[Seite 103↓]


1. Brandtzaeg P. Overview of the mucosal immune system. Curr Top Microbiol Immunol. 1989; 146:13-25.

2. James SP. Mucosal T-cell function. Gastroenterol Clin North America. 1991; 20:597-612.

3. Zeitz M, Schieferdecker HL, Ullrich R, Jahn HU, James SP, Riecken EO. Phenotype and function of lamina propria lymphocytes. Immunol Res. 1991; 10: 199-206.

4. Maloy KJ, Mowat AM, Zamoyska R, Crispe IN. Phenotypic heterogeneity of intraepithelial T lymphocytes from mouse small intestine. Immunology. 1991; 72: 555-562.

5. Lefrancois L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J Immunol. 1991; 147: 1746-1751.

6. Poussier P, Edouard P, Lee C, Binnie M, Julius M. Thymus-independent development and negative selection of T cells expressing T cell receptor α / β in the intestinal epithelium: evidence for distinct circulation patters of gut- and thymus- derived T lymphocytes. J Exp Med. 1992; 176: 187-199.

7. Mosley RL, Styre D, Klein JR. Differentiation and functional maturation of bone marrow derived intestinal epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras. J Immunol. 1990; 145: 1369-1375.

8. Barrett TA, Gajewski TF, Danielpour D, Chang EB, Beagley KW, Bluestone JA. Differential function of intestinal intraepithelial lymphocyte subsets. J Immunol. 1992; 149: 1124-1130.

9. Taguchi T, Aicher WK, Fujihashi K, Yanamoto M, McGhee JR, Bluestone JA, Kiyono H. Novel function for intestinal intraepithelial lymphocytes. Murine CD3 + , γ / δ TCR + T-cells produce IFN- γ and IL-5. J Immunol. 1991; 147. 3736-3744.

10. James SP. The gastrointestinal mucosal immune system. Dig Dis. 1993; 11: 146-156.

[Seite 104↓]

11. Goodman T, Lefrancois L. Expression of the γ / δ T-cell receptor on intestinal CD8 + intraepithelial lymphocytes. Nature. 1988; 333: 855-858.

12. Goodman T, Lefrancois L. Intraepithelial lymphocytes. Anatomical site not T cell receptor form dictates phenotype and function. J Exp Med. 1989; 170: 1569-1581.

13. Fujihashi K, Taguchi T, Aicher WK, McGhee JR, Bluestone JA, Eldridge JH, Kiyono H. Immunoregulatory functions for murine intraepithelial lymphocytes: γ / δ T cell receptor-positive (TCR + ) T cells abrogate oral tolerance, while α β TCR + T cells provide B cell help. J Exp Med. 1992; 175: 695-707.

14. Schattenfroh NC, Hoffman RA, McCarthy SA, Simmons RL. Phenotypic analysis of donor cells infiltrating the small intestinal epithelium and spleen during graft-versus-host disease. Transplantation. 1995; 59: 268-273.

15. Deusch K, Lüling F, Reich K, Classen M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the γ / δ T cell receptor, the CD8 accessory molecule and preferentially uses the V δ 1 gene segment. Eur J Immunol. 1991; 21: 1053-1059.

16 . Nüssler NC, Stange B, Hoffman RA, Schraut WH, Bauer AJ, Neuhaus P. Enhanced cytolytic activity of intestinal intraepithelial lymphocytes in patients with Crohn's disease. Langbeck's Arch Surg. 2000; 385: 218-224

17. Rocha B, von Boehmer H, Guy-Grand D. Selection of intraepithelial lymphocytes with CD8 α / α co-receptors by self-antigen in the gut. Proc Natl Acad Sci USA. 1992; 89: 5336-5340.

18. Guy-Grand D, Cerf-Bensussan N, Malissen B, Malassis-Seris M, Briottet C, Vassalli P. Two gut intraepithelial CD8 + lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med. 1991; 173: 471-481.

[Seite 105↓]

19. Regnault A, Cumano A, Vassalli P, Guy-Grand D, Kourilsky P. Oligoclonal repertoire of the CD8 αα and the CD α β TCR- α / β murine intestinal intraepithelial T lymphocytes: Evidence for the random emergence of T cells. J Exp Med. 1994; 180: 1345-1358.

20. Arstila T, Arstila TP, Calbo S, Selz F, Malassis-Seris M, Vassalli P, Kourilsky P, Guy-Grand D. Identical T cell clones are located within the mouse gut epithelium and lamina propria and circulate in the thoracic duct lymph. J Exp Med. 2000; 191: 823-834.

21. Sydora BC, Mixter PF, Holcombe HR, Eghtesady P, Williams K, Amaral MC, Nel A, Kronenberg M. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J Immunol. 1993; 150: 2179-2191.

22. van Houten N, Mixter PF, Wolfe J, Budd RC. CD2 expression on murine intestinal intraepithelial lymphocytes is bimodal and defines proliferative capacity. Int Immunol. 1993; 5: 665-672.

23. Gramzinski RA, Adams E, Gross JA, Goodman TG, Allison JP, Lefrancois L. T cell receptor-triggered activation of intraepithelial lymphocytes in vitro. Int Immunol. 1993; 5: 145-153.

24. Carol M, Lambrechts A, Van Gossum A, Libin M, Goldman M, Mascart-Lemone F. Spontaneous secretion of interferon γ and interleukin-4 by human intraepithelial and lamina propria gut lymphocytes. Gut. 1998; 42: 643-649.

25. Yanamoto M, Fujihashi K, Beagley KW, McGhee JR, Kiyono H. Cytokine synthesis by intestinal intraepithelial lymphocytes. Both γ δ T cell receptor-positive and α β T cell receptor-positive T cells in the G 1 phase of cell cycle produce IFN- γ and IL-5. J Immunol. 1993; 150: 106-114.

26. Yanamoto S, Russ F, Teixeira HC, Conradt P, Kaufmann SHE. Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelial γ / δ T lymphocytes. Infect Immunol. 1993; 61: 2154-2161.

27. Lundqvist C, Melgar S, Yeung MM, Hammarström S, Hammarström M-L. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol. 1996; 157: 1926-1934.

[Seite 106↓]

28. Hoffman RA. Intraepithelial lymphocytes coinduce nitric oxide synthase in intestinal epithelial cells. Am J Physiol. 2000; 278: G886-G894.

29. Fujihashi K, Yanamoto M, McGhee JR, Kiyono H. α β T c ell receptor-positive intraepithelial lymphocytes with CD4 + , CD8 - and CD4 + , CD8 + phenotypes from orally immunized mice provide Th2-like function for B cell responses. J Immunol. 1993; 151: 6681-6691.

30. Lefrancois L, Goodman T. In vivo modulation of cytolytic activity and Thy-1 expression of TCR γ / δ + intraepithelial lymphocytes. Science. 1989; 243: 1716-1718.

31. Ishikawa H, Li Y, Abeliovich A, Yanamoto S, Kaufmann SHE, Tonegawa S. Cytotoxic and interferon- γ producing activities of γ δ T cells in the mouse small intestinal epithelium are strain dependent. Proc Natl Acad Sci USA. 1993; 90: 8204-8208.

32. Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, Cai Z, Shimamura T, Matsuoka Y, Ohwaki M, Ishikawa H. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing γ / δ T-cell antigen receptors. Proc Natl Acad Sci USA. 1993; 90: 8591-8594.

33. Guy-Grand D, Malassis-Seris M, Briottet C, Vassalli P. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforine and granzyme transcripts and cytoplasmic granules. J Exp Med. 1991; 173: 1549-1552.

34. Lepage AC, Buzoni-Gatel D, Bout DT, Kasper LH. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J Immunol. 1998; 161: 4902-4908.

35. Offit PA, Dudzik KI. Rotavirus specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J Virol. 1989; 63: 3507-3512.

[Seite 107↓]

36. Sydora BC, Jamieson BD, Ahmed R, Kronenberg M. Intestinal intraepithelial lymphocytes respond to systemic lymphocytic choriomeningitis virus infection. Cell Immunol. 1996; 167: 161-169.

37. Müller S, Bühler-Jungo M, Mueller C. Intestinal intraepithelial lympocytes exert potent protective cytotoxic activity during an acute virus infection. J Immunol. 2000; 164: 1986-1994.

38. Born W, Hall L, Dallas A, Boymel J, Shinnick T, Yound D, Brennan P, O'Brien R. Recognition of a peptide antigen by heat shock-reactive γ δ T lymphocytes. Science. 1990; 249: 67-69.

39. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γ δ T cells. Science. 1998; 279: 1737-1740.

40. Roberts AI, O'Conell SM, Ebert EC. Intestinal intraepithelial lymphocytes bind to colon cancer cells by HML-1 and CD11a. Cancer Res. 1993; 53: 1608-1611.

41. Taunk J, Robert AI, Ebert EC. Spontaneous cytotoxicity of human intraepithelial lymphocytes against epithelial cell tumors. Gastroenterology. 1992; 102: 69-75.

42. Grover R, Ingham Clark CL, Pockley AG, Lear PA, Wood RFM. Host cell infiltration of the intraepithelial compartment in small bowel transplantation. Transplant Proc. 1993; 25: 900.

43. Ingham Clark CL, Cunningham AJ, Crane PW, Wood RFM, Lear PA. Lymphocyte infiltration patterns in rat small bowel transplants. Transplant Proc. 1990; 22: 2460.

44. Oberhuber G, Schmid T, Thaler W, Waitz W, Luze T, Klima G, Margreiter R. Increase in intraepithelial lymphocytes as an early marker of rejection in a fully allogeneic rat small bowel transplantation model. Eur Surg Res. 1993; 25: 310-315.

45. Foker E, Najarian JS. Allograft rejection III: the pathobiology of organ rejection. in: Najarian JS and Simmons RL (eds). Transplantation. 1972; 122.

[Seite 108↓]

46. Murase N, Demetris AJ, Woo J, Furuya T, Nalesnik M, Tanabe M, Todo S, Starzl TE. Lymphocyte traffic and graft-versus-host disease after fully allogeneic small bowel transplantation. Transplant Proc. 1991; 23: 3246-3247.

47. Sirinek LP, O'Dorisio MS, Dunaway DJ. Accumulation of donor-specific cytotoxic T cells in intestinal lymphoid tissues following intestinal transplantation. J Clin Immunol. 1995; 15: 258-265.

48. Ferrara JLM, Deeg HJ. Graft-versus-host disease. New Engl J Med. 1991; 324: 667-674.

49. Kelemen E, Szebeni J, Petranyi GG. Graft-versus-host disease in bone marrow transplantation: Experimental, laboratory, and clinical contributions of the last few years. Int Arch Allergy Immunol. 1993; 102: 309-320.

50. Via CS. Kinetics of T cell activation in acute and chronic forms of murine graft-versus-host disease. J Immunol. 1991; 146: 2603-2609.

51. Nüssler NC, Hoffman RA, McCarthy SA, Simmons RL. Functional changes of intestinal intraepithelial lymphocytes during acute graft-versus-host disease: correlation with phenotype. Int Immunol. 1996; 8: 1767-1777.

52. Lehnert S, Rybka WB, Seemayer TA. Amplification of the graft-versus-host reaction by partial body irradiation. Transplantation. 1986; 41: 675-679.

53. Mowat AM, Ferguson A. Intraepithelial lymphocyte count and crypt hyperplasia measure the mucosal component for the graft-versus-host reaction in mouse small intestine. Gastroenterology. 1982; 83: 417-423.

54. Guy-Grand D, Vasalli P. Gut injury in mouse graft-versus-host reaction. J Clin Invest. 1986; 77: 1584-1595.

55. Weisdorf SA, Roy J, Snover D, Platt JL, Weisdorf DJ. Inflammatory cells in graft-versus-host disease on the rectum: Immunopathologic analysis. Bone Marrow Transplant. 1991; 7: 297-301.

56. Tsuzuki T, Yoshikai Y, Ito M, Mori N, Ohbayashi M, Asai J. Kinetics of intestinal intraepithelial lymphocytes during acute graft-versus-host disease in mice. Eur J Immunol. 1994; 24: 709-715.

[Seite 109↓]

57. Steinhoff U, Klemm U, Greiner M, Bordasch K, Kaufmann SHE. Altered intestinal immune system but normal antibacterial resistance in the absence of P-selectin and ICAM-1. J Immunol. 1998; 160: 6112-6120.

58. Roy J, Platt JL, Weisdorf DJ. The immunopathology of upper gastrointestinal acute graft-versus-host disease. Transplantation. 1993; 44: 572-577.

59. Parrillo JE. Mechanisms of disease: Pathogenetic mechanisms of septic shock. New Engl J Med. 1993; 328: 1271-1277.

60. Amura CR, Silverstein R, Morrison DC. Mechanisms involved in the pathogenesis of sepsis are not necessarily reflected by in vitro cell activation studies. Infect Immun. 1998; 66: 5372-5378.

61. Bone RC. Gram-negative sepsis: A dilemma of modern medicine. Clin Microbiol Rev. 1993; 6: 57-68.

62. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun. 1979; 23: 403-411.

63. Albanese CT, Cardona M, Smith SD, Watkins S, Kurkchubasche AG, Ulman I, Simmons RL, Rowe MI. Role of intestinal mucus in transepithelial passage of bacteria across the intact ileum in vitro. Surgery. 1994; 116: 76-82.

64. Gautreaux MD, Deitch EA, Berg RD. T Lymphocytes in host defense against bacterial translocation from the gastrointestinal tract. Infect Immun. 1994; 62: 2874-2884.

65. Eaves-Pyles T, Wong HR, Alexander JW. Sodium arsenite induces the stress response in the gut and decreases bacterial translocation in a burned mouse model with gut-derived sepsis. Shock. 2000; 13: 314-319.

66. Deitch EA, Berg R, Specian R. Endotoxin promotes the translocation of bacteria from the gut. Arch Surg. 1987; 122: 185-190.

67. Buzoni-Gatel D, Debbabi H, Moretto M, Dimier-Poisson IH. Lepage AC, Bout DT, Kasper LH. Intraepithelial lymphocytes travel to the intestine and enhance resistance to Toxoplasma gondii oral infection. J Immunol. 1999; 162: 5846-5852.

[Seite 110↓]

68. Österberg J, Johnsson C, Gannedahl G, Westlund A, Haglund U. Alterations in mucosal immune cell distribution in septic rats. Shock. 1997; 7: 182-185.

69. Kirsner JB, Shorter RG. Recent developments in "non-specific" inflammatory bowel disease. N Engl J Med. 1982; 306: 775-785.

70. Podolsky DK. Inflammatory bowl disease (first of two parts). N Engl J Med. 1991; 325: 928-937.

71. Schreiber S, Raedler A, Stenson WF, MacDermott RP. The role of the mucosal immune system in inflammatory bowel disease. Gastroenterol Clin North Am. 1992; 21: 451-502.

72. MacDonald TT. The role of activated T lymphocytes in gastrointestinal disease. Clin Exp Allergy. 1990; 20: 247-252.

73. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993; 75: 263-274.

74. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993; 75: 253-261.

75. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993; 75: 275-282.

76. Brynskov J, Freund L, Rasmussen SN, Lauritsen K, Schaffalitzky de Muckadell O, Williams N, MacDonald AS, Tanton R, Molina F, Campanini MC, Bianchi P, Ranzi T, Quarto di Palo F, Malchow-M Ø ller A, Østergaard Thomsen O, Tage-Jensen U, Binder V, Riis P. A placebo-controlled double-blind randomized trial of cyclosporine therapy in active chronic Crohn's disease. N Engl J Med. 1989; 321: 845-850.

77. Lopez-Cubero SO, Sullivan KM, McDonald GB. Course of Crohn's disease after allogeneic bone marrow transplantation. Gastroenterology. 1998; 114: 433-440.

[Seite 111↓]

78. D'Haens GR, Geboes K, Peeters M, Baert F, Penninckx F, Rutgeerts P. Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998; 114: 262-267.

79. Watanabe M, Hayashi A, Hosoda Y, Ohara M, Iwao Y, Ishii H, Ishikawa H, Nanno M, Hibi T. Preferential activation of CD4 + V β 5.2/5.3 + intestinal intraepithelial lymphocytes in the inflamed lesions of Crohn's disease. Clin Immunol Immunopathol. 1996; 78: 130-139.

80. Mullin GE, Lazenby AJ, Harris ML, Bayless TM, James SP. Increased Interleukin-2 messenger RNA in the intestinal mucosal lesions of Crohn's disease but Ulcerative colitis. Gastroenterology. 1992; 102: 1620-1627.

81. Haglund U. Gut ischemia. Gut. 1994; suppl 1: S73-S76.

82. Haglund U, Bergqvist D. Intestinal ischemia - the basics. Langenbeck's Arch Surg. 1999; 384: 233-238.

83. Kong S-E, Blennerhassett LR, Heel KA, McCauly RD, Hall JC. Ischemia-reperfusion injury to the intestine. Aust N Z J Surg. 1998; 68: 554-561.

84. Poggetti RS, Moore FA, Moore EE, Koeike K, Banerjee A. Simultaneous liver and lung injury following gut ischemia is mediated by xanthine oxidase. J. Trauma. 1992; 32: 723-728.

85. Amersi F, Buelow R, Kato H, Ke H, Coito AJ, Shen XD, Zhao D, Zaky J, Lassmann CR, Kolls JK, Alam I, Ritter T, Volk HD, Farmer D, Ghobrial RM, Busttil RW, Kpiec-Weglinski JW. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J Clin Invest. 1999; 104: 1631-1639.

86. Yao YM, Sheng ZY, Yu Y, Tian HM, Wang YP, Lu LR, Xu SH. The potential etiologic role of tumor necrosis factor in mediating multiple organ dysfunction in rats following intestinal ischemia-reperfusion injury. Resuscitation. 1995; 29: 157-168.

87. Moore EE, Moore FA, Francoise RJ, Kim FJ, Biffl WL, Banerjee A. The post-ischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma. 1994; 37: 881-887.

88. Deitch EA. Multiple organ failure: pathophysiology future therapy. Ann Surg. 1992; 216: 117-134.

[Seite 112↓]

89. Zhi-Yong S, Dong YL, Wang XH. Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion. J Trauma. 1992; 32: 148-153.

90. Illyés G, Hammar J. Sequence of morphological alterations in a small intestinal ischemia/reperfusion model of the anesthetized rat. Int J Exp Pathol. 1992; 73: 161-172.

91. Weixiong H, Aneman A, Nilsson U, Lundgren O. Quantification of tissue damage in the feline small intestine during ischemia-reperfusion: the importance of free radicals. Acta Physiol Scand. 1994; 150: 241-250.

92. Granger DN, McCord JM, Parks DA, Hollwarth ME. Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology. 1986; 90: 80-84.

93. Arthur MJ. Reactive oxygen intermediates and liver injury. J Hepatol. 1988; 6: 125-131.

94. Tribble DL, Aw TK, Jones DP. The pathophysical significance of lipid peroxidation in oxidative cell injury. Hepatology. 1987; 7: 377-387.

95. Nüssler AK, Wittel UA, Nüssler NC, Beger HG. Leukocytes, the Janus cells in inflammatory disease. Langenbeck's Arch Surg. 1999; 384: 222-232.

96. Shu Z, Jung M, Beger HG, Marzinzig M, Han F, Butzer U, Bruckner UB, Nüssler AK. Effects of pH-dependent changes on nitric oxide, peroxynitrite, and reactive oxygen species in hepatocellular damage. Am J Physiol. 1997; 36: G1118-G1123.

97. Jung M, Drapier JC, Weidenbach H, Renia L, Oliveira L, Wang A, Beger HG, Nüssler AK. Effects of intracellular iron levels on nitric oxide and reactive oxygen intermediates in experimental sepsis. J Hepatol. 2000; 33: 387-392.

98. Lane JS, Todd KE, Lewis MPN, Gloor B, Ashley SW, Reber HA, McFadden DW, Chandler CF. Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery. 1997; 122: 288-294.

[Seite 113↓]

99. Chan KL, Chan KW, Tam PKH. Segmental small bowel allograft-ischemic injury and regeneration. J Pediatr Surg. 1998; 33: 1703-1706.

100. Hoffman RA, Zhang G, Nüssler NC, Gleixner SL, Ford HR, Simmons RL, Watkins SC. Constitutive expression of inducible nitric oxide synthase in the mouse ileal mucosa. Am J Physiol. 1997; 272: G383-392.

101. Nüssler AK, Beger HG, Liu Z-Z, Billiar TR. NO, hepatocytes and inflammation. Res. Immunol. 1995; 146: 671-675.

102. Petros A, Bennett D, Vallance P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 1991; 338: 1557-1558.

103. Högberg J, Kristoferson A. A correlation between glutathione levels and cellular damage in isolated hepatocytes. Eur J Biochem. 1977; 74: 77-82.

104. Meister A. Glutathion deficiency produced by inhibition of its synthesis and its reversal; applications in research and therapy. Pharmacol Ther. 1991; 51: 155-194.

105. Anderson ME. Glutathion: an overview of biosynthesis and modulation. Chem Biol Interact. 1998; 111: 1-14.

106. Butzer U, Weidenbach H, Gansauge F, Beger HG, Nussler AK. Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathion reductase. FEBS Lett. 1999; 445: 274-278.

107. Abraham NG, Lavrovsky Y, Schwartzmann ML, Stoltz RA, Levere RD, Gerritsen ME, Shibahara S, Kappas A. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc Natl Acad Sci USA. 1995; 92: 6798-6802.

108. Otterbein LE, Lee PJ, Chin BY, Petrache I, Camhi SL, Alain J, Choi AM. Protective effects of heme oxygenase-1 in acute lung injury. Chest. 1999; 116: 61S-63S.

109. Maines MH. Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical applications. FASEB J. 1988; 2: 2557-2568.

[Seite 114↓]

110. Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem. 1986; 261 : 411-419.

111 . Hayashi S. Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamatani T, Kitajima M, Makino N, Ishimura Y, Suematsu M. Induction of heme oxygenase-1 suppresses venular leucocyte adhesion eicited by oxidative stress. Circ Res. 1999; 85: 663-671

112. Stocker R, Glaser AN, Ames BN. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA. 1987; 84: S918-S922.

113. Motterlini R, Foresti R. Intraglietta M, Winslow RM. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol. 1996; 39: H107-H114

114. Lee KK, Schraut WH. Structure and function of orthotopic small bowel allografts in rats treated with cyclosporine. Am J Surg. 1986; 151: 55-60.

115. Hoffman AL, Makowka L, Banner B, Cai X, Cramer DV, Pascualone A, Todo S, Starzl TE. The use of FK-506 for small intestine allotransplantation. Transplantation. 1990; 49: 483-490.

116. Lee K, Stangl MJ, Todo S, Langrehr JM, Starzl TE, Schraut WH. Successful orthotopic small bowel transplantation with short term FK 506 immunosuppressive therapy. Transplant Proc. 1990; 22: 78-79.

117. Hoffman RA, Langrehr JM, Wren SM, Dull KE, Jldstad ST, McCarthy SA, Simmons RL. Characterization of the immunosuppressive effects of nitric oxide during graft-versus-host disease. J Immunol. 1993; 151: 1508-1518.

118. Via CS, Finkelman FD. Critical role of interleukin-2 in the development of acute graft-versus-host disease. Intl Immunol. 1993; 5: 565-572.

119. Leon LR, Kozak W, Rudolph K, Kluger MJ. An antipyretic role for interleukin-10 in LPS fever in mice. Am J Physiol. 1999; 276: R81-R89.

120. Susan O. Sharron. Immunofluorescence and cell sorting. in: Curr Prot Immunology. eds: Coligan JE, Kruisbeek AM, Margulies DH, Sherach EM, Strober W, John Wiley & Sons, Inc. Vol.1, pp 2.1.2 - 2.1.20.

[Seite 115↓]

121. Antibody detection and preparation. in: Curr Prot. Immunology. eds: Coligan JE, Kruisbeek AM, Margulies DH, Sherach EM, Strober W, John Wiley & Sons, Inc. Vol. 1; pp 5.1.1 – 5.2.8.

122. Müller AR, Platz KP, Heckert C, Häusler M, Guckelberger O, Schuppan D, Lobeck H, Neuhaus P. The extracellular matrix an early target of preservation/reperfusion injury and acute rejection after small bowel transplantation. Transplantation. 1998; 65: 770-776.

123. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release for the biological activity of endothelium derived relaxing factor. Nature. 1987; 327: 524-526.

124. Marzinzig M, Nüssler AK, Stadler J, Marzinzig E, Bartlen W, Morris Jr SM, Nüssler NC, Beger HG, Brückner UB. Improved methods to measure the stable end products of nitric oxide (NO): nitrite, nitrate, and s-nitroso thiols. Nitric Oxide. 1997; 2: 177-189.

125. Cortas NK, Wakid NW. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin Chem. 1990; 36: 1440-1443.

126. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal Biochem. 1969; 27: 502-522.

127. Baker MA, Cerniglie GJ, Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione-disulfide in large number of biological samples. Annal Biochem. 1990; 190: 360-365.

128. Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G. A microtiter assay for total glutathione and glutathione-disulfide contents in cultured / isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol. 1994; 10: 415-421.

129. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951; 193: 265-275.

130. Lüss H, Nüssler NC, Beger H-G, Nüssler AK. Expression and detection of inducible nitric oxide synthase in experimental models of inflammation. Methods. 1996; 10: 51-60.

[Seite 116↓]

131. Sonin NV; Garcia-Pagan JC, Nakanishi K, Zhang JX, Clemens MG. Patterns of vasoregulatory gene expression in the liver response to ischemia reperfusion and endotoxemia. Shock. 1999; 11: 175-179.

132. Monpoheho S, dehee A, Mignotte B, Schwartzbrod L, Marechal V, Nicolas JC, Billaudel S, Ferre V. Quantification of enterovirus RNA in sludge samples using single tube real-time RT-PCR. Biotechniques 2000; 29: 88-93

133. Zhong R, He G, Sakai Y, Zhang Z, Gracia B, Li XC, Jevnikar A, Grant D. The effect of donor-recipient strain combination on rejection and graft-versus-host disease after small bowel/liver transplantation. Transplantation. 1993; 56: 381-385.

134. Tanabe M. The influence of donor and recipient strains in isolated small bowel transplantation in the rat. Transplant Proc. 1994; 26: 4325-4332.

135. Galanos C, Freudenberg MA, Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA. 1979; 76: 5939-5943.

136. Salter M, Knowles RG, Moncada S. Widespread tissue distribution, species distribution and changes in activity of Ca++-dependent and Ca++-independent nitric oxide synthases. FEBS Lett. 1991; 291: 145-149.

137. Harbrecht BG, Billiar TR, Stadler J, Simmons RL. Nitric oxide synthesis serves to reduce hepatic damage during acute murine endotoxemia. Crit Care Med. 1992; 20: 1568-1574.

138. Yamada N, Yamaya M, Okinaga S, Lie R, Suzuki T, Nakayama K, Takeda A, Yamaguchi T, Hoyama Y, Sekizawa K, Sasaki H. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol. 1999; 21: 428-435.

139. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. New Eng1 J Med. 1993; 329: 2002-2012.

140. Adams DH, Neuberger JM. Patters of graft rejection following liver transplantation. J Hepatol. 1990; 10: 113-119.

[Seite 117↓]

141. Lear P, Ingham Clark C, Crane P, Pockley G, Wood R. Donor cell infiltration of recipient tissue as an indicator of small bowel allograft rejection in the rat. Transplant Int. 1993; 6: 85-88.

142. Murase N, Todo S, Cramer DV, Fung J, Starzl TE. Induction of liver heart and multivisceral graft acceptance with a short course of FK 506. Transplant Proc. 1990; 22: 74-75.

143. Grover R, Lear PA, Ingham Clark CL, Pockley AG, Wood RFM. Method for diagnosing rejection in small bowel transplantation. Br J Surg. 1993; 80: 1024-1026.

144. Murase N, Demetris AJ, Matsuzaki T, Yagihashi A, Todo S, Fung J, Starzl TE. Long survival in rats after multi-visceral versus isolated small-bowel allotransplantation under FK 506. Surgery. 1991; 110: 87-98.

145. Chao C-C, Sandor M, Dailey MO. Expression and regulation of adhesion molecules by γδ T cells from lymphoid tissues and intestinal epithelium. Eur J Immunol. 1994; 24: 3180-3187.

146. Eiras P, Leon F, Camarero C, Lombardia M, Roldan E, Bootello A, Roy G. Intestinal Intraepithelial lymphocytes contain a CD3-CD7+subset expressing natural killer markers and a singular pattern of adhesion molecules. Scand J Immunol. 2000; 52: 1-6.

147. Morrissey PJ, Charrier K, Horovitz DA, Fletcher FA, Watson JD. Analysis of the intra-epithelial lymphocyte compartment in SCID mice that received co-isogenic CD4+ T cells. J Immunol. 1995; 154: 2678-2686.

148. Sydora BC, Habu S, Masaru Taniguchi. Intestinal intraepithelial lymphocytes preferentially repopulate the intestinal epithelium. Int Immunol. 1993; 7: 743-751.

149. Camerini V, Sydora BC, Aranda R, Nguyen C, MacLean C, McBride WH, Kronenberg M. Generation of intestinal mucosal lymphocytes in SCID mice reconstituted with mature, thymus-derived T cells. J Immunol. 1998; 160: 2608-2618.

[Seite 118↓]

150. Hamad M, Whetsell M, Klein JR. T cell precursors in the spleen give rise to complex T cell repertoires in the thymus and the intestine. J Immunol. 1995; 155: 2866.

151. Nakata S, Shirakura R, Ito T, Fukuzawa M, Miagawa S, Yanamoto S, Nozaki T, Matsumiya G, Izutani G, Matsuda H. Immunosuppressive mechanisms of deoxymethylspergualin and FK506 on in vitro cytotoxic lymphocytes. Transplant Proc. 1994; 26: 1930-1933.

152. Roelen DL, van Bree FP, Schanz U, van Rood JJ, Claas FH. Differential inhibition of primed alloreactive CTLs in vitro by clinically used concentrations of cyclosporine and FK506. Transplantation. 1993; 56: 190-195.

153. Bland PW, Whiting CV. Induction of MHC class II gene products in rat intestinal epithelium during graft-versus-host disease and effects on the immune function of the epithelium. Immunology. 1992; 75: 366-371.

154. Jadus MR, Wepsic HT. The role of cytokines in graft-versus-host reactions and disease. Bone Marrow Transplant. 1992; 10: 1-14.

155. Yoshikai Y. The interaction of intestinal epithelial cells and intraepithelial lymphocytes in host defense. Immunol Res. 1999; 20: 219-235.

156. Nüssler NC, O'Brien J, Stange B, Platz KP, Neuhaus P, Mueller AR. IL-2 promotes the subset restoration of intraepithelial lymphocytes after ischemia/reperfusion injury. Transplant Proc. 2000; 32: 1305-1306.

157. Peters M. Actions of cytokines on the immune response and viral interactions: an overview. Hepatology. 1996; 23: 909-916.

158. Gennari R, Alexander W, Eaves-Pyles T. IFN- γ decreases translocation and improves survival following transfusion and thermal injury. J Surg Res. 1994; 56: 530-536.

159. Dignass AU, Sturm A, Becker A, Hotz A, Goebell H. Interferon- γ modulates intestinal epithelial cell function in vitro through a TGF β -dependent mechanism. Z Gastroenterol. 1998; Suppl. 1: 50-55.

[Seite 119↓]

160. Feng HM, Popov VL, Walker DH. Depletion of gamma-interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal overwhelming rickettsial disease. Infect Immun. 1994; 62: 1952-1960.

161. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon γ gene-disrupted mice. J Exp Med. 1993; 178: 2243-2247.

162. Döcke WD, Randow F, Syrbe U, Krausch D, Asachullah K, Reinke P, Volk HD, Kox W. Monocyte deactivation in septic patients: restoration by IFN- γ treatment. Nature Med. 1997; 3: 678-681.

163. Madara JL, Stafford J. Interferon- γ directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest. 1989; 83: 724-727.

16 4. Car BD, Eng VM, Schnyder B, Ozmen L, Huang S, Gallay P, Heumann D, Aguet M, Ryffel B. Interferon γ receptor deficient mice are resistant to endotoxic shock. J Exp Med. 1994; 179: 1437-1444.

165. Robertson FM, Offner PJ, Ciceri DP, Becker WK, Pruitt BA. Detrimental hemodynamic effects of nitric oxide synthase inhibitors in septic shock. Arch Surg. 1994; 129: 149-156.

166. Gianotti L, Alexander JW, Pyles T, Fukushima R. Arginine-supplemented diets improve survival in gut-derived sepsis and peritonitis by modulating bacterial clearance. Ann Surg. 1993; 217: 644-654.

167. Roberts AI, O'Conell SM, Biancone L. Spontaneous cytotoxicity of intestinal intraepithelial lymphocytes: clues to the mechanism. Clin Exp Immunol. 1993; 94: 527-532.

168. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, Maggi E, Pupilli C, Tonelli F, Romagnani S. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol. 1997; 150: 823-832.

[Seite 120↓]

169. Caballero T, Nogueras F, Medina MT, Caracuel MD, de Sola C, Martinez-Salmerón FJ, Rodrigo M, Garcia del Moral R. Intraepithelial and lamina propria leucocyte subsets in inflammatory bowel disease: an immunohistochemical study of colon and rectal biopsy specimens. J Clin Pathol. 1995; 48: 743-748.

170. Müller S, Lory J, Corazza N, Griffiths GM, Z'graggen K, Mazzucchelli L, Kappeler A, Mueller C. Activated CD4+ and CD8+ cytotoxic cells are present in increased numbers in the intestinal mucosa from patients with active inflammatory bowel disease. Am J Pathol. 1998; 152: 261-268.

171. Roman LI, Manzano L, de la Hera A, Abreu L, Rossi I, Alvarez-Mon M. Expanded CD4+CD45RO+ phenotype and defective proliferative response in T lymphocytes from patients with Crohn's disease. Gastroenterology. 1996; 110: 1008-1019.

172. Neil GA, Summers RW, Cheyne BA, Carpenter C, Huang W-L, Waldschmidt TJ. Analysis of T-lymphocyte subpopulation in inflammatory bowel diseases by three-color flow cytometry. Digestive Diseases and Sciences. 1994; 39: 1900-1908.

173. Senju M, Hulstaert F, Lowder J, Jewell DP. Flow cytometric analysis of peripheral blood lymphocytes in ulcerative colitis and Crohn's disease. Gut. 1991; 32: 779-783.

174. Söderström K, Bucht A, Halapi E, Grönberg A, Magnusson I, Kiessling R. Increased frequency of abnormal γ δ T cells in blood of patients with inflammatory bowel diseases. J Immunol. 1996; 156: 2331-2339.

175. Kontiainen S, Scheinin T, Halme L. Number of activated T-helper cells and NK cells in peripheral blood is decreased in severe Crohn's disease. APMIS. 1996; 104: 355-361.

176. Wang P, Ba ZF, Ciotti WG, Bland KI, Chandry IH. Is the gut the "motor" for producing hepatocellular dysfunction after trauma and hemorrhagic shock? J Surg Res. 1998; 74: 141-148.

177. Massberg S, Messmer K. The nature of ischemia / reperfusion injury. Transplant Proc. 1998; 30: 4217-4223.

178. Horie Y, Wolf R, Miyasaka M, Anderson DC, Granger DN. Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. Gastroenterology. 1996; 111: 666-673.

[Seite 121↓]

179. Payne D, Kubes P. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. 1993; 265: G189-G195.

180. Unno N, Waung H, Menconi MJ, Tytgat SHA, Larkin V, Smith M. Morin MJ, Chavez A, Hodin RA, Fink MP. Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology. 1997; 113: 1246-1257.

181. Ward DT, Lawson SA, Gallagher CM, Conner WC, Shea-Donohue T. Sustained nitric oxide production via L-arginine administration ameliorates effects of intestinal ischemia-reperfusion. J Surg Res. 2000; 89: 13-19.

182. Szabó A, Kaszaki J, Boros M, Nagy S. Possible relationship between histamine and nitric oxide release in the postischemic flow response following mesenteric ischemia of different durations. Shock. 1997; 7: 376-382.

183. Hutcheson IR, Whittle BJR, Boughton-Smith NK. Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol. 1990; 101: 815-829.

184. Chan KL, Zhang XH, Fung PCW, Guo WH, Tam PKH. Role of nitric oxide in intestinal ischemia-reperfusion injury studied using electron paramagnetic resonance. Br J Surgery. 1986; 11: 1427-1432.

185. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enahnced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999; 103: 129-135.

186. Woo Jacky, Iyer S, CornejoM-C, Mori N, Gao L, Sipos I, Maines M, Buelow R. Stress protein-induced immunosuppression: inhibition of cellular immune effector functions following overexpression of haem oxagenase (HSP 32). Trasplant Immunol. 1998; 6: 84-93.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: