[Seite 8↓]

1.  Zusammenfassung

1.1.  Interaktion zwischen entorhinalem Kortex und Hippokampus

Lernen und Gedächtnis sind auf das engste mit dem Hippokampus und dem entorhinalen Kortex (EC) verbunden. Allerdings sind diese Hirnstrukturen auch an einer der häufigsten und medikamentös oftmals nur schwer therapierbaren fokalen Epilepsien beteiligt: der mesialen Temporallappenepilepsie (TLE).

Der EC scheint eine wesentliche Bedeutung in der Generierung extrahippokampaler Temporallappenanfälle zu besitzen. Unsere bisherigen Untersuchungen zur Interaktion zwischen dem EC und dem Hippokampus haben gezeigt, daß unter physiologischen Bedingungen die Area dentata eine Filterfunktion übernimmt und die Übertragung epileptiformer Aktivität vom EC zum Hippokampus unterbindet. Im chronisch epileptischen Tier (Kindling-Modell) kommt es allerdings zu einer Aufhebung dieser Filterfunktion und somit zu einer ungehinderten Ausbreitung epileptiformer Aktivität in den Hippokampus.

Da der glutamaterge NMDA-Rezeptor eine zentrale Rolle in der Induktion nutzungsabhängiger Plastizität spielt, ist er von wesentlicher Bedeutung in der Epileptogenese. Untersuchungen an Körnerzellen der Area dentata zeigten wenige Stunden nach dem letzten epileptischen Anfall eine Zunahme der über NMDA-Rezeptoren vermittelten Ströme. Diese führte zu einer Faszilitierung hochfrequenter reizevozierter Potentiale. Dieser Befund zeigt, daß im epileptischen Gewebe hochfrequente Entladungen die Area dentata überwinden können und in den Hippokampus weitergeleitet werden. Vier Wochen nach dem letzten Anfallsereignis waren die beschriebenen Veränderungen allerdings nicht mehr nachweisbar. Diese kurzzeitig veränderte synaptische Transmission der NMDA-Rezeptorkanäle scheint demzufolge eher für die Epileptogenese als für die Ictogenese verantwortlich zu sein.

Die Bedeutung der Kainat-Rezeptoren im chronisch epileptischen Gewebe ist aufgrund der bis vor wenigen Jahren fehlenden selektiven Agonisten und Antagonisten kaum untersucht worden. Wir haben gezeigt, daß in der Area dentata des chronisch epileptischen Tieres (Kindling-Modell) die Aktivierung von präsynaptischen Kainat-Rezeptoren inhibitorischer Interneurone sowohl die spontane als auch die reizevozierte GABA-Freisetzung reduziert. Über diesen Mechanismus scheint der während eines epileptischen Anfalls vermehrt freigesetzte exzitatorische Neurotransmitter Glutamat die GABAerge Inhibition zu vermindern und somit die Erregbarkeit der Area dentata zu steigern.


[Seite 9↓]

1.2.  Die Rolle des Subikulums in der Temporallappenepilepsie

Eine wesentliche Aufgabe des Subikulums ist es, hippokampale Informationen zu verarbeiten und in verschiedene kortikale und subkortikale Hirnregionen weiterzuleiten. Zudem scheint es von besonderer Bedeutung für die Generierung und Ausbreitung hippokampaler Anfälle zu sein. Gestützt wird diese Annahme durch folgende Befunde: Zunächst besitzt das Subikulum Netzwerkeigenschaften, die es ihm im in vitro Epilepsiemodell ermöglichen, spontane epileptiforme Aktivität zu generieren. Darüber hinaus verfügt es über einen hohen Anteil sogenannter „burst-spiking“ Zellen. Deren intrinsische Eigenschaften tragen erheblich zu dem epileptogenen Verhalten des Subikulums bei. Weiterhin erhalten subikuläre Pyramidenzellen exzitatorische Eingänge sowohl aus der Area CA1 als auch aus dem EC, welche bereits bei Ruhemembranpotential aktivierbare NMDA-Rezeptorströme zeigen. Schließlich zeigen burst-spiking Zellen im Vergleich zu regular-spiking Zellen eine ausgeprägte über NMDA-Rezeptoren vermittelte synaptische Plastizität (Langzeit-Potenzierung; LTP) .

Untersuchungen am chronisch epileptischen Tier (Kindling-Modell) ergaben einen unverändert hohen Anteil an burst-spiking Zellen im Subikulum. Wenige Stunden nach dem letzten epileptischen Anfall fällt bei diesen Neuronen eine fehlende, durch Aktionspotentiale induzierte Nachhyperpolarisation auf. Diese supprimierte intrinsische Hemmung ist jedoch 28 Tage nach dem letzten epileptischen Anfall nicht mehr nachzuweisen und spielt demzufolge insbesondere in der Genese, weniger im chronischen Verlauf der Erkrankung eine Rolle.

Neben den exzitatorischen und inhibitorischen Neurotransmittern Glutamat und GABA bestimmen auch körpereigene Amine wie Serotonin und Dopamin über subkortikale Afferenzen das funktionelle Gleichgewicht aus Erregung und Hemmung wesentlich mit. Da die TLE nicht selten mit neurologischen und psychiatrischen Erkrankungen einhergeht, die mit in das Dopamin- und Serotoninsystem eingreifenden Pharmaka therapiert werden, haben wir uns in einigen Arbeiten mit deren modulatorischen Wirkungen auf die Membraneigenschaften und die synaptische Transmission befaßt.

Die Wirkungen von Dopamin auf die Neurotransmission sind vielfältig, abhängig von den beteiligten Rezeptoren in der entsprechenden Hirnregion. Das Subikulum, das eine ausgeprägte mesenzephale, dopaminerge Projektion vom ventralen Tegmentum erhält, expremiert sowohl D1- als auch D2-Rezeptoren. Wir konnten zeigen, daß Dopamin primär die glutamaterge synaptische Transmission über einen präsynaptisch lokalisierten D1-Dopaminrezeptor unterdrückt und sekundär über die verminderte Erregung inhibitorischer Interneurone die polysynaptische GABAerge Hemmung reduziert.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
14.01.2004