VII. Literaturverzeichnis

[1] Hotchkiss, R. S. und Karl, I. E. (2003): The pathophysiology and treatment of sepsis, N Engl J Med 348 [2], Seite 138-150.

[2] Bone, R. C. (1992): American college of chest physicians/society of critical care medicine consensus conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis, Crit Care Med 20, Seite 864-874.

[3] Thomas, L. (1972): Germs, N Engl J Med 287, Seite 553-555.

[4] Mosmann, T. R. und Sad, S. (1996): The expanding universe of T-cell subsets: Th1, Th2 and more, Immunol Today 17 [3], Seite 138-146.

[5] Beutler, B. und Poltorak, A. (2001): Sepsis and evolution of the innate immune response, Crit Care Med 29 [Suppl 7], Seite S2-S6.

[6] Abbas, A. K.; Murphy, K. M. und Sher, A. (1996): Functional diversity of helper T lymphocytes, Nature 383 [6603], Seite 787-793.

[7] Heppner, G. und Weiss, D. W. (1965): High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures, J Bacteriol 90, Seite 696-703.

[8] O'Brien, A. D.; Rosenstreich, D. L.; Scher, I.; Campbell, G. H.; MacDermott, R. P. und Formal, S. B. (1980): Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene, J Immunol 124 [1], Seite 20-24.

[9] Michalek, S. M.; Moore, R. N.; McGhee, J. R.; Rosenstreich, D. L. und Mergenhagen, S. E. (1980): The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxim, J Infect Dis 141 [1], Seite 55-63.

[10] Tracey, K. J.; Beutler, B.; Lowry, S. F.; Merryweather, J.; Wolpe, S.; Milsark, I. W.; Hariri, R. J.; Fahey, T. J.; Zentella, A. und Albert, J. D. (1986): Shock and tissue injury induced by recombinant human cachectin, Science 234, Seite 470-474.

[11] Beutler, B.; Milsark, I. W. und Cerami, A. C. (1985): Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin, Science 229, Seite 869-871.

[12] Tracey, K. J.; Fong, Y.; Hesse, D. G.; Manogue, K. R.; Lee, A. T.; Kuo, G. C.; Lowry, S. F. und Cerami, A. (1987): Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia, Nature 330 [6149], Seite 662-664.

[13] Eichenholz, P. W.; Eichacker, P. Q.; Hoffman, W. D.; Banks, S. M.; Parrillo, J. E.; Danner, R. L. und Natanson, C. (1992): Tumor necrosis factor challenges in canines: patterns of cardiovascular dysfunction, Am J Physiol 263 [3 Pt 2], Seite H668-H675.

[14] Wright, S. D.; Ramos, R. A.; Tobias, P. S.; Ulevitch, R. J. und Mathison, J. C. (1990): CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science 249 [4975], Seite 1431-1433.

[15] Lien, E. und Ingalls, R. R. (2002): Toll-like receptors, Crit Care Med 30 [1 Supp], Seite S1-S11.

[16] Hack, C. E. (2000): Tissue factor pathway of coagulation in sepsis, Crit Care Med 28 [9 Suppl], Seite S25-S30.

[17] Vallet, B. und Wiel, E. (2001): Endothelial cell dysfunction and coagulation, Crit Care Med 29 [7 Suppl], Seite S36-S41.

[18] Vincent, J. L.; Yagushi, A. und Pradier, O. (2002): Platelet function in sepsis, Crit Care Med 30 [5 Suppl], Seite S313-S317.

[19] Vincent, J. L.; Zhang, H.; Szabo, C. und Preiser, J. C. (2000): Effects of nitric oxide in septic shock, Am J Respir Crit Care Med 161 [6], Seite 1781-1785.

[20] Bone, R. C. (1991): The pathogenesis of sepsis, Ann Intern Med 115, Seite 457-469.

[21] Ziegler, E. J.; Fisher, C. J. Jr.; Sprung, C. L.; Straube, R. C.; Sadoff, J. C.; Foulke, G. E.; Wortel, C. H.; Fink, M. P.; Dellinger, R. P.; Teng, N. N. und et al (1991): Treatment of gram-negative bacteremia and septic shock with HA- 1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial, N Engl J Med 324, Seite 429-436.

[22] Fisher, C. J. Jr.; Opal, S. M.; Dhainaut, J. F.; Stephens, S.; Zimmerman, J. L.; Nightingale, P.; Harris, S. J.; Schein, R. M.; Panacek, E. A.; Vincent, J. L. und et, al (1993): Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis, Crit Care Med 21 [3], Seite 318-327.

[23] Dhainaut, J. F.; Vincent, J. L.; Richard, C.; Lejeune, P.; Martin, C.; Fierobe, L.; Stephens, S.; Ney, U. M. und Sopwith, M. (1995): CDP571, a humanized antibody to human tumor necrosis factor-alpha: safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock, Crit Care Med 23 [9], Seite 1461-1469.

[24] Cohen, J. und Carlet, J. (1996): INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group, Crit Care Med 24 [9], Seite 1431-1440.

[25] Abraham, E.; Wunderink, R.; Silverman, H.; Perl, T. M.; Nasraway, S.; Levy, H.; Bone, R.; Wenzel, R. P.; Balk, R.; Allred, R. und . (1995): Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group, JAMA 273 [12], Seite 934-941.

[26] Fisher, C. J. Jr.; Agosti, J. M.; Opal, S. M.; Lowry, S. F.; Balk, R. A.; Sadoff, J. C.; Abraham, E.; Schein, R. M. und Benjamin, E. (1996): Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group, N Engl J Med 334, Seite 1697-1702.

[27] Abraham, E.; Glauser, M. P.; Butler, T.; Garbino, J.; Gelmont, D.; Laterre, P. F.; Kudsk, K.; Bruining, H. A.; Otto, C.; Tobin, E.; Zwingelstein, C.; Lesslauer, W. und Leighton, A. (1997): p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. Ro 45-2081 Study Group, JAMA 277, Seite 1531-1538.

[28] Fisher, C. J.; Slotman, G. J.; Opal, S. M.; Pribble, J. P.; Bone, R. C.; Emmanuel, G.; Ng, D.; Bloedow, D. C. und Catalano, M. A. (1994): Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. The IL-1RA Sepsis Syndrome Study Group, Crit Care Med 22 [1], Seite 12-21.

[29] Opal, S. M.; Fisher, C. J. Jr.; Dhainaut, J. F.; Vincent, J. L.; Brase, R.; Lowry, S. F.; Sadoff, J. C.; Slotman, G. J.; Levy, H.; Balk, R. A.; Shelly, M. P.; Pribble, J. P.; LaBrecque, J. F.; Lookabaugh, J.; Donovan, H.; Dubin, H.; Baughman, R.; Norman, J.; DeMaria, E.; Matzel, K.; Abraham, E. und Seneff, M. (1997): Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group, Crit Care Med 25 [7], Seite 1115-1124.

[30] Fein, A. M.; Bernard, G. R.; Criner, G. J.; Fletcher, E. C.; Good, J. T., Jr.; Knaus, W. A.; Levy, H.; Matuschak, G. M.; Shanies, H. M.; Taylor, R. W. und Rodell, T. C. (1997): Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group, JAMA 277, Seite 482-487.

[31] Dhainaut, J. F.; Tenaillon, A.; Le Tulzo, Y.; Schlemmer, B.; Solet, J. P.; Wolff, M.; Holzapfel, L.; Zeni, F.; Dreyfuss, D. und Mira, J. P. (1994): Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. BN 52021 Sepsis Study Group, Crit Care Med 22 [11], Seite 1720-1728.

[32] Bernard, G. R.; Wheeler, A. P.; Russell, J. A.; Schein, R.; Summer, W. R.; Steinberg, K. P.; Fulkerson, W. J.; Wright, P. E.; Christman, B. W.; Dupont, W. D.; Higgins, S. B. und Swindell, B. B. (1997): The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group, N Engl J Med 336 [13], Seite 912-918.

[33] Grover, R.; Zaccardelli, D.; Colice, G.; Guntupalli, K.; Watson, D. und Vincent, J. L. (1999): An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock., Crit Care Med 27 [5], Seite 913-922.

[34] Lopez, A.; Lorente, J. A.; Steingrub, J.; Bakker, J.; McLuckie, A.; Willatts, S.; Brockway, M.; Anzueto, A.; Holzapfel, L.; Breen, D.; Silverman, M. S.; Takala, J.; Donaldson, J.; Arneson, C.; Grove, G.; Grossman, S. und Grover, R. (2004): Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock, Crit Care Med 32 [1], Seite 21-30.

[35] Zeni, F.; Freeman, B. und Natanson, C. (1997): Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment, Crit Care Med 25 [7], Seite 1095-1100.

[36] Deitch, E. A. (1998): Animal models of sepsis and shock: a review and lessons learned, Shock 9 [1], Seite 1-11.

[37] Bone, R. C.; Grodzin, C. J. und Balk, R. A. (1997): Sepsis: a new hypothesis for pathogenesis of the disease process, Chest 112 [1], Seite 235-243.

[38] Nelson, S. (1999): A question of balance, Am J Respir Crit Care Med 159 [5 Pt 1], Seite 1365-1367.

[39] Abraham, E. (1999): Why immunomodulatory therapies have not worked in sepsis, Intensive Care Med 25 [6], Seite 556-566.

[40] Eichacker, P. Q.; Parent, C.; Kalil, A.; Esposito, C.; Cui, X.; Banks, S. M.; Gerstenberger, E. P.; Fitz, Y.; Danner, R. L. und Natanson, C. (2002): Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis, Am J Respir Crit Care Med 166 [9], Seite 1197-1205.

[41] Adams, D. H. und Shaw, S. (1994): Leucocyte-endothelial interactions and regulation of leucocyte migration, Lancet 343, Seite 831-836.

[42] Mercer-Jones, M. A.; Heinzelmann, M.; Peyton, J. C.; Wickel, D.; Cook, M. und Cheadle, W. G. (1997): Inhibition of neutrophil migration at the site of infection increases remote organ neutrophil sequestration and injury, Shock 8 [3], Seite 193-199.

[43] Echtenacher, B.; Weigl, K.; Lehn, N. und Mannel, D. N. (2001): Tumor necrosis factor-dependent adhesions as a major protective mechanism early in septic peritonitis in mice, Infect Immun 69 [6], Seite 3550-3555.

[44] Girardin, E.; Grau, G. E.; Dayer, J. M.; Roux Lombard, P. und Lambert, P. H. (1988): Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura, N Engl J Med 319, Seite 397-400.

[45] Casey, L. C.; Balk, R. A. und Bone, R. C. (1993): Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome, Ann Intern Med 119 [8], Seite 771-778.

[46] Endo, S.; Inada, K.; Yamada, Y.; Kasai, T.; Takakuwa, T.; Nakae, H.; Kamei, Y.; Shimamura, T.; Suzuki, T.; Taniguchi, S. und Yoshida, M. (1996): Plasma levels of interleukin-1 receptor antagonist (IL-1ra) and severity of illness in patients with burns, J Med 27 [1-2], Seite 57-71.

[47] Pruitt, J. H.; Welborn, M. B.; Edwards, P. D.; Harward, T. R.; Seeger, J. W.; Martin, T. D.; Smith, C.; Kenney, J. A.; Wesdorp, R. I.; Meijer, S.; Cuesta, M. A.; Abouhanze, A.; Copeland, E. M.; Giri, J.; Sims, J. E.; Moldawer, L. L. und Oldenburg, H. S. (1996): Increased soluble interleukin-1 type II receptor concentrations in postoperative patients and in patients with sepsis syndrome, Blood 87, Seite 3282-3288.

[48] Friedman, G.; Jankowski, S.; Marchant, A.; Goldman, M.; Kahn, R. J. und Vincent, J. L. (1997): Blood interleukin 10 levels parallel the severity of septic shock, J Crit Care 12 [4], Seite 183-187.

[49] Rogy, M. A.; Coyle, S. M.; Oldenburg, H. S.; Rock, C. S.; Barie, P. S.; Van Zee, K. J.; Smith, C. G.; Moldawer, L. L. und Lowry, S. F. (1994): Persistently elevated soluble tumor necrosis factor receptor and interleukin-1 receptor antagonist levels in critically ill patients, J Am Coll Surg 178 [2], Seite 132-138.

[50] Oberholzer, A.; Oberholzer, C. und Moldawer, L. L. (2000): Cytokine signaling--regulation of the immune response in normal and critically ill states, Crit Care Med 28 [4 Suppl], Seite N3-12.

[51] Bone, R. C. (1996): Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS), Ann Intern Med 125 [8], Seite 680-687.

[52] Bone, R. C. (1996): Sir Isaac Newton, sepsis, SIRS, and CARS, Crit Care Med 24 [7], Seite 1125-1128.

[53] Munford, R. S. und Pugin, J. (2001): Normal responses to injury prevent systemic inflammation and can be immunosuppressive, Am J Respir Crit Care Med 163 [2], Seite 316-321.

[54] Ertel, W.; Kremer, J. P.; Kenney, J.; Steckholzer, U.; Jarrar, D.; Trentz, O. und Schildberg, F. W. (1995): Downregulation of proinflammatory cytokine release in whole blood from septic patients, Blood 85 [5], Seite 1341-1347.

[55] Opal, S. M. und DePalo, V. A. (2000): Anti-inflammatory cytokines, Chest 117 [4], Seite 1162-1172.

[56] Gogos, C. A.; Drosou, E.; Bassaris, H. P. und Skoutelis, A. (2000): Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options, J Infect Dis 181 [1], Seite 176-180.

[57] O'Sullivan, S. T.; Lederer, J. A.; Horgan, A. F.; Chin, D. H.; Mannick, J. A. und Rodrick, M. L. (1995): Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection, Ann Surg 222 [4], Seite 482-490.

[58] Heidecke, C. D.; Hensler, T.; Weighardt, H.; Zantl, N.; Wagner, H.; Siewert, J. R. und Holzmann, B. (1999): Selective defects of T lymphocyte function in patients with lethal intraabdominal infection, Am J Surg 178 [4], Seite 288-292.

[59] Pellegrini, J. D.; De, A. K.; Kodys, K.; Puyana, J. C.; Furse, R. K. und Miller-Graziano, C. (2000): Relationships between T lymphocyte apoptosis and anergy following trauma, J Surg Res 88 [2], Seite 200-206.

[60] Hotchkiss, R. S.; Swanson, P. E.; Freeman, B. D.; Tinsley, K. W.; Cobb, J. P.; Matuschak, G. M.; Buchman, T. G. und Karl, I. E. (1999): Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction, Crit Care Med 27 [7], Seite 1230-1251.

[61] Voll, R. E.; Herrmann, M.; Roth, E. A.; Stach, C.; Kalden, J. R. und Girkontaite, I. (1997): Immunosuppressive effects of apoptotic cells, Nature 390 [6658], Seite 350-351.

[62] Hotchkiss, R. S.; Tinsley, K. W.; Swanson, P. E.; Chang, K. C.; Cobb, J. P.; Buchman, T. G.; Korsmeyer, S. J. und Karl, I. E. (1999): Prevention of lymphocyte cell death in sepsis improves survival in mice, Proc Natl Acad Sci USA 96 [25], Seite 14541-14546.

[63] Hotchkiss, R. S.; Chang, K. C.; Swanson, P. E.; Tinsley, K. W.; Hui, J. J.; Klender, P.; Xanthoudakis, S.; Roy, S.; Black, C.; Grimm, E.; Aspiotis, R.; Han, Y.; Nicholson, D. W. und Karl, I. E. (2000): Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte, Nat Immunol 1 [6], Seite 496-501.

[64] Stüber, F. (2001): Effects of genomic polymorphisms on the course of sepsis: is there a concept for gene therapy?, J Am Soc Nephrol 12 Suppl 17, Seite S60-S64.

[65] Schröder, J.; Kahlke, V.; Book, M. und Stüber, F. (2000): Gender differences in sepsis: genetically determined?, Shock 14 [3], Seite 307-310.

[66] Fang, X. M.; Schröder, S.; Hoeft, A. und Stuber, F. (1999): Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis, Crit Care Med 27 [7], Seite 1330-1334.

[67] Weighardt, H.; Heidecke, C. D.; Emmanuilidis, K.; Maier, S.; Bartels, H.; Siewert, J. R. und Holzmann, B. (2000): Sepsis after major visceral surgery is associated with sustained and interferon-gamma-resistant defects of monocyte cytokine production, Surgery 127 [3], Seite 309-315.

[68] Bone, R. C.; Fisher, C. J. Jr.; Clemmer, T. P.; Slotman, G. J.; Metz, C. A. und Balk, R. A. (1989): Sepsis syndrome: a valid clinical entity. Methylprednisolone Severe Sepsis Study Group, Crit Care Med 17, Seite 389-393.

[69] Bone, R. C.; Fisher, C. J. Jr.; Clemmer, T. P.; Slotman, G. J.; Metz, C. A. und Balk, R. A. (1987): A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock, N Engl J Med 317 [11], Seite 653-658.

[70] Anderson, R. N. (2002): Deaths: Leading causes for 2000, CDC National Vital Statistics Report 50 [16], Seite 1-86. URL:">

[71] Sands, K. E.; Bates, D. W.; Lanken, P. N.; Graman, P. S.; Hibberd, P. L.; Kahn, K. L.; Parsonnet, J.; Panzer, R.; Orav, E. J.; Snydman, D. R.; Black, E.; Schwartz, J. S.; Moore, R.; Johnson, B. L., Jr. und Platt, R. (1997): Epidemiology of sepsis syndrome in 8 academic medical centers. Academic Medical Center Consortium Sepsis Project Working Group, JAMA 278, Seite 234-240.

[72] Angus, D. C.; Linde-Zwirble, W. T.; Lidicker, J.; Clermont, G.; Carcillo, J. und Pinsky, M. R. (2001): Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care, Crit Care Med 29 [7], Seite 1303-1310.

[73] Moerer, O.; Schmid, A.; Hofmann, M.; Herklotz, A.; Reinhart, K.; Werdan, K.; Schneider, H. und Burchardi, H. (2002): Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use, Intensive Care Med 28 [10], Seite 1440-1446.

[74] Rangel-Frausto, M. S.; Pittet, D.; Costigan, M.; Hwang, T.; Davis, C. S. und Wenzel, R. P. (1995): The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study, JAMA 273 [2], Seite 117-123.

[75] Friedman, G.; Silva, E. und Vincent, J. L. (1998): Has the mortality of septic shock changed with time, Crit Care Med 26 [12], Seite 2078-2086.

[76] Kaiser, H. und Klinkenberg, N. (1988): Cortison - Die Geschichte eines Medikaments, Wissenschaftliche Buchgesellschaft, Darmstadt.

[77] Selye, H. (1946): The general adaptation syndrome and the diseases of adaptation, J Clin Endocrinol Metab 6, Seite 117-230.

[78] Hench, P. S.; Kendall, E. C.; Slocumb, C. H. und Polley, H. F. (1949): The effect of a hormone of of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone:Compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis, Proc Staff Meet Mayo Clin 24, Seite 181-197.

[79] Yamamoto, K. R. (1985): Steroid receptor regulated transcription of specific genes and gene networks, Annu Rev Genet 19, Seite 209-252.

[80] Bamberger, C. M.; Schulte, H. M. und Chrousos, G. P. (1996): Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids, Endocr Rev 17 [3], Seite 245-261.

[81] Karin, M. (1998): New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable?, Cell 93 [4], Seite 487-490.

[82] Barnes, P. J. (1995): Anti-inflammatory mechanisms of glucocorticoids, Biochem Soc Trans 23 [4], Seite 940-945.

[83] Pratt, W. B. (1993): The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor, J Biol Chem 268 [29], Seite 21455-21458.

[84] Costas, M.; Trapp, T.; Pereda, M. P.; Sauer, J.; Rupprecht, R.; Nahmod, V. E.; Reul, J. M.; Holsboer, F. und Arzt, E. (1996): Molecular and functional evidence for in vitro cytokine enhancement of human and murine target cell sensitivity to glucocorticoids. TNF-alpha priming increases glucocorticoid inhibition of TNF-alpha-induced cytotoxicity/apoptosis, J Clin Invest 98, Seite 1409-1416.

[85] Drouin, J.; Sun, Y. L.; Chamberland, M.; Gauthier, Y.; De Lean, A.; Nemer, M. und Schmidt, T. J. (1993): Novel glucocorticoid receptor complex with DNA element of the hormone- repressed POMC gene, EMBO J 12 [1], Seite 145-156.

[86] Jonat, C.; Rahmsdorf, H. J.; Park, K. K.; Cato, A. C.; Gebel, S.; Ponta, H. und Herrlich, P. (1990): Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone, Cell 62 [6], Seite 1189-1204.

[87] Paliogianni, F.; Raptis, A.; Ahuja, S. S.; Najjar, S. M. und Boumpas, D. T. (1993): Negative transcriptional regulation of human interleukin 2 (IL- 2) gene by glucocorticoids through interference with nuclear transcription factors AP-1 and NF-AT, J Clin Invest 91 [4], Seite 1481-1489.

[88] Cippitelli, M.; Sica, A.; Viggiano, V.; Ye, J.; Ghosh, P.; Birrer, M. J. und Young, H. A. (1995): Negative transcriptional regulation of the interferon-gamma promoter by glucocorticoids and dominant negative mutants of c-Jun, J Biol Chem 270 [21], Seite 12548-12556.

[89] Karin, M. (1995): The regulation of AP-1 activity by mitogen-activated protein kinases, J Biol Chem 270 [28], Seite 16483-16486.

[90] Ray, A.; Siegel, M. D.; Prefontaine, K. E. und Ray, P. (1995): Anti-inflammation: direct physical association and functional antagonism between transcription factor NF-KB and the glucocorticoid receptor, Chest 107 [3 Suppl], Seite 139S.

[91] Caldenhoven, E.; Liden, J.; Wissink, S.; Van de Stolpe, A.; Raaijmakers, J.; Koenderman, L.; Okret, S.; Gustafsson, J. A. und Van der Saag, P. T. (1995): Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids, Mol Endocrinol 9 [4], Seite 401-412.

[92] Sapolsky, R. M.; Romero, L. M. und Munck, A. U. (2000): How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions, Endocr Rev 21 [1], Seite 55-89.

[93] De Bosscher, K.; Schmitz, M. L.; Vanden Berghe, W.; Plaisance, S.; Fiers, W. und Haegeman, G. (1997): Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct interference with transactivation, Proc Natl Acad Sci USA 94 [25], Seite 13504-13509.

[94] Auphan, N.; Didonato, J. A.; Rosette, C.; Helmberg, A. und Karin, M. (1995): Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis., Science 270, Seite 286-290.

[95] Scheinman, R. I.; Cogswell, P. C.; Lofquist, A. K. und Baldwin, A. S. J. (1995): Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids, Science 270, Seite 283-286.

[96] Meduri, G. U.; Tolley, E. A.; Chrousos, G. P. und Stentz, F. (2002): Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids, Am J Respir Crit Care Med 165 [7], Seite 983-991.

[97] Newton, R. (2000): Molecular mechanisms of glucocorticoid action: what is important?, Thorax 55 [7], Seite 603-613.

[98] Meduri, G. U. (1999): An historical review of glucocorticoid treatment in sepsis. Disease pathophysiology and the design of treatment investigation, Sepsis 3, Seite 21-38.

[99] Perla, D. und Marmorston, J. (1940): Suprarenal cortical hormone and salt in the treatment of pneumonia and other severe infections, Endocrinology 27, Seite 367-374.

[100] Waterhouse, R. (1911): Case of suprarenal apoplexy, Lancet 1, Seite 577.

[101] Friderichsen, C. (1918): Nebennierenapoplexie bei kleinen Kindern, Jb.Kinderheilkunde 87, Seite 109.

[102] Munck, A.; Guyre, P. M. und Holbrook, N. J. (1984): Physiological functions of glucocorticoids in stress and their relation to pharmacological actions, Endocr Rev 5 [1], Seite 25-44.

[103] Thomas, L. (1953): The effects of cortisone and adrenocorticotropic hormone on infection., Ann Rev Med 3, Seite 1-24.

[104] Kass, E. H. und Finland, M. (1953): Adrenocortical hormones in infection and immunity, Ann Rev Microbiol 7, Seite 361-388.

[105] Hahn, E. O.; Houser, H. B.; Rammelkamp, C. H.; Denny, F. W. und Wannamaker, L. W. (1951): Effect of cortisone on acute streptococcal infections and post-streptococcal complications, J Clin Invest 30, Seite 274-281.

[106] Spink, W. W. (1957): ACTH and adrenocorticoseroids as therapeutic adjuncts in infectious diseases (Part 1), N Engl J Med [257], Seite 979-983.

[107] Kass, E. H. und Finland, M. (1957): Adrenocortical hormones and the management of infection, Ann Rev Med 8, Seite 1-18.

[108] Melby, J. C.; Egdahl, R. H.; Bossenmaier, I. C. und Spink, W. W. (1959): Suppression by cortisol of increased serum-transaminase induced by endotoxin, Lancet 1, Seite 441-444.

[109] Melby, J. C. und Spink, W. W. (1958): Comparative studies on adrenal cortical function and cortisol metabolism in healthy adults and in pattients with shock due to infection, J Clin Invest 37, Seite 1791-1798.

[110] Spink, W. W. (1960): Adrenocortical steroids in the management of selected patients with infectious diseases, Ann Intern Med 53 [1], Seite 1-32.

[111] Weitzman, S. und Berger, S. (1974): Clinical trial design in studies of corticosteroids for bacterial infections, Ann Intern Med 81, Seite 36-42.

[112] Levitin, H.; Kendrick, M. I. und Kass, E. H. (1956): Effect of route of administration on protective action of corticosterone and cortisol against endotoxin, Proc Soc Exp Biol Med 93, Seite 306-309.

[113] Lillehei, R. C.; Longerbe, J. K. und Bloch, J. H. (1963): Physiology and therpy of bacteremic shock. Experimental and clinical observations, Am J Cardiol, Seite 599-613.

[114] Motsay, G. J.; Alho, A.; Jaeger, T.; Dietzman, R. H. und Lillehei, R. C. (1970): Effects of corticosteroids on the circulation in shock: experimental and clinical results, Fed Proc 29 [6], Seite 1861-1873.

[115] Motsay, G. J.; Dietzman, R. H.; Ersek, R. A. und Lillehei, R. C. (1970): Hemodynamic alterations and results of treatment in patients with gram- negative septic shock, Surgery 67 [4], Seite 577-583.

[116] Schumer, W. (1976): Steroids in the treatment of clinical septic shock, Ann Surg 184 [3], Seite 333-341.

[117] Sjölin, J. (1991): High-dose corticosteroid therapy in human septic shock: Has the jury reached a correct verdict?, Circ Shock 35, Seite 139-151.

[118] Holcroft, J. W.; Trunkey, D. D. und Carpenter, M. A. (1979): Extravasation of albumin in tissues of normal and septic baboons and sheep, J Surg Res 26 [4], Seite 341-347.

[119] Hill, S. L.; Elings, V. B. und Lewis, F. R. (1980): Changes in lung water and capillary permeability following sepsis and fluid overload, J Surg Res 28 [2], Seite 140-150.

[120] Till, G. O.; Johnson, K. J.; Kunkel, R. und Ward, P. A. (1982): Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites, J Clin Invest 69 [5], Seite 1126-1135.

[121] Jacob, H. S.; Moldow, C. F.; Flynn, P. J.; Weisdorf, D. J.; Vercellotti, G. M. und Hammerschmidt, D. E. (1982): Therapeutic ramifications of the interaction of complement, granulocytes, and platelets in the production of acute lung injury, Ann NY Acad Sci 384, Seite 489-495.

[122] Brigham, K. L.; Bowers, R. und Haynes, J. (1979): Increased sheep lung vascular permeability caused by Escherichia coli endotoxin, Circ Res 45 [2], Seite 292-297.

[123] Heflin, A. C., Jr. und Brigham, K. L. (1981): Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia, J Clin Invest 68 [5], Seite 1253-1260.

[124] Jacob, H. S.; Craddock, P. R.; Hammerschmidt, D. E. und Moldow, C. F. (1980): Complement-induced granulocyte aggregation: an unsuspected mechanism of disease, N Engl J Med 302 [14], Seite 789-794.

[125] Brigham, K. L.; Bowers, R. E. und McKeen, C. R. (1981): Methylprednisolone prevention of increased lung vascular permeability following endotoxemia in sheep, J Clin Invest 67 [4], Seite 1103-1110.

[126] Demling, R. H.; Smith, M.; Gunther, R. und Wandzilak, T. (1981): Endotoxin-induced lung injury in unanesthetized sheep: effect of methylprednisolone, Circ Shock 8 [3], Seite 351-360.

[127] Skubitz, K. M.; Craddock, P. R.; Hammerschmidt, D. E. und August, J. T. (1981): Corticosteroids block binding of chemotactic peptide to its receptor on granulocytes and cause disaggregation of granulocyte aggregates in vitro, J Clin Invest 68 [1], Seite 13-20.

[128] Hammerschmidt, D. E.; White, J. G.; Craddock, P. R. und Jacob, H. S. (1979): Corticosteroids inhibit complement-induced granulocyte aggregation. A possible mechanism for their efficacy in shock states, J Clin Invest 63 [4], Seite 798-803.

[129] Goldstein, J. M.; Roos, D.; Weisman, G. und Kaplan, H. B. (1976): Influence of corticosteroids on human polymorphonuclear leukocyte function in vitro: Reduction of lysosomal enzyme release and superoxide production., Inflammation 1, Seite 305-315.

[130] Muhlfelder, T. W.; Niemetz, J. und Kang, S. (1982): GLucocorticoids inhibit the generation of leukocyte procoagulant (tissue factor) activity, Blood 60 [5], Seite 1169-1172.

[131] Flower, R. J. und Blackwell, G. J. (1979): Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation, Nature 278 [5703], Seite 456-459.

[132] Sibbald, W. J.; Driedger, A. A.; Finley, R. J.; Holliday, R. L.; Austin, T. A.; Petrakos, A.; Powe, J. und Schurch, F. S. (1982): High-dose corticosteroids in the treatment of pulmonary microvascular injury, Ann NY Acad Sci 384, Seite 496-516.

[133] Hinshaw, L. B. (1985): High-dose corticosteroids in the critically ill patient. Current concept and future developments, Acta Chir Scand 526, Seite 129-137.

[134] Hellman, A. und Lundberg, D. (1985): Hemodynamic effects of high doses of corticosteroids, Acta Chir Scand 526, Seite 13-18.

[135] Raflo, G. T.; Jones, R. C., Jr. und Wangensteen, S. L. (1975): Inadequacy of steroids in the treatment of severe hemorrhagic shock, Am J Surg 130 [3], Seite 321-327.

[136] Roberts, R.; DeMello, V. und Sobel, B. E. (1976): Deleterious effects of methylprednisolone in patients with myocardial infarction, Circulation 53 [3 Suppl], Seite I204-I206.

[137] Hinshaw, L. B.; Beller, B. K.; Archer, L. T.; Flournoy, D. J.; White, G. L. und Phillips, R. W. (1979): Recovery from lethal Escherichia coli shock in dogs, Surg Gynecol Obstet 149 [4], Seite 545-553.

[138] Hinshaw, L. B.; Archer, L. T.; Beller-Todd, B. K.; Coalson, J. J.; Flournoy, D. J.; Passey, R.; Benjamin, B. und White, G. L. (1980): Survival of primates in LD100 septic shock following steroid/antibiotic therapy, J Surg Res 28 [2], Seite 151-170.

[139] Hinshaw, L. B.; Coalson, J. J.; Benjamin, B. A.; Archer, L. T.; Beller, B. K.; Kling, O. R.; Hasser, E. M. und Phillips, R. W. (1978): Escherichia coli shock in the baboon and the response to adrenocorticosteroid treatment, Surg Gynecol Obstet 147 [4], Seite 545-557.

[140] Balis, J. U.; Paterson, J. F.; Shelley, S. A.; Larson, C. H.; Fareed, J. und Gerber, L. I. (1979): Glucocorticoid and antibiotic effects on hepatic microcirculation and associated host responses in lethal gram-negative bacteremia, Lab Invest 40 [1], Seite 55-65.

[141] Greisman, S. E.; DuBuy, J. B. und Woodward, C. L. (1979): Experimental gram-negative bacterial sepsis: prevention of mortality not preventable by antibiotics alone, Infect Immun 25 [2], Seite 538-557.

[142] Greisman, S. E. (1982): Experimental Gram-negative bacterial sepsis: optimal methylprednisolone requirements for prevention of mortality not preventable by antibiotics alone, Proc Soc Exp Biol Med 170 [4], Seite 436-442.

[143] Ottosson, J.; Dawidson, I. J.; Svensjo, E.; Brattsand, R. und Dahlback, M. (1987): Intravenous versus intrapulmonary administration of corticosteroids in combination with fluid infusion in experimental septic shock, Acta Chir Scand 153 [9], Seite 507-512.

[144] Hinshaw, L. B.; Archer, L. T.; Beller-Todd, B. K.; Benjamin, B.; Flournoy, D. J. und Passey, R. (1981): Survival of primates in lethal septic shock following delayed treatment with steroid, Circ Shock 8 [3], Seite 291-300.

[145] Hinshaw, L. B.; Beller-Todd, B. K.; Archer, L. T.; Benjamin, B.; Flournoy, D. J.; Passey, R. und Wilson, M. F. (1981): Effectiveness of steroid/antibiotic treatment in primates administered LD100 Escherichia coli, Ann Surg 194 [1], Seite 51-56.

[146] Hoffman, S. L.; Punjabi, N. H.; Kumala, S.; Moechtar, M. A.; Pulungsih, S. P.; Rivai, A. R.; Rockhill, R. C.; Woodward, T. E. und Loedin, A. A. (1984): Reduction of mortality in chloramphenicol-treated severe typhoid fever by high-dose dexamethasone, N Engl J Med 310 [2], Seite 82-88.

[147] Sprung, C. L.; Caralis, P. V.; Marcial, E. H.; Pierce, M.; Gelbard, M. A.; Long, W. M.; Duncan, R. C.; Tendler, M. D. und Karpf, M. (1984): The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study, N Engl J Med 311 [18], Seite 1137-1143.

[148] The Veterans Administration Systemic Sepsis Cooperation Study Group (VASSCSG) (1987): Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis, N Engl J Med 317 [11], Seite 659-665.

[149] Lucas, C. E. und Ledgerwood, A. M. (1984): The cardiopulmonary response to massive doses of steroids in patients with septic shock, Arch Surg 119 [5], Seite 537-541.

[150] Lefering, R. und Neugebauer, E. A. (1995): Steroid controversy in sepsis and septic shock: a meta-analysis, Crit Care Med 23 [7], Seite 1294-1303.

[151] Cronin, L.; Cook, D. J.; Carlet, J.; Heyland, D. K.; King, D.; Lansang, M. A. und Fisher, C. J. Jr. (1995): Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature, Crit Care Med 23, Seite 1430-1439.

[152] The Cooperative Study Group (CSG) (1963): The effectiveness of hydrocortisone in the management of severe infections. A double-blind study, JAMA 183 [6], Seite 462-465.

[153] Klastersky, J.; Cappel, R. und Debusscher, L. (1971): Effectiveness of betamethasone in management of severe infections. A double-blind study, N Engl J Med 284 [22], Seite 1248-1250.

[154] Thompson, W. L.; Gurley, H. T. und Lutz, B. A. (1976): Inefficacy of glucocorticoids in shock (double-blind-study), Clin Res 24, Seite 258.

[155] Luce, J. M.; Montgomery, A. B.; Marks, J. D.; Turner, J.; Metz, C. A. und Murray, J. F. (1988): Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock, Am Rev Respir Dis 138 [1], Seite 62-68.

[156] Rogers, J. (1970): Large doses of steroids in septicaemic shock, Br J Urol 42 [6], Seite 742.

[157] Slotman, G. J.; Fisher, C. J. Jr.; Bone, R. C.; Clemmer, T. P. und Metz, C. A. (1993): Detrimental effects of high-dose methylprednisolone sodium succinate on serum concentrations of hepatic and renal function indicators in severe sepsis and septic shock. The Methylprednisolone Severe Sepsis Study Group, Crit Care Med 21 [2], Seite 191-195.

[158] Lebel, M. H.; Freij, B. J.; Syrogiannopoulos, G. A.; Chrane, D. F.; Hoyt, M. J.; Stewart, S. M.; Kennard, B. D.; Olsen, K. D. und McCracken, G. H. Jr (1988): Dexamethasone therapy for bacterial meningitis. Results of two double-blind, placebo-controlled trials, N Engl J Med 319 [15], Seite 964-971.

[159] Odio, C. M.; Faingezicht, I.; Paris, M.; Nassar, M.; Baltodano, A.; Rogers, J.; Saez-Llorens, X.; Olsen, K. D. und McCracken, G. H. (1991): The beneficial effects of early dexamethasone administration in infants and children with bacterial meningitis, N Engl J Med 324 [22], Seite 1525-1531.

[160] Montaner, J. S.; Lawson, L. M.; Levitt, N.; Belzberg, A.; Schechter, M. T. und Ruedy, J. (1990): Corticosteroids prevent early deterioration in patients with moderately severe Pneumocystis carinii pneumonia and the acquired immunodeficiency syndrome (AIDS), Ann Intern Med 113 [1], Seite 14-20.

[161] Meduri, G. U.; Chinn, A. J.; Leeper, K. V.; Wunderink, R. G.; Tolley, E.; Winer-Muram, H. T.; Khare, V. und Eltorky, M. (1994): Corticosteroid rescue treatment of progressive fibroproliferation in late ARDS. Patterns of response and predictors of outcome, Chest 105 [5], Seite 1516-1527.

[162] Chrousos, G. P. (1995): The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation, N Engl J Med 332 [20], Seite 1351-1362.

[163] Lenczowski, M. J.; Bluthe, R. M.; Roth, J.; Rees, G. S.; Rushforth, D. A.; Van Dam, A. M.; Tilders, F. J.; Dantzer, R.; Rothwell, N. J. und Luheshi, G. N. (1999): Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats, Am J Physiol 276 [3 Pt 2], Seite R652-R658.

[164] Vermes, I.; Beishuizen, A.; Hampsink, R. M. und Haanen, C. (1995): Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone, J Clin Endocrinol Metab 80 [4], Seite 1238-1242.

[165] Lamberts, S. W.; Verleun, T.; Oosterom, R.; De Jong, F. und Hackeng, W. H. (1984): Corticotropin-releasing factor (ovine) and vasopressin exert a synergistic effect on adrenocorticotropin release in man, J Clin Endocrinol Metab 58 [2], Seite 298-303.

[166] Redekopp, C.; Irvine, C. H.; Donald, R. A.; Livesey, J. H.; Sadler, W.; Nicholls, M. G.; Alexander, S. L. und Evans, M. J. (1986): Spontaneous and stimulated adrenocorticotropin and vasopressin pulsatile secretion in the pituitary venous effluent of the horse, Endocrinology 118 [4], Seite 1410-1416.

[167] Barton, R. N.; Stoner, H. B. und Watson, S. M. (1987): Relationships among plasma cortisol, adrenocorticotrophin, and severity of injury in recently injured patients, J Trauma 27, Seite 384-392.

[168] Cooper, M. S. und Stewart, P. M. (2003): Corticosteroid insufficiency in acutely ill patients, N Engl J Med 348 [8], Seite 727-734.

[169] Chernow, B.; Alexander, H. R.; Smallridge, R. C.; Thompson, W. R.; Cook, D.; Beardsley, D.; Fink, M. P.; Lake, C. R. und Fletcher, J. R. (1987): Hormonal responses to graded surgical stress, Arch Intern Med 147 [7], Seite 1273-1278.

[170] Perrot, D.; Bonneton, A.; Dechaud, H.; Motin, J. und Pugeat, M. (1993): Hypercortisolism in septic shock is not suppressible by dexamethasone infusion, Crit Care Med 21 [3], Seite 396-401.

[171] Oelkers, W. (1996): Adrenal insufficiency, N Engl J Med 335 [16], Seite 1206-1212.

[172] Bouachour, G.; Tirot, P.; Gouello, J. P.; Mathieu, E.; Vincent, J. F. und Alquier, P. (1995): Adrenocortical function during septic shock, Intensive Care Med 21 [1], Seite 57-62.

[173] Rothwell, P. M.; Udwadia, Z. F. und Lawler, P. G. (1991): Cortisol response to corticotropin and survival in septic shock, Lancet 337, Seite 582-583.

[174] Jurney, T. H.; Cockrell, J. L., Jr.; Lindberg, J. S.; Lamiell, J. M. und Wade, C. E. (1987): Spectrum of serum cortisol response to ACTH in ICU patients. Correlation with degree of illness and mortality, Chest 92, Seite 292-295.

[175] Span, L. F.; Hermus, A. R.; Bartelink, A. K.; Hoitsma, A. J.; Gimbrere, J. S.; Smals, A. G. und Kloppenborg, P. W. (1992): Adrenocortical function: an indicator of severity of disease and survival in chronic critically ill patients, Intensive Care Med 18, Seite 93-96.

[176] Jarek, M. J.; Legare, E. J.; McDermott, M. T.; Merenich, J. A. und Kollef, M. H. (1993): Endocrine profiles for outcome prediction from the intensive care unit, Crit Care Med 21 [4], Seite 543-550.

[177] Matot, I. und Sprung, C. L. (1998): Corticosteroids in septic shock: Resurrection of the last rites?, Crit Care Med 26 [4], Seite 627-629.

[178] Moran, J. L.; Chapman, M. J.; OqFathartaigh, M. S.; Peisach, A. R.; Pannall, P. R. und Leppard, P. (1994): Hypocortisolaemia and adrenocortical responsiveness at onset of septic shock, Intensive Care Med 20 [7], Seite 489-495.

[179] Streeten, D. H. (1999): What test for hypothalamic-pituitary-adrenocortical insufficiency?, Lancet 354 [9174], Seite 179-180.

[180] Finlay, W. E. und McKee, J. I. (1982): Serum cortisol levels in severely stressed patients, Lancet 1, Seite 1414-1415.

[181] McKee, J. I. und Finlay, W. E. (1983): Cortisol replacement in severely stressed patients, Lancet 1 [8322], Seite 484.

[182] Sibbald, W. J.; Short, A.; Cohen, M. P. und Wilson, R. F. (1977): Variations in adrenocortical responsiveness during severe bacterial infections. Unrecognized adrenocortical insufficiency in severe bacterial infections, Ann Surg 186, Seite 29-33.

[183] Annane, D.; Sebille, V.; Troche, G.; Raphael, J. C.; Gajdos, P. und Bellissant, E. (2000): A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin, JAMA 283 [8], Seite 1038-1045.

[184] Briegel, J.; Schelling, G.; Haller, M.; Mraz, W.; Forst, H. und Peter, K. (1996): A comparison of the adrenocortical response during septic shock and after complete recovery, Intensive Care Med 22 [9], Seite 894-899.

[185] Drucker, D. und McLaughlin, J. (1986): Adrenocortical dysfunction in acute medical illness, Crit Care Med 14, Seite 789-791.

[186] Drucker, D. und Shandling, M. (1985): Variable adrenocortical function in acute medical illness, Crit Care Med 13 [6], Seite 477-479.

[187] Zaloga, G. P. und Marik, P. (2001): Hypothalamic-pituitary-adrenal insufficiency, Crit Care Clin 17 [1], Seite 25-41.

[188] Lamberts, S. W.; Bruining, H. A. und De Jong, F. H. (1997): Corticosteroid therapy in severe illness, N Engl J Med 337 [18], Seite 1285-1292.

[189] Parker, L. N.; Levin, E. R. und Lifrak, E. T. (1985): Evidence for adrenocortical adaptation to severe illness, J Clin Endocrinol Metab 60, Seite 947-952.

[190] Richards, M. L.; Caplan, R. H.; Wickus, G. G.; Lambert, P. J. und Kisken, W. A. (1999): The rapid low-dose (1 microgram) cosyntropin test in the immediate postoperative period: results in elderly subjects after major abdominal surgery, Surgery 125 [4], Seite 431-440.

[191] Schein, R. M.; Sprung, C. L.; Marcial, E.; Napolitano, L. und Chernow, B. (1990): Plasma cortisol levels in patients with septic shock, Crit Care Med 18, Seite 259-263.

[192] Soni, A.; Pepper, G. M.; Wyrwinski, P. M.; Ramirez, N. E.; Simon, R.; Pina, T.; Gruenspan, H. und Vaca, C. E. (1995): Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels, Am J Med 98 [3], Seite 266-271.

[193] Spittler, A.; Winkler, S.; Gotzinger, P.; Oehler, R.; Willheim, M.; Tempfer, C.; Weigel, G.; Fugger, R.; Boltz Nitulescu, G. und Roth, E. (1995): Influence of glutamine on the phenotype and function of human monocytes, Blood 86, Seite 1564-1569.

[194] Voerman, H. J.; Strack van Schijndel, R. J.; Groeneveld, A. B.; De Boer, H.; Nauta, J. P. und Thijs, L. G. (1992): Pulsatile hormone secretion during severe sepsis: accuracy of different blood sampling regimens, Metabolism 41 [9], Seite 934-940.

[195] Barquist, E. und Kirton, O. (1997): Adrenal insufficiency in the surgical intensive care unit patient, J Trauma 42 [1], Seite 27-31.

[196] Knox, J. B. (1993): Oxygen consumption-oxygen delivery dependency in adult respiratory distress syndrome, New Horizons 1 [3], Seite 381-387.

[197] Kidess, A. I.; Caplan, R. H.; Reynertson, R. H.; Wickus, G. G. und Goodnough, D. E. (1993): Transient corticotropin deficiency in critical illness, Mayo Clin Proc 68 [5], Seite 435-441.

[198] Bouachour, G.; Tirot, P.; Varache, N.; Gouello, J. P.; Harry, P. und Alquier, P. (1994): Hemodynamic changes in acute adrenal insufficiency, Intensive Care Med 20 [2], Seite 138-141.

[199] Beishuizen, A.; Thijs, L. G. und Vermes, I. (2001): Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma, Intensive Care Med 27 [10], Seite 1584-1591.

[200] Hammond, G. L.; Smith, C. L.; Paterson, N. A. und Sibbald, W. J. (1990): A role for corticosteroid-binding globulin in delivery of cortisol to activated neutrophils, J Clin Endocrinol Metab 71, Seite 34-39.

[201] Pugeat, M.; Bonneton, A.; Perrot, D.; Rocle-Nicolas, B.; Lejeune, H.; Grenot, C.; Dechaud, H.; Brebant, C.; Motin, J. und Cuilleron, C. Y. (1989): Decreased immunoreactivity and binding activity of corticosteroid- binding globulin in serum in septic shock, Clin Chem 35 [8], Seite 1675-1679.

[202] Cooper, M. S.; Bujalska, I.; Rabbitt, E.; Walker, E. A.; Bland, R.; Sheppard, M. C.; Hewison, M. und Stewart, P. M. (2001): Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation, J Bone Miner Res 16 [6], Seite 1037-1044.

[203] Franchimont, D.; Martens, H.; Hagelstein, M. T.; Louis, E.; Dewe, W.; Chrousos, G. P.; Belaiche, J. und Geenen, V. (1999): Tumor necrosis factor alpha decreases, and interleukin-10 increases, the sensitivity of human monocytes to dexamethasone: potential regulation of the glucocorticoid receptor, J Clin Endocrinol Metab 84 [8], Seite 2834-2839.

[204] Klava, A.; Windsor, A.; Boylston, A. W.; Reynolds, J. V.; Ramsden, C. W. und Guillou, P. J. (1997): Monocyte activation after open and laparoscopic surgery, Br J Surg 84 [8], Seite 1152-1156.

[205] Kam, J. C.; Szefler, S. J.; Surs, W.; Sher, E. R. und Leung, D. Y. (1993): Combination IL-2 and IL-4 reduces glucocorticoid receptor- binding affinity and T cell response to glucocorticoids, J Immunol 151 [7], Seite 3460-3466.

[206] Spahn, J. D.; Szefler, S. J.; Surs, W.; Doherty, D. E.; Nimmagadda, S. R. und Leung, D. Y. (1996): A novel action of IL-13: induction of diminished monocyte glucocorticoid receptor-binding affinity, J Immunol 157 [6], Seite 2654-2659.

[207] Pariante, C. M.; Pearce, B. D.; Pisell, T. L.; Sanchez, C. I.; Po, C.; Su, C. und Miller, A. H. (1999): The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function, Endocrinology 140 [9], Seite 4359-4366.

[208] Liu, L. Y.; Sun, B.; Tian, Y.; Lu, B. Z. und Wang, J. (1993): Changes of pulmonary glucocorticoid receptor and phospholipase A2 in sheep with acute lung injury after high dose endotoxin infusion, Am Rev Respir Dis 148 [4 Pt 1], Seite 878-881.

[209] Molijn, G. J.; Spek, J. J.; Van Uffelen, J. C.; De Jong, F. H.; Brinkmann, A. O.; Bruining, H. A.; Lamberts, S. W. und Koper, J. W. (1995): Differential adaptation of glucocorticoid sensitivity of peripheral blood mononuclear leukocytes in patients with sepsis or septic shock, J Clin Endocrinol Metab 80, Seite 1799-1803.

[210] Molijn, G. J.; Koper, J. W.; Van Uffelen, C. J.; De Jong, F. H.; Brinkmann, A. O.; Bruining, H. A. und Lamberts, S. W. (1995): Temperature-induced down-regulation of the glucocorticoid receptor in peripheral blood mononuclear leucocyte in patients with sepsis or septic shock, Clin Endocrinol (Oxf) 43 [2], Seite 197-203.

[211] Barnes, P. J.; Greening, A. P. und Crompton, G. K. (1995): Glucocorticoid resistance in asthma, Am J Respir Crit Care Med 152 [6 Pt 2], Seite S125-S140.

[212] Webster, J. C.; Oakley, R. H.; Jewell, C. M. und Cidlowski, J. A. (2001): Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance, Proc Natl Acad Sci USA 98 [12], Seite 6865-6870.

[213] Brogan, I. J.; Murray, I. A.; Cerillo, G.; Needham, M.; White, A. und Davis, J. R. (1999): Interaction of glucocorticoid receptor isoforms with transcription factors AP-1 and NF-kappaB: lack of effect of glucocorticoid receptor beta, Mol Cell Endocrinol 157 [1-2], Seite 95-104.

[214] Leung, D. Y.; Hamid, Q.; Vottero, A.; Szefler, S. J.; Surs, W.; Minshall, E.; Chrousos, G. P. und Klemm, D. J. (1997): Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor beta, J Exp Med 186 [9], Seite 1567-1574.

[215] Bamberger, C. M.; Bamberger, A. M.; De Castro, M. und Chrousos, G. P. (1995): Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans, J Clin Invest 95 [6], Seite 2435-2441.

[216] Catalano, R. D.; Parameswaran, V.; Ramachandran, J. und Trunkey, D. D. (1984): Mechanisms of adrenocortical depression during Escherichia coli shock, Arch Surg 119 [2], Seite 145-150.

[217] Keri, G.; Parameswaran, V.; Trunkey, D. D. und Ramachandran, J. (1981): Effects of septic shock plasma on adrenocortical cell function, Life Sci 28 [17], Seite 1917-1923.

[218] Jaattela, M.; Ilvesmaki, V.; Voutilainen, R.; Stenman, U. H. und Saksela, E. (1991): Tumor necrosis factor as a potent inhibitor of adrenocorticotropin- induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells, Endocrinology 128 [1], Seite 623-629.

[219] Gaillard, R. C.; Turnill, D.; Sappino, P. und Müller, A. F. (1990): Tumor necrosis factor alpha inhibits the hormonal response of the pituitary gland to hypothalamic releasing factors, Endocrinology 127 [1], Seite 101-106.

[220] Tominaga, T.; Fukata, J.; Hayashi, Y.; Satoh, Y.; Fuse, N.; Segawa, H.; Ebisui, O.; Nakai, Y.; Osamura, Y. und Imura, H. (1992): Distribution and characterization of immunoreactive corticostatin in the hypothalamic-pituitary-adrenal axis, Endocrinology 130 [3], Seite 1593-1598.

[221] Marik, P. E. und Zaloga, G. P. (2003): Adrenal insufficiency during septic shock, Crit Care Med 31 [1], Seite 141-145.

[222] Rivers, E. P.; Gaspari, M.; Saad, G. A.; Mlynarek, M.; Fath, J.; Horst, H. M. und Wortsman, J. (2001): Adrenal insufficiency in high-risk surgical ICU patients, Chest 119 [3], Seite 889-896.

[223] Marik, P. E. und Zaloga, G. (2000): Prognostic value of cortisol response in septic shock, JAMA 284 [3], Seite 308-309.

[224] Marik, P. E. und Zaloga, G. P. (2002): Adrenal insufficiency in the critically ill: a new look at an old problem, Chest 122 [5], Seite 1784-1796.

[225] Oppert, M.; Reinicke, A.; Gräf, K. J.; Barckow, D.; Frei, U. und Eckardt, K. U. (2000): Plasma cortisol levels before and during "low-dose" hydrocortisone therapy and their relationship to hemodynamic improvement in patients with septic shock, Intensive Care Med 26, Seite 1747-1755.

[226] Dökmetas, H. S.; Colak, R.; Kelestimur, F.; Selcuklu, A.; Unluhizarci, K. und Bayram, F. (2000): A comparison between the 1-microg adrenocorticotropin (ACTH) test, the short ACTH (250 microg) test, and the insulin tolerance test in the assessment of hypothalamo-pituitary-adrenal axis immediately after pituitary surgery, J Clin Endocrinol Metab 85 [10], Seite 3713-3719.

[227] Zarkovic, M.; Ciric, J.; Stojanovic, M.; Penezic, Z.; Trbojevic, B.; Drezgic, M. und Nesovic, M. (1999): Optimizing the diagnostic criteria for standard (250-microg) and low dose (1-microg) adrenocorticotropin tests in the assessment of adrenal function, J Clin Endocrinol Metab 84 [9], Seite 3170-3173.

[228] Siraux, V.; De Backer, D.; Melot, C.; Yalavatti, G. S.; Gervy, C.; Mockel, J. und Vincent, J. L. (2002): High vers. low dose ACTH stimulation tests to assess adrenal function in patients with septic shock (abstract), Intensive Care Med 28 [Suppl1], Seite S75.

[229] Mayenknecht, J.; Diederich, S.; Bahr, V.; Plockinger, U. und Oelkers, W. (1998): Comparison of low and high dose corticotropin stimulation tests in patients with pituitary disease, J Clin Endocrinol Metab 83 [5], Seite 1558-1562.

[230] Siraux, V.; De Backer, D.; Yalavatti, G. S.; Melot, C.; Gervy, C.; Mockel, J. und Vincent, J. L. (2002): Methologic aspects of low and standard dose ACTH stimulation tests in patients with septic shock (abstract), Intensive Care Med 28 [Suppl.1], Seite S75.

[231] Tunn, S.; Pappert, G.; Willnow, P. und Krieg, M. (1990): Multicentre evaluation of an enzyme-immunoassay for cortisol determination, J Clin Chem Clin Biochem. 28 [12], Seite 929-935.

[232] Vale, W.; Rivier, C.; Brown, M. R.; Spiess, J.; Koob, G.; Swanson, L.; Bilezikjian, L.; Bloom, F. und Rivier, J. (1983): Chemical and biological characterization of corticotropin releasing factor, Recent Prog Horm Res 39, Seite 245-270.

[233] Sambhi, M. P.; Weil, M. H. und Udhoji, V. N. (1962): Pressor responses to norepinephrine in humans before and after corticosteroids, Am J Physiol 203 [5], Seite 961-963.

[234] Grünfeld, J. P. und Eloy, L. (1988): Role of glucocorticoids in blood pressure regulation, Kidney Int 25, Seite S49-S51.

[235] Kalsner, S. (1969): Steroid potentiation of responses to sympathomimetic amines in aortic strips, Br J Pharmacol 36 [3], Seite 582-593.

[236] Kalsner, S. (1969): Mechanism of hydrocortisone potentiation of responses to epinephrine and norepinephrine in rabbit aorta, Circ Res 24 [3], Seite 383-395.

[237] Sambhi, M. P.; Weil, M. H. und Udhoji, V. N. (1965): Acute pharmacological effects of glucocorticoids; cardiac output and related hemaodynamic changes in normal subjects and patients with shock, Circulation 31, Seite 523-530.

[238] Scott, B. A.; Lawrence, B.; Nguyen, H. H. und Meyer, W. J., III (1987): Aldosterone and dexamethasone binding in human arterial smooth muscle cells, J Hypertens 5 [6], Seite 739-744.

[239] Ullian, M. E. (1999): The role of corticosteriods in the regulation of vascular tone, Cardiovasc Res 41 [1], Seite 55-64.

[240] Fritz, I und Levine, R (1951): Action of adrenal cortical steroids and norepinephrine on vascular responses of stress in adrenalectomized rats, Am J Physiol 165, Seite 456-465.

[241] Kadowitz, P. J. und Yard, A. C. (1971): Influence of hydrocortisone on cardiovascular responses to epinephrine, Eur J Pharmacol 13 [3], Seite 281-286.

[242] Yard, A. C. und Kadowitz, P. J. (1972): Studies on the mechanism of hydrocortisone potentiation of vasoconstrictor responses to epinephrine in the anesthetized animal, Eur J Pharmacol 20 [1], Seite 1-9.

[243] Reis, D. J. (1960): Potentiation of the vasoconstrictor action of topical norepinephrine on the human bulbar conjuntival vessels after topical application of certein adrenocortical hormones, J Clin Endocrinol Metab 20, Seite 446-456.

[244] Kurland, G. S. und Freedberg, A. S. (1951): The potentiating effect of ACTH and of cortisone on pressor response to intravenous infusion of L-norepinehrine, Proc Soc Exp Biol Med 78, Seite 28-31.

[245] Whitworth, J. A.; Connell, J. M.; Lever, A. F. und Fraser, R. (1986): Pressor responsiveness in steroid-induced hypertension in man, Clin Exp Pharmacol Physiol 13 [4], Seite 353-358.

[246] Pirpiris, M.; Sudhir, K.; Yeung, S.; Jennings, G. und Whitworth, J. A. (1992): Pressor responsiveness in corticosteroid-induced hypertension in humans, Hypertension 19 [6 Pt 1], Seite 567-574.

[247] Takeda, Y.; Miyamori, I.; Iki, K.; Inaba, S.; Furukawa, K.; Hatakeyama, H.; Yoneda, T. und Takeda, R. (1996): Endogenous renal 11 beta-hydroxysteroid dehydrogenase inhibitory factors in patients with low-renin essential hypertension, Hypertension 27 [2], Seite 197-201.

[248] Walker, B. R.; Best, R.; Shackleton, C. H.; Padfield, P. L. und Edwards, C. R. (1996): Increased vasoconstrictor sensitivity to glucocorticoids in essential hypertension, Hypertension 27 [2], Seite 190-196.

[249] Walker, B. R. und Williams, B. C. (1992): Corticosteroids and vascular tone: mapping the messenger maze, Clin Sci (Colch) 82 [6], Seite 597-605.

[250] Teelucksingh, S.; Mackie, A. D.; Burt, D.; McIntyre, M. A.; Brett, L. und Edwards, C. R. (1990): Potentiation of hydrocortisone activity in skin by glycyrrhetinic acid, Lancet 335 [8697], Seite 1060-1063.

[251] Funder, J. W.; Pearce, P. T.; Smith, R. und Smith, A. I. (1988): Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated, Science 242 [4878], Seite 583-585.

[252] Berecek, K. H. und Bohr, D. F. (1978): Whole body vascular reactivity during the development of deoxycorticosterone acetate hypertension in the pig, Circ Res 42 [6], Seite 764-771.

[253] Couture, R. und Regoli, D. (1980): Vascular reactivity to angiotensin and noradrenaline in rats maintained on a sodium free diet or made hypertensive with desoxycorticosterone acetate and salt (DOCA/salt), Clin Exp Hypertens 2 [1], Seite 25-43.

[254] Beilin, L. J.; Wade, D. N.; Honour, A. J. und Cole, T. J. (1970): Vascular hyper-reactivity with sodium loading and with desoxycorticosterone induced hypertension in the rat, Clin Sci 39 [6], Seite 793-810.

[255] Bockman, C. S.; Jeffries, W. B.; Pettinger, W. A. und Abel, P. W. (1992): Reduced contractile sensitivity and vasopressin receptor affinity in DOCA-salt hypertension, Am J Physiol 262 [6 Pt 2], Seite H1752-H1758.

[256] Monney, M.; Schlegel, P. A. und Brunner, H. R. (1983): Influence of sodium diet and deoxycorticosterone on the response to norepinephrine, lysine-vasopressin and angiotensin II of isolated perfused rat mesenteric arteries, Clin Exp Hypertens 5 [10], Seite 1735-1747.

[257] Murasawa, S.; Matsubara, H.; Kizima, K.; Maruyama, K.; Mori, Y. und Inada, M. (1995): Glucocorticoids regulate V1a vasopressin receptor expression by increasing mRNA stability in vascular smooth muscle cells, Hypertension 26 [4], Seite 665-669.

[258] Burrell, L. M.; Phillips, P. A.; Stephenson, J. M.; Risvanis, J.; Rolls, K. A. und Johnston, C. I. (1994): Blood pressure-lowering effect of an orally active vasopressin V1 receptor antagonist in mineralocorticoid hypertension in the rat, Hypertension 23 [6 Pt 1], Seite 737-743.

[259] Perry, P. A. und Webb, R. C. (1988): Sensitivity and adrenoceptor affinity in the mesenteric artery of the deoxycorticosterone acetate hypertensive rat, Can J Physiol Pharmacol 66 [8], Seite 1095-1099.

[260] Storm, D. S. und Webb, R. C. (1992): Alpha-adrenergic receptors and 45Ca2+ efflux in arteries from deoxycorticosterone acetate hypertensive rats, Hypertension 19 [6 Pt 2], Seite 734-738.

[261] Meggs, L. G.; Stitzel, R.; Ben Ari, J.; Chander, P.; Gammon, D.; Goodman, A. I. und Head, R. (1988): Upregulation of the vascular alpha-1 receptor in malignant DOCA-salt hypertension, Clin Exp Hypertens 10 [2], Seite 229-247.

[262] Eid, H. und De Champlain, J. (1988): Increased inositol monophosphate production in cardiovascular tissues of DOCA-salt hypertensive rats, Hypertension 12 [2], Seite 122-128.

[263] Haigh, R. M. und Jones, C. T. (1990): Effect of glucocorticoids on alpha 1-adrenergic receptor binding in rat vascular smooth muscle, J Mol Endocrinol 5 [1], Seite 41-48.

[264] Sakaue, M. und Hoffman, B. B. (1991): Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells, J Clin Invest 88 [2], Seite 385-389.

[265] Schiffrin, E. L.; Gutkowska, J. und Genest, J. (1984): Effect of angiotensin II and deoxycorticosterone infusion on vascular angiotensin II receptors in rats, Am J Physiol 246 [4 Pt 2], Seite H608-H614.

[266] Schiffrin, E. L.; Franks, D. J. und Gutkowska, J. (1985): Effect of aldosterone on vascular angiotensin II receptors in the rat, Can J Physiol Pharmacol 63 [12], Seite 1522-1527.

[267] Ullian, M. E. und Fine, J. J. (1994): Mechanisms of enhanced angiotensin II-stimulated signal transduction in vascular smooth muscle by aldosterone, J Cell Physiol 161 [2], Seite 201-208.

[268] Ullian, M. E.; Walsh, L. G. und Morinelli, T. A. (1996): Potentiation of angiotensin II action by corticosteroids in vascular tissue, Cardiovasc Res 32 [2], Seite 266-273.

[269] Sato, A.; Suzuki, H.; Murakami, M.; Nakazato, Y.; Iwaita, Y. und Saruta, T. (1994): Glucocorticoid increases angiotensin II type 1 receptor and its gene expression, Hypertension 23 [1], Seite 25-30.

[270] Murphy, T. J.; Alexander, R. W.; Griendling, K. K.; Runge, M. S. und Bernstein, K. E. (1991): Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor, Nature 351 [6323], Seite 233-236.

[271] Nguyen, P. V.; Parent, A.; Deng, L. Y.; Fluckiger, J. P.; Thibault, G. und Schiffrin, E. L. (1992): Endothelin vascular receptors and responses in deoxycorticosterone acetate-salt hypertensive rats, Hypertension 19 [2 Suppl], Seite II98-104.

[272] Fluckiger, J. P.; Nguyen, P. V.; Li, G.; Yang, X. P. und Schiffrin, E. L. (1992): Calcium, phosphoinositide, and 1,2-diacylglycerol responses of blood vessels of deoxycorticosterone acetate-salt hypertensive rats to endothelin-1, Hypertension 19 [6 Pt 2], Seite 743-748.

[273] Wurtman, R. J. und Axelrod, J. (1966): Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids, J Biol Chem 241 [10], Seite 2301-2305.

[274] Gibson, A. (1981): The influence of endocrine hormones on the autonomic nervous system, J Auton Pharmacol 1 [4], Seite 331-358.

[275] Dailey, J. W. und Westfall, T. C. (1978): Effects of adrenalectomy and adrenal steroids on norepinephrine synthesis and monamine oxidase activity, Eur J Pharmacol 48 [4], Seite 383-391.

[276] Kennedy, B. und Ziegler, M. G. (1991): Cardiac epinephrine synthesis. Regulation by a glucocorticoid, Circulation 84 [2], Seite 891-895.

[277] Besse, J. C. und Bass, A. D. (1966): Potentiation by hydrocortisone of responses to catecholamines in vascular smooth muscle, J Pharmacol Exp Ther 154 [2], Seite 224-238.

[278] Longhurst, P. A.; Rice, P. J.; Taylor, D. A. und Fleming, W. W. (1988): Sensitivity of caudal arteries and the mesenteric vascular bed to norepinephrine in DOCA-salt hypertension, Hypertension 12 [2], Seite 133-142.

[279] Kalinyak, J. E. und Perlman, A. J. (1987): Tissue-specific regulation of angiotensinogen mRNA accumulation by dexamethasone, J Biol Chem 262 [1], Seite 460-464.

[280] Sim, M. K. und Chan, C. S. (1992): Effect of experimentally-induced hypertension on angiotensin converting enzyme activity in the aortic endothelium and smooth muscle cum adventitia of the Sprague Dawley rat, Life Sci 50 [23], Seite 1821-1825.

[281] Lockette, W.; Otsuka, Y. und Carretero, O. (1986): The loss of endothelium-dependent vascular relaxation in hypertension, Hypertension 8 [6 Pt 2], Seite II61-II66.

[282] Haigh, R. M.; Jones, C. T. und Milligan, G. (1990): Glucocorticoids regulate the amount of G proteins in rat aorta, J Mol Endocrinol 5 [2], Seite 185-188.

[283] Turla, M. B. und Webb, R. C. (1991): Vascular responsiveness to protein kinase C activators in mineralocorticoid-hypertensive rats, J Hypertens 9 [3], Seite 209-215.

[284] Schiffrin, E. L.; Lariviere, R.; Li, J. S.; Sventek, P. und Touyz, R. M. (1995): Deoxycorticosterone acetate plus salt induces overexpression of vascular endothelin-1 and severe vascular hypertrophy in spontaneously hypertensive rats, Hypertension 25 [4 Pt 2], Seite 769-773.

[285] Kanse, S. M.; Takahashi, K.; Warren, J. B.; Ghatei, M. und Bloom, S. R. (1991): Glucocorticoids induce endothelin release from vascular smooth muscle cells but not endothelial cells, Eur J Pharmacol 199 [1], Seite 99-101.

[286] Handa, M.; Kondo, K.; Suzuki, H. und Saruta, T. (1984): Dexamethasone hypertension in rats: role of prostaglandins and pressor sensitivity to norepinephrine, Hypertension 6 [2 Pt 1], Seite 236-241.

[287] Axelrod, L. (1983): Inhibition of prostacyclin production mediates permissive effect of glucocorticoids on vascular tone. Perturbations of this mechanism contribute to pathogenesis of Cushing's syndrome and Addison's disease, Lancet 1 [8330], Seite 904-906.

[288] Ikeda, U.; Kanbe, T.; Nakayama, I.; Kawahara, Y.; Yokoyama, M. und Shimada, K. (1995): Aldosterone inhibits nitric oxide synthesis in rat vascular smooth muscle cells induced by interleukin-1 beta, Eur J Pharmacol 290 [2], Seite 69-73.

[289] Niwa, M.; Tsutsumishita, Y.; Kawai, Y.; Takahara, H.; Nakamura, N.; Futaki, S.; Takaishi, Y.; Kondoh, W. und Moritoki, H. (1996): Suppression of inducible nitric oxide synthase mRNA expression by tryptoquinone A, Biochem Biophys Res Commun 224 [2], Seite 579-585.

[290] Wileman, S. M.; Mann, G. E. und Baydoun, A. R. (1995): Induction of L-arginine transport and nitric oxide synthase in vascular smooth muscle cells: synergistic actions of pro- inflammatory cytokines and bacterial lipopolysaccharide, Br J Pharmacol 116 [8], Seite 3243-3250.

[291] Hayashi, T.; Nakai, T. und Miyabo, S. (1991): Glucocorticoids increase Ca2+ uptake and [3H]dihydropyridine binding in A7r5 vascular smooth muscle cells, Am J Physiol 261 [1 Pt 1], Seite C106-C114.

[292] Kornel, L.; Prancan, A. V.; Kanamarlapudi, N.; Hynes, J. und Kuzianik, E. (1995): Study on the mechanisms of glucocorticoid-induced hypertension: glucocorticoids increase transmembrane Ca2+ influx in vascular smooth muscle in vivo, Endocr Res 21 [1-2], Seite 203-210.

[293] Muto, S.; Nemoto, J.; Ohtaka, A.; Watanabe, Y.; Yamaki, M.; Kawakami, K.; Nagano, K. und Asano, Y. (1996): Differential regulation of Na+-K+-ATPase gene expression by corticosteriods in vascular smooth muscle cells, Am J Physiol 270 [3 Pt 1], Seite C731-C739.

[294] Kornel, L. und Smoszna-Konaszewska, B. (1995): Aldosterone (ALDO) increases transmembrane influx of Na+ in vascular smooth muscle (VSM) cells through increased synthesis of Na+ channels, Steroids 60 [1], Seite 114-119.

[295] Kornel, L.; Nelson, W. A.; Manisundaram, B.; Chigurupati, R. und Hayashi, T. (1993): Mechanism of the effects of glucocorticoids and mineralocorticoids on vascular smooth muscle contractility, Steroids 58 [12], Seite 580-587.

[296] Davis, J. P.; Chipperfield, A. R. und Harper, A. A. (1993): Accumulation of intracellular chloride by (Na-K-Cl) co-transport in rat arterial smooth muscle is enhanced in deoxycorticosterone acetate (DOCA)/salt hypertension, J Mol Cell Cardiol 25 [3], Seite 233-237.

[297] Lösel, R. M.; Feuring, M.; Falkenstein, E. und Wehling, M. (2002): Nongenomic effects of aldosterone: cellular aspects and clinical implications, Steroids 67 [6], Seite 493-498.

[298] Christ, M.; Douwes, K.; Eisen, C.; Bechtner, G.; Theisen, K. und Wehling, M. (1995): Rapid effects of aldosterone on sodium transport in vascular smooth muscle cells, Hypertension 25 [1], Seite 117-123.

[299] Christ, M.; Meyer, C.; Sippel, K. und Wehling, M. (1995): Rapid aldosterone signaling in vascular smooth muscle cells: involvement of phospholipase C, diacylglycerol and protein kinase C alpha, Biochem Biophys Res Commun 213 [1], Seite 123-129.

[300] Wehling, M.; Neylon, C. B.; Fullerton, M.; Bobik, A. und Funder, J. W. (1995): Nongenomic effects of aldosterone on intracellular Ca2+ in vascular smooth muscle cells, Circ Res 76 [6], Seite 973-979.

[301] Wehling, M.; Spes, C. H.; Win, N.; Janson, C. P.; Schmidt, B. M.; Theisen, K. und Christ, M. (1998): Rapid cardiovascular action of aldosterone in man, J Clin Endocrinol Metab 83 [10], Seite 3517-3522.

[302] Buttgereit, F. und Scheffold, A. (2002): Rapid glucocorticoid effects on immune cells, Steroids 67 [6], Seite 529-534.

[303] Yagil, Y. und Krakoff, L. R. (1988): The differential effect of aldosterone and dexamethasone on pressor responses in adrenalectomized rats, Hypertension 11 [2], Seite 174-178.

[304] Provencher, P. H.; Saltis, J. und Funder, J. W. (1995): Glucocorticoids but not mineralocorticoids modulate endothelin-1 and angiotensin II binding in SHR vascular smooth muscle cells, J Steroid Biochem Mol Biol 52 [3], Seite 219-225.

[305] Morrow, L. E.; McClellan, J. L.; Conn, C. A. und Kluger, M. J. (1993): Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide, Am J Physiol 264 [5 Pt 2], Seite R1010-R1016.

[306] Gerrard, T. L.; Cupps, T. R.; Jurgensen, C. H. und Fauci, A. S. (1984): Hydrocortisone-mediated inhibition of monocyte antigen presentation: dissociation of inhibitory effect and expression of DR antigens, Cell Immunol 85 [2], Seite 330-339.

[307] Geiger, T.; Arnold, J.; Rordorf, C.; Henn, R. und Vosbeck, K. (1993): Interferon-gamma overcomes the glucocorticoid-mediated and the interleukin-4-mediated inhibition of interleukin-1 beta synthesis in human monocytes, Lymphokine Cytokine Res 12 [5], Seite 271-278.

[308] Franchimont, D.; Louis, E.; Dewe, W.; Martens, H.; Vrindts-Gevaert, Y.; De Groote, D.; Belaiche, J. und Geenen, V. (1998): Effects of dexamethasone on the profile of cytokine secretion in human whole blood cell cultures, Regul Pept 73 [1], Seite 59-65.

[309] Almawi, W. Y.; Lipman, M. L.; Stevens, A. C.; Zanker, B.; Hadro, E. T. und Strom, T. B. (1991): Abrogation of glucocorticoid-mediated inhibition of T cell proliferation by the synergistic action of IL-1, IL-6, and IFN- gamma, J Immunol 146 [10], Seite 3523-3527.

[310] Fessler, B. J.; Paliogianni, F.; Hama, N.; Balow, J. E. und Boumpas, D. T. (1996): Glucocorticoids modulate CD28 mediated pathways for interleukin 2 production in human T cells: evidence for posttranscriptional regulation, Transplantation 62 [8], Seite 1113-1118.

[311] Byron, K. A.; Varigos, G. und Wootton, A. (1992): Hydrocortisone inhibition of human interleukin-4, Immunology 77 [4], Seite 624-626.

[312] Wu, C. Y.; Fargeas, C.; Nakajima, T. und Delespesse, G. (1991): Glucocorticoids suppress the production of interleukin 4 by human lymphocytes, Eur J Immunol 21 [10], Seite 2645-2647.

[313] Standiford, T. J.; Kunkel, S. L.; Rolfe, M. W.; Evanoff, H. L.; Allen, R. M. und Strieter, R. M. (1992): Regulation of human alveolar macrophage- and blood monocyte-derived interleukin-8 by prostaglandin E2 and dexamethasone, Am J Respir Cell Mol Biol 6 [1], Seite 75-81.

[314] Brattsand, R. und Linden, M. (1996): Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies, Aliment Pharmacol Ther 10 Suppl 2, Seite 81-90.

[315] Larsson, S.; Lofdahl, C. G. und Linden, M. (1999): IL-2 and IL-4 counteract budesonide inhibition of GM-CSF and IL-10, but not of IL-8, IL-12 or TNF-alpha production by human mononuclear blood cells, Br J Pharmacol 127 [4], Seite 980-986.

[316] Hasko, G. und Szabo, C. (1999): IL-12 as a therapeutic target for pharmacological modulation in immune-mediated and inflammatory diseases: regulation of T helper 1/T helper 2 responses, Br J Pharmacol 127 [6], Seite 1295-1304.

[317] Kubin, M.; Chow, J. M. und Trinchieri, G. (1994): Differential regulation of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-1 beta production in human myeloid leukemia cell lines and peripheral blood mononuclear cells, Blood 83, Seite 1847-1855.

[318] Vieira, P. L.; Kalinski, P.; Wierenga, E. A.; Kapsenberg, M. L. und De Jong, E. C. (1998): Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential, J Immunol 161 [10], Seite 5245-5251.

[319] Visser, J.; Van Boxel-Dezaire, A.; Methorst, D.; Brunt, T.; De Jong, F. H. und Nagelkerken, L. (1998): Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro, Blood 91 [11], Seite 4255-4264.

[320] Brown, E. A.; Dare, H. A.; Marsh, C. B. und Wewers, M. D. (1996): The combination of endotoxin and dexamethasone induces type II interleukin 1 receptor (IL-1r II) in monocytes: a comparison to interleukin 1 beta (IL-1 beta) and interleukin 1 receptor antagonist (IL-1ra), Cytokine 8 [11], Seite 828-836.

[321] Berkman, N.; Robichaud, A.; Krishnan, V. L.; Roesems, G.; Robbins, R.; Jose, P. J.; Barnes, P. J. und Chung, K. F. (1996): Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, -10 and -13, Immunology 87 [4], Seite 599-603.

[322] De Vera, M. E.; Taylor, B. S.; Wang, Q.; Shapiro, R. A.; Billiar, T. R. und Geller, D. A. (1997): Dexamethasone suppresses iNOS gene expression by upregulating I- kappa B alpha and inhibiting NF-kappa B, Am J Physiol 273, Seite G1290-G1296.

[323] Daynes, R. A. und Araneo, B. A. (1989): Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4, Eur J Immunol 19 [12], Seite 2319-2325.

[324] Watanabe, Y.; Lee, S. und Allison, A. C. (1990): Control of the expression of a class II major histocompatibility gene (HLA-DR) in various human cell types: down-regulation by IL- 1 but not by IL-6, prostaglandin E2, or glucocorticoids, Scand J Immunol 32 [6], Seite 601-609.

[325] Shen, L.; Guyre, P. M.; Ball, E. D. und Fanger, M. W. (1986): Glucocorticoid enhances gamma interferon effects on human monocyte antigen expression and ADCC, Clin Exp Immunol 65 [2], Seite 387-395.

[326] Sadeghi, R.; Hawrylowicz, C. M.; Chernajovsky, Y. und Feldmann, M. (1992): Synergism of glucocorticoids with granulocyte macrophage colony stimulating factor (GM-CSF) but not interferon gamma (IFN-gamma) or interleukin-4 (IL-4) on induction of HLA class II expression on human monocytes, Cytokine 4 [4], Seite 287-297.

[327] Van der Poll, T.; Barber, A. E.; Coyle, S. M. und Lowry, S. F. (1996): Hypercortisolemia increases plasma interleukin-10 concentrations during human endotoxemia--a clinical research center study, J Clin Endocrinol Metab 81 [10], Seite 3604-3606.

[328] Verhoef, C. M.; Van Roon, J. A.; Vianen, M. E.; Lafeber, F. P. und Bijlsma, J. W. (1999): The immune suppressive effect of dexamethasone in rheumatoid arthritis is accompanied by upregulation of interleukin 10 and by differential changes in interferon gamma and interleukin 4 production, Ann Rheum Dis 58 [1], Seite 49-54.

[329] Richards, D. F.; Fernandez, M.; Caulfield, J. und Hawrylowicz, C. M. (2000): Glucocorticoids drive human CD8(+) T cell differentiation towards a phenotype with high IL-10 and reduced IL-4, IL-5 and IL-13 production, Eur J Immunol 30 [8], Seite 2344-2354.

[330] Marchant, A.; Amraoui, Z.; Gueydan, C.; Bruyns, C.; Le Moine, O.; Vandenabeele, P.; Fiers, W.; Buurman, W. A. und Goldman, M. (1996): Methylprednisolone differentially regulates IL-10 and tumour necrosis factor (TNF) production during murine endotoxaemia, Clin Exp Immunol 106 [1], Seite 91-96.

[331] Schuld, A.; Kraus, T.; Haack, M.; Hinze-Selch, D.; Zobel, A. W.; Holsboer, F. und Pollmacher, T. (2001): Effects of dexamethasone on cytokine plasma levels and white blood cell counts in depressed patients, Psychoneuroendocrinology 26 [1], Seite 65-76.

[332] Brinkmann, V. und Kristofic, C. (1995): Regulation by corticosteroids of Th1 and Th2 cytokine production in human CD4+ effector T cells generated from CD45RO- and CD45RO+ subsets, J Immunol 155 [7], Seite 3322-3328.

[333] Franchimont, D.; Galon, J.; Gadina, M.; Visconti, R.; Zhou, Y.; Aringer, M.; Frucht, D. M.; Chrousos, G. P. und O'Shea, J. J. (2000): Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes, J Immunol 164 [4], Seite 1768-1774.

[334] Ramirez, F. (1998): Glucocorticoids induce a Th2 response in vitro, Dev.Immunol 6 [3-4], Seite 233-243.

[335] Jefferies, W. M. (1994): Mild adrenocortical deficiency, chronic allergies, autoimmune disorders and the chronic fatigue syndrome: a continuation of the cortisone story, Med Hypotheses 42 [3], Seite 183-189.

[336] Cupps, T. R.; Gerrard, T. L.; Falkoff, R. J.; Whalen, G. und Fauci, A. S. (1985): Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation, J Clin Invest 75 [2], Seite 754-761.

[337] Akahoshi, T.; Oppenheim, J. J. und Matsushima, K. (1988): Induction of high-affinity interleukin 1 receptor on human peripheral blood lymphocytes by glucocorticoid hormones, J Exp Med 167 [3], Seite 924-936.

[338] Wiegers, G. J.; Labeur, M. S.; Stec, I. E.; Klinkert, W. E.; Holsboer, F. und Reul, J. M. (1995): Glucocorticoids accelerate anti-T cell receptor-induced T cell growth, J Immunol 155 [4], Seite 1893-1902.

[339] Wilckens, T. und De Rijk, R. (1997): Glucocorticoids and immune function: unknown dimensions and new frontiers, Immunol Today 18 [9], Seite 418-424.

[340] Wiegers, G. J.; Croiset, G.; Reul, J. M.; Holsboer, F. und De Jong, F. H. (1993): Differential effects of corticosteroids on rat peripheral blood T-lymphocyte mitogenesis in vivo and in vitro, Am J Physiol 265 [6 Pt 1], Seite E825-E830.

[341] Wiegers, G. J.; Reul, J. M.; Holsboer, F. und De Jong, F. H. (1994): Enhancement of rat splenic lymphocyte mitogenesis after short term preexposure to corticosteroids in vitro, Endocrinology 135 [6], Seite 2351-2357.

[342] Barber, A. E.; Coyle, S. M.; Marano, M. A.; Fischer, E.; Calvano, S. E.; Fong, Y.; Moldawer, L. L. und Lowry, S. F. (1993): Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man, J Immunol 150 [5], Seite 1999-2006.

[343] Calandra, T. und Bucala, R. (1997): Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system, Crit Rev Immunol 17 [1], Seite 77-88.

[344] Briegel, J.; Forst, H.; Hellinger, H. und Haller, M. (1991): Contribution of cortisol deficiency to septic shock, Lancet 338, Seite 507-508.

[345] Schneider, A. J. und Voerman, H. J. (1991): Abrupt hemodynamic improvement in late septic shock with physiological doses of glucocorticoids, Intensive Care Med 17, Seite 436-437.

[346] Bollaert, P. E.; Charpentier, C.; Levy, B.; Debouverie, M.; Audibert, G. und Larcan, A. (1998): Reversal of late septic shock with supraphysiologic doses of hydrocortisone, Crit Care Med 26 [4], Seite 645-650.

[347] Briegel, J.; Forst, H.; Haller, M.; Schelling, G.; Kilger, E.; Kuprat, G.; Hemmer, B.; Hummel, T.; Lenhart, A.; Heyduck, M.; Stoll, C. und Peter, K. (1999): Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study, Crit Care Med 27 [4], Seite 723-732.

[348] Annane, D.; Sebille, V.; Charpentier, C.; Bollaert, P. E.; Francois, B.; Korach, J. M.; Capellier, G.; Cohen, Y.; Azoulay, E.; Troche, G.; Chaumet-Riffaut, P. und Bellissant, E. (2002): Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock, JAMA 288 [7], Seite 862-871.

[349] Rubenfeld, G. D. (2003): When survival is not the same as mortality, Critical Care Alert 10 [10], Seite 113-115.

[350] Rolih, C. A. und Ober, K. P. (1995): The endocrine response to critical illness, Med Clin North Am 79 [1], Seite 211-224.

[351] Arlt, W. und Allolio, B. (2003): Adrenal insufficiency, Lancet 361 [9372], Seite 1881-1893.

[352] Oelkers, W.; Diederich, S. und Bahr, V. (1992): Diagnosis and therapy surveillance in Addison's disease: rapid adrenocorticotropin (ACTH) test and measurement of plasma ACTH, renin activity, and aldosterone, J Clin Endocrinol Metab 75 [1], Seite 259-264.

[353] Annane, D.; Bellissant, E.; Bollaert, P. E.; Briegel, J.; Keh, D. und Kupfer, Y. (2004): Corticosteroid treatment for septic shock (Cochrane Review), The Cochrane Library Issue 2. URL:">

[354] Keh, D.; Boehnke, T.; Weber-Carstens, S.; Schulz, C.; Ahlers, O.; Bercker, S.; Volk, H. D.; Döcke, W. D.; Falke, K. J. und Gerlach, H. (2003): Immunologic and hemodynamic effects of "low-dose" hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study, Am J Respir Crit Care Med 167 [4], Seite 512-520.

[355] Vincent, J. L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonta, A.; Bruining, H.; Reinhart, C. K.; Suter, P. M. und Thijs, L. G. (1996): The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine, Intensive Care Med 22 [7], Seite 707-710.

[356] Le Gall, J. R.; Lemeshow, S. und Saulnier, F. (1993): A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study, JAMA 270 [24], Seite 2957-2963.

[357] Senn, Stephen (1993): Cross-over Trials in Clinical Research, 1.Edition. Auflage , John Wiley & Sons, New York, 0471934933.

[358] Sigurdsson, G. H. und Youssef, H. (1993): Effects of pentoxifylline on hemodynamics, gas exchange and multiple organ platelet sequestration in experimental endotoxic shock, Acta Anaesthesiol Scand 37 [4], Seite 396-403.

[359] Chernow, B. (1982): Hormonal and metabolic considerations in critical care medicine., Society of Critical Care Medicine, Critical care. State of the art. , Vol.3. Auflage, Fullerton, CA.

[360] Briegel, J.; Kellermann, W.; Forst, H.; Haller, M.; Bittl, M.; Hoffmann, G. E.; Buchler, M.; Uhl, W. und Peter, K. (1994): Low-dose hydrocortisone infusion attenuates the systemic inflammatory response syndrome. The Phospholipase A2 Study Group, Clin Investig 72, Seite 782-787.

[361] Annane, D.; Bellissant, E.; Pussard, E.; Asmar, R.; Lacombe, F.; Lanata, E.; Madonna, O.; Safar, M.; Giudicelli, J. F. und Gajdos, P. (1996): Placebo-controlled, randomized, double-blind study of intravenous enalaprilat efficacy and safety in acute cardiogenic pulmonary edema, Circulation 94 [6], Seite 1316-1324.

[362] Annane, D.; Bellissant, E.; Sebille, V.; Lesieur, O.; Mathieu, B.; Raphael, J. C. und Gajdos, P. (1998): Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve, Br J Clin Pharmacol 46 [6], Seite 589-597.

[363] Huettemann, E.; Bernhardt, A.; Schelenz, C. und Reinhart, K. (2003): Low dose hydrocortisone does not influence myocardial function in patients with septic shock, Intensive Care Med 29 [Suppl.1], Seite S154.

[364] Annane, D.; Trabold, F.; Sharshar, T.; Jarrin, I.; Blanc, A. S.; Raphael, J. C. und Gajdos, P. (1999): Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach, Am J Respir Crit Care Med 160 [2], Seite 458-465.

[365] Parker, M. M. (1998): Pathophysiology of cardiovascular dysfunction in septic shock, New Horizons 6 [2], Seite 130-138.

[366] Ognibene, F. P.; Parker, M. M.; Natanson, C. und Shelhamer, J. H. (1988): Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock, Chest 93 [5], Seite 903-910.

[367] Furchgott, R. F. und Zawadzki, J. V. (1980): The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288 [5789], Seite 373-376.

[368] Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E. und Chaudhuri, G. (1987): Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc Natl Acad Sci USA 84, Seite 9265-9269.

[369] Palmer, R. M.; Ferrige, A. G. und Moncada, S. (1987): Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327, Seite 524-526.

[370] Kirkeboen, K. A. und Strand, O. A. (1999): The role of nitric oxide in sepsis--an overview, Acta Anaesthesiol Scand 43 [3], Seite 275-288.

[371] Vincent, J. L. (1998): Cardiovascular alterations in septic shock, J Antimicrob Chemother 41 Suppl A, Seite 9-15.

[372] Vallance, P. und Moncada, S. (1993): Role of endogenous nitric oxide in septic shock, New Horizons 1 [1], Seite 77-86.

[373] Förstermann, U. (2000): Regulation of Nitric Oxide Synthase Expression and Activity, Mayer, B., Nitric Oxide , I.. Auflage, Seite 71-91, Springer, Heidelberg.

[374] Radomski, M. W. und Moncada, S. (1993): Regulation of vascular homeostasis by nitric oxide, Thromb Haemost 70 [1], Seite 36-41.

[375] Landry, D. W. und Oliver, J. A. (2001): The pathogenesis of vasodilatory shock, N Engl J Med 345 [8], Seite 588-595.

[376] Fink, M. P. und Payen, D. (1996): The role of nitric oxide in sepsis and ARDS: synopsis of a roundtable conference held in Brussels on 18-20 March 1995, Intensive Care Med 22, Seite 158-165.

[377] Moncada, S.; Palmer, R. M. und Higgs, E. A. (1991): Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol Rev 43 [2], Seite 109-142.

[378] Rees, D. D.; Monkhouse, J. E.; Cambridge, D. und Moncada, S. (1998): Nitric oxide and the haemodynamic profile of endotoxin shock in the conscious mouse, Br J Pharmacol 124 [3], Seite 540-546.

[379] Gunnett, C. A.; Chu, Y.; Heistad, D. D.; Loihl, A. und Faraci, F. M. (1998): Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase, Am J Physiol 275 [2 Pt 2], Seite H416-H421.

[380] Wei, X. Q.; Charles, I. G.; Smith, A.; Ure, J.; Feng, G. J.; Huang, F. P.; Xu, D.; Müller, W.; Moncada, S. und Liew, F. Y. (1995): Altered immune responses in mice lacking inducible nitric oxide synthase, Nature 375, Seite 408-411.

[381] MacMicking, J. D.; Nathan, C.; Hom, G.; Chartrain, N.; Fletcher, D. S.; Trumbauer, M.; Stevens, K.; Xie, Q. W.; Sokol, K. und Hutchinson, N. (1995): Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase, Cell 81, Seite 641-650.

[382] Wray, G. M.; Millar, C. G.; Hinds, C. J. und Thiemermann, C. (1998): Selective inhibition of the activity of inducible nitric oxide synthase prevents the circulatory failure, but not the organ injury/dysfunction, caused by endotoxin, Shock 9 [5], Seite 329-335.

[383] Szabo, C.; Ferrer-Sueta, G.; Zingarelli, B.; Southan, G. J.; Salzman, A. L. und Radi, R. (1997): Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage, J Biol Chem 272 [14], Seite 9030-9036.

[384] Liaudet, L.; Fishman, D.; Markert, M.; Perret, C. und Feihl, F. (1997): L-canavanine improves organ function and tissue adenosine triphosphate levels in rodent endotoxemia, Am J Respir Crit Care Med 155 [5], Seite 1643-1648.

[385] Hollenberg, S. M.; Cunnion, R. E. und Zimmerberg, J. (1993): Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats, Am J Physiol 264, Seite H660-3.

[386] Wu, C. C.; Ruetten, H. und Thiemermann, C. (1996): Comparison of the effects of aminoguanidine and N omega-nitro-L-arginine methyl ester on the multiple organ dysfunction caused by endotoxaemia in the rat, Eur J Pharmacol 300 [1-2], Seite 99-104.

[387] Emig, U.; Sigusch, H. H.; Bauer, C.; Borgers, C. und Figulla, H. R. (2003): Selective and non-selective NO-synthase inhibition on cardiac output distribution in septic shock, Infection 31, Seite 291.

[388] Lorente, J. A.; Landin, L.; De Pablo, R.; Renes, E. und Liste, D. (1993): L-arginine pathway in the sepsis syndrome, Crit Care Med 21 [9], Seite 1287-1295.

[389] Petros, A.; Lamb, G.; Leone, A.; Moncada, S.; Bennett, D. und Vallance, P. (1994): Effects of a nitric oxide synthase inhibitor in humans with septic shock, Cardiovasc Res 28, Seite 34-39.

[390] Avontuur, J. A.; Tutein Nolthenius, R. P.; Van Bodegom, J. W. und Bruining, H. A. (1998): Prolonged inhibition of nitric oxide synthesis in severe septic shock: a clinical study, Crit Care Med 26 [4], Seite 660-667.

[391] Grover, R.; Zaccardelli, D.; Colice, G.; Guntupalli, K.; Watson, D. und Vincent, J. L. (1995): The cardiovascular effects of 546C88 in human septic shock, Intensive Care Med 21, Seite S21.

[392] Cobb, J. P. (1999): Use of nitric oxide synthase inhibitors to treat septic shock: the light has changed from yellow to red, Crit Care Med 27 [5], Seite 855-856.

[393] Michelson, A. D.; Benoit, S. E.; Furman, M. I.; Breckwoldt, W. L.; Rohrer, M. J.; Barnard, M. R. und Loscalzo, J. (1996): Effects of nitric oxide/EDRF on platelet glycoproteins, Am J Physiol 270 [39], Seite H1640-H1648.

[394] Keh, D.; Gerlach, M.; Kürer, I.; Seiler, S.; Kerner, T.; Falke, K. J. und Gerlach, H. (1996): The effects of nitric oxide (NO) on platelet membrane receptor expression during activation with human a-thrombin, Blood Coagul Fibrinolysis 7, Seite 615-624.

[395] Takahashi, M.; Ikeda, U.; Masuyama, J.; Funayama, H.; Kano, S. und Shimada, K. (1996): Nitric oxide attenuates adhesion molecule expression in human endothelial cells, Cytokine 8, Seite 817-821.

[396] Murohara, T.; Parkinson, S. J.; Waldman, S. A. und Lefer, A. M. (1995): Inhibition of nitric oxide biosynthesis promotes P-selectin expression in platelets. Role of protein kinase C, Arterioscler Thromb Vasc Biol 15 [11], Seite 2068-2075.

[397] De Caterina, R.; Libby, P.; Peng, H. B.; Thannickal, V. J.; Rajavashisth, T. B.; Gimbrone, M. A., Jr.; Shin, W. S. und Liao, J. K. (1995): Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines, J Clin Invest 96, Seite 60-68.

[398] Kubes, P.; Kurose, I. und Granger, D. N. (1994): NO donors prevent integrin-induced leukocyte adhesion but not P- selectin-dependent rolling in postischemic venules, Am J Physiol 267, Seite H931-7.

[399] Radomski, M. W.; Palmer, R. M. und Moncada, S. (1990): An L-arginine/nitric oxide pathway present in human platelets regulates aggregation, Proc Natl Acad Sci USA 87, Seite 5193-5197.

[400] Dembinska Kiec, A.; Zmuda, A.; Wenhrynowicz, O.; Stachura, J.; Peskar, B. A. und Gryglewski, R. J. (1993): Selectin-P-mediated adherence of platelets to neutrophils is regulated by prostanoids and nitric oxide, Int J Tissue React 15, Seite 55-64.

[401] Gaboury, J.; Woodman, R. C.; Granger, D. N.; Reinhardt, P. und Kubes, P. (1993): Nitric oxide prevents leukocyte adherence: role of superoxide, Am J Physiol 265, Seite H862-H867.

[402] Kubes, P.; Suzuki, M. und Granger, D. N. (1991): Nitric oxide: an endogenous modulator of leukocyte adhesion, Proc Natl Acad Sci USA 88 [11], Seite 4651-4655.

[403] Sundrani, R.; Easington, C. R.; Mattoo, A.; Parrillo, J. E. und Hollenberg, S. M. (2000): Nitric oxide synthase inhibition increases venular leukocyte rolling and adhesion in septic rats, Crit Care Med 28 [8], Seite 2898-2903.

[404] Beckman, J. S. und Koppenol, W. H. (1996): Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly, Am J Physiol 271 [5 Pt 1], Seite 1424-1437.

[405] Nathan, C. (1997): Inducible nitric oxide synthase: What difference does it make?, J Clin Invest 100, Seite 2417-2423.

[406] Diefenbach, A.; Schindler, H.; Donhauser, N.; Lorenz, E.; Laskay, T.; MacMicking, J.; Rollinghoff, M.; Gresser, I. und Bogdan, C. (1998): Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite, Immunity 8 [1], Seite 77-87.

[407] Ajuebor, M. N.; Virag, L.; Flower, R. J.; Perretti, M. und Szabo, C. (1998): Role of inducible nitric oxide synthase in the regulation of neutrophil migration in zymosan-induced inflammation, Immunology 95 [4], Seite 625-630.

[408] Cobb, J. P.; Hotchkiss, R. S.; Swanson, P. E.; Chang, K.; Qiu, Y.; Laubach, V. E.; Karl, I. E. und Buchman, T. G. (1999): Inducible nitric oxide synthase (iNOS) gene deficiency increases the mortality of sepsis in mice, Surgery 126 [2], Seite 438-442.

[409] Radomski, M. W.; Palmer, R. M. und Moncada, S. (1990): Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells, Proc Natl Acad Sci USA 87, Seite 10043-10047.

[410] Salyapongse, A. N. und Billiar, T. R. (2000): Nitric oxide as a modulator of sepsis: therapeutic possibilities, Baue, A. E.; Faist, E. und Fry, D. E., Multiple organ failure. Pathophysiology, prevention, and therapy , Seite 176-187, Springer Verlag, New York.

[411] Jeon, Y. J.; Han, S. H.; Lee, Y. W.; Yea, S. S. und Yang, K. H. (1998): Inhibition of NF-kappa B/Rel nuclear translocation by dexamethasone: mechanism for the inhibition of iNOS gene expression, Biochem Mol Biol Int 45, Seite 435-441.

[412] Kunz, D.; Walker, G.; Eberhardt, W. und Pfeilschifter, J. (1996): Molecular mechanisms of dexamethasone inhibition of nitric oxide synthase expression in interleukin 1 beta-stimulated mesangial cells: evidence for the involvement of transcriptional and posttranscriptional regulation, Proc Natl Acad Sci USA 93 [1], Seite 255-259.

[413] Walker, G.; Pfeilschifter, J. und Kunz, D. (1997): Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-gamma-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post- transcriptional regulation, J Biol Chem 272 [26], Seite 16679-16687.

[414] Simmons, W. W.; Ungureanu Longrois, D.; Smith, G. K.; Smith, T. W. und Kelly, R. A. (1996): Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport, J Biol Chem 271, Seite 23928-23937.

[415] Bryant, C. E.; Perretti, M. und Flower, R. J. (1998): Suppression by dexamethasone of inducible nitric oxide synthase protein expression in vivo: a possible role for lipocortin 1, Biochem Pharmacol 55, Seite 279-285.

[416] Endo, S.; Inada, K.; Nakae, H.; Arakawa, N.; Takakuwa, T.; Yamada, Y.; Shimamura, T.; Suzuki, T.; Taniguchi, S. und Yoshida, M. (1996): Nitrite/nitrate oxide (NOx) and cytokine levels in patients with septic shock, Res Commun Mol Pathol Pharmacol 91 [3], Seite 347-356.

[417] Groeneveld, P. H.; Kwappenberg, K. M.; Langermans, J. A.; Nibbering, P. H. und Curtis, L. (1996): Nitric oxide (NO) production correlates with renal insufficiency and multiple organ dysfunction syndrome in severe sepsis, Intensive Care Med 22 [11], Seite 1197-1202.

[418] Arnalich, F.; Hernanz, A.; Jimenez, M.; Lopez, J.; Tato, E.; Vazquez, J. J. und Montiel, C. (1996): Relationship between circulating levels of calcitonin gene-related peptide, nitric oxide metabolites and hemodynamic changes in human septic shock, Regul Pept 65 [2], Seite 115-121.

[419] Doughty, L. A.; Carcillo, J. A.; Kaplan, S. und Janosky, J. (1998): Plasma nitrite and nitrate concentrations and multiple organ failure in pediatric sepsis, Crit Care Med 26 [1], Seite 157-162.

[420] Gomez Jimenez, J.; Salgado, A.; Mourelle, M.; Martin, M. C.; Segura, R. M.; Peracaula, R. und Moncada, S. (1995): L-arginine: nitric oxide pathway in endotoxemia and human septic shock, Crit Care Med 23, Seite 253-258.

[421] Vallance, P.; Rees, D. und Moncada, S. (2000): Therapeutic potential of NOS inhibitors in septic shock, Mayer, B., Nitric Oxide , Seite 385-397, Springer Verlag, Berlin.

[422] Heller, A. R.; Heller, S. C.; Borkenstein, A.; Stehr, S. N. und Koch, T. (2003): Modulation of host defense by hydrocortisone in stress doses during endotoxemia, Intensive Care Med 29 [9], Seite 1456-1463.

[423] Hatz, H. J. (1998): Glucocorticoide. Immunologische Grundlagen, Pharmakologie und Therapierichtlinien, Wissenschaftliche Verlagsgesellschaft, Stuttgart.

[424] Planey, S. L. und Litwack, G. (2000): Glucocorticoid-induced apoptosis in lymphocytes, Biochem Biophys Res Commun 279 [2], Seite 307-312.

[425] Schmidt, M.; Pauels, H. G.; Lugering, N.; Lugering, A.; Domschke, W. und Kucharzik, T. (1999): Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1 beta, J Immunol 163 [6], Seite 3484-3490.

[426] Ward, I.; Dransfield, I.; Chilvers, E. R.; Haslett, I. und Rossi, A. G. (1999): Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets, Trends Pharmacol Sci 20 [12], Seite 503-509.

[427] Heasman, S. J.; Giles, K. M.; Ward, C.; Rossi, A. G.; Haslett, C. und Dransfield, I. (2003): Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation, J Endocrinol 178 [1], Seite 29-36.

[428] Strickland, I.; Kisich, K.; Hauk, P. J.; Vottero, A.; Chrousos, G. P.; Klemm, D. J. und Leung, D. Y. (2001): High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids, J Exp Med 193 [5], Seite 585-594.

[429] Amsterdam, A. und Sasson, R. (2002): The anti-inflammatory action of glucocorticoids is mediated by cell type specific regulation of apoptosis, Mol Cell Endocrinol 189 [1-2], Seite 1-9.

[430] Ayala, A.; Herdon, C. D.; Lehman, D. L.; DeMaso, C. M.; Ayala, C. A. und Chaudry, I. H. (1995): The induction of accelerated thymic programmed cell death during polymicrobial sepsis: control by corticosteroids but not tumor necrosis factor, Shock 3, Seite 259-267.

[431] Ayala, A.; Herdon, C. D.; Lehman, D. L.; Ayala, C. A. und Chaudry, I. H. (1996): Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators, Blood 87, Seite 4261-4275.

[432] Reinhart, K.; Bayer, O.; Brunkhorst, F. und MEISNER, M. (2002): Markers of endothelial damage in organ dysfunction and sepsis, Crit Care Med 30 [5 Suppl], Seite S302-S312.

[433] Kerr, R.; Stirling, D. und Ludlam, C. A. (2001): Interleukin 6 and haemostasis, Br J Haematol 115 [1], Seite 3-12.

[434] Johnson, K.; Choi, Y.; DeGroot, E.; Samuels, I.; Creasey, A. und Aarden, L. (1998): Potential mechanisms for a proinflammatory vascular cytokine response to coagulation activation, J Immunol 160 [10], Seite 5130-5135.

[435] Stouthard, J. M.; Levi, M.; Hack, C. E.; Veenhof, C. H.; Romijn, H. A.; Sauerwein, H. P. und Van der Poll, T. (1996): Interleukin-6 stimulates coagulation, not fibrinolysis, in humans, Thromb Haemost 76 [5], Seite 738-742.

[436] Van der Poll, T.; Levi, M.; Hack, C. E.; Ten Cate, H.; Van Deventer, S. J.; Eerenberg, A. J.; De Groot, E. R.; Jansen, J.; Gallati, H.; Buller, H. R. und . (1994): Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees, J Exp Med 179 [4], Seite 1253-1259.

[437] Van der Poll, T. und Van Deventer, S. J. H. (1999): Interleukin-6 in bacterial infection and sepsis: innocent bystander or essential mediator?, Vincent, J. L., Yearbook of Intensive Care and Emergency Medicine , Seite 43-53, Springer Verlag.

[438] Damas, P.; Canivet, J. L.; De Groote, D.; Vrindts, Y.; Albert, A.; Franchimont, P. und Lamy, M. (1997): Sepsis and serum cytokine concentrations, Crit Care Med 25 [3], Seite 405-412.

[439] Calandra, T.; Gerain, J.; Heumann, D.; Baumgartner, J. D. und Glauser, M. P. (1991): High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group, Am J Med 91 [1], Seite 23-29.

[440] Damas, P.; Ledoux, D.; Nys, M.; Vrindts, Y.; De Groote, D.; Franchimont, P. und Lamy, M. (1992): Cytokine serum level during severe sepsis in human IL-6 as a marker of severity, Ann Surg 215 [4], Seite 356-362.

[441] Taniguchi, T.; Koido, Y.; Aiboshi, J.; Yamashita, T.; Suzaki, S. und Kurokawa, A. (1999): Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory response syndrome, Crit Care Med 27 [7], Seite 1262-1264.

[442] Schindler, R.; Mancilla, J.; Endres, S.; Ghorbani, R.; Clark, S. C. und Dinarello, C. A. (1990): Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF, Blood 75 [1], Seite 40-47.

[443] Tilg, H.; Trehu, E.; Atkins, M. B.; Dinarello, C. A. und Mier, J. W. (1994): Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55, Blood 83 [1], Seite 113-118.

[444] Rincon, M.; Anguita, J.; Nakamura, T.; Fikrig, E. und Flavell, R. A. (1997): Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells, J Exp Med 185, Seite 461-469.

[445] Ulich, T. R.; Yin, S.; Guo, K.; Yi, E. S.; Remick, D. und Del Castillo, J. (1991): Intratracheal injection of endotoxin and cytokines. II. Interleukin-6 and transforming growth factor beta inhibit acute inflammation, Am J Pathol 138 [5], Seite 1097-1101.

[446] Tilg, H.; Dinarello, C. A. und Mier, J. W. (1997): IL-6 and APPs: anti-inflammatory and immunosuppressive mediators, Immunol Today 18 [9], Seite 428-432.

[447] De Jong, E. C.; Vieira, P. L.; Kalinski, P. und Kapsenberg, M. L. (1999): Corticosteroids inhibit the production of inflammatory mediators in immature monocyte-derived DC and induce the development of tolerogenic DC3, J Leukoc Biol 66 [2], Seite 201-204.

[448] Shimada, H.; Ochiai, T.; Okazumi, S.; Matsubara, H.; Nabeya, Y.; Miyazawa, Y.; Arima, M.; Funami, Y.; Hayashi, H.; Takeda, A.; Gunji, Y.; Suzuki, T. und Kobayashi, S. (2000): Clinical benefits of steroid therapy on surgical stress in patients with esophageal cancer, Surgery 128 [5], Seite 791-798.

[449] Van den Brink, H. R.; Van Wijk, M. J.; Geertzen, R. G. und Bijlsma, J. W. (1994): Influence of corticosteroid pulse therapy on the serum levels of soluble interleukin 2 receptor, interleukin 6 and interleukin 8 in patients with rheumatoid arthritis, J Rheumatol 21 [3], Seite 430-434.

[450] Yamazaki, M.; Aoshima, K.; Mizutani, T.; Ontachi, Y.; Saito, M.; Morishita, E.; Asakura, H.; Matsuda, T. und Triplett, D. A. (1999): Prednisolone inhibits endotoxin-induced disseminated intravascular coagulation and improves mortality in rats: importance of inflammatory cytokine suppression, Blood Coagul Fibrinolysis 10 [6], Seite 321-330.

[451] Groeneveld, A. B.; Raijmakers, P. G.; Hack, C. E. und Thijs, L. G. (1995): Interleukin 8-related neutrophil elastase and the severity of the adult respiratory distress syndrome, Cytokine 7 [7], Seite 746-752.

[452] Chollet Martin, S.; Montravers, P.; Gibert, C.; Elbim, C.; Desmonts, J. M.; Fagon, J. Y. und Gougerot Pocidalo, M. A. (1993): High levels of interleukin-8 in the blood and alveolar spaces of patients with pneumonia and adult respiratory distress syndrome, Infect Immun 61, Seite 4553-4559.

[453] Van Zee, K. J.; DeForge, L. E.; Fischer, E.; Marano, M. A.; Kenney, J. S.; Remick, D. G.; Lowry, S. F. und Moldawer, L. L. (1991): IL-8 in septic shock, endotoxemia, and after IL-1 administration, J Immunol 146 [10], Seite 3478-3482.

[454] Johnson, K.; Aarden, L.; Choi, Y.; De Groot, E. und Creasey, A. (1996): The proinflammatory cytokine response to coagulation and endotoxin in whole blood, Blood 87, Seite 5051-5060.

[455] Marty, C.; Misset, B.; Tamion, F.; Fitting, C.; Carlet, J. und Cavaillon, J. M. (1994): Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin, Crit Care Med 22 [4], Seite 673-679.

[456] Takala, A.; Jousela, I.; Jansson, S. E.; Olkkola, K. T.; Takkunen, O.; Orpana, A.; Karonen, S. L. und Repo, H. (1999): Markers of systemic inflammation predicting organ failure in community-acquired septic shock, Clin Sci (Colch.) 97 [5], Seite 529-538.

[457] Fujishima, S.; Sasaki, J.; Shinozawa, Y.; Takuma, K.; Kimura, H.; Suzuki, M.; Kanazawa, M.; Hori, S. und Aikawa, N. (1996): Serum MIP-1 alpha and IL-8 in septic patients, Intensive Care Med 22, Seite 1169-1175.

[458] Briegel, J.; Jochum, M.; Gippner-Steppert, C. und Thiel, M. (2001): Immunomodulation in septic shock: hydrocortisone differentially regulates cytokine responses, J Am Soc Nephrol 12, Seite S70-S74.

[459] Bevilacqua, M. P.; Pober, J. S.; Mendrick, D. L.; Cotran, R. S. und Gimbrone, M. A., Jr. (1987): Identification of an inducible endothelial-leukocyte adhesion molecule, Proc Natl Acad Sci USA 84 [24], Seite 9238-9242.

[460] Keelan, E. T.; Licence, S. T.; Peters, A. M.; Binns, R. M. und Haskard, D. O. (1994): Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody, Am J Physiol 266 [1 Pt 2], Seite H278-H290.

[461] Bevilacqua, M. P.; Stengelin, S.; Gimbrone, M. A., Jr. und Seed, B. (1989): Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243 [4895], Seite 1160-1165.

[462] Leeuwenberg, J. F.; Von Asmuth, E. J.; Jeunhomme, T. M. und Buurman, W. A. (1990): IFN-gamma regulates the expression of the adhesion molecule ELAM-1 and IL-6 production by human endothelial cells in vitro, J Immunol 145 [7], Seite 2110-2114.

[463] Kuhns, D. B.; Alvord, W. G. und Gallin, J. I. (1995): Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans, J Infect Dis 171 [1], Seite 145-152.

[464] Boldt, J.; Müller, M.; Kuhn, D.; Linke, L. C. und Hempelmann, G. (1996): Circulating adhesion molecules in the critically ill: a comparison between trauma and sepsis patients, Intensive Care Med 22 [2], Seite 122-128.

[465] Kayal, S.; Jais, J. P.; Aguini, N.; Chaudiere, J. und Labrousse, J. (1998): Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection, Am J Respir Crit Care Med 157 [3 Pt 1], Seite 776-784.

[466] Cowley, H. C.; Heney, D.; Gearing, A. J.; Hemingway, I. und Webster, N. R. (1994): Increased circulating adhesion molecule concentrations in patients with the systemic inflammatory response syndrome: a prospective cohort study, Crit Care Med 22 [4], Seite 651-657.

[467] Endo, S.; Inada, K.; Kasai, T.; Takakuwa, T.; Yamada, Y.; Koike, S.; Wakabayashi, G.; Niimi, M.; Taniguchi, S. und Yoshida, M. (1995): Levels of soluble adhesion molecules and cytokines in patients with septic multiple organ failure, J Inflamm 46 [4], Seite 212-219.

[468] Brostjan, C.; Anrather, J.; Csizmadia, V.; Natarajan, G. und Winkler, H. (1997): Glucocorticoids inhibit E-selectin expression by targeting NF- kappaB and not ATF/c-Jun, J Immunol 158 [8], Seite 3836-3844.

[469] Cronstein, B. N.; Kimmel, S. C.; Levin, R. I.; Martiniuk, F. und Weissmann, G. (1992): A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1, Proc Natl Acad Sci USA 89 [21], Seite 9991-9995.

[470] Ray, K. P.; Farrow, S.; Daly, M.; Talabot, F. und Searle, N. (1997): Induction of the E-selectin promoter by interleukin 1 and tumour necrosis factor alpha, and inhibition by glucocorticoids, Biochem J 328, Seite 707-715.

[471] Charreau, B.; Coupel, S.; Goret, F.; Pourcel, C. und Soulillou, J. P. (2000): Association of glucocorticoids and cyclosporin A or rapamycin prevents E-selectin and IL-8 expression during LPS- and TNFalpha-mediated endothelial cell activation, Transplantation 69 [5], Seite 945-953.

[472] Chen, W.; Lee, J. Y. und Hsieh, W. C. (2002): Effects of dexamethasone and sex hormones on cytokine-induced cellular adhesion molecule expression in human endothelial cells, Eur J Dermatol 12 [5], Seite 445-448.

[473] Kukutsch, N. A.; Coors, E. A.; Gruschwitz, M. S. und Von den Driesch, P. (1999): Modulation of irritation-induced increase of E-selectin mRNA in vivo by topically applied corticosteroids, J Invest Dermatol 113 [2], Seite 170-174.

[474] Jilma, B.; Blann, A. D.; Stohlawetz, P.; Eichler, H. G.; Kautzky-Willer, A. und Wagner, O. F. (2000): Dexamethasone lowers circulating E-selectin and ICAM-1 in healthy men, J Lab Clin Med 135 [3], Seite 270-274.

[475] Müller-Kobold, A. C.; Tulleken, J. E.; Zijlstra, J. G.; Sluiter, W.; Hermans, J.; Kallenberg, C. G. und Cohen Tervaert, J. W. (2000): Leukocyte activation in sepsis; correlations with disease state and mortality, Intensive Care Med 26 [7], Seite 883-892.

[476] Lin, R. Y.; Astiz, M. E.; Saxon, J. C.; Saha, D. C. und Rackow, E. C. (1994): Relationships between plasma cytokine concentrations and leukocyte functional antigen expression in patients with sepsis, Crit Care Med 22, Seite 1595-1602.

[477] Lin, R. Y.; Astiz, M. E.; Saxon, J. C. und Rackow, E. C. (1993): Altered leukocyte immunophenotypes in septic shock. Studies of HLA-DR, CD11b, CD14, and IL-2R expression, Chest 104 [3], Seite 847-853.

[478] Wakefield, C. H.; Carey, P. D.; Foulds, S.; Monson, J. R. und Guillou, P. J. (1993): Polymorphonuclear leukocyte activation. An early marker of the postsurgical sepsis response, Arch Surg 128 [4], Seite 390-395.

[479] Hirsh, M.; Mahamid, E.; Bashenko, Y.; Hirsh, I. und Krausz, M. M. (2001): Overexpression of the high-affinity Fcgamma receptor (CD64) is associated with leukocyte dysfunction in sepsis, Shock 16 [2], Seite 102-108.

[480] Barth, E.; Fischer, G.; Schneider, E. M.; Wollmeyer, J.; Georgieff, M. und Weiss, M. (2001): Differences in the expression of CD64 and mCD14 on polymorphonuclear cells and on monocytes in patients with septic shock, Cytokine 14 [5], Seite 299-302.

[481] Fischer, G.; Schneider, E. M.; LL, L. Moldawer; Karcher, C.; Barth, E.; Suger-Wiedeck, H.; Georgieff, M. und Weiss, M. (2001): CD64 surface expression on neutrophils is transiently upregulated in patients with septic shock, Intensive Care Med 27 [12], Seite 1848-1852.

[482] Gessner, J. E.; Heiken, H.; Tamm, A. und Schmidt, R. E. (1998): The IgG Fc receptor family, Ann Hematol 76 [6], Seite 231-248.

[483] Eichacker, P. Q.; Farese, A.; Hoffman, W. D.; Banks, S. M.; Mouginis, T.; Richmond, S.; Kuo, G. C.; Macvittie, T. J. und Natanson, C. (1992): Leukocyte CD11b/18 antigen-directed monoclonal antibody improves early survival and decreases hypoxemia in dogs challenged with tumor necrosis factor, Am Rev Respir Dis 145 [5], Seite 1023-1029.

[484] Garcia, N.; Mileski, W. J. und Lipsky, P. (1995): Differential effects of monoclonal antibody blockade of adhesion molecules on in vivo susceptibility to soft tissue infection, Infect Immun 63 [10], Seite 3816-3819.

[485] Sharar, S. R.; Winn, R. K.; Murry, C. E.; Harlan, J. M. und Rice, C. L. (1991): A CD18 monoclonal antibody increases the incidence and severity of subcutaneous abscess formation after high-dose Staphylococcus aureus injection in rabbits, Surgery 110 [2], Seite 213-219.

[486] Eichacker, P. Q.; Hoffman, W. D.; Farese, A.; Danner, R. L.; Suffredini, A. F.; Waisman, Y.; Banks, S. M.; Mouginis, T.; Wilson, L.; Rothlein, R. und . (1993): Leukocyte CD18 monoclonal antibody worsens endotoxemia and cardiovascular injury in canines with septic shock, J Appl Physiol 74 [4], Seite 1885-1892.

[487] Hill, G. E.; Alonso, A.; Thiele, G. M. und Robbins, R. A. (1994): Glucocorticoids blunt neutrophil CD11b surface glycoprotein upregulation during cardiopulmonary bypass in humans, Anesth Analg 79 [1], Seite 23-27.

[488] Torsteinsdottir, I.; Arvidson, N. G.; Hallgren, R. und Hakansson, L. (1999): Enhanced expression of integrins and CD66b on peripheral blood neutrophils and eosinophils in patients with rheumatoid arthritis, and the effect of glucocorticoids, Scand J Immunol 50 [4], Seite 433-439.

[489] Lim, L. H.; Flower, R. J.; Perretti, M. und Das, A. M. (2000): Glucocorticoid receptor activation reduces CD11b and CD49d levels on murine eosinophils: characterization and functional relevance, Am J Respir Cell Mol Biol 22 [6], Seite 693-701.

[490] Petroni, K. C.; Shen, L. und Guyre, P. M. (1988): Modulation of human polymorphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated functions by IFN-gamma and glucocorticoids, J Immunol 140 [10], Seite 3467-3472.

[491] Vanderheyde, N.; Verhasselt, V.; Goldman, M. und Willems, F. (1999): Inhibition of human dendritic cell functions by methylprednisolone, Transplantation 67 [10], Seite 1342-1347.

[492] Meduri, G. U.; Kanangat, S.; Bronze, M.; Patterson, D. R.; Meduri, C. U.; Pak, C.; Tolley, E. A. und Schaberg, D. R. (2001): Effects of methylprednisolone on intracellular bacterial growth, Clin Diagn Lab Immunol 8 [6], Seite 1156-1163.

[493] Umeki, S. und Soejima, R. (1990): Hydrocortisone inhibits the respiratory burst oxidase from human neutrophils in whole-cell and cell-free systems, Biochim Biophys Acta 1052 [1], Seite 211-215.

[494] Roshol, H.; Skrede, K. K.; Aero, C. E. und Wiik, P. (1995): Dexamethasone and methylprednisolone affect rat peritoneal phagocyte chemiluminescence after administration in vivo, Eur J Pharmacol 286 [1], Seite 9-17.

[495] Hoeben, D.; Burvenich, C. und Massart-Leen, A. M. (1998): Glucocorticosteroids and in vitro effects on chemiluminescence of isolated bovine blood granulocytes, Eur J Pharmacol 354 [2-3], Seite 197-203.

[496] Marzocchi-Machado, C. M.; Russo, E. M.; Alves, C. M.; Polizello, A. C.; Azzolini, A. E. und Lucisano-Valim, Y. M. (2000): Effect of low-dose prednisone in vivo on the ability of complement receptor to mediate an oxidative burst in rat neutrophils, Immunopharmacology 49 [3], Seite 247-254.

[497] O'Leary, E. C.; Evans, G. F. und Zuckerman, S. H. (1997): In vivo dexamethasone effects on neutrophil effector functions in a rat model of acute lung injury, Inflammation 21 [6], Seite 597-608.

[498] Toft, P.; Christiansen, K.; Tonnesen, E.; Nielsen, C. H. und Lillevang, S. (1997): Effect of methylprednisolone on the oxidative burst activity, adhesion molecules and clinical outcome following open heart surgery, Scand Cardiovasc 31 [5], Seite 283-288.

[499] Galon, J.; Franchimont, D.; Hiroi, N.; Frey, G.; Boettner, A.; Ehrhart-Bornstein, M.; O'Shea, J. J.; Chrousos, G. P. und Bornstein, S. R. (2002): Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells, FASEB J 16 [1], Seite 61-71.

[500] Volk, H. D.; Reinke, P.; Krausch, D.; Zuckermann, H.; Asadullah, K.; Müller, J. M.; Döcke, W. D. und Kox, W. J. (1996): Monocyte deactivation--rationale for a new therapeutic strategy in sepsis, Intensive Care Med 22, Seite S474-481.

[501] Döcke, W. D.; Syrbe, U.; Meinecke, A.; Platzer, C.; Makki, A.; Asadullah, K.; Klug, C.; Zuckermann, H.; Reinke, P.; Brunner, H.; Von Baehr, R. und Volk, H. D. (1995): Improvement of monocyte function - a new therapeutic approach?, Reinhart, K.; Eyrich, K. und Sprung, C., Sepsis. Current perpectives in pathophysiology and therapy , Seite 473-500, Springer-Verlag.

[502] Hershman, M. J.; Cheadle, W. G.; Wellhausen, S. R.; Davidson, P. F. und Polk, H. C., Jr. (1990): Monocyte HLA-DR antigen expression characterizes clinical outcome in the trauma patient, Br J Surg 77 [2], Seite 204-207.

[503] Wakefield, C. H.; Carey, P. D.; Foulds, S.; Monson, J. R. und Guillou, P. J. (1993): Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery, Br J Surg 80 [2], Seite 205-209.

[504] Livingston, D. H.; Appel, S. H.; Wellhausen, S. R.; Sonnenfeld, G. und Polk, H. C., Jr. (1988): Depressed interferon gamma production and monocyte HLA-DR expression after severe injury, Arch Surg 123 [11], Seite 1309-1312.

[505] Gibbons, R. A.; Martinez, O. M.; Lim, R. C.; Horn, J. K. und Garovoy, M. R. (1989): Reduction in HLA-DR, HLA-DQ and HLA-DP expression by Leu-M3+ cells from the peripheral blood of patients with thermal injury, Clin Exp Immunol 75 [3], Seite 371-375.

[506] Asadullah, K.; Woiciechowsky, C.; Döcke, W. D.; Liebenthal, C.; Wauer, H.; Kox, W.; Volk, H. D.; Vogel, S. und Von Baehr, R. (1995): Immunodepression following neurosurgical procedures, Crit Care Med 23, Seite 1976-1983.

[507] Satoh, A.; Miura, T.; Satoh, K.; Masamune, A.; Yamagiwa, T.; Sakai, Y.; Shibuya, K.; Takeda, K.; Kaku, M. und Shimosegawa, T. (2002): Human Leukocyte Antigen-DR Expression on Peripheral Monocytes as a Predictive Marker of Sepsis During Acute Pancreatitis, Pancreas 25 [3], Seite 245-250.

[508] Haveman, J. W.; Müller-Kobold, A. C.; Tervaert, J. W.; Van den Berg, A. P.; Tulleken, J. E.; Kallenberg, C. G. und The, T. H. (1999): The central role of monocytes in the pathogenesis of sepsis: consequences for immunomonitoring and treatment, Neth J Med 55 [3], Seite 132-141.

[509] Oberhoffer, M.; Vogelsang, H.; Russwurm, S.; Hartung, T. und Reinhart, K. (1999): Outcome prediction by traditional and new markers of inflammation in patients with sepsis, Clin Chem Lab Med 37 [3], Seite 363-368.

[510] Schinkel, C.; Sendtner, R.; Zimmer, S. und Faist, E. (1998): Functional analysis of monocyte subsets in surgical sepsis, J Trauma 44 [5], Seite 743-748.

[511] Monneret, G.; Elmenkouri, N.; Bohe, J.; Debard, A. L.; Gutowski, M. C.; Bienvenu, J. und Lepape, A. (2002): Analytical requirements for measuring monocytic human lymphocyte antigen DR by flow cytometry: application to the monitoring of patients with septic shock, Clin Chem 48 [9], Seite 1589-1592.

[512] Döcke, W. D.; Randow, F.; Syrbe, U.; Krausch, D.; Asadullah, K.; Reinke, P.; Volk, H. D. und Kox, W. (1997): Monocyte deactivation in septic patients: restoration by IFN- gamma treatment, Nat Med 3 [6], Seite 678-681.

[513] Kox, W. J.; Bone, R. C.; Krausch, D.; Döcke, W. D.; Kox, S. N.; Wauer, H.; Egerer, K.; Querner, S.; Asadullah, K.; Von Baehr, R. und Volk, H. D. (1997): Interferon gamma-1b in the treatment of compensatory anti-inflammatory response syndrome. A new approach: proof of principle, Arch Intern Med 157 [4], Seite 389-393.

[514] Nierhaus, A.; Montag, B.; Timmler, N.; Frings, D. P.; Gutensohn, K.; Jung, R.; Schneider, C. G.; Pothmann, W.; Brassel, A. K. und Schulte Am, Esch J. (2003): Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis, Intensive Care Med 29 [4], Seite 646-651.

[515] Oczenski, W.; Krenn, H.; Jilch, R.; Watzka, H.; Waldenberger, F.; Koller, U.; Schwarz, S. und Fitzgerald, R. D. (2003): HLA-DR as a marker for increased risk for systemic inflammation and septic complications after cardiac surgery, Intensive Care Med 29 [8], Seite 1253-1257.

[516] Perry, S. E.; Mostafa, S. M.; Wenstone, R.; Shenkin, A. und McLaughlin, P. J. (2003): Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis?, Intensive Care Med 29 [8], Seite 1245-1252.

[517] Spittler, A. und Roth, E. (2003): Is monocyte HLA-DR expression predictive for clinical outcome in sepsis?, Intensive Care Med 29 [8], Seite 1211-1212.

[518] De Waal Malefyt, R.; Abrams, J.; Bennett, B.; Figdor, C. G. und De Vries, J. E. (1991): Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes, J Exp Med 174, Seite 1209-1220.

[519] Marie, C.; Fitting, C.; Muret, J.; Payen, D. und Cavaillon, J. M. (2000): Interleukin 8 production in whole blood assays: Is interleukin 10 responsible for the downregulation observed in sepsis?, Cytokine 12 [1], Seite 55-61.

[520] Van der Poll, T.; Marchant, A.; Buurman, W. A.; Berman, L.; Keogh, C. V.; Lazarus, D. D.; Nguyen, L.; Goldman, M.; Moldawer, L. L. und Lowry, S. F. (1995): Endogenous IL-10 protects mice from death during septic peritonitis, J Immunol 155 [11], Seite 5397-5401.

[521] Gerard, C.; Bruyns, C.; Marchant, A.; Abramowicz, D.; Vandenabeele, P.; Delvaux, A.; Fiers, W.; Goldman, M. und Velu, T. (1993): Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia, J Exp Med 177 [2], Seite 547-550.

[522] Howard, M.; Muchamuel, T.; Andrade, S. und Menon, S. (1993): Interleukin 10 protects mice from lethal endotoxemia, J Exp Med 177 [4], Seite 1205-1208.

[523] De Waal Malefyt, R.; Haanen, J.; Spits, H.; Roncarolo, M. G.; Te Velde, A.; Figdor, C.; Johnson, K.; Kastelein, R.; Yssel, H. und De Vries, J. E. (1991): Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression, J Exp Med 174 [4], Seite 915-924.

[524] Moore, K. W.; O'Garra, A.; De Waal Malefyt, R.; Vieira, P. und Mosmann, T. R. (1993): Interleukin-10, Annu Rev Immunol 11, Seite 165-190.

[525] Cassatella, M. A.; Meda, L.; Bonora, S.; Ceska, M. und Constantin, G. (1993): Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide, J Exp Med 178 [6], Seite 2207-2211.

[526] D'Andrea, A.; Aste-Amezaga, M.; Valiante, N. M.; Ma, X.; Kubin, M. und Trinchieri, G. (1993): Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells, J Exp Med 178 [3], Seite 1041-1048.

[527] Van der Poll, T.; Marchant, A.; Keogh, C. V.; Goldman, M. und Lowry, S. F. (1996): Interleukin-10 impairs host defense in murine pneumococcal pneumonia, J Infect Dis 174 [5], Seite 994-1000.

[528] Steinhauser, M. L.; Hogaboam, C. M.; Kunkel, S. L.; Lukacs, N. W.; Strieter, R. M. und Standiford, T. J. (1999): IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense, J Immunol 162 [1], Seite 392-399.

[529] Macatonia, S. E.; Hosken, N. A.; Litton, M.; Vieira, P.; Hsieh, C. S.; Culpepper, J. A.; Wysocka, M.; Trinchieri, G.; Murphy, K. M. und O'Garra, A. (1995): Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells, J Immunol 154 [10], Seite 5071-5079.

[530] Trinchieri, G. (1994): Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes, Blood 84, Seite 4008-4027.

[531] O'Suilleabhain, C.; O'Sullivan, S. T.; Kelly, J. L.; Lederer, J.; Mannick, J. A. und Rodrick, M. L. (1996): Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury, Surgery 120 [2], Seite 290-296.

[532] Ertel, W.; Keel, M.; Neidhardt, R.; Steckholzer, U.; Kremer, J. P.; Ungethuem, U. und Trentz, O. (1997): Inhibition of the defense system stimulating interleukin-12 interferon-gamma pathway during critical Illness, Blood 89 [5], Seite 1612-1620.

[533] Hensler, T.; Heidecke, C. D.; Hecker, H.; Heeg, K.; Bartels, H.; Zantl, N.; Wagner, H.; Siewert, J. R. und Holzmann, B. (1998): Increased susceptibility to postoperative sepsis in patients with impaired monocyte IL-12 production, J Immunol 161 [5], Seite 2655-2659.

[534] Elenkov, I. J.; Papanicolaou, D. A.; Wilder, R. L. und Chrousos, G. P. (1996): Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications, Proc Assoc Am Physicians 108 [5], Seite 374-381.

[535] Larsson, S. und Linden, M. (1998): Effects of a corticosteroid, budesonide, on production of bioactive IL-12 by human monocytes, Cytokine 10 [10], Seite 786-789.

[536] Zedler, S.; Bone, R. C.; Baue, A. E.; Von Donnersmarck, G. H. und Faist, E. (1999): T-cell reactivity and its predictive role in immunosuppression after burns, Crit Care Med 27 [1], Seite 66-72.

[537] Aderka, D.; Engelmann, H.; Maor, Y.; Brakebusch, C. und Wallach, D. (1992): Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors, J Exp Med 175, Seite 323-329.

[538] Douni, E. und Kollias, G. (1998): A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin alpha, or the p55TNF-R, J Exp Med 188 [7], Seite 1343-1352.

[539] Neilson, D.; Kavanagh, J. P. und Rao, P. N. (1996): Kinetics of circulating TNF-alpha and TNF soluble receptors following surgery in a clinical model of sepsis, Cytokine 8, Seite 938-943.

[540] Calvano, S. E.; Van der Poll, T.; Coyle, S. M.; Barie, P. S.; Moldawer, L. L. und Lowry, S. F. (1996): Monocyte tumor necrosis factor receptor levels as a predictor of risk in human sepsis, Arch Surg 131 [4], Seite 434-437.

[541] Kasai, T.; Inada, K.; Takakuwa, T.; Yamada, Y.; Inoue, Y.; Shimamura, T.; Taniguchi, S.; Sato, S.; Wakabayashi, G. und Endo, S. (1997): Anti-inflammatory cytokine levels in patients with septic shock, Res Commun Mol Pathol Pharmacol 98 [1], Seite 34-42.

[542] El Barbary, M. und Khabar, K. S. (2002): Soluble tumor necrosis factor receptor p55 predicts cytokinemia and systemic inflammatory response after cardiopulmonary bypass, Crit Care Med 30 [8], Seite 1712-1716.

[543] Pilz, G.; Fraunberger, P.; Appel, R.; Kreuzer, E.; Werdan, K.; Walli, A. und Seidel, D. (1996): Early prediction of outcome in score-identified, postcardiac surgical patients at high risk for sepsis, using soluble tumor necrosis factor receptor-p55 concentrations, Crit Care Med 24 [4], Seite 596-600.

[544] Partrick, D. A.; Moore, E. E.; Moore, F. A.; Biffl, W. L. und Barnett, C. C., Jr. (1999): Release of anti-inflammatory mediators after major torso trauma correlates with the development of postinjury multiple organ failure, Am J Surg 178 [6], Seite 564-569.

[545] Spielmann, S.; Kerner, T.; Ahlers, O.; Keh, D.; Gerlach, M. und Gerlach, H. (2001): Early detection of increased tumour necrosis factor alpha (TNFalpha) and soluble TNF receptor protein plasma levels after trauma reveals associations with the clinical course, Acta Anaesthesiol Scand 45 [3], Seite 364-370.

[546] Abraham, E.; Laterre, P. F.; Garbino, J.; Pingleton, S.; Butler, T.; Dugernier, T.; Margolis, B.; Kudsk, K.; Zimmerli, W.; Anderson, P.; Reynaert, M.; Lew, D.; Lesslauer, W.; Passe, S.; Cooper, P.; Burdeska, A.; Modi, M.; Leighton, A.; Salgo, M. und Van der Auwera, P. (2001): Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients, Crit Care Med 29 [3], Seite 503-510.

[547] Butty, V. L.; Roux-Lombard, P.; Garbino, J.; Dayer, J. M.; Ricou, B. und Network, T. G. (2003): Anti-inflammatory response after infusion of p55 soluble tumor necrosis factor receptor fusion protein for severe sepsis, Eur Cytokine Netw 14 [1], Seite 15-19.

[548] Bernard, G. R.; Vincent, J. L.; Laterre, P. F.; LaRosa, S. P.; Dhainaut, J. F.; Lopez-Rodriguez, A.; Steingrub, J. S.; Garber, G. E.; Helterbrand, J. D.; Ely, E. W. und Fisher, C. J. Jr. (2001): Efficacy and safety of recombinant human activated protein C for severe sepsis, N Engl J Med 344 [10], Seite 699-709.

[549] Joyce, D. E. und Grinnell, B. W. (2002): Recombinant human activated protein C attenuates the inflammatory response in endothelium and monocytes by modulating nuclear factor-kappaB, Crit Care Med 30 [5 Suppl], Seite S288-S293.

[550] Bernard, G. R. (2003): Drotrecogin alfa (activated) (recombinant human activated protein C) for the treatment of severe sepsis, Crit Care Med 31 [1 Suppl], Seite S85-S93.

[551] Schelling, G.; Briegel, J.; Roozendaal, B.; Stoll, C.; Rothenhausler, H. B. und Kapfhammer, H. P. (2001): The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors, Biol Psychiatry 50 [12], Seite 978-985.

[552] Chawla, K.; Kupfer, Y.; Goldman, I. und Tessler, S. (1999): Hydrocortisone reverses refractory septic shock (abstract), Crit Care Med 27, Seite A33.

[553] Slusher, T.; Gbadero, D.; Howard, C.; Lewison, L.; Giroir, B.; Toro, L.; Levin, D.; Holt, E. und McCracken, G. H. Jr (1996): Randomized, placebo-controlled, double blinded trial of dexamethasone in African children with sepsis, Pediatr Infect Dis J 15 [7], Seite 579-583.

[554] Wagner, H. N.; Bennett, I. L.; Lasagna, L.; Cluff, L. E.; Rosenthal, M. B. und Mirick, G. S. (1955): The effect of hydrocortisone upon the course of pneumococcal pneumonia treated with penicillin, Bulletin of Johns Hopkins Hospital 98, Seite 197-215.

[555] Yildiz, O.; Doganay, M.; Aygen, B.; Guven, M.; Keleutimur, F. und Tutuu, A. (2002): Physiological-dose steroid therapy in sepsis, Crit Care 6 [3], Seite 251-259.

[556] Weigelt, J. A.; Norcross, J. F.; Borman, K. R. und Snyder, W. H., III (1985): Early steroid therapy for respiratory failure, Arch Surg 120 [5], Seite 536-540.

[557] Hughes, G. S., Jr. (1984): Naloxone and methylprednisolone sodium succinate enhance sympathomedullary discharge in patients with septic shock, Life Sci 35 [23], Seite 2319-2326.

[558] Meduri, G. U.; Headley, A. S.; Golden, E.; Carson, S. J.; Umberger, R. A.; Kelso, T. und Tolley, E. A. (1998): Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial, JAMA 280 [2], Seite 159-165.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: