% You need the following packages in the main file to let this entry work:
% \usepackage[english,ngerman]{babel} multilingual support
% \usepackage{url} urls formatting
% \usepackage{hyperref} make url klickable, recommended
% Just put them into the preamble of the main .tex-file.
% You should possibly make some changes to the typography of this entry,
% e.g. quotation marks.
% Which fields of this entry will be shown in the bibliography depends on the bibtex-style, which you use
@incollection{oai:export,
author = {Francesca Maggioni and Elisabetta Allevi and Marida Bertocchi},
title = {Measures of information in multi-stage stochastic programming},
series = {Stochastic Programming E-Print Series},
year = {2012},
publisher = {Institut für Mathematik},
editor =
{
Julie L.
Higle and Werner
Römisch and Surrajeet
Sen
},
WernerRömischSurrajeetSenabstract = {Multistage stochastic programs, which involve sequences of decisions over time, are usually hard to solve in realistically sized problems. In the two-stage case, several approaches based on different levels of available information has been adopted in literature such as the *Expected Value Problem, EV , the Sum of Pairs Expected Values, SP EV , the Expectation of Pairs Expected Value, EP EV*, solving series of sub-problems more computationally tractable than the initial one, or the * Expected Skeleton Solution Value, ESSV* and the *Expected Input Value, EIV * which evaluate the quality of the deterministic solution in term of its structure and upgradeability. In this paper we generalize the deﬁnition of the above quantities to the multistage stochastic for- mulation when the right hand side of constraints are stochastic: we introduce the *Multistage Expected Value of the Reference Scenario, M EV RS, the Multistage Sum of Pairs Expected Values, M SP EV* and the * Multistage Expectation of Pairs Expected Value, M EP EV * by means of the new concept of auxiliary scenario and redeﬁnition of pairs subproblems probability. We show that theorems proved in [2] and [3] for two stage case are valid also in the multi-stage case. Measures of quality of the average solution such as the *Multistage Loss Using Skeleton Solution, M LU SS*^{t} and the *Multistage Loss of Upgrading the Deterministic Solution, M LU DS*^{t} are introduced and related to the standard * Value of Stochastic Solution, V SS*^{t} at stage t. A set of theorems providing chains of inequalities among the new quantities are proved. These bounds may help in evaluating whether it is worth the additional computations for the stochastic program versus the simpliﬁed approaches proposed. Numerical results on a case study related to a simple transportation problem are shown. },
note = {unpublished}
url = { \url{http://edoc.hu-berlin.de/docviews/abstract.php?id=39236} },
url = { \url{urn:nbn:de:kobv:11-100200559} },
number = {
2},
timestamp = {2016-02-11T17:13:41Z}
}