M, Kairies N, Groll M, de Giuli R, Emch S, Groettrup M. How an inhibitor of the HIV-I protease modulates proteasome activity. J. Biol. Chem. 1999; 274: 35734–35740

Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J, Huber R, Kloetzel PM, Schmidt M. Analysis of mammalian proteasome biogenesis: the maturation of ß-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J. 1996; 15: 6887-6898

Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000; 404: 770-774

Schwarz K, van Den BM, Kostka S, Kraft R, Soza A, Schmidtke G, Kloetzel PM, Groettrup M. Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28 α / β , enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. J. Immunol. 2000; 165: 768–778

Seemüller E, Lupas A, Stock D, Löwe D, Huber R, Baumeister W. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 1995; 268: 579-582

Seifert U, Marañón C, Shmueli A, Desoutter JF, Wesoloski L, Janek K, Henklein P, Diescher S, Andrieu M, de la Salle H, Weinschenk T, Schild H, Laderach D, Galy A, Haas G, Kloetzel PM, Reiss Y, Hosmalin A. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat. Immunol. 2003; 4:375 - 379

Shaeffer JR, Kania MA. Degradation of monoubiquitinated alpha-globulin by 26S proteasomes. Biochem. 1995; 34: 4015-4021

Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE. Proteasomal turnover of p21Cip1 does not require p21Cip1ubiquitination. Mol. Cell . 2000; 5 : 403-410

Shimbara N, Ogawa K, Hidaka Y, Nakajima H, Yamasaki N, Niwa S, Tanahashi N, Tanaka K. Contribution of proline residue for efficient production of MHC class I ligands by proteasomes. J. Biol. Chem. 1998; 273(36): 23062-23071

Sijts A, Sun Y, Janek K, Kral S, Paschen A, Schadendorf D, Kloetzel PM. The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol. 2002; 39: 165-169

Sijts AJ, Ruppert T, Rehermann B, Schmidt M, Koszinowski U, Kloetzel PM. Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J. Exp. Med. 2000 (b); 191: 503–514

Sijts AJ, Standera S, Toes REM, Ruppert T, Beekman NJ, van Veelen PA, Ossendorp FA, Melief CJ, Kloetzel PM. MHC class I antigen processing of an adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J. Immunol. 2000 (a); 164: 4500–4506

Stohwasser R, Salzmann U, Giesebrecht J, Kloetzel PM, Holzhütter HG. Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur. J. Biochem. 2000; 267: 6221-6230

Stoltze L, Schirle M, Schwarz G, Schroter C, Thompson MW, Hersh LB, Kalbacher H, Stevanovic S, Rammensee HG, Schild, H. Two new proteases in the MHC class I processing pathway. Nat. Immunol. 2000; 1(5): 413-418

Sun Y, Sijts A, Song M, Kanek K, Nussbaum AK, Kral S, Schirle M, Stevanovic S, Paschen A, Schild HJ, Kloetzel PM, Schadendorf D. Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells. Canc. Res. 2002; 62: 2875-2882

Tanaka K. Breakthroughs and Views: Molecular Biology of the Proteasome. Biochem & Biophys Research Comm. 1998; 247: 537-541

Tarsca E, Szymanska G, Lecker S, O’ Connor CM, Goldberg AL. Ca++-free Calmodulin and Calmodulin Damaged by in Vitro Aging Are Selectively Degraded by 26 S Proteasomes without Ubiquitination. J. Biol. Chem. 2000; 275(27): 20295-20301

Thrower JS, Hoffmann L, Rechsteiner M, Pickart C. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000; 19: 94-102

[Seite 90↓]

Toes RE, Nussbaum A, Rammensee HG, Schild H. Discrete Cleavage Motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 2001; 194: 1-12

Treier M, Staszewski LM, Bohmann D . Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 1994; 78: 787-798

Turner GC, Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science 2000; 289: 2117-2120

Ustrell V, Realini C, Pratt G, Rechsteiner M. Human lymphoblast and erythrocyte multicatalytic protease: differential peptidase activities and responses to the 11S regulator. FEBS letters 1995; 376: 155-158

van Endert PM, Riganelli G, Greco G, Fleischhauer K, Sidney J, Sette A, Bach JF. The peptide binding motif for the human transporter associated with antigen processing. J. Exp. Med. 1995; 182: 1883

van Hall T, Sijts A, Camps M, Offringa R, Melief C, Kloetzel PM, Ossendorp F. Differential influence on cytotoxic T lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28. J. Exp. Med. 2000; 192: 483-494

van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 1996; 22: 383-387

Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 1998; 121: 19-29

Weissmann AM. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2001; 2: 169-178

Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP. Structural basis for the activation of 20S proteasome by 11S regulators. Nature 2000; 408: 115-120

Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996; 84: 769-779

Yewdell JW & Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 1999; 17: 51-88

Zhang M, Thurig S,Tsirigotis M, Wong PKY, Reuhl KR, Gray DA. Effects of Mutant Ubiquitin on ts1 Retrovirus-Mediated Neuropathology. J. Virol. 2003; 77: 7193–7201

Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 1997; 6 : 57-66

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: