edoc-Server der Humboldt-Universität zu Berlin

SPEPS Preprint

Author(s): Peter Vekas, Corvinus University of Budapest
Maarten H. van der Vlerk, University of Groningen
Willem K. Klein Haneveld, University of Groningen
Title: Optimizing existing railway timetables by means of stochastic programming
Date of Acceptance: 31.10.2012
Submission Date: 14.06.2012
Series Title: Stochastic Programming E-Print Series
(SPEPS)
Editors: Julie L. Higle; Werner Römisch; Surrajeet Sen
Complete Preprint: pdf (urn:nbn:de:kobv:11-100205493)
Metadata export: To export the complete metadata set as Endote or Bibtex format please click to the appropriate link. Endnote   Bibtex  
print on demand: If you click on this icon you can order a print copy of this publication. Bestellung als gedruckte und gebundene Version bei epubli.de, Ausführung der Bestellung erst nach Bestätigung auf den epubli.de-Seiten
Diese Seite taggen: These icons lead to social bookmarking systems where you can create and manage personal bookmarks and discover bookmakrs of other users.
  • connotea
  • del.icio.us
  • Furl
  • RawSugar

Abstract (eng):
We present some models to find the best allocation of a limited amount of so-called running time supplements (extra minutes added to a timetable to reduce delays) on a railway line. By the best allocation, we mean the solution under which the sum of expected delays is minimal. Instead of trying to invent a completely new timetable, our aim is to finely adjust an already existing and well-functioning one. We model this inherently stochastic optimization problem by using two-stage recourse models from stochastic programming, following Vromans [9]. We present an improved formulation, allowing for an efficient solution using a standard algorithm for recourse models. We include a case study that we managed to solve about 180 times faster than it was solved in [9]. By comparing our solution with other, seemingly intuitive solutions, we show that finding the best allocation is not obvious, and implementing it in practice promises a significant improvement in the punctuality of trains. A technique to estimate the model parameters from empirical data and an approximating deterministic problem are also presented, along with some practical ideas that are meant to enhance the applicability of our models.
Access Statistics: These data concerning access statistics for individual documents have been compiled using the webserver log files aggregated by AWSTATS. They refer to a monthly access count to the full text documents as well as to the entry page.
 
As for format versions of a document which consist of multiple files (such as HTML) the highest monthly access number to one of the files (chapters) is shown respectivly.
 
To see the detailled access numbers please move the mouse pointer over the single bars of the digaram.
PDF: 13 Zugriffe Startseite: 14 Zugriffe PDF: 24 Zugriffe Startseite: 4 Zugriffe PDF: 20 Zugriffe Startseite: 5 Zugriffe PDF: 28 Zugriffe Startseite: 7 Zugriffe PDF: 26 Zugriffe Startseite: 3 Zugriffe PDF: 26 Zugriffe Startseite: 7 Zugriffe PDF: 30 Zugriffe Startseite: 8 Zugriffe PDF: 12 Zugriffe Startseite: 15 Zugriffe PDF: 7 Zugriffe Startseite: 4 Zugriffe PDF: 5 Zugriffe Startseite: 10 Zugriffe PDF: 19 Zugriffe Startseite: 12 Zugriffe PDF: 19 Zugriffe Startseite: 15 Zugriffe PDF: 7 Zugriffe Startseite: 13 Zugriffe PDF: 20 Zugriffe Startseite: 16 Zugriffe PDF: 15 Zugriffe Startseite: 6 Zugriffe PDF: 14 Zugriffe Startseite: 14 Zugriffe PDF: 48 Zugriffe Startseite: 12 Zugriffe PDF: 23 Zugriffe Startseite: 13 Zugriffe PDF: 10 Zugriffe Startseite: 16 Zugriffe PDF: 11 Zugriffe
Dec
12
Jan
13
Feb
13
Mar
13
Apr
13
May
13
Jun
13
Jul
13
Aug
13
Sep
13
Oct
13
Nov
13
Dec
13
Jan
14
Feb
14
Mar
14
Apr
14
May
14
Jun
14
Jul
14
Monat Dec
12
Jan
13
Feb
13
Mar
13
Apr
13
May
13
Jun
13
Jul
13
Aug
13
Sep
13
Oct
13
Nov
13
Dec
13
Jan
14
Feb
14
Mar
14
Apr
14
May
14
Jun
14
Jul
14
Startseite   14 4 5 7 3 7 8 15 4 10 12 15 13 16 6 14 12 13 16
PDF 13 24 20 28 26 26 30 12 7 5 19 19 7 20 15 14 48 23 10 11

Gesamtzahl der Zugriffe seit Dec 2012:

  • Startseite – 194 (10.21 pro Monat)
  • PDF – 377 (18.85 pro Monat)
 
 
Generated at 23.08.2014, 09:40:43