edoc-Server der Humboldt-Universität zu Berlin

Dissertation

Autor(en): Friedrich Finkenwirth
Titel: Substratbindung und -freigabe während des Katalysezyklus eines biotinspezifischen ECF-Transporters
Gutachter: Thomas Eitinger; Erwin Schneider; Heinz-Jürgen Steinhoff
Erscheinungsdatum: 10.04.2017
Volltext: pdf (urn:nbn:de:kobv:11-100246163)
Fachgebiet(e): Biowissenschaften, Biologie
Schlagwörter (ger): ABC-Transporter, Fluoreszenz, ECF-Transporter, ATP, Nanodiscs, Vitaminaufnahme, Elektronenspinresonanz (ESR)
Schlagwörter (eng): ABC transporter, fluorescence, ECF transporter, ATP, nanodiscs, vitamin uptake, electron paramagnetic resonance (EPR)
Einrichtung: Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät
Lizenz: Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung (CC BY NC ND)
Zitationshinweis: Finkenwirth, Friedrich: Substratbindung und -freigabe während des Katalysezyklus eines biotinspezifischen ECF-Transporters; Dissertation, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät , publiziert am 10.04.2017, urn:nbn:de:kobv:11-100246163
Metadatenexport: Um den gesamten Metadatensatz im Endnote- oder Bibtex-Format zu speichern, klicken Sie bitte auf den entsprechenden Link. Endnote   Bibtex  
print on demand: Wenn Sie auf dieses Icon klicken, können Sie ein Druckexemplar dieser Publikation bestellen.

Abstract (ger):
ECF (Energy-Coupling Factor)-Transporter sind prokaryotische Aufnahmesysteme für Mikronährstoffe, die eine spezielle Gruppe von Transportern mit ATP-Bindekassette (ABC) darstellen. Sie beinhalten zwei asymmetrische Membranproteine, von denen eins (S) für die spezifische Bindung und Translokation des Substrates und das andere (T) für die Kopplung mit den ATPasen (A1,A2) zuständig ist. Bei ECF-Transportern der Subklasse I bilden diese Komponenten eine Einheit, während bei Vertretern der Subklasse II ein AAT-Modul mit wechselnden S-Einheiten interagiert. In der vorliegenden Arbeit wurde der Transportmechanismus, der eine Drehung der kompletten S-Einheit in der Membran beinhaltet, anhand des Biotintransporters BioMNY erstmals experimentell validiert. Durch Rekonstitution in Lipid-Nanodiscs, chemische Quervernetzung, fluoreszenz- und ESR-spektroskopische Techniken sowie einen Bindungstest mit radioaktivem Biotin wurde gezeigt, dass (i) die ATP-Bindung an die ATPasen zu einer Aufrichtung der S-Einheit (BioY) führt, (ii) diese Bewegung die Substratbeladung ermöglicht und (iii) BioY dabei ununterbrochen mit der T-Einheit (BioN) interagiert. Dies stellt einen Gegensatz zu Systemen der Subklasse II dar, für die ein ATP-abhängiger Austausch von S-Einheiten im Transportzyklus gezeigt worden war. Darüber hinaus wurde ein Escherichia coli-Stamm konstruiert, der durch Blockierung seines hochaffinen Biotintransporters und des -synthesewegs auf Spuren von Biotin nicht wachsen kann. Dieser Stamm ermöglichte einen eindeutigen Nachweis der Transportaktivität einiger solitärer BioY-Proteine. Aufgrund der einheitlichen Topologie von S-Einheiten ist ein Kippen auch für solitäre BioY-Varianten wahrscheinlich. Auch die metallspezifischen S-Einheiten CbiM und NikM besitzen ohne AAT-Modul eine basale Co2+- bzw. Ni2+-Transportaktivität. Ein ESR-spektroskopischer Kobaltnachweises zeigte, dass die aus nur zwei Membranhelices bestehende CbiN-Einheit für die Metallbeladung von CbiM essentiell ist.
Abstract (eng):
ECF (Energy-Coupling Factor) transporters are a subgroup of ABC transporters that mediate uptake of micronutrients into prokaryotic cells. In contrast to canonical ABC importers, ECF transporters comprise two unrelated membrane proteins, one of which is responsible for specific and high affinity substrate binding (S) and the other one constitutes the coupling component (T) between S and the cytosolic ABC-ATPases (A1,A2). Subclass I transporters consist of four dedicated components whereas in subclass II transporters, a central AAT-module may interact with various S units. The biotin specific subclass I ECF transporter BioMNY was used to experimentally verify the hitherto hypothetic transport mechanism, which involves a rotation of the S unit within the membrane. With a series of experiments including reconstitution of BioMNY into lipid nanodiscs, site-specific cross-linking, a substrate binding assay with radioactive biotin and both fluorescence and EPR spectroscopic techniques, the ATP-dependent rotation of BioY (S) as a prerequisite for substrate binding and release was shown for the first time for an ECF transporter. Unlike subclass II transporters, for which an ATP-dependent release of the S unit was proposed, BioY interacts continuously with BioN (T) during the transport cycle. In a second focus of the work, an Escherichia coli reporter strain for biotin transporters was constructed. Due to inactivation of both biotin synthesis and the intrinsic high affinity biotin transporter, this strain was not capable of growing on trace amounts of biotin. With the use of this strain, transport activity of recombinantly produced solitary BioY proteins that naturally lack other ECF components was evidenced. Transport activity in the absence of AAT modules is also a feature of the Co2+ and Ni2+ specific S components CbiM and NikM. An EPR spectroscopic Co2+ detection assay helped underscoring the essential role of the small membrane protein CbiN for Co2+ loading of CbiM.
 
Generiert am 21.05.2017, 23:37:48