[Seite 23↓]

Literaturverzeichnis

[1] Lusis, A. J. (2000): Atherosclerosis, Nature, (vol. 407), No. 6801, pp.233-41..

[2] Libby, P.; Ridker, P.M. and Maseri, A. (2002): Inflammation and atherosclerosis, Circulation, (vol. 105), pp.1135-43.

[3] Ross, R. (1999): Atherosclerosis - an inflammatory disease, N Engl J Med, (vol. 340), pp.115-26.

[4] Raines, E. W. and Ross, R. (1993): Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis, Br Heart J, (vol. 69), No. 1 Suppl, pp.S30-7.

[5] Ross, R. (1993): The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature, (vol. 362), No. 6423, pp.801-9.

[6] Goetze, S.; Xi, X-P.; Graf, K.; Fleck, E.; Hsueh, W.A. and Law, R.E. (1999): Troglitazone inhibits AII-induced ERK 1/2 nuclear translocation and activation in vascular smooth muscle cells, FEBS Lett, (vol. 452), pp.277-82.

[7] Goetze, S.; Kintscher, U.; Kaneshiro, K.; Meehan, W. P.; Collins, A.; Fleck, E.; Hsueh, W. A. and Law, R. E. (2001): TNFalpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2, Atherosclerosis, (vol. 159), No. 1, pp.93-101..

[8] Goetze, S.; Kintscher, U.; Kim, S.; Meehan, W.P.; Kaneshiro, K.; Collins, A.R.; Fleck, E.; Hsueh, W.A. and Law, R.E. (2001): PPARgamma-ligands inhibit nuclear but not cytosolic ERK-MAPK-regulated steps in vascular smooth muscle cell migration., J Cardiovasc Pharmacol, (vol. 38), pp.909-921.

[9] Barbier, O.; Torra, I.P.; Duguay, Y.; Blanquart, C.; Fruchart, J.C.; Glineur, C. and Staels, B. (2002): Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis., Arterioscl Thromb Vasc Biol, (vol. 22), pp.717-26.

[10] Hsueh, W.A. and Law, R.E: (2001): PPARgamma and atherosclerosis: effects on cell growth and movement, Arterioscler Thromb Vasc Biol, (vol. 21), pp.1891-5.

[11] Neve, B. P.; Fruchart, J. and Staels, B. (2000): Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis, Biochem Pharmacol, (vol. 60), No. 8, pp.1245-50.

[12] Bishop-Bailey, D. (2000): Peroxisome proliferator-activated receptors in the cardiovascular system, Br J Pharmacol, (vol. 129), No. 5, pp.823-34.

[13] Goetze, S.; Xi, X. P.; Kawano, H.; Gotlibowski, T.; Fleck, E.; Hsueh, W. A. and Law, R. E. (1999): PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells, J Cardiovasc Pharmacol, (vol. 33), No. 5, pp.798-806.

[14] Goetze, S.; Kim, S. ; Xi, X.P.; Graf, K.; Yang, D.C:; Fleck, E.; Meehan, P.W.; Hsueh, W.A. and Law, R.E. (2000): Troglitazone inhibits mitogenic signaling by insulin in vascular smooth muscle cells, J Cardiovasc Pharmacol, (vol. 35), pp.749-57.

[15] Law, R. E.; Goetze, S.; Xi, X. P.; Jackson, S.; Kawano, Y.; Demer, L.; Fishbein, M. C.; Meehan, W. P. and Hsueh, W. A. (2000): Expression and function of PPARgamma in rat and human vascular smooth muscle cells, Circulation, (vol. 101), No. 11, pp.1311-8.

[16] Goetze, S.; Bungenstock, A.; Eilers, F.; Czupalla, C.; Stawowy, P; Kintscher, U.; Spencer-Hänsch, C.; Nürnberg, B.; Graf, K.; Law, R.E.; Fleck, E. and Gräfe, M (2002): Leptin-induced migration of endothelial cells is Akt- and MAPK-dependent and inhibited by PPARgamma-ligands, Hypertension, (vol. 40), pp.748-754.

[17] Goetze, S.; Eilers, F.; Bungenstock, A.; Kintscher, U.; Stawowy, P.; Blaschke, F.; Graf, K.; Law, R.E:; Fleck, E. and Gräfe, M. (2002): PPAR-activators inhibit endothelial cell migration by targeting Akt, Biochem Biophys Res Comm, (vol. 293), pp.1431-7.


[Seite 24↓]

[18] Marx, N.; Schonbeck, U.; Lazar, M. A.; Libby, P. and Plutzky, J. (1998): Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells, Circ Res, (vol. 83), No. 11, pp.1097-103. http://www.circresaha.org/cgi/content/full/83/11/1097

[19] Marx, N.; Sukhova, G.; Murphy, C.; Libby, P. and Plutzky, J. (1998): Macrophages in human atheroma contain PPARgamma: differentiation- dependent peroxisomal proliferator-activated receptor gamma(PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro, Am J Pathol, (vol. 153), No. 1, pp.17-23.

[20] Marx, N.; Bourcier, T.; Sukhova, G. K.; Libby, P. and Plutzky, J. (1999): PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease, Arterioscler Thromb Vasc Biol, (vol. 19), No. 3, pp.546-51. http://www.atvbaha.org/cgi/content/full/19/3/546

[21] Bishop-Bailey, D. and Hla, T. (1999): Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2, J Biol Chem, (vol. 274), No. 24, pp.17042-8. http://www.jbc.org/cgi/content/full/274/24/17042

[22] Staels, B.; Koenig, W.; Habib, A.; Merval, R.; Lebret, M.; Torra, I. P.; Delerive, P.; Fadel, A.; Chinetti, G.; Fruchart, J. C.; Najib, J.; Maclouf, J. and Tedgui, A. (1998): Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators, Nature, (vol. 393), No. 6687, pp.790-3.

[23] Kliewer, S.A.; Sundseth, S.S:; Jones, S.A.; Brown, P.J.; Wisely, G.B.; Koble, C.S.; Devchand, P.; Wahli, W.; Willson, T.M.; Lenhard, J.M. and Lehmann, J.M. (1997): Fatty acids and eisosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptor alpha and gamma., Proc Natl Acad Sci, (vol. 94), pp.4318-23.

[24] Forman, B.M.; Chen, J. and Evans, R.M. (1997): Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta., Proc Natl Acad Sci, (vol. 94), pp.4312-17.

[25] Kliewer, S. A.; Lenhard, J. M.; Willson, T. M.; Patel, I.; Morris, D. C. and Lehmann, J. M. (1995): A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation, Cell, (vol. 83), No. 5, pp.813-9.

[26] Nagy, Laszlo; Tontonoz, Peter; Alvarez, Jacqueline G. A.; Chen, Hongwu and Evans, Ronald M. (1998): Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARg, Cell, (vol. 93), No. April 17, pp.229-240.

[27] Lehmann, J. M.; Moore, L. B.; Smith-Oliver, T. A.; Wilkison, W. O.; Willson, T. M. and Kliewer, S. A. (1995): An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma), J Biol Chem, (vol. 270), No. 22, pp.12953-6. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer? , http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmim%3ffield=medline_uid&search=7768881

[28] Schoonjans, K.; Peinado-Onsurbe, J.; Lefebvre, A.M.; Heyman, R.A.; Briggs, M.; Deeb, S.; Staels, B. and Auwerx, J. (1996): PPARalpha and gamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene., EMBO J, (vol. 15), pp.5336-48.

[29] Marx, N. and Hombach, V. (2001): Peroxisome proliferator-activated receptors (PPARs) in the vessel wall: new regulators of gene expression in vascular cells, Z Kardiol, (vol. 90(7)), pp.470-7.

[30] Law, R. E.; Meehan, W. P.; Xi, X. P.; Graf, K.; Wuthrich, D. A.; Coats, W.; Faxon, D. and Hsueh, W. A. (1996): Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia, J Clin Invest, (vol. 98), No. 8, pp.1897-905. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?, http://www.jci.org/cgi/content/full/98/8/1897

[31] Goetze, S.; Xi, X. P.; Kawano, Y.; Kawano, H.; Fleck, E.; Hsueh, W. A. and Law, R. E. (1999): TNF-alpha-induced migration of vascular smooth muscle cells is MAPK dependent, Hypertension, (vol. 33), No. 1 Pt 2, pp.183-9. http://www.hypertensionaha.org/cgi/content/full/33/1/183

[32] Kintscher, U.; Goetze, S.; Wakino, S.; Kim, S.; Nagpal, S.; Chandraratna, R. A.; Graf, K.; Fleck, E.; Hsueh, W. A. and Law, R. E. (2000): Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes, Eur J Pharmacol, (vol. 401), No. 3, pp.259-70..


[Seite 25↓]

[33] Nigro, J.; Dilley, R.J. and Little, P.J. (2002): Differential effects of gemfibrozil on migration, proliferation and proteoglycan production in human vascular smooth muscle cells., Atherosclerosis, (vol. 162), pp.119-29.

[34] Schwartz, S. M. (1997): Perspectives series: cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis, J Clin Invest, (vol. 99), No. 12, pp.2814-6. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?, http://www.jci.org/cgi/content/full/99/12/2814

[35] Casscells, W. (1992): Migration of smooth muscle and endothelial cells. Critical events in restenosis, Circulation, (vol. 86), No. 3, pp.723-9.

[36] Graf, K.; Xi, X. P.; Yang, D.; Fleck, E.; Hsueh, W. A. and Law, R. E. (1997): Mitogen-activated protein kinase activation is involved in platelet- derived growth factor-directed migration by vascular smooth muscle cells, Hypertension, (vol. 29), No. 1 Pt 2, pp.334-9.

[37] Nelson, P. R.; Yamamura, S.; Mureebe, L.; Itoh, H. and Kent, K. C. (1998): Smooth muscle cell migration and proliferation are mediated by distinct phases of activation of the intracellular messenger mitogen-activated protein kinase, J Vasc Surg, (vol. 27), No. 1, pp.117-25.

[38] Xi, X-P.; Graf, K.; Goetze, S.; Fleck, E.; Hsueh, W.A. and Law, R.E. (1999): Central Role of the MAPK pathway in AII-mediated DNA-synthesis and migration in rat vascular smooth muscle cells, Arteriosclerosis, Thrombosis and Vascular Biology, (vol. 19), pp.73-82.

[39] Klemke, R. L.; Cai, S.; Giannini, A. L.; Gallagher, P. J.; de Lanerolle, P. and Cheresh, D. A. (1997): Regulation of cell motility by mitogen-activated protein kinase, J Cell Biol, (vol. 137), No. 2, pp.481-92. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?, http://www.jcb.org/cgi/content/full/137/2/481

[40] Gille, H.; Kortenjann, M.; Thomae, O.; Moomaw, C.; Slaughter, C.; Cobb, M. H. and Shaw, P. E. (1995): ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation, Embo J, (vol. 14), No. 5, pp.951-62.

[41] Gille, H.; Kortenjann, M.; Strahl, T. and Shaw, P. E. (1996): Phosphorylation-dependent formation of a quaternary complex at the c- fos SRE, Mol Cell Biol, (vol. 16), No. 3, pp.1094-102.

[42] Cheresh, D. A.; Leng, J. and Klemke, R. L. (1999): Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells, J Cell Biol, (vol. 146), No. 5, pp.1107-16.

[43] Pauly, R. R.; Passaniti, A.; Bilato, C.; Monticone, R.; Cheng, L.; Papadopoulos, N.; Gluzband, Y. A.; Smith, L.; Weinstein, C.; Lakatta, E. G. and et al. (1994): Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation, Circ Res, (vol. 75), No. 1, pp.41-54.

[44] Zempo, N.; Koyama, N.; Kenagy, R. D.; Lea, H. J. and Clowes, A. W. (1996): Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor, Arterioscler Thromb Vasc Biol, (vol. 16), No. 1, pp.28-33.

[45] Haas, T.L.; Stitelmann, D.; Davis, S.J.; Apte, S.S. and Madri, J.A. (1999): Egr-1 mediates extracellular matrix-driven transcription of membrane type I matrix metalloproteinase in endothelium., J Biol Chem, (vol. 274), pp.22679-685.

[46] Westermarck, J. and Kahari, V.M. (1999): Regulation of matrix metalloproteinase expression in tumor invasion, FASEB J, (vol. 13), pp.781-792.

[47] Santiago, F.S.; Atkins, D.G. and Kachigian, L.M. (1999): Vascular smooth muscle cell proliferation and regrowth after mechanical injury in vitro are Egr-1/NGFI-A-dependent, Am J Pathol, (vol. 155), pp.897-905.


[Seite 26↓]

[48] Iwasaka, I.; Tanaka, K.; Abe, M. and Sato, Y. (1996): Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascualr endothelial cells, J Cell Physiol, (vol. 169), pp.522-531.

[49] Dimmeler, S.; Dernbach, E. and Zeiher, A. M. (2000): Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration, FEBS Lett, (vol. 477), No. 3, pp.258-62.

[50] Duan, C.; Bauchat, J. R. and Hsieh, T. (2000): Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I-induced vascular smooth muscle cell proliferation and migration, Circ Res, (vol. 86), No. 1, pp.15-23..

[51] Imai, Y. and Clemmons, D. R. (1999): Roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in stimulation of vascular smooth muscle cell migration and deoxyriboncleic acid synthesis by insulin-like growth factor-I, Endocrinology, (vol. 140), No. 9, pp.4228-35..

[52] Ricote, M.; Li, A. C.; Willson, T. M.; Kelly, C. J. and Glass, C. K. (1998): The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation, Nature, (vol. 391), No. 6662, pp.79-82.

[53] Fukuda, M.; Gotoh, Y. and Nishida, E. (1997): Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase, Embo J, (vol. 16), No. 8, pp.1901-8. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?, http://www.emboj.org/cgi/content/full/16/8/1901

[54] Liao, D. F.; Monia, B.; Dean, N. and Berk, B. C. (1997): Protein kinase C-zeta mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells, J Biol Chem, (vol. 272), No. 10, pp.6146-50. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?, http://www.jbc.org/cgi/content/full/272/10/6146

[55] Oda, N.; Abe, M. and Sato, Y. (1999): ETS-1 converts endothelial cells to the angiogenic phenotype by inducing the expression of matrix metalloproteinases and integrin beta3, J Cell Physiol, (vol. 178), No. 2, pp.121-32.

[56] Patel, L.; Pass, I.; Coxon, P.; Downes, C.P.; Smith, S.A. and Macphee, C.H. (2001): Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN, Curr Biol, (vol. 11), pp.764-8.

[57] Arico, S.; Petiot, A.; Bauvy, C.; Dubbelhuis, P.F.; Meijer, A.J.; Codogno, P. and Ogier-Denis, E. (2001): The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the PI3 Kinase / PKB pathway, J Biol Chem, (vol. 276), pp.35243-6.

[58] Goetze, S.; Kintscher, U.; Kawano, H.; Kawano, Y.; Wakino, S.; Fleck, E.; Hsueh, W. A. and Law, R. E. (2000): Tumor necrosis factor alpha inhibits insulin-induced mitogenic signaling in vascular smooth muscle cells, J Biol Chem, (vol. 275), No. 24, pp.18279-83.

[59] Xi, X. P.; Graf, K.; Goetze, S.; Hsueh, W. A. and Law, R. E. (1997): Inhibition of MAP kinase blocks insulin-mediated DNA synthesis and transcriptional activation of c-fos by Elk-1 in vascular smooth muscle cells, FEBS Lett, (vol. 417), No. 3, pp.283-6.

[60] Saltiel, A. R. (1996): Diverse signaling pathways in the cellular actions of insulin, Am J Physiol, (vol. 270), No. 3 Pt 1, pp.E375-85.

[61] Wasylyk, B.; Hagman, J. and Hartmann, A.G. (1998): Ets transcription factors: nuclear effectors of the Ras-MAP-Kinase signaling pathway, Trends Biochem Sci, (vol. 23), pp.213-216.

[62] Collins, A. R.; Meehan, W. P.; Kintscher, U.; Jackson, S.; Wakino, S.; Noh, G.; Palinski, W.; Hsueh, W. A. and Law, R. E. (2001): Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice, Arterioscler Thromb Vasc Biol, (vol. 21), No. 3, pp.365-71..

[63] Minamikawa, J.; Tanaka, S.; Yamauchi, M.; Inoue, D. and Koshiyama, H. (1998): Potent inhibitory effect of troglitazone on carotid artery wall thickness in type 2 diabetes., J Clin Endocrinol Metab, (vol. 83), pp.1818-20.


[Seite 27↓]

[64] Koshiyama, H.; Shimono, D.; Kuwamura, N.; Minamikawa, J. and Nakamura, Y. (2001): Inhibitory effect of pioglitazone on carotid artery wall thickness in type 2 diabetes., J Clin Endocrinol Metab, (vol. 86), pp.3452-6.

[65] Zuckerman, S.H.; Kauffman, R.F. and Evans, G.F. (2002): Peroxisome proliferator-activated receptor alpha, gamma coagonist LY465608 inhibits macrophage activation and atherosclerosis in apolipoprotein E knockout mice., Lipids, (vol. 37), pp.487-94.

[66] Hahmann, H.W.; Bunte, T.; Hellwig, N.; Hau, U.; Becker, D.; Dyckmans, J.; Keller, H.E. and Schieffer, H.J. (1991): Progression and regression of minor coronary arterial narrowings by quantitative angiography after fenofibrate therapy., Am J Cardiol, (vol. 67), pp.957-61.

[67] Steiner, G.; Stewart, D. and Hosking, J.D. (1999): Baseline characteristics of the study population in the diabetes atherosclerosis intervention study (DAIS). World health organization collaborating centre for the study of atherosclerosis in diabetes., Am J Cardiol, (vol. 84), pp.1004-10.

[68] de Faire, U.; Ericsson, C.G.; Grip, L.; Nilsson, J.; Svane, B. and Hamsten, A. (1997): Retardation of coronary atherosclerosis: the bezafibrate coronary atherosclerosis intervention trial (BECAIT) and other angiographic trials., Cardiovasc Drugs Ther, (vol. 11 (Suppl 1)), pp.257-63.

[69] Rubins, H.B.; Robins, S.J.; Collins, D.; Fye, C.L.; Anderson, J.W.; Elam, M.B.; Faas, F.H.; Linares, E.; Schaefer, E.J.; Schectman, G.; Wilt, T.J. and Wittes, J. (1999): Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans affairs high-density lipoprotein cholesterol intervention trial study group., N Engl J Med, (vol. 341), pp.410-8.

[70] Group, DAIS Study (2001): Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes atherosclerosis intervention study, a randomized study., Lancet, (vol. 357), pp.905-10.

[71] Frick, M.H.; Syvänne, M.; Nieminen, M.S.; Kauma, H.; Majahalme, S.; Virtanen, V.; Kesäniemi, Y.A.; Pasternack, A. and Taskinen, M.R. (1997): Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol., Circulation, (vol. 96), pp.2137-43.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
20.10.2004