edoc-Server der Humboldt-Universität zu Berlin

SPEPS Preprint

Author(s): Leen Stougie, Eindhoven Technical University
Maarten H. van der Vlerk, University of Groningen
Title: Approximation in stochastic integer programming
Date of Acceptance: 30.06.2003
Submission Date: 08.05.2003
Series Title: Stochastic Programming E-Print Series
(SPEPS)
Editors: Julie L. Higle; Werner Römisch; Surrajeet Sen
Complete Preprint: pdf (urn:nbn:de:kobv:11-10059087)
Metadata export: To export the complete metadata set as Endote or Bibtex format please click to the appropriate link. Endnote   Bibtex  
print on demand: If you click on this icon you can order a print copy of this publication. Bestellung als gedruckte und gebundene Version bei epubli.de, Ausführung der Bestellung erst nach Bestätigung auf den epubli.de-Seiten

Abstract (eng):
Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solutions. However, efficiency in the complexity theoretical sense is usually not taken into account. Quality statements mostly remain restricted to convergence to an optimal solution without accompanying implications on the running time of the algorithms for attaining more and more accurate solutions. However, over the last twenty years also some studies on performance analysis of approximation algorithms for stochastic programming have appeared. In this direction we find both probabilistic analysis and worst-case analysis.There have been studies on performance ratios and on absolute divergence from optimality. Only recently the complexity of stochastic programming problems has been addressed, indeed confirming that these problems are harder than most combinatorial optimization problems. Approximation in the traditional stochastic programming sense will not be discussed in this chapter. The reader interested in this issue is referred to surveys on stochastic programming, like the Handbook on Stochastic Programming [31 ]or the text books [2,16,29 ]. We concentrate on the studies of approximation algorithms which are more similar in nature to those for combinatorial optimization.
Access Statistics: These data concerning access statistics for individual documents have been compiled using the webserver log files aggregated by AWSTATS. They refer to a monthly access count to the full text documents as well as to the entry page.
 
As for format versions of a document which consist of multiple files (such as HTML) the highest monthly access number to one of the files (chapters) is shown respectivly.
 
To see the detailled access numbers please move the mouse pointer over the single bars of the digaram.
Startseite: 6 Zugriffe PDF: 8 Zugriffe Startseite: 2 Zugriffe PDF: 19 Zugriffe PDF: 25 Zugriffe Startseite: 10 Zugriffe PDF: 15 Zugriffe Startseite: 4 Zugriffe PDF: 13 Zugriffe Startseite: 1 Zugriffe PDF: 11 Zugriffe Startseite: 9 Zugriffe PDF: 13 Zugriffe Startseite: 2 Zugriffe PDF: 12 Zugriffe Startseite: 3 Zugriffe PDF: 11 Zugriffe Startseite: 2 Zugriffe PDF: 6 Zugriffe Startseite: 4 Zugriffe PDF: 9 Zugriffe Startseite: 5 Zugriffe PDF: 10 Zugriffe Startseite: 4 Zugriffe PDF: 6 Zugriffe Startseite: 5 Zugriffe PDF: 6 Zugriffe Startseite: 5 Zugriffe PDF: 6 Zugriffe Startseite: 1 Zugriffe PDF: 3 Zugriffe Startseite: 3 Zugriffe PDF: 5 Zugriffe
Jan
16
Feb
16
Mar
16
Apr
16
May
16
Jun
16
Jul
16
Aug
16
Sep
16
Oct
16
Nov
16
Dec
16
Jan
17
Feb
17
Mar
17
Apr
17
May
17
Monat Jan
16
Feb
16
Mar
16
Apr
16
May
16
Jun
16
Jul
16
Aug
16
Sep
16
Oct
16
Nov
16
Dec
16
Jan
17
Feb
17
Mar
17
Apr
17
May
17
Startseite 6 2   10 4 1 9 2 3 2 4 5 4 5 5 1 3
PDF 8 19 25 15 13 11 13 12 11 6 9 10 6 6 6 3 5

Gesamtzahl der Zugriffe seit Jan 2016:

  • Startseite – 66 (3.88 pro Monat)
  • PDF – 178 (10.47 pro Monat)
 
 
Generated at 23.06.2017, 19:18:39