[Seite 22↓]


[1] Rockman, H. A.; Koch, W. J. and Lefkowitz, R. J. (2002): Seven-transmembrane-spanning receptors and heart function, Nature 415, pp.206-212.

[2] Schöneberg, T.; Schulz, A. and Gudermann, T. (2002): The structural basis of G-protein-coupled receptor function and dysfunction in human diseases, Rev. Physiol. Biochem. Pharmacol. 144, pp.143-227.

[3] Rattner, A.; Sun, H. and Nathans, J. (1999): Molecular genetics of human retinal disease, Annu. Rev. Genet. 33, pp.89-131.

[4] Berger, E. A.; Murphy, P. M. and Farber, J. M. (1999): Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease, Annu. Rev. Immunol. 17, pp.657-700.

[5] Seifert, R. and Wenzel-Seifert, K. (2002): Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors, Naunyn Schmiedebergs Arch. Pharmacol. 366, pp.381-416.

[6] Sautel, M. and Milligan, G. (2000): Molecular manipulation of G-protein-coupled receptors: a new avenue into drug discovery, Curr. Med. Chem. 7, pp.889-896.

[7] Schwalbe, H. and Wess, G. (2002): Dissecting G-protein-coupled receptors: structure, function, and ligand interaction, Chembiochem 3, pp.915-919.

[8] Hofmann, K. P. and Ernst, O. P. (2001): Vom Licht zum Sehen - Biophysik der visuellen Signaltransduktion [To see from light--biophysics of visual signal transduction], Z. Med. Phys. 11, pp.217-225.

[9] Hamm, H. E. (1998): The many faces of G protein signaling, J. Biol. Chem. 273, pp.669-672.

[10] Ernst, O. P. (1994): Zum Mechanismus der Aktivierung des G-Proteins durch den Rezeptor bei der visuellen Signaltransduktion: Freisetzung des GDP aus dem Rezeptor-G-Protein-Komplex, Dissertation, Fakultät für Chemie und Pharmazie: Albert-Ludwigs-Universität Freiburg Freiburg im Breisgau.

[11] König, B.; Arendt, A.; McDowell, J. H.; Kahlert, M.; Hargrave, P. A. and Hofmann, K. P. (1989): Three cytoplasmic loops of rhodopsin interact with transducin, Proc. Natl. Acad. Sci. U.S.A. 86, pp.6878-6882.

[12] Schöneberg, T.; Schultz, G. and Gudermann, T. (1999): Structural basis of G protein-coupled receptor function, Mol. Cell. Endocrinol. 151, pp.181-193.

[13] Franke, R. R.; König, B.; Sakmar, T. P.; Khorana, H. G. and Hofmann, K. P. (1990): Rhodopsin mutants that bind but fail to activate transducin, Science 250, pp.123-125.

[14] Ernst, O. P.; Hofmann, K. P. and Sakmar, T. P. (1995): Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays, J. Biol. Chem. 270, pp.10580-10586.

[15] Rodieck, R.W. (1998): The first steps in seeing, Sinauer Associates, Inc., Sunderland, MA, U.S.A., ISBN 0878937579.

[16] Pierce, K. L.; Premont, R. T. and Lefkowitz, R. J. (2002): Seven-transmembrane receptors, Nat. Rev. Mol. Cell. Biol. 3, pp.639-650.

[17] Gether, U. (2000): Uncovering molecular mechanisms involved in activation of G protein-coupled receptors, Endocr. Rev. 21, pp.90-113.

[18] Rana, B. K. and Insel, P. A. (2002): G-protein-coupled receptor websites, Trends Pharmacol. Sci. 23, pp.535-536.

[19] Nathans, J. and Hogness, D. S. (1983): Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin, Cell 34, pp.807-814.

[20] Ernst, O. P. and Bartl, F. J. (2002): Active states of rhodopsin, Chembiochem 3, pp.968-974.

[21] Okada, T.; Ernst, O. P.; Palczewski, K. and Hofmann, K. P. (2001): Activation of rhodopsin: new insights from structural and biochemical studies, Trends Biochem. Sci. 26, pp.318-324.

[22] Ernst, O. P.; Hofmann, K. P. and Palczewski, K. (2003): Vertebrate rhodopsin, Batschauer, A., Ed, Photoreceptors and Light Signalling, Royal Society of Chemistry, Cambridge, UK.

[23] Hofmann, K. P.; Jäger, S. and Ernst, O. P. (1995): Structure and function of activated rhodopsin, Isr. J. Chem. 35, pp.339-355.

[24] Kliger, D. S. and Lewis, J. W. (1995): Spectral and kinetic characterization of visual pigment photointermediates, Isr. J. Chem. 35, pp.289-307.

[25] Siebert, F. (1995): Application of FTIR spectroscopy to the investigation of dark structures and photoreactions of visual pigments, Isr. J. Chem. 35, pp.309-323.

[26] Shichida, Y. and Imai, H. (1998): Visual pigment: G-protein-coupled receptor for light signals, Cell. Mol. Life Sci. 54, pp.1299-1315.

[27] Hofmann, K. P. (2000): Late photoproducts and signaling states of bovine rhodopsin, Hoff, A.J., Ed, Handbook of Biological Physics 3, pp. 91-142, Elsevier, Amsterdam.

[28] Klein-Seetharaman, J. (2002): Dynamics in rhodopsin, Chembiochem 3, pp.981-986.

[29] Altenbach, C.; Klein-Seetharaman, J.; Cai, K.; Khorana, H. G. and Hubbell, W. L. (2001): Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1, Biochemistry 40, pp.15493-15500.

[30] Columbus, L. and Hubbell, W. L. (2002): A new spin on protein dynamics, Trends Biochem. Sci. 27, pp.288-295.

[31] Mielke, T.; Alexiev, U.; Glasel, M.; Otto, H. and Heyn, M. P. (2002): Light-induced changes in the structure and accessibility of the cytoplasmic loops of rhodopsin in the activated MII state, Biochemistry 41, pp.7875-7884.

[32] Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M. and Miyano, M. (2000): Crystal structure of rhodopsin: A G protein-coupled receptor, Science 289, pp.739-745.

[33] Teller, D. C.; Okada, T.; Behnke, C. A.; Palczewski, K. and Stenkamp, R. E. (2001): Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G protein-coupled receptors (GPCRs), Biochemistry 40, pp.7761-7772.

[34] Okada, T.; Fujiyoshi, Y.; Silow, M.; Navarro, J.; Landau, E. M. and Shichida, Y. (2002): Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography, Proc. Natl. Acad. Sci. U.S.A. 99, pp.5982-5987.

[35] Klabunde, T. and Hessler, G. (2002): Drug design strategies for targeting G-protein-coupled receptors, Chembiochem 3, pp.928-944.

[36] Ovchinnikov Yu, A. (1982): Rhodopsin and bacteriorhodopsin: structure-function relationships, FEBS Lett. 148, pp.179-191.

[37] Hargrave, P. A.; McDowell, J. H.; Curtis, D. R.; Wang, J. K.; Juszczak, E.; Fong, S. L.; Rao, J. K. and Argos, P. (1983): The structure of bovine rhodopsin, Biophys. Struct. Mech. 9, pp.235-244.

[38] Ferretti, L.; Karnik, S. S.; Khorana, H. G.; Nassal, M. and Oprian, D. D. (1986): Total synthesis of a gene for bovine rhodopsin, Proc. Natl. Acad. Sci. U.S.A. 83, pp.599-603.

[39] Reeves, P. J.; Thurmond, R. L. and Khorana, H. G. (1996): Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines, Proc. Natl. Acad. Sci. U.S.A. 93, pp.11487-11492.

[40] Farrens, D. L.; Altenbach, C.; Yang, K.; Hubbell, W. L. and Khorana, H. G. (1996): Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science 274, pp.768-770.

[41] Noel, J. P.; Hamm, H. E. and Sigler, P. B. (1993): The 2.2 A crystal structure of transducin-a complexed with GTPgS, Nature 366, pp.654-663.

[42] Lambright, D. G.; Sondek, J.; Bohm, A.; Skiba, N. P.; Hamm, H. E. and Sigler, P. B. (1996): The 2.0 A crystal structure of a heterotrimeric G protein, Nature 379, pp.311-319.

[43] Ernst, O. P.; Bieri, C.; Vogel, H. and Hofmann, K. P. (2000): Intrinsic biophysical monitors of transducin activation: fluorescence, UV-visible spectroscopy, light scattering, and evanescent field techniques, Methods Enzymol. 315, pp.471-489.

[44] Kühn, H.; Bennett, N.; Michel-Villaz, M. and Chabre, M. (1981): Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes, Proc. Natl. Acad. Sci. U.S.A. 78, pp.6873-6877.

[45] Schleicher, A. and Hofmann, K. P. (1987): Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein, J. Membr. Biol. 95, pp.271-281.

[46] Heck, M.; Pulvermüller, A. and Hofmann, K. P. (2000): Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins, Methods Enzymol. 315, pp.329-347.

[47] Myszka, D. G. (1999): Survey of the 1998 optical biosensor literature, J. Mol. Recognit. 12, pp.390-408.

[48] Heyse, S.; Stora, T.; Schmid, E.; Lakey, J. H. and Vogel, H. (1998): Emerging techniques for investigating molecular interactions at lipid membranes, Biochim. Biophys. Acta 1376, pp.319-338.

[49] Cooper, M. A. (2002): Optical biosensors in drug discovery, Nat. Rev. Drug. Discov. 1, pp.515-528.

[50] Lang, Holger; Duschl, Claus and Vogel, H. (1994): A new class of thiolipids for the attachment of lipid bilayers on gold surfaces, Langmuir 10, pp.197-210.

[51] Heyse, S.; Ernst, O. P.; Dienes, Z.; Hofmann, K. P. and Vogel, H. (1998): Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance, Biochemistry 37, pp.507-522.

[52] Bieri, C.; Ernst, O. P.; Heyse, S.; Hofmann, K. P. and Vogel, H. (1999): Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation, Nat. Biotechnol. 17, pp.1105-1108.

[53] Beaumont, K. and Negulescu, P. (1999): Chipping away at GPCR function, Nat. Biotechnol. 17, p.1060.

[54] Xia, Y. and Whitesides, G.M. (1998): Soft lithography, Angew. Chem. Int. Ed. 37, pp.550-575.

[55] Karlsson, O. P. and Lofas, S. (2002): Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors, Anal. Biochem. 300, pp.132-138.

[56] Clark, W. A.; Jian, X.; Chen, L. and Northup, J. K. (2001): Independent and synergistic interaction of retinal G-protein subunits with bovine rhodopsin measured by surface plasmon resonance, Biochem. J. 358, pp.389-397.

[57] Krautwurst, D.; Yau, K. W. and Reed, R. R. (1998): Identification of ligands for olfactory receptors by functional expression of a receptor library, Cell 95, pp.917-926.

[58] Jäger, F.; Fahmy, K.; Sakmar, T. P. and Siebert, F. (1994): Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin, Biochemistry 33, pp.10878-10882.

[59] Arnis, S. and Hofmann, K. P. (1993): Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state, Proc. Natl. Acad. Sci. U.S.A. 90, pp.7849-7853.

[60] Arnis, S.; Fahmy, K.; Hofmann, K. P. and Sakmar, T. P. (1994): A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin, J. Biol. Chem. 269, pp.23879-23881.

[61] Fahmy, K.; Sakmar, T. P. and Siebert, F. (2000): Transducin-dependent protonation of glutamic acid 134 in rhodopsin, Biochemistry 39, pp.10607-10612.

[62] Mirzadegan, T.; Benkö, G.; Filipek, S. and Palczewski, K. (2003): Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin, Biochemistry 42, pp.2759-2767.

[63] Matthews, R. G. ; Hubbard, R. ; Brown, P. K. and Wald, G. (1963): Tautomeric forms of metarhodopsin, J. Gen. Physiol. 47, pp.215-240.

[64] Thorgeirsson, T. E.; Lewis, J. W.; Wallace-Williams, S. E. and Kliger, D. S. (1992): Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II, Photochem. Photobiol. 56, pp.1135-1144.

[65] Thorgeirsson, T. E.; Lewis, J. W.; Wallace-Williams, S. E. and Kliger, D. S. (1993): Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II, Biochemistry 32, pp.13861-13872.

[66] Szundi, I.; Mah, T. L.; Lewis, J. W.; Jäger, S.; Ernst, O. P.; Hofmann, K. P. and Kliger, D. S. (1998): Proton transfer reactions linked to rhodopsin activation, Biochemistry 37, pp.14237-14244.

[67] Emeis, D.; Kühn, H.; Reichert, J. and Hofmann, K. P. (1982): Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium, FEBS Lett. 143, pp.29-34.

[68] Kibelbek, J.; Mitchell, D. C.; Beach, J. M. and Litman, B. J. (1991): Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin, Biochemistry 30, pp.6761-6768.

[69] Arnis, S. and Hofmann, K. P. (1995): Photoregeneration of bovine rhodopsin from its signaling state, Biochemistry 34, pp.9333-9340.

[70] Seibert, C. (2000): Heterologe Expression und funktionelle Charakterisierung des Thrombin-Rezeptors PAR1, Dissertation, Humboldt-Universität zu Berlin Berlin.

[71] Seibert, C.; Harteneck, C.; Ernst, O. P.; Schultz, G. and Hofmann, K. P. (1999): Activation of the rod G-protein Gt by the thrombin receptor (PAR1) expressed in Sf9 cells, Eur. J. Biochem. 266, pp.911-916.

[72] Scheer, A.; Fanelli, F.; Costa, T.; De Benedetti, P. G. and Cotecchia, S. (1997): The activation process of the a1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate, Proc. Natl. Acad. Sci. U.S.A. 94, pp.808-813.

[73] Ghanouni, P.; Schambye, H.; Seifert, R.; Lee, T. W.; Rasmussen, S. G.; Gether, U. and Kobilka, B. K. (2000): The effect of pH on b2 adrenoceptor function. Evidence for protonation-dependent activation, J. Biol. Chem. 275, pp.3121-3127.

[74] Meyer, C. K.; Böhme, M.; Ockenfels, A.; Gärtner, W.; Hofmann, K. P. and Ernst, O. P. (2000): Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches, J. Biol. Chem. 275, pp.19713-19718.

[75] Dartnall, H. J. (1968): The photosensitivities of visual pigments in the presence of hydroxylamine, Vision Res. 8, pp.339-358.

[76] Hecht, S. (1941): Energy, quanta, and vision, J. Gen. Physiol. 25, pp.819-822.

[77] Ottolenghi, M. and Sheves, M. (1989): Synthetic retinals as probes for the binding site and photoreactions in rhodopsins, J. Membr. Biol. 112, pp.193-212.

[78] Nakanishi, K. and Crouch, R. K. (1995): Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins, Isr. J. Chem. 35, pp.253-272.

[79] Lou, J.; Tan, Q.; Karnaukhova, E.; Berova, N.; Nakanishi, K. and Crouch, R. K. (2000): Synthetic retinals: convenient probes of rhodopsin and visual transduction process, Methods Enzymol. 315, pp.219-237.

[80] Yan, B.; Nakanishi, K. and Spudich, J. L. (1991): Mechanism of activation of sensory rhodopsin I: evidence for a steric trigger, Proc. Natl. Acad. Sci. U.S.A. 88, pp.9412-9416.

[81] Shieh, T.; Han, M.; Sakmar, T. P. and Smith, S. O. (1997): The steric trigger in rhodopsin activation, J. Mol. Biol. 269, pp.373-384.

[82] Ganter, U. M.; Schmid, E. D.; Perez-Sala, D.; Rando, R. R. and Siebert, F. (1989): Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation, Biochemistry 28, pp.5954-5962.

[83] Vogel, R.; Fan, G. B.; Sheves, M. and Siebert, F. (2000): The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study, Biochemistry 39, pp.8895-8908.

[84] Einterz, C. M.; Hug, S. J.; Lewis, J. W. and Kliger, D. S. (1990): Early photolysis intermediates of the artificial visual pigment 13-demethylrhodopsin, Biochemistry 29, pp.1485-1491.

[85] Lewis, J. W.; Fan, G. B.; Sheves, M.; Szundi, I. and Kliger, D. S. (2001): Steric barrier to bathorhodopsin decay in 5-demethyl and mesityl analogues of rhodopsin, J. Am. Chem. Soc. 123, pp.10024-10029.

[86] Szundi, I.; de Lera, A. R.; Pazos, Y.; Alvarez, R.; Oliana, M.; Sheves, M.; Lewis, J. W. and Kliger, D. S. (2002): Bleaching kinetics of artificial visual pigments with modifications near the ring-polyene chain connection, Biochemistry 41, pp.2028-2035.

[87] Fritze, O.; Filipek, S.; Kuksa, V.; Palczewski, K.; Hofmann, K. P. and Ernst, O. P. (2003): Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation, Proc. Natl. Acad. Sci. U.S.A. 100, pp.2290-2295.

[88] Ernst, O. P.; Meyer, C. K.; Marin, E. P.; Henklein, P.; Fu, W. Y.; Sakmar, T. P. and Hofmann, K. P. (2000): Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin a and g subunits, J. Biol. Chem. 275, pp.1937-1943.

[89] Klein-Seetharaman, J.; Getmanova, E. V.; Loewen, M. C.; Reeves, P. J. and Khorana, H. G. (1999): NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR, Proc. Natl. Acad. Sci. U.S.A. 96, pp.13744-13749.

[90] Altenbach, C.; Cai, K.; Khorana, H. G. and Hubbell, W. L. (1999): Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study, Biochemistry 38, pp.7931-7937.

[91] Imamoto, Y.; Kataoka, M.; Tokunaga, F. and Palczewski, K. (2000): Light-induced conformational changes of rhodopsin probed by fluorescent alexa594 immobilized on the cytoplasmic surface, Biochemistry 39, pp.15225-15233.

[92] Krishna, A. G.; Menon, S. T.; Terry, T. J. and Sakmar, T. P. (2002): Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch, Biochemistry 41, pp.8298-8309.

[93] Abdulaev, N. G. and Ridge, K. D. (1998): Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin, Proc. Natl. Acad. Sci. U.S.A. 95, pp.12854-12859.

[94] Sheikh, S. P.; Zvyaga, T. A.; Lichtarge, O.; Sakmar, T. P. and Bourne, H. R. (1996): Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F, Nature 383, pp.347-350.

[95] Filipek, S.; Stenkamp, R. E.; Teller, D. C. and Palczewski, K. (2003): G protein-coupled receptor rhodopsin: A prospectus, Annu. Rev. Physiol. 65, pp.851-879.

[96] Menon, S. T.; Han, M. and Sakmar, T. P. (2001): Rhodopsin: structural basis of molecular physiology, Physiol. Rev. 81, pp.1659-1688.

[97] Hamm, H. E. (2001): How activated receptors couple to G proteins, Proc. Natl. Acad. Sci. U.S.A. 98, pp.4819-4821.

[98] Hamm, H. E.; Deretic, D.; Arendt, A.; Hargrave, P. A.; König, B. and Hofmann, K. P. (1988): Site of G protein binding to rhodopsin mapped with synthetic peptides from the a subunit, Science 241, pp.832-835.

[99] Cai, K.; Itoh, Y. and Khorana, H. G. (2001): Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent, Proc. Natl. Acad. Sci. U.S.A. 98, pp.4877-4882.

[100] Itoh, Y.; Cai, K. and Khorana, H. G. (2001): Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent, Proc. Natl. Acad. Sci. U.S.A. 98, pp.4883-4887.

[101] Garcia, P. D.; Onrust, R.; Bell, S. M.; Sakmar, T. P. and Bourne, H. R. (1995): Transducin-a C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells, Embo J. 14, pp.4460-4469.

[102] Onrust, R.; Herzmark, P.; Chi, P.; Garcia, P. D.; Lichtarge, O.; Kingsley, C. and Bourne, H. R. (1997): Receptor and βγ binding sites in the a subunit of the retinal G protein transducin, Science 275, pp.381-384.

[103] Kisselev, O. G.; Ermolaeva, M. V. and Gautam, N. (1994): A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling, J. Biol. Chem. 269, pp.21399-21402.

[104] Taylor, J. M.; Jacob-Mosier, G. G.; Lawton, R. G.; VanDort, M. and Neubig, R. R. (1996): Receptor and membrane interaction sites on Gb. A receptor-derived peptide binds to the carboxyl terminus, J. Biol. Chem. 271, pp.3336-3339.

[105] Marin, E. P.; Krishna, A. G.; Zvyaga, T. A.; Isele, J.; Siebert, F. and Sakmar, T. P. (2000): The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction, J. Biol. Chem. 275, pp.1930-1936.

[106] Acharya, S.; Saad, Y. and Karnik, S. S. (1997): Transducin-a C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin, J. Biol. Chem. 272, pp.6519-6524.

[107] Bartl, F. J.; Ritter, E. and Hofmann, K. P. (2001): Signaling states of rhodopsin: Absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state, J. Biol. Chem. 276, pp.30161-30166.

[108] Kisselev, O. G.; Meyer, C. K.; Heck, M.; Ernst, O. P. and Hofmann, K. P. (1999): Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism, Proc. Natl. Acad. Sci. U.S.A. 96, pp.4898-4903.

[109] Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.; Kumasaka, T.; Nakanishi, S.; Jingami, H. and Morikawa, K. (2000): Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor, Nature 407, pp.971-977.

[110] Devi, L. A. (2001): Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking, Trends Pharmacol. Sci. 22, pp.532-537.

[111] Fotiadis, D.; Liang, Y.; Filipek, S.; Saperstein, D. A.; Engel, A. and Palczewski, K. (2003): Atomic-force microscopy: Rhodopsin dimers in native disc membranes, Nature 421, pp.127-128.

[112] Rondard, P.; Iiri, T.; Srinivasan, S.; Meng, E.; Fujita, T. and Bourne, H. R. (2001): Mutant G protein a subunit activated by Gβγ: a model for receptor activation?, Proc. Natl. Acad. Sci. U.S.A. 98, pp.6150-6155.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: