[Seite 126↓]

Literaturverzeichnis

[ 1 ]ISO/IEC 17025, „Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien“, ISO, Genf, 1999

[ 2 ] „The fitness for purpose of analytical methods", EURACHEM, 1998

[ 3 ] „Guide to the expression of uncertainty in measurement", ISO, Genf, 1993

[ 4 ] „Leitfaden zur Angabe der Unsicherheit beim Messen", DIN, Berlin, 1995

[ 5 ] „Quantifying Uncertainty in Analytical Measurement“, EURACHEM/CITAC, 2. Auflage, 2000

[ 6 ] W. Hässelbarth, „Rückführbarkeit analytischer Messungen" in: A.M. Bahadir, K. Danzer, W. Engewald, W. Fresenius, R. Galensa, H. Günzler, W. Huber, M. Linscheid, G. Schwedt, G. Tölg (Hrsg.), „Analytiker Taschenbuch", Band 19, Springer, Berlin, 1998, S. 45-74

[ 7 ] A. Zschunke (Hrsg.), „Reference Materials in Analytical Chemistry – A Guide for Selection and Use“, Springer, Berlin, 2000

[ 8 ] R. J. Bell, „Introductory Fourier Transform Spectroscopy“, Academic Press, New York, 1972

[ 9 ] P. R. Griffiths, J. A. de Haseth, „Fourier Transform Infrared Spectrometry“, John Wiley, New York, 1986

[ 10 ] Bruker Optik GmbH, „Software-Handbuch zur Applikations- und Meßsoftware OPUS-NT“, Version 2.0, 1999

[ 11 ] H. Günzler, H. M. Heise, „IR-Spektroskopie“, 3. Auflage, VCH, Weinheim, 1996, S. 86

[ 12 ] M. S. Hutson, M. S. Braiman, „Direct phase correction on differential FT-IR spectra", Appl. Spectrosc., 52 (1998) 974-984

[ 13 ] J. E. Bertie, Y. Apelblat, „Infrared intensities of liquids XIX: A simple and effektive approximate method for the calculation of infrared optical constant spectra of liquids from transmission measurements", Appl. Spectrosc., 50 (1996) 1039-1046

[ 14 ] H. Staat, H. M. Heise, E. H. Korte, „Fehleranalyse für die Bestimmung der Extinktionskoeffizienten von Flüssgkeiten im infraroten Spektralbereich", Fresenius Z. Anal. Chem., 316 (1983) 170-179

[ 15 ] S. G. Kaplan, L. M. Hanssen, R. U. Datta, „Testing the radiometric accuracy of Fourier transform infrared transmittance measurements", Appl. Optics, 36 (1997) 896-8908

[ 16 ] F. Geotti-Bianchini, H. Geißler, F. Kramer, I. H. Smith, „Recommended procedure for the IR spectroscopic determination of water in soda-lime-silica glass - Report of the International Commission on Glass (ICG) Technical Committee 14 „Gases in Glass““, Glastechn. Ber. Glass Sci. Technol., 72 (1999) 103-111

[ 17 ] A. R. H. Cole, „Tables of wavenumbers for the calibration of infrared spectrometers“, International Union of Pure and Applied Chemistry (Hrsg.), 2. Aufl., Pergamon Press, Oxford, 1977

[ 18 ] F. J. J. Clarke, „The absolute calibration of mid-infrared standards“, Anal. Chim. Acta, 380 (1999) 127-141

[ 19 ] M. A. Ford, „Dispersive vs. FT-IR photometric accuracy - Can it be measured?“ in: C. Burgess, K. D. Mielenz (Hrsg.), „Advances in standards and methodology in spectrophotometry“, Elsevier, Amsterdam, 1987, S. 359-366


[Seite 127↓]

[ 20 ]Standardreferenzmaterialien SRM 2053, 2054, 2055 und 2056 (Eine nähere Beschreibung ist im Online-Katalog für Standardreferenzmaterialien des NIST unter http://srmcatalog.nist.gov enthalten.)

[ 21 ] Z. M. Zhang, L. M. Hanssen, J. J. Hsia, R. U. Datla, C. Zhu, P. R. Griffiths, „A procedure for testing the radiometric accuracy of Fourier transform infrared spectrometers", Mikrochim. Acta [Suppl.], 14 (1997) 315-316

[ 22 ] C. M. Deeley, R. A. Spragg, J. Oelichmann, „Systemvalidierung für analytische FT-IR-Untersuchungen", Chemie in Labor und Biotechnik, 47 (1996) 112-115

[ 23 ] B. T. Bowie, P. R. Griffiths, „Measurement of the sensitivity and photometric accuracy of FT-IR spectrometers", Appl. Spectrosc., 54 (2000) 1192-1202

[ 24 ] J.E. Bertie, C.D. Keefe, R.N. Jones, „Tables of intensities for the calibration of infrared spectroscopic measurement in the liquid phase“, International Union of Pure and Applied Chemistry (Hrsg.), Blackwell Science, Oxford, 1995

[ 25 ] P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, „The NIST quantitative infrared database“, J. Res. Natl. Inst. Technol., 104 (1999) 59-81

[ 26 ] J. R. Birch, F. J. J. Clarke, „Fifty categories of ordinate error in Fourier transform spectroscopy", Spectroscopy Europe, 7 (1995) 16-22

[ 27 ] T. Hirschfeld, „Quantitative FT-IR: A detailed look at the problems involved“ in: J. R. Ferraro, L. J. Basile (Hrsg.), „Fourier transform infrared spectroscopy“, Band 2, Academic Press, New York, 1979, S. 193-242

[ 28 ] G. Guelachville, „Distortions in Fourier spectra and diagnosis“ in: G. A. Vanasse (Hrsg.), „Spectrometric techniques“, Band 2, Academic Press, New York, 1983, S. 1-62

[ 29 ] F. Geotti-Bianchini, I. H. Smith, P. van Nijnatten. H. Geißler, G. Bucher, „Intercomparsion of IR transmittance measurements on water containing glasses - Report of the International Comission on Glasses (ICG) Technical Commitee 14‚ Gases in Glass‘ “, Glastechn. Ber. Glass Sci. Technol., 73 (2000) 309-318

[ 30 ] G. Jalsovszky, „Resolution errors in FT-IR absorbance measurements", J. Mol. Struct., 114 (1984) 127-132

[ 31 ] J. L. Domenech, M. V. Garcia, M. A. Raso, „Conditions of measurement of infrared absorption band intensities by Fourier transform spectrometry", J. Mol. Struct., 142 (1986) 213-216

[ 32 ] S. F. Parker, P. B. Tooke, „The effect of apodisation and finite resolution on Fourier transform infrared and Raman spectra", Spectrochim. Acta Part A, 53 (1997) 2245-2252

[ 33 ] A. Reklat, W. Bessau, A. Kohl, „Systematic errors of FT-IR transmission spectra", Mikrochim. Acta, 14 (1997) 307-309

[ 34 ] R. J. Anderson, P. R. Griffiths, „Errors in absorbance measurements in infrared Fourier transform spectrometry because of limited instrument resolution", Anal. Chem., 47 (1975) 2339-2347

[ 35 ] D. B. Chase, „Phase correction in FT-IR", Appl. Spectrosc., 36 (1982) 240-244

[ 36 ] J. R. Birch, F. J. J. Clarke, „Interreflection errors in Fourier transform spectroscopy: A preliminary appraisal", Anal. Chim. Acta, 380 (1999) 369-378


[Seite 128↓]

[ 37 ] H. W. H. M. Jongbloets, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, „Spectrum distortion in far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer", Infrared Physics, 20 (1980) 185-192

[ 38 ] C. P. Tripp, R. A. McFarlane , „Discussion of the stray light rejection efficiency of FT-IR spectrometers - The effects of sample emission on FT-IR spectra“ , Appl. Spectrosc. , 48 (1994) 1138-1142

[ 39 ] D. B. Chase, „Nonlinear detector response in FT-IR", Appl. Spectrosc., 38 (1984) 491-494

[ 40 ] R. L. Richardson, Jr., H. Yang, P. R. Griffiths, „Evaluation of a correction for photometric errors in FT-IR spectrometry introduced by a nonlinear detector response", Appl. Spectrosc., 52 (1998) 565-571

[ 41 ] R. L. Richardson, Jr., H. Yang, P. R. Griffiths, „Effects of detector nonlinearity on spectra meassured on three commercial FT-IR", Appl. Spectrosc., 52 (1998) 572-578

[ 42 ] Z. M. Zhang, L. M. Hanssen, „A computer simulation of the nonlinearity effect on FT-IR measurements", Mikrochim. Acta [Suppl.], 14 (1997) 317-319

[ 43 ] Z. M. Zhang, C. J. Zhu, L. M. Hanssen, „Absolute detector calibration applied to nonlinearity error correction in FT-IR measurements", Appl. Spectrosc., 51 (1997) 576-579

[ 44 ] A. Keens, A. Simon, „Correction of nonlinearities in detectors in Fourier transform spectroscopy“, U.S. Patent Nr. 4927269, 22. Mai 1990

[ 45 ] D. M. MacBride, C. G. Malone, J. P. Hebb, E. G. Cravalho, „Effect of temperature variation on FT-IR spectrometer stability", Appl. Spectrosc., 51 (1997) 43-50

[ 46 ] I. K. Salomaa, J. K. Kauppinen, „Origin of and compensation for the baseline errors in Fourier transform spectra", Appl. Spectrosc., 52 (1998) 579-586

[ 47 ] U. Harder, H. Geißler, M. Gaber, M. Hähnert, O. Dersch, F. Rauch, „Determination of the water content of alkali lime silica glasses by IR spectroscopy using nuclear reaction analysis for calibration“, Glastechn. Ber. Glass Sci. Technol., 71 (1998) 12-18

[ 48 ] U. Harder, H. Geißler, M. Hähnert, „IR-spektroskopische Untersuchungen zum strukturellen Einbau und zur Bestimmung von Wasser in Gläsern“, Zweijahres-Zwischenbericht zum DFG-Antrag Ge 897/1-1, BAM, Berlin, 1998

[ 49 ] J. E. Bertie, R. N. Jones, C. D. Keefe, „Infrared intensities of liquids XI: Accurate optical constants and molar coefficients between 6225 and 500 cm -1 of benzene at 25°C, from spectra recorded in several laboratories“, Appl. Spectrosc., 47 (1993) 891-911

[ 50 ] J. E. Bertie, R. N. Jones, Y. Apelbat, C. D. Keefe, „Infrared intensities of liquids XIII: Accurate optical constants and molar coefficients between 6500 and 435 cm -1 of toluene at 25°C, from spectra recorded in several laboratories“, Appl. Spectrosc., 48 (1994) 127-143

[ 51 ] J. E. Bertie, R. N. Jones, Y. Apelbat, C. D. Keefe, „Infrared intensities of liquids XIV: Accurate optical constants and molar coefficients between 4800 and 450 cm -1 of chlorobenzene at 25°C, from spectra recorded in several laboratories“, Appl. Spectrosc., 48 (1994) 144-159

[ 52 ] J. E. Bertie, Z. L. Lan, R. N. Jones, Y. Apelblat, „Infrared intensities of liquids XVIII: Accurate optical constants and molar absorption coefficients between 6500 and 800 cm -1 of dichloromethane at 25°C, from spectra recorded in several laboratories“, Appl. Spectrosc., 49 (1995) 840-851


[Seite 129↓]

[ 53 ] J. E. Bertie, R. N. Jones, V. Behnan, „Infrared intensities of liquids II: Accuracy of FT-IR transmission measurements", Appl. Spectrosc., 39 (1985) 401-404

[ 54 ] J. E. Bertie, R. N. Jones, V. Beham, „Infrared intensities of liquids III: The photometric accuracy of FT-IR transmission spectra of C 5 H 10 , CH 3 NO 2 , CH 2 Cl 2 , C 6 H 6 , C 6 H 5 ·CH 3 , and C 6 H 5 Cl in the liquid state at 25°C in 11- to 500-µm cells", Appl. Spectrosc., 40 (1986) 427-434

[ 55 ] T. G. Goplen, D. G. Cameron, R. N. Jones, „Absolute absorption intensity and dispersion measurements on some organic liquids in the infrared", Appl. Spectrosc., 34 (1980) 657-691

[ 56 ] L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, „The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition", J. Quant. Spectrosc. Radiat. Transfer, 60 (1998) 665-710

[ 57 ] M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, „Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneuos analysis of CO 2 , CH 4 , N 2 O, and CO in air“, Anal. Chem., 72 (2000) 206-215

[ 58 ] J. E. Bertie, C. D. Keefe, „Infrared intensities of liquids VIII: Accurate baseline correction of transmission spectra of liquids for computation of absolute intensities, and the 1036 cm -1 band of benzene as a potential intensity standard“, Can. J. Chem., 69 (1991) 1609-1618

[ 59 ] J. P. Hawranek, P. Neelakantan, R. P. Young, R. N. Jones, „The control of errors in i.r. spectrometry - III. Transmission measurements using thin cells", Spectrochim. Acta Part A, 32 (1976) 75-84

[ 60 ] J. P. Hawranek, P. Neelakantan, R. P. Young, R. N. Jones, „The control of errors in i.r. spectrometry - IV. Corrections for dispersion distortion and the evaluation of both optical constants", Spectrochim. Acta Part A, 32 (1976) 85-98

[ 61 ] J. E. Bertie, S. L. Zhang, R. N. Jones, Y. Apelblat, C. D. Keefe, „Determination and use of secondary infrared intensity standards", Appl. Spectrosc., 49 (1995) 1821-1825

[ 62 ] E. D. Palik, „Handbook of Optical Constants of Solids“, Academic Press, Orlando, 1985

[ 63 ] H. H. Li, „Refractive index of alkali halides and its wavelength and temperature derivatives“, J. Phys. Chem. Ref. Data, 5 (1976) 329-528

[ 64 ] J. Timmermans, „Physico-chemical constants of pure organic compounds“, Elsevier, New York, 1950, Band 1, S. 215

[ 65 ] H. H. Landolt, R. Börnstein, A. Eucken, „Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik“, 6. Auflage, Springer, Berlin, 1971, Band 2, S. 651

[ 66 ] H. H. Landolt, R. Börnstein, A. Eucken, „Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik“, 6. Auflage, Springer, Berlin, 1971, Band 2, S. 654

[ 67 ] W. Bremser, H. Hässelbarth , „Controlling uncertainty in calibration“, Anal. Chim. Acta, 348 (1997) 61-69

[ 68 ] G. Duyckaerts, „The infrared analysis of solid substances - A review", Analyst, 84 (1959) 201-214

[ 69 ] O. Y. Ataman, H. B. Mark, Jr., „Alkali halide pelleting technique for solid sampling in infrared spectroscopy", Appl. Spectrosc. Rev., 13 (1977) 1-13


[Seite 130↓]

[ 70 ] M. Ravreby, „Quantitative determination of cocaine and heroin by Fourier transform infrared spectrophotometry", J. Forensic Sciences, 32 (1987) 20-37

[ 71 ] M. Baucells, N. Ferrer. P. Gómez, G. Lacort, M. Roura, „Determination of caffeine in solid pharmaceutical samples by FT-IR spectroscopy“, Mikrochim. Acta, 112 (1993) 87-98

[ 72 ] N. Ferrer, P. Gómez, M. Roura, M. Baucells, „Quantification of dodecylbenzenesulfonate and tripolyphosphates in solid commercial samples of detergents", Vib. Spectrosc., 10 (1996) 229-237

[ 73 ] J. D. B. Featherstone, S. Pearson, R. Z. LeGeros, „An infrared method for quantification of carbonate in carbonated apatites", Caries Res., 18 (1984) 63-66

[ 74 ] M. A. Legodi, D. de Waal, J. H. Potgieter, „Quantitative determination of CaCO 3 in cement blends by FT-IR“, Appl. Spectrosc., 55 (2001) 361-365

[ 75 ]BGI 505-30, „Verfahren zur Bestimmung der Massenanteile von Chrysotilasbest und Amphibolasbesten“, Hauptverband der gewerblichen Berufsgenossenschaften, Fach­ausschuss „Chemie“, 1991

[ 76 ] A. G. Xyla, P. G. Koutsoukos, „Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy", J. Chem. Soc., Faraday Trans. I, 85 (1989) 3165-3172

[ 77 ] F. A. Andersen, D. Kralj, „Determination of the composition of calcite-vaterite mixtures by infrared spectrophotometry", Appl. Spectrosc., 45 (1991) 1748-1751

[ 78 ] H. H. Oelert, „Infrarotspektroskopische Gruppenanalyse an festen aromatischen Vielstoffgemischen", Z. Anal. Chem., 231 (1967) 81-105

[ 79 ] T. Burger, J. Kuhn, R. Carps, J. Fricke, „Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements: Application to pharmaceutical powders“, Appl. Spectrosc., 51 (1997) 309-317

[ 80 ] R. Lejeune, G. Duyckaerts, „Note concernant les spectres infrougues poudres", Spectrochim. Acta, 6 (1954) 194-197

[ 81 ] G. Duyckaerts, „Contribution à l'analyse quantitative par les spectres d'absorption infrarouge des poudres I. Examen théorique de la question", Spectrochim. Acta, 7 (1955) 25-31

[ 82 ] M. J. Bonhomme, „Contribution à l'analyse quantitative par les spectres d'absorption infrarouge des poudres II. Etude expérimentale", Spectrochim. Acta, 7 (1955) 32-44

[ 83 ] J. Hlavay, K. Jonas, S. Elek, J. Inczedy, „Characterization of the particle size and the cyrstallinity of certain minerals by infrared spectrophotometry and other instrumental methods - I. Investigation on clay minerals", Clays and Clay Minerals, 25 (1977) 451-456

[ 84 ] J. Hlavay, K. Jonas, S. Elek, J. Inczedy, „Characterization of the particle size and the cyrstallinity of certain minerals by infrared spectrophotometry and other instrumental methods - II. Investigation on quartz and feldspar", Clays and Clay Minerals, 26 (1978) 139-143

[ 85 ] T. J. Bruno , „Sampling accessories for infrared spectrometry“ , Appl. Spectrosc. Rev., 34 (1999) 91-120


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
13.08.2004