edoc-Server der Humboldt-Universität zu Berlin

Dissertation

Autor(en): André Bergholz
Titel: Querying semistructured data based on schema matching
Gutachter: Alex Brodsky; Heinz Schweppe; Johann Christoph Freytag
Erscheinungsdatum: 24.01.2000
Volltext: pdf (urn:nbn:de:kobv:11-10013309)
ps (urn:nbn:de:kobv:11-10013316)
Fachgebiet(e): Mathematik
Schlagwörter (ger): Semistrukturierte Daten, Anfragesprachen, Anfragebearbeitung, Constraint Satisfaction Probleme
Schlagwörter (eng): Semistructured data, Query languages, Query processing, Constraint Satisfaction Problems
Einrichtung: Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Zitationshinweis: Bergholz, André: Querying semistructured data based on schema matching; Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II , publiziert am 24.01.2000, urn:nbn:de:kobv:11-10013316
Metadatenexport: Um den gesamten Metadatensatz im Endnote- oder Bibtex-Format zu speichern, klicken Sie bitte auf den entsprechenden Link. Endnote   Bibtex  
print on demand: Wenn Sie auf dieses Icon klicken, können Sie ein Druckexemplar dieser Publikation bestellen.
Diese Seite taggen: Diese Icons führen auf so genannte Social-Bookmark-Systeme, auf denen Sie Lesezeichen anlegen, persönliche Tags vergeben und Lesezeichen anderer Nutzer ansehen können.
  • connotea
  • del.icio.us
  • Furl
  • RawSugar

Abstract (ger):
Daten werden noch immer groesstenteils in Dateien und nicht in Datenbanken gespeichert. Dieser Trend wird durch den Internetboom der 90er Jahre nur noch verstaerkt. Daraus ist das Forschungsgebiet der semistrukturierten Daten entstanden. Semistrukturierte Daten sind Daten, die meist in Dokumenten gespeichert sind und eine implizite und irregulaere Struktur aufweisen. HTML- oder BibTeX-Dateien oder in ASCII-Dateien gespeicherte Genomdaten sind Beispiele. Traditionelles Datenbankmanagement erfordert Design und sichert Deklarativitaet zu. Dies ist im Umfeld der semistrukturierten Daten nicht gegeben, ein flexiblerer Ansatz wird gebraucht. In dieser Arbeit wird ein neuer Ansatz des Abfragens semistrukturierter Daten praesentiert. Wir schlagen vor, semistrukturierte Daten durch eine Menge von partiellen Schemata zu beschreiben, anstatt zu versuchen, ein globales Schema zu definieren. Letzteres ist zwar geeignet, einen effizienten Zugriff auf Daten zu ermoeglichen; ein globales Schema fuer semistrukturierte Daten leidet aber zwangslaeufig an der Irregularitaet der Struktur der Daten. Wegen der vielen Ausnahmen vom intendierten Schema wird ein globales Schema schnell sehr gross und wenig repraesentativ. Damit wird dem Nutzer ein verzerrtes Bild ueber die Daten gegeben. Hingegen koennen partielle Schemata eher ein repraesentatives Bild eines Teils der Daten darstellen. Mit Hilfe statistischer Methoden kann die Guete eines partiellen Schemas bewertet werden, ebenso koennen irrelevante Teile der Datenbank identifiziert werden. Ein Datenbanksystem, das auf partiellen Schemata basiert, ist flexibler und reflektiert den Grad der Strukturierung auf vielen Ebenen. Seine Benutzbarkeit und seine Performanz steigen mit einem hoeheren Grad an Struktur und mit seiner Nutzungsdauer. Partielle Schemata koennen auf zwei Arten gewonnen werden. Erstens koennen sie durch einen Datenbankdesigner bereitgestellt werden. Es ist so gut wie unmoeglich, eine semistrukturierte Datenbank komplett zu modellieren, das Modellieren gewisser Teile ist jedoch denkbar. Zweitens koennen partielle Schemata aus Benutzeranfragen gewonnen werden, wenn nur die Anfragesprache entsprechend entworfen und definiert wird. Wir schlagen vor, eine Anfrage in einen ``Was''- und einen ``Wie''-Teil aufzuspalten. Der ``Was''-Teil wird durch partielle Schemata repraesentiert. Partielle Schemata beinhalten reiche semantische Konzepte, wie Variablendefinitionen und Pfadbeschreibungen, die an Konzepte aus Anfragesprachen angelehnt sind. Mit Variablendefinitionen koennen verschiedene Teile der Datenbank miteinander verbunden werden. Pfadbeschreibungen helfen, durch das Zulassen einer gewissen Unschaerfe, die Irregularitaet der Struktur der Daten zu verdecken. Das Finden von Stellen der Datenbank, die zu einem partiellen Schema passen, bildet die Grundlage fuer alle Arten von Anfragen. Im ``Wie''-Teil der Anfrage werden die gefundenen Stellen der Datenbank fuer die Antwort modifiziert. Dabei koennen Teile der gefundenen Entsprechungen des partiellen Schemas ausgeblendet werden oder auch die Struktur der Antwort voellig veraendert werden. Wir untersuchen die Ausdrucksstaerke unserer Anfragesprache, in dem wir einerseits die Operatoren der relationalen Algebra abbilden und andererseits das Abfragen von XML-Dokumenten demonstrieren. Wir stellen fest, dass das Finden der Entsprechungen eines Schemas (wir nennen ein partielles Schema in der Arbeit nur Schema) den aufwendigsten Teil der Anfragebearbeitung ausmacht. Wir verwenden eine weitere Abstraktionsebene, die der Constraint Satisfaction Probleme, um die Entsprechungen eines Schemas in einer Datenbank zu finden. Constraint Satisfaction Probleme bilden eine allgemeine Klasse von Suchproblemen. Fuer sie existieren bereits zahlreiche Optimierungsalgorithmen und -heuristiken. Die Grundidee besteht darin, Variablen mit zugehoerigen Domaenen einzufuehren und dann die Werte, die verschiedene Variablen gleichzeitig annehmen koennen, ueber Nebenbedingungen zu steuern. In unserem Ansatz wird das Schema in Variablen ueberfuehrt, die Domaenen werden aus der Datenbank gebildet. Nebenbedingungen ergeben sich aus den im Schema vorhandenen Praedikaten, Variablendefinitionen und Pfadbeschreibungen sowie aus der Graphstruktur des Schemas. Es werden zahlreiche Optimierungstechniken fuer Constraint Satisfaction Probleme in der Arbeit vorgestellt. Wir beweisen, dass die Entsprechungen eines Schemas in einer Datenbank ohne Suche und in polynomialer Zeit gefunden werden koennen, wenn das Schema ein Baum ist, keine Variablendefinitionen enthaelt und von der Anforderung der Injektivitaet einer Einbettung abgesehen wird. Zur Optimierung wird das Enthaltensein von Schemata herangezogen. Das Enthaltensein von Schemata kann auf zwei Weisen, je nach Richtung der Enthaltenseinsbeziehung, genutzt werden: Entweder kann der Suchraum fuer ein neues Schema reduziert werden oder es koennen die ersten passenden Stellen zu einem neuen Schema sofort praesentiert werden. Der gesamte Anfrageansatz wurde prototypisch zunaechst in einem Public-Domain Prolog System, spaeter im Constraintsystem ECLiPSe implementiert und mit Anfragen an XML-Dokumente getestet. Dabei wurden die Auswirkungen verschiedener Optimierungen getestet. Ausserdem wird eine grafische Benutzerschnittstelle zur Verfuegung gestellt.
Abstract (eng):
Most of today's data is still stored in files rather than in databases. This fact has become even more evident with the growth of the World Wide Web in the 1990s. Because of that observation, the research area of semistructured data has evolved. Semistructured data is typically stored in documents and has an irregular, partial, and implicit structure. The thesis presents a new framework for querying semistructured data. Traditional database management requires design and ensures declarativity. The possibilities to design are limited in the field of semistructured data, thus, a more flexible approach is needed. We argue that semistructured data should be represented by a set of partial schemata rather than by one complete schema. Because of irregularities of the data, a complete schema would be very large and not representative. Instead, partial schemata can serve as good representations of parts of the data. While finding a complete schema turns out to be difficult, a database designer may be able to provide partial schemata for the database. Also, partial schemata can be extracted from user queries if the query language is designed appropriately. We suggest to split the notion of query into a ``What''- and a ``How''-part. Partial schemata represent the ``What''-part. They cover semantically richer concepts than database schemata traditionally do. Among these concepts are predicates, variable definitions, and path descriptions. Schemata can be used for query optimization, but they also give users hints on the content of the database. Finding the occurrences (matches) of such a schema forms the most important part of query execution. All queries of our approach, such as the focus query or the transformation query, are based on this matching. Query execution can be optimized using knowledge about containment relationships between different schemata. Our approach and the optimization techniques are conceptually modeled and implemented as a prototype on the basis of Constraint Satisfaction Problems (CSPs). CSPs form a general class of search problems for which many techniques and heuristics exist. A CSP consists of variables that have a domain associated to them. Constraints restrict the values that variables can simultaneously take. We transform the problem of finding the matches of a schema in a database to a CSP. We prove that under certain conditions the matches of a schema can be found without any search and in polynomial time. For optimization purposes the containment relationship between schemata is explored. We formulate a sufficient condition for schema containment and test it again using CSP techniques. The containment relationship can be used in two ways depending on the direction of the containment: It is either possible to reduce the search space when looking for matches of a schema, or it is possible to present the first few matches immediately without any search. Our approach has been implemented into the constraint system ECLiPSe and tested using XML documents.
Zugriffsstatistik: Die Daten für die Zugriffsstatistik der einzelnen Dokumente wurden aus den durch AWStats aggregierten Webserver-Logs erstellt. Sie beziehen sich auf den monatlichen Zugriff auf den Volltext sowie auf die Startseite. Die Zugriffsstatistik wird nicht standardisiert erfasst und kann maschinelle Zugriffe enthalten.
 
Bei Formatversionen eines Dokuments, die aus mehreren Dateien bestehen (insbesondere HTML), wird jeweils der monatlich höchste Zugriffswert auf eine der Dateien (Kapitel) des Dokuments angezeigt.
 
Um die detaillierten Zugriffszahlen zu sehen, fahren Sie bitte mit dem Mauszeiger über die einzelnen Balken des Diagramms.
Startseite: 3 Zugriffe PDF: 2 Zugriffe PDF: 3 Zugriffe Startseite: 4 Zugriffe PDF: 1 Zugriffe PDF: 2 Zugriffe Startseite: 2 Zugriffe PDF: 7 Zugriffe PDF: 1 Zugriffe PDF: 4 Zugriffe PDF: 7 Zugriffe PDF: 4 Zugriffe Startseite: 1 Zugriffe PDF: 3 Zugriffe Startseite: 9 Zugriffe PDF: 9 Zugriffe Startseite: 2 Zugriffe PDF: 2 Zugriffe PDF: 3 Zugriffe PDF: 6 Zugriffe PDF: 9 Zugriffe PDF: 7 Zugriffe Startseite: 3 Zugriffe PDF: 15 Zugriffe Startseite: 4 Zugriffe PDF: 26 Zugriffe Startseite: 4 Zugriffe PDF: 19 Zugriffe Startseite: 1 Zugriffe PDF: 17 Zugriffe Startseite: 2 Zugriffe PDF: 15 Zugriffe Startseite: 1 Zugriffe PDF: 8 Zugriffe Startseite: 3 Zugriffe PDF: 12 Zugriffe Startseite: 3 Zugriffe PDF: 19 Zugriffe PDF: 25 Zugriffe Startseite: 4 Zugriffe PDF: 26 Zugriffe Startseite: 3 Zugriffe PDF: 27 Zugriffe Startseite: 3 Zugriffe PDF: 24 Zugriffe Startseite: 1 Zugriffe PDF: 16 Zugriffe Startseite: 5 Zugriffe PDF: 14 Zugriffe Startseite: 3 Zugriffe PDF: 10 Zugriffe Startseite: 1 Zugriffe PDF: 20 Zugriffe Startseite: 5 Zugriffe PDF: 28 Zugriffe Startseite: 4 Zugriffe PDF: 20 Zugriffe Startseite: 2 Zugriffe PDF: 25 Zugriffe PDF: 17 Zugriffe
Jul
11
Aug
11
Sep
11
Oct
11
Nov
11
Dec
11
Feb
12
Apr
12
May
12
Jun
12
Jul
12
Aug
12
Sep
12
Oct
12
Nov
12
Dec
12
Jan
13
Feb
13
Mar
13
Apr
13
May
13
Jun
13
Jul
13
Aug
13
Sep
13
Oct
13
Nov
13
Dec
13
Jan
14
Feb
14
Mar
14
Apr
14
May
14
Jun
14
Jul
14
Aug
14
Monat Jul
11
Aug
11
Sep
11
Oct
11
Nov
11
Dec
11
Feb
12
Apr
12
May
12
Jun
12
Jul
12
Aug
12
Sep
12
Oct
12
Nov
12
Dec
12
Jan
13
Feb
13
Mar
13
Apr
13
May
13
Jun
13
Jul
13
Aug
13
Sep
13
Oct
13
Nov
13
Dec
13
Jan
14
Feb
14
Mar
14
Apr
14
May
14
Jun
14
Jul
14
Aug
14
Startseite 3   4   2         1 9 2         3 4 4 1 2 1 3 3   4 3 3 1 5 3 1 5 4 2  
PDF 2 3 1 2 7 1 4 7 4 3 9 2 3 6 9 7 15 26 19 17 15 8 12 19 25 26 27 24 16 14 10 20 28 20 25 17

Gesamtzahl der Zugriffe seit Jul 2011:

  • Startseite – 73 (2.03 pro Monat)
  • PDF – 453 (12.58 pro Monat)
 
 
Generiert am 02.09.2014, 03:55:29