[Seite 97↓]

Literaturverzeichnis

[1] McMurray, S. E. und McMurray, C. T. (2001): Huntington's disease. A sports star and a cook, Lancet (Band 358 Suppl), Seite S38.

[2] Neurodegeneration, Definition. URL: http://www.hon.ch/cgi-bin/HONselect?search

[3] Price, D. L. und Sisodia, S. S. (1998): Mutant genes in familial Alzheimer's disease and transgenic models, Annu Rev Neurosci (Band 21), Seite 479-505.

[4] Olanow, C. W. und Tatton, W. G. (1999): Etiology and pathogenesis of Parkinson's disease, Annu Rev Neurosci (Band 22), Seite 123-44.

[5] Gusella, J. F. und MacDonald, M. E. (1996): Trinucleotide instability: a repeating theme in human inherited disorders, Annu Rev Med (Band 47), Seite 201-9.

[6] Zoghbi, H. Y. und Orr, H. T. (2000): Glutamine repeats and neurodegeneration, Annu Rev Neurosci (Band 23), Seite 217-47.

[7] Harper, P. S. (1991): Huntington's Disease, W. B. Saunders, London.

[8] Telenius, H.; Kremer, H. P.; Theilmann, J.; Andrew, S. E.; Almqvist, E.; Anvret, M.; Greenberg, C.; Greenberg, J.; Lucotte, G.; Squitieri, F. und et al. (1993): Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent, Hum Mol Genet (Band 2), Nr. 10, Seite 1535-40.

[9] HDCRG (1993): A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group, Cell (Band 72), Nr. 6, Seite 971-83.

[10] McMurray, C. T. (2001): Huntington's disease. Expanding horizons for treatment, Lancet (Band 358 Suppl), Seite S37.

[11] Wanker, E. E. (2000): Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations, Biol Chem (Band 381), Nr. 9-10, Seite 937-42.

[12] Sharp, A. H. und Ross, C. A. (1996): Neurobiology of Huntington's disease, Neurobiol Dis (Band 3), Nr. 1, Seite 3-15.

[13] Li, H.; Li, S. H.; Johnston, H.; Shelbourne, P. F. und Li, X. J. (2000): Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity, Nat Genet (Band 25), Nr. 4, Seite 385-9.

[14] Velier, J.; Kim, M.; Schwarz, C.; Kim, T. W.; Sapp, E.; Chase, K.; Aronin, N. und DiFiglia, M. (1998): Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways, Exp Neurol (Band 152), Nr. 1, Seite 34-40.

[15] Zuccato, C.; Ciammola, A.; Rigamonti, D.; Leavitt, B. R.; Goffredo, D.; Conti, L.; MacDonald, M. E.; Friedlander, R. M.; Silani, V.; Hayden, M. R.; Timmusk, T.; Sipione, S. und Cattaneo, E. (2001): Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease, Science (Band 293), Nr. 5529, Seite 493-8.

[16] Bates, G. P. (2001): Huntington's disease. Exploiting expression, Nature (Band 413), Nr. 6857, Seite 691, 693-4.

[17] Steffan, J. S.; Bodai, L.; Pallos, J.; Poelman, M.; McCampbell, A.; Apostol, B. L.; Kazantsev, A.; Schmidt, E.; Zhu, Y. Z.; Greenwald, M.; Kurokawa, R.; Housman, D. E.; Jackson, G. R.; Marsh, J. L. und Thompson, L. M. (2001): Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila, Nature (Band 413), Nr. 6857, Seite 739-43.

[18] McCampbell, A.; Taye, A. A.; Whitty, L.; Penney, E.; Steffan, J. S. und Fischbeck, K. H. (2001): Histone deacetylase inhibitors reduce polyglutamine toxicity, Proc Natl Acad Sci U S A (Band 98), Nr. 26, Seite 15179-84. URL: http://www.pnas.org/cgi/content/abstract/98/26/15179

[19] Peters, P. J.; Ning, K.; Palacios, F.; Boshans, R. L.; Kazantsev, A.; Thompson, L. M.; Woodman, B.; Bates, G. P. und D'Souza-Schorey, C. (2002): Arfaptin 2 regulates the aggregation of mutant huntingtin protein, Nat Cell Biol (Band 4), Nr. 3, Seite 240-5.

[20] Gervais, F. G.; Singaraja, R.; Xanthoudakis, S.; Gutekunst, C. A.; Leavitt, B. R.; Metzler, M.; Hackam, A. S.; Tam, J.; Vaillancourt, J. P.; Houtzager, V.; Rasper, D. M.; Roy, S.; Hayden, M. R. und Nicholson, D. W. (2002): Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi, Nat Cell Biol (Band 4), Nr. 2, Seite 95-105.

[21] Mattson, M. P. (2000): Apoptosis in neurodegenerative disorders, Nat Rev Mol Cell Biol (Band 1), Nr. 2, Seite 120-9.

[22] Li, H.; Li, S. H.; Cheng, A. L.; Mangiarini, L.; Bates, G. P. und Li, X. J. (1999): Ultrastructural localization and progressive formation of neuropil aggregates in Huntington's disease transgenic mice, Hum Mol Genet (Band 8), Nr. 7, Seite 1227-36.

[23] Turmaine, M.; Raza, A.; Mahal, A.; Mangiarini, L.; Bates, G. P. und Davies, S. W. (2000): Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease, Proc Natl Acad Sci U S A (Band 97), Nr. 14, Seite 8093-7.

[24] Earnshaw, W. C.; Martins, L. M. und Kaufmann, S. H. (1999): Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu Rev Biochem (Band 68), Seite 383-424.

[25] Lansbury, P. T., Jr. (1997): Structural neurology: are seeds at the root of neuronal degeneration?, Neuron (Band 19), Nr. 6, Seite 1151-4.

[26] Lin, X.; Cummings, C. J. und Zoghbi, H. Y. (1999): Expanding our understanding of polyglutamine diseases through mouse models, Neuron (Band 24), Nr. 3, Seite 499-502.

[27] Dyer, R. B. und McMurray, C. T. (2001): Mutant protein in Huntington disease is resistant to proteolysis in affected brain, Nat Genet (Band 29), Nr. 3, Seite 270-8.

[28] Kim, Y. J.; Yi, Y.; Sapp, E.; Wang, Y.; Cuiffo, B.; Kegel, K. B.; Qin, Z. H.; Aronin, N. und DiFiglia, M. (2001): Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis, Proc Natl Acad Sci U S A (Band 98), Nr. 22, Seite 12784-9. URL: http://www.pnas.org/cgi/content/abstract/98/22/12784

[29] Wellington, C. L.; Singaraja, R.; Ellerby, L.; Savill, J.; Roy, S.; Leavitt, B.; Cattaneo, E.; Hackam, A.; Sharp, A.; Thornberry, N.; Nicholson, D. W.; Bredesen, D. E. und Hayden, M. R. (2000): Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells, J Biol Chem (Band 275), Nr. 26, Seite 19831-8.

[30] Wellington, C. L.; Ellerby, L. M.; Hackam, A. S.; Margolis, R. L.; Trifiro, M. A.; Singaraja, R.; McCutcheon, K.; Salvesen, G. S.; Propp, S. S.; Bromm, M.; Rowland, K. J.; Zhang, T.; Rasper, D.; Roy, S.; Thornberry, N.; Pinsky, L.; Kakizuka, A.; Ross, C. A.; Nicholson, D. W.; Bredesen, D. E. und Hayden, M. R. (1998): Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract, J Biol Chem (Band 273), Nr. 15, Seite 9158-67.

[31] DiFiglia, M.; Sapp, E.; Chase, K. O.; Davies, S. W.; Bates, G. P.; Vonsattel, J. P. und Aronin, N. (1997): Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science (Band 277), Nr. 5334, Seite 1990-3.

[32] Gutekunst, C. A.; Li, S. H.; Yi, H.; Mulroy, J. S.; Kuemmerle, S.; Jones, R.; Rye, D.; Ferrante, R. J.; Hersch, S. M. und Li, X. J. (1999): Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology, J Neurosci (Band 19), Nr. 7, Seite 2522-34.

[33] Davies, S. W.; Turmaine, M.; Cozens, B. A.; DiFiglia, M.; Sharp, A. H.; Ross, C. A.; Scherzinger, E.; Wanker, E. E.; Mangiarini, L. und Bates, G. P. (1997): Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation, Cell (Band 90), Nr. 3, Seite 537-48.

[34] Schilling, G.; Becher, M. W.; Sharp, A. H.; Jinnah, H. A.; Duan, K.; Kotzuk, J. A.; Slunt, H. H.; Ratovitski, T.; Cooper, J. K.; Jenkins, N. A.; Copeland, N. G.; Price, D. L.; Ross, C. A. und Borchelt, D. R. (1999): Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin, Hum Mol Genet (Band 8), Nr. 3, Seite 397-407.

[35] Mende-Mueller, L. M.; Toneff, T.; Hwang, S. R.; Chesselet, M. F. und Hook, V. Y. (2001): Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum, J Neurosci (Band 21), Nr. 6, Seite 1830-7. URL: http://www.jneurosci.org/cgi/content/abstract/21/6/1830

[36] Saudou, F.; Finkbeiner, S.; Devys, D. und Greenberg, M. E. (1998): Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions, Cell (Band 95), Nr. 1, Seite 55-66.

[37] Kim, M.; Lee, H. S.; LaForet, G.; McIntyre, C.; Martin, E. J.; Chang, P.; Kim, T. W.; Williams, M.; Reddy, P. H.; Tagle, D.; Boyce, F. M.; Won, L.; Heller, A.; Aronin, N. und DiFiglia, M. (1999): Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition, J Neurosci (Band 19), Nr. 3, Seite 964-73. URL: http://www.jneurosci.org/cgi/content/full/19/3/964

[38] Sanchez, I.; Xu, C. J.; Juo, P.; Kakizaka, A.; Blenis, J. und Yuan, J. (1999): Caspase-8 is required for cell death induced by expanded polyglutamine repeats

[see comments], Neuron (Band 22), Nr. 3, Seite 623-33.

[39] Huang, E. J. und Reichardt, L. F. (2001): Neurotrophins: roles in neuronal development and function, Annu Rev Neurosci (Band 24), Seite 677-736. URL: http://neuro.annualreviews.org/cgi/content/abstract/24/1/677

[40] Cha, J. H.; Kosinski, C. M.; Kerner, J. A.; Alsdorf, S. A.; Mangiarini, L.; Davies, S. W.; Penney, J. B.; Bates, G. P. und Young, A. B. (1998): Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene, Proc Natl Acad Sci U S A (Band 95), Nr. 11, Seite 6480-5.

[41] Mangiarini, L.; Sathasivam, K.; Seller, M.; Cozens, B.; Harper, A.; Hetherington, C.; Lawton, M.; Trottier, Y.; Lehrach, H.; Davies, S. W. und Bates, G. P. (1996): Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice, Cell (Band 87), Nr. 3, Seite 493-506.

[42] Perez-Severiano, F.; Rios, C. und Segovia, J. (2000): Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease, Brain Res (Band 862), Nr. 1-2, Seite 234-7.

[43] Roy, S. und Nicholson, D. W. (2000): Cross-talk in cell death signaling, J Exp Med (Band 192), Nr. 8, Seite F21-5. URL: http://www.jem.org/cgi/content/full/192/8/F21

[44] Chen, M.; Ona, V. O.; Li, M.; Ferrante, R. J.; Fink, K. B.; Zhu, S.; Bian, J.; Guo, L.; Farrell, L. A.; Hersch, S. M.; Hobbs, W.; Vonsattel, J. P.; Cha, J. H. und Friedlander, R. M. (2000): Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease, Nat Med (Band 6), Nr. 7, Seite 797-801.

[45] Ferri, K. F. und Kroemer, G. (2001): Organelle-specific initiation of cell death pathways, Nat Cell Biol (Band 3), Nr. 11, Seite E255-63.

[46] Kroemer, G.; Dallaporta, B. und Resche-Rigon, M. (1998): The mitochondrial death/life regulator in apoptosis and necrosis, Annu Rev Physiol (Band 60), Seite 619-42.

[47] Portera-Cailliau, C.; Hedreen, J. C.; Price, D. L. und Koliatsos, V. E. (1995): Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models, J Neurosci (Band 15), Nr. 5 Pt 2, Seite 3775-87.

[48] Dragunow, M.; Faull, R. L.; Lawlor, P.; Beilharz, E. J.; Singleton, K.; Walker, E. B. und Mee, E. (1995): In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes, Neuroreport (Band 6), Nr. 7, Seite 1053-7.

[49] Mattson, M. P. und Camandola, S. (2001): NF-kappaB in neuronal plasticity and neurodegenerative disorders, J Clin Invest (Band 107), Nr. 3, Seite 247-54. URL: http://www.jci.org/cgi/content/full/107/3/247

[50] Sisodia, S. S. (1998): Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial?, Cell (Band 95), Nr. 1, Seite 1-4.

[51] Klement, I. A.; Skinner, P. J.; Kaytor, M. D.; Yi, H.; Hersch, S. M.; Clark, H. B.; Zoghbi, H. Y. und Orr, H. T. (1998): Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice, Cell (Band 95), Nr. 1, Seite 41-53.

[52] Kuemmerle, S.; Gutekunst, C. A.; Klein, A. M.; Li, X. J.; Li, S. H.; Beal, M. F.; Hersch, S. M. und Ferrante, R. J. (1999): Huntington aggregates may not predict neuronal death in Huntington's disease, Ann Neurol (Band 46), Nr. 6, Seite 842-9.

[53] Ona, V. O.; Li, M.; Vonsattel, J. P.; Andrews, L. J.; Khan, S. Q.; Chung, W. M.; Frey, A. S.; Menon, A. S.; Li, X. J.; Stieg, P. E.; Yuan, J.; Penney, J. B.; Young, A. B.; Cha, J. H. und Friedlander, R. M. (1999): Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease, Nature (Band 399), Nr. 6733, Seite 263-7.

[54] Vonsattel, J. P.; Myers, R. H.; Stevens, T. J.; Ferrante, R. J.; Bird, E. D. und Richardson, E. P. (1985): Neuropathological classification of Huntington's disease, J Neuropathol Exp Neurol (Band 44), Nr. 6, Seite 559-77.

[55] Trottier, Y.; Lutz, Y.; Stevanin, G.; Imbert, G.; Devys, D.; Cancel, G.; Saudou, F.; Weber, C.; David, G.; Tora, L. und et al. (1995): Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias, Nature (Band 378), Nr. 6555, Seite 403-6.

[56] Chorea, Definition. URL: http://neuroscript.com/

[57] Reddy, P. H.; Williams, M.; Charles, V.; Garrett, L.; Pike-Buchanan, L.; Whetsell, W. O.; Miller, G. und Tagle, D. A. (1998): Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA, Nat Genet (Band 20), Nr. 2, Seite 198-202.

[58] Wheeler, V. C.; White, J. K.; Gutekunst, C. A.; Vrbanac, V.; Weaver, M.; Li, X. J.; Li, S. H.; Yi, H.; Vonsattel, J. P.; Gusella, J. F.; Hersch, S.; Auerbach, W.; Joyner, A. L. und MacDonald, M. E. (2000): Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice, Hum Mol Genet (Band 9), Nr. 4, Seite 503-13.

[59] Wheeler, V. C.; Gutekunst, C. A.; Vrbanac, V.; Lebel, L. A.; Schilling, G.; Hersch, S.; Friedlander, R. M.; Gusella, J. F.; Vonsattel, J. P.; Borchelt, D. R. und MacDonald, M. E. (2002): Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice, Hum Mol Genet (Band 11), Nr. 6, Seite 633-640. URL: http://hmg.oupjournals.org/cgi/content/abstract/11/6/633

[60] Carter, R. J.; Lione, L. A.; Humby, T.; Mangiarini, L.; Mahal, A.; Bates, G. P.; Dunnett, S. B. und Morton, A. J. (1999): Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation, J Neurosci (Band 19), Nr. 8, Seite 3248-57.

[61] Lione, L. A.; Carter, R. J.; Hunt, M. J.; Bates, G. P.; Morton, A. J. und Dunnett, S. B. (1999): Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation, J Neurosci (Band 19), Nr. 23, Seite 10428-37.

[62] Murphy, K. P.; Carter, R. J.; Lione, L. A.; Mangiarini, L.; Mahal, A.; Bates, G. P.; Dunnett, S. B. und Morton, A. J. (2000): Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation, J Neurosci (Band 20), Nr. 13, Seite 5115-23.

[63] Sathasivam, K.; Hobbs, C.; Turmaine, M.; Mangiarini, L.; Mahal, A.; Bertaux, F.; Wanker, E. E.; Doherty, P.; Davies, S. W. und Bates, G. P. (1999): Formation of polyglutamine inclusions in non-CNS tissue, Hum Mol Genet (Band 8), Nr. 5, Seite 813-22.

[64] Reynolds, G. P.; Dalton, C. F.; Tillery, C. L.; Mangiarini, L.; Davies, S. W. und Bates, G. P. (1999): Brain neurotransmitter deficits in mice transgenic for the Huntington's disease mutation, J Neurochem (Band 72), Nr. 4, Seite 1773-6.

[65] Mangiarini, L.; Sathasivam, K.; Mahal, A.; Mott, R.; Seller, M. und Bates, G. P. (1997): Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation, Nat Genet (Band 15), Nr. 2, Seite 197-200.

[66] Fain, J. N.; Del Mar, N. A.; Meade, C. A.; Reiner, A. und Goldowitz, D. (2001): Abnormalities in the functioning of adipocytes from R6/2 mice that are transgenic for the Huntington's disease mutation, Hum Mol Genet (Band 10), Nr. 2, Seite 145-52. URL: http://hmg.oupjournals.org/cgi/content/abstract/10/2/145

[67] Davies, S. W.; Turmaine, M.; Cozens, B. A.; Raza, A. S.; Mahal, A.; Mangiarini, L. und Bates, G. P. (1999): From neuronal inclusions to neurodegeneration: neuropathological investigation of a transgenic mouse model of Huntington's disease, Philos Trans R Soc Lond B Biol Sci (Band 354), Nr. 1386, Seite 981-9.

[68] Denovan-Wright, E. M. und Robertson, H. A. (2000): Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington's disease mice, Neuroscience (Band 98), Nr. 4, Seite 705-13.

[69] Bibb, J. A.; Yan, Z.; Svenningsson, P.; Snyder, G. L.; Pieribone, V. A.; Horiuchi, A.; Nairn, A. C.; Messer, A. und Greengard, P. (2000): Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice, Proc Natl Acad Sci U S A (Band 97), Nr. 12, Seite 6809-14.

[70] Glass, M.; Dragunow, M. und Faull, R. L. (2000): The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease, Neuroscience (Band 97), Nr. 3, Seite 505-19.

[71] Augood, S. J.; Faull, R. L.; Love, D. R. und Emson, P. C. (1996): Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington's disease: a detailed cellular in situ hybridization study, Neuroscience (Band 72), Nr. 4, Seite 1023-36.

[72] Weeks, R. A.; Piccini, P.; Harding, A. E. und Brooks, D. J. (1996): Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's disease, Ann Neurol (Band 40), Nr. 1, Seite 49-54.

[73] Luthi-Carter, R.; Strand, A.; Peters, N. L.; Solano, S. M.; Hollingsworth, Z. R.; Menon, A. S.; Frey, A. S.; Spektor, B. S.; Penney, E. B.; Schilling, G.; Ross, C. A.; Borchelt, D. R.; Tapscott, S. J.; Young, A. B.; Cha, J. H. und Olson, J. M. (2000): Decreased expression of striatal signaling genes in a mouse model of Huntington's disease, Hum Mol Genet (Band 9), Nr. 9, Seite 1259-71.

[74] Greengard, P.; Allen, P. B. und Nairn, A. C. (1999): Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade, Neuron (Band 23), Nr. 3, Seite 435-47.

[75] Perez, M. K.; Paulson, H. L.; Pendse, S. J.; Saionz, S. J.; Bonini, N. M. und Pittman, R. N. (1998): Recruitment and the role of nuclear localization in polyglutamine- mediated aggregation, J Cell Biol (Band 143), Nr. 6, Seite 1457-70.

[76] Kazantsev, A.; Preisinger, E.; Dranovsky, A.; Goldgaber, D. und Housman, D. (1999): Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells, Proc Natl Acad Sci U S A (Band 96), Nr. 20, Seite 11404-9. URL: http://www.pnas.org/cgi/content/abstract/96/20/11404

[77] Head, M. W. und Goldman, J. E. (2000): Small heat shock proteins, the cytoskeleton, and inclusion body formation, Neuropathol Appl Neurobiol (Band 26), Nr. 4, Seite 304-12.

[78] Cummings, C. J.; Mancini, M. A.; Antalffy, B.; DeFranco, D. B.; Orr, H. T. und Zoghbi, H. Y. (1998): Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1, Nat Genet (Band 19), Nr. 2, Seite 148-54.

[79] Steffan, J. S.; Kazantsev, A.; Spasic-Boskovic, O.; Greenwald, M.; Zhu, Y. Z.; Gohler, H.; Wanker, E. E.; Bates, G. P.; Housman, D. E. und Thompson, L. M. (2000): The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription, Proc Natl Acad Sci U S A (Band 97), Nr. 12, Seite 6763-8.

[80] Nucifora, F. C., Jr.; Sasaki, M.; Peters, M. F.; Huang, H.; Cooper, J. K.; Yamada, M.; Takahashi, H.; Tsuji, S.; Troncoso, J.; Dawson, V. L.; Dawson, T. M. und Ross, C. A. (2001): Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity, Science (Band 291), Nr. 5512, Seite 2423-8. URL: http://www.sciencemag.org/cgi/content/abstract/291/5512/2423

[81] Jana, N. R.; Tanaka, M.; Wang, Gh und Nukina, N. (2000): Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity, Hum Mol Genet (Band 9), Nr. 13, Seite 2009-18. URL: http://hmg.oupjournals.org/cgi/content/abstract/9/13/2009

[82] Koyama, Y. und Goldman, J. E. (1999): Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin, Am J Pathol (Band 154), Nr. 5, Seite 1563-72.

[83] Muchowski, P. J.; Schaffar, G.; Sittler, A.; Wanker, E. E.; Hayer-Hartl, M. K. und Hartl, F. U. (2000): Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils, Proc Natl Acad Sci U S A (Band 97), Nr. 14, Seite 7841-6.

[84] Head, M. W.; Corbin, E. und Goldman, J. E. (1993): Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease, Am J Pathol (Band 143), Nr. 6, Seite 1743-53.

[85] Iwaki, T.; Wisniewski, T.; Iwaki, A.; Corbin, E.; Tomokane, N.; Tateishi, J. und Goldman, J. E. (1992): Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions, Am J Pathol (Band 140), Nr. 2, Seite 345-56.

[86] Renkawek, K.; Voorter, C. E.; Bosman, G. J.; van Workum, F. P. und de Jong, W. W. (1994): Expression of alpha B-crystallin in Alzheimer's disease, Acta Neuropathol (Berl) (Band 87), Nr. 2, Seite 155-60.

[87] Swinbanks, D. (1995): Government backs proteome proposal, Nature (Band 378), Nr. 6558, Seite 653.

[88] Klose, J. (1999): Fractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresis, Methods Mol Biol (Band 112), Seite 67-85.

[89] Klose, J. (1999): Large-gel 2-D electrophoresis, Methods Mol Biol (Band 112), Seite 147-72.

[90] Klose, J. und Kobalz, U. (1995): Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome, Electrophoresis (Band 16), Nr. 6, Seite 1034-59.

[91] Heukeshoven, J. und Dernick, R. (1985): Simplified Method For Silver Staining of Proteins in Polyacrylamide Gels and the mechanism of silver staining, Electrophoresis (Band 6), Nr. 3, Seite 103-112.

[92] Jungblut, P. R. und Seifert, R. (1990): Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells, J Biochem Biophys Methods (Band 21), Nr. 1, Seite 47-58.

[93] Doherty, N. S.; Littman, B. H.; Reilly, K.; Swindell, A. C.; Buss, J. M. und Anderson, N. L. (1998): Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis, Electrophoresis (Band 19), Nr. 2, Seite 355-63.

[94] Scheler, C.; Lamer, S.; Pan, Z.; Li, X. P.; Salnikow, J. und Jungblut, P. (1998): Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS), Electrophoresis (Band 19), Nr. 6, Seite 918-27.

[95] Klose, J.; Nock, C.; Herrmann, M.; Stuhler, K.; Marcus, K.; Bluggel, M.; Krause, E.; Schalkwyk, L. C.; Rastan, S.; Brown, S. D.; Bussow, K.; Himmelbauer, H. und Lehrach, H. (2002): Genetic analysis of the mouse brain proteome, Nat Genet (Band 30), Nr. 4, Seite 385-93.

[96] Gevaert, K.; Verschelde, J. L.; Puype, M.; Van Damme, J.; Goethals, M.; De Boeck, S. und Vandekerckhove, J. (1996): Structural analysis and identification of gel-purified proteins, available in the femtomole range, using a novel computer program for peptide sequence assignment, by matrix-assisted laser desorption ionization-reflectron time-of-flight-mass spectrometry, Electrophoresis (Band 17), Nr. 5, Seite 918-24.

[97] Immler, D.; Gremm, D.; Kirsch, D.; Spengler, B.; Presek, P. und Meyer, H. E. (1998): Identification of phosphorylated proteins from thrombin-activated human platelets isolated by two-dimensional gel electrophoresis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), Electrophoresis (Band 19), Nr. 6, Seite 1015-23.

[98] Zhang, W. und Chait, B. T. (2000): ProFound: an expert system for protein identification using mass spectrometric peptide mapping information, Anal Chem (Band 72), Nr. 11, Seite 2482-9.

[99] Eng, J.; McCormack, A. L. und Yates III, J. R. (1994): An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database, Journal of the American Society for Mass Spectrometry (Band 5), Seite 976-989.

[100] Yates, J. R.; Eng, J. K.; McCormack, A. L. und Schieltz, D. (1995): Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database, Anal Chem (Band 67), Nr. 8, Seite 1426-36.

[101] Yates, J. R.; Eng, J. K. und McCormack, A. L. (1995): Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases, Anal Chem (Band 67), Nr. 18, Seite 3202-10.

[102] Jungblut, P. R.; Zimny-Arndt, U.; Zeindl-Eberhart, E.; Stulik, J.; Koupilova, K.; Pleissner, K. P.; Otto, A.; Muller, E. C.; Sokolowska-Kohler, W.; Grabher, G. und Stoffler, G. (1999): Proteomics in human disease: cancer, heart and infectious diseases, Electrophoresis (Band 20), Nr. 10, Seite 2100-10.

[103] Bestimmung, pI. URL: http://www.expasy.ch/tools/peptide-mass.html

[104] Clissold, P. M. und Bishop, J. O. (1982): Variation in mouse major urinary protein (MUP) genes and the MUP gene products within and between inbred lines, Gene (Band 18), Nr. 3, Seite 211-20.

[105] Flower, D. R.; North, A. C. und Sansom, C. E. (2000): The lipocalin protein family: structural and sequence overview, Biochim Biophys Acta (Band 1482), Nr. 1-2, Seite 9-24.

[106] Baumann, H. und Gauldie, J. (1994): The acute phase response, Immunol Today (Band 15), Nr. 2, Seite 74-80.

[107] Gollin, P. A.; Kalaria, R. N.; Eikelenboom, P.; Rozemuller, A. und Perry, G. (1992): Alpha 1-antitrypsin and alpha 1-antichymotrypsin are in the lesions of Alzheimer's disease, Neuroreport (Band 3), Nr. 2, Seite 201-3.

[108] Takahara, H. und Sinohara, H. (1982): Mouse plasma trypsin inhibitors. Isolation and characterization of alpha-1-antitrypsin and contrapsin, a novel trypsin inhibitor, J Biol Chem (Band 257), Nr. 5, Seite 2438-46.

[109] Hill, R. E.; Shaw, P. H.; Boyd, P. A.; Baumann, H. und Hastie, N. D. (1984): Plasma protease inhibitors in mouse and man: divergence within the reactive centre regions, Nature (Band 311), Nr. 5982, Seite 175-7.

[110] Vonsattel, J. P. und DiFiglia, M. (1998): Huntington disease, J Neuropathol Exp Neurol (Band 57), Nr. 5, Seite 369-84.

[111] Finotti, P. und Pagetta, A. (1997): Albumin contamination of a purified human alpha 1-antitrypsin preparation does not affect either structural conformation or the electrophoretic mobility of the inhibitor, Clin Chim Acta (Band 264), Nr. 2, Seite 133-48.

[112] Finotti, P. und de Laureto, P. P. (1997): Differential effects of heparin and glucose on structural conformation of human alpha1 antitrypsin: evidence for a heparin-induced cleaved form of the inhibitor, Arch Biochem Biophys (Band 347), Nr. 1, Seite 19-29.

[113] Borriello, F. und Krauter, K. S. (1991): Multiple murine alpha 1-protease inhibitor genes show unusual evolutionary divergence, Proc Natl Acad Sci U S A (Band 88), Nr. 21, Seite 9417-21.

[114] Silverman, G. A.; Bird, P. I.; Carrell, R. W.; Church, F. C.; Coughlin, P. B.; Gettins, P. G.; Irving, J. A.; Lomas, D. A.; Luke, C. J.; Moyer, R. W.; Pemberton, P. A.; Remold-O'Donnell, E.; Salvesen, G. S.; Travis, J. und Whisstock, J. C. (2001): The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature, J Biol Chem (Band 276), Nr. 36, Seite 33293-6. URL: http://www.jbc.org/cgi/content/full/276/36/33293

[115] Goodwin, R. L.; Barbour, K. W. und Berger, F. G. (1997): Expression of the alpha 1-proteinase inhibitor gene family during evolution of the genus Mus, Mol Biol Evol (Band 14), Nr. 4, Seite 420-7.

[116] Schubert, D. (1997): Serpins inhibit the toxicity of amyloid peptides, Eur J Neurosci (Band 9), Nr. 4, Seite 770-7.

[117] Ikari, Y.; Mulvihill, E. und Schwartz, S. M. (2001): alpha 1-Proteinase inhibitor, alpha 1-antichymotrypsin, and alpha 2-macroglobulin are the antiapoptotic factors of vascular smooth muscle cells, J Biol Chem (Band 276), Nr. 15, Seite 11798-803.

[118] Daemen, M. A.; Heemskerk, V. H.; van't Veer, C.; Denecker, G.; Wolfs, T. G.; Vandenabeele, P. und Buurman, W. A. (2000): Functional protection by acute phase proteins alpha(1)-acid glycoprotein and alpha(1)-antitrypsin against ischemia/reperfusion injury by preventing apoptosis and inflammation, Circulation (Band 102), Nr. 12, Seite 1420-6.

[119] Keppler, D.; Lesch, R.; Reutter, W. und Decker, K. (1968): Experimental hepatitis induced by D-galactosamine, Exp Mol Pathol (Band 9), Nr. 2, Seite 279-90.

[120] Van Molle, W.; Denecker, G.; Rodriguez, I.; Brouckaert, P.; Vandenabeele, P. und Libert, C. (1999): Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins, J Immunol (Band 163), Nr. 10, Seite 5235-41.

[121] Arrell, D. K.; Neverova, I. und Van Eyk, J. E. (2001): Cardiovascular proteomics: evolution and potential, Circ Res (Band 88), Nr. 8, Seite 763-73. URL: http://www.circresaha.org/cgi/content/abstract/88/8/763

[122] Li, X. P.; Pleissner, K. P.; Scheler, C.; Regitz-Zagrosek, V.; Salnikow, J. und Jungblut, P. R. (1999): A two-dimensional electrophoresis database of rat heart proteins, Electrophoresis (Band 20), Nr. 4-5, Seite 891-7.

[123] Horwitz, J. (1992): Alpha-crystallin can function as a molecular chaperone, Proc Natl Acad Sci U S A (Band 89), Nr. 21, Seite 10449-53.

[124] Klemenz, R.; Frohli, E.; Steiger, R. H.; Schafer, R. und Aoyama, A. (1991): Alpha B-crystallin is a small heat shock protein, Proc Natl Acad Sci U S A (Band 88), Nr. 9, Seite 3652-6.

[125] Dubin, R. A.; Wawrousek, E. F. und Piatigorsky, J. (1989): Expression of the murine alpha B-crystallin gene is not restricted to the lens, Mol Cell Biol (Band 9), Nr. 3, Seite 1083-91.

[126] Bajramovic, J. J.; Bsibsi, M.; Geutskens, S. B.; Hassankhan, R.; Verhulst, K. C.; Stege, G. J.; de Groot, C. J. und van Noort, J. M. (2000): Differential expression of stress proteins in human adult astrocytes in response to cytokines, J Neuroimmunol (Band 106), Nr. 1-2, Seite 14-22.

[127] Aoyama, A.; Steiger, R. H.; Frohli, E.; Schafer, R.; von Deimling, A.; Wiestler, O. D. und Klemenz, R. (1993): Expression of alpha B-crystallin in human brain tumors, Int J Cancer (Band 55), Nr. 5, Seite 760-4.

[128] Zhou, H.; Li, S. H. und Li, X. J. (2001): Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation, J Biol Chem (Band 276), Nr. 51, Seite 48417-424.

[129] Cavaggioni, A. und Mucignat-Caretta, C. (2000): Major urinary proteins, alpha(2U)-globulins and aphrodisin, Biochim Biophys Acta (Band 1482), Nr. 1-2, Seite 218-28.

[130] Wicks, L. F. (1941), Proc. Soc. Exp. Biol. Med. (Band 48), Seite 395-400.

[131] Bacchini, A.; Gaetani, E. und Cavaggioni, A. (1992): Pheromone binding proteins of the mouse, Mus musculus, Experientia (Band 48), Nr. 4, Seite 419-21.

[132] Brennan, P. A. (2001): The vomeronasal system, Cell Mol Life Sci (Band 58), Nr. 4, Seite 546-55.

[133] Hurst, J. L.; Payne, C. E.; Nevison, C. M.; Marie, A. D.; Humphries, R. E.; Robertson, D. H.; Cavaggioni, A. und Beynon, R. J. (2001): Individual recognition in mice mediated by major urinary proteins, Nature (Band 414), Nr. 6864, Seite 631-634.

[134] Marchlewska-Koj, A.; Cavaggioni, A.; Mucignat-Caretta, C. und Olejniczak, P. (2000): Stimulation of estrus in female mice by male urinary proteins, Journal of Chemical Ecology (Band 26), Nr. 10, Seite 2355-2366.

[135] Sironi, L.; Tremoli, E.; Miller, I.; Guerrini, U.; Calvio, A. M.; Eberini, I.; Gemeiner, M.; Asdente, M.; Paoletti, R. und Gianazza, E. (2001): Acute-phase proteins before cerebral ischemia in stroke-prone rats: identification by proteomics, Stroke (Band 32), Nr. 3, Seite 753-60.

[136] Kalchman, M. A.; Koide, H. B.; McCutcheon, K.; Graham, R. K.; Nichol, K.; Nishiyama, K.; Kazemi-Esfarjani, P.; Lynn, F. C.; Wellington, C.; Metzler, M.; Goldberg, Y. P.; Kanazawa, I.; Gietz, R. D. und Hayden, M. R. (1997): HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain, Nat Genet (Band 16), Nr. 1, Seite 44-53.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
10.03.2005