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Abstract

Implied volatility is one of the important topics in financial markets. Due to op-
tion data’s characteristics, estimating implied volatility is a challenging task for both
academia and industry. Dynamic Semiparametric Factor Model (DSFM) is method
to model high-dimensional data with dynamic context. It employs semiparametric
factor functions and time-varying loadings. One of its application is implied volatility
surface (IVS) modeling. This master thesis applys DSFM to estimate IVS of Korean
Stock Index (KOSPI 200) options and ODAX. Estimation result is discussed and a
comparison between two markets from view of DSFM is studied.

Keywords: implied volatility surface, dynamic semiparametric factor model, option
pricing
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1 Introduction

As one of the most important parameters in financial markets, implied volatility has
attracted a lot of attentions. In derivatives pricing and hedging, volatility is a key
issue. For example, implied volatility is usually derived from quoted prices for certain
derivatives on an underlying and then used to price other derivatives on the same
underlying - perhaps options that are not actively traded or for which prices are
otherwise not readily available. In delta-hedging, implied volatility can be used to
calculate different deltas, when underlying price changes.

A feature of implied volatility is that it is not constant and can be affected by under-
lying price St or by option’s time to maturity τ . Implied volatility is also dynamic - it
changes with time. Figure 1.1 displays implied volatility of ODAX on May 2 and June
2, 2003. Implied volatility changes with moneyness (we define moneyness as κ def= K

Ft
,

where K is strike, Ft is future price of underlying.) and time to maturity. When
time to maturity is small, implied volatilities display curvature like smile, while when
time to maturity increases, implied volatilities become flat as straight line. Moreover,
implied volatilities on these two days show different patterns: while on May 2, the
largest implied volatility is about 1.12, largest implied volatility on June 2 is about 2.
June 2 tends to have more observations. There are three different expiration times on
May 2 but eight on June 2. In order to price and hedge options with certain strike
and expiration which doesn’t appear in the observed implied volatility strings, a entire
implied volatility surface should be estimated. Furthermore, due to its change with
time, the estimation of implied volatility surface has to be dynamic.

Dynamic semiparametric factor model is designed to capture this feature of IVS with
low-dimensional factor functions and time-varying factor loadings. IVS is approxi-
mated by unknown factor functions moving in a finite dimensional function space.
The dynamics can be understood by using vector autoregression (VAR) techniques
on the time-varying loadings. The finite dimensional fits are obtained in the local
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Figure 1.1: Upper left: implied volatility of ODAX on May 02, 2003. (moneyness
lower left axis, time to maturity lower right axis). Upper right: Data design of ODAX
on May 02, 2003. Lower left: implied volatility of ODAX on June 02, 2003. Lower
right: Data design of ODAX on June 02, 2003.

neighborhood of strikes and maturities, for which implied volatilities are recorded on
the specific day. Surface estimation and dimension reduction is achieved in one single
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1 Introduction

step. This technology can be seen as a combination of functional principal component
analysis, nonparametric curve estimation and backfitting for additive models.

Yi,j = m0(Xi,j) +
L∑
l=1

βi,lml(Xi,j) (1.1)

In DSFM (1.1), i is index of day (i = 1, . . . , I). j is index of options on day i (j =
1, . . . , J). Yi,j is log-implied volatility for option j on day i. ml is time-invariant factor
function. Xi,j is independent variables, a 2-dimensional vector Xi,j = (κi,j , τi,j) with
κi,j the moneyness and τi,j time to maturity. βi,l is loading for factor ml. It changes
with day index i. After estimating unknown factor function ml and corresponding
loading βi,l, implied volatility can be calculated given desired point (κi,j , τi,j).

This master thesis is organized as follows: Section 2 reviews Black-Scholes formula and
other concepts related with implied volatility. Section 3 introduces DSFM in detail.
An empirical study with DSFM on German and Korean option markets is applied in
Section 4. Section 5 is conclusion.
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2 Black-Scholes formula and volatility

2.1 Black-Scholes formula

The publication of option pricing formula by Fischer Black and Myron Scholes in 1973
was a great step in finance. Since then option pricing model has developed into a
standard tool for pricing and hedging derivatives. This theory requires an perfect
market assumption:

1. Risk-free interest rates for borrowing and lending cash are the same and constant.

2. There is no transaction cost.

3. There is no taxes.

4. Short selling is allowed.

5. All securities are perfectly divisible.

6. There exists no arbitrage opportunity.

It is also assumed that the underlying price St follows a geometric Brownian motion
and the trading is continuous:

dSt = µStdt+ σStdWt, (2.1)

where Wt is standard wiener process.

There are six parameters in Black-Scholes formula (2.2) for pricing vanilla European
call options in an perfect market:

1. Spot price St

2. Strike price K

3. Time to maturity τ



2 Black-Scholes formula and volatility

4. Risk-free interest rate r

5. Dividend rate d

6. Volatility σ.

The first three parameters are given when an option is quoted in the market. The
risk-free interest rate and dividend rate are always known or can be easily estimated.
Only the volatility is unknown and it is the most important parameter in Black-Scholes
formula.

CBSt (St,K, τ, r, d, σ) = edτStΦ(y + σ
√
τ)− e−rτKΦ(y), (2.2)

with

y =
ln S

K + (b− 1
2σ

2)τ
σ
√
τ

.

Φ is the standard normal cumulative distribution function.

2.2 Volatility

Volatility measures uncertainty, or dispersion about the return provided by the un-
derlying - it is simply a measure of the degree of price movement in a stock, futures
contract or any other market. If underlying follows Brownian motion, volatility in-
creases with square root of times as the time increase.

There are different calculations of volatility:

Historical Volatility Historical volatility estimate σ based on the variability of the
underlying in the past. It takes the standard deviation of the underlying’s log-returns
and times the time length.

Rt = ln
St
St−1

,

is the log-return of underlying asset. Its sample variance

v̂ =
1

n− 1

n∑
t=1

(Rt − R̄n)2,

with R̄n = 1
n

n∑
t=1

Rt being the sample mean.

13



2 Black-Scholes formula and volatility

σH =
√
T · v̂ is then the annualized volatility.

When daily data is used, time length T is always chosen to be 252. When it is monthly
data, T = 12.

Implied volatility Implied volatility of an option is calculated from its market price
observed on an exchange and not from the prices of the underlying as it is the case
for the historical volatility. Consider a European call on a stock, which has a quoted
market price of Ct, then its implied volatility σI is given by solving

CBSt (St,K, τ, r, d, σI)− Ct = 0, (2.3)

σI is the volatility which if substituted into the Black-Scholes formula (2.2) would
give a price equal to the observed market Ct. σI is implicitly defined as a solution
of the above equation, and has to be computed numerically due to the fact that the
Black-Scholes formula cannot be inverted.

Although historical volatility and implied volatilities both estimate the volatility of the
underlying asset over the life of the option, the two estimates differ from that they use
different data and different models. Implied methods use current data on market prices
of options, so the implied volatility contains all of the expectations of investors about
possible future price path of the underlying. Moreover, implied volatility assumes that
the underlying’s price path is continuous. Historical volatility use past data of the
underlying returns in a discrete time.

Other methods to calculate volatility are like stochastic volatility, which assumes the
volatility follows some stochastic process.

Look at Figure 1.1 again. The left panels are typical structure of implied volatility.
One can find curvatures across the strike dimension when time to maturity is small -
though not very clearly. In the maturity dimension, data are sparse. Consequently,
implied volatilities appear like several strings. Moreover, the curvatures across strike
dimension don’t stay unchanged when the strings move through the maturity axis.
They change both in levels and shapes. Also in the moneyness axis, observations
have their ranges. Thus, even when the data sets are huge, for a large number of
cases implied volatility observations are missing for certain sub-regions of the desired
estimation grid. This is particularly virulent when transaction based data are used.

14



2 Black-Scholes formula and volatility

However, despite their appearance as strings, implied volatilities are thought to have a
structure of smooth surface. This is because in practice one needs to price and hedge
OTC options whose expiry dates do not coincide with the expiry dates of the options
that are traded at the futures exchange.

15



3 Dynamic semiparametric factor

model

In the dynamic semiparametric factor model (3.1), the index i is the number of the
day, while the total number of days is denoted by I (i = 1, . . . , I). The index j

represents an intra-day trade on day i and the number of trades on that day is Ji
(j = 1, . . . , Ji). Let Xi,j be a two-dimensional variable containing moneyness κi,j and
maturity τi,j . Among many moneyness settings we define it as κi,j

def= Ki,j

Fti
, where Ki,j

is strike, Fti is future price of underlying at time ti. Yi,j
def= log{σI(κ, τ)} is regressed

on Xi,j = (κi,j , τi,j) with nonparametric methods. We take log-implied volatility data,
since the data appear less skewed and potential outliers are scaled down after taking
logs.

Yi,j = m0(Xi,j) +
L∑
l=1

βi,lml(Xi,j), (3.1)

where m0 is an invariant basis function, ml (l = 1, . . . , L) are the dynamic basis
functions and βi,l are the factor weights depending on time i.

3.1 Estimation

The estimates m̂l (l = 0, . . . , L) and β̂i,l (i = 1, . . . , I; l = 1, . . . , L) are defined as
minimizers of the following least squares criterion (β̂i,0

def= 1):

I∑
i=1

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}2

Kh(u−Xi,j)du. (3.2)

Here, Kh denotes a two-dimensional product kernel, Kh(u) = kh1(u1)× kh2(u2), h =
(h1, h2), based on a one-dimensional kernel kh(v) def= h−1k(h−1v).



3 Dynamic semiparametric factor model

In (3.2) the minimization runs over all functions m̂l: R2 → R and all values β̂i,l ∈ R.
When L = 0, implied volatility Yi,j are approximated by a surface m̂0 which does not
depend on time i. It is the Nadaraya-Watson estimate. Moreover, using (3.2), the
estimates m̂l are not uniquely defined: they can be replaced by functions that give the
same affine space. Thus, m̂l are selected such that they are orthogonal.

Replacing in (3.2) m̂l by m̂l + δg with arbitrary functions g and taking derivatives
with respect to δ yields, for 0 ≤ l′ ≤ L:

I∑
i=1

Ji∑
j=1

{
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}
β̂i,l′Kh(u−Xi,j) = 0. (3.3)

By replacing β̂i,l by β̂i,l + δ in (3.2) and again taking derivatives with respect to δ, we
get for 0 ≤ l′ ≤ L and 1 ≤ i ≤ I:

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}
m̂l′(u)Kh(u−Xi,j)du = 0. (3.4)

Using the following notation, for 1 ≤ i ≤ I

p̂i(u) =
1
Ji

Ji∑
j=1

Kh(u−Xi,j), (3.5)

q̂i(u) =
1
Ji

Ji∑
j=1

Kh(u−Xi,j)Yi,j , (3.6)

from (3.3) - (3.4) we get, for 0 ≤ l′ ≤ L and 1 ≤ i ≤ I:

I∑
i=1

Jiβ̂i,l′ q̂i(u) =
I∑
i=1

Ji

L∑
l=0

β̂i,l′ β̂i,lp̂i(u)m̂l(u) (3.7)

∫
q̂i(u)m̂l′(u)du =

L∑
l=0

β̂i,l

∫
p̂i(u)m̂l′(u)m̂l(u)du. (3.8)

We calculate the estimates by iterative use of (3.7) and (3.8). We start with initial
values β̂(0)

i,l for β̂i,l. Define the matrix B(r)(u) by its elements:

(B(r)(u))l,l′
def=

I∑
i=1

Jiβ̂
(r−1)
i,l′ β̂

(r−1)
i,l p̂i(u), 0 ≤ l, l′ ≤ L, (3.9)

17



3 Dynamic semiparametric factor model

and introduce a vector Q(r)(u) with elements

Qr(u)l
def=

I∑
i=1

Jiβ̂
(r−1)
i,l q̂i(u), 0 ≤ l ≤ L. (3.10)

In the r-th iteration the estimate m̂ = (m̂0, . . . , m̂L)> is given by:

m̂(r)(u) = B(r)(u)−1Q(r)(u). (3.11)

This update step is motivated by (3.7). The value of β̂ are updated in the r-th cycle
as follows: define the matrix M (r)(i)

(M (r)(i))l,l′
def=
∫
p̂i(u)m̂(r)

l′ (u)du, 0 ≤ l, l′ ≤ L, (3.12)

and define a vector S(r)(i)

S(r)(i)l
def=
∫
q̂i(u)m̂l(u)du−

∫
p̂i(u)m̂(r)

0 (u)m̂(r)
l (u)du, 0 ≤ l, l′ ≤ L. (3.13)

Motivated by (3.8), put

(β̂(r)
i,1 , . . . , β̂

(r)
i,L)> = M (r)(i)−1S(r)(i). (3.14)

The algorithm is run until only minor changes occur. In the implementation, we choose
a grid of points and calculate m̂l at these points.

3.2 Orthogonalization

As discussed above, m̂l and β̂i,l are not uniquely defined. Therefore, we orthogonalize
m̂0, . . . , m̂L in L2(p̂), where p̂(u) = I−1

∑I
i=1 p̂i(u), such that

∑I
i=1 β̂

2
i,1 is maximal,

and given β̂i,1, m̂0, m̂1,
∑I
i=1 β̂

2
i,2 is maximal, and so forth. These aims can be achieved

by the following two steps: first replace

m̂0 by m̂new
0 = m̂0 − γ>Γ−1m̂,

m̂ by m̂new = Γ−1/2m̂,


β̂i,1

...
β̂i,L

 by


β̂newi,1

...
β̂newi,L

=Γ−1/2




β̂i,1
...

β̂i,L

+ Γ−1γ

 ,

(3.15)

18



3 Dynamic semiparametric factor model

where m̂ = (m̂1, . . . , m̂L)> and the (L × L) matrix Γ =
∫
m̂(u)m̂(u)>p̂(u)du, γ =

(γl,l′), with γl,l′ =
∫
m̂l(u)m̂l′(u)p̂(u)du. Finally, we have γ = (γl), with γl =∫

m̂0(u)m̂l(u)p̂(u)du.

By applying (3.15), m̂0 is replaced by a function that minimizes
∫
m̂2

0(u)p̂(u)du. This
is evident because m̂0 is orthogonal to the linear space spanned by m̂1, . . . , m̂L. By the
second equation of (3.15), m̂1, . . . , m̂L are replaced by orthogonal functions in L2(p̂).

Second step, we proceed as in PCA and define a matrix B with Bl,l′ =
∑I
i=1 β̂i,lβ̂i,l′

and calculate the eigenvalues of B, λ1 > . . . > λL, and the corresponding eigenvectors
z1, . . . , zL. Put Z = (z1, . . . , zL). Replace

m̂ by m̂new = Z>m̂, (3.16)

(i.e. m̂new = z>l m̂), and
β̂i,1

...
β̂i,L

 by


β̂newi,1

...
β̂newi,L

ZT


β̂i,1

...
β̂i,L

 . (3.17)

After application of (3.16) and (3.17) the orthogonal basis m̂1, . . . , m̂L is chosen such
that

∑I
i=1 β̂

2
i,1 is maximal, and - given β̂i,1, m̂0, m̂1 -

∑I
i=1 β̂

2
i,2 is maximal, . . ., i.e.

m̂1 is chosen such that as much as possible is explained by β̂i,1m̂1. Next m̂2 is chosen
to achieve maximum explanation by β̂i,1m̂1 + β̂i,2m̂2, and so forth.

The functions m̂l are not eigenfunctions of an operator as in usual functional PCA.
This is because different norm is used, namely

∫
f2(u)p̂i(u)du, for each day. Through

the norming procedure the functions are chosen as eigenfunctions in an L-dimensional
approximating linear space. The L-dimensional approximating spaces are not neces-
sarily nested for increasing L. For this reason the estimates cannot be calculated by
an iterative procedure that starts by fitting a model with one component, and that
uses the old L − 1 components in the iteration step from L − 1 to L to fit the next
component. The calculation of m̂0, . . . m̂L has to be fully redone for different choices
of L.

19



3 Dynamic semiparametric factor model

3.3 Model selection

For the choice of the model size the residual sum of squares is calculated:

RV (L) =

∑
i

∑
j

{
Yi,j −

∑L
l=0 β̂i,lm̂l(Xi,j)

}2

∑
i

∑
j

{
Yi,j − Ȳ

}2 , (3.18)

where Ȳ is the overall mean of the observation. One may increase the parameter L
until the explained variance 1−RV (L) is sufficiently high. However if the model was
fitted for L dynamic functions, the new fit for the size L + 1 requires repeating of
almost entire procedure.

For the data-driven choice of bandwidths we take like Härdle et al. (2005) a weighted
AIC. For the weight function w one needs to minimize:

1
N

∑
i,j

{
Yi,j −

L∑
l=0

β̂i,lm̂l(Xi,j)

}2

w(Xi,j) (3.19)

with respect to bandwidths. This is equivalent to minimizing:

ΞAIC1 =
∑
i,j

{
Yi,j −

L∑
l=0

β̂i,lm̂l(Xi,j)

}2

w(Xi,j) exp
{

2L
N
Kh(0)

∫
w(u)du

}
(3.20)

or computationally more easy criterion:

ΞAIC2 =
∑
i,j

{
Yi,j −

L∑
l=0

β̂i,lm̂l(Xi,j)

}2

exp
{

2L
N
Kh(0)

∫
w(u)du∫

w(u)p̂(u)du

}
. (3.21)

Since the distribution of the data is very unequal the weight function w should give
greater weight for the regions where data is sparse. One possible selection of w is
w(u) = 1

p̂(u) . Then the two criteria are:

ΞAIC1 =
∑
i,j

{
Yi,j −

L∑
l=0

β̂i,lm̂l(Xi,j)

}2

p̂(Xi,j) exp
{

2L
N
Kh(0)

∫
1

p̂(u)du

}
(3.22)

and

ΞAIC2 =
∑
i,j

{
Yi,j −

L∑
l=0

β̂i,lm̂l(Xi,j)

}2

p̂(Xi,j) exp
{

2L
N
Kh(0)µ−1

∫
1

p̂(u)du

}
(3.23)

where µ is the measure of the design set.
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4 IVS modeling for KOSPI 200 option

and ODAX

4.1 Data description

The data are KOSPI 200 option from Korea Exchange and ODAX from Eurex in whole
year of 2003. KOSPI 200 (Korea Composite Stock Price Index) is the index of 200 big
companies’ stocks traded on the Stock Market Division of the Korea Exchange. It is
one of the most actively traded index in the world. The Korea Exchange (KRX) is by
transactional volume the largest derivatives exchange in the world.1 Deutscher Aktien
IndeX 30 (German stock index) is a Blue Chip stock market index consisting of the 30
major German companies traded on the Frankfurt Stock Exchange. Its option ODAX
is traded on Eurex (Germany and Switzerland) which is by far the world’s largest
international market organizer for the trading and settlement of futures and options
on shares and share indices, as well as of interest rate derivatives.2

Both KOSPI 200 option data and ODAX data contain tick statistics of option contracts
traded in year 2003. They are contract based data, i.e. each contract is recorded
together with its price, maturity, time of settlement, strike and so on.

Let’s take one month from the entire data for example. Table 4.1 are descriptive
statistics for data of two markets in September 2003. KOSPI 200 option has much
more contracts than ODAX. For KOSPI 200 option, there are more calls than puts,
while for ODAX calls are less than puts, although these differences are slight. For
KOSPI 200 option, time to maturity has a median of 15 days and ranges from 3 to
102 days. Time to maturity for ODAX has a median of 25 days and ranges from 2 to
475 days. Moneyness of KOSPI 200 option has a median of 1.01 and ranges from 0.56
1Source: Wikipedia, KRX
2Source: Wikipedia, Eurex



4 IVS modeling for KOSPI 200 option and ODAX

Sum of Trades Mean Median Min. Max. Stdd. Kurt. Skew.
Call Time to mat. KOSPI 2707016 15.84 15.00 3 102 10.30 12.25 2.61

ODAX 37578 50.92 25.00 2 475 75.71 13.01 3.36
Moneyness KOSPI 2707016 1.03 1.02 0.56 1.24 0.04 5.23 0.62

ODAX 37578 1.03 1.02 0.27 2.21 0.11 12.35 -0.27
Put Time to mat. KOSPI 2682454 16.00 15.00 3 102 10.02 14.92 2.87

ODAX 41580 53.95 26.00 2 475 76.92 13.11 3.37
Moneyness KOSPI 2682454 0.98 0.98 0.56 1.24 0.04 2.67 -0.65

ODAX 41580 0.96 0.97 0.28 2.24 0.11 9.81 0.12
All Time to mat. KOSPI 5389470 15.92 15.00 3 102 10.16 13.52 2.73

ODAX 79158 52.51 25.00 2 475 76.37 13.06 3.37
Moneyness KOSPI 5389470 1.00 1.01 0.56 1.24 0.05 2.40 -0.07

ODAX 79158 0.99 1.00 0.27 2.24 0.12 8.46 -0.08

Table 4.1: Descriptive statistics on KOSPI 200 option and ODAX in September 2003,
time to maturity in days.

to 1.24. For ODAX, moneyness has a median of 1.00 and ranges from 0.27 to 2.24.
For both time to maturity and moneyness, ODAX has larger ranges than KOSPI 200
option.

Figure 4.1 are kernel densities on September 1, 2003 of two markets. ODAX has
a flatter distribution than KOSPI 200 option. While for moneyness, distributions
are symmetric for both markets, distributions of time to maturity are right-skewed -
contracts tend to have short expiration time in both markets.
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4 IVS modeling for KOSPI 200 option and ODAX

Density KOSPI Option 20030901
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Figure 4.1: Kernel density of KOSPI 200 option (left) and ODAX (right) on September
1, 2003 (moneyness lower left axis, time to maturity lower right axis), bandwidths for
moneyness (in year) and time to maturity are both 0.05.
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4 IVS modeling for KOSPI 200 option and ODAX

4.2 Close implied volatility and interpolation

One of the problems we face is intraday underlying price. Using intraday underlying
price is a convention for IVS estimation. However, neither KOSPI data nor ODAX
data in our case contains underlying price. In Härdle et al. (2005) intraday future price
within minute interval is used to derive the underlying price. While for ODAX data
corresponding future price can be found in our case, we haven’t got any information
of intraday future price for KOSPI 200.

Another approach to get intraday unerlying price is to use put-call parity:

Ct = Pt + St −Dt −Ke−rτ , (4.1)

where Ct and Pt are prices of European call and put option with the same strike
price K, same maturity T and on the same underlying. Dt is the discounted value of
dividend payed by underlying during the time to maturity τ = T − t. r and St are
interest rate and underlying price. Based on corresponding put and call option prices,
underlying price St can be derived.

Unfortunately, there are merely few cases that pair of corresponding call and put con-
tracts can be found in our data. Thus, intraday implied volatility cannot be calculated
in this circumstance.

While it is difficult to find intraday underlying price for both markets, acquiring close
price is relatively convenient. Instead of using intraday underlying price, close price of
underlying is used in our case. Together with the last traded contract for each series
of options - options with the same type, same maturity, same strike and traded on the
same day, a close implied volatility is calculated. Last traded contracts are extracted
from the whole data set according to their settlement time. Most of these last traded
contracts are settled between 14:00 and 15:15 on Korea Exchange and between 17:00
and 19:00 on Eurex - both near the close time of their underlying markets. At the
same time, it is however also possible that for one series of same contracts, the last
traded one is settled as early as 9:15 - near market opens, so a implied volatility based
on this contract may not reflect the state of market close. Strictly speaking, using
last traded contract, together with close underlying price doesn’t necessarily lead to a
close implied volatility. To improve accuracy, some adjustment or smooth techniques
should be used in further study.
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4 IVS modeling for KOSPI 200 option and ODAX

Sum of Trades Mean Median Min. Max. Stdd. Kurt. Skew.
Call Time to mat. KOSPI 533 52.96 53.00 10 102 27.10 -1.21 -0.04

ODAX 639 86.28 34.00 10 475 105.98 4.36 2.17
Moneyness KOSPI 533 1.04 1.04 0.76 1.24 0.09 -0.35 -0.04

ODAX 639 0.95 0.95 0.31 2.23 0.23 2.98 0.85
Implied V. KOSPI 533 0.22 0.20 0.12 0.75 0.05 25.38 3.89

ODAX 639 0.31 0.31 0.00 1.78 0.15 17.63 1.66
Put Time to mat. KOSPI 680 53.36 53.00 10 102 28.04 -1.28 -0.03

ODAX 567 85.67 33.00 10 475 115.71 4.20 2.24
Moneyness KOSPI 680 0.98 0.98 0.56 1.24 0.10 -0.10 -0.13

ODAX 567 1.01 1.01 0.27 1.79 0.23 2.47 -0.43
Implied V. KOSPI 680 0.27 0.25 0.15 1.24 0.08 57.27 6.08

ODAX 567 0.28 0.24 0.00 3.56 0.25 73.15 7.00
All Time to mat. KOSPI 1213 53.18 53.00 10 102 27.62 -1.25 -0.03

ODAX 1206 85.99 34.00 10 475 110.61 4.30 2.21
Moneyness KOSPI 1213 1.01 1.01 0.56 1.24 0.10 -0.03 -0.22

ODAX 1206 0.98 0.98 0.27 2.23 0.23 2.27 0.25
Implied V. KOSPI 1213 0.25 0.23 0.12 1.24 0.08 53.13 5.38

ODAX 1206 0.29 0.27 0.00 3.56 0.20 79.89 6.31

Table 4.2: Descriptive statistics on last traded KOSPI 200 option and ODAX in
September 2003, time to maturity in days.

For calculating implied volatility, contracts with time to maturity less than 10 days
are removed since their behaviors in this range are irregular due to expiry effect.
Interest rate for KOSPI 200 option is daily Korean treasury bill rate, for ODAX is
daily EURIBOR rate in the same period. Table 4.2 shows the summaries of these
contracts in September 2003. Both markets turn to have similar amount of contracts.
ODAX still has wider range of moneyness than KOSPI 200 option. ODAX also has a
larger range of implied volatility.

After extracting the last traded contracts from the whole data set, our data size reduce
largely - only about 40 observations left each day in average. An linear interpolation
is used in order to represent the data on a regular grid. Options on the same day and
with the same maturity time are grouped together and interpolated with respect to
the moneyness grid κ ∈ [0.8, 1.2] with 1000 points. Furthermore, call option and put
option are interpolated separately.

A new problem arises here: implied volatility calculated from put option and call
option are different, even if they have the same strike, same maturity and same spot.
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4 IVS modeling for KOSPI 200 option and ODAX

In Härdle et al. (2005) a correction algorithm is used to obtain an adjusted underlying
price, based on which the put and call implied volatilities are the same. This algorithm
(4.2) is based on future price formula and put-call parity.

S̃t = e−rF (TF−t)Ft + ∆Dt,TH ,TF
, (4.2)

where S̃t is the adjusted underlying price, rF is interest rate used in deriving underlying
price from future price, TF is future’s maturity time, Ft is future price, TH is option’s
maturity time, ∆Dt,TH ,TF

is dividend difference calculated from put-call parity (4.1)
and future price formula Ft = erF (TF−t)St − ∆Dt,TF

, ∆Dt,TF
is dividend used for

calculating future price.

In our case, it is a different situation. Firstly, our underlying price is not obtained
form future price, but directly from close price in the underlying markets. Secondly, as
stated before, there are only few corresponding put and call options in our case, thus
put-call parity cannot be used. Consequently, we don’t apply algorithm (4.2) in our
case. Instead, after interpolating put and call option separately we take the average of
these two implied volatility series. Our algorithm of interpolation and average taking
is described in detail as follows:

1. For each day i, options (implied volatilities) with the same maturity are grouped
together as IV Ci,j(κm) and IV Pi,j(κn). i is day index. j is group index on day i -
index for different maturity. C is call and P is put. κm and κl are moneyness
for calls and puts respectively.

2. For each group j of these options IV Ci,j(κm) and IV Pi,j(κn),

a) if both the number of calls
∑
m ≥ 3 and the number of puts

∑
n ≥ 3,

call implied volatility and put implied volatility are linearly interpolated
separately with respect to moneyness κ on grid κ ∈ [0.8, 1.2] with 1000
points.

IV Ci,j(κl) =
κl − κm

κm+1 − κm
IV Ci,j(κm+1) +

κm+1 − κl
κm+1 − κm

IV Ci,j(κm), (4.3)

and

IV Pi,j(κl) =
κl − κn
κn+1 − κn

IV Pi,j(κn+1) +
κn+1 − κl
κn+1 − κn

IV Pi,j(κm), (4.4)

where κl is desired moneyness point, l ∈ [1, 1000], κl ∈ [0.8, 1.2]. κm and

26



4 IVS modeling for KOSPI 200 option and ODAX

κm+1 are two closest observations to κl, with κm < κl < κm+1. If κm+1 < κl

or κl < κm, a constant extrapolation is used. For κn and κn+1 is the same.

Then, an average of IV Ci,j(κl) and IV Pi,j(κl) is taken as the final implied
volatility,

IVi,j(κl) =
IV Ci,j(κl) + IV Pi,j(κl)

2
(4.5)

b) if only the number of calls
∑
m ≥ 3, while the number of puts

∑
n < 3,

call implied volatilities are interpolated with (4.3). Put implied volatilities
are dropped. Final implied volatilities are these interpolated call implied
volatilities,

IVi,j(κl) = IV Ci,j(κl) (4.6)

c) similarly, if only the number of puts
∑
n ≥ 3, but the number of calls∑

m < 3, put implied volatilities are interpolated with (4.4). Call implied
volatilities are dropped. Final implied volatilities are these interpolated put
implied volatilities,

IVi,j(κl) = IV Pi,j(κl) (4.7)

d) if both the number of calls
∑
m < 3 and the number of puts

∑
n < 3, final

implied volatilities are the original observations,

IVi,j(κm) = IV Ci,j(κm)
IVi,j(κn) = IV Pi,j(κn)

(4.8)

Figure 4.2 is an example of one group ODAX data on September 22, 2003. These
contracts have 27 days to maturity. Left panel is original data - lasted traded contracts
taken from the entire data set. Right panel is based on the left panel, with interpolating
call and put options separately and then taking average.
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4 IVS modeling for KOSPI 200 option and ODAX
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Figure 4.2: Implied volatility of last traded ODAX with 27 days to maturity on Septem-
ber 22, 2003. Left panel: original data, before interpolation. Call options are crosses,
put options are circles. Right panel: with linear interpolation and taking average.
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4 IVS modeling for KOSPI 200 option and ODAX

Bandwidths 1−RV (3) ΞAIC1 ΞAIC2

KOSPI 200 option (0.02, 0.2) 0.853 0.00131 0.00663
ODAX (0.02, 0.05) 0.853 0.00360 0.01418

Table 4.3: DSFM modeling result for both markets.

L 1−RV (L) 4RV
2 KOSPI 0.836

DAX 0.805
3 KOSPI 0.853 0.017

DAX 0.853 0.048
4 KOSPI* 0.870 0.017

DAX 0.888 0.035
5 KOSPI** 0.865 -0.005

DAX 0.910 0.022

Table 4.4: Explained variance for the model size.
*Bandwidth (0.02, 0.22).
**Bandwidth (0.02, 0.28).

4.3 Model fit

Before applying DSFM, observations with implied volatility smaller than 0.04 or larger
than 0.8 are removed. Consequently, there are 653655 observations in KOSPI 200
option data - about 2880 per day and 931662 observations in ODAX data, about 3818
per day. Log-implied volatilities are modeled on moneyness and time to maturity (κi,j ,
τi,j). The grid covers in moneyness κ ∈ [0.8, 1.2] and time to maturity τ ∈ [0.02, 0.5]
measured in year. L=3 factor functions are employed for both markets. According
to variance explained, ΞAIC1 and ΞAIC2 criterions, bandwidths (0.02, 0.2) for KOSPI
200 option and (0.02, 0.05) for ODAX are chosen, see Table 4.3. We have recalculated
the model with the same bandwidths with 2, 3, 4 and 5 dynamic factor functions, see
Table 4.4. A choice of 3 factor functions is based on a balance between model economy
and efficiency - capturing as much as possible explained variances while keeping small
number of factors.
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4 IVS modeling for KOSPI 200 option and ODAX
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Figure 4.3: Left panel: DSFM for KOSPI 200 option on September 9, 2003 with
bandwidths (0.02, 0.2). Right panel: DSFM for ODAX on September 9, 2003 with
bandwidths (0.02, 0.04). (moneyness lower left axis, time to maturity lower right axis)

Figure 4.3 display Models on September 9, 2003 for both markets. IVS of KOSPI 200
option is flatter than ODAX on this day. Figure 4.4, 4.5 and 4.6 are factor functions
m̂i, i = 1, 2, 3. m̂1 are positive in both markets. They both are relatively flat. Factor
m̂1 can be interpreted as the time dependent mean of the (log-)IVS, a shift effect.
m̂2 for both markets have visible upward trends in moneyness axis, from negative to
positive. The surface is close to 0 when moneyness near 1. This trend is strong when
time to maturity is small while it becomes weak when time to maturity increases.
For m̂3 of KOSPI 200 option, a downward trend exists in maturity direction when
moneyness is in the neighborhood of 0.8 (this could be more clear if the plot is seen
in another direction). The surface slope down when time to maturity increases. This
trend becomes weak when moneyness increases. m̂3 of ODAX appears like wave.
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Figure 4.4: Factor m̂1 for KOSPI 200 option (left) and for ODAX (right). (moneyness
lower left axis, time to maturity lower right axis)
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Figure 4.5: Factor m̂2 for KOSPI 200 option (left) and for ODAX (right). (moneyness
lower left axis, time to maturity lower right axis)
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Figure 4.6: Factor m̂3 for KOSPI 200 option (left) and for ODAX (right). (moneyness
lower left axis, time to maturity lower right axis)

32



4 IVS modeling for KOSPI 200 option and ODAX

Mean Median Min. Max. Stdd. Kurt. Skew.
KOSPI β̂1 -1.13 -1.09 -1.45 -0.84 0.16 1.68 -0.16

β̂2 0.00 0.03 -0.35 0.13 0.08 5.78 -1.50
β̂3 0.00 0.01 -0.22 0.13 0.04 7.65 -1.21

ODAX β̂1 -1.03 -1.09 -1.36 -0.56 0.20 2.01 0.49
β̂2 0.00 -0.01 -0.27 0.24 0.11 2.18 -0.08
β̂3 0.00 0.00 -0.27 0.21 0.07 4.32 -0.14

Table 4.5: Descriptive statistics for factors loading β̂1, β̂2 and β̂3.
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Figure 4.7: Time series of factor loadings β1, β2, β3 for KOSPI 200 option (blue) and
ODAX (red) in year 2003.

4.4 Time series of factors loadings

Table 4.5 are descriptive statistics of factor loadings β̂i, i = 1, 2, 3. Figure 4.7 plots
β̂i of both markets together. β̂1 have larger scales than β̂2, β̂3 and display trends in
both markets. Moreover, β̂1 of both markets seem to have common trend. β̂2 and β̂3

of ODAX have stronger fluctuation than that of KOSPI 200 option.

ADF tests in Table 4.6 suggest β̂1 of both markets have unit roots. β̂2 of KOSPI 200
option has a unit root. Other β̂i are stationary.

In Härdle et al. (2005) VAR(2) model is used to model β̂i within one markets. What
interests us more here is the relation between β̂i of different markets. Since Figure 4.7
suggests trend of β̂1 in both markets, we firstly compare β̂1 with underlying price of the
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Figure 4.8: β̂1 (blue) and underlying price (red, logarithmized and centralized) of
KOSPI 200 option (left) and ODAX (right).

their own market. Since underlying price and β̂1 have different scales, underlying prices
are logarithmized and centralized (minus their mean). Figure 4.8 shows these two series
on two markets. Two series on both markets seem to move in opposite direction.
We then plot β̂1 and negative underlying price series (logarithmized and centralized)
together. Results are showed in Figure 4.9. On KOSPI 200 market, although about
from day 175, β̂1 and underlying price begin to move in opposite direction, they move
in same trend before day 175. On ODAX market, β̂1 and underlying price always move
in same trend. Correlation coefficients between β̂1 and underlying price (logarithmized
and centralized) are -0.82877 for Korean market and -0.89434 for German market.

Moreover, the two trends in left panel of Figure 4.7 seem to move together, so coin-
tegration tests are implemented next in Table 4.7 for β̂1 of two markets. Both trace
test and maximum eigenvalue test cannot reject a cointegration between β̂1 of ODAX
(β̂k1 ) and β̂1 of KOSPI 200 option (β̂d1 ). Cointegration matrix β = (−9.80, 11.63) for
(β̂d1 , β̂k1 ), loading matrix α = (−0.01, 0.01)>. This is, a linear combination z of β̂d1
and β̂k1 , z = −9.8β̂d1 + 11.63β̂k1 is a stationary series. The existence of cointegration
means that there is long-term relationship between two variables and that they are in-
fluenced by the same stochastic trend. Since β̂1 is the loading for m̂1, which is thought
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Figure 4.9: β̂1 (blue) and negative underlying price (red, logarithmized and centralized)
of KOSPI 200 option (left) and ODAX (right).

to be the time dependent mean of the (log-)IVS, a long-term relationship between two
markets’ β̂1 could probably indicate long-term relationship between two markets’ IVS.
From theoretical point of view, this result is not surprising. According to no-arbitrage
relation, for global exchanges like KRX and Deutsche Börse/Eurex, there shouldn’t
exist any arbitrage opportunity between them. Two exchanges are both influenced
by the global markets and macro environment. Relations or equilibriums should exist
between them. As we can see from Figure 4.8, underlying price series in left panel
and right panel have similar shapes and trends. Implied volatility as a state indica-
tor for market situation, should also reflect this no-arbitrage relation. Consequently,
when global markets have large fluctuation, so do KRX and Deutsche Börse/Eurex,
implied volatilities of these two markets will become large. If global markets have
small fluctuation, implied volatilities of these two markets will become small.
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Number of lags 1 2 3 4
KOSPI β̂1 -1.75 -1.54 -1.47 -1.27

β̂2 -4.26 -2.87 -2.71 -2.55
β̂3 -6.23 -5.49 -5.09 -4.69

ODAX β̂1 -1.90 -1.63 -1.35 -1.24
β̂2 -11.20 -8.45 -7.39 -6.01
β̂3 -10.65 -9.24 -8.55 -7.57

Table 4.6: ADF test statistics for factor loading series. Tests include constant. Critical
values are −3.46 (1%), −2.87 (5%) and −2.57 (10%).

Trace test Maximum eigenvalue test
Critical value Critical value

Rank Test statistic 10% 5% 1% Rank Test statistic 10% 5% 1%
1 2.28 6.50 8.18 11.65 1 2.28 6.50 8.18 11.65
0 21.90 15.66 17.95 23.52 0 19.62 12.91 14.90 19.19

Table 4.7: Two cointegration tests for KOSPI β̂1 and ODAX β̂1.

36



5 Conclusion

In this master thesis, we apply dynamic semiparametric factor model (DSFM) to
estimate implied volatility surfaces (IVS) of KOSPI 200 option and ODAX. Due to
lack of information for intraday underlying price, daily close underlying price is used.
Together with the last traded contract, daily close implied volatility is calculated. For
data preparation, a smooth procedure is employed. Close implied volatility is linearly
interpolated on regular grid with respect to moneyness. Due to the difference between
call and put implied volatility, an average of them is taken.

We choose L = 3 factor functions for estimation. 85.3% of the variances are explained
for both markets. The first factor function are similar for two markets and can be
interpreted as the time dependent mean of the (log-)IVS. We then study the factor
loadings. Loadings for first factor have unit roots for both markets. They are highly
correlated with their own markets’ underlying prices. Cointegration tests indicate
the existence of cointegration between two markets’ first factor loadings. This result
furthermore indicates the long-term relationship between two markets’ IVS, which
confirms the no-arbitrage theory.
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Kühl, M. (2007). Cointegration in the Foreign Exchange Market and Market Efficiency
since the Introduction of the Euro: Evidence based on bivariate Cointegration
Analyses, Discussion Paper 68, Center for European, Governance and Economic
Development Research, Georg-August-Universität Göttingen, Germany.

Tsay, R. S. (2002). Analysis of Financial Time Series, Wiley.

39


	Introduction
	Black-Scholes formula and volatility
	Black-Scholes formula
	Volatility

	Dynamic semiparametric factor model
	Estimation
	Orthogonalization
	Model selection

	IVS modeling for KOSPI 200 option and ODAX
	Data description
	Close implied volatility and interpolation
	Model fit
	Time series of factors loadings

	Conclusion

