[Seite 34↓]

Literaturverzeichnis

[1] Fearon, E. R. und Vogelstein, B. (1990): A genetic model for colorectal tumorigenesis, Cell 61, Seite 759-767.

[2] Hanahan, D. und Weinberg, R. A. (2000): The hallmarks of cancer, Cell 100, Seite 57-70.

[3] Bos, J. L. (1989): Ras oncogenes in human cancer: a review, Cancer Research 49, Seite 4682-4689.

[4] Eisenman, R. N. und Cooper, J. A. (1995): Beating a path to Myc, Nature 378, Seite 438-439.

[5] Kerkhoff, E. und Rapp, U. R. (1998): Cell cycle targets of Ras/Raf signalling, Oncogene 17, Seite 1457-1462.

[6] Stanbridge, E. J. (1991): Human tumor suppressor genes, Annual Review of Genetics 24, Seite 615-657.

[7] Karp, J. E. und Broder, S. (1995): Molecular foundations of cancer: New targets for intervention, Nature Medicine 1, Seite 309-320.

[8] Simpson, L. und Parsons, R. (2001): PTEN: life as a tumor suppressor, Experimental Cell Research 264, Seite 29-41.

[9] Di Cristofano, A. und Pandolfi, P. P. (2000): The multiple roles of PTEN in tumor suppression, Cell 100 [4], Seite 387-390.

[10] Lee, S. W.; Tomasetto, C. und Sager, R. (1991): Positive selection of candidate tumor-suppressor genes by subtractive hybridization, Proceedings of the National Academy of Sciences USA 88, Seite 2825-2829.

[11] Sager, R. (1997): Expression genetics in cancer: Shifting the focus from DNA to RNA, Proceedings of the National Academy of Sciences USA 94, Seite 952-955.

[12] Good, D. J.; Polverini, P. J.; Rastinejad, F.; Le Beau, M. M.; Lemons, R. S.; Frazier, W. A. und Bouck, N. P. (1990): A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin, Proc.Natl.Acad.Sci.U.S.A. 87, Seite 6624-6628.

[13] Tolsma, S. S.; Volpert, O. V.; Good, D. J.; Frazier, W. A.; Polverini, P. J. und Bouck, N. (1993): Peptides derived from twoseparate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity, Journal of Cellular Biochemistry 122, Seite 497-511.

[14] Zou, Z.; Anisowicz, A.; Hendrix, M. J. C.; Thor, A.; Neveu, M.; Sheng, S.; Rafidi, K.; Seftor, E. und Sager, R. (1994): Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells, Science 263, Seite 526-529.

[15] Malumbres, M. und Pellicer, A. (1998): Ras pathways to cell cycle control and cell transformation, Frontiers in Bioscience 3, Seite 887-912.

[16] Campbell, S. L.; Khosravi-Far, R.; Rossman, K. L.; Clark, G. J. und Der, C. J. (1998): Increasing complexity of Ras signaling, Oncogene 17, Seite 1395-1413.

[17] Gingras, A. C.; Raught, B. und Sonenberg, N. (1999): eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation, Annual Reviews of Biochemistry 68, Seite 913-963.

[18] Polunovsky, V. A.; Gingras, A. C.; Sonenberg, N.; Peterson, M.; Tan, A.; Rubins, J. B.; Manivel, J. C. und Bitterman, P. B. (2000): Translational control of the antiapoptotic function of Ras, J.Biol.Chem 275, Seite 24776-24780.

[19] Maruta, H. und Kohama, K. (1998): G Proteins, cytoskeleton and cancer, R.G. Landes, Austin.

[20] Nobes, C. D. und Hall, A. (1995): Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell 81, Seite 53-62.

[21] Hahn, W. C.; Counter, C. M.; Lundberg, A. S.; Beijersbergen, R. L.; Brooks, M. W. und Weinberg, R. A. (1999): Creation of human tumour cells with defined genetic elements [see comments], Nature 400, Seite 464-468.

[22] Hunter, T. (1997): Oncoprotein networks, Cell 88, Seite 333-346.

[23] von Lintig, F. C.; Dreilinger, A. D.; Varki, N. M.; Wallace, A. M.; Casteel, D. E. und Boss, G. R. (2000): Ras activation in human breast cancer, Breast Cancer Res.Treat. 62, Seite 51-62.

[24] Amanatullah, D. F.; Zafonte, B. T.; Albanese, C.; Fu, M.; Messiers, C.; Hassell, J. und Pestell, R. G. (2001): Ras regulation of cyclin D1 promoter, Methods Enzymol. 333, Seite 116-127.

[25] Reddy, K. B.; Krueger, J. S.; Kondapaka, S. B. und Diglio, C. A. (1999): Mitogen-activated protein kinase (MAPK) regulates the expression of progelatinase B (MMP-9) in breast epithelial cells, Int.J.Cancer 82, Seite 268-273.

[26] Hill, C. S. und Treisman, R. (1995): Transcriptional regulation by extracellular signals: Mechanisms and specificity, Cell 80, Seite 199-211.

[27] Noda, M. (1993): Mechanisms of Reversion, FASEB.J. 7, Seite 834-846.

[28] Hajnal, A.; Klemenz, R. und Schäfer, R. (1994): Subtraction cloning of H-Rev107, a gene specifically expressed in H-ras resistant fibroblasts, Oncogene 9, Seite 479-490.

[29] Hajnal, A.; Klemenz, R. und Schäfer, R. (1993): Upregulation of lysyl oxidase in spontaneous revertants of H-ras transformed rat fibroblasts, Cancer Research 53, Seite 4670-4675.

[30] Contente, S.; Kenyon, K.; Rimoldi, D. und Friedman, R. M. (1990): Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-Ha-ras, Science 249, Seite 796-798.

[31] Schäfer, R. (1994): Suppression of ras oncogene-mediated transformation, Reviews of Physiology, Biochemistry and Pharmacology 124, Seite 29-92.

[32] Griegel, S.; Traub, O.; Willecke, K. und Schäfer, R. (1986): Suppression and re-expression of transformed phenotype in hybrids of Ha-ras1 transformed Rat-1 cells and early passage rat embryo fibroblasts, International Journal of Cancer 38, Seite 697-705.

[33] Diatchenko, L.; Lau, Y.-F.; Campbell, A. P.; Chenchik, A.; Moqadam, F.; Huang, B.; Lukyanov, S. A.; Lukyanov, K. A.; Gurskaya, N. D.; Sverdlov, E. D. und Siebert, P. D. (1996): Suppression subtractive hybridization: a method for generating differentially regulated or tssue-specific cDNA probes and libraries, Proceedings of the National Academy of Sciences USA 93, Seite 6025-6030.

[34] Zuber, J.; Tchernitsa, O. I.; Hinzmann, B.; Schmitz, A.-C.; Grips, M.; Hellriegel, M.; Sers, C.; Rosenthal, A. und Schäfer, R. (2000): A genome-wide survey of Ras transformation targets, Nature Genetics 24, Seite 144-152.

[35] Mok, S. C.; Chan, W. Y.; Wong, K. K.; Cheung, K. K.; Lau, C. C.; Ng, S. W.; Baldini, A.; Colitti, C. V.; Rock, C. O. und Berkowitz, R. S. (1998): DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer, Oncogene 16, Seite 2381-2387.

[36] Siegel, R. C.; Fu, J. C. und Chang, Y. (1976): Collagen cross-linking: the substrate specificity of lysyl oxidase, Adv.Exp.Med.Biol. 74, Seite 438-446.

[37] Siegel, R. C.; Pinnell, S. R. und Martin, G. R. (1970): Cross-linking of collagen and elastin. Properties of lysyl oxidase, Biochemistry 9, Seite 4486-4492.

[38] Tseng, C. P.; Ely, B. D.; Pong, R. C.; Wang, Z.; Zhou, J. und Hsieh, J. T. (1999): The role of DOC-2/DAB2 protein phosphorylation in the inhibition of AP-1 activity. An underlying mechanism of its tumor-suppressive function in prostate cancer, J.Biol.Chem 274, Seite 31981-31986.

[39] Sers, C.; Tchernitsa, O. I.; Zuber, J.; Diatchenko, L; Zhumabayeva, B.; Desai, S; Htun, S; Hyder, K.; Wiechen, K.; Agoulnik, A.; Scharff, K. M; Siebert, P. D. und Schäfer, R. (2002): Gene expression profiling in RAS oncogene-transformed cell lines and insolid tumors using subtractive suppression hybridization and cDNA arrays, Advances in Enzyme Regulation in press.

[40] Denko, N. C.; Giaccia, A. J.; Stringer, J. R. und Stambrook, P. J. (1994): The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle, Proceedings of the National Academy of Sciences USA 91, Seite 5124-5128.

[41] Liu, H. S.; Scrable, H.; Villaret, D. B.; Lieberman, M. A. und Stambrook, P. J. (1992): Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements, Cancer Research 52, Seite 983-989.

[42] Filmus, J.; Shi, W. und Spencer, T. (1993): Role of transforming growth factor alpha (TGF-alpha) in the transformation of ras-transfected rat intestinal epithelial cells, Oncogene 8, Seite 1017-1022.

[43] Pironin, M.; Clement, G.; Benzakour, O.; Barritault, D.; Lawrence, D. und Vigier, P. (1992): Growth in Serum-Free Medium of NIH3T3 Cells Transformed by the EJ-H-ras Oncogene - Evidence for Multiple Autocrine Growth Factors, Int J Cancer. 51, Seite 980-988.

[44] Schulze, A.; Lehmann, K.; Jefferies, H. B.; McMahon, M. und Downward, J. (2001): Analysis of the transcriptional program induced by Raf in epithelial cells, Genes Dev. 15, Seite 981-994.

[45] Adams, A. T. und Auersperg, N. (1985): A cell line, ROSE 199, derived from normal rat ovarian surface epithelium, Exp.Cell Biol. 53, Seite 181-188.

[46] Tchernitsa, O. I.; Sers, C.; Zuber, J.; Hinzmann, B.; Grips, M.; Schwendel, A.; Rosenthal, A.; and Schäfer, R. (2002): The transcriptional basis of KRAS-oncogene-mediated transformation in ovarian epithelial cells.

[47] Mizushima, S. und Nagata, S. (1990): pEF-BOS, a powerful mammalian expression vector, Nucleic Acids Research 18, Seite 5322.

[48] Shayesteh, L.; Lu, Y.; Kuo, W. L.; Baldocchi, R.; Godfrey, T.; Collins, C.; Pinkel, D.; Powell, B.; Mills, G. B. und Gray, J. W. (1999): PIK3CA is implicated as an oncogene in ovarian cancer [see comments], Nat.Genet. 21, Seite 99-102.

[49] Jimenez, C.; Jones, D. R.; Rodriguez-Viciana, P.; Gonzalez-Garcia, A.; Leonardo, E.; Wennstrom, S.; von Kobbe, C.; Toran, J. L.; Borlado, L.; Calvo, V.; Copin, S. G.; Albar, J. P.; Gaspar, M. L.; Diez, E.; Marcos, M. A.; Downward, J.; Martinez, A.; Merida, I. und Carrera, A. C. (1998): Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase, The EMBO Journal 17, Seite 743-753.

[50] Datta, S. R.; Brunet, A. und Greenberg, M. E. (1999): Cellular survival: a play in three Akts, Genes Dev. 13, Seite 2905-2927.

[51] Zimmermann, S. und Moelling, K. (1999): Phosphorylation and regulation of Raf by Akt (protein kinase B), Science 286, Seite 1741-1744.

[52] Du, K. und Montminy, M. (1998): CREB is a regulatory target for the protein kinase Akt/PKB, J.Biol.Chem 273, Seite 32377-32379.

[53] Shaulian, E. und Karin, M. (2001): AP-1 in cell proliferation and survival, Oncogene 20, Seite 2390-2400.

[54] Abdollahi, A.; Bao, R. und Hamilton, T. C. (1999): LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein, Oncogene 18, Seite 6477-6487.

[55] Mok, S. C.; Chan, W. Y.; Wong, K.; Muta, M. G. und Berkowitz, R. S. (1996): SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells, Oncogene 12, Seite 1895-1901.

[56] Zhumabayeva, B.; Diatchenko, L.; Chenchik, A. und Siebert, P. D. (2001): Use of SMART-generated cDNA for gene expression studies in multiple human tumors, BioTechniques 30, Seite 158-163.

[57] Hough, C. D.; Cho, K. R.; Zonderman, A. B.; Schwartz, D. R. und Morin, P. J. (2001): Coordinately up-regulated genes in ovarian cancer, Cancer Res. 61, Seite 3869-3876.

[58] Wilson, M. R. und Easterbrook-Smith, S. B. (2000): Clusterin is a secreted mammalian chaperone, Trends.Biochem.Sci. 25, Seite 95-98.

[59] Anderson, R. G. (1998): The caveolae membrane system, Annual Reviews of Biochemistry 67:199-225., Seite 199-225.

[60] Smart, E. J.; Graf, G. A.; McNiven, M. A.; Sessa, W. C.; Engelman, J. A.; Scherer, P. E.; Okamoto, T. und Lisanti, M. P. (1999): Caveolins, liquid-ordered domains, and signal transduction, Mol.Cell Biol. 19, Seite 7289-7304.

[61] Parton, R. G. und Hancock, J. F. (2001): Caveolin and Ras function, Methods Enzymol. 333:172-83., Seite 172-183.

[62] Roy, S.; Luetterforst, R.; Harding, A.; Apolloni, A.; Etheridge, M.; Stang, E.; Rolls, B.; Hancock, J. F. und Parton, R. G. (1999): Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains, Nat.Cell Biol. 1, Seite 98-105.

[63] Koike, M.; Takeuchi, S.; Park, S.; Hatta, Y.; Yokota, J.; Tsuruoka, N. und Koeffler, H. P. (1999): Ovarian cancer: loss of heterozygosity frequently occurs in the ATM gene, but structural alterations do not occur in this gene, Oncology 56, Seite 160-163.

[64] Zenklusen, J. C.; Thompson, J. C.; Troncoso, P.; Kagan, J. und Conti, C. J. (1994): Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1, Cancer Res. 54, Seite 6370-6373.

[65] Nishizuka, S.; Tamura, G.; Terashima, M. und Satodate, R. (1997): Commonly deleted region on the long arm of chromosome 7 in differentiated adenocarcinoma of the stomach, British Journal of Cancer 76, Seite 1567-1571.

[66] Shridhar, V.; Sun, Q. C.; Miller, O. J.; Kalemkerian, G. P.; Petros, J. und Smith, D. I. (1997): Loss of heterozygosity on the long arm of human chromosome 7 in sporadic renal cell carcinomas, Oncogene 15, Seite 2727-2733.

[67] Hurlstone, A. F.; Reid, G.; Reeves, J. R.; Fraser, J.; Strathdee, G.; Rahilly, M.; Parkinson, E. K. und Black, D. M. (1999): Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines, Oncogene 18, Seite 1881-1890.

[68] Engelman, J. A.; Zhang, X. L. und Lisanti, M. P. (1999): Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5' promoter region of the caveolin-1 gene in human breast cancer cell lines, FEBS Lett. 448, Seite 221-230.

[69] Galbiati, F.; Volonte, D.; Engelman, J. A.; Watanabe, G.; Burk, R.; Pestell, R. G. und Lisanti, M. P. (1998): Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade, The EMBO Journal 17, Seite 6633-6648.

[70] Andres, A.-C.; Schönenberger, C.-A.; Groner, B.; Henninghausen, L.; LeMeurs, M. und Gerlinger, P. (1987): Ha-ras oncogene expression directed by a milk protein gene promoter:tissue specificity, hormonal regulation, and tumor induction in transgenic mice, Proceedings of the National Academy of Sciences USA 84, Seite 1299-1303.

[71] DiSepio, D.; Ghosn, C.; Eckert, R. L.; Deucher, A.; Robinson, N.; Duvic, M.; Chandraratna, R. A. und Nagpal, S. (1998): Identification and characterization of a retinoid-induced class II tumor suppressor/growth regulatory gene, Proc.Natl.Acad.Sci.U.S.A. 95, Seite 14811-14815.

[72] Zhumabayeva, B. und Adhikari, P. (2001): Cancer Profiling array: a new approach for evaluation of differential gene expression in various cancer tissues, Clontechniques 16, Seite 27-28.

[73] Patton, S. E.; Martin, M. L.; Nelsen, L. L.; Fang, X.; Mills, G. B.; Bast-RC, Jr und Ostrowski, M. C. (1998): Activation of the ras-mitogen-activated protein kinase pathway and phosphorylation of ets-2 at position threonine 72 in human ovarian cancer cell lines, Cancer Res. 58, Seite 2253-2259.

[74] Der, S. D.; Zhou, A.; Williams, B. R. und Silverman, R. H. (1998): Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays, Proc.Natl.Acad.Sci.U.S.A 95, Seite 15623-15628.

[75] Miyamoto, M.; Fujita, T.; Kimura, Y.; Maruyama, M.; Harada, H.; Sudo, Y.; Miyata, T. und Taniguchi, T. (1988): Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements, Cell 54, Seite 903-913.

[76] Tanaka, N. und Taniguchi, T. (2000): The interferon regulatory factors and oncogenesis, Semin.Cancer Biol. 10, Seite 73-81.

[77] Kirchhoff, S.; Schaper, F. und Hauser, H. (1993): Interferon regulatory factor 1 (IRF-1) mediates cell growth inhibition by transactivation of downstream target genes, Nucleic.Acids.Res. 21, Seite 2881-2889.

[78] Green, W. B.; Slovak, M. L.; Chen, I. M.; Pallavicini, M.; Hecht, J. L. und Willman, C. L. (1999): Lack of IRF-1 expression in acute promyelocytic leukemia and in a subset of acute myeloid leukemias with del(5)(q31), Leukemia 12, Seite 1960-1971.

[79] Willman, C. L.; Sever, C. E.; Pallavicini, M. G.; Harada, H.; Tanaka, N.; Slovak, M. L.; Yamamoto, H.; Harada, K.; Meeker, T. C.; List, A. F. und Taniguchi, T. (1993): Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preneoplastic myelodysplasia, Science 259, Seite 968-970.

[80] Janssens, V. und Goris, J. (2001): Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling, Biochemical Journal 353, Seite 417-439.

[81] Sontag, E. (2001): Protein phosphatase 2A: the Trojan Horse of cellular signaling, Cell Signal. 13, Seite 7-16.

[82] Abraham, D.; Podar, K.; Pacher, M.; Kubicek, M.; Welzel, N.; Hemmings, B. A.; Dilworth, S. M.; Mischak, H.; Kolch, W. und Baccarini, M. (2000): Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation, Journal of Biological Chemistry 275, Seite 22300-22304.

[83] Ruediger, R.; Pham, H. T. und Walter, G. (2001): Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene, Oncogene 20, Seite 10-15.

[84] Chelbi-Alix, M. K. und Pelicano, L. (1999): Retinoic acid and interferon signaling cross talk in normal and RA- resistant APL cells, Leukemia 13, Seite 1167-1174.

[85] Altucci, L.; Rossin, A.; Raffelsberger, W.; Reitmair, A.; Chomienne, C. und Gronemeyer, H. (2001): Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL, Nat.Med. 7, Seite 680-686.

[86] Sebolt-Leopold, J. S. (2000): Development of anticancer drugs targeting the MAP kinase pathway, Oncogene 19, Seite 6594-6599.

[87] Adjei, A. A. (2001): Blocking oncogenic Ras signaling for cancer therapy, J.Natl.Cancer Inst. 93, Seite 1062-1074.


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 3.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
21.04.2005