[Seite 28↓]

Literaturverzeichnis

[1] Ross, R. (1999): Atherosclerosis--an inflammatory disease, N Engl J Med 340 [2], Seite 115-26.

[2] Bevilacqua, M. P.; Nelson, R. M.; Mannori, G. und Cecconi, O. (1994): Endothelial-leukocyte adhesion molecules in human disease, Annu Rev Med 45, Seite 361-78.

[3] Adams, D. H. und Shaw, S. (1994): Leucocyte-endothelial interactions and regulation of leucocyte migration, Lancet 343 [8901], Seite 831-6.

[4] Gerrity, R. G. und Antonov, A. S. (1997): The pathogenesis of atherosclerosis, Diabetologia 40 [Suppl 2], Seite S108-10.

[5] Schwartz, S. M. (1997): Smooth muscle migration in atherosclerosis and restenosis, J Clin Invest 100 [11 Suppl], Seite S87-9.

[6] Berk, B. C.; Haendeler, J. und Sottile, J. (2000): Angiotensin II, atherosclerosis, and aortic aneurysms, J Clin Invest 105 [11], Seite 1525-6.

[7] Diet, F.; Pratt, R. E.; Berry, G. J.; Momose, N.; Gibbons, G. H. und Dzau, V. J. (1996): Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease, Circulation 94 [11], Seite 2756-67.

[8] de Gasparo, M.; Catt, K. J.; Inagami, T.; Wright, J. W. und Unger, T. (2000): International union of pharmacology. XXIII. The angiotensin II receptors, Pharmacol Rev 52 [3], Seite 415-72.

[9] Schieffer, B.; Schieffer, E.; Hilfiker-Kleiner, D.; Hilfiker, A.; Kovanen, P. T.; Kaartinen, M.; Nussberger, J.; Harringer, W. und Drexler, H. (2000): Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability, Circulation 101 [12], Seite 1372-8.

[10] Yusuf, S.; Sleight, P.; Pogue, J.; Bosch, J.; Davies, R. und Dagenais, G. (2000): Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators, N Engl J Med 342 [3], Seite 145-53.

[11] Chobanian, A. V.; Haudenschild, C. C.; Nickerson, C. und Drago, R. (1990): Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit, Hypertension 15 [3], Seite 327-31.

[12] Hayek, T.; Attias, J.; Coleman, R.; Brodsky, S.; Smith, J.; Breslow, J. L. und Keidar, S. (1999): The angiotensin-converting enzyme inhibitor, fosinopril, and the angiotensin II receptor antagonist, losartan, inhibit LDL oxidation and attenuate atherosclerosis independent of lowering blood pressure in apolipoprotein E deficient mice, Cardiovasc Res 44 [3], Seite 579-87.

[13] Daugherty, A.; Manning, M. W. und Cassis, L. A. (2000): Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice, J Clin Invest 105 [11], Seite 1605-12.

[14] Kintscher, U.; Wakino, S.; Kim, S.; Fleck, E.; Hsueh, W.A. und Law, R.E. (2001): Angiotensin II induces migration and pyk2/paxillin phosphorylation of human monocytes, Hypertension 37 [1 Pt 2], Seite 587-93.


[Seite 29↓]

[15] Kintscher, U.; Bruemmer, D.; Blaschke, F.; Unger, T. und Law, R. E. (2003): p38 MAP kinase negatively regulates angiotensin II-mediated effects on cell cycle molecules in human coronary smooth muscle cells, Biochem Biophys Res Commun 305 [3], Seite 552-6.

[16] Barbier, O.; Torra, I. P.; Duguay, Y.; Blanquart, C.; Fruchart, J. C.; Glineur, C. und Staels, B. (2002): Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis, Arterioscler Thromb Vasc Biol 22 [5], Seite 717-26.

[17] Forman, B. M.; Chen, J. und Evans, R. M. (1997): Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta, Proc Natl Acad Sci U S A 94 [9], Seite 4312-7.

[18] Kliewer, S. A.; Lenhard, J. M.; Willson, T. M.; Patel, I.; Morris, D. C. und Lehmann, J. M. (1995): A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation, Cell 83 [5], Seite 813-9.

[19] Desvergne, B. und Wahli, W. (1999): Peroxisome proliferator-activated receptors: nuclear control of metabolism, Endocr Rev 20 [5], Seite 649-88.

[20] Kintscher, U.; Lyon, C.; Wakino, S.; Bruemmer, D.; Feng, X.; Goetze, S.; Graf, K.; Moustakas, A.; Staels, B.; Fleck, E.; Hsueh, W. A. und Law, R. E. (2002): PPARalpha inhibits TGF-beta-induced beta5 integrin transcription in vascular smooth muscle cells by interacting with Smad4, Circ Res 91 [11], Seite e35-44.

[21] Kintscher, U.; Goetze, S.; Wakino, S.; Kim, S.; Nagpal, S.; Chandraratna, R. A.; Graf, K.; Fleck, E.; Hsueh, W. A. und Law, R. E. (2000): Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes, Eur J Pharmacol 401 [3], Seite 259-70.

[22] Wakino, S.; Kintscher, U.; Kim, S.; Yin, F.; Hsueh, W. A. und Law, R. E. (2000): Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1--> S transition in vascular smooth muscle cells, J Biol Chem 275 [29], Seite 22435-41.

[23] Takeda, K.; Ichiki, T.; Tokunou, T.; Funakoshi, Y.; Iino, N.; Hirano, K.; Kanaide, H. und Takeshita, A. (2000): Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells, Circulation 102 [15], Seite 1834-9.

[24] Goetze, S.; Xi, X. P.; Graf, K.; Fleck, E.; Hsueh, W. A. und Law, R. E. (1999): Troglitazone inhibits angiotensin II-induced extracellular signal-regulated kinase 1/2 nuclear translocation and activation in vascular smooth muscle cells, FEBS Lett 452 [3], Seite 277-82.

[25] Wakino, S.; Collins, A.R.; Kintscher, U.; Kim, S.; Noh, G.; Moller, D.E.; Hsueh, W.A. und Law, R.E. (2001): PPARgamma Ligands Inhibit Angiotensin II-Induced Egr-1 Expression In Vivo and In Vitro, Circulation Vol. 104 (Abstract Supplement).

[26] Unger, T. (2002): The role of the renin-angiotensin system in the development of cardiovascular disease, Am J Cardiol 89 [2A], Seite 3A-9A; discussion 10A.

[27] Pastore, L.; Tessitore, A.; Martinotti, S.; Toniato, E.; Alesse, E.; Bravi, M. C.; Ferri, C.; Desideri, G.; Gulino, A. und Santucci, A. (1999): Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo, Circulation 100 [15], Seite 1646-52.


[Seite 30↓]

[28] Pueyo, M. E.; Gonzalez, W.; Nicoletti, A.; Savoie, F.; Arnal, J. F. und Michel, J. B. (2000): Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress, Arterioscler Thromb Vasc Biol 20 [3], Seite 645-51.

[29] Grafe, M.; Auch-Schwelk, W.; Zakrzewicz, A.; Regitz-Zagrosek, V.; Bartsch, P.; Graf, K.; Loebe, M.; Gaehtgens, P. und Fleck, E. (1997): Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin, Circ Res 81 [5], Seite 804-11.

[30] Chen, X. L.; Tummala, P. E.; Olbrych, M. T.; Alexander, R. W. und Medford, R. M. (1998): Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells, Circ Res 83 [9], Seite 952-9.

[31] Okamura, A.; Rakugi, H.; Ohishi, M.; Yanagitani, Y.; Takiuchi, S.; Moriguchi, K.; Fennessy, P. A.; Higaki, J. und Ogihara, T. (1999): Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages, J Hypertens 17 [4], Seite 537-45.

[32] Dorffel, Y.; Latsch, C.; Stuhlmuller, B.; Schreiber, S.; Scholze, S.; Burmester, G. R. und Scholze, J. (1999): Preactivated peripheral blood monocytes in patients with essential hypertension, Hypertension 34 [1], Seite 113-7.

[33] Hahn, A. W.; Jonas, U.; Buhler, F. R. und Resink, T. J. (1994): Activation of human peripheral monocytes by angiotensin II, FEBS Lett 347 [2-3], Seite 178-80.

[34] Scheidegger, K. J.; Butler, S. und Witztum, J. L. (1997): Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway, J Biol Chem 272 [34], Seite 21609-15.

[35] Braun-Dullaeus, R. C.; Mann, M. J.; Ziegler, A.; von der Leyen, H. E. und Dzau, V. J. (1999): A novel role for the cyclin-dependent kinase inhibitor p27(Kip1) in angiotensin II-stimulated vascular smooth muscle cell hypertrophy. J Clin Invest 104 [6], Seite 815-23.

[36] Braun-Dullaeus, R. C.; Mann, M. J. und Dzau, V. J. (1998): Cell cycle progression: new therapeutic target for vascular proliferative disease, Circulation 98 [1], Seite 82-9.

[37] Sherr, C. J. (1994): G1 phase progression: cycling on cue, Cell 79 [4], Seite 551-5.

[38] Weinberg, R. A. (1995): The retinoblastoma protein and cell cycle control, Cell 81 [3], Seite 323-30.

[39] Nevins, J. R.; Leone, G.; DeGregori, J. und Jakoi, L. (1997): Role of the Rb/E2F pathway in cell growth control, J Cell Physiol 173 [2], Seite 233-6.

[40] Watanabe, G.; Lee, R. J.; Albanese, C.; Rainey, W. E.; Batlle, D. und Pestell, R. G. (1996): Angiotensin II activation of cyclin D1-dependent kinase activity, J Biol Chem 271 [37], Seite 22570-7.

[41] Kanasaki, H.; Fukunaga, K.; Takahashi, K.; Miyazaki, K. und Miyamoto, E. (2000): Involvement of p38 mitogen-activated protein kinase activation in bromocriptine-induced apoptosis in rat pituitary GH3 cells, Biol Reprod 62 [6], Seite 1486-94.

[42] Gu, L.; Okada, Y.; Clinton, S. K.; Gerard, C.; Sukhova, G. K.; Libby, P. und Rollins, B. J. (1998): Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice, Mol Cell 2 [2], Seite 275-81.


[Seite 31↓]

[43] Watanabe, H.; Nakanishi, I.; Yamashita, K.; Hayakawa, T. und Okada, Y. (1993): Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion, J Cell Sci 104 [Pt 4], Seite 991-9.

[44] Westermarck, J. und Kahari, V. M. (1999): Regulation of matrix metalloproteinase expression in tumor invasion, Faseb J 13 [8], Seite 781-92.

[45] Galis, Z. S.; Sukhova, G. K.; Lark, M. W. und Libby, P. (1994): Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques, J Clin Invest 94 [6], Seite 2493-503.

[46] Ricote, M.; Huang, J.; Fajas, L.; Li, A.; Welch, J.; Najib, J.; Witztum, J. L.; Auwerx, J.; Palinski, W. und Glass, C. K. (1998): Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein, Proc Natl Acad Sci U S A 95 [13], Seite 7614-9.

[47] Kintscher, U.; Wakino, S.; Bruemmer, D.; Goetze, S.; Graf, K.; Hsueh, W. und Law, R. (2002): TGF-beta(1) induces peroxisome proliferator-activated receptor gamma1 and gamma2 expression in human THP-1 monocytes, Biochem Biophys Res Commun 297 [4], Seite 794.

[48] Tontonoz, P.; Hu, E.; Graves, R. A.; Budavari, A. I. und Spiegelman, B. M. (1994): mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer, Genes Dev 8 [10], Seite 1224-34.

[49] Law, R. E.; Meehan, W. P.; Xi, X. P.; Graf, K.; Wuthrich, D. A.; Coats, W.; Faxon, D. und Hsueh, W. A. (1996): Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia, J Clin Invest 98 [8], Seite 1897-905 02115.

[50] Morgan, D. O. (1995): Principles of CDK regulation, Nature 374 [6518], Seite 131-4.

[51] Weiss, R. H.; Joo, A. und Randour, C. (2000): p21(Waf1/Cip1) is an assembly factor required for platelet-derived growth factor-induced vascular smooth muscle cell proliferation, J Biol Chem 275 [14], Seite 10285-90.

[52] Wakino, S.; Kintscher, U.; Liu, Z.; Kim, S.; Yin, F.; Ohba, M.; Kuroki, T.; Schonthal, A. H.; Hsueh, W. A. und Law, R. E. (2001): Peroxisome proliferator-activated receptor gamma ligands inhibit mitogenic induction of p21(Cip1) by modulating the protein kinase Cdelta pathway in vascular smooth muscle cells, J Biol Chem 276 [50], Seite 47650-7.

[53] Zezula, J.; Sexl, V.; Hutter, C.; Karel, A.; Schutz, W. und Freissmuth, M. (1997): The cyclin-dependent kinase inhibitor p21cip1 mediates the growth inhibitory effect of phorbol esters in human venous endothelial cells, J Biol Chem 272 [47], Seite 29967-74.

[54] Goetze, S.; Xi, X. P.; Kawano, H.; Gotlibowski, T.; Fleck, E.; Hsueh, W. A. und Law, R. E. (1999): PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells, J Cardiovasc Pharmacol 33 [5], Seite 798-806.

[55] Corjay, M. H.; Diamond, S. M.; Schlingmann, K. L.; Gibbs, S. K.; Stoltenborg, J. K. und Racanelli, A. L. (1999): alphavbeta3, alphavbeta5, and osteopontin are coordinately upregulated at early time points in a rabbit model of neointima formation, J Cell Biochem 75 [3], Seite 492-504.


[Seite 32↓]

[56] Smith, J. W.; Vestal, D. J.; Irwin, S. V.; Burke, T. A. und Cheresh, D. A. (1990): Purification and functional characterization of integrin alpha v beta 5. An adhesion receptor for vitronectin, J Biol Chem 265 [19], Seite 11008-13.

[57] Collins, A. R.; Meehan, W. P.; Kintscher, U.; Jackson, S.; Wakino, S.; Noh, G.; Palinski, W.; Hsueh, W. A. und Law, R. E. (2001): Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice, Arterioscler Thromb Vasc Biol 21 [3], Seite 365-71.

[58] Diep, Q. N.; Amiri, F.; Touyz, R. M.; Cohn, J. S.; Endemann, D.; Neves, M. F. und Schiffrin, E. L. (2002): PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation, Hypertension 40 [6], Seite 866-71.

[59] Diep, Q. N.; El Mabrouk, M.; Cohn, J. S.; Endemann, D.; Amiri, F.; Virdis, A.; Neves, M. F. und Schiffrin, E. L. (2002): Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-gamma, Circulation 105 [19], Seite 2296-302.

[60] Brasier, A. R.; Recinos, A., 3rd und Eledrisi, M. S. (2002): Vascular inflammation and the renin-angiotensin system, Arterioscler Thromb Vasc Biol 22 [8], Seite 1257-66.

[61] Dahlof, B.; Devereux, R. B.; Kjeldsen, S. E.; Julius, S.; Beevers, G.; Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristiansson, K.; Lederballe-Pedersen, O.; Lindholm, L. H.; Nieminen, M. S.; Omvik, P.; Oparil, S. und Wedel, H. (2002): Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol, Lancet 359 [9311], Seite 995-1003.

[62] Neve, B. P.; Fruchart, J. C. und Staels, B. (2000): Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis, Biochem Pharmacol 60 [8], Seite 1245-50.

[63] Hu, Z. W.; Kerb, R.; Shi, X. Y.; Wei-Lavery, T. und Hoffman, B. B. (2002): Angiotensin II increases expression of cyclooxygenase-2: implications for the function of vascular smooth muscle cells, J Pharmacol Exp Ther 303 [2], Seite 563-73.

[64] Brasier, A. R.; Jamaluddin, M.; Han, Y.; Patterson, C. und Runge, M. S. (2000): Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor, Mol Cell Biochem 212 [1-2], Seite 155-69.

[65] Ruiz-Ortega, M.; Lorenzo, O.; Ruperez, M.; Blanco, J. und Egido, J. (2001): Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors, Am J Pathol 158 [5], Seite 1743-56.

[66] Delerive, P.; De Bosscher, K.; Besnard, S.; Vanden Berghe, W.; Peters, J. M.; Gonzalez, F. J.; Fruchart, J. C.; Tedgui, A.; Haegeman, G. und Staels, B. (1999): Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1, J Biol Chem 274 [45], Seite 32048-54.

[67] Tham, D. M.; Martin-McNulty, B.; Wang, Y. X.; Wilson, D. W.; Vergona, R.; Sullivan, M. E.; Dole, W. und Rutledge, J. C. (2002): Angiotensin II is associated with activation of NF-kappaB-mediated genes and downregulation of PPARs, Physiol Genomics 11 [1], Seite 21-30.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
22.04.2004