[Seite 89↓]

Literatur

[1]Unterberg, A.W. (1999): Hirnödem und intrakranielle Drucksteigerung, Piek, J. und Unterberg, A., Grundlagen neurochirurgischer Intensivmedizin Seite 201-224, Zuckerschwerdt Verlag.

[2]Miller, J. D. (1985): Head injury and brain ischaemia - implications for therapy, Br J Anaesth 57 [1], Seite 120-130.

[3]Jenkins, L. W.; Moszynski, K.; Lyeth, B. G.; Lewelt, W.; DeWitt, D. S.; Allen, A.; Dixon, C. E.; Povlishock, J. T.; Majewski, T. J.; Clifton, G. L. und et al. (1989): Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury, Brain Res 477 [1-2], Seite 211-224.

[4]Miller, J. D.; Butterworth, J. F.; Gudeman, S. K.; Faulkner, J. E.; Choi, S. C.; Selhorst, J. B.; Harbison, J. W.; Lutz, H. A.; Young, H. F. und Becker, D. P. (1981): Further experience in the management of severe head injury, J Neurosurg 54 [3], Seite 289-299.

[5]Marmarou, A.; Bullock, R.M.; Young, H.F.; Eisenberg, H.M. und Marshall, L. (1994): The contribution of raised ICP and hypotension to reduced cerebral perfusion pressure in severe brain injury., Nagai, H.; Kamiya, K. und Ishii, S., Intracranial Pressure IX Seite 302-304, Springer -Verlag, Berlin.

[6]Schmoker, J. D.; Zhuang, J. und Shackford, S. R. (1992): Hemorrhagic hypotension after brain injury causes an early and sustained reduction in cerebral oxygen delivery despite normalization of systemic oxygen delivery, J Trauma 32 [6], Seite 714-720.

[7]Chesnut, R. M.; Marshall, L. F.; Klauber, M. R.; Blunt, B. A.; Baldwin, N.; Eisenberg, H. M.; Jane, J. A.; Marmarou, A. und Foulkes, M. A. (1993): The role of secondary brain injury in determining outcome from severe head injury, J Trauma 34 [2], Seite 216-22.


[Seite 90↓]

[8]Grande, P. O. und Nordstrom, C.-H. (1998): Treatment of increased ICP in severe head-injured patients., von Wild, K.R.H., Pathophysiological Principles and Controversies in Neurointensive Care Seite 123-128, Zuckerschwerdt, München, Bern, Wien, New York.

[9]Ishige, N.; Pitts, L. H.; Berry, I.; Nishimura, M. C. und James, T. L. (1988): The effects of hypovolemic hypotension on high-energy phosphate metabolism of traumatized brain in rats, J Neurosurg 68 [1], Seite 129-136.

[10]Rosner, M. J.; Rosner, S. D. und Johnson, A. H. (1995): Cerebral perfusion pressure: management protocol and clinical results, J Neurosurg 83 [6], Seite 949-62.

[11]Tsuji, O.; Marmarou, A. und Bullock, R.M. (1994): Microdialysis detection of electrolytes and amino acids changes following head impact acceleration injury coupled with secondary insult, Nagai, H.; Kamiya, K. und Ishii, S., Intracranial Pressure IX Seite 268-270, Springer -Verlag, Berlin.

[12]Grande, P.O. (2000): Pathophysiology of brain insult. Therapeutic implications with the Lund Concept., Schweiz Med Wochenschr 130, Seite 1538-43.

[13]Asgeirsson, B.; Grände, P-O. und Nordström, C-H. (1995): The Lund concept of post traumatic brain edema therapy, Acta Anaesth Scand 39, Seite 112-114.

[14]Asgeirsson, B.; Grande, P. O. und Nordstrom, C. H. (1994): A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation, Intensive Care Med 20 [4], Seite 260-267.

[15]Grande, P. O.; Asgeirsson, B. und Nordstrom, C. H. (1997): Physiologic principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain, J Trauma (Suppl) 42 [5 Suppl], Seite 23-31.

[16]Eker, C.; Asgeirsson, B.; Grande, P. O.; Schalen, W. und Nordstrom, C. H. (1998): Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation, Crit Care Med 26 [11], Seite 1881-1886.


[Seite 91↓]

[17]Naredi, S.; Olivecrona, M.; Lindgren, C.; Ostlund, A.L.; Grande, P.O. und Koskinen, L.O. (2001): An outcome study of severe traumatic head injury using the "Lund therapy" with low-dose prostacyclin., Acta Anaesthesiol Scand 2001 45, Seite 402-6.

[18]Nordstrom, C.-H. und Grande, P.-O. (1998): The "Lund Concept" in neurointensive care., von Wild, K.R.H., Pathophysiological Principles and Controversies in Neurointensive Care Seite 67-74, Zuckerschwerdt, München, Bern, Wien, New York.

[19]Rosner, M. J. (1995): Introduction to cerebral perfusion pressure management, Neurosurg Clin N Am 6 [4], Seite 761-73.

[20]Marion, D. W.; Penrod, L. E.; Kelsey, S. F.; Obrist, W. D.; Kochanek, P. M.; Palmer, A. M.; Wisniewski, S. R. und DeKosky, S. T. (1997): Treatment of traumatic brain injury with moderate hypothermia, N Engl J Med 336 [8], Seite 540-6.

[21]McGraw, C.P. (1989): A cerebral perfusion pressure greater than 80 mmHg is more benefical, Hoff, JT und Betz, AL, Intracranial Pressure VII Seite 839-841, Springer -Verlag, Berlin.

[22]Naredi, S.; Eden, E.; Zall, S.; Stephensen, H. und Rydenhag, B. (1998): A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results, Intensive Care Med 24 [5], Seite 446-51.

[23]Robertson, C. S.; Valadka, A. B.; Hannay, H. J.; Contant, C. F.; Gopinath, S. P.; Cormio, M.; Uzura, M. und Grossman, R. G. (1999): Prevention of secondary ischemic insults after severe head injury, Crit Care Med 27 [10], Seite 2086-95.

[24]The Brain Trauma Foundation; The American Association of Neurological Surgeons und The Joint Section on Neurotrauma and Critical Care (2000): Guidelines for cerebral perfusion pressure, J Neurotrauma 17, Seite 507-511.


[Seite 92↓]

[25]Maas, A. I.; Dearden, M.; Teasdale, G. M.; Braakman, R.; Cohadon, F.; Iannotti, F.; Karimi, A.; Lapierre, F.; Murray, G.; Ohman, J.; Persson, L.; Servadei, F.; Stocchetti, N. und Unterberg, A. (1997): EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium, Acta Neurochir Wien 139 [4], Seite 286-94.

[26]Dixon, C. E.; Clifton, G. L.; Lighthall, J. W.; Yaghmai, A. A. und Hayes, R. L. (1991): A controlled cortical impact model of traumatic brain injury in the rat, J Neurosci Methods 39 [3], Seite 253-262.

[27]Miller, J. D. und Becker, D. P. (1982): Secondary insults to the injured brain, J R Coll Surg Edinb 27 [5], Seite 292-298.

[28]McIntosh, T. K. (1994): Neurochemical sequelae of traumatic brain injury: therapeutic implications, Cerebrovasc Brain Metab Rev 6 [2], Seite 109-62.

[29]McIntosh, T. K.; Smith, D. H.; Meaney, D. F.; Kotapka, M. J.; Gennarelli, T. A. und Graham, D. I. (1996): Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms, Lab Invest 74 [2], Seite 315-42.

[30]Gelmers, H. J.; Krämer, G.; Hacke, W. und Hennerici, M. (1989): Zerebrale Ischämie, Springer-Verlag.

[31]Zwienenberg, M. und Muizelaar, J. P. (2001): Cerebral perfusion and blood flow in neurotrauma, Neurol Res 23, Seite 167-174.

[32]Harper, S. L.; Bohlen, H. G. und Rubin, M. J. (1984): Arterial and microvascular contributions to cerebral cortical autoregulation in rats, Am J Physiol 246 [1 Pt 2], Seite H17-24.

[33]Golding, E. M. (2002): Sequelae following traumatic brain injury. The cerebrovascular perspective, Brain Res Rev 38 [3], Seite 377-88.

[34]Gutterman, D. D. (1999): Adventitia-dependent influences on vascular function, Am J Physiol 277 [4 Pt 2], Seite H1265-72.


[Seite 93↓]

[35]Brian, J. E., Jr.; Faraci, F. M. und Heistad, D. D. (1996): Recent insights into the regulation of cerebral circulation, Clin Exp Pharmacol Physiol 23 [6-7], Seite 449-57.

[36]Elliott, S. J.; Lacey, D. J.; Chilian, W. M. und Brzezinska, A. K. (1998): Peroxynitrite is a contractile agonist of cerebral artery smooth muscle cells, Am J Physiol 275 [5 Pt 2], Seite H1585-91.

[37]Rosenblum, W. I. (1987): Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles, Circ Res 61 [4], Seite 601-3.

[38]Golding, E. M.; You, J.; Robertson, C. S. und Bryan, R. M., Jr. (2001): Potentiated endothelium-derived hyperpolarizing factor-mediated dilations in cerebral arteries following mild head injury, J Neurotrauma 18 [7], Seite 691-7.

[39]Golding, E. M.; Marrelli, S. P.; You, J. und Bryan, R. M., Jr. (2002): Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow?, Stroke 33 [3], Seite 661-3.

[40]Kuschinsky, W. und Wahl, M. (1978): Local chemical and neurogenic regulation of cerebral vascular resistance, Physiol Reviews 58, Seite 656-89.

[41]Villringer, A. und Dirnagl, U. (1995): Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging, Cerebrovasc Brain Metab Rev 7 [3], Seite 240-76.

[42]Wahl, M. und Schilling, L. (1993): Regulation of cerebral blood flow--a brief review, Acta Neurochir Suppl Wien 59, Seite 3-10.

[43]Golding, E. M.; Robertson, C. S. und Bryan, R. M., Jr. (1998): Comparison of the myogenic response in rat cerebral arteries of different calibers, Brain Res 785 [2], Seite 293-8.

[44]Kontos, H. A.; Wei, E. P.; Navari, R. M.; Levasseur, J. E.; Rosenblum, W. I. und Patterson, J. L., Jr. (1978): Responses of cerebral arteries and arterioles to acute hypotension and hypertension, Am J Physiol 234 [4], Seite H371-83.


[Seite 94↓]

[45]Johnson, P. C. (1986): Autoregulation of blood flow, Circ Res 59 [5], Seite 483-95.

[46]Paulson, O. B.; Strandgaard, S. und Edvinsson, L. (1990): Cerebral autoregulation, Cerebrovasc Brain Metab Rev 2 [2], Seite 161-192.

[47]Johansson, B. (1989): Myogenic tone and reactivity: definitions based on muscle physiology, J Hypertens Suppl 7 [4], Seite S5-8; discussion S9.

[48]Bayliss, W.M. (1902): On the local reaction of the arterial wall to changes of internal pressure, J Physiol 28, Seite 220-31.

[49]McCarron, J. G.; Crichton, C. A.; Langton, P. D.; MacKenzie, A. und Smith, G. L. (1997): Myogenic contraction by modulation of voltage-dependent calcium currents in isolated rat cerebral arteries, J Physiol 498 [Pt 2], Seite 371-9.

[50]Bouma, G. J.; Muizelaar, J. P.; Bandow, K. und Marmarou, A. (1992): Blood pressure and intracranial pressure-volume dynamics in severe head injury: Relationship with cerebral blood flow, J Neurosurg 77, Seite 15-19.

[51]Gobiet, W.; Grote, W. und Bock, W. J. (1975): The relation between intracrainal pressure, mean arterial pressure and cerebral blood flow in patients with severe head injury, Acta Neurochir Wien 32 [1-2], Seite 13-24.

[52]Kelly, D. F.; Kordestani, R. K.; Martin, N. A.; Nguyen, T.; Hovda, D. A.; Bergsneider, M.; McArthur, D. L. und Becker, D. P. (1996): Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome, J Neurosurg 85 [5], Seite 762-71.

[53]Marion, D. W.; Darby, J. und Yonas, H. (1991): Acute regional cerebral blood flow changes caused by severe head injuries, J Neurosurg 74 [3], Seite 407-14.

[54]Robertson, C. S.; Contant, C. F.; Gokaslan, Z. L.; Narayan, R. K. und Grossman, R. G. (1992): Cerebral blood flow, arteriovenous oxygen difference, and outcome in head injured patients, J Neurol Neurosurg Psychiatry 55 [7], Seite 594-603.


[Seite 95↓]

[55]Martin, N. A.; Patwardhan, R. V.; Alexander, M. J.; Africk, C. Z.; Lee, J. H.; Shalmon, E.; Hovda, D. A. und Becker, D. P. (1997): Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm, J Neurosurg 87 [1], Seite 9-19.

[56]Kochanek, P. M.; Marion, D. W.; Zhang, W.; Schiding, J. K.; White, M.; Palmer, A. M.; Clark, R. S.; O'Malley, M. E.; Styren, S. D.; Ho, C. und et al. (1995): Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume, J Neurotrauma 12 [6], Seite 1015-25.

[57]Bryan, R. M., Jr.; Cherian, L. und Robertson, C. (1995): Regional cerebral blood flow after controlled cortical impact injury in rats, Anesth Analg 80 [4], Seite 687-95.

[58]Thomale, U. W.; Kroppenstedt, S. N.; Beyer, T. F.; Schaser, K. D.; Unterberg, A. W. und Stover, J. F. (2002): Temporal profile of cortical perfusion and microcirculation after controlled cortical impact injury in rats., J Neurotrauma 19 [4], Seite 403-413.

[59]Yamakami, I. und McIntosh, T. K. (1991): Alterations in regional cerebral blood flow following brain injury in the rat, J Cereb Blood Flow Metab 11 [4], Seite 655-60.

[60]von Oettingen, G.; Bergholdt, B.; Gyldenstedt, C. und Astrup, J. (2002): Blood flow and ischemia within traumatic cerebral contusions, Neurosurgery 50, Seite 781-788.

[61]Shiina, G.; Onuma, T.; Kameyama, M.; Shimosegawa, Y.; Ishii, K.; Shirane, R. und Yoshimoto, T. (1998): Sequential assessment of cerebral blood flow in diffuse brain injury by 123I-Iodoamphetamine single-photon emission CT, AJNR 19, Seite 297-302.

[62]Ito, J.; Marmarou, A.; Barzo, P.; Fatouros, P. und Corwin, F. (1996): Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury, J Neurosurg 84, Seite 97-103.


[Seite 96↓]

[63]McLaughlin, M. R. und Marion, D. W. (1996): Cerebral blood flow and vasoresponsivity within and around cerebral contusions, J Neurosurg 87, Seite 871-876.

[64]Forbes, M. L.; Hendrich, K. S.; Kochanek, P. M.; Williams, D. S.; Schiding, J. K.; Wisniewski, S. R.; Kelsey, S. F.; DeKosky, S. T.; Graham, S. H.; Marion, D. W. und Ho, C. (1997): Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats, J Cereb Blood Flow Metab 17 [8], Seite 865-74.

[65]Kroppenstedt, S.-N.; Stover, J.F. und Unterberg, A.W. (2000): Effects of dopamine on posttraumatic cerebral blood flow, brain edema, and cerebrospinal fluid glutamate and hypoxanthine concentrations., Crit Care Med 28, Seite 3792-8.

[66]Goodman, J. C.; Cherian, L.; Bryan, R. M., Jr.; Robertson, C. S.; Cherian, L.; Robertson, C. S.; Contant, C. F., Jr. und Bryan, R. M., Jr. (1994): Lateral cortical impact injury in rats: pathologic effects of varying cortical compression and impact velocity

Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity, J Neurotrauma 11 [5], Seite 587-97.

[67]Cherian, L.; Robertson, C. S.; Contant, C. F., Jr. und Bryan, R. M., Jr. (1994): Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity, J Neurotrauma 11 [5], Seite 573-85.

[68]Thomale, U. W.; Schaser, K. D.; Unterberg, A. W. und Stover, J. F. (2001): Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury, J Neurosci Methods 108 [1], Seite 85-90.

[69]Assaf, Y.; Holokovsky, A.; Berman, E.; Shapira, Y.; Shohami, E. und Cohen, Y. (1999): Diffusion and perfusion magnetic resonance imaging following closed head injury in rats, J Neurotrauma 16 [12], Seite 1165-76.


[Seite 97↓]

[70]Kelly, D. F.; Martin, N. A.; Kordestani, R.; Counelis, G.; Hovda, D. A.; Bergsneider, M.; McBride, D. Q.; Shalmon, E.; Herman, D. und Becker, D. P. (1997): Cerebral blood flow as a predictor of outcome following traumatic brain injury, J Neurosurg 86 [4], Seite 633-41.

[71]Becker, D.P. (1989): Commen themes in head injury, Becker, D.P. und Gudeman, S.K., Textbook of head injury Seite 1-22, W.B. Saunders, Philadelphia.

[72]Luerssen, T. G.; Klauber, M. R. und Marshall, L. F. (1988): Outcome from head injury related to patient's age. A longitudinal prospective study of adult and pediatric head injury, J Neurosurg 68 [3], Seite 409-16.

[73]Mascia, L.; Andrews, P. J.; McKeating, E. G.; Souter, M. J.; Merrick, M. V. und Piper, I. R. (2000): Cerebral blood flow and metabolism in severe brain injury: the role of pressure autoregulation during cerebral perfusion pressure management, Intensive Care Med 26 [2], Seite 202-5.

[74]Muizelaar, J. P.; Ward, J. D.; Marmarou, A.; Newlon, P. G. und Wachi, A. (1989): Cerebral blood flow and metabolism in severely head-injured children. Part 2: Autoregulation, J Neurosurg 71 [1], Seite 72-6.

[75]Prat, R.; Markiv, V.; Dujovny, M. und Misra, M. (1997): Evaluation of cerebral autoregulation following diffuse brain injury in rats, Neurol Res 19 [4], Seite 393-402.

[76]Strebel, S.; Lam, A. M.; Matta, B. F. und Newell, D. W. (1997): Impaired cerebral autoregulation after mild brain injury, Surg Neurol 47, Seite 128-131.

[77]Lewelt, W.; Jenkins, L. W. und Miller, J. D. (1980): Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain, J Neurosurg 53 [4], Seite 500-11.

[78]Golding, E.M.; Robertson, C.S. und Bryan, R.M. Jr (1999): The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review., Clin Exp Hypertens 21 [4], Seite 299-332.


[Seite 98↓]

[79]Czosnyka, M.; Smielewski, P.; Kirkpatrick, P.; Menon, D. K. und Pickard, J. D. (1996): Monitoring of cerebral autoregulation in head-injured patients, Stroke 27 [10], Seite 1829-34.

[80]Zhuang, J.; Schmoker, J. D.; Shackford, S. R. und Pietropaoli, J. A. (1992): Focal brain injury results in severe cerebral ischemia despite maintenance of cerebral perfusion pressure, J Trauma 33 [1], Seite 83-8.

[81]Dietrich, W. D.; Alonso, O.; Busto, R.; Prado, R.; Dewanjee, S.; Dewanjee, M. K. und Ginsberg, M. D. (1996): Widespread hemodynamic depression and focal platelet accumulation after fluid percussion brain injury: a double-label autoradiographic study in rats, J Cereb Blood Flow Metab 16 [3], Seite 481-9.

[82]Chesnut, R. M.; Marshall, S. B.; Piek, J.; Blunt, B. A.; Klauber, M. R. und Marshall, L. F. (1993): Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank, Acta Neurochir (Suppl) 59, Seite 121-125.

[83]Hoffman, S. W.; Rzigalinski, B. A.; Willoughby, K. A. und Ellis, E. F. (2000): Astrocytes generate isoprostanes in response to trauma or oxygen radicals, J Neurotrauma 17 [5], Seite 415-20.

[84]De Witt, D. S.; Kong, D. L.; Lyeth, B. G.; Jenkins, L. W.; Hayes, R. L.; Wooten, E. D. und Prough, D. S. (1988): Experimental traumatic brain injury elevates brain prostaglandin E2 and thromboxane B2 levels in rats, J Neurotrauma 5 [4], Seite 303-13.

[85]Busto, R.; Dietrich, W. D.; Globus, M. Y.; Alonso, O. und Ginsberg, M. D. (1997): Extracellular release of serotonin following fluid-percussion brain injury in rats, J Neurotrauma 14 [1], Seite 35-42.

[86]Okiyama, K.; Rosenkrantz, T. S.; Smith, D. H.; Gennarelli, T. A. und McIntosh, T. K. (1994): (S)-emopamil attenuates acute reduction in regional cerebral blood flow following experimental brain injury, J Neurotrauma 11 [1], Seite 83-95.


[Seite 99↓]

[87]Armstead, W. M. (1996): Role of endothelin in pial artery vasoconstriction and altered responses to vasopressin after brain injury, J Neurosurg 85 [5], Seite 901-7.

[88]Macrae, I. M.; Robinson, M. J.; Graham, D. I.; Reid, J. L. und McCulloch, J. (1993): Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuropathological consequences, J Cereb Blood Flow Metab 13 [2], Seite 276-84.

[89]Kontos, H. A. und Wei, E. P. (1986): Superoxide production in experimental brain injury, J Neurosurg 64 [5], Seite 803-7.

[90]Cherian, L.; Chacko, G.; Goodman, J. C. und Robertson, C. S. (1999): Cerebral hemodynamic effects of phenylephrine and L-arginine after cortical impact injury, Crit Care Med 27 [11], Seite 2512-7.

[91]Kimura, M.; Dietrich, H. H. und Dacey, R. G., Jr. (1994): Nitric oxide regulates cerebral arteriolar tone in rats, Stroke 25 [11], Seite 2227-33.

[92]Pelligrino, D. A.; Koenig, H. M. und Albrecht, R. F. (1993): Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat, J Cereb Blood Flow Metab 13 [1], Seite 80-7.

[93]Tanaka, K.; Gotoh, F.; Gomi, S.; Takashima, S.; Mihara, B.; Shirai, T.; Nogawa, S. und Nagata, E. (1991): Inhibition of nitric oxide synthesis induces a significant reduction in local cerebral blood flow in the rat, Neurosci Lett 127 [1], Seite 129-32.

[94]Passineau, M. J.; Zhao, W.; Busto, R.; Dietrich, W. D.; Alonso, O.; Loor, J. Y.; Bramlett, H. M. und Ginsberg, M. D. (2000): Chronic metabolic sequelae of traumatic brain injury: prolonged suppression of somatosensory activation, Am J Physiol Heart Circ Physiol 279 [3], Seite H924-31.

[95]Nayak, A. K.; Mohanty, S.; Singh, R. K. und Chansouria, J. P. (1980): Plasma biogenic amines in head injury, J-Neurol-Sci 47 [2], Seite 211-9.


[Seite 100↓]

[96]Clifton, G. L.; Robertson, C. S.; Kyper, K.; Taylor, A. A.; Dhekne, R. D. und Grossman, R. G. (1983): Cardiovascular response to severe head injury, J-Neurosurg 59 [3], Seite 447-54.

[97]Rosner, M. J.; Newsome, H. H. und Becker, D. P. (1984): Mechanical brain injury: the sympathoadrenal response, J-Neurosurg 61 [1], Seite 76-86.

[98]McIntosh, T. K.; Yu, T. und Gennarelli, T. A. (1994): Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat, J-Neurochem 63 [4], Seite 1426-33.

[99]Hamill, R. W.; Woolf, P. D.; McDonald, J. V.; Lee, L. A. und Kelly, M. (1987): Catecholamines predict outcome in traumatic brain injury, Ann-Neurol 21 [5], Seite 438-43.

[100]Woolf, P. D.; Hamill, R. W.; Lee, L. A.; Cox, C. und McDonald, J. V. (1987): The predictive value of catecholamines in assessing outcome in traumatic brain injury, J-Neurosurg 66 [6], Seite 875-82.

[101]Weiss, H. R. und Buchweitz Milton, E. (1988): Role of alpha-adrenoceptors in the control of the cerebral blood flow response to hypoxia, Eur-J-Pharmacol 148 [1], Seite 107-13.

[102]Kogure, K.; Scheinberg, P.; Kishikawa, H.; Utsunomiya, Y. und Busto, R. (1979): Adrenergic control of cerebral blood flow and energy metabolism in the rat, Stroke 10 [2], Seite 179-84.

[103]Vajramani, G. V.; Chandramouli, B. A.; Jayakumar, P. N. und Kolluri, S. (1999): Evalution of posttraumatic vasospasm, hyperaemia, and autoregulation by transcranial colour-coded duplex sonography, Br J Neurosurg 13, Seite 468-473.

[104]Bergsneider, M.; Hovda, D. A.; Shalmon, E.; Kelly, D. F.; Vaspa, P. M.; Martin, N. A.; Phelps, M. E.; McArthur, D. L.; Caron, M. J.; Kraus, J. F. und Becker, D. P. (1997): Cerebral hyperglycoysis following severe traumatic brain injury in humans: a positron emission tomography study,, J Neurosurg 86, Seite 241-51.


[Seite 101↓]

[105]Nariai, T.; Suzuki, R. ; Ohta, Y.; Ohno, K. und Hirakawa, K. (2001): Focal cerebral hyperemia in postconcussive amnesia, J Neurotrauma 18, Seite 1323-1332.

[106]De Salles, A. A.; Muizelaar, J. P. und Young, H. F. (1987): Hyperglycemia, cerebrospinal fluid lactic acidosis, and cerebral blood flow in severely head-injured patients, Neurosurgery 21, Seite 45-50.

[107]Kroppenstedt, S. N.; Kern, M.; Thomale, U. W.; Schneider, G. H.; Lanksch, W. R. und Unterberg, A. W. (1999): Effect of cerebral perfusion pressure on contusion volume following impact injury, J Neurosurg 90 [3], Seite 520-6.

[108]Davis, K. L.; Jenkins, L. W.; DeWitt, D. S. und Prough, D. S. (1998): Mild traumatic brain injury does not modify the cerebral blood flow profile of secondary forebrain ischemia in Wistar rats, J Neurotrauma 15 [8], Seite 615-25.

[109]Dirnagl, U.; Thoren, P.; Villringer, A.; Sixt, G.; Them, A. und Einhaupl, K. M. (1993): Global forebrain ischaemia in the rat: controlled reduction of cerebral blood flow by hypobaric hypotension and two-vessel occlusion, Neurol Res 15 [2], Seite 128-130.

[110]Heimann, A.; Kroppenstedt, S.; Ulrich, P. und Kempski, O. S. (1994): Cerebral blood flow autoregulation during hypobaric hypotension assessed by laser Doppler scanning, J Cereb Blood Flow Metab 14 [6], Seite 1100-1105.

[111]Asgeirsson, B.; Grande, P. O.; Nordstrom, C. H.; Berntman, L.; Messeter, K. und Ryding, E. (1995): Effects of hypotensive treatment with alpha 2-agonist and beta 1- antagonist on cerebral haemodynamics in severely head injured patients, Acta Anaesthesiol Scand 39 [3], Seite 347-51.

[112]Nilsson, P.; Gazelius, B.; Carlson, H. und Hillered, L. (1996): Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in the rat, J Neurotrauma 13 [4], Seite 201-217.


[Seite 102↓]

[113]Cherian, L.; Robertson, C. S. und Goodman, J. C. (1996): Secondary insults increase injury after controlled cortical impact in rats, J Neurotrauma 13 [7], Seite 371-383.

[114]De Witt, D. S.; Prough, D. S.; Taylor, C. L. und Whitley, J. M. (1992): Reduced cerebral blood flow, oxygen delivery, and electroencephalographic activity after traumatic brain injury and mild hemorrhage in cats, J Neurosurg 76 [5], Seite 812-821.

[115]Gopinath, S. P.; Robertson, C. S.; Contant, C. F.; Hayes, C.; Feldman, Z.; Narayan, R. K. und Grossman, R. G. (1994): Jugular venous desaturation and outcome after head injury, J Neurol Neurosurg Psychiatry 57 [6], Seite 717-723.

[116]Sheinberg, M.; Kanter, M. J.; Robertson, C. S.; Contant, C. F.; Narayan, R. K. und Grossman, R. G. (1992): Continuous monitoring of jugular venous oxygen saturation in head-injured patients, J Neurosurg 76 [2], Seite 212-217.

[117]Unterberg, A. W.; Stroop, R.; Thomale, U.-W.; Kiening, K. L.; Päuser, S. und Vollmann, W. (1997): Characterization of brain edema following controlled cortical impact injury in rats, Acta Neurochir (Suppl) 70, Seite 106-108.

[118]Kroppenstedt, S.-N.; Schneider, G.-H.; Thomale, U.-W. und Unterberg, A.W. (1998): Protective effects of aptiganel HCl (Cerestat) following controlled cortical impact injury in the rat, J Neurotrauma 15 [3], Seite 191-197.

[119]Altura, B. M.; Gebrewold, A. und Lassoff, S. (1980): Biphasic responsiveness of rat pial arterioles to dopamine: direct observations on the microcirculation, Br J Pharmacol 69 [4], Seite 543-544.

[120]Chan, K. H.; Dearden, N. M.; Miller, J. D.; Andrews, P. J. und Midgley, S. (1993): Multimodality monitoring as a guide to treatment of intracranial hypertension after severe brain injury, Neurosurgery 32 [4], Seite 547-552.

[121]Kiening, K.L.; Unterberg, A.W.; Bardt, T.F.; Schneider, GH. und Lanksch, W.R. (1996): Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular oxygenation saturation, J Neurosurgery 85, Seite 751-757.


[Seite 103↓]

[122]Mendelow, A.D.; Allcutt, D.A.; Chambers, I.R.; Jenkins, A. und Crawford, P.J. (1993): Intracranial and perfusion pressure monitoring in the head injured patient: which index?, Avezaat, CJJ; van Eijndhoven, JHM und Maas, AIR, Intracranial Pressure VIII Seite 544-548, Springer -Verlag, Berlin.

[123]Bouma, G. J.; Muizelaar, J. P.; Stringer, W. A.; Choi, S. C.; Fatouros, P. und Young, H. F. (1992): Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography, J Neurosurg 77 [3], Seite 360-8.

[124]De Witt, D. S.; Jenkins, L. W. und Prough, D. S. (1995): Enhanced vulnerability to secondary ischemic insults after experimental traumatic brain injury, New Horiz 3 [3], Seite 376-83.

[125]Kroppenstedt, S. N.; Stroop, R.; Kern, M.; Thomale, U. W.; Schneider, G. H. und Unterberg, A. W. (1999): Lubeluzole following traumatic brain injury in the rat, J Neurotrauma 16 [7], Seite 629-37.

[126]von Essen, C.; Zervas, N. T.; Brown, D. R.; Koltun, W. A. und Pickren, K. S. (1980): Local cerebral blood flow in the dog during intravenous infusion of dopamine, Surg Neurol 13 [3], Seite 181-8.

[127]von Essen, C.; Kistler, J. P.; Lees, R. S. und Zervas, N. T. (1981): Cerebral blood flow and intracranial pressure in the dog during intravenous infusion of nitroglycerin alone and in combination with dopamine, Stroke 12 [3], Seite 331-8.

[128]Nilsson, P.; Hillered, L.; Ponten, U. und Ungerstedt, U. (1990): Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats, J Cereb Blood Flow Metab 10 [5], Seite 631-7.

[129]Shimada, N.; Graf, R.; Rosner, G. und Heiss, W. D. (1993): Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid, J Neurochem 60 [1], Seite 66-71.


[Seite 104↓]

[130]Stover, J. F.; Morganti-Kosmann, M. C.; Lenzlinger, P. M.; Stocker, R.; Kempski, O. S. und Kossmann, T. (1999): Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients, J Neurotrauma 16 [2], Seite 135-42.

[131]Obrenovitch, T. P. und Urenjak, J. (1997): Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy, Prog Neurobiol 51 [1], Seite 39-87.

[132]Harkness, R. A. (1988): Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion, J Chromatogr 429, Seite 255-78.

[133]Kroppenstedt, S.; Ulrich, P.; Heimann, A. und Kempski, O. (2000): Significance of resting and stimulated cerebral blood flow for predicting the risk of hemodynamic cerebral ischemia in a model of chronic hemodynamic insufficiency, Neurosurgery 46 [5], Seite 1204-10.

[134]Kempski, O.; Heimann, A. und Strecker, U. (1995): On the number of measurements necessary to assess regional cerebral blood flow by local laser Doppler recordings: a simulation study with data from 45 rabbits, Int-J-Microcirc-Clin-Exp 15 [1], Seite 37-42.

[135]Maeda, T.; Katayama, Y.; Kawamata, T.; Aoyama, N. und Mori, T. (1997): Hemodynamic depression and microthrombosis in the peripheral areas of cortical contusion in the rat: role of platelet activating factor, Acta Neurochir Suppl Wien 70, Seite 102-5.

[136]Armstead, W. M. (1999): Endothelin-1 contributes to normocapnic hyperoxic pial artery vasoconstriction, Brain Res 842 [1], Seite 252-5.

[137]De Witt, D. S.; Smith, T. G.; Deyo, D. J.; Miller, K. R.; Uchida, T. und Prough, D. S. (1997): L-arginine and superoxide dismutase prevent or reverse cerebral hypoperfusion after fluid-percussion traumatic brain injury, J Neurotrauma 14 [4], Seite 223-33.


[Seite 105↓]

[138]Golding, E. M.; Steenberg, M. L.; Contant, C. F.; Krishnappa, I.; Robertson, C. S. und Bryan, R. M. (1999): Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injury, Am J Physiol 277, Seite 1457-1466.

[139]Hendrich, K. S.; Kochanek, P. M.; Williams, D. S.; Schiding, J. K.; Marion, D. W. und Ho, C. (1999): Early perfusion after controlled cortical impact in rats: Quantification by arterial spin-labeled MRI and the influence of spin-lattice relaxation time heterogenity, Magn Reson Med 42 [4], Seite 673-681.

[140]Palmer, A. M.; Marion, D. W.; Botscheller, M. L.; Swedlow, P. E.; Styren, S. D. und DeKosky, S. T. (1993): Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model, J Neurochem 61 [6], Seite 2015-24.

[141]Baethmann, A.; Maier Hauff, K.; Schurer, L.; Lange, M.; Guggenbichler, C.; Vogt, W.; Jacob, K. und Kempski, O. (1989): Release of glutamate and of free fatty acids in vasogenic brain edema, J Neurosurg 70 [4], Seite 578-91.

[142]Hagberg, H.; Andersson, P.; Lacarewicz, J.; Jacobson, I.; Butcher, S. und Sandberg, M. (1987): Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia, J Neurochem 49 [1], Seite 227-31.

[143]Zauner, A.; Bullock, R.; Kuta, A. J.; Woodward, J. und Young, H. F. (1996): Glutamate release and cerebral blood flow after severe human head injury, Acta Neurochir Suppl Wien 67, Seite 40-4.

[144]Baskaya, M. K.; Rao, A. M.; Dogan, A.; Donaldson, D. und Dempsey, R. J. (1997): The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats, Neurosci Lett 226 [1], Seite 33-6.

[145]Noh, J. S.; Kim, E. Y.; Kang, J. S.; Kim, H. R.; Oh, Y. J. und Gwag, B. J. (1999): Neurotoxic and neuroprotective actions of catecholamines in cortical neurons, Exp Neurol 159 [1], Seite 217-24.


[Seite 106↓]

[146]Garnett, E. S.; Firnau, G.; Nahmias, C.; Sood, S. und Belbeck, L. (1980): Blood-brain barrier transport and cerebral utilization of dopa in living monkeys, Am J Physiol 238 [5], Seite R318-27.

[147]Talmor, D.; Roytblat, L.; Artru, A. A.; Yuri, O.; Koyfman, L.; Katchko, L. und Shapira, Y. (1998): Phenylephrine-induced hypertension does not improve outcome after closed head trauma in rats, Anesth Analg 87 [3], Seite 574-8.

[148]von Essen, C. (1972): Effects of dopamine, noradrenaline and 5-hydroxytryptamine on the cerebral blood flow in the dog, J Pharm Pharmac 24, Seite 668.

[149]Beaumont, A.; Hayasaki, K.; Marmarou, A.; Barzo, P.; Fatouros, P. und Corwin, F. (2001): Contrasting effects of dopamine therapy in experimental brain injury, J Neurotrauma 18 [12], Seite 1359-72.

[150]Nemoto, E. M.; Klementavicius, R.; Melick, J. A. und Yonas, H. (1996): Norepinephrine activation of basal cerebral metabolic rate for oxygen (CMRO2) during hypothermia in rats, Anesth Analg 83 [6], Seite 1262-7.

[151]Berridge, C. W.; Bolen, S. J.; Manley, M. S. und Foote, S. L. (1996): Modulation of forebrain electroencephalographic activity in halothane-anesthetized rat via actions of noradrenergic beta-receptors within the medial septal region, J Neurosci 16 [21], Seite 7010-20.

[152]Koizumi, H.; Fujisawa, H.; Ito, H.; Maekawa, T.; Di, X. und Bullock, R. (1997): Effects of mild hypothermia on cerebral blood flow-independent changes in cortical extracellular levels of amino acids following contusion trauma in the rat, Brain Res 747 [2], Seite 304-12.

[153]Law Tho, D.; Crepel, F. und Hirsch, J. C. (1993): Noradrenaline decreases transmission of NMDA- and non-NMDA-receptor mediated monosynaptic EPSPs in rat prefrontal neurons in vitro, Eur J Neurosci 5 [11], Seite 1494-500.

[154]Dunn Meynell, A. A.; Hassanain, M. und Levin, B. E. (1998): Norepinephrine and traumatic brain injury: a possible role in post-traumatic edema, Brain Res 800 [2], Seite 245-52.


[Seite 107↓]

[155]Prasad, M. R.; Tzigaret, C. M.; Smith, D.; Soares, H. und McIntosh, T. K. (1992): Decreased alpha 1-adrenergic receptors after experimental brain injury, J Neurotrauma 9 [3], Seite 269-79.

[156]Boyeson, M. G. und Feeney, D. M. (1990): Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury, Pharmacol Biochem Behav 35 [3], Seite 497-501.

[157]Kikuchi, K.; Nishino, K. und Ohyu, H. (2000): Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats, Brain Res 860 [1-2], Seite 130-5.

[158]Sutton, R. L. und Feeney, D. M. (1992): a-Noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat, Restor Neurol Neurosci 4, Seite 1-11.

[159]Feeney, D. M. und Westerberg, V. S. (1990): Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma, Can J Psychol 44 [2], Seite 233-52.

[160]Stibick, D. L. und Feeney, D. M. (2001): Enduring vulnerability to transient reinstatement of hemiplegia by prazosin after traumatic brain injury, J Neurotrauma 18 [3], Seite 303-12.

[161]Sebban, C.; Zhang, X. Q.; Tesolin Decros, B.; Millan, M. J. und Spedding, M. (1999): Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission, Br J Pharmacol 128 [5], Seite 1045-54.

[162]Basar, E.; Gonder, A.; Ozesmi, C. und Ungan, P. (1975): Dynamics of brain rhythmic and evoked potentials. I. Some computational methods for the analysis of electrical signals from the brain, Biol Cybern 20 [3-4], Seite 137-43.

[163]Giri, B. K.; Krishnappa, I. K.; Bryan, R. M., Jr.; Robertson, C. und Watson, J. (2000): Regional cerebral blood flow after cortical impact injury complicated by a secondary insult in rats, Stroke 31 [4], Seite 961-7.


[Seite 108↓]

[164]Stover, J. F.; Kroppenstedt, S. N.; Thomale, U. W.; Kempski, O. S. und Unterberg, A. W. (2000): Isoflurane doubles plasma glutamate and increases posttraumatic brain edema, Acta Neurochir Suppl 76, Seite 375-8.

[165]Garthwaite, J.; Charles, S. L. und Chess-Williams, R. (1988): Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain, Nature 336 [6197], Seite 385-8.

[166]Iadecola, C.; Beitz, A. J.; Renno, W.; Xu, X.; Mayer, B. und Zhang, F. (1993): Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels, Brain Res 606 [1], Seite 148-55.

[167]Palmer, R. M.; Ferrige, A. G. und Moncada, S. (1987): Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327 [6122], Seite 524-6.

[168]Liu, J. und Mori, A. (1993): Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage, Arch Biochem Biophys 302 [1], Seite 118-27.

[169]Berridge, C. W. und Abercrombie, E. D. (1999): Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis, Neuroscience 93 [4], Seite 1263-70.

[170]Huda, K.; Salunga, T. L. und Matsunami, K. (2001): Dopaminergic inhibition of excitatory inputs onto pyramidal tract neurons in cat motor cortex, Neurosci Lett 307 [3], Seite 175-8.

[171]Yamakura, T.; Bertaccini, E.; Trudell, J. R. und Harris, R. A. (2001): Anesthetics and ion channels: molecular models and sites of action, Annu Rev Pharmacol Toxicol 41, Seite 23-51.

[172]Flint, R. S.; Murphy, J. M.; Calkins, P. M. und McBride, W. J. (1985): Monoamine, amino acid and cholinergic interactions in slices of rat cerebral cortex, Brain Res Bull 15 [2], Seite 197-202.


[Seite 109↓]

[173]Sutin, J. und Shao, Y. (1992): Resting and reactive astrocytes express adrenergic receptors in the adult rat brain, Brain Res Bull 29 [3-4], Seite 277-84.

[174]Hansson, E. und Ronnback, L. (1992): Adrenergic receptor regulation of amino acid neurotransmitter uptake in astrocytes, Brain Res Bull 29 [3-4], Seite 297-301.

[175]Kawamata, T.; Katayama, Y.; Hovda, D. A.; Yoshino, A. und Becker, D. P. (1992): Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury, J Cereb Blood Flow Metab 12 [1], Seite 12-24.

[176]Dirnagl, U.; Niwa, K.; Lindauer, U. und Villringer, A. (1994): Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide, Am J Physiol 267 [1 Pt 2], Seite H296-301.

[177]Pleines, U. E.; Stover, J. F.; Kossmann, T.; Trentz, O. und Morganti-Kossmann, M. C. (1998): Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury, J Neurotrauma 15 [6], Seite 399-409.

[178]Stover, J. F.; Pleines, U. E.; Morganti Kossmann, M. C.; Stocker, R. und Kossmann, T. (1999): Thiopental attenuates energetic impairment but fails to normalize cerebrospinal fluide glutamate in brain-injured patients, Crit Care Med 27 [1], Seite 1351-57.

[179]Stover, J. F. und Unterberg, A. W. (2000): Increased cerebrospinal fluid glutamate and taurine concentrations are associated with traumatic brain edema formation in rats, Brain Res 875 [1-2], Seite 51-5.

[180]Unterberg, A. W.; Kiening, K. L.; Hartl, R.; Bardt, T. F.; Sarrafzadeh, A. S. und Lanksch, W. R. (1997): Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation, J Trauma (Suppl.) 42, Seite 32-37.


[Seite 110↓]

[181]Groner, W.; Winkelman, J. W.; Harris, A. G.; Ince, C.; Bouma, G. J.; Messmer, K. und Nadeau, R. G. (1999): Orthogonal polarization spectral imaging: a new method for study of the microcirculation, Nat Med 5 [10], Seite 1209-12.

[182]Klyscz, T.; Junger, M.; Jung, F. und Zeintl, H. (1997): Cap image--a new kind of computer-assisted video image analysis system for dynamic capillary microscopy, Biomed Tech 42 [6], Seite 168-75.

[183]Chiueh, C. C.; Sun, C. L.; Kopin, I. J.; Fredericks, W. R. und Rapoport, S. I. (1978): Entry of [3H]norepinephrine, [125I]albumin and Evans blue from blood into brain following unilateral osmotic opening of the blood-brain barrier, Brain Res 145 [2], Seite 291-301.

[184]Edvinsson, L.; Hardebo, J. E.; MacKenzie, E. T. und Owman, C. (1978): Effect of exogenous noradrenaline on local cerebral blood flow after osmotic opening of the blood-brain barrier in the rat, J Physiol 274, Seite 149-56.

[185]Busija, D. W. und Leffler, C. W. (1987): Exogenous norepinephrine constricts cerebral arterioles via alpha 2-adrenoceptors in newborn pigs, J Cereb Blood Flow Metab 7 [2], Seite 184-8.

[186]Hempelmann, R. G. und Ziegler, A. (1993): Endothelium-dependent noradrenaline-induced relaxation of rat isolated cerebral arteries: pharmacological characterization of receptor subtypes involved, Br J Pharmacol 110 [4], Seite 1321-8.

[187]McCalden, T. A.; Eidelman, B. H. und Mendelow, A. D. (1977): Barrier and uptake mechanisms in the cerebrovascular response to noradrenaline, Am J Physiol 233 [4], Seite H458-65.

[188]Burger, R.; Vince, G. H.; Meixensberger, J.; Bendszus, M. und Roosen, K. (1999): Interrelations of laser doppler flowmetry and brain tissue oxygen pressure during ischemia and reperfusion induced by an experimental mass lesion, J Neurotrauma 16 [12], Seite 1149-64.

[189]Dings, J.; Jager, A.; Meixensberger, J. und Roosen, K. (1998): Brain tissue pO2 and outcome after severe head injury, Neurol Res 20 Suppl 1, Seite S71-5.


[Seite 111↓]

[190]Meixensberger, M. R.; Kunze, E.; Barcsay, E.; Vaeth, A. und Roosen, K. (2001): Clinical cerebral microdialysis: brain metabolism and brain tissue oxygenation after acute brain injury, Neurol Res 23, Seite 801-806.

[191]van den Brink, W. A.; Haitsma, I. K.; Avezaat, C. J.; Houtsmuller, A. B.; Kros, J. M. und Maas, A. I. (1998): Brain parenchyma/pO2 catheter interface: a histopathological study in the rat, J Neurotrauma 15 [10], Seite 813-24.

[192]Holtzer, S.; Vigue, B.; Ract, C.; Samii, K. und Escourrou, P. (2001): Hypoxia-hypotension decreases pressor responsiveness to exogenous catecholamines after severe traumatic brain injury in rats, Crit Care Med 29 [8], Seite 1609-14.

[193]Koiv, L.; Merisalu, E.; Zilmer, K.; Tomberg, T. und Kaasik, A. E. (1997): Changes of sympatho-adrenal and hypothalamo-pituitary-adrenocortical system in patients with head injury, Acta Neurol Scand 96 [1], Seite 52-8.

[194]Hu, Z.; Azhar, S. und Hoffman, B. B. (1992): Prolonged activation of alpha 1 adrenoceptors induces down-regulation of protein kinase C in vascular smooth muscle, J Cardiovasc Pharmacol 20 [6], Seite 982-9.

[195]Heck, D. A. und Bylund, D. B. (1997): Mechanism of down-regulation of alpha-2 adrenergic receptor subtypes, J Pharmacol Exp Ther 282 [3], Seite 1219-27.

[196]Dong, E.; Yatani, A.; Mohan, A. und Liang, C. S. (1999): Myocardial beta-adrenoceptor down-regulation by norepinephrine is linked to reduced norepinephrine uptake activity, Eur J Pharmacol 384 [1], Seite 17-24.

[197]Stover, J. F.; Sakowitz, O. W.; Thomale, U. W.; Kroppenstedt, S. N. und Unterberg, A. W. (2002): Norepinephrine-induced hyperglycemia does not increase cortical lactate-injured rats, Intensive Care Med 28, Seite 1491-1497.

[198]Bullock, R.; Zauner, A.; Woodward, J. J.; Myseros, J.; Choi, S. C.; Ward, J. D.; Marmarou, A. und Young, H. F. (1998): Factors affecting excitatory amino acid release following severe human head injury, J Neurosurg 89 [4], Seite 507-18.


[Seite 112↓]

[199]Grande, P. O.; Asgeirsson, B. und H., Nordstrom C. (2002): Volume-targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments, Acta Anaesthesiol Scand 46, Seite 929-941.

[200]Bouma, G. J. und Muizelaar, J. P. (1990): Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation, J Neurosurg 73 [3], Seite 368-74.

[201]Bruce, D. A.; Langfitt, T. W. und Miller, J. D. (1972): Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients, J Neurosurg 38, Seite 131-144.

[202]Cruz, J.; Jaggi, J. L. und Hoffstad, O. J. (1995): Cerebral blood flow, vascular resistance, and oxygen metabolism in acute brain trauma: redefining the role of cerebral perfusion pressure?, Crit Care Med 23 [8], Seite 1412-1417.

[203]Kiening, K. L.; Hartl, R.; Unterberg, A. W.; Schneider, G. H.; Bardt, T. F. und Lanksch, W. R. (1997): Brain tissue pO2-monitoring in comatose patients: Implications for therapy, Neurol Res 19, Seite 233-240.

[204]Chan, K. H.; Miller, J. D.; Dearden, N. M.; Andrews, P. J. und Midgley, S. (1992): The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury, J Neurosurg 77, Seite 55-61.

[205]Bruzzone, P.; Dionigi, R.; Bellinzona, G.; Imberti, R. und Stocchetti, N. (1998): Effects of cerebral perfusion pressure on brain tissue PO2 in patients with severe head injury, Acta Neurochir Suppl 71, Seite 111-113.

[206]Stahl, N.; Ungerstedt, U. und Nordstrom, C. H. (2001): Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries, Intensive Care Med 27, Seite 1215-1223.


[Seite 113↓]

[207]Hutchinson, P. J.; Gupta, A. K.; Fryer, T. F.; Al-Rawi, P. G.; Chatfield, D. A.; Coles, J. P.; O'Connel, M. T.; Kett-White, R.; Minhas, P. S.; Aigbirhio, F. I.; Clark, J. C.; Kirkpatrick, P. J.; Menon, D. K. und Pickard, J. D. (2002): Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: A combined microdialysis and triple oxygen positron emission tomography study, J Cereb Blood Flow Metab 22 [735-745].

[208]Juul, N.; Morris, G.; Marshall, S. und Marshall, L. (2000): Intracranial hypertension and cerebral perfusion: influence on neurosurgical deterioration and outcome in severe head injury, J Neurosurg 92, Seite 1-6.

[209]Marmarou, A.; Anderson, R. L.; Ward, J. D.; Choi, S. C.; Young, H. F.; Eisenberg, H. M.; Foulkes, M. A.; Marshall, L. F. und Jane, H. A. (1991): Impact of ICP instability and hypotension on outcome in patients with severe head injury, J Neurosurg 75, Seite 59-64.

[210]Struchen, M. A.; Hannay, H. J.; Contant, C. F. und Robertson, C. S. (2001): The relation between acute physiological variables and outcome on the Glasgow Outcome Scale and Disability Rating Scale following severe traumatic brain injury, J Neurotrauma 18, Seite 115-125.

[211]Downard, C.; Hulka, F:; Mullins, R. J.; Piatt, J.; Chesnut, R.; Quint, P. und Mann, N. C. (2000): Relationship of cerebral perfusion pressure and survival in pediatric brain-injured patients, J Trauma 49, Seite 654-658.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
22.09.2004