Albers, W. (2001). Prominence theory as a tool to model boundedly rational decisions. In G. Gigerenzer & R. Selten (Eds.), Bounded rationality: The adaptive toolbox (pp. 297–317). Cambridge, MA: MIT Press.

Albrecht, H. J. (1980). Strafzumessung und Vollstreckung bei Geldstrafen unter Berücksichtigung des Tagessatzsystems [Sentencing and enforcement in fining under consideration of the daily payment system]. Berlin: Duncker & Humblot.

Anderson, N. H. (1965). Averaging versus adding as a stimulus combination rule in impression formation. Journal of Experimental Psychology, 70, 394–400.

Anderson, N. H. (1967). Averaging model analysis of set-size effect in impression formation. Journal of Experimental Psychology75, 158–165.

Anderson, N. H. (1981). Foundations of information integration theory. New York: Academic Press.

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442-481.

Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149-178.

Brehmer, B. (1994). The psychology of linear judgment models. Acta Psychologica, 87, 137–154.

Brehmer, B. (1973). Single-cue probability learning as a function of the sign and magnitude of the correlation between cue and criterion. Organizational Behavior and Human Decision Processes, 9, 377-395.

Brehmer, A., & Brehmer, B. (1988).What have we learnt about human judgment from thirty years of policy capturing? In B. Brehmer & C. R. B. Joyce (Eds.), Human judgment: The SJT view (pp. 75–114). Amsterdam: Elsevier/North Holland.

Brehmer B., & Joyce, C. R. B. (Eds.). (1988). Human judgment: The SJT view. Amsterdam: Elsevier/North Holland.

Bröder, A. (2000). Assessing the empirical validity of the take-the-best heuristic as a model of human probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1332–1346.

Bröder, A., & Schiffer, S. (2003). Take the best versus simultaneous feature matching: Probabilistic inferences from memory and effects of representation format. Journal of Experimental Psychology: General, 132, 277–293.

Brown, N. (2002). Real world estimation: Estimation modes and seeding effects. In B. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 321–359). San Diego, CA: Academic Press.

Brown, N. R., & Siegler, R. S. (1993). Metrics and mappings: A framework for understanding real-world quantitative estimation. Psychological Review, 100, 511–534.

Brown, N. R., & Siegler, R. S. (1996). Long-term benefits of seeding the knowledge base. Psychonomic Bulletin and Review, 3, 385–388.

Bruns, H-J. (1985). Das Recht der Strafzumessung, Eine systematische Darstellung für die Praxis (2. Aufl.) [The law on sentencing: A systematic account for legal practitioners (2nd ed.]. Köln: Heymanns.

Bruns, H-J. (1988). Die Bedeutung des Durchschnitts-, Regel- und des Normalfalles im Strafzumessungsrecht. Mögliche Orientierungspunkte für die Eingliederung der Tat und des Strafmaßes in die Stufenfolge des Rahmens? [The relevance of the average, the norm, and the normal case in criminal sentencing. Possible points of reference for the placement of the offense and the sentence in the levels of the sentencing range] Juritische Zeitung, 43, 1053-1058.

Brunswik. E. (1952). Conceptual framework of psychology. Chicago: University of Chicago Press.

Busemeyer, J. R., Byun, E., DeLosh, E. L., & McDaniel, M. A. (1997). Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. In K. Lamberts & D. Shanks (Eds.), Knowledge concepts and categories (pp. 405–437). Cambridge, MA: MIT Press.

Busemeyer, J. R., & Wang, Y-M. (2000). Model comparisons and model selection based on generalization criterion methodology. Journal of Mathematical Psychology, 44, 171–189.

Castellan, N. J. (1973). Multiple-cue probability learning with irrelevant cues. Organizational Behavior and Human Decision Processes, 9, 16-29.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Cohen, J., & Cohen, P. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Erlbaum.

Cooksey, R. W., Freebody, P., & Davidson, G. R. (1986). Teachers’ predictions of children’s early reading achievement: An application of social judgment theory. American Educational Research Journal, 23, 41–65.

Cooksey, R. W. (1996). Judgment analysis: Theory, methods and applications. San Diego: Academic Press.

Colwell, L. H. (2005). Cognitive heuristics in the context of legal decision making. American Journal of Forensic Psychology, 23, 17-41.

Conrad, F. G., Brown, N. R., & Cashman, E. R. (1998). Strategies for estimating behavioural frequency in survey interviews. Memory, 6339–366.

Davis, T. L., Severy, L. J., Kraus, S. J., & Whitaker, J. M. (1993). Predictors of sentencing decisions: The beliefs, personality variables, and demographic factors of juvenile justiceJournal of Applied Social Psychology23, 451-476.

Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making. Psychological Bulletin, 81, 95-106.

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34, 571–582.

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997). Extrapolation: The sine qua non for abstraction in function learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 968–986.

Dhami, M., & Ayton, P. (2001). Bailing and jailing the fast and frugal way. Journal of Behavioral Decision Making, 14, 141–168.

Dhami, M. K. (2003). Psychological models of professional decision making. Psychological Science, 14, 175-180.

Doherty, M., & Brehmer, B. (1997).The paramorphic representation of clinical judgment: A thirty-year retrospective. In W. M. Goldstein & R. M. Hogarth (Eds.), Research on judgment and decision making: Currents, connections and controversies (pp. 537–551). Cambridge: Cambridge University Press.

Doherty, M. E., & Kurz, E. (1996). Social judgement theory. Thinking and Reasoning, 2, 109–140.

Dougherty, M. R. P., Gettys, C. F., & Ogden, E. E. (1999). MINERVA-DM: A memory process model for judgments of likelihood. Psychological Review, 106, 180–209.

Ebbesen, E. B., & Konecni, V. J. (1975). Decision making and information integration in the courts: The setting of bail. Journal of Personality and Social Psychology, 32, 805–821.

Ebbesen, E. B., & Konečni, V. J. (1981). The process of sentencing adult felons. In B. D. Sales (Ed.), The trial process (pp. 413-458). New York: Plenum.

Einhorn, H. J., & Hogarth, R. M. (1975). Unit weighting schemes for decision making. Organizational Behavior and Human Performance, 13, 171–192.

Einhorn, J. H., Kleinmuntz, D. N., & Kleinmuntz, B. (1979). Regression models and process tracing analysis. Psychological Review, 86, 465–485.

Engel, C., & Gigerenzer, G. (2006). Law and heuristics: An interdisciplinary venture. In C. Engel & G. Gigerenzer (Eds.), Heuristics and the law (pp. 1-16). Cambridge, MA: MIT Press.

Engen, R. L., & Gainey, R. R. (2000). Modeling the effects of legally relevant and extralegal factors under sentencing guidelines: The rules have changed. Criminology, 38, 1207-1229.

Englich, B., & Mussweiler, T. (2001). Sentencing under uncertainty: Anchoring effects in the courtroom. Journal of Applied Social Psychology, 31, 1535-1551.

Englich, B., Mussweiler, T., & Strack, F. (2006). Playing dice with criminal sentences: The influence of irrelevant anchors on experts’ judicial decision making. Personality and Social Psychology Bulletin, 32, 188-199.

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127, 107-140.

Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior. New York: Prentice Hall.

ForsterLee, R., ForsterLee, L., Horowitz, I. A., & King, E. (2006). The effect of defendant race, victim race, and juror gender on evidence processing in a murder trial. Behavioral Sciences and the Law, 24, 179-198.

Foth, E. (1985). Strafschärfung/Strafmilderung—eine noch unerledigte Frage der Strafzumessung [Aggravating and mitigating sentences—outstanding issues for sentencing]. Juristische Rundschau, 10, 397-399.

Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113, 44–66.

Friedman, W. J. (2004). Time in autobiographical memory. Social Cognition, 22, 591–605.

Gabaix, X. (1999). Zipf’s law for cities: An explanation. The Quarterly Journal of Economics, 114, 739–767.

Gigerenzer, G., & Kurz, E. (2001). Vicarious functioning reconsidered: A fast and frugal lens model. In K. R. Hammond & T. R. Stewart (Eds.), The essential Brunswik: Beginnings, explications, applications (pp. 342–347). New York: Oxford University Press.

Gigerenzer, G., & Todd, P. M. (1999). Fast and frugal heuristics: The adaptive toolbox. In G. Gigerenzer, P. M. Todd, & the ABC Research Group, Simple heuristics that make us smart (pp. 3–34). New York: Oxford University Press.

Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999). Simple heuristics that make us smart. New York: Oxford University Press.

Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman and Tversky. Psychological Review103, 592–596.

Gigerenzer, G. (2006). Heuristics. In G. Gigerenzer & C. Engel (Eds.), Heuristics and the law (pp. 17-41). Cambridge, MA: MIT Press.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650–669.

Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review, 98, 506–528.

Gonzalez-Vallejo, C., & Bonham, A. (in press). Aligning confidence with accuracy: Revisiting the role of feedback. Acta Psychologica.

Guthrie, C., Rachlinski, J. J., & Wistrich, A. J. (2001). Inside the judicial mind: Heuristics and biases. Cornell Law Review86, 777–830.

Hahn, U., & Chater, N. (1998). Similarity and rules: Distinct? Exhaustive? Empirically distinguishable? Cognition, 65, 197-230.

Haider, H., Frensch, P. A., & Joram, D. (2005). Are strategy shifts caused by data-driven processes or by voluntary processes? Consciousness and Cognition, 14, 495–519.

Hammond, K. R. (1955). Probabilistic functioning and the clinical method. Psychological Review, 62, 255–262.

Hammond, K. R. (1996). Human judgment and social policy: Irreducible uncertainty, inevitable error, unavoidable injustice. New York: Oxford University Press.

Hammond, K. R. & Stewart, T. R. (Eds.). (2001). The essential Brunswik: Beginnings, explications, applications. New York: Oxford University Press.

Harries, P. A., & Harries, C. (2001). Studying clinical reasoning. Part 2: Applying social judgment theory. British Journal of Occupational Therapy, 64, 285–292.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining inference and prediction. New York: Springer.

Hausmann, D., Läge, D., Pohl, R., & Bröder, A. (in press). Testing the QuickEst: No evidence for the Quick-Estimation heuristic. European Journal of Cognitive Psychology.

Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.

Helversen, B. von, & Rieskamp, J. (in press). The mapping model: A cognitive theory of quantitative estimation. Journal of Experimental Psychology: General.

Henning, K., & Feder, L. (2005). Criminal prosecution of domestic violence offenses: An investigation of factors predictive of court outcomes. Criminal Justice and Behavior, 32, 612-642.

Hertwig, R., Hoffrage, U., & Martignon, L. (1999). Quick estimation: Letting the environment do the work. In G. Gigerenzer, P.M. Todd, & the ABC Research Group, Simple heuristics that make us smart (pp. 209–234). New York: Oxford University Press.

Hertwig, R. (2006). Do legal rules rule behavior. In C. Engel & G. Gigerenzer (Eds.), Heuristics and the law (pp. 391-411). Cambridge, MA: MIT Press.

Hertwig, R., Hoffrage, U., & Sparr, R. (2007). The QuickEst heuristic: How it benefits from an imbalanced worldManuscript in preparation.

Hoffman, P. J. (1960). The paramorphic representation of clinical judgment. Psychological Bulletin, 57, 116–131.

Hoffman, A. B., & Murphy, G. L. (2006). Category dimensionality and feature knowledge: When more features are learned as easily as fewer. Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 301-315.

Hogarth, R. M., Gibbs, B. R., McKenzie, C. R. M., & Marquis, M. A. (1991). Learning from feedback: Exactingness and incentives. Journal of Experimental Psychology: Learning Memory and Cognition, 17, 734–752.

Johnson, B. D. (2006). The multilevel context of criminal sentencing: Integrating judge- and county-level influences. Criminology, 44, 259-297.

Juslin, P., Jones, S., Olsson, H., & Winman, A. (2003a). Cue abstraction and exemplar memory in categorization. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 924–941.

Juslin, P., Karlsson, L., & Olsson, H. (in press). Information integration in multiple cue judgment: A division of labor hypothesis. Cognition.

Juslin, P., Olsson, H., & Olsson, A-C. (2003b). Exemplar effects in categorization and multiple-cue judgment. Journal of Experimental Psychology: General, 132, 133–156.

Juslin, P., & Persson, M. (2002). PROBabilities from Exemplars (PROBEX): A “lazy” algorithm for probabilistic inference from generic knowledge. Cognitive Science, 26, 563–607.

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3, 430–454.

Kahneman D., & Tversky A. (1996). On the reality of cognitive illusions. Psychological Review103, 582–591.

Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004). Population of linear experts: Knowledge partitioning and function learning. Psychological Review, 111, 1072–1099.

Karlsson, L., Juslin, P., & Olsson, H. (2004). Representational shifts in a multiple-cue judgment task with continuous cues. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society (pp. 648–653). Mahwah, NJ: Cognitive Science Society.

Kautt, P., & Spohn, C. (2002). Crack-ing down on black drug offenders? Testing for interactions among offenders’ race, drug type, and sentencing strategy in federal drug sentences. Justice Quarterly, 19, 1-35.

Kautt, P.M. (2002). Location, location, location: Interdistrict and intercircuit variation in sentencing outcomes for federal drug-trafficking offenses. Justice Quarterly, 19, 633–671.

Klayman, J. (1988a). Cue discovery in probabilistic environments: Uncertainty and experimentation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 317-330.

Klayman, J. (1988b). On the how and why (not) of learning from outcomes. In B. Brehmer & C. R. B. Joyce (Eds.), Human judgment: The SJT view (pp. 115–162): Amsterdam: North Holland.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.

Kruschke, J. K., & Johansen, M. K. (1999). A model of probabilistic category learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 25, 1083–1119.

Langer, W. (1994). Staatsanwälte und Richter, Justitielles Entscheidungsverhalten zwischen Sachzwang und lokaler Justizkultur [Prosecutors and judges, legal decision making between necessity and local legal culture]. Stuttgart: Enke.

Leiser, D., & Pachman, O. (2007). On the complexity of traffic judges’ decisions. Manuscript submitted for publication.

Levy, M., & Solomon, S. (1997). New evidence for the power-law distribution of wealth. Physica, 242, 90–94.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238.

Meier, B-D. (2001). Strafrechtliche Sanktionen (2.Aufl.) [Criminal sanctions (2nd ed.)]. Berlin: Springer.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

Minda, J. P., & Smith, J. D. (2001). Prototypes in category learning: The effects of category size, category structure, and stimulus complexity. Journal of Experimental Psychology: Learning, Memory and Cognition, 27, 775-799.

Mösl, A. (1981). Zum Strafzumessungsrecht [On sentencing law]. Neue Zeitung für Strafrecht, 131-135.

Mösl, A. (1983). Zum Strafzumessungsrecht [On sentencing law], Neue Zeitung für Strafrecht, 160-164.

Myung, J. I., Pitt, M. A., & Kim, W. (2005). Model evaluation, testing and selection. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 422–437), London: SAGE Publications.

Newell, B. R., & Shanks, D. R. (2003). Take the best or look at the rest? Factors influencing “one-reason” decision-making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 53–65.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.

Nosofsky, R. M. (1992). Exemplars, prototypes, and similarity rules. In A. Healy, S. Kosslyn, & R. Shiffrin (Eds.), Essays in honor of William K. Estes (Vol. 1, pp. 149–167). Hillsdale, NJ: Erlbaum.

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-based accounts of “multiple system” phenomena in perceptual categorization. Psychonomic Bulletin & Review, 7, 375–402.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classification learning. Psychological Review, 101, 53-79.

Olsson, A. C., Enqvist, T., & Juslin, P. (2006). Go with the flow! How to master a nonlinear multiple-cue judgment tasksJournal of Experimental Psychology: Learning, Memory, and Cognition, 32, 1371–1384.  

Olsson, H., Wennerholm, P., & Lyxzén, U. (2004). Exemplars, prototypes, and the flexibility of classification models. Journal of Experimental Psychology: Learning , Memory, and Cognition, 30, 936–941.

Ojmarrh, M. (2005). A meta-analysis of race and sentencing research: Explaining the inconsistencies. Journal of Quantitative Criminology, 21, 439-466.

Oswald, M. E. (1994). Psychologie des richterlichen Strafens [Psychology of judicial sentencing]. Stuttgart: Enke.

Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72, 407–418.

Parducci, A. (1974). Context effects: A range-frequency analysis. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception (vol. 2). New York: Academic Press.

Patalano, A. L., Smith, E. E., Jonides, J., & Koeppe, R. A. (2001). PET evidence for multiple strategies of categorization. Cognitive, Affective & Behavioral Neuroscience, 1360-370.

Payne, J. W., Bettman, J. R., & Johnson E. J. (1993). The adaptive decision maker. New York: Cambridge University Press.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology: Learning, Memory and Cognition, 14, 534-525.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109, 472–491.

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter space partitioning. Psychological Review, 113, 57–83.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111-163.

Raftery, A. E., Madigan, D., & Hoeting, J. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92, 179-191.

Rehder, B., & Hoffman, A. B. (2005a). Thirty-something categorization results explained: Selective attention, eyetracking, and models of category learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 31, 811–829.

Rehder, B., & Hoffman, A. B. (2005b). Eyetracking and selective attention in category learning. Cognitive Psychology, 51, 1–41.

Rieskamp, J. (2006). Perspectives of probabilistic inferences: Reinforcement learning and an adaptive network compared. Journal of Experimental Psychology: Learning, Memory, & Cognition32, 1371 1384.

Rieskamp, J., Busemeyer, J. R., & Laine, T. (2003). How do people learn to allocate resources? Comparing two learning theories. Journal of Experimental Psychology: Learning, Memory & Cognition, 29, 1066–1081.

Rieskamp, J., & Hoffrage, U. (in press). Inferences under time pressure: How opportunity costs affect strategy selection. Acta Psychologica.

Rieskamp, J., & Otto, E. P. (2006). SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135, 207–236.

Robert, S. & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.

Ruback, R. B., & Wroblewski, J. (2001). The federal sentencing guidelines: Psychological and policy reasons for simplification. Psychology, Public Policy and Law, 7739-775.

Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 80–97.

Schäfer, G. (2001). Praxis der Strafzumessung (2. Aufl.) [The practice of sentencing (2nd ed.)]. München: Beck.

Schroeder, M. (1991). Fractals, chaos, power laws: Minutes from an infinite paradise. New York: Freeman.

Schünemann, B. (1988). Daten und Hypothesen zum Rollenspiel zwischen Richter und Staatsanwalt bei der Strafzumessung [Data and hypotheses on the role play between judges and prosecutors in sentencing]. In G. Kaiser, H. Kury, & H. J. Albrecht (Eds.), Kriminologische Forschung in den 80er Jahren. Projektberichte aus der BRD (pp. 265-280). Freiburg: Max Planck Institute for Foreign and International Criminal Law.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.

Smith, E. R., & Zárate, M. A. (1992). Exemplar-based model of social judgment. Psychological Review, 99, 3–21.

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1411–1436.

Tata, C. (1997). Conceptions and representations of the sentencing decision process. Journal of Law and Society24, 395–420.

Tata, C. (1998). The application of judicial intelligence and 'rules' to systems supporting discretionary judicial decision-making. Artificial Intelligence and Law, 6, 203-230.

Theune, W. (1985a). Grundsätze und Einzelfragen der Strafzumessung; aus der Rechtsprechung des Bundesgerichtshofs (Teil 1) [Principles and individual issues of sentencing: From the jurisdiction of the Federal Court of Justice in Germany (part 1)]. Strafverteidiger, 4, 162-168.

Theune, W. (1985b). Grundsätze und Einzelfragen der Strafzumessung; aus der Rechtsprechung des Bundesgerichtshofs (Teil 2) [Principles and individual issues of sentencing: From the jurisdiction of the Federal Court of Justice in Germany (part 2)]. Strafverteidiger, 5, 205–210.

Todd, P. M., & Gigerenzer, G. (2007) Environments that make us smart: Ecological rationality. Current Directions in Psychological Science, 16, 167–171.

Tröndle , H., & Fischer, T. (2007). Strafgesetzbuch und Nebengesetze (54. Aufl) [Penal code and comments (54th ed.)]. München: Beck.

Van Duyne, P. (1987). Simple decision making. In D. C. Pennington & S. Lloyd-Bostock (Eds.), The psychology of sentencing: Approaches to consistency and disparity (pp. 143-158). Oxford: Centre for Socio-Legal Studies.

Wigton, R. S. (1996). Social judgement theory and medical judgement. Thinking and Reasoning, 2, 175–190.

Wryobeck, J. M., & Rosenberg, H. (2005). The association of client characteristics and acceptance of harm reduction: A policy capturing study of psychologists. Addiction Research and Therapy, 13, 461–476.

Zedeck, S., & Kafry, D. (1977). Capturing rater policies for processing evaluation data. Organizational Behaviour and Human Performance, 18, 269–294

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: