[Seite 29↓]


[1] deVita, V. T.; Hellman, S. und Rosenberg, S. A. (2001): Cancer: principles and practice of oncology, 6. Auflage, Lippincott Williams & Wilkins, Philadelphia, ISBN: 0-7817-2229-2.

[2] McKelvey, E. M.; Gottlieb, J. A.; Wilson, H. E.; Haut, A.; Talley, R. W.; Stephens, R.; Lane, M.; Gamble, J. F.; Jones, S. E.; Grozea, P. N.; Gutterman, J.; Coltman, C. und Moon, T. E. (1976): Hydroxyldaunomycin (Adriamycin) combination chemotherapy in malignant lymphoma, Cancer (Band 38), Nr. 4, Seite 1484-93.

[3] Fisher, R. I.; Gaynor, E. R.; Dahlberg, S.; Oken, M. M.; Grogan, T. M.; Mize, E. M.; Glick, J. H.; Coltman, C. A., Jr. und Miller, T. P. (1993): Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma, N Engl J Med (Band 328), Nr. 14, Seite 1002-6.

[4] Kimby, E.; Brandt, L.; Nygren, P. und Glimelius, B. (2001): A systematic overview of chemotherapy effects in aggressive non-Hodgkin's lymphoma, Acta Oncol (Band 40), Nr. 2-3, Seite 198-212.

[5] Viens, P. und Maraninchi, D. (2002): High-dose chemotherapy in advanced breast cancer, Crit Rev Oncol Hematol (Band 41), Nr. 2, Seite 141-9.

[6] Chen, C. J.; Chin, J. E.; Ueda, K.; Clark, D. P.; Pastan, I.; Gottesman, M. M. und Roninson, I. B. (1986): Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells, Cell (Band 47), Nr. 3, Seite 381-9.

[7] Shen, D. W.; Fojo, A.; Chin, J. E.; Roninson, I. B.; Richert, N.; Pastan, I. und Gottesman, M. M. (1986): Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification, Science (Band 232), Nr. 4750, Seite 643-5.

[8] Wuchter, C.; Leonid, K.; Ruppert, V.; Schrappe, M.; Buchner, T.; Schoch, C.; Haferlach, T.; Harbott, J.; Ratei, R.; Dorken, B. und Ludwig, W. D. (2000): Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia, Haematologica (Band 85), Nr. 7, Seite 711-21. URL: http://www.haematologica.it/abstr/wuchter8507.htm

[9] Consoli, U.; Santonocito, A.; Stagno, F.; Fiumara, P.; Privitera, A.; Parisi, G.; Giustolisi, G. M.; Pavone, B.; Palumbo, G. A.; Di Raimondo, F.; Milone, G.; Guglielmo, P. und Giustolisi, R. (2002): Multidrug resistance mechanisms in chronic lymphocytic leukaemia, Br J Haematol (Band 116), Nr. 4, Seite 774-80.

[10] Strasser, A.; Whittingham, S.; Vaux, D. L.; Bath, M. L.; Adams, J. M.; Cory, S. und Harris, A. W. (1991): Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease, Proc Natl Acad Sci U S A (Band 88), Nr. 19, Seite 8661-5.

[11] Hakem, R.; Hakem, A.; Duncan, G. S.; Henderson, J. T.; Woo, M.; Soengas, M. S.; Elia, A.; de la Pompa, J. L.; Kagi, D.; Khoo, W.; Potter, J.; Yoshida, R.; Kaufman, S. A.; Lowe, S. W.; Penninger, J. M. und Mak, T. W. (1998): Differential requirement for caspase 9 in apoptotic pathways in vivo, Cell (Band 94), Nr. 3, Seite 339-52.

[12] Chin, L.; Tam, A.; Pomerantz, J.; Wong, M.; Holash, J.; Bardeesy, N.; Shen, Q.; O'Hagan, R.; Pantginis, J.; Zhou, H.; Horner, J. W., 2nd; Cordon-Cardo, C.; Yancopoulos, G. D. und DePinho, R. A. (1999): Essential role for oncogenic Ras in tumour maintenance, Nature (Band 400), Nr. 6743, Seite 468-72.

[13] Felsher, D. W. und Bishop, J. M. (1999): Reversible tumorigenesis by MYC in hematopoietic lineages, Mol Cell (Band 4), Nr. 2, Seite 199-207.

[14] Huettner, C. S.; Zhang, P.; Van Etten, R. A. und Tenen, D. G. (2000): Reversibility of acute B-cell leukaemia induced by BCR-ABL1, Nat Genet (Band 24), Nr. 1, Seite 57-60. URL: http://library.genetics.nature.com/server-java/Propub/genetics/ng0100_57.fulltext http://library.genetics.nature.com/server-java/Propub/genetics/ng0100_57.abstract

[15] Pelengaris, S.; Khan, M. und Evan, G. I. (2002): Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression, Cell (Band 109), Nr. 3, Seite 321-34.

[16] Lowe, S. W.; Ruley, H. E.; Jacks, T. und Housman, D. E. (1993): p53-dependent apoptosis modulates the cytotoxicity of anticancer agents, Cell (Band 74), Nr. 6, Seite 957-67.

[Seite 30↓]

[17] Fisher, D. E. (1994): Apoptosis in cancer therapy: crossing the threshold, Cell (Band 78), Nr. 4, Seite 539-42.

[18] Lowe, S. W. (1999): Activation of p53 by oncogenes, Endocr Relat Cancer (Band 6), Nr. 1, Seite 45-8.

[19] Sherr, C. J. (2000): The Pezcoller lecture: cancer cell cycles revisited, Cancer Res (Band 60), Nr. 14, Seite 3689-95.

[20] Campisi, J. (2001): Cellular senescence as a tumor-suppressor mechanism, Trends Cell Biol (Band 11), Nr. 11, Seite S27-31.

[21] Evan, G. I.; Wyllie, A. H.; Gilbert, C. S.; Littlewood, T. D.; Land, H.; Brooks, M.; Waters, C. M.; Penn, L. Z. und Hancock, D. C. (1992): Induction of apoptosis in fibroblasts by c-myc protein, Cell (Band 69), Nr. 1, Seite 119-28.

[22] Lowe, S. W.; Jacks, T.; Housman, D. E. und Ruley, H. E. (1994): Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells, Proc Natl Acad Sci U S A (Band 91), Nr. 6, Seite 2026-30.

[23] Serrano, M.; Lin, A. W.; McCurrach, M. E.; Beach, D. und Lowe, S. W. (1997): Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell (Band 88), Nr. 5, Seite 593-602.

[24] Weinberg, R. A. (1997): The cat and mouse games that genes, viruses, and cells play, Cell (Band 88), Nr. 5, Seite 573-5.

[25] Kerr, J. F.; Wyllie, A. H. und Currie, A. R. (1972): Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer (Band 26), Nr. 4, Seite 239-57.

[26] Sellins, K. S. und Cohen, J. J. (1987): Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes, J Immunol (Band 139), Nr. 10, Seite 3199-206.

[27] Debatin, K. M.; Goldmann, C. K.; Bamford, R.; Waldmann, T. A. und Krammer, P. H. (1990): Monoclonal-antibody-mediated apoptosis in adult T-cell leukaemia, Lancet (Band 335), Nr. 8688, Seite 497-500.

[28] Shi, Y.; Glynn, J. M.; Guilbert, L. J.; Cotter, T. G.; Bissonnette, R. P. und Green, D. R. (1992): Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas, Science (Band 257), Nr. 5067, Seite 212-4.

[29] Green, D. R. und Reed, J. C. (1998): Mitochondria and apoptosis, Science (Band 281), Nr. 5381, Seite 1309-12.

[30] Thornberry, N. A. und Lazebnik, Y. (1998): Caspases: enemies within, Science (Band 281), Nr. 5381, Seite 1312-6.

[31] Du, C.; Fang, M.; Li, Y.; Li, L. und Wang, X. (2000): Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell (Band 102), Nr. 1, Seite 33-42.

[32] Chao, D. T. und Korsmeyer, S. J. (1998): BCL-2 family: regulators of cell death, Annu Rev Immunol (Band 16), Seite 395-419.

[33] Reed, J. C.; Jurgensmeier, J. M. und Matsuyama, S. (1998): Bcl-2 family proteins and mitochondria [In Process Citation] , Biochim Biophys Acta (Band 1366), Nr. 1-2, Seite 127-37.

[34] Borzillo, G. V.; Endo, K. und Tsujimoto, Y. (1992): Bcl-2 confers growth and survival advantage to interleukin 7-dependent early pre-B cells which become factor independent by a multistep process in culture, Oncogene (Band 7), Nr. 5, Seite 869-76.

[35] Tsujimoto, Y.; Cossman, J.; Jaffe, E. und Croce, C. M. (1985): Involvement of the bcl-2 gene in human follicular lymphoma, Science (Band 228), Nr. 4706, Seite 1440-3.

[36] Harrington, E. A.; Bennett, M. R.; Fanidi, A. und Evan, G. I. (1994): c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines, Embo J (Band 13), Nr. 14, Seite 3286-95.

[37] Graeber, T. G.; Osmanian, C.; Jacks, T.; Housman, D. E.; Koch, C. J.; Lowe, S. W. und Giaccia, A. J. (1996): Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours [see comments] , Nature (Band 379), Nr. 6560, Seite 88-91.

[38] Evan, G. und Littlewood, T. (1998): A matter of life and cell death, Science (Band 281), Nr. 5381, Seite 1317-22.

[Seite 31↓]

[39] Hayflick, L. und Moorhead, P. S. (1961): The limited in vitro lifetime of human diploid cell strains, Exp Cell Res (Band 25), Seite 585-621.

[40] Harley, C. B.; Futcher, A. B. und Greider, C. W. (1990): Telomeres shorten during ageing of human fibroblasts, Nature (Band 345), Nr. 6274, Seite 458-60.

[41] Karlseder, J.; Smogorzewska, A. und de Lange, T. (2002): Senescence induced by altered telomere state, not telomere loss, Science (Band 295), Nr. 5564, Seite 2446-9. URL: http://www.sciencemag.org/cgi/content/full/295/5564/2446 http://www.sciencemag.org/cgi/content/abstract/295/5564/2446

[42] Blasco, M. A.; Lee, H. W.; Hande, M. P.; Samper, E.; Lansdorp, P. M.; DePinho, R. A. und Greider, C. W. (1997): Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell (Band 91), Nr. 1, Seite 25-34.

[43] Chang, B. D.; Broude, E. V.; Dokmanovic, M.; Zhu, H.; Ruth, A.; Xuan, Y.; Kandel, E. S.; Lausch, E.; Christov, K. und Roninson, I. B. (1999): A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents, Cancer Res (Band 59), Nr. 15, Seite 3761-7.

[44] Lundberg, A. S.; Hahn, W. C.; Gupta, P. und Weinberg, R. A. (2000): Genes involved in senescence and immortalization, Curr Opin Cell Biol (Band 12), Nr. 6, Seite 705-9.

[45] Shelton, D. N.; Chang, E.; Whittier, P. S.; Choi, D. und Funk, W. D. (1999): Microarray analysis of replicative senescence, Curr Biol (Band 9), Nr. 17, Seite 939-45.

[46] Dimri, G. P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E. E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. und et al. (1995): A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc Natl Acad Sci U S A (Band 92), Nr. 20, Seite 9363-7.

[47] Sherr, C. J. und DePinho, R. A. (2000): Cellular senescence: mitotic clock or culture shock?, Cell (Band 102), Nr. 4, Seite 407-10.

[48] Harvey, M.; Sands, A. T.; Weiss, R. S.; Hegi, M. E.; Wiseman, R. W.; Pantazis, P.; Giovanella, B. C.; Tainsky, M. A.; Bradley, A. und Donehower, L. A. (1993): In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice, Oncogene (Band 8), Nr. 9, Seite 2457-67.

[49] Dimri, G. P.; Itahana, K.; Acosta, M. und Campisi, J. (2000): Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor, Mol Cell Biol (Band 20), Nr. 1, Seite 273-85.

[50] Malumbres, M.; Perez De Castro, I.; Hernandez, M. I.; Jimenez, M.; Corral, T. und Pellicer, A. (2000): Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b), Mol Cell Biol (Band 20), Nr. 8, Seite 2915-25.

[51] Pearson, M.; Carbone, R.; Sebastiani, C.; Cioce, M.; Fagioli, M.; Saito, S.; Higashimoto, Y.; Appella, E.; Minucci, S.; Pandolfi, P. P. und Pelicci, P. G. (2000): PML regulates p53 acetylation and premature senescence induced by oncogenic Ras, Nature (Band 406), Nr. 6792, Seite 207-10.

[52] Sage, J.; Mulligan, G. J.; Attardi, L. D.; Miller, A.; Chen, S.; Williams, B.; Theodorou, E. und Jacks, T. (2000): Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization, Genes Dev (Band 14), Nr. 23, Seite 3037-50.

[53] Binder, R. L.; Johnson, G. R.; Gallagher, P. M.; Stockman, S. L.; Sundberg, J. P. und Conti, C. J. (1998): Squamous cell hyperplastic foci: precursors of cutaneous papillomas induced in SENCAR mice by a two-stage carcinogenesis regimen, Cancer Res (Band 58), Nr. 19, Seite 4314-23.

[54] Lin, A. W. und Lowe, S. W. (2001): Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation, Proc Natl Acad Sci U S A (Band 98), Nr. 9, Seite 5025-30.

[55] Lin, A. W.; Barradas, M.; Stone, J. C.; van Aelst, L.; Serrano, M. und Lowe, S. W. (1998): Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling, Genes Dev (Band 12), Nr. 19, Seite 3008-19. URL: http://www.genesdev.org/cgi/content/full/12/19/3008

[Seite 32↓]

[56] Ko, L. J. und Prives, C. (1996): p53: puzzle and paradigm, Genes Dev (Band 10), Nr. 9, Seite 1054-72.

[57] Vogelstein, B.; Lane, D. und Levine, A. J. (2000): Surfing the p53 network, Nature (Band 408), Nr. 6810, Seite 307-10.

[58] Evan, G. I. und Vousden, K. H. (2001): Proliferation, cell cycle and apoptosis in cancer, Nature (Band 411), Nr. 6835, Seite 342-8.

[59] Parada, L. F.; Land, H.; Weinberg, R. A.; Wolf, D. und Rotter, V. (1984): Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation, Nature (Band 312), Nr. 5995, Seite 649-51.

[60] Eliyahu, D.; Michalovitz, D.; Eliyahu, S.; Pinhasi-Kimhi, O. und Oren, M. (1989): Wild-type p53 can inhibit oncogene-mediated focus formation, Proc Natl Acad Sci U S A (Band 86), Nr. 22, Seite 8763-7.

[61] Hermeking, H. und Eick, D. (1994): Mediation of c-Myc-induced apoptosis by p53, Science (Band 265), Nr. 5181, Seite 2091-3.

[62] Symonds, H.; Krall, L.; Remington, L.; Saenz-Robles, M.; Lowe, S.; Jacks, T. und Van Dyke, T. (1994): p53-dependent apoptosis suppresses tumor growth and progression in vivo, Cell (Band 78), Nr. 4, Seite 703-11.

[63] Ferbeyre, G.; de Stanchina, E.; Querido, E.; McCurrach, M. E.; Hannon, G. und Lowe, S. W. (2002): Oncogenic ras and p53 cooperate to induce cellular senescence, Mol. Cell. Biol. (Band 22), Nr. 10, Seite 3497-508.

[64] Tyner, S. D.; Venkatachalam, S.; Choi, J.; Jones, S.; Ghebranious, N.; Igelmann, H.; Lu, X.; Soron, G.; Cooper, B.; Brayton, C.; Hee Park, S.; Thompson, T.; Karsenty, G.; Bradley, A. und Donehower, L. A. (2002): p53 mutant mice that display early ageing-associated phenotypes, Nature (Band 415), Nr. 6867, Seite 45-53.

[65] Ruas, M. und Peters, G. (1998): The p16INK4a/CDKN2A tumor suppressor and its relatives, Biochim Biophys Acta (Band 1378), Nr. 2, Seite F115-77.

[66] Sherr, C. J. (2001): The INK4a/ARF network in tumour suppression, Nat Rev Mol Cell Biol (Band 2), Nr. 10, Seite 731-7.

[67] Palmero, I.; Pantoja, C. und Serrano, M. (1998): p19ARF links the tumour suppressor p53 to Ras, Nature (Band 395), Nr. 6698, Seite 125-6.

[68] Radfar, A.; Unnikrishnan, I.; Lee, H. W.; DePinho, R. A. und Rosenberg, N. (1998): p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation, Proc Natl Acad Sci U S A (Band 95), Nr. 22, Seite 13194-9.

[69] Zindy, F.; Eischen, C. M.; Randle, D. H.; Kamijo, T.; Cleveland, J. L.; Sherr, C. J. und Roussel, M. F. (1998): Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization, Genes Dev (Band 12), Nr. 15, Seite 2424-33.

[70] Pomerantz, J.; Schreiber-Agus, N.; Liegeois, N. J.; Silverman, A.; Alland, L.; Chin, L.; Potes, J.; Chen, K.; Orlow, I.; Lee, H. W.; Cordon-Cardo, C. und DePinho, R. A. (1998): The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53, Cell (Band 92), Nr. 6, Seite 713-23.

[71] Banin, S.; Moyal, L.; Shieh, S.; Taya, Y.; Anderson, C. W.; Chessa, L.; Smorodinsky, N. I.; Prives, C.; Reiss, Y.; Shiloh, Y. und Ziv, Y. (1998): Enhanced phosphorylation of p53 by ATM in response to DNA damage, Science (Band 281), Nr. 5383, Seite 1674-7.

[72] Matsuoka, S.; Huang, M. und Elledge, S. J. (1998): Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science (Band 282), Nr. 5395, Seite 1893-7.

[73] Westphal, C. H.; Rowan, S.; Schmaltz, C.; Elson, A.; Fisher, D. E. und Leder, P. (1997): atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity, Nat Genet (Band 16), Nr. 4, Seite 397-401.

[74] de Stanchina, E.; McCurrach, M. E.; Zindy, F.; Shieh, S. Y.; Ferbeyre, G.; Samuelson, A. V.; Prives, C.; Roussel, M. F.; Sherr, C. J. und Lowe, S. W. (1998): E1A signaling to p53 involves the p19(ARF) tumor suppressor, Genes Dev (Band 12), Nr. 15, Seite 2434-42.

[75] Kamijo, T.; van de Kamp, E.; Chong, M. J.; Zindy, F.; Diehl, J. A.; Sherr, C. J. und McKinnon, P. J. (1999): Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function, Cancer Res (Band 59), Nr. 10, Seite 2464-9.

[Seite 33↓]

[76] Sakaguchi, K.; Herrera, J. E.; Saito, S.; Miki, T.; Bustin, M.; Vassilev, A.; Anderson, C. W. und Appella, E. (1998): DNA damage activates p53 through a phosphorylation-acetylation cascade, Genes Dev (Band 12), Nr. 18, Seite 2831-41.

[77] Miyashita, T. und Reed, J. C. (1995): Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell (Band 80), Nr. 2, Seite 293-9.

[78] Attardi, L. D.; Reczek, E. E.; Cosmas, C.; Demicco, E. G.; McCurrach, M. E.; Lowe, S. W. und Jacks, T. (2000): PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family, Genes Dev (Band 14), Nr. 6, Seite 704-18.

[79] Oda, E.; Ohki, R.; Murasawa, H.; Nemoto, J.; Shibue, T.; Yamashita, T.; Tokino, T.; Taniguchi, T. und Tanaka, N. (2000): Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis, Science (Band 288), Nr. 5468, Seite 1053-8.

[80] Oda, K.; Arakawa, H.; Tanaka, T.; Matsuda, K.; Tanikawa, C.; Mori, T.; Nishimori, H.; Tamai, K.; Tokino, T.; Nakamura, Y. und Taya, Y. (2000): p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53, Cell (Band 102), Nr. 6, Seite 849-62.

[81] Nakano, K. und Vousden, K. H. (2001): PUMA, a novel proapoptotic gene, is induced by p53, Mol Cell (Band 7), Nr. 3, Seite 683-94.

[82] Schuler, M. und Green, D. R. (2001): Mechanisms of p53-dependent apoptosis, Biochem Soc Trans (Band 29), Nr. Pt 6, Seite 684-8.

[83] Pan, G.; O'Rourke, K. und Dixit, V. M. (1998): Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex, J Biol Chem (Band 273), Nr. 10, Seite 5841-5.

[84] Soengas, M. S.; Alarcon, R. M.; Yoshida, H.; Giaccia, A. J.; Hakem, R.; Mak, T. W. und Lowe, S. W. (1999): Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition, Science (Band 284), Nr. 5411, Seite 156-9.

[85] Dulic, V.; Kaufmann, W. K.; Wilson, S. J.; Tlsty, T. D.; Lees, E.; Harper, J. W.; Elledge, S. J. und Reed, S. I. (1994): p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest, Cell (Band 76), Nr. 6, Seite 1013-23.

[86] Hermeking, H.; Lengauer, C.; Polyak, K.; He, T. C.; Zhang, L.; Thiagalingam, S.; Kinzler, K. W. und Vogelstein, B. (1997): 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression, Mol Cell (Band 1), Nr. 1, Seite 3-11.

[87] Hahn, W. C.; Counter, C. M.; Lundberg, A. S.; Beijersbergen, R. L.; Brooks, M. W. und Weinberg, R. A. (1999): Creation of human tumour cells with defined genetic elements, Nature (Band 400), Nr. 6743, Seite 464-8.

[88] Bardeesy, N.; Beckwith, J. B. und Pelletier, J. (1995): Clonal expansion and attenuated apoptosis in Wilms' tumors are associated with p53 gene mutations, Cancer Res (Band 55), Nr. 2, Seite 215-9.

[89] Gaidano, G.; Ballerini, P.; Gong, J. Z.; Inghirami, G.; Neri, A.; Newcomb, E. W.; Magrath, I. T.; Knowles, D. M. und Dalla-Favera, R. (1991): p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia, Proc Natl Acad Sci U S A (Band 88), Nr. 12, Seite 5413-7.

[90] Newcomb, E. W. (1995): P53 gene mutations in lymphoid diseases and their possible relevance to drug resistance, Leuk Lymphoma (Band 17), Nr. 3-4, Seite 211-21.

[91] Preudhomme, C.; Dervite, I.; Wattel, E.; Vanrumbeke, M.; Flactif, M.; Lai, J. L.; Hecquet, B.; Coppin, M. C.; Nelken, B.; Gosselin, B. und et al. (1995): Clinical significance of p53 mutations in newly diagnosed Burkitt's lymphoma and acute lymphoblastic leukemia: a report of 48 cases, J Clin Oncol (Band 13), Nr. 4, Seite 812-20.

[92] Neubauer, A.; He, M.; Schmidt, C. A.; Huhn, D. und Liu, E. T. (1993): Genetic alterations in the p53 gene in the blast crisis of chronic myelogenous leukemia: analysis by polymerase chain reaction based techniques, Leukemia (Band 7), Nr. 4, Seite 593-600.

[93] Drexler, H. G. (1998): Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells, Leukemia (Band 12), Nr. 6, Seite 845-59.

[94] Hollstein, M.; Shomer, B.; Greenblatt, M.; Soussi, T.; Hovig, E.; Montesano, R. und Harris, C. C. (1996): Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation, Nucleic Acids Res (Band 24), Nr. 1, Seite 141-6.

[Seite 34↓]

[95] Schutte, M.; Hruban, R. H.; Geradts, J.; Maynard, R.; Hilgers, W.; Rabindran, S. K.; Moskaluk, C. A.; Hahn, S. A.; Schwarte-Waldhoff, I.; Schmiegel, W.; Baylin, S. B.; Kern, S. E. und Herman, J. G. (1997): Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas, Cancer Res (Band 57), Nr. 15, Seite 3126-30.

[96] Rampino, N.; Yamamoto, H.; Ionov, Y.; Li, Y.; Sawai, H.; Reed, J. C. und Perucho, M. (1997): Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype, Science (Band 275), Nr. 5302, Seite 967-9.

[97] Gardie, B.; Cayuela, J. M.; Martini, S. und Sigaux, F. (1998): Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia, Blood (Band 91), Nr. 3, Seite 1016-20.

[98] Jacobs, J. J.; Keblusek, P.; Robanus-Maandag, E.; Kristel, P.; Lingbeek, M.; Nederlof, P. M.; van Welsem, T.; van de Vijver, M. J.; Koh, E. Y.; Daley, G. Q. und van Lohuizen, M. (2000): Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers, Nat Genet (Band 26), Nr. 3, Seite 291-9.

[99] Pinyol, M.; Hernandez, L.; Martinez, A.; Cobo, F.; Hernandez, S.; Bea, S.; Lopez-Guillermo, A.; Nayach, I.; Palacin, A.; Nadal, A.; Fernandez, P. L.; Montserrat, E.; Cardesa, A. und Campo, E. (2000): INK4a/ARF locus alterations in human non-Hodgkin's lymphomas mainly occur in tumors with wild-type p53 gene, Am J Pathol (Band 156), Nr. 6, Seite 1987-96.

[100] Soengas, M. S.; Capodieci, P.; Polsky, D.; Mora, J.; Esteller, M.; Opitz-Araya, X.; McCombie, R.; Herman, J. G.; Gerald, W. L.; Lazebnik, Y. A.; Cordon-Cardo, C. und Lowe, S. W. (2001): Inactivation of the apoptosis effector Apaf-1 in malignant melanoma, Nature (Band 409), Nr. 6817, Seite 207-11.

[101] Eischen, C. M.; Roussel, M. F.; Korsmeyer, S. J. und Cleveland, J. L. (2001): Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of p53 Mutations during Myc-Mediated Lymphomagenesis, Mol Cell Biol (Band 21), Nr. 22, Seite 7653-62.

[102] Moller, M. B.; Ino, Y.; Gerdes, A. M.; Skjodt, K.; Louis, D. N. und Pedersen, N. T. (1999): Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma, Leukemia (Band 13), Nr. 3, Seite 453-9.

[103] Vaux, D. L.; Cory, S. und Adams, J. M. (1988): Bcl-2 gene promotes haemopoietic cell survival and cooperates with c- myc to immortalize pre-B cells, Nature (Band 335), Nr. 6189, Seite 440-2.

[104] Strasser, A.; Harris, A. W.; Bath, M. L. und Cory, S. (1990): Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2, Nature (Band 348), Nr. 6299, Seite 331-3.

[105] Searle, J.; Lawson, T. A.; Abbott, P. J.; Harmon, B. und Kerr, J. F. (1975): An electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells, J Pathol (Band 116), Nr. 3, Seite 129-38.

[106] Lotem, J. und Sachs, L. (1993): Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents, Blood (Band 82), Nr. 4, Seite 1092-6.

[107] Lowe, S. W.; Schmitt, E. M.; Smith, S. W.; Osborne, B. A. und Jacks, T. (1993): p53 is required for radiation-induced apoptosis in mouse thymocytes [see comments] , Nature (Band 362), Nr. 6423, Seite 847-9.

[108] Fan, S.; el-Deiry, W. S.; Bae, I.; Freeman, J.; Jondle, D.; Bhatia, K.; Fornace, A. J., Jr.; Magrath, I.; Kohn, K. W. und O'Connor, P. M. (1994): p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents, Cancer Res (Band 54), Nr. 22, Seite 5824-30.

[109] Lowe, S. W.; Bodis, S.; McClatchey, A.; Remington, L.; Ruley, H. E.; Fisher, D. E.; Housman, D. E. und Jacks, T. (1994): p53 status and the efficacy of cancer therapy in vivo, Science (Band 266), Nr. 5186, Seite 807-10.

[Seite 35↓]

[110] Hawkins, D. S.; Demers, G. W. und Galloway, D. A. (1996): Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents, Cancer Res (Band 56), Nr. 4, Seite 892-8.

[111] Weinstein, J. N.; Myers, T. G.; O'Connor, P. M.; Friend, S. H.; Fornace, A. J., Jr.; Kohn, K. W.; Fojo, T.; Bates, S. E.; Rubinstein, L. V.; Anderson, N. L.; Buolamwini, J. K.; van Osdol, W. W.; Monks, A. P.; Scudiero, D. A.; Sausville, E. A.; Zaharevitz, D. W.; Bunow, B.; Viswanadhan, V. N.; Johnson, G. S.; Wittes, R. E. und Paull, K. D. (1997): An information-intensive approach to the molecular pharmacology of cancer, Science (Band 275), Nr. 5298, Seite 343-9.

[112] O'Connor, P. M.; Jackman, J.; Bae, I.; Myers, T. G.; Fan, S.; Mutoh, M.; Scudiero, D. A.; Monks, A.; Sausville, E. A.; Weinstein, J. N.; Friend, S.; Fornace, A. J., Jr. und Kohn, K. W. (1997): Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents, Cancer Res (Band 57), Nr. 19, Seite 4285-300.

[113] Amundson, S. A.; Myers, T. G.; Scudiero, D.; Kitada, S.; Reed, J. C. und Fornace, A. J., Jr. (2000): An informatics approach identifying markers of chemosensitivity in human cancer cell lines, Cancer Res (Band 60), Nr. 21, Seite 6101-10.

[114] Fujiwara, T.; Grimm, E. A.; Mukhopadhyay, T.; Zhang, W. W.; Owen-Schaub, L. B. und Roth, J. A. (1994): Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene, Cancer Res (Band 54), Nr. 9, Seite 2287-91.

[115] Blagosklonny, M. V. und El-Deiry, W. S. (1998): Acute overexpression of wt p53 facilitates anticancer drug-induced death of cancer and normal cells, Int J Cancer (Band 75), Nr. 6, Seite 933-40.

[116] el Rouby, S.; Thomas, A.; Costin, D.; Rosenberg, C. R.; Potmesil, M.; Silber, R. und Newcomb, E. W. (1993): p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression, Blood (Band 82), Nr. 11, Seite 3452-9.

[117] Wattel, E.; Preudhomme, C.; Hecquet, B.; Vanrumbeke, M.; Quesnel, B.; Dervite, I.; Morel, P. und Fenaux, P. (1994): p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies, Blood (Band 84), Nr. 9, Seite 3148-57.

[118] Dohner, H.; Fischer, K.; Bentz, M.; Hansen, K.; Benner, A.; Cabot, G.; Diehl, D.; Schlenk, R.; Coy, J.; Stilgenbauer, S. und et al. (1995): p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias, Blood (Band 85), Nr. 6, Seite 1580-9.

[119] Aas, T.; Borresen, A. L.; Geisler, S.; Smith-Sorensen, B.; Johnsen, H.; Varhaug, J. E.; Akslen, L. A. und Lonning, P. E. (1996): Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients, Nat Med (Band 2), Nr. 7, Seite 811-4.

[120] Ichikawa, A.; Kinoshita, T.; Watanabe, T.; Kato, H.; Nagai, H.; Tsushita, K.; Saito, H. und Hotta, T. (1997): Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma, N Engl J Med (Band 337), Nr. 8, Seite 529-34.

[121] Wilson, W. H.; Teruya-Feldstein, J.; Fest, T.; Harris, C.; Steinberg, S. M.; Jaffe, E. S. und Raffeld, M. (1997): Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin's lymphomas, Blood (Band 89), Nr. 2, Seite 601-9.

[122] Navaratnam, S.; Williams, G. J.; Rubinger, M.; Pettigrew, N. M.; Mowat, M. R.; Begleiter, A. und Johnston, J. B. (1998): Expression of p53 predicts treatment failure in aggressive non-Hodgkin's lymphomas, Leuk Lymphoma (Band 29), Nr. 1-2, Seite 139-44.

[123] Moller, M. B.; Gerdes, A. M.; Skjodt, K.; Mortensen, L. S. und Pedersen, N. T. (1999): Disrupted p53 function as predictor of treatment failure and poor prognosis in B- and T-cell non-Hodgkin's lymphoma, Clin Cancer Res (Band 5), Nr. 5, Seite 1085-91.

[124] Kamesaki, S.; Kamesaki, H.; Jorgensen, T. J.; Tanizawa, A.; Pommier, Y. und Cossman, J. (1993): bcl-2 protein inhibits etoposide-induced apoptosis through its effects on events subsequent to topoisomerase II-induced DNA strand breaks and their repair [published erratum appears in Cancer Res 1994 Jun 1;54(11):3074] , Cancer Res (Band 53), Nr. 18, Seite 4251-6.

[Seite 36↓]

[125] Miyashita, T. und Reed, J. C. (1993): Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line, Blood (Band 81), Nr. 1, Seite 151-7.

[126] Hermine, O.; Haioun, C.; Lepage, E.; d'Agay, M. F.; Briere, J.; Lavignac, C.; Fillet, G.; Salles, G.; Marolleau, J. P.; Diebold, J.; Reyas, F. und Gaulard, P. (1996): Prognostic significance of bcl-2 protein expression in aggressive non- Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA), Blood (Band 87), Nr. 1, Seite 265-72.

[127] Gascoyne, R. D.; Adomat, S. A.; Krajewski, S.; Krajewska, M.; Horsman, D. E.; Tolcher, A. W.; O'Reilly, S. E.; Hoskins, P.; Coldman, A. J.; Reed, J. C. und Connors, J. M. (1997): Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma, Blood (Band 90), Nr. 1, Seite 244-51.

[128] Uckun, F. M.; Yang, Z.; Sather, H.; Steinherz, P.; Nachman, J.; Bostrom, B.; Crotty, L.; Sarquis, M.; Ek, O.; Zeren, T.; Tubergen, D.; Reaman, G. und Gaynon, P. (1997): Cellular expression of antiapoptotic BCL-2 oncoprotein in newly diagnosed childhood acute lymphoblastic leukemia: a Children's Cancer Group Study, Blood (Band 89), Nr. 10, Seite 3769-77.

[129] Friess, H.; Lu, Z.; Andren-Sandberg, A.; Berberat, P.; Zimmermann, A.; Adler, G.; Schmid, R. und Buchler, M. W. (1998): Moderate activation of the apoptosis inhibitor bcl-xL worsens the prognosis in pancreatic cancer, Ann Surg (Band 228), Nr. 6, Seite 780-7.

[130] Levenson, V. V.; Davidovich, I. A. und Roninson, I. B. (2000): Pleiotropic resistance to DNA-interactive drugs is associated with increased expression of genes involved in DNA replication, repair, and stress response, Cancer Res (Band 60), Nr. 18, Seite 5027-30.

[131] King, K. L. und Cidlowski, J. A. (1995): Cell cycle and apoptosis: common pathways to life and death, J Cell Biochem (Band 58), Nr. 2, Seite 175-80.

[132] Lock, R. B. und Stribinskiene, L. (1996): Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival, Cancer Res (Band 56), Nr. 17, Seite 4006-12.

[133] Hendry, J. H. und West, C. M. (1997): Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response, Int J Radiat Biol (Band 71), Nr. 6, Seite 709-19.

[134] Finkel, E. (1999): Does cancer therapy trigger cell suicide?, Science (Band 286), Nr. 5448, Seite 2256-8.

[135] Di Leonardo, A.; Linke, S. P.; Clarkin, K. und Wahl, G. M. (1994): DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts, Genes Dev (Band 8), Nr. 21, Seite 2540-51.

[136] Waldman, T.; Zhang, Y.; Dillehay, L.; Yu, J.; Kinzler, K.; Vogelstein, B. und Williams, J. (1997): Cell-cycle arrest versus cell death in cancer therapy, Nat Med (Band 3), Nr. 9, Seite 1034-6.

[137] Scherf, U.; Ross, D. T.; Waltham, M.; Smith, L. H.; Lee, J. K.; Tanabe, L.; Kohn, K. W.; Reinhold, W. C.; Myers, T. G.; Andrews, D. T.; Scudiero, D. A.; Eisen, M. B.; Sausville, E. A.; Pommier, Y.; Botstein, D.; Brown, P. O. und Weinstein, J. N. (2000): A gene expression database for the molecular pharmacology of cancer, Nat Genet (Band 24), Nr. 3, Seite 236-44. URL:http://www.nature.com/cgi-taf/DynaPage.taf?file=/ng/journal/v3/n3/full/ng0300_236.html http://www.nature.com/cgi-taf/DynaPage.taf?file=/ng/journal/v3/n3/abs/ng0300_236.html

[138] Staunton, J. E.; Slonim, D. K.; Coller, H. A.; Tamayo, P.; Angelo, M. J.; Park, J.; Scherf, U.; Lee, J. K.; Reinhold, W. O.; Weinstein, J. N.; Mesirov, J. P.; Lander, E. S. und Golub, T. R. (2001): Chemosensitivity prediction by transcriptional profiling, Proc Natl Acad Sci U S A (Band 98), Nr. 19, Seite 10787-10792.

[139] Brown, J. M. und Wouters, B. G. (1999): Apoptosis, p53, and tumor cell sensitivity to anticancer agents, Cancer Res (Band 59), Nr. 7, Seite 1391-9.

[140] Yin, D. X. und Schimke, R. T. (1995): BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells, Cancer Res (Band 55), Nr. 21, Seite 4922-8.

[Seite 37↓]

[141] Han, J. W.; Dionne, C. A.; Kedersha, N. L. und Goldmacher, V. S. (1997): p53 status affects the rate of the onset but not the overall extent of doxorubicin-induced cell death in rat-1 fibroblasts constitutively expressing c-Myc, Cancer Res (Band 57), Nr. 1, Seite 176-82.

[142] Kyprianou, N.; King, E. D.; Bradbury, D. und Rhee, J. G. (1997): bcl-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells, Int J Cancer (Band 70), Nr. 3, Seite 341-8.

[143] Milner, A. E.; Grand, R. J.; Vaughan, A. T.; Armitage, R. J. und Gregory, C. D. (1997): Differential effects of BCL-2 on survival and proliferation of human B-lymphoma cells following gamma-irradiation, Oncogene (Band 15), Nr. 15, Seite 1815-22.

[144] Walker, A.; Taylor, S. T.; Hickman, J. A. und Dive, C. (1997): Germinal center-derived signals act with Bcl-2 to decrease apoptosis and increase clonogenicity of drug-treated human B lymphoma cells, Cancer Res (Band 57), Nr. 10, Seite 1939-45.

[145] Taylor, S. T.; Hickman, J. A. und Dive, C. (1999): Survival signals within the tumour microenvironment suppress drug-induced apoptosis: lessons learned from B lymphomas, Endocr Relat Cancer (Band 6), Nr. 1, Seite 21-3.

[146] Coussens, L. M.; Tinkle, C. L.; Hanahan, D. und Werb, Z. (2000): MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis, Cell (Band 103), Nr. 3, Seite 481-90.

[147] Mudry, R. E.; Fortney, J. E.; York, T.; Hall, B. M. und Gibson, L. F. (2000): Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy, Blood (Band 96), Nr. 5, Seite 1926-32. URL: http://www.bloodjournal.org/cgi/content/full/96/5/1926 http://www.bloodjournal.org/cgi/content/abstract/96/5/1926

[148] Vaupel, P. und Hockel, M. (2000): Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance, Int J Oncol (Band 17), Nr. 5, Seite 869-79.

[149] Schmitt, C. A. und Lowe, S. W. (1999): Apoptosis and therapy, J Pathol (Band 187), Nr. 1, Seite 127-37.

[150] Schmitt, C. A.; Wallace-Brodeur, R. R.; Rosenthal, C. T.; McCurrach, M. E. und Lowe, S. W. (2000): DNA damage responses and chemosensitivity in the Eµ-myc mouse lymphoma model, Cold Spring Harbor Symp. Quant. Biol. (Band LXV), Seite 499-510.

[151] Adams, J. M.; Harris, A. W.; Pinkert, C. A.; Corcoran, L. M.; Alexander, W. S.; Cory, S.; Palmiter, R. D. und Brinster, R. L. (1985): The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice, Nature (Band 318), Nr. 6046, Seite 533-8.

[152] Harris, A. W.; Pinkert, C. A.; Crawford, M.; Langdon, W. Y.; Brinster, R. L. und Adams, J. M. (1988): The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells, J Exp Med (Band 167), Nr. 2, Seite 353-71.

[153] Knudson, A. G., Jr. (1971): Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci U S A (Band 68), Nr. 4, Seite 820-3.

[154] Schmitt, C. A.; McCurrach, M. E.; de Stanchina, E.; Wallace-Brodeur, R. R. und Lowe, S. W. (1999): INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53, Genes Dev (Band 13), Nr. 20, Seite 2670-7.

[155] Schmitt, C. A.; Rosenthal, C. T. und Lowe, S. W. (2000): Genetic analysis of chemoresistance in primary murine lymphomas, Nat Med (Band 6), Nr. 9, Seite 1029-35.

[156] Schmitt, C. A. und Lowe, S. W. (2001): Bcl-2 mediates chemoresistance in matched pairs of primary Eµ-myc lymphomas in vivo, Blood Cells Mol Dis (Band 27), Nr. 1, Seite 206-16.

[157] Schmitt, C. A. und Lowe, S. W. (2001): Programmed cell death is critical for drug response in vivo, Drug Resist Updat (Band 4), Nr. 2, Seite 132-4.

[158] Schmitt, C. A. und Lowe, S. W. (2002): Apoptosis and chemoresistance in transgenic cancer models, J Mol Med (Band 80), Seite 137-146.

[159] Schmitt, C. A.; Yang, M.; Fridman, J. S.; Baranov, E.; Hoffman, R. M. und Lowe, S. W. (2002): Dissecting p53 tumor suppressor functions in vivo, Cancer Cell (Band 1), Nr. 3, Seite 289-98.

[Seite 38↓]

[160] Schmitt, C. A.; Fridman, J. S.; Yang, M.; Lee, S.; Baranov, E.; Hoffman, R. M. und Lowe, S. W. (2002): A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy, Cell (Band 109), Seite 335-46.

[161] Hanahan, D. und Weinberg, R. A. (2000): The hallmarks of cancer, Cell (Band 100), Nr. 1, Seite 57-70.

[162] Hahn, W. C. und Weinberg, R. A. (2002): Modelling the molecular circuitry of cancer, Nat Rev Cancer (Band 2), Nr. 5, Seite 331-41.

[163] Fearnhead, H. O.; McCurrach, M. E.; O'Neill, J.; Zhang, K.; Lowe, S. W. und Lazebnik, Y. A. (1997): Oncogene-dependent apoptosis in extracts from drug-resistant cells, Genes Dev (Band 11), Nr. 10, Seite 1266-76.

[164] Nahle, Z.; Polyakova, J.; McCurrach, M. E.; Davuluri, R. V.; Narita, M.; Jacobson, M. D.; Zhang, M. Q.; Lazebnik, Y.; Bar-Sagi, D. und Lowe, S. W. (2002): Direct coupling of the cell cycle and cell death machinery by E2F, Nat. Cell Biol., Seite In press.

[165] Pinyol, M.; Cobo, F.; Bea, S.; Jares, P.; Nayach, I.; Fernandez, P. L.; Montserrat, E.; Cardesa, A. und Campo, E. (1998): p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas, Blood (Band 91), Nr. 8, Seite 2977-84.

[166] Maloney, K. W.; McGavran, L.; Odom, L. F. und Hunger, S. P. (1999): Acquisition of p16(INK4A) and p15(INK4B) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia, Blood (Band 93), Nr. 7, Seite 2380-5.

[167] Carter, T. L.; Watt, P. M.; Kumar, R.; Burton, P. R.; Reaman, G. H.; Sather, H. N.; Baker, D. L. und Kees, U. R. (2001): Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse, Blood (Band 97), Nr. 2, Seite 572-4.

[168] Sander, C. A.; Yano, T.; Clark, H. M.; Harris, C.; Longo, D. L.; Jaffe, E. S. und Raffeld, M. (1993): p53 mutation is associated with progression in follicular lymphomas, Blood (Band 82), Nr. 7, Seite 1994-2004.

[169] Elenitoba-Johnson, K. S.; Gascoyne, R. D.; Lim, M. S.; Chhanabai, M.; Jaffe, E. S. und Raffeld, M. (1998): Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma, Blood (Band 91), Nr. 12, Seite 4677-85.

[170] Dohner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Krober, A.; Bullinger, L.; Dohner, K.; Bentz, M. und Lichter, P. (2000): Genomic aberrations and survival in chronic lymphocytic leukemia, N Engl J Med (Band 343), Nr. 26, Seite 1910-6.

[171] Sjogren, S.; Inganas, M.; Norberg, T.; Lindgren, A.; Nordgren, H.; Holmberg, L. und Bergh, J. (1996): The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry, J Natl Cancer Inst (Band 88), Nr. 3-4, Seite 173-82.

[172] Chang, B. D.; Xuan, Y.; Broude, E. V.; Zhu, H.; Schott, B.; Fang, J. und Roninson, I. B. (1999): Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs, Oncogene (Band 18), Nr. 34, Seite 4808-18.

[173] te Poele, R. H.; Okorokov, A. L.; Jardine, L.; Cummings, J. und Joel, S. P. (2002): DNA damage is able to induce senescence in tumor cells in vitro and in vivo, Cancer Res (Band 62), Nr. 6, Seite 1876-83. URL: http://cancerres.aacrjournals.org/cgi/content/full/62/6/1876 http://cancerres.aacrjournals.org/cgi/content/abstract/62/6/1876

[174] Nakamura, M.; Sakaki, T.; Hashimoto, H.; Nakase, H.; Ishida, E.; Shimada, K. und Konishi, N. (2001): Frequent alterations of the p14(ARF) and p16(INK4a) genes in primary central nervous system lymphomas, Cancer Res (Band 61), Nr. 17, Seite 6335-9. URL: http://cancerres.aacrjournals.org/cgi/content/full/61/17/6335 http://cancerres.aacrjournals.org/cgi/content/abstract/61/17/6335

[175] Golub, T. R.; Slonim, D. K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J. P.; Coller, H.; Loh, M. L.; Downing, J. R.; Caligiuri, M. A.; Bloomfield, C. D. und Lander, E. S. (1999): Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science (Band 286), Nr. 5439, Seite 531-7.

[Seite 39↓]

[176] Alizadeh, A. A.; Eisen, M. B.; Davis, R. E.; Ma, C.; Lossos, I. S.; Rosenwald, A.; Boldrick, J. C.; Sabet, H.; Tran, T.; Yu, X.; Powell, J. I.; Yang, L.; Marti, G. E.; Moore, T.; Hudson, J., Jr.; Lu, L.; Lewis, D. B.; Tibshirani, R.; Sherlock, G.; Chan, W. C.; Greiner, T. C.; Weisenburger, D. D.; Armitage, J. O.; Warnke, R.; Staudt, L. M. und et al. (2000): Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature (Band 403), Nr. 6769, Seite 503-11.

[177] Devilard, E.; Bertucci, F.; Trempat, P.; Bouabdallah, R.; Loriod, B.; Giaconia, A.; Brousset, P.; Granjeaud, S.; Nguyen, C.; Birnbaum, D.; Birg, F.; Houlgatte, R. und Xerri, L. (2002): Gene expression profiling defines molecular subtypes of classical Hodgkin's disease, Oncogene (Band 21), Nr. 19, Seite 3095-102.

[178] Rosenwald, A.; Wright, G.; Chan, W. C.; Connors, J. M.; Campo, E.; Fisher, R. I.; Gascoyne, R. D.; Muller-Hermelink, H. K.; Smeland, E. B.; Giltnane, J. M.; Hurt, E. M.; Zhao, H.; Averett, L.; Yang, L.; Wilson, W. H.; Jaffe, E. S.; Simon, R.; Klausner, R. D.; Powell, J.; Duffey, P. L.; Longo, D. L.; Greiner, T. C.; Weisenburger, D. D.; Sanger, W. G.; Dave, B. J.; Lynch, J. C.; Vose, J.; Armitage, J. O.; Montserrat, E.; Lopez-Guillermo, A.; Grogan, T. M.; Miller, T. P.; LeBlanc, M.; Ott, G.; Kvaloy, S.; Delabie, J.; Holte, H.; Krajci, P.; Stokke, T. und Staudt, L. M. (2002): The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma, N Engl J Med (Band 346), Nr. 25, Seite 1937-47.

© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am: