[Seite 51↓]


[1] Kerr, J. F.; Wyllie, A. H. und Currie, A. R. (1972): Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer (26) [4], Seite 239-57..

[2] Meier, P.; Finch, A. und Evan, G. (2000): Apoptosis in development, Nature (407) [6805], Seite 796-801.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11048731

[3] Evan, G. I. und Vousden, K. H. (2001): Proliferation, cell cycle and apoptosis in cancer, Nature (411) [6835], Seite 342-8..

[4] Krammer, P. H.; Behrmann, I.; Daniel, P.; Dhein, J. und Debatin, K. M. (1994): Regulation of apoptosis in the immune system, Curr Opin Immunol (6) [2], Seite 279-89.

[5] Daniel, P.T. (2000): Dissecting the pathways to death, Leukemia (14), Seite 2035-44.

[6] McDonnell, T. J.; Deane, N.; Platt, F. M.; Nunez, G.; Jaeger, U.; McKearn, J. P. und Korsmeyer, S. J. (1989): bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation, Cell (57) [1], Seite 79-88..

[7] Vaux, D. L.; Cory, S. und Adams, J. M. (1988): Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature (335) [6189], Seite 440-2..

[8] Tsujimoto, Y.; Finger, L. R.; Yunis, J.; Nowell, P. C. und Croce, C. M. (1984): Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation, Science (226) [4678], Seite 1097-9..

[9] Pegoraro, L.; Palumbo, A.; Erikson, J.; Falda, M.; Giovanazzo, B.; Emanuel, B. S.; Rovera, G.; Nowell, P. C. und Croce, C. M. (1984): A 14;18 and an 8;14 chromosome translocation in a cell line derived from an acute B-cell leukemia, Proc Natl Acad Sci U S A (81) [22], Seite 7166-70..

[10] Yonish-Rouach, E.; Resnitzky, D.; Lotem, J.; Sachs, L.; Kimchi, A. und Oren, M. (1991): Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature (352) [6333], Seite 345-7..

[11] Burns, P. A.; Kemp, C. J.; Gannon, J. V.; Lane, D. P.; Bremner, R. und Balmain, A. (1991): Loss of heterozygosity and mutational alterations of the p53 gene in skin tumours of interspecific hybrid mice, Oncogene (6) [12], Seite 2363-9..

[12] Soengas, M. S.; Alarcon, R. M.; Yoshida, H.; Giaccia, A. J.; Hakem, R.; Mak, T. W. und Lowe, S. W. (1999): Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition, Science (284) [5411], Seite 156-9..

[13] Wyllie, A. H.; Bellamy, C. O.; Bubb, V. J.; Clarke, A. R.; Corbet, S.; Curtis, L.; Harrison, D. J.; Hooper, M. L.; Toft, N.; Webb, S. und Bird, C. C. (1999): Apoptosis and carcinogenesis, Br J Cancer (80) [Suppl 1], Seite 34-7..

[14] McDonnell, T. J. und Korsmeyer, S. J. (1991): Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18), Nature (349) [6306], Seite 254-6..

[15] Adjei, A. A. (2001): Blocking oncogenic Ras signaling for cancer therapy, J Natl Cancer Inst (93) [14], Seite 1062-74..

[16] Hoeijmakers, J. H. (2001): Genome maintenance mechanisms for preventing cancer, Nature (411) [6835], Seite 366-74..

[17] Reed, J. C. (1998): Bcl-2 family proteins, Oncogene (17) [25], Seite 3225-36..

[18] Krammer, P. H. (2000): CD95's deadly mission in the immune system, Nature (407) [6805], Seite 789-95.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11048730

[19] Kroemer, G. und Reed, J. C. (2000): Mitochondrial control of cell death, Nat Med (6) [5], Seite 513-9. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0010802706 http://www.nature.com/cgi-taf/DynaPage.taf?file=/nm/journal/v6/n5/full/nm0500_513.html http://www.nature.com/cgi-taf/DynaPage.taf?file=/nm/journal/v6/n5/abs/nm0500_513.html

[20] Daniel, P.T.; Sturm, I.; Wieder, T. und Schulze-Osthoff, K. (2001): The kiss of death: promises and failures of death receptors and ligands in cancer therapy, Leukemia (15), Seite 1022-32.

[21] Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E.; Xu, J.; Yankner, B. A. und Yuan, J. (2000): Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta, Nature (403) [6765], Seite 98-103..

[22] Rao, R. V.; Hermel, E.; Castro-Obregon, S.; del Rio, G.; Ellerby, L. M.; Ellerby, H. M. und Bredesen, D. E. (2001): Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation, J Biol Chem (276) [36], Seite 33869-74..

[23] Nunez, G.; Benedict, M. A.; Hu, Y. und Inohara, N. (1998): Caspases: the proteases of the apoptotic pathway, Oncogene (17) [25], Seite 3237-45..

[24] Nicholson, D. W. (1999): Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ (6) [11], Seite 1028-42..

[25] Kischkel, F. C.; Hellbardt, S.; Behrmann, I.; Germer, M.; Pawlita, M.; Krammer, P. H. und Peter, M. E. (1995): Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, Embo J (14) [22], Seite 5579-88..

[26] Jiang, Y.; Woronicz, J. D.; Liu, W. und Goeddel, D. V. (1999): Prevention of constitutive TNF receptor 1 signaling by silencer of death domains, Science (283) [5401], Seite 543-6..

[27] Tschopp, J.; Martinon, F. und Hofmann, K. (1999): Apoptosis: Silencing the death receptors, Curr Biol (9) [10], Seite R381-4.. http://www.biomednet.com/article/bb9j07

[28] Zou, H.; Li, Y.; Liu, X. und Wang, X. (1999): An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J Biol Chem (274) [17], Seite 11549-56.. http://www.jbc.org/cgi/content/full/274/17/11549

[29] Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S. und Wang, X. (1997): Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell (91) [4], Seite 479-89..

[30] Zou, H.; Henzel, W. J.; Liu, X.; Lutschg, A. und Wang, X. (1997): Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell (90) [3], Seite 405-13..

[31] Boldin, M. P.; Varfolomeev, E. E.; Pancer, Z.; Mett, I. L.; Camonis, J. H. und Wallach, D. (1995): A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain, J Biol Chem (270) [14], Seite 7795-8.

[32] Chinnaiyan, A. M.; O'Rourke, K.; Tewari, M. und Dixit, V. M. (1995): FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis, Cell (81) [4], Seite 505-12.

[33] Sheridan, J. P.; Marsters, S. A.; Pitti, R. M.; Gurney, A.; Skubatch, M.; Baldwin, D.; Ramakrishnan, L.; Gray, C. L.; Baker, K.; Wood, W. I.; Goddard, A. D.; Godowski, P. und Ashkenazi, A. (1997): Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors, Science (277) [5327], Seite 818-21.

[34] Suda, T.; Takahashi, T.; Golstein, P. und Nagata, S. (1993): Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family, Cell (75) [6], Seite 1169-78..

[35] Wiley, S. R.; Schooley, K.; Smolak, P. J.; Din, W. S.; Huang, C. P.; Nicholl, J. K.; Sutherland, G. R.; Smith, T. D.; Rauch, C. und Smith, C. A. (1995): Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity (3) [6], Seite 673-82.

[36] Banner, D. W.; D'Arcy, A.; Janes, W.; Gentz, R.; Schoenfeld, H. J.; Broger, C.; Loetscher, H. und Lesslauer, W. (1993): Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation, Cell (73) [3], Seite 431-45.

[37] Muzio, M.; Chinnaiyan, A. M.; Kischkel, F. C.; O'Rourke, K.; Shevchenko, A.; Ni, J.; Scaffidi, C.; Bretz, J. D.; Zhang, M.; Gentz, R.; Mann, M.; Krammer, P. H.; Peter, M. E. und Dixit, V. M. (1996): FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex, Cell (85) [6], Seite 817-27. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0008681377

[38] Kischkel, F. C.; Lawrence, D. A.; Tinel, A.; LeBlanc, H.; Virmani, A.; Schow, P.; Gazdar, A.; Blenis, J.; Arnott, D. und Ashkenazi, A. (2001): Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8, J Biol Chem (2), Seite 2.

[39] Duan, H. und Dixit, V. M. (1997): RAIDD is a new 'death' adaptor molecule, Nature (385) [6611], Seite 86-9.

[40] Hsu, H.; Huang, J.; Shu, H. B.; Baichwal, V. und Goeddel, D. V. (1996): TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex, Immunity (4) [4], Seite 387-96.

[41] Adams, J. M. und Cory, S. (1998): The Bcl-2 protein family: arbiters of cell survival, Science (281) [5381], Seite 1322-6..

[42] Oltvai, Z. N.; Milliman, C. L. und Korsmeyer, S. J. (1993): Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell (74) [4], Seite 609-19..

[43] Farrow, S. N.; White, J. H.; Martinou, I.; Raven, T.; Pun, K. T.; Grinham, C. J.; Martinou, J. C. und Brown, R. (1995): Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K., Nature (374) [6524], Seite 731-3.

[44] Chittenden, T.; Harrington, E. A.; O'Connor, R.; Flemington, C.; Lutz, R. J.; Evan, G. I. und Guild, B. C. (1995): Induction of apoptosis by the Bcl-2 homologue Bak, Nature (374) [6524], Seite 733-6.

[45] Hsu, S. Y.; Kaipia, A.; McGee, E.; Lomeli, M. und Hsueh, A. J. (1997): Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members, Proc Natl Acad Sci U S A (94) [23], Seite 12401-6..

[46] McCurrach, M. E.; Connor, T. M.; Knudson, C. M.; Korsmeyer, S. J. und Lowe, S. W. (1997): bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis, Proc Natl Acad Sci U S A (94) [6], Seite 2345-9..

[47] Wagener, C.; Bargou, R. C.; Daniel, P. T.; Bommert, K.; Mapara, M. Y.; Royer, H. D. und Dörken, B. (1996): Induction of the death-promoting gene bax-alpha sensitizes cultured breast-cancer cells to drug-induced apoptosis, Int J Cancer (67) [1], Seite 138-41.

[48] Sturm, I.; Kohne, C. H.; Wolff, G.; Petrowsky, H.; Hillebrand, T.; Hauptmann, S.; Lorenz, M.; Dörken, B. und Daniel, P. T. (1999): Analysis of the p53/BAX pathway in colorectal cancer: low BAX is a negative prognostic factor in patients with resected liver metastases, J Clin Oncol (17) [5], Seite 1364-74.

[49] Raisova, M.; Bektas, M.; Wieder, T.; Daniel, P.; Eberle, J.; Orfanos, C. E. und Geilen, C. C. (2000): Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release, FEBS Lett (473) [1], Seite 27-32.

[50] Bosanquet; Sturm, I.; Wieder, T.; Essmann, F.; Bosanquet, M.I.; Head, D.J.; Dörken, B und Daniel, P.T. (2002): Bax expression correlates with cellular drug sensitivity to doxorubicin, cyclophosphamide and chlorambucil but not fludarabine, cladribine or corticosteroids in B cell chronic lymphocytic leukemia, Leukemia (15), Seite in press.

[51] Jürgensmeier, J. M.; Xie, Z. H.; Deveraux, Q.; Ellerby, L.; Bredesen, D. und Reed, J. C. (1998): Bax directly induces release of cytochrome c from isolated mitochondria, Proc Nat Acad Sci USA (95) [9], Seite 4997-5002.

[52] Yang, J.; Liu, X.; Bhalla, K.; Kim, C. N.; Ibrado, A. M.; Cai, J.; Peng, T. I.; Jones, D. P. und Wang, X. (1997): Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science (275) [5303], Seite 1129-32.

[53] Van der Heiden, M.G. und Thompson, C.B. (1999): Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis?, Nat Cell Biol (1), Seite E209-E216.

[54] Martinou, J. C. und Green, D. R. (2001): Breaking the mitochondrial barrier, Nat Rev Mol Cell Biol (2) [1], Seite 63-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11413467

[55] Shimizu, S.; Ide, T.; Yanagida, T. und Tsujimoto, Y. (2000): Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c, J Biol Chem (275) [16], Seite 12321-5..

[56] Shimizu, S.; Shinohara, Y. und Tsujimoto, Y. (2000): Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator, Oncogene (19) [38], Seite 4309-18..

[57] Tsujimoto, Y. und Shimizu, S. (2000): VDAC regulation by the Bcl-2 family of proteins, Cell Death Differ (7) [12], Seite 1174-81..

[58] Vieira, H. L.; Haouzi, D.; El Hamel, C.; Jacotot, E.; Belzacq, A. S.; Brenner, C. und Kroemer, G. (2000): Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator, Cell Death Differ (7) [12], Seite 1146-54..

[59] Benedict, M. A.; Hu, Y.; Inohara, N. und Nunez, G. (2000): Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9, J Biol Chem (275) [12], Seite 8461-8..

[60] Hu, Y.; Benedict, M. A.; Ding, L. und Nunez, G. (1999): Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis, Embo J (18) [13], Seite 3586-95..

[61] Saleh, A.; Srinivasula, S. M.; Acharya, S.; Fishel, R. und Alnemri, E. S. (1999): Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation, J Biol Chem (274) [25], Seite 17941-5..

[62] Hu, Y.; Ding, L.; Spencer, D. M. und Nunez, G. (1998): WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation, J Biol Chem (273) [50], Seite 33489-94.. http://www.jbc.org/cgi/content/full/273/50/33489

[63] Srinivasula, S. M.; Ahmad, M.; Fernandes-Alnemri, T. und Alnemri, E. S. (1998): Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol Cell (1) [7], Seite 949-57..

[64] Lorenzo, H. K.; Susin, S. A.; Penninger, J. und Kroemer, G. (1999): Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death, Cell Death Differ (6) [6], Seite 516-24..

[65] Susin, S. A.; Lorenzo, H. K.; Zamzami, N.; Marzo, I.; Snow, B. E.; Brothers, G. M.; Mangion, J.; Jacotot, E.; Costantini, P.; Loeffler, M.; Larochette, N.; Goodlett, D. R.; Aebersold, R.; Siderovski, D. P.; Penninger, J. M. und Kroemer, G. (1999): Molecular characterization of mitochondrial apoptosis-inducing factor, Nature (397) [6718], Seite 441-6..

[66] Du, C.; Fang, M.; Li, Y.; Li, L. und Wang, X. (2000): Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell (102) [1], Seite 33-42..

[67] Wu, G.; Chai, J.; Suber, T. L.; Wu, J. W.; Du, C.; Wang, X. und Shi, Y. (2000): Structural basis of IAP recognition by Smac/DIABLO, Nature (408) [6815], Seite 1008-12..

[68] Liu, Z.; Sun, C.; Olejniczak, E. T.; Meadows, R. P.; Betz, S. F.; Oost, T.; Herrmann, J.; Wu, J. C. und Fesik, S. W. (2000): Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain, Nature (408) [6815], Seite 1004-8..

[69] Chai, J.; Du, C.; Wu, J. W.; Kyin, S.; Wang, X. und Shi, Y. (2000): Structural and biochemical basis of apoptotic activation by Smac/DIABLO, Nature (406) [6798], Seite 855-62..

[70] Srinivasula, S. M.; Datta, P.; Fan, X. J.; Fernandes-Alnemri, T.; Huang, Z. und Alnemri, E. S. (2000): Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway, J Biol Chem (275) [46], Seite 36152-7..

[71] Samali, A.; Cai, J.; Zhivotovsky, B.; Jones, D. P. und Orrenius, S. (1999): Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells, Embo J (18) [8], Seite 2040-8.. http://www.emboj.org/cgi/content/full/18/8/2040

[72] Pan, G; O'Rourke, K und Dixit, VM (1998): Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex., J Biol Chem (273), Seite 5841-5845.

[73] Chipuk, J. E.; Bhat, M.; Hsing, A. Y.; Ma, J. und Danielpour, D. (2001): Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells, J Biol Chem (276) [28], Seite 26614-21..

[74] Conus, S.; Rosse, T. und Borner, C. (2000): Failure of Bcl-2 family members to interact with Apaf-1 in normal and apoptotic cells, Cell Death Differ (7) [10], Seite 947-54..

[75] Newmeyer, D. D.; Bossy-Wetzel, E.; Kluck, R. M.; Wolf, B. B.; Beere, H. M. und Green, D. R. (2000): Bcl-xL does not inhibit the function of Apaf-1, Cell Death Differ (7) [4], Seite 402-7..

[76] Moriishi, K.; Huang, D. C.; Cory, S. und Adams, J. M. (1999): Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1, Proc Natl Acad Sci U S A (96) [17], Seite 9683-8..

[77] Zhou, B. B. und Elledge, S. J. (2000): The DNA damage response: putting checkpoints in perspective, Nature (408) [6811], Seite 433-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11100718

[78] Inohara, N.; Ekhterae, D.; Garcia, I.; Carrio, R.; Merino, J.; Merry, A.; Chen, S. und Nunez, G. (1998): Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-XL, J Biol Chem (273) [15], Seite 8705-10..

[79] Yang, E.; Zha, J.; Jockel, J.; Boise, L. H.; Thompson, C. B. und Korsmeyer, S. J. (1995): Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death, Cell (80) [2], Seite 285-91..

[80] Datta, S. R.; Dudek, H.; Tao, X.; Masters, S.; Fu, H.; Gotoh, Y. und Greenberg, M. E. (1997): Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell (91) [2], Seite 231-41..

[81] del Peso, L.; Gonzalez-Garcia, M.; Page, C.; Herrera, R. und Nunez, G. (1997): Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt, Science (278) [5338], Seite 687-9..

[82] Alessi, D. R.; James, S. R.; Downes, C. P.; Holmes, A. B.; Gaffney, P. R.; Reese, C. B. und Cohen, P. (1997): Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha, Curr Biol (7) [4], Seite 261-9.. http://www.biomednet.com/article/bb7432

[83] Basu, S.; Bayoumy, S.; Zhang, Y.; Lozano, J. und Kolesnick, R. (1998): BAD enables ceramide to signal apoptosis via Ras and Raf-1, J Biol Chem (273) [46], Seite 30419-26.. http://www.jbc.org/cgi/content/full/273/46/30419

[84] Zundel, W. und Giaccia, A. (1998): Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress, Genes Dev (12) [13], Seite 1941-6.. http://www.genesdev.org/cgi/content/full/12/13/1941

[85] Scheid, M. P. und Duronio, V. (1998): Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation, Proc Natl Acad Sci U S A (95) [13], Seite 7439-44.. http://www.pnas.org/cgi/content/full/95/13/7439

[86] Alessi, D. R. und Cohen, P. (1998): Mechanism of activation and function of protein kinase B, Curr Opin Genet Dev (8) [1], Seite 55-62.. http://www.biomednet.com/article/gd8104

[87] Franke, T. F. und Cantley, L. C. (1997): Apoptosis. A Bad kinase makes good, Nature (390) [6656], Seite 116-7..

[88] Zha, J.; Harada, H.; Yang, E.; Jockel, J. und Korsmeyer, S. J. (1996): Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L), Cell (87) [4], Seite 619-28..

[89] O'Connor, L.; Strasser, A.; O'Reilly, L. A.; Hausmann, G.; Adams, J. M.; Cory, S. und Huang, D. C. (1998): Bim: a novel member of the Bcl-2 family that promotes apoptosis, Embo J (17) [2], Seite 384-95..

[90] Puthalakath, H.; Huang, D. C.; O'Reilly, L. A.; King, S. M. und Strasser, A. (1999): The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex, Mol Cell (3) [3], Seite 287-96..

[91] Bouillet, P.; Metcalf, D.; Huang, D. C.; Tarlinton, D. M.; Kay, T. W.; Kontgen, F.; Adams, J. M. und Strasser, A. (1999): Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity, Science (286) [5445], Seite 1735-8..

[92] O'Reilly, L. A.; Cullen, L.; Visvader, J.; Lindeman, G. J.; Print, C.; Bath, M. L.; Huang, D. C. und Strasser, A. (2000): The proapoptotic BH3-only protein bim is expressed in hematopoietic, epithelial, neuronal, and germ cells, Am J Pathol (157) [2], Seite 449-61..

[93] Putcha, G. V.; Moulder, K. L.; Golden, J. P.; Bouillet, P.; Adams, J. A.; Strasser, A. und Johnson, E. M. (2001): Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis, Neuron (29) [3], Seite 615-28..

[94] Puthalakath, H.; Villunger, A.; O'Reilly, L. A.; Beaumont, J. G.; Coultas, L.; Cheney, R. E.; Huang, D. C. und Strasser, A. (2001): Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis, Science (293) [5536], Seite 1829-32..

[95] Oda, E.; Ohki, R.; Murasawa, H.; Nemoto, J.; Shibue, T.; Yamashita, T.; Tokino, T.; Taniguchi, T. und Tanaka, N. (2000): Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis, Science (288) [5468], Seite 1053-8..

[96] Nakano, K. und Wousden, K. H. (2001): PUMA, a novel proapoptotic gene, is induced by p53, Mol Cell (7) [3], Seite 683-94..

[97] Yu, J.; Zhang, L.; Hwang, P. M.; Kinzler, K. W. und Vogelstein, B. (2001): PUMA induces the rapid apoptosis of colorectal cancer cells, Mol Cell (7) [3], Seite 673-82..

[98] Sanz, C.; Benito, A.; Inohara, N.; Ekhterae, D.; Nunez, G. und Fernandez-Luna, J. L. (2000): Specific and rapid induction of the proapoptotic protein Hrk after growth factor withdrawal in hematopoietic progenitor cells, Blood (95) [9], Seite 2742-7..

[99] Inohara, N.; Ding, L.; Chen, S. und Nunez, G. (1997): harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L), Embo J (16) [7], Seite 1686-94..

[100] Wang, K.; Yin, X. M.; Chao, D. T.; Milliman, C. L. und Korsmeyer, S. J. (1996): BID: a novel BH3 domain-only death agonist, Genes Dev (10) [22], Seite 2859-69..

[101] Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C. und Wang, X. (1998): Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell (94) [4], Seite 481-90..

[102] Desagher, S.; Osen-Sand, A.; Nichols, A.; Eskes, R.; Montessuit, S.; Lauper, S.; Maundrell, K.; Antonsson, B. und Martinou, J. C. (1999): Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis, J Cell Biol (144) [5], Seite 891-901..

[103] Crompton, M. (2000): Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis, Curr Opin Cell Biol (12) [4], Seite 414-9..

[104] Wei, M. C.; Zong, W. X.; Cheng, E. H.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A. J.; Roth, K. A.; MacGregor, G. R.; Thompson, C. B. und Korsmeyer, S. J. (2001): Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death, Science (292) [5517], Seite 727-30..

[105] Zong, W. X.; Lindsten, T.; Ross, A. J.; MacGregor, G. R. und Thompson, C. B. (2001): BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak, Genes Dev (15) [12], Seite 1481-6..

[106] Zhivotovsky, B.; Samali, A.; Gahm, A. und Orrenius, S. (1999): Caspases: their intracellular localization and translocation during apoptosis, Cell Death Differ (6) [7], Seite 644-51..

[107] Cheng, E. H.; Kirsch, D. G.; Clem, R. J.; Ravi, R.; Kastan, M. B.; Bedi, A.; Ueno, K. und Hardwick, J. M. (1997): Conversion of Bcl-2 to a Bax-like death effector by caspases, Science (278) [5345], Seite 1966-8..

[108] Tang, D. und Kidd, V. J. (1998): Cleavage of DFF-45/ICAD by multiple caspases is essential for its function during apoptosis, J Biol Chem (273) [44], Seite 28549-52.. http://www.jbc.org/cgi/content/full/273/44/28549

[109] Sakahira, H.; Enari, M. und Nagata, S. (1998): Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature (391) [6662], Seite 96-9..

[110] Enari, M.; Sakahira, H.; Yokoyama, H.; Okawa, K.; Iwamatsu, A. und Nagata, S. (1998): A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD, Nature (391) [6662], Seite 43-50..

[111] Wyllie, A. H. (1980): Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature (284) [5756], Seite 555-6..

[112] Daniel, P. T.; Sturm, I.; Ritschel, S.; Friedrich, K.; Dörken, B.; Bendzko, P. und Hillebrand, T. (1999): Detection of genomic DNA fragmentation during apoptosis (DNA ladder) and the simultaneous isolation of RNA from low cell numbers, Anal Biochem (266) [1], Seite 110-5.

[113] Koopman, G.; Reutelingsperger, C. P.; Kuijten, G. A.; Keehnen, R. M.; Pals, S. T. und van Oers, M. H. (1994): Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis, Blood (84) [5], Seite 1415-20..

[114] Wiegand, U. K.; Corbach, S.; Prescott, A. R.; Savill, J. und Spruce, B. A. (2001): The trigger to cell death determines the efficiency with which dying cells are cleared by neighbours, Cell Death Differ (8) [7], Seite 734-46..

[115] Savill, J. und Fadok, V. (2000): Corpse clearance defines the meaning of cell death, Nature (407) [6805], Seite 784-8..

[116] Samejima, K.; Tone, S.; Kottke, T. J.; Enari, M.; Sakahira, H.; Cooke, C. A.; Durrieu, F.; Martins, L. M.; Nagata, S.; Kaufmann, S. H. und Earnshaw, W. C. (1998): Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution, J Cell Biol (143) [1], Seite 225-39..

[117] Wyllie, A. H. und Golstein, P. (2001): More than one way to go, Proc Natl Acad Sci U S A (98) [1], Seite 11-3..

[118] Gillett, C. E. und Barnes, D. M. (1998): Demystified ... cell cycle, Mol Pathol (51) [6], Seite 310-6..

[119] Donjerkovic, D. und Scott, D. W. (2000): Regulation of the G1 phase of the mammalian cell cycle, Cell Res (10) [1], Seite 1-16..

[120] Sherr, C. J. und Roberts, J. M. (1999): CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev (13) [12], Seite 1501-12..

[121] O'Connell, M. J. und Nurse, P. (1994): How cells know they are in G1 or G2, Curr Opin Cell Biol (6) [6], Seite 867-71..

[122] Doree, M. und Galas, S. (1994): The cyclin-dependent protein kinases and the control of cell division, Faseb J (8) [14], Seite 1114-21..

[123] Hunt, T. (1991): Cyclins and their partners: from a simple idea to complicated reality, Semin Cell Biol (2) [4], Seite 213-22..

[124] Stern, B. und Nurse, P. (1996): A quantitative model for the cdc2 control of S phase and mitosis in fission yeast, Trends Genet (12) [9], Seite 345-50..

[125] Kuntzel, H.; Schulz, A. und Ehbrecht, I. M. (1996): Cell cycle control and initiation of DNA replication in Saccharomyces cerevisiae, Biol Chem (377) [7-8], Seite 481-7..

[126] Lew, D. J. und Reed, S. I. (1995): Cell cycle control of morphogenesis in budding yeast, Curr Opin Genet Dev (5) [1], Seite 17-23..

[127] Moser, B. A. und Russell, P. (2000): Cell cycle regulation in Schizosaccharomyces pombe, Curr Opin Microbiol (3) [6], Seite 631-6..

[128] Johnson, D. G. und Walker, C. L. (1999): Cyclins and cell cycle checkpoints, Annu Rev Pharmacol Toxicol (39), Seite 295-312..

[129] Hengstschlager, M.; Braun, K.; Soucek, T.; Miloloza, A. und Hengstschlager-Ottnad, E. (1999): Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle, Mutat Res (436) [1], Seite 1-9.. http://www.elsevier.com:80/cgi-bin/cas/tree/store/mutrev/cas_sub/browse/browse.cgi?year=1999&volume=436&issue=1&aid=7496

[130] Li, A. und Blow, J. J. (2001): The origin of CDK regulation, Nat Cell Biol (3) [8], Seite E182-4..

[131] Funk, J. O. (1999): Cancer cell cycle control, Anticancer Res (19) [6A], Seite 4772-80..

[132] Kasten, M. M. und Giordano, A. (1998): pRb and the cdks in apoptosis and the cell cycle, Cell Death Differ (5) [2], Seite 132-40..

[133] King, K. L. und Cidlowski, J. A. (1998): Cell cycle regulation and apoptosis, Annu Rev Physiol (60), Seite 601-17..

[134] Blagosklonny, M. V. (1999): A node between proliferation, apoptosis, and growth arrest, Bioessays (21) [8], Seite 704-9..

[135] Guo, M. und Hay, B. A. (1999): Cell proliferation and apoptosis, Curr Opin Cell Biol (11) [6], Seite 745-52..

[136] Pucci, B.; Kasten, M. und Giordano, A. (2000): Cell cycle and apoptosis, Neoplasia (2) [4], Seite 291-9..

[137] Bartkova, J.; Lukas, J. und Bartek, J. (1997): Aberrations of the G1- and G1/S-regulating genes in human cancer, Prog Cell Cycle Res (3), Seite 211-20..

[138] Del Sal, G. (1997): The Mammalian cell cycle and its aberrations in cancer cells, Adv Clin Path (1) [2], Seite 123-136..

[139] Donnellan, R. und Chetty, R. (1998): Cyclin D1 and human neoplasia, Mol Pathol (51) [1], Seite 1-7..

[140] Johnson, D. G. und Schneider-Broussard, R. (1998): Role of E2F in cell cycle control and cancer, Front Biosci (3), Seite d447-8.. http://www.bioscience.org/1998/v3/d/johnson1/list.htm

[141] Malumbres, M. und Pellicer, A. (1998): RAS pathways to cell cycle control and cell transformation, Front Biosci (3), Seite d887-912.. http://www.bioscience.org/1998/v3/d/malumbre/list.htm

[142] Roussel, M. F. (1999): The INK4 family of cell cycle inhibitors in cancer, Oncogene (18) [38], Seite 5311-7..

[143] Mandard, A. M.; Hainaut, P. und Hollstein, M. (2000): Genetic steps in the development of squamous cell carcinoma of the esophagus, Mutat Res (462) [2-3], Seite 335-42..

[144] Ekholm, S. V. und Reed, S. I. (2000): Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle, Curr Opin Cell Biol (12) [6], Seite 676-84..

[145] Vidal, A. und Koff, A. (2000): Cell-cycle inhibitors: three families united by a common cause, Gene (247) [1-2], Seite 1-15..

[146] Shapiro, G. I. und Harper, J. W. (1999): Anticancer drug targets: cell cycle and checkpoint control, J Clin Invest (104) [12], Seite 1645-53..

[147] Meek, D. W. (2000): The role of p53 in the response to mitotic spindle damage, Pathol Biol (Paris) (48) [3], Seite 246-54..

[148] Classon, M. und Dyson, N. (2001): p107 and p130: versatile proteins with interesting pockets, Exp Cell Res (264) [1], Seite 135-47..

[149] Bartek, J. und Lukas, J. (2001): Pathways governing G1/S transition and their response to DNA damage, FEBS Lett (490) [3], Seite 117-22..

[150] Tamrakar, S.; Rubin, E. und Ludlow, J. W. (2000): Role of pRB dephosphorylation in cell cycle regulation, Front Biosci (5), Seite D121-37..

[151] Kaelin, W. G., Jr. (1999): Functions of the retinoblastoma protein, Bioessays (21) [11], Seite 950-8..

[152] Grana, X.; Garriga, J. und Mayol, X. (1998): Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth, Oncogene (17) [25], Seite 3365-83..

[153] Yamasaki, L. (1999): Balancing proliferation and apoptosis in vivo: the Goldilocks theory of E2F/DP action, Biochim Biophys Acta (1423) [2], Seite M9-15..

[154] Amati, B.; Brooks, M. W.; Levy, N.; Littlewood, T. D.; Evan, G. I. und Land, H. (1993): Oncogenic activity of the c-Myc protein requires dimerization with Max, Cell (72) [2], Seite 233-45.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8425220

[155] Amati, B.; Dalton, S.; Brooks, M. W.; Littlewood, T. D.; Evan, G. I. und Land, H. (1992): Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max, Nature (359) [6394], Seite 423-6.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=1406955

[156] Amati, B.; Littlewood, T. D.; Evan, G. I. und Land, H. (1993): The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max, Embo J (12) [13], Seite 5083-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8262051

[157] Warbrick, E. (1998): PCNA binding through a conserved motif, Bioessays (20) [3], Seite 195-9..

[158] Prosperi, E. (1997): Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control, Prog Cell Cycle Res (3), Seite 193-210..

[159] Kerkhoff, E. und Rapp, U. R. (1998): Cell cycle targets of Ras/Raf signalling, Oncogene (17) [11 Reviews], Seite 1457-62..

[160] Hinz, M.; Krappmann, D.; Eichten, A.; Heder, A.; Scheidereit, C. und Strauss, M. (1999): NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition, Mol Cell Biol (19) [4], Seite 2690-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10082535 http://mcb.asm.org/cgi/content/full/19/4/2690

[161] Delmer, A.; Ajchenbaum-Cymbalista, F.; Tang, R.; Ramond, S.; Faussat, A. M.; Marie, J. P. und Zittoun, R. (1995): Overexpression of cyclin D2 in chronic B-cell malignancies, Blood (85) [10], Seite 2870-6.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7742549

[162] Suzuki, R.; Kuroda, H.; Komatsu, H.; Hosokawa, Y.; Kagami, Y.; Ogura, M.; Nakamura, S.; Kodera, Y.; Morishima, Y.; Ueda, R. und Seto, M. (1999): Selective usage of D-type cyclins in lymphoid malignancies, Leukemia (13) [9], Seite 1335-42.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10482983

[163] Williams, M. E.; Meeker, T. C. und Swerdlow, S. H. (1991): Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes, Blood (78) [2], Seite 493-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2070085

[164] Leonard, J. P.; Schattner, E. J. und Coleman, M. (2001): Biology and management of mantle cell lymphoma, Curr Opin Oncol (13) [5], Seite 342-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11555710

[165] Panayiotidis, P. und Kotsi, P. (1999): Genetics of small lymphocyte disorders, Semin Hematol (36) [2], Seite 171-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10319386

[166] Vandenberghe, E.; De Wolf-Peeters, C.; van den Oord, J.; Wlodarska, I.; Delabie, J.; Stul, M.; Thomas, J.; Michaux, J. L.; Mecucci, C.; Cassiman, J. J. und et al. (1991): Translocation (11;14): a cytogenetic anomaly associated with B-cell lymphomas of non-follicle centre cell lineage, J Pathol (163) [1], Seite 13-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2002419

[167] Keyomarsi, K. und Herliczek, T. W. (1997): The role of cyclin E in cell proliferation, development and cancer, Prog Cell Cycle Res (3), Seite 171-91..

[168] Schutte, B. und Ramaekers, F. C. (2000): Molecular switches that govern the balance between proliferation and apoptosis, Prog Cell Cycle Res (4), Seite 207-17..

[169] Peters, J. M. (1999): Subunits and substrates of the anaphase-promoting complex, Exp Cell Res (248) [2], Seite 339-49..

[170] Cartwright, P.; Muller, H.; Wagener, C.; Holm, K. und Helin, K. (1998): E2F-6: a novel member of the E2F family is an inhibitor of E2F- dependent transcription, Oncogene (17) [5], Seite 611-23.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9704927

[171] Muller, H. und Helin, K. (2000): The E2F transcription factors: key regulators of cell proliferation, Biochim Biophys Acta (1470) [1], Seite M1-12.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10656985

[172] Muller, H.; Bracken, A. P.; Vernell, R.; Moroni, M. C.; Christians, F.; Grassilli, E.; Prosperini, E.; Vigo, E.; Oliner, J. D. und Helin, K. (2001): E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis, Genes Dev (15) [3], Seite 267-85.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11159908 http://www.genesdev.org/cgi/content/full/15/3/267 http://www.genesdev.org/cgi/content/abstract/15/3/267

[173] Obaya, A. J.; Mateyak, M. K. und Sedivy, J. M. (1999): Mysterious liaisons: the relationship between c-Myc and the cell cycle, Oncogene (18) [19], Seite 2934-41..

[174] Eisenman, R. N. (2001): Deconstructing myc, Genes Dev (15) [16], Seite 2023-30.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11511533 http://www.genesdev.org/cgi/content/full/15/16/2023

[175] Schuldiner, O. und Benvenisty, N. (2001): A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors, Oncogene (20) [36], Seite 4984-94.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11526483

[176] Ben-Yosef, T.; Yanuka, O.; Halle, D. und Benvenisty, N. (1998): Involvement of Myc targets in c-myc and N-myc induced human tumors, Oncogene (17) [2], Seite 165-71.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9674700

[177] Coller, H. A.; Grandori, C.; Tamayo, P.; Colbert, T.; Lander, E. S.; Eisenman, R. N. und Golub, T. R. (2000): Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion, Proc Natl Acad Sci U S A (97) [7], Seite 3260-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10737792 http://www.pnas.org/cgi/content/full/97/7/3260

[178] Nesbit, C. E.; Tersak, J. M. und Prochownik, E. V. (1999): MYC oncogenes and human neoplastic disease, Oncogene (18) [19], Seite 3004-16.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10378696

[179] Evan, G. I.; Wyllie, A. H.; Gilbert, C. S.; Littlewood, T. D.; Land, H.; Brooks, M.; Waters, C. M.; Penn, L. Z. und Hancock, D. C. (1992): Induction of apoptosis in fibroblasts by c-myc protein, Cell (69) [1], Seite 119-28..

[180] Hueber, A. O. und Evan, G. I. (1998): Traps to catch unwary oncogenes, Trends Genet (14) [9], Seite 364-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9769732 http://www.biomednet.com/library/fulltext/pii.S0168952598015200

[181] Fanidi, A.; Harrington, E. A. und Evan, G. I. (1992): Cooperative interaction between c-myc and bcl-2 proto-oncogenes, Nature (359) [6395], Seite 554-6.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=1406976

[182] Serrano, M. (2000): The INK4a/ARF locus in murine tumorigenesis, Carcinogenesis (21) [5], Seite 865-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10783305 http://carcin.oupjournals.org/cgi/content/full/21/5/865 http://carcin.oupjournals.org/cgi/content/abstract/21/5/865

[183] Sherr, C. J. und Weber, J. D. (2000): The ARF/p53 pathway, Curr Opin Genet Dev (10) [1], Seite 94-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10679383 http://www.biomednet.com/article/gda101

[184] Lin, A. W. und Lowe, S. W. (2001): Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation, Proc Natl Acad Sci U S A (98) [9], Seite 5025-30..

[185] Bargou, R. C.; Wagener, C.; Bommert, K.; Arnold, W.; Daniel, P. T.; Mapara, M. Y.; Grinstein, E.; Royer, H. D. und Dörken, B. (1996): Blocking the transcription factor E2F/DP by dominant-negative mutants in a normal breast epithelial cell line efficiently inhibits apoptosis and induces tumor growth in SCID mice, J Exp Med (183) [3], Seite 1205-13.

[186] Adams, P. D. und Kaelin, W. G., Jr. (1996): The cellular effects of E2F overexpression, Curr Top Microbiol Immunol (208), Seite 79-93. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8575214

[187] Bergeron, L. und Yuan, J. (1998): Sealing one's fate: control of cell death in neurons, Curr Opin Neurobiol (8) [1], Seite 55-63..

[188] Cory, S.; Vaux, D. L.; Strasser, A.; Harris, A. W. und Adams, J. M. (1999): Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation, Cancer Res (59) [7 Suppl], Seite 1685s-1692s..

[189] Waldman, T.; Lengauer, C.; Kinzler, K. W. und Vogelstein, B. (1996): Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21, Nature (381) [6584], Seite 713-6.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8649519

[190] Sandig, V.; Brand, K.; Herwig, S.; Lukas, J.; Bartek, J. und Strauss, M. (1997): Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death, Nat Med (3) [3], Seite 313-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9055859

[191] Naruse, I.; Heike, Y.; Hama, S.; Mori, M. und Saijo, N. (1998): High concentrations of recombinant adenovirus expressing p16 gene induces apoptosis in lung cancer cell lines, Anticancer Res (18) [6A], Seite 4275-82.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9891478

[192] Kadowaki, Y.; Fujiwara, T.; Fukazawa, T.; Shao, J.; Yasuda, T.; Itoshima, T.; Kagawa, S.; Hudson, L. G.; Roth, J. A. und Tanaka, N. (1999): Induction of differentiation-dependent apoptosis in human esophageal squamous cell carcinoma by adenovirus-mediated p21sdi1 gene transfer, Clin Cancer Res (5) [12], Seite 4233-41.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10632365

[193] Katayose, Y.; Kim, M.; Rakkar, A. N.; Li, Z.; Cowan, K. H. und Seth, P. (1997): Promoting apoptosis: a novel activity associated with the cyclin- dependent kinase inhibitor p27, Cancer Res (57) [24], Seite 5441-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9407946

[194] Russell, P. (1998): Checkpoints on the road to mitosis, Trends Biochem Sci (23) [10], Seite 399-402.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9810229 http://www.biomednet.com/library/fulltext/pii.S0968000498012912

[195] Cho, R. J.; Huang, M.; Campbell, M. J.; Dong, H.; Steinmetz, L.; Sapinoso, L.; Hampton, G.; Elledge, S. J.; Davis, R. W. und Lockhart, D. J. (2001): Transcriptional regulation and function during the human cell cycle, Nat Genet (27) [1], Seite 48-54.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11137997

[196] Cortez, D. und Elledge, S. J. (2000): Conducting the mitotic symphony, Nature (406) [6794], Seite 354-6.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10935617

[197] Lozano, G. und Elledge, S. J. (2000): p53 sends nucleotides to repair DNA, Nature (404) [6773], Seite 24-5.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10716425

[198] Sanchez, Y. und Elledge, S. J. (1995): Stopped for repairs, Bioessays (17) [6], Seite 545-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7575496

[199] Lydall, D. und Weinert, T. (1996): From DNA damage to cell cycle arrest and suicide: a budding yeast perspective, Curr Opin Genet Dev (6) [1], Seite 4-11.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8791492

[200] Boddy, M. N. und Russell, P. (1999): DNA replication checkpoint control, Front Biosci (4), Seite D841-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10577839 http://www.bioscience.org/1999/v4/d/boddy/list.htm

[201] Rhind, N. und Russell, P. (1998): Mitotic DNA damage and replication checkpoints in yeast, Curr Opin Cell Biol (10) [6], Seite 749-58.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9914174 http://www.biomednet.com/article/cba605

[202] Matsuoka, S.; Huang, M. und Elledge, S. J. (1998): Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science (282) [5395], Seite 1893-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9836640

[203] Matsuoka, S.; Rotman, G.; Ogawa, A.; Shiloh, Y.; Tamai, K. und Elledge, S. J. (2000): Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro, Proc Natl Acad Sci U S A (97) [19], Seite 10389-94.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10973490 http://www.pnas.org/cgi/content/full/97/19/10389 http://www.pnas.org/cgi/content/abstract/97/19/10389

[204] Kastan, M. B. und Lim, D. S. (2000): The many substrates and functions of ATM, Nat Rev Mol Cell Biol (1) [3], Seite 179-86.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11252893

[205] Kim, S. T.; Lim, D. S.; Canman, C. E. und Kastan, M. B. (1999): Substrate specificities and identification of putative substrates of ATM kinase family members, J Biol Chem (274) [53], Seite 37538-43.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10608806 http://www.jbc.org/cgi/content/full/274/53/37538 http://www.jbc.org/cgi/content/abstract/274/53/37538

[206] Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J. P.; Sedivy, J. M.; Kinzler, K. W. und Vogelstein, B. (1998): Requirement for p53 and p21 to sustain G2 arrest after DNA damage, Science (282) [5393], Seite 1497-501.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9822382

[207] el-Deiry, W. S.; Tokino, T.; Velculescu, V. E.; Levy, D. B.; Parsons, R.; Trent, J. M.; Lin, D.; Mercer, W. E.; Kinzler, K. W. und Vogelstein, B. (1993): WAF1, a potential mediator of p53 tumor suppression, Cell (75) [4], Seite 817-25.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8242752

[208] Harper, J. W.; Elledge, S. J.; Keyomarsi, K.; Dynlacht, B.; Tsai, L. H.; Zhang, P.; Dobrowolski, S.; Bai, C.; Connell-Crowley, L.; Swindell, E. und et al. (1995): Inhibition of cyclin-dependent kinases by p21, Mol Biol Cell (6) [4], Seite 387-400.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7626805

[209] Taylor, W. R. und Stark, G. R. (2001): Regulation of the G2/M transition by p53, Oncogene (20) [15], Seite 1803-15..

[210] Waldman, T.; Kinzler, K. W. und Vogelstein, B. (1995): p21 is necessary for the p53-mediated G1 arrest in human cancer cells, Cancer Res (55) [22], Seite 5187-90.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7585571

[211] Wolf, D. A. und Jackson, P. K. (1998): Cell cycle: oiling the gears of anaphase, Curr Biol (8) [18], Seite R636-9.. http://www.biomednet.com/article/bb8r08

[212] Zachariae, W. und Nasmyth, K. (1999): Whose end is destruction: cell division and the anaphase-promoting complex, Genes Dev (13) [16], Seite 2039-58..

[213] Skibbens, R. V. und Hieter, P. (1998): Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery, Annu Rev Genet (32), Seite 307-37..

[214] Taylor, S. S. und McKeon, F. (1997): Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage, Cell (89) [5], Seite 727-35.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9182760

[215] Taylor, S. S.; Ha, E. und McKeon, F. (1998): The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase, J Cell Biol (142) [1], Seite 1-11.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9660858

[216] Wang, Y.; Hu, F. und Elledge, S. J. (2000): The Bfa1/Bub2 GAP complex comprises a universal checkpoint required to prevent mitotic exit, Curr Biol (10) [21], Seite 1379-82.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11084339

[217] Wood, D. A.; Robbins, G. F.; Zippin, C.; Lum, D. und Stearns, M. (1979): Staging of cancer of the colon and cancer of the rectum, Cancer (43) [3], Seite 961-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=427737

[218] Binet, J. L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; Thomas, M.; Tchernia, G.; Jacquillat, C.; Boivin, P.; Lesty, C.; Duault, M. T.; Monconduit, M.; Belabbes, S. und Gremy, F. (1981): A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis, Cancer (48) [1], Seite 198-206.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7237385

[219] Junker, K. (2001): Prognostic factors in stage I/II non-small cell lung cancer, Lung Cancer (33 Suppl 1), Seite S17-24.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11576703

[220] Becker, K. F.; Keller, G. und Hoefler, H. (2000): The use of molecular biology in diagnosis and prognosis of gastric cancer, Surg Oncol (9) [1], Seite 5-11.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11525306

[221] Matutes, E. und Polliack, A. (2000): Morphological and immunophenotypic features of chronic lymphocytic leukemia, Rev Clin Exp Hematol (4) [1], Seite 22-47.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11486329

[222] Iqbal, S. und Lenz, H. J. (2001): Determinants of prognosis and response to therapy in colorectal cancer, Curr Oncol Rep (3) [2], Seite 102-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11177741

[223] Hamilton, A. und Piccart, M. (2000): The contribution of molecular markers to the prediction of response in the treatment of breast cancer: a review of the literature on HER-2, p53 and BCL-2, Ann Oncol (11) [6], Seite 647-63.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10942052

[224] Bradford, C. R. (1999): Predictive factors in head and neck cancer, Hematol Oncol Clin North Am (13) [4], Seite 777-85.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10494513

[225] Serrone, L. und Hersey, P. (1999): The chemoresistance of human malignant melanoma: an update, Melanoma Res (9) [1], Seite 51-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10338334

[226] Moul, J. W. (1999): Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy, Eur Urol (35) [5-6], Seite 399-407. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10325496 http://www.online.karger.com/library/karger/renderer/dataset.exe?jcode=EUR&action=render&rendertype=fulltext&uid=EUR.eur35399

[227] Kusenda, J. (1998): Bcl-2 family proteins and leukemia., Neoplasma (45) [3], Seite 117-22. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9717521

[228] Gascoyne, R. D. (1997): Pathologic prognostic factors in diffuse aggressive non-Hodgkin's lymphoma, Hematol Oncol Clin North Am (11) [5], Seite 847-62.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9336718

[229] Gascoyne, R. D.; Adomat, S. A.; Krajewski, S.; Krajewska, M.; Horsman, D. E.; Tolcher, A. W.; O'Reilly, S. E.; Hoskins, P.; Coldman, A. J.; Reed, J. C. und Connors, J. M. (1997): Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma, Blood (90) [1], Seite 244-51.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9207459

[230] Bordeleau, L. und Berinstein, N. L. (2000): Molecular diagnostics in follicular non-Hodgkin's lymphoma: a review, Semin Oncol (27) [6 Suppl 12], Seite 42-52.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11226000

[231] Tsujimoto, Y.; Ikegaki, N. und Croce, C. M. (1987): Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma, Oncogene (2) [1], Seite 3-7..

[232] Tsujimoto, Y. und Croce, C. M. (1986): Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma, Proc Natl Acad Sci U S A (83) [14], Seite 5214-8..

[233] Tsujimoto, Y.; Cossman, J.; Jaffe, E. und Croce, C. M. (1985): Involvement of the bcl-2 gene in human follicular lymphoma, Science (228) [4706], Seite 1440-3..

[234] Hanada, M.; Delia, D.; Aiello, A.; Stadtmauer, E. und Reed, J. C. (1993): bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia, Blood (82) [6], Seite 1820-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8104532

[235] Kitada, S.; Andersen, J.; Akar, S.; Zapata, J. M.; Takayama, S.; Krajewski, S.; Wang, H. G.; Zhang, X.; Bullrich, F.; Croce, C. M.; Rai, K.; Hines, J. und Reed, J. C. (1998): Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses, Blood (91) [9], Seite 3379-89.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9558396

[236] Raisova, M.; Hossini, A. M.; Eberle, J.; Riebeling, C.; Wieder, T.; Sturm, I.; Daniel, P. T.; Orfanos, C. E. und Geilen, C. C. (2001): The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis, J Invest Dermatol (117) [2], Seite 333-40.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11511312

[237] Prokop, A.; Wieder, T.; Sturm, I.; Essmann, F.; Seeger, K.; Wuchter, C.; Ludwig, W.-D.; Henze, G.; Dörken, B. und Daniel, P.T. (2000): Relapse in childhood acute lymphoblastic leukemia is associated with decrease of Bax/Bcl-2- ratio and loss of spontaneous caspase-3 processing in vivo, Leukemia (14), Seite 1606-1613.

[238] Sturm, I.; Papadopoulos, S.; Hillebrand, T.; Benter, T.; Luck, H. J.; Wolff, G.; Dörken, B. und Daniel, P. T. (2000): Impaired BAX protein expression in breast cancer: mutational analysis of the BAX and the p53 gene, Int J Cancer (87) [4], Seite 517-21.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10918191

[239] Sturm, I.; Petrowsky, H.; Volz, R.; Lorenz, M.; Radetzki, S.; Hillebrand, T.; Wolff, G.; Hauptmann, S.; Dörken, B. und Daniel, P.T. (2001): Analysis of p53/BAX/p16ink4a/CDKN2 in esophageal squamous cell carcinoma: High BAX and p16ink4a/CDKN2 identifies patients with good prognosis., J Clin Oncol (19), Seite 2272-2281.

[240] Yamamoto, H.; Sawai, H. und Perucho, M. (1997): Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype, Cancer Res (57) [19], Seite 4420-6.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9331106

[241] Rampino, N.; Yamamoto, H.; Ionov, Y.; Li, Y.; Sawai, H.; Reed, J. C. und Perucho, M. (1997): Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype, Science (275) [5302], Seite 967-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9020077

[242] Gutierrez, M. I.; Cherney, B.; Hussain, A.; Mostowski, H.; Tosato, G.; Magrath, I. und Bhatia, K. (1999): Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis, Cancer Res (59) [3], Seite 696-703.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9973220

[243] Yamamoto, H.; Gil, J.; Schwartz, S., Jr. und Perucho, M. (2000): Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastro-intestinal cancer of the microsatellite mutator phenotype, Cell Death Differ (7) [2], Seite 238-9..

[244] Soengas, M. S.; Capodieci, P.; Polsky, D.; Mora, J.; Esteller, M.; Opitz-Araya, X.; McCombie, R.; Herman, J. G.; Gerald, W. L.; Lazebnik, Y. A.; Cordon-Cardo, C. und Lowe, S. W. (2001): Inactivation of the apoptosis effector Apaf-1 in malignant melanoma, Nature (409) [6817], Seite 207-11..

[245] Wolf, B. B.; Schuler, M.; Li, W.; Eggers-Sedlet, B.; Lee, W.; Tailor, P.; Fitzgerald, P.; Mills, G. B. und Green, D. R. (2001): Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity, J Biol Chem (276) [36], Seite 34244-51..

[246] Ekert, P. G.; Silke, J.; Hawkins, C. J.; Verhagen, A. M. und Vaux, D. L. (2001): DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9, J Cell Biol (152) [3], Seite 483-90..

[247] Shi, Y. (2001): A structural view of mitochondria-mediated apoptosis, Nat Struct Biol (8) [5], Seite 394-401..

[248] Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.; Chai, J.; Lee, R. A.; Robbins, P. D.; Fernandes-Alnemri, T.; Shi, Y. und Alnemri, E. S. (2001): A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis, Nature (410) [6824], Seite 112-6..

[249] Janicke, R. U.; Sprengart, M. L.; Wati, M. R. und Porter, A. G. (1998): Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis, J Biol Chem (273) [16], Seite 9357-60.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9545256

[250] Friedrich, K.; Wieder, T.; Von Haefen, C.; Radetzki, S.; Janicke, R.; Schulze-Osthoff, K.; Dörken, B. und Daniel, P. T. (2001): Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance, Oncogene (20) [22], Seite 2749-60.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11420687

[251] Schwartz, S., Jr.; Yamamoto, H.; Navarro, M.; Maestro, M.; Reventos, J. und Perucho, M. (1999): Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype, Cancer Res (59) [12], Seite 2995-3002.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10383166

[252] Wang, J.; Zheng, L.; Lobito, A.; Chan, F. K.; Dale, J.; Sneller, M.; Yao, X.; Puck, J. M.; Straus, S. E. und Lenardo, M. J. (1999): Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II, Cell (98) [1], Seite 47-58.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10412980

[253] Mullauer, L.; Gruber, P.; Sebinger, D.; Buch, J.; Wohlfart, S. und Chott, A. (2001): Mutations in apoptosis genes: a pathogenetic factor for human disease, Mutat Res (488) [3], Seite 211-31.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11397650

[254] Jackson, C. E. und Puck, J. M. (1999): Autoimmune lymphoproliferative syndrome, a disorder of apoptosis, Curr Opin Pediatr (11) [6], Seite 521-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10590910

[255] Martin, D. A.; Zheng, L.; Siegel, R. M.; Huang, B.; Fisher, G. H.; Wang, J.; Jackson, C. E.; Puck, J. M.; Dale, J.; Straus, S. E.; Peter, M. E.; Krammer, P. H.; Fesik, S. und Lenardo, M. J. (1999): Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia, Proc Natl Acad Sci U S A (96) [8], Seite 4552-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10200300 http://www.pnas.org/cgi/content/full/96/8/4552

[256] Teitz, T.; Lahti, J. M. und Kidd, V. J. (2001): Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death, J Mol Med (79) [8], Seite 428-36..

[257] Teitz, T.; Wei, T.; Valentine, M. B.; Vanin, E. F.; Grenet, J.; Valentine, V. A.; Behm, F. G.; Look, A. T.; Lahti, J. M. und Kidd, V. J. (2000): Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN, Nat Med (6) [5], Seite 529-35.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10802708 http://www.nature.com/cgi-taf/DynaPage.taf?file=/nm/journal/v6/n5/full/nm0500_529.html http://www.nature.com/cgi-taf/DynaPage.taf?file=/nm/journal/v6/n5/abs/nm0500_529.html

[258] Wieder, T.; Essmann, F.; Prokop, A.; Schmelz, K.; Schulze-Osthoff, K.; Beyaert, R.; Dörken, B. und Daniel, P.T. (2001): Activation of Caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor ligand interaction and occurs downstream of Caspase-3, Blood (97), Seite 1378-87.

[259] Bantel, H.; Engels, I. H.; Voelter, W.; Schulze-Osthoff, K. und Wesselborg, S. (1999): Mistletoe lectin activates caspase-8/FLICE independently of death receptor signaling and enhances anticancer drug-induced apoptosis, Cancer Res (59) [9], Seite 2083-90..

[260] Belka, C.; Rudner, J.; Wesselborg, S.; Stepczynska, A.; Marini, P.; Lepple-Wienhues, A.; Faltin, H.; Bamberg, M.; Budach, W. und Schulze-Osthoff, K. (2000): Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis, Oncogene (19) [9], Seite 1181-90.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10713706

[261] Engels, I. H.; Stepczynska, A.; Stroh, C.; Lauber, K.; Berg, C.; Schwenzer, R.; Wajant, H.; Janicke, R. U.; Porter, A. G.; Belka, C.; Gregor, M.; Schulze-Osthoff, K. und Wesselborg, S. (2000): Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis, Oncogene (19) [40], Seite 4563-73..

[262] Wesselborg, S.; Engels, I. H.; Rossmann, E.; Los, M. und Schulze-Osthoff, K. (1999): Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction, Blood (93) [9], Seite 3053-63.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10216102 http://www.bloodjournal.org/cgi/content/full/93/9/3053

[263] Lowe, S. W.; Ruley, H. E.; Jacks, T. und Housman, D. E. (1993): p53-dependent apoptosis modulates the cytotoxicity of anticancer agents, Cell (74) [6], Seite 957-67..

[264] Stewart, Z. A.; Mays, D. und Pietenpol, J. A. (1999): Defective G1-S cell cycle checkpoint function sensitizes cells to microtubule inhibitor-induced apoptosis, Cancer Res (59) [15], Seite 3831-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10447002

[265] Vikhanskaya, F.; Vignati, S.; Beccaglia, P.; Ottoboni, C.; Russo, P.; D'Incalci, M. und Broggini, M. (1998): Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis, Exp Cell Res (241) [1], Seite 96-101.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9633517

[266] Debernardis, D.; Sire, E. G.; De Feudis, P.; Vikhanskaya, F.; Valenti, M.; Russo, P.; Parodi, S.; D'Incalci, M. und Broggini, M. (1997): p53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel, Cancer Res (57) [5], Seite 870-4.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9041188

[267] Hawkins, D. S.; Demers, G. W. und Galloway, D. A. (1996): Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents, Cancer Res (56) [4], Seite 892-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8631030

[268] Wahl, A. F.; Donaldson, K. L.; Fairchild, C.; Lee, F. Y.; Foster, S. A.; Demers, G. W. und Galloway, D. A. (1996): Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis, Nat Med (2) [1], Seite 72-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8564846

[269] Woods, C. M.; Zhu, J.; McQueney, P. A.; Bollag, D. und Lazarides, E. (1995): Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway, Mol Med (1) [5], Seite 506-26.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8529117

[270] Druker, B. J. und Lydon, N. B. (2000): Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia, J Clin Invest (105) [1], Seite 3-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10619854 http://www.jci.org/cgi/content/full/105/1/3

[271] Mauro, M. J. und Druker, B. J. (2001): STI571: a gene product-targeted therapy for leukemia, Curr Oncol Rep (3) [3], Seite 223-7.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11296132

[272] Stambolic, V.; Mak, T. W. und Woodgett, J. R. (1999): Modulation of cellular apoptotic potential: contributions to oncogenesis, Oncogene (18) [45], Seite 6094-103..

[273] Crul, M.; de Klerk, G. J.; Beijnen, J. H. und Schellens, J. H. (2001): Ras biochemistry and farnesyl transferase inhibitors: a literature survey, Anticancer Drugs (12) [3], Seite 163-84.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11290863

[274] Cohen, L. H.; Pieterman, E.; van Leeuwen, R. E.; Overhand, M.; Burm, B. E.; van der Marel, G. A. und van Boom, J. H. (2000): Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics, Biochem Pharmacol (60) [8], Seite 1061-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11007942

[275] Scharovsky, O. G.; Rozados, V. R.; Gervasoni, S. I. und Matar, P. (2000): Inhibition of ras oncogene: a novel approach to antineoplastic therapy, J Biomed Sci (7) [4], Seite 292-8.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10895051 http://www.online.karger.com/library/karger/renderer/dataset.exe?jcode=JBS&action=render&rendertype=fulltext&uid=JBS.jbs07292

[276] Hill, B. T.; Perrin, D. und Kruczynski, A. (2000): Inhibition of RAS-targeted prenylation: protein farnesyl transferase inhibitors revisited, Crit Rev Oncol Hematol (33) [1], Seite 7-23.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10714959

[277] Zujewski, J.; Horak, I. D.; Bol, C. J.; Woestenborghs, R.; Bowden, C.; End, D. W.; Piotrovsky, V. K.; Chiao, J.; Belly, R. T.; Todd, A.; Kopp, W. C.; Kohler, D. R.; Chow, C.; Noone, M.; Hakim, F. T.; Larkin, G.; Gress, R. E.; Nussenblatt, R. B.; Kremer, A. B. und Cowan, K. H. (2000): Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer, J Clin Oncol (18) [4], Seite 927-41.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10673536 http://www.jco.org/cgi/content/full/18/4/927 http://www.jco.org/cgi/content/abstract/18/4/927

[278] End, D. W. (1999): Farnesyl protein transferase inhibitors and other therapies targeting the Ras signal transduction pathway, Invest New Drugs (17) [3], Seite 241-58. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10665477

[279] Hochhaus, A.; Kreil, S.; Corbin, A.; La Rosee, P.; Lahaye, T.; Berger, U.; Cross, N. C.; Linkesch, W.; Druker, B. J.; Hehlmann, R.; Gambacorti- Passerini, C.; Corneo, G. und D'Incalci, M. (2001): Roots of clinical resistance to STI-571 cancer therapy, Science (293) [5538], Seite 2163.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11569495

[280] Gambacorti-Passerini, C.; Barni, R.; le Coutre, P.; Zucchetti, M.; Cabrita, G.; Cleris, L.; Rossi, F.; Gianazza, E.; Brueggen, J.; Cozens, R.; Pioltelli, P.; Pogliani, E.; Corneo, G.; Formelli, F. und D'Incalci, M. (2000): Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR- ABL(+) leukemic cells to the abl inhibitor STI571, J Natl Cancer Inst (92) [20], Seite 1641-50.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11036109 http://jnci.oupjournals.org/cgi/content/full/92/20/1641 http://jnci.oupjournals.org/cgi/content/abstract/92/20/1641

[281] le Coutre, P.; Tassi, E.; Varella-Garcia, M.; Barni, R.; Mologni, L.; Cabrita, G.; Marchesi, E.; Supino, R. und Gambacorti-Passerini, C. (2000): Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification, Blood (95) [5], Seite 1758-66.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10688835 http://www.bloodjournal.org/cgi/content/full/95/5/1758 http://www.bloodjournal.org/cgi/content/abstract/95/5/1758

[282] Mahon, F. X.; Deininger, M. W.; Schultheis, B.; Chabrol, J.; Reiffers, J.; Goldman, J. M. und Melo, J. V. (2000): Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance, Blood (96) [3], Seite 1070-9.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10910924 http://www.bloodjournal.org/cgi/content/full/96/3/1070 http://www.bloodjournal.org/cgi/content/abstract/96/3/1070

[283] Senderowicz, A. M. (2000): Small molecule modulators of cyclin-dependent kinases for cancer therapy, Oncogene (19) [56], Seite 6600-6..

[284] Anderson, N. G.; Ahmad, T.; Chan, K.; Dobson, R. und Bundred, N. J. (2001): ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR- positive cancer cell lines with or without erbB2 overexpression, Int J Cancer (94) [6], Seite 774-782.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11745477

[285] Mendelsohn, J. und Baselga, J. (2000): The EGF receptor family as targets for cancer therapy, Oncogene (19) [56], Seite 6550-65.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11426640

[286] Ciardiello, F. (2000): Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents, Drugs (60) [Suppl 1], Seite 25-32; discussion 41-2.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11129169

[287] Foster, B. A.; Coffey, H. A.; Morin, M. J. und Rastinejad, F. (1999): Pharmacological rescue of mutant p53 conformation and function, Science (286) [5449], Seite 2507-10.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10617466

[288] Banerjee, D. (2001): Genasense (Genta Inc), Curr Opin Investig Drugs (2) [4], Seite 574-80.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11566020

[289] Jansen, B.; Wacheck, V.; Heere-Ress, E.; Schlagbauer-Wadl, H.; Hoeller, C.; Lucas, T.; Hoermann, M.; Hollenstein, U.; Wolff, K. und Pehamberger, H. (2000): Chemosensitisation of malignant melanoma by BCL2 antisense therapy, Lancet (356) [9243], Seite 1728-33.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11095261

[290] Klasa, R. J.; List, A. F. und Cheson, B. D. (2001): Rational approaches to design of therapeutics targeting molecular markers, Hematology (Am Soc Hematol Educ Program), Seite 443-62.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11722998 http://www.asheducationbook.org/cgi/content/full/2001/1/443 http://www.asheducationbook.org/cgi/content/abstract/2001/1/443

[291] Maaser, K.; Hopfner, M.; Jansen, A.; Weisinger, G.; Gavish, M.; Kozikowski, A. P.; Weizman, A.; Carayon, P.; Riecken, E. O.; Zeitz, M. und Scherubl, H. (2001): Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human colorectal cancer cells, Br J Cancer (85) [11], Seite 1771-1780.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11742501

[292] Bono, F.; Lamarche, I.; Prabonnaud, V.; Le Fur, G. und Herbert, J. M. (1999): Peripheral benzodiazepine receptor agonists exhibit potent antiapoptotic activities, Biochem Biophys Res Commun (265) [2], Seite 457-61.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10558889

[293] Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X.; Cao, Y.; Guo, R.; Li, B.; Zhu, X.; Huang, Y.; Long, Y. Q.; Roller, P. P.; Yang, D. und Wang, S. (2001): Discovery of Small-Molecule Inhibitors of Bcl-2 through Structure-Based Computer Screening, J Med Chem (44) [25], Seite 4313-4324.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11728179

[294] Polster, B. M.; Kinnally, K. W. und Fiskum, G. (2001): Bh3 death domain peptide induces cell type-selective mitochondrial outer membrane permeability, J Biol Chem (276) [41], Seite 37887-94.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11483608 http://www.jbc.org/cgi/content/full/276/41/37887 http://www.jbc.org/cgi/content/abstract/276/41/37887

[295] Finnegan, N. M.; Curtin, J. F.; Prevost, G.; Morgan, B. und Cotter, T. G. (2001): Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions, Br J Cancer (85) [1], Seite 115-21.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11437412

[296] Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.; Mitchison, T. und Yuan, J. (2001): Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL, Nat Cell Biol (3) [2], Seite 173-82.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11175750 http://www.nature.com/cgi-taf/DynaPage.taf?file=/ncb/journal/v3/n2/full/ncb0201_173.html http://www.nature.com/cgi-taf/DynaPage.taf?file=/ncb/journal/v3/n2/abs/ncb0201_173.html

[297] Holinger, E. P.; Chittenden, T. und Lutz, R. J. (1999): Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases, J Biol Chem (274) [19], Seite 13298-304.. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10224090 http://www.jbc.org/cgi/content/full/274/19/13298

[298] Daniel, P. T.; Pun, K. T.; Ritschel, S.; Sturm, I.; Holler, J.; Dörken, B. und Brown, R. (1999): Expression of the death gene Bik/Nbk promotes sensitivity to drug-induced apoptosis in corticosteroid-resistant T-cell lymphoma and prevents tumor growth in severe combined immunodeficient mice, Blood (94) [3], Seite 1100-7.

[299] Radetzki, S; Köhne, C.H.; von Haefen, C.; Gillissen, B.; Sturm, I.; Dörken, B. und Daniel, P.T. (2001): The apoptosis promoting Bcl-2 homologues Bak and Nbk/Bik overcome drug resistance in Mdr-1-negative and Mdr-1 overexpressing breast cancer cell lines, Oncogene (in press).

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: