edoc-Server der Humboldt-Universität zu Berlin

SPEPS Preprint

Author(s): E. Erdogan, Columbia University
G. Iyengar, Columbia University
Title: On two-stage convex chance constrained problems
Date of Acceptance: 20.03.2006
Submission Date: 03.08.2005
Series Title: Stochastic Programming E-Print Series
(SPEPS)
Editors: Julie L. Higle; Werner Römisch; Surrajeet Sen
Complete Preprint: pdf (urn:nbn:de:kobv:11-10066216)
Appeared in: CORC Technical Report TR-2005-2
Metadata export: To export the complete metadata set as Endote or Bibtex format please click to the appropriate link. Endnote   Bibtex  
print on demand: If you click on this icon you can order a print copy of this publication. Bestellung als gedruckte und gebundene Version bei epubli.de, Ausführung der Bestellung erst nach Bestätigung auf den epubli.de-Seiten

Abstract (eng):
In this paper we develop approximation algorithms for two-stage convex chance constrained problems. Nemirovski and Shapiro [16] formulated this class of problems and proposed an ellipsoid-like iterative algorithm for the special case where the impact function f (x, h) is bi-affine. We show that this algorithm extends to bi-convex f (x, h) in a fairly straightforward fashion. The complexity of the solution algorithm as well as the quality of its output are functions of the radius r of the largest Euclidean ball that can be inscribed in the polytope defined by a random set of linear inequalities generated by the algorithm [16]. Since the polytope determining r is random, computing r is diffiult. Yet, the solution algorithm requires r as an input. In this paper we provide some guidance for selecting r. We show that the largest value of r is determined by the degree of robust feasibility of the two-stage chance constrained problem – the more robust the problem, the higher one can set the parameter r. Next, we formulate ambiguous two-stage chance constrained problems. In this formulation, the random variables defining the chance constraint are known to have a fixed distribution; however, the decision maker is only able to estimate this distribution to within some error. We construct an algorithm that solves the ambiguous two-stage chance constrained problem when the impact function f (x, h) is bi-affine and the extreme points of a certain “dual” polytope are known explicitly.
Access Statistics: These data concerning access statistics for individual documents have been compiled using the webserver log files aggregated by AWSTATS. They refer to a monthly access count to the full text documents as well as to the entry page.
 
As for format versions of a document which consist of multiple files (such as HTML) the highest monthly access number to one of the files (chapters) is shown respectivly.
 
To see the detailled access numbers please move the mouse pointer over the single bars of the digaram.
Startseite: 2 Zugriffe Startseite: 1 Zugriffe Startseite: 2 Zugriffe Startseite: 3 Zugriffe PDF: 2 Zugriffe PDF: 1 Zugriffe PDF: 1 Zugriffe PDF: 4 Zugriffe PDF: 3 Zugriffe PDF: 10 Zugriffe Startseite: 1 Zugriffe PDF: 10 Zugriffe Startseite: 1 Zugriffe PDF: 12 Zugriffe PDF: 18 Zugriffe PDF: 6 Zugriffe PDF: 5 Zugriffe PDF: 4 Zugriffe PDF: 3 Zugriffe Startseite: 2 Zugriffe PDF: 6 Zugriffe Startseite: 2 Zugriffe PDF: 4 Zugriffe PDF: 1 Zugriffe Startseite: 2 Zugriffe PDF: 7 Zugriffe PDF: 17 Zugriffe Startseite: 3 Zugriffe Startseite: 9 Zugriffe Startseite: 14 Zugriffe Startseite: 44 Zugriffe Startseite: 15 Zugriffe Startseite: 26 Zugriffe
Sep
11
Jan
12
Feb
12
Apr
12
May
12
Sep
12
Oct
12
Nov
12
Dec
12
Jan
13
Feb
13
Mar
13
Apr
13
May
13
Jun
13
Jul
13
Aug
13
Sep
13
Oct
13
Nov
13
Dec
13
Jan
14
Feb
14
Mar
14
Apr
14
May
14
Jun
14
Jul
14
Aug
14
Sep
14
Oct
14
Nov
14
Monat Sep
11
Jan
12
Feb
12
Apr
12
Sep
12
Oct
12
Nov
12
Jan
13
Feb
13
Mar
13
Apr
13
May
13
Jun
13
Jul
13
Aug
13
Sep
13
Oct
13
Nov
13
Dec
13
Jan
14
Feb
14
May
14
Jul
14
Aug
14
Sep
14
Oct
14
Nov
14
Startseite 2 1 2 3           1 1           2 2   2   3 9 14 44 15 26
PDF       2 1 1 4 3 10 10 12 18 6 5 4 3 6 4 1 7 17            

Gesamtzahl der Zugriffe seit Sep 2011:

  • Startseite – 127 (3.97 pro Monat)
  • PDF – 114 (3.93 pro Monat)
 
 
Generated at 19.12.2014, 11:14:45