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1 Introduction
IfM is a compact Riemannian manifold, the eigenvalue spectrum of the Laplace operator
∆ = d∗d acting on C∞(M) (or, equivalently, on C∞(M,C)) is a sequence of real numbers

0 6 λ0 6 λ1 6 λ2, . . . ,

each repeated according to the finite dimension of the corresponding eigenspace. Spectral
geometry deals with the question to what extent the spectrum of a manifold determines
its geometry (cf. [Gor00]).
More generally, one can introduce the Laplace operator on a so-called Riemannian

orbifold, a notion which generalizes manifolds and which has first been introduced in
[Sat56]. Orbifolds appear naturally (but not exclusively) in the context of properly
discontinuous group actions on manifolds that are not necessarily free. The crucial
difference is that a Riemannian orbifold is not assumed to be locally euclidean but
instead one requires that each point has a neighbourhood which is homeomorphic to
a quotient Ũ/Γ of a Riemannian manifold Ũ by a finite group Γ of isometries. It can
be shown that, as in the manifold case, the eigenspaces of the Laplace operator on a
compact Riemannian orbifold are finite-dimensional and nonnegative and one obtains
the same spectrum for the Laplacian on real-valued and on complex-valued functions.
Orbifolds having the same spectrum on functions are called isospectral.
Under certain compatiblity conditions the local charts described above lead to the

notion of isotropy: At each point the isotropy is the isomorphism class of the smallest
group Γ appearing in any orbifold chart around this point. An orbifold on which all
points have trivial isotropy carries a canonical manifold structure. Probably the most
interesting open question in this context is whether an orbifold containing points with
nontrivial isotropy can have the same spectrum as a manifold. On the path to a conceiv-
able affirmative answer one is naturally led to the problem of finding isospectral orbifolds
O1, O2 such that a certain isotropy on O1 does not occur on O2. The first example of
this kind has been given in [SSW06]. However, it did not rule out the possibility that
the spectrum determines the orders of the isotropies.
The work at hand contains an extensive study of a pair of isospectral orbifolds whose

respective maximal isotropy orders are different (4 and 2, respectively) and which has
recently been found by Juan Pablo Rossetti. These two orbifolds are quotients of eu-
clidean space R3 by crystallographic groups, i.e., by discrete subgroups of the isometry
group of R3 such that the obtained quotient is compact. Such orbifolds are called flat.
In addition, we are going to examine two more pairs of crystallographic groups act-
ing on R3 such that the respective quotient orbifolds are isospectral but not isometric.
The first pair is a particularly simple example of isospectral orbifolds whose maximal
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1 Introduction

isotropies are different (but have the same order) whereas the second is a pair of flat
Sunada-isospectral orbifolds.

The thesis is organized as follows. Chapter 2 gives a short self-contained introduction
to Riemannian orbifolds which comprises generalizations of basic concepts familiar from
manifold theory, some words on isotropy and a separate section on good orbifolds, which
are quotients M/G of a Riemannian manifold M by a group G of isometries acting
properly discontinuously on M . Although all our examples are good orbifolds, we try to
elucidate the general theory and point out how it translates into the special setting of
good orbifolds, in which isotropy on M/G in the orbifold sense corresponds to the usual
isotropy groups {g ∈ G; gp = p}, p ∈M .
We follow the same credo in Chapter 3, where we first demonstrate how the Laplacian

carries over from manifolds to orbifolds and summarize some basic properties which
are direct consequences of the corresponding results on manifolds. However, in the
following chapters we will only need the elementary description of the Laplacian on
good orbifolds: If M/G is a good orbifold then the Laplacian on M/G is given by the
restriction of ∆ : C∞(M) → C∞(M) to the vector space of G-invariant functions on
M , which is canonically identified with the space of smooth functions on the orbifold
M/G. Similarly, we define the Laplace operator on k-forms on a good orbifold M/G
by the restriction of ∆ = dd∗ + d∗d to G-invariant k-forms on M . We point out that
for compact M the corresponding eigenspaces are again finite-dimensional, and for each
k the spectrum is the same whether the Laplacian acts on real-valued or on complex-
valued k-forms. Note that this applies to our examples, where we can choose M to be
a certain three-dimensional torus depending on the given crystallographic group.
In Chapter 4 we come to the example which gave this thesis its title. It consists of

two crystallographic groups G1, G2 acting on R3 such that the respective quotients are
isospectral. Instead of relying on our imagination, we first give for each Gi a rigorous
calculation of the fundamental domain and of the identifications on its boundary given by
Gi. This leads both to pictures of the orbifolds R3/G1, R3/G2 and to the determination
of the isotropy in each orbifold point. In particular, we verify that the maximal isotropy
orders are different: There are points on R3/G1 with isotropy Z4 whereas all points on
R3/G2 have isotropy of order 6 2.
In Chapter 5 we show that the two orbifolds R3/G1 and R3/G2 from Chapter 4

are indeed isospectral. Thanks to the simple characterization of the Laplacian on
C∞(R3/Gi,C), we can apply the methods from [DR04] and [MR01], which are based
on the well-known eigenfunctions on a torus. Moreover, we are going to demonstrate
a third method to verify isospectrality, which uses the so-called heat kernel ([Don79]),
which in our case can be calculated directly from the usual heat kernel on R3.
Chapter 6 gives two more pairs of nonisometric isospectral orbifolds which we hope

to be interesting in their own right: The first is a pair R3/G1, R3/G2 of orbifolds with
different maximal isotropies: All isotropy groups of order > 4 on R3/G1 are isomorphic
to Z4 whereas Z2×Z2 is the only isotropy of order > 4 occuring on R3/G2. The second
is easily seen to be isospectral on k-forms for all k and turns out to be an example of a
pair of Sunada-isospectral orbifolds of dimension three. Note that all our examples are
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1 Introduction

three-dimensional flat orbifolds. In contrast to the orbifold case, there is - up to scaling
- only one pair of isospectral compact three-dimensional flat manifolds ([RC06]), and
these manifolds are not isospectral on 1-forms. Isospectral flat orbifolds of dimension
three have not been classified yet.

I would like to thank my supervisor Professor Dorothee Schüth for her patience, con-
tinuous encouragement and numerous productive suggestions. Moreover, I am indebted
to Dr. Juan Pablo Rossetti for providing an indispensable incentive for this work in the
form of his example. Finally, I appreciate the financial support by the SFB 647.
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2 Orbifold Preliminaries

2.1 General Concepts
In this work we deal with examples of orbifolds, which are a generalization of manifolds
introduced by Satake ([Sat56]) and popularized by Thurston ([Thu81]). In this section we
give a slighty different but essentially equivalent definition (cf. the appendix of [CR02])
and a few basic statements. All our orbifolds will be oriented and Riemannian, though
some of the theorems which we are going to cite also hold in a more general setting.
Before we come to the definition of an orbifold, we need to define what we mean by

charts on these structures.

Definition 2.1. Let X be a topological Hausdorff space which is second countable and
let U ⊂ X be a connected open subset. An n-dimensional orbifold chart is a triple
(U, Ũ/Γ, π), where

1. Ũ is an oriented connected n-dimensional Riemannian manifold.

2. Γ is a finite group of orientation-preserving isometries acting effectively on Ũ .

3. π : Ũ → U is a continuous map invariant under Γ such that the induced map
Ũ/Γ→ U is a homeomorphism.

Two charts (U, Ũi/Γi, πi), i = 1, 2, over the same domain U are called isomorphic if
there is an orientation-preserving isometry λ : Ũ1 → Ũ2 and an isomorphism Θ : Γ1 → Γ2
such that π2 ◦ λ = π1 and λ ◦ γ = Θ(γ) ◦ λ ∀γ ∈ Γ1.

A chart isomorphism is a special case of a so-called injection:

Definition 2.2. Let X be a topological Hausdorff space which is second countable. Let
U ′ ⊂ U be open and connected subsets of X and let (U ′, Ũ ′/Γ′, π′), (U, Ũ/Γ, π) be two
orbifold charts. An injection

(λ,Θ) : (U ′, Ũ ′/Γ′, π′)→ (U, Ũ/Γ, π)

is a pair consisting of an open smooth isometric and orientation-preserving embedding
λ : Ũ ′ → Ũ and an injective homomorphism Θ : Γ′ → Γ such that

π′ = π ◦ λ,
λ ◦ γ = Θ(γ) ◦ λ ∀γ ∈ Γ′.

The conditions above lead to the following commutative diagram.
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2 Orbifold Preliminaries

Ũ ′

��

π′

��

λ //// Ũ

��

π

��

Ũ ′/Γ′

≈

��

// Ũ/Θ(Γ′)

��

Ũ/Γ

≈
��

U ′ ⊂ // U

We now give a few lemmas which are convenient for the work with orbifold charts.

Lemma 2.3. Let U ′ ⊂ U be open connected subsets of X and let (λ,Θ) be an injection-
from a chart (U ′, Ũ ′/Γ′, π′) into a chart (U, Ũ/Γ, π). If Θ̂ is an injective homomorphism
from Γ′ to Γ such that (λ, Θ̂) is an injection between the two given charts, then Θ̂ = Θ.
In other words, the homomorphism Θ of an injection (λ,Θ) is uniquely determined by

λ and we can unambiguously write λ̄ := Θ.

Proof. Assume Θ̂ is a homomorphism such that (λ, Θ̂) is an injection between the charts
above and let γ ∈ Γ′. The definition of an injection implies that Θ(γ) ◦ Θ̂(γ−1)|λ(Ũ ′) is
the identity on the open set λ(Ũ ′) ⊂ Ũ . Since an isometry on the connected Riemannian
manifold Ũ is uniquely determined by its differential in any given point, we deduce that
Θ(γ) ◦ Θ̂(γ)−1 = Θ(γ) ◦ Θ̂(γ−1) = idŨ .

In the proofs of later statements we will need the following elementary lemma.

Lemma 2.4. Let M be a connected smooth manifold, let Γ1 ⊂ Γ2 be finite subgroups of
the group of diffeomorphisms on M and let πi : M →M/Γi denote the quotient map. If
there is a homeomorphism f : M/Γ1 →M/Γ2 such that π2 = f ◦ π1 then Γ1 = Γ2.

Proof. Let γ ∈ Γ2. Then f ◦ π1 ◦ γ = π2 ◦ γ = π2 = f ◦ π1, hence π1 ◦ γ = π1. Since Γ2 is
finite, the set M r := {x ∈M ; γ2x 6= x ∀γ2 ∈ Γ2 \ {e}} of regular points of the Γ2-action
is dense in M . Let x ∈M r. Since π1(γx) = π1(x), there is γ1 ∈ Γ1 such that γ1x = γx,
which implies γ = γ1 ∈ Γ1.

We now return to our original setting of charts over a countable Hausdorff space X.

Theorem 2.5. Let (U, Ũ/Γ, π) be a chart, and let U ′ be a connected open subset of
U ⊂ X. Then there is a chart (U ′, Ũ ′/Γ′, π′) over U ′ such that there exists an injection
from (U ′, Ũ ′/Γ′, π′) into (U, Ũ/Γ, π). Any two charts over U ′ from which there is an
injection into (U, Ũ/Γ, π) are isomorphic. This isomorphism class is called the class of
charts over U ′ induced by (U, Ũ/Γ, π).

Proof. (see [CR02] 4.1.) For the existence note that (by continuity) every element of Γ
permutes the connected components of π−1(U ′) and let Ũ ′ be one of those components.
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2 Orbifold Preliminaries

Set Γ′ := {γ ∈ Γ; γŨ ′ = Ũ ′}, π′ := π|Ũ ′ . Since γŨ ′ ∩ Ũ ′ = ∅ ∀γ ∈ Γ \ Γ′, this gives a
chart (U ′, Ũ ′/Γ′, π′) with the injection into (U, Ũ/Γ, π) given by the canonical inclusions.

For the uniqueness of the induced chart up to isomorphism first note that the iso-
morphism class of the chart constructed above does not depend on the choice of the
connected component Ũ ′: If (U ′, Ũ ′i/Γ′i, π′i), i = 1, 2, are two such charts, there is γ ∈ Γ
such that γŨ ′1 = Ũ ′2 (for otherwise π(Ũ ′1) and π(π−1(U ′ \ Ũ ′1)) would be two nonempty
disjoint open sets whose union is U ′). Then (γ,Θ) with Θ : Γ′1 3 γ1 → γγ1γ

−1 ∈ Γ′2 is a
chart isomorphism from (U ′, Ũ ′1/Γ′1, π′1) to (U ′, Ũ ′2/Γ′2, π′2).
Next, let (U ′, V/G, p) be an arbitrary chart over U ′ with an injection (λ, λ̄) into

(U, Ũ/Γ, π). Then λ(V ) lies in a connected component Ũ ′ of π−1(U ′). This component
yields a chart (U ′, Ũ ′/Γ′, π′) as defined in the first paragraph of this proof. We will show
that λ is an isometry between V and Ũ ′ and that λ̄ is a group isomorphism from G to
Γ′. Together these observations will imply that (λ, λ̄) gives a chart isomorphism from
(U ′, V/G, p) to (U ′, Ũ ′/Γ′, π′).

V

��
p

��

λ // Ũ ′

��
π′

��

V/G

≈
��

Ũ ′/Γ′

≈
��

U ′ = // U ′

First, we need to show that λ(V ) = Ũ ′. λ(V ) is closed in Ũ ′ by the following argument:
Let y0 ∈ λ(V ) ⊂ Ũ ′. There is (xn)n∈N ⊂ V such that y0 = limn→∞ λ(xn). Choose
z0 ∈ p−1(π′(y0)) ⊂ V . Set n(0) := 0. For k = 1, 2, . . . we successively define n(k) and
zk as follows. Since p is open, the set π′−1(p(B1/k(z0)) is an open neighbourhood of y0.
Thus there is n(k) > n(k − 1) such that λ(xn(k)) ∈ π′−1(p(B1/k(z0))) and we can find
zk ∈ B1/k(z0) such that

p(zk) = π′(λ(xn(k))).

Next define a new sequence (x′k) ⊂ V by x′k := xn(k) and note that limn→∞ λ(x′k) = y0.
By construction, for every k:

p(zk) = π′(λ(x′k)) = p(x′k),

hence there is ak ∈ G such that akzk = x′k. Since G is finite, we can assume - by passing
to a subsequence if necessary - that (ak) is constant. Then lim x′k = lim a1zk = a1z0 ∈ V ,
which implies that

y0 = limλ(x′k) = λ(lim x′k) = λ(a1z0) ∈ λ(V ).

Since y0 ∈ λ(V ) was arbitrary, we deduce that λ(V ) is closed in Ũ ′. As λ is an injection,
λ(V ) is also open; i.e., we have λ(V ) = Ũ ′.
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2 Orbifold Preliminaries

To see that λ̄(G) = Γ′, let x ∈ V and g ∈ G. Then

λ̄(g)λ(x) = λ(gx) ∈ λ(V ).

In other words, λ̄(G) leaves Ũ ′ = λ(V ) invariant. By the definition of Γ′, this implies
λ̄(G) ⊂ Γ′. The diffeomorphism λ induces a homeomorphism V/G → Ũ ′/λ̄(G) and we
have the following commutative diagram.

V

��

p

��

λ // Ũ ′

��

π′

��

V/G

≈

��

≈ // Ũ ′/λ̄(G)

��

Ũ ′/Γ′

≈
��

U ′ = // U ′

Lemma 2.4 applied to M = Ũ ′ implies λ̄(G) = Γ′.

In the following corollary we sum up a few observations from the preceding proof.

Corollary 2.6. Let U ′ ⊂ U be open connected sets in X, let (U, Ũ/Γ, π) be a chart
over U and let (U ′, Ũ ′/Γ′, π′) be an element of the isomorphism class of charts over U ′
induced by (U, Ũ/Γ, π).

1. If (λ, λ̄) is an injection from (U ′, Ũ ′/Γ′, π′) into (U, Ũ/Γ, π), then λ(Ũ ′) is a con-
nected component of π−1(U ′) and

λ̄(Γ′) = {γ ∈ Γ; γλ(Ũ ′) = λ(Ũ ′)} = {γ ∈ Γ; γλ(Ũ ′) ∩ λ(Ũ ′) 6= ∅}.

2. If V is a connected component of π−1(U ′) then there is an injection (λ, λ̄) from
(U ′, Ũ ′/Γ′, π′) into (U, Ũ/Γ, π) such that λ(Ũ ′) = V .

Proof. The first statement has been shown in the proof of the theorem above. As
for the second, we saw that there is an isomorphism (µ, µ̄) from (U ′, Ũ ′/Γ′, π′) into
(U ′, V/G, π|V ), where G := {γ ∈ Γ; γV = V }. If ι : V → Ũ , ῑ : G → Γ denote the
canonical inclusions, then λ = ι ◦ µ, λ̄ = ῑ ◦ µ̄ gives the desired injection.

Corollary 2.7. With U ′ ⊂ U as in the theorem above, isomorphic charts over U induce
the same isomorphism class of charts over U ′.

Proof. Let (U, Ũi/Γi, πi) be two isomorphic charts over U and for i = 1, 2 let
(U ′, Ũ ′i/Γ′i, π′i) be a chart in the isomorphism class over U ′ induced by the respective
πi. By the first statement of the Corollary 2.6, we can assume that Ũ ′i is a connected

7



2 Orbifold Preliminaries

component of π−1
i (U ′) and Γ′i is the subgroup of Γi leaving Ũ ′i invariant. Thus our com-

mutative diagram looks as follows, where ιi : Ũ ′i → Ũi and ῑi : Γ′i → Γi are the canonical
inclusions and λ is a chart isomorphism.

V

��

p

��

λ // Ũ ′

��

π′

��

V/G

≈

��

≈ // Ũ ′/λ̄(G)

��

Ũ ′/Γ′

≈
��

U ′ = // U ′

To define the isomorphism λ′, note that λ(Ũ ′1) is connected and Γ2 permutes the
connected components of π−1

2 (U ′); i.e., there is γ ∈ Γ2 such that λ(Ũ ′1) ⊂ γŨ ′2. Replacing
the injection (ι2, ῑ2) by the injection (γ ◦ ι2, γ ◦ ῑ2(·) ◦ γ−1) if necessary, we can assume
that λ(Ũ ′1) ⊂ Ũ ′2. Then actually λ(Ũ ′1) = Ũ ′2, because λ−1(Ũ ′2) is a connected subset of
π−1

1 (U ′) containing the component Ũ ′1.
Then we can set λ′ := λ◦ ι1 and λ̄′(γ1) := λ′ ◦γ1 ◦λ′−1 for γ1 ∈ Γ′1. Note that λ̄′(γ1) is

the restriction to Ũ ′2 of λ̄(γ1) ∈ Γ2 and maps Ũ ′2 to itself, hence λ̄(γ1) ∈ Γ′2. Analogously,
one has λ′−1 ◦ γ2 ◦ λ′ ∈ Γ′1 for γ2 ∈ Γ′2; i.e., λ̄′ : Γ′1 → Γ′2 is a group isomorphism. One
easily verifies that (λ′, λ̄′) is the desired chart isomorphism.

Definition 2.8. Let (U, Ũ/Γ, π) and (U ′, Ũ ′/Γ′, π′) be orbifold charts and let x ∈ U∩U ′.
The two charts are called equivalent at x if there is an open connected subset U ′′ ⊂
U ∩ U ′ containing x such that the two isomorphism classes of charts on U ′′ induced by
(U, Ũ/Γ, π) and (U ′, Ũ ′/Γ′, π′) are identical. In this case we write π ∼x π′.

Remark. When we refer to “the chart π” as e.g. in the notation introduced above, we
use π as an abbreviation for the whole tuple (U, Ũ/Γ, π) and not just to denote the map
π : Ũ → U .

Proposition 2.9. For every x ∈ X the relation ∼x is an equivalence relation on the set
of all orbifold charts around x.

Proof. Reflexivity and symmetry are obvious. To see that the relation is transitive let
(Ui, Ũi/Γi, πi), i = 1, 2, 3, be charts such that x ∈ U1 ∩ U2 ∩ U3 and π1 ∼x π2, π2 ∼x π3.
By definition, there are open connected sets U ′ ⊂ U1 ∩ U2, U ′′ ⊂ U2 ∩ U3 containing x,
isomorphic charts π′1, π′2 over U ′ induced by π1, π2, respectively, and isomorphic charts
π′′2 , π′′3 over U ′′ induced by π2, π3, respectively. Let U be the connected component of
U ′∩U ′′ containing x. If pi denotes the chart over U induced by πi, we need to show that
p1 is isomorphic to p3. But, as the composition of two injections is an injection, p1 is
induced by π′1 and p2 is induced by π′2. Since π′1 and π′2 are isomorphic, p1 and p2 must

8



2 Orbifold Preliminaries

be isomorphic by Corollary 2.7. Analogously, p2 and p3 are isomorphic, hence p1 are p3
are isomorphic as charts over U 3 x, i.e., p1 ∼x p3.

Definition 2.10. An orbifold atlas A of dimension n on a second countable Hausdorff
space X is a set A = {(Uα, Ũα/Γα, πα)}α∈I(A) of n-dimensional orbifold charts such that

1. ⋃α Uα = X

2. If x ∈ Uα ∩ Uβ then (Uα, Ũα/Γα, πα) and (Uβ, Ũβ/Γβ, πβ) are equivalent at x.

Two orbifold atlases are called equivalent if their union is again an orbifold atlas.

Lemma 2.11. Let X be a second countable Hausdorff space with an orbifold atlas A =
{(Uα, Ũα/Γα, πα)}α∈I(A). Then there is a unique maximal atlas on X containing A.

Proof. Let Ā be the set of all charts (U, Ũ/Γ, π) on X such that for every α ∈ I(A) and
every x ∈ U ∩Uα the charts π and πα are equivalent at x. To show that this is an atlas,
let (U, Ũ/Γ, π), (U ′, Ũ ′/Γ′, π′) ∈ Ā and x ∈ U ∩U ′. There is α ∈ I(A) such that x ∈ Uα.
By definition of Ā, we have π ∼x πα and π′ ∼x πα, hence π ∼x π′. By the choice of Ā,
every atlas containing A is contained in Ā.

Definition 2.12. An n-dimensional orbifold is a pair O = (X,A) of a second countable
Hausdorff space X (called the underlying space) and a maximal n-dimensional orbifold
atlas (called the orbifold structure) on X.
Given an orbifold O, a chart (U, Ũ/Γ, π) (as in Definition 2.1) is called an O-chart if

it is contained in the orbifold structure on O.

Remark. If, in the situation of Theorem 2.5, (U, Ũ/Γ, π) is an O-chart, then so is
(U ′, Ũ ′/Γ′, π′). From now on, the term chart will always refer to an O-chart. The
given orbifold O should be clear from the context.
Now let O be an orbifold, x ∈ O and let (U, Ũ/Γ, π) be a chart with x ∈ U . For

x̃ ∈ π−1(x) ⊂ Ũ let Γx̃ = {γ ∈ Γ; γx̃ = x̃} be the isotropy group (or stabilizer) of x̃
under the action of Γ. For another x̃′ ∈ π−1(x) there is γ ∈ Γ such that γx̃ = x̃′. Then
Γx̃′ = γΓx̃γ−1; i.e., the isotropy groups over x in this fixed chart form a well-defined
conjugacy class of subgroups of Γ. More generally, one has

Proposition 2.13. Let x ∈ O and let (Ui, Ũi/Γi, πi), i = 1, 2, be charts with x ∈ Ui. If
x̃i ∈ π−1

i (x), then the groups Γ1x̃1 and Γ2x̃2 are isomorphic.

Proof. Since π1 ∼x π2, there is an open connected set U ′ containing x, charts
(U ′i , Ũ ′i/Γ′i, π′i), i = 1, 2, over U ′ with injections λi into πi and a chart isomorphism
µ between π′1 and π′2.

Ũ1

π1

��

Ũ ′
1

π′
1

��?
??

??
??

?

λ1oo µ // Ũ ′
2

π′
2

����
��

��
��

λ2 // Ũ2

π2

��
U1 U ′⊃oo ⊂ // U2

9



2 Orbifold Preliminaries

By Corollary 2.6, we can assume that x̃1 ∈ λ1(Ũ ′1). Write x̃′1 for the unique preimage
of x̃1 under λ1 and set x̃′2 := µ(x̃′1). By composing λ2 with a suitable element of Γ2, we
can assume that x̃2 = λ2(x̃′2).
If γ ∈ Γ′1x̃′1 ⊂ Γ′1, then

µ̄(γ)x̃′2 = µ̄(γ)µ(x̃′1) = µ(γx̃′1) = µ(x̃′1) = x̃′2.

Together with an analogous calculation for µ−1 this shows that the restriction of µ̄ to
Γ′1x′1 gives an isomorphism G1 := Γ′1x′1 → Γ′2x′2 =: G2.
Moreover, for each i = 1, 2, restricting λ̄i gives an isomorphism Gi → Γix̃i : The

inclusion λ̄i(Gi) ⊂ Γix̃i is easily verified. For the opposite inclusion let γ ∈ Γix̃i . By
Corollary 2.6, γ ∈ λ̄i(Γ′i). If γ′ ∈ Γ′i denotes the unique preimage of γ under λ̄i, we need
to show that γ′ ∈ Gi. But this follows from

λi(γ′x̃′i) = λ̄i(γ′)λi(x̃′i) = γx̃i = x̃i = λi(x̃′i).

All in all we obtain an isomorphism between Γ1x̃1 and Γ2x̃2 .

Definition 2.14. Let O be an orbifold, x ∈ O, let (U, Ũ/Γ, π) be a chart around x and
x̃ ∈ π−1(x). The isomorphism class of Γx̃ is called the isotropy of x and is denoted by
Iso(x). If Iso(x) is non-trivial then x is called singular.

By definition, one always has that if (U, Ũ/Γ, π) is a chart around x then Iso(x) is
the isomorphism class of some subgroup of Γ. The following proposition (cf. [Bor92]
Prop. 24) shows that we can obtain equality by choosing U sufficiently small.

Proposition 2.15. Let O be an orbifold, x ∈ O and let U be an open connected neigh-
bourhood of x. There is a chart (U ′, Ũ ′/Γ′, π′) such that x ∈ U ′ ⊂ U , Ũ ′ is an open
subset of Rn equipped with the orientation induced by the canonical orientation of Rn

and [Γ′] = Iso(x), where [Γ′] denotes the isomorphism class of Γ′.

Proof. Without loss of generality we can assume that U is a chart domain; i.e., there
is a chart (U, Ũ/Γ, π) around x. Choose x̃ ∈ π−1(x). Since Γ is finite, there is ε ∈
(0, 1

2 dist(x̃,Γx̃\{x̃})). For Ũ ′ := Bε(x̃) we have Γx̃Ũ ′ = Ũ ′ and γŨ ′∩Ũ ′ = ∅ ∀γ ∈ Γ\Γx̃.
By choosing ε sufficiently small and composing with an orientation-preserving manifold
chart for Ũ , we can assume that Ũ ′ is an open connected subset of Rn. Then U ′ := π(Ũ ′),
π′ := π|Ũ ′ and Γ′ := Γx̃ ⊂ Γ yield the desired chart.

In particular, we have

Corollary 2.16. Let O be an n-dimensional oriented Riemannian orbifold. There is an
atlas {(Ux, Ũx/Γx, πx), x ∈ X)} of O such that for every x ∈ X

• Ũx is an open subset of Rn equipped with the orientation induced by the canonical
orientation on Rn,

• x ∈ Ux,

10
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• [Γx] = Iso(x).

A chart with the properties of Proposition 2.15 is called a fundamental chart around
x. Accordingly, an atlas as in Corollary 2.16 is called a fundamental atlas of O.
The following lemma implies that an orbifold without singular points can be considered

as a Riemannian manifold (and vice versa, of course).

Lemma 2.17. If O is an oriented Riemannian orbifold on which every point is non-
singular, then any fundamental orbifold atlas on O is a manifold atlas. The manifold
structure on O is independent of the choice of the fundamental orbifold atlas. Moreover,
the manifold O is orientable and the Riemannian metrics in the fundamental charts
define a Riemannian metric on O as a manifold.

Proof. Let {(Ux, Ũx/Γx, πx)} be a fundamental atlas of O. By assumption, Γx = {e},
and the πx are homeomorphisms. To observe that the atlas is a manifold atlas, we
need to show that, for x, y ∈ X with Ux ∩ Uy 6= ∅ the map π−1

y ◦ πx is smooth on
π−1
x (Ux ∩Uy) ⊂ Ũx. Let z ∈ π−1

x (Ux ∩Uy). Since πx ∼z πy, there is a chart (W, W̃/G, π)
such that z ∈ W ⊂ Ux ∩ Uy and there are injections λx, λy from (W, W̃/G, π) into
(Ux, Ũx/Γx, πx) and (Uy, Ũy/Γy, πy), respectively. Since Γx is trivial, so is G and π is a
homeomorphism.

Ũx

πx

��

W̃
λxoo

π

��

λy // Ũy

πy

��
Ux W

⊃oo ⊂ // Uy

Now λx(W̃ ) is an open neighbourhood of π−1
x (z) and π−1

y ◦ πx = λy ◦ λ−1
x on λx(W̃ ).

Since z was arbitrary, π−1
y ◦ πx is smooth, and moreover our definition of a fundamental

orbifold atlas implies that all coordinate changes πy ◦π−1
x are orientation-preserving. For

the uniqueness, note that an analogous argument shows that the charts in equivalent
fundamental orbifold atlases are compatible in the sense of manifold atlases.
For each x we obtain a Riemannian metric on Ux by pulling back the metric on Ũx

via π−1
x . Since injections are local isometries, this gives a Riemannian metric on the

manifold O.

Definition 2.18. Let O1, O2 be orbifolds. A smooth map is a continuous map f :
O1 → O2 between the underlying spaces such that for every x ∈ O1 there is a chart
(U1, Ũ1/Γ1, π1) around x, a chart (U2, Ũ2/Γ2, π2) around f(x), a smooth map f̃ ∈
C∞(Ũ1, Ũ2) and a homomorphism Θ : Γ1 → Γ2 such that f ◦ π1 = π2 ◦ f̃ and
f̃ ◦ γ = Θ(γ) ◦ f̃ ∀γ ∈ Γ1; i.e., the following diagram commutes.

Ũx

πx

��

W̃
λxoo

π

��

λy // Ũy

πy

��
Ux W

⊃oo ⊂ // Uy

11
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Remark. By the definition above, a smooth function on an orbifold O (with the standard
structure given by the atlas {(R,R, idR)}) is a continuous map f : O → R such that
f ◦ π is smooth for every chart π of O.
Moreover, it follows trivially from the definitions that for every chart (U, Ũ/Γ, π) on
O the map π : Ũ → U ⊂ O is smooth as a map between the orbifolds Ũ and O.

Lemma 2.19. The composition of two smooth orbifold maps is smooth.

Proof. Let f ∈ C∞(O1,O2), g ∈ C∞(O2,O3) and x ∈ O1. There is a chart
(U1, Ũ1/Γ1, π1) around x, charts (U2, Ũ2/Γ2, π2) and (V2, Ṽ2/G2, p2) around y := f(x)
and a chart (V3, Ṽ3/G3, p3) around z = g(y), smooth maps f̃ , g̃ and homomorphisms
Θf : Γ1 → Γ2, Θg : G2 → G3 satisfying the conditions of Definition 2.18; i.e., the fol-
lowing two diagrams commute (where we omit the corresponding homomorphisms Θf ,
Θg).

Ũx

πx

��

W̃
λxoo

π

��

λy // Ũy

πy

��
Ux W

⊃oo ⊂ // Uy

By composing (f̃ ,Θf ) with an injection if necessary, we can assume that (U1, Ũ1/Γ1, π1)
is a fundamental chart around x (Prop. 2.15). Since π2 ∼y p2, there is an open con-
nected set W ⊂ U2 ∩ V2 containing y such that π2 and p2 induce isomorphic charts over
W . Let x̃ be the unique preimage of x under π1 and let Ũ ′2 be the connected component
of π−1

2 (W ) containing f̃(x̃).
By Corollary 2.6, there is a chart (W, W̃/H, π) with an injection (λ, λ̄) into

(U2, Ũ2/Γ2, π2) such that λ(W̃ ) = Ũ ′2 and λ̄(H) = {γ ∈ Γ2; γŨ ′2 ⊂ Ũ ′2}. By our choice of
W , there also is an injection µ from (W, W̃/H, π) to (V2, Ṽ2/G2, p2).

Ũ1

��

f̃ // Ũ2

��

W̃
λoo µ //

��

Ṽ2

��

g̃ // Ṽ3

��

Ũ1/Γ1

≈
��

// Ũ2/Γ2

≈
��

W̃/Hoo //

≈
��

Ṽ2/G2

≈
��

// Ṽ3/G3

≈
��

U1
f // U2 W

⊃oo ⊂ // V2
g // V3

We have the following invariance properties.

(1) Γ2(π−1
2 (W )) ⊂ π−1

2 (W )
(2) Θf (Γ1)Ũ ′2 ⊂ Ũ ′2

(3) Γ1(f̃−1(Ũ ′2)) ⊂ f̃−1(Ũ ′2)

12
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The first equation is easily verified (and has already been used in earlier proofs):

p ∈ π−1
2 (W ), γ ∈ Γ2 ⇒ π2(γp) = π2(p) ∈ W.

As for the second, let γ ∈ Γ1 and note that, by (1), we have Θf (γ)(Ũ ′2) ⊂ π−1
2 (W ).

Moreover,
Θf (γ)f̃(x̃) = f̃(γx̃) = f̃(x̃),

which implies that Θf (γ) maps Ũ ′2 into the connected component of π−1
2 (W ) containing

f̃(x̃). By definition, this is just Ũ ′2, i.e., (2) holds. To establish (3), note that for every
p ∈ f̃−1(Ũ ′2), γ ∈ Γ1 one has

f̃(γp) = Θf (γ)f̃(p) ∈ Θf (γ)Ũ ′2 ⊂ Ũ ′2.

To complete the proof of the lemma, let Ũ ′1 be the connected component of f̃−1(Ũ ′2)
containing x̃. From (3) and the fact that Γ1 fixes x̃ we deduce that γŨ ′1 = Ũ ′1 for all
γ ∈ Γ1. If we set U ′1 := π1(Ũ ′1), then (U ′1, Ũ ′1/Γ1, π1|Ũ ′1

) is a chart around x.
Next we construct appropriate lifts of f|U ′1 and g|W . Let λ−1 : Ũ ′2 → W̃ denote the

inverse of the diffeomorphism λ : W̃ → Ũ ′2 and set

f̃ ′ = λ−1 ◦ f̃|Ũ ′1 : Ũ ′1 → W̃ .

Let λ̄−1 : λ̄(H) → H denote the inverse of the isomorphism λ̄ : H → λ̄(H) and note
that (2) together with the first statement of Corollary 2.6 implies that Θf (Γ1) ⊂ λ̄(H).
Then set

Θ′f : Γ1 3 γ 7→ λ̄−1(Θf (γ)) ∈ H.

If, moreover, we set

g̃′ := g̃ ◦ µ : W̃ → Ṽ3,

Θ′g := Θg ◦ µ̄ : H → G3,

we obtain the following commutative diagram, where (f̃ ′,Θ′f ) and (g̃′,Θ′g) satisfy the
conditions of Definition 2.18 for lifts of f and g, respectively, with respect to the charts
π′1, π and p3.

Ũ ′
1

��
π′
1

��

f̃ ′
// W̃

��

g̃′ // Ṽ3

��
p3

��

Ũ ′
1/Γ1

≈
��

// W̃/H

≈
��

// Ṽ3/G3

≈
��

U ′
1

f // W
g // V3

Finally, the pair consisting of g̃ ◦ f := g̃′◦ f̃ ′ : Ũ ′1 → Ṽ3 and Θg◦f := Θ′g ◦Θ′f : Γ1 → G3

13
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satisfies the conditions of Definition 2.18 with respect to g◦f and the charts π′1, p3. Note
that x ∈ U ′1. Since x was an arbitrary point in O1, we deduce that g ◦ f is smooth.

Definition 2.20. A diffeomorphism between two orbifolds O1 and O2 is a homeomor-
phism f : O1 → O2 between the underlying spaces such that the mappings f̃ in Defini-
tion 2.18 can be chosen to be diffeomorphisms. If the f̃ can be chosen to be isometries
then f is called an isometry.

Lemma 2.21. Let f : O1 → O2 be a diffeomorphism and x ∈ O1. Then Iso(x) =
Iso(f(x)).

Proof. Let (U1, Ũ1/Γ1, π1), (U2, Ũ2/Γ2, π2) be charts around x and f(x), respectively,
and let f̃ be the diffeomorphism according to the definition above. Note that the cor-
responding homomorphism Θ : Γ1 → Γ2 is given by Θ(γ) = f̃ ◦ γ ◦ f̃−1, hence it is an
isomorphism. If γ ∈ Γ1x̃ then Θ(γ)f̃(x̃) = f̃(γx̃) = f̃(x̃), i.e.,

Θ(Γ1x̃) ⊂ Γ2f̃(x̃).

The opposite inclusion follows from the analogous reasoning for f−1. Thus Θ(Γ1x̃) =
Γ2f̃(x̃), which implies that Γ1x̃ and Γ2f̃(x̃) are isomorphic, hence Iso(x) = Iso(f(x)).

Definition 2.22. Let O1 and O2 be two smooth orbifolds with underlying spaces X1,
X2 and with atlases {(Uα, Ũα/Γα, πα)} and {(Uβ, Ũβ/Γβ, πβ)}, respectively. A smooth
atlas on the product orbifold O1 ×O2 with underlying space X1 ×X2 is given by{(

Uα × Uβ, (Ũα × Ũβ)/(Γα × Γβ), πα × πβ
)}
,

where Ũα × Ũβ carries the product metric and the canonical orientation.

Remark. One easily checks that this is indeed an orbifold atlas. To see this, one uses
injections of the form (λα × λβ, λ̄α × λ̄β).
Moreover, note that IsoO1×O2(x, y) = IsoO1(x)× IsoO2(y) for all (x, y) ∈ O1 ×O2.
If O1 and O2 are two orbifolds, the respective projections pi : O1×O2 → Oi are easily

seen to be smooth. A map f on Oi is smooth if and only if f ◦ pi : O1 × O2 → R is
smooth.

2.2 Integration
Let O be an oriented n-dimensional Riemannian orbifold with maximal atlas

{(Uα, Ũα, /Γα, πα)}.

For each α let dvolα ∈ Ωn(Ũα) denote the volume form on the oriented Riemannian
manifold Ũα. We define the integral of a smooth function f ∈ C∞(O) with compact
support on O in the following way. First, assume that there is α such that supp f ⊂ Uα.
In this case set

14
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∫
O
f(x) dx := 1

|Γα|

∫
Ũα
f ◦ πα(x̃) dvolα(x̃)

To show that this definition does not depend on the chosen chart, assume supp f ⊂
Uα1 ∩ Uα2 =: W . There is a chart (W, W̃/Γ, π) with corresponding injections λα1 , λα2

into the two charts (Uαi , Ũαi , /Γαi , παi), i = 1, 2. First note that for α ∈ {α1, α2} we
have

(∗)
∫
Ũα
f ◦ πα(x̃) dvolα(x̃) = [Γα : Γ]

∫
λα(W̃ )

f ◦ πα(x̃) dvolα(x̃),

where [Γα : Γ] = |Γα|/|Γ| denotes the index of λ̄α(Γ) in Γα. To establish (∗), set k =
[Γα : Γ] and choose representatives {γ1, . . . , γk} of Γα/λ̄α(Γ). Then ⋃ki=1 γiλα(W̃ ) ⊂ Ũα
is a disjoint union containing supp(f ◦ πα) and therefore

∫
Ũα
f ◦ πα =

∫⋃
γiλα(W̃ )

f ◦ πα =
k∑
i=1

∫
γiλα(W̃ )

f ◦ πα

=
k∑
i=1

∫
λα(W̃ )

γ∗i (f ◦ πα) = k
∫
λα(W̃ )

f ◦ πα

Using (∗), we calculate

1
|Γα1|

∫
Ũα1

f ◦ πα1 = [Γα1 : Γ]
|Γα1|

∫
λα1 (W̃ )

f ◦ πα1 = 1
|Γ|

∫
W̃
f ◦ πα1 ◦ λα1

= 1
|Γ|

∫
W̃
f ◦ π = 1

|Γ|

∫
W̃
f ◦ πα2 ◦ λα2

= 1
|Γα2 |

∫
Ũα2

f ◦ πα2 .

If f ∈ C∞0 (O) is an arbitrary function with compact support, choose a finite covering
{Uα(i)} ⊂ {Uα} of supp f and a smooth partition of unity {ψi} such that each ψi has
support in Uα(i) (cf. [Chi90]). Then set∫

O
f dx :=

∑
i

∫
O

(ψif)(x) dx =
∑
i

1
|Γi|

∫
Ũα(i)

(ψif) ◦ πi(x̃) dvolα(i)(x̃)

The proof that this definition is independent of the chosen covering and the partition
of unity is literally the same as in the manifold case: If {Uβ(j)} is another finite covering
of supp f and {φj} a partition of unity with suppφj ⊂ Uβ(j), we have

∑
i

∫
O

(ψif)(x) dx =
∑
i

∫
O

(ψi
∑
j

φjf)(x) dx =
∑
i,j

∫
O

(ψiφjf)(x) dx

=
∑
j

∫
O

(φjf)(x) dx.

15
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As usual, we set vol(O) =
∫
O dx for a compact orbifoldO, and the Hilbert space L2(O)

is the completion of C∞0 (O) with respect to the scalar product (f1, f2) =
∫
O f1f2 dx.

2.3 Good Orbifolds
From now on, all our orbifolds are assumed to be connected. The following definition
goes back to [Thu81], compare also [Cho04].
Definition 2.23. Let O1, O2 be Riemannian orbifolds. A Riemannian orbifold covering
is a surjective continuous map p : O1 → O2 such that for every y ∈ O2 there is a
chart (V, Ũ/Γ, π) around y such that p−1(V ) is a disjoint union ⋃

α Uα and over each
connected component Uα there is a chart (Uα, Ũ/Γα, πα) such that Γα ⊂ Γ and the
following diagram commutes.

Ũ

��

πα

��

= // Ũ

��

π

��

Ũ/Γα

≈

��

= // Ũ/Γα

��

Ũ/Γ

≈
��

Uα
p // V

Remark. Obviously, an orbifold covering is a smooth orbifold map in the sense of Defi-
nition 2.18. It is not hard to see that, with p as above, a function f : O2 → R is smooth
if and only if f ◦ p : O1 → R is smooth: The “only if”-part is the content of Lemma
2.19. For the “if”-part assume that f ◦ p is smooth. Given an arbitrary point y ∈ O2,
we can assume - by choosing a neighbourhood V of y sufficiently small - that we have
an α and a commutative diagram as in Definition 2.23 such that there is a smooth map
f̃ ◦ p : Ũ → R lifting f ◦p : Uα → R, i.e., such that f ◦p◦πα = f̃ ◦ p. But f ◦p◦πα = f ◦π,
hence f̃ ◦ p also is a lift of f over y. The corresponding group homomorphism is given
by the constant map into the trivial group.
Apart from manifolds, the principal example of an orbifold is given by the following

theorem going back to [Sat56] and [Thu81]. Recall that a group G is said to act properly
discontinuously on a topological space M if {g ∈ G; gK ∩ K 6= ∅} is finite for every
compact K ⊂M .
Theorem 2.24. Let M be an oriented Riemannian manifold and let G ⊂ Isom(M) be a
group of orientation-preserving isometries acting properly discontinuously on M . Then
the quotient space M/G carries a canonical oriented Riemannian orbifold structure such
that the projection p : M → M/G is a Riemannian orbifold covering. If x ∈ M/G and
x̃ ∈ p−1(x), the isomorphism class of the isotropy group Gx̃ = {g ∈ G; gx̃ = x̃} is
Iso(x).
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Proof. Since G acts properly discontinuously, the topology on M/G is induced by the
metric

d(x, y) := inf{d(x̃, ỹ); x̃ ∈ p−1(x), ỹ ∈ p−1(y)},

hence M/G is Hausdorff. Moreover one has p(Br(x̃)) = Br(p(x̃)) for this metric. In
particular, p is open and a countable basis on M is mapped onto a countable basis of
M/G, i.e., M/G is second-countable.
Now let x ∈ M/G and choose x̃ ∈ p−1(x). Since G acts properly discontinuously, Gx̃

is finite and Gx̃ \ {x̃} is closed. Choose 0 < r < 1
2 dist(x̃, Gx̃ \ {x̃}). Then

Gx̃Br(x̃) = Br(x̃) and gBr(x̃) ∩Br(x̃) = ∅ ∀g ∈ G \Gx̃,

thus p induces a homeomorphism from Br(x̃)/Gx̃ onto its image p(Br(x̃)) = Br(x) ⊂
M/G. An orbifold chart is then given by (Br(x), Br(x̃)/Gx̃, p|Br(x̃)). All those charts
together, i.e., all charts{

(Brx(x), Brx(x̃)/Gx̃, p|Brx (x̃)); x ∈M/G
}
,

form an orbifold atlas onM/G: Given two charts (Bri(xi), Bri(x̃i)/Gx̃i , p|Bri (x̃i)), i = 1, 2,
satisfying p(x̃i) = xi, ri ∈ (0, dist(x̃i, Gx̃i \ {x̃i})/2) and a point y ∈ Br1(x1) ∩ Br2(x2)
there are x̃′i ∈ p−1(xi), ỹ ∈ p−1(y) and r ∈ (0, dist(ỹ, Gỹ \ {ỹ})/2) such that Br(ỹ) ⊂
Br1(x̃′i) ∩Br2(x̃′i). Then (Br(y), Br(ỹ)/Gỹ, p|Br(ỹ)) is a chart around y. Because of

ỹ ∈ gBri(x̃′i) ∩Bri(x̃′i) ∀g ∈ Gỹ

we have Gỹ ⊂ Gx̃′1
∩ Gx̃′2

. This implies that, for each i = 1, 2, the canonical in-
clusion Br(ỹ) → Br(x̃i) followed by an element of G sending x̃′ to x̃ gives an in-
jection from (Br(y), Br(ỹ)/Gỹ, p|Br(ỹ)) into (Br(xi), Br(x̃i)/Gx̃i , p|Br(x̃i)) and therefore
p|Br1 (x̃1) ∼y p|Br2 (x̃2). Since M is equipped with an orientation and G is orientation-
preserving, then the injections given above are also orientation-preserving and the Rie-
mannian orbifold M/G is oriented.
To see that p is an orbifold covering let x ∈ M/G, fix x̃ ∈ p−1(x) and choose a

chart as above. If {g1, . . . , gk} is a set of representatives of the left cosets G/Gx̃, then
p−1(Br(x)) = ⋃k

i=1Br(gix̃) is a disjoint union and for each i we have the following
commutative diagram as required in Definition 2.23.

Br(x̃)

≈gi ≈

��

= // Br(x̃)

��
p

��

Br(x̃)/Gx̃

≈
��

Br(gix̃)
p // Br(x)

Note that the statement about the isotropy groups is a direct consequence of the
definition of our charts.
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Remark. If the Riemannian manifold M is complete and we equip Isom(M) with the
compact-open topology, then a topological subgroup G of Isom(M) acts properly dis-
continuously if and only if it is discrete. For this and the statements about quotients of
metric spaces used in the proof above see [Rat06] Chapter 5 and [Bor92].
Definition 2.25. An orbifold as above is called good. If G is finite, M/G is called very
good. If an orbifold is not isometric to a quotient as above, it is called bad.
Remark. In the special case thatM/G is a very good oriented Riemannian orbifold, note
that an atlas is given by the single chart (M/G,M/G, p) and the integral of a function
f ∈ C∞(M/G) is just

∫
M/G f = 1

|G|
∫
M f ◦ p.

We say that a Riemannian orbifold O has constant sectional curvature c if, for every
chart (U, Ũ/Γ, π) on O, the Riemannian manifold Ũ has constant sectional curvature c.
An orbifold of constant sectional curvature zero is called flat. In the case of sectional cur-
vature the situation becomes particularly simple, as the following lemma shows ([Thu81]
13.3, cf. [Rat06] 13.3).
Lemma 2.26. Every compact Riemannian orbifold of constant sectional curvature is
good.
In analogy to the manifold case, we have the following sufficient criterion for the

existence of an isometry between two good orbifolds which are covered by the same
manifold.
Lemma 2.27. Let M be Riemannian manifold and let G1, G2 be discrete subgroups
of Isom(M). If G1 and G2 are conjugate in Isom(M), then the Riemannian orbifolds
M/G1, M/G2 are isometric.
Proof. Let pi : M → M/Gi denote the quotient maps and let γ be an isometry on M
such that γG1γ

−1 = G2. Then the map

f : M/G1 3 [x̃] 7→ [γx̃] ∈M/G2

is a well-defined homeomorphism. To see that it is an isometry, let x ∈ M/G1, choose
x̃ ∈ p−1

1 (x) and a chart (Br(x), Br(x̃)/Gx̃, p1) around x as in Theorem 2.24. Then
f(x) lies in V := p2(γBr(x̃)), the group γGx̃γ

−1 acts isometrically on γBr(x̃) and
(V, (γBr(x̃))/γGx̃γ

−1, p2) is a chart around f(x). We have the following commutative
diagram.

Br(x̃)

��

γ //

p1

##

γBr(x̃)

��
p2

zz

Br(x̃)/Gx̃
//

≈
��

γBr(x̃)/γGx̃γ
−1

≈
��

Br(x)
f // V

Since γ is an isometry and x ∈M/G1 has been arbitrary, f is an isometry.
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3 The Isospectrality Problem on
Orbifolds

As in the preceding section on good orbifolds, all orbifolds are assumed to be connected.
Let O be an n-dimensional Riemannian orbifold. The Laplace operator on C∞(O) is
defined via local charts.

Definition 3.1. For f ∈ C∞(O) and x ∈ O let (U, Ũ/Γ, π) be a chart around x.
Moreover, let ∆̃ denote the Laplacian on the Riemannian manifold Ũ and choose x̃ ∈
π−1(x). Then set

∆f(x) := ∆̃(f ◦ π)(x̃).

Remark. Since the Laplacian on manifolds commutes with the pullback by isometries,
our compatibility condition on orbifold charts shows that this definition does not depend
on the choice of chart around x.
Let f̃ be a smooth function on the Riemannian manifold Ũ . Recall that the Laplacian

∆̃ of f̃ is given by
∆̃f̃ = d∗df̃ = − tr(Hess f̃).

Moreover, one has the following two local characterizations (cf. [BGM71]): First, if y is
a manifold chart on Ũ around x̃, g̃ denotes the Riemannian metric on Ũ , g̃ij := g̃( ∂

∂yi
, ∂
∂yj

),
ρ := det(g̃ij) and (g̃ij) := (g̃ij)−1, then

∆̃f̃(x̃) = −
 1
√
ρ

n∑
i,j=1

∂

∂yi

(
g̃ij

∂f̃

∂yj
√
ρ)
) (x̃).

Second, if {Xi}ni=1 is an orthonormal basis of the tangent space Tx̃(Ũ) and γi denotes
the unique geodesic with γ̇i(0) = Xi defined on an open interval around 0, then

∆̃f̃(x̃) = −
n∑
i=1

(f̃ ◦ γi)′′(0).

The following properties are direct consequences of the respective statements for the
Laplacian on manifolds ([BGM71]).

Lemma 3.2. 1. ∆ : C∞(O)→ C∞(O) is linear.
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3 The Isospectrality Problem on Orbifolds

2. Let f1, f2 ∈ C∞(O), x ∈ O. If π, x̃ are chosen as in Definition 3.1 and g̃ denotes
the metric on Ũ , then

∆(f1f2)(x) = (f1∆f2)(x)− 2〈gradg̃(f1 ◦ π), gradg̃(f2 ◦ π)〉(x̃) + (f2∆f1)(x).

3. Let ψ : O1 → O2 be an orbifold isometry and f ∈ C∞(O2). Then

(∆2f) ◦ ψ = ∆1(f ◦ ψ).

4. Let O1 ×O2 be a product orbifold. For a fixed i ∈ {1, 2} let pi : O1 ×O2 → Oi be
the projection and let f ∈ C∞(Oi). Then

∆O1×O2(f ◦ pi) = (∆if) ◦ pi.

Proof. 1 is clear and 2 follows directly from the respective formula on the Riemannian
manifold Ũ .
As for 3, let x ∈ O1. There is a commutative diagram as in Definition 2.18 with an

isometry ψ̃ in the top row. Choose x̃ ∈ π−1
1 (x). Since relation 3 holds for ψ̃ : Ũ1 → Ũ2,

f ◦ π2 ∈ C∞(Ũ2) and the local Laplacians ∆̃i on Ũi, we have

∆1(f ◦ ψ)(x) = ∆̃1(f ◦ ψ ◦ π1)(x̃) = ∆̃1(f ◦ π2 ◦ ψ̃)(x̃) = ∆̃2(f ◦ π2)(ψ̃(x̃))
= (∆2f) ◦ ψ(x).

Next, we prove 4: Without loss of generality, consider i = 1 and let (x1, x2) ∈ O1×O2.
For j = 1, 2 let πj be an Oj-chart around xj and x̃j ∈ π−1

j (xj). Then

∆O1×O2(f ◦ p1)(x1, x2) = ∆̃(f ◦ p1 ◦ (π1 × π2))(x̃1, x̃2) = ∆̃1(f ◦ π1)(x̃1)
= (∆1f) ◦ p1(x1, x2).

Now we come to the principal object of our investigations. From now on all our
Riemannian orbifolds are assumed to be compact (and connected).

Definition 3.3. Let O be a compact Riemannian orbifold. The spectrum spec(O) is
the set of eigenvalues of ∆ with multiplicities, i.e., spec(O) ⊂ R is a multiset, where the
multiplicity of λ ∈ spec(O) is the dimension of the eigenspace

Eλ(O) := {f ∈ C∞(O); ∆f = λf}

of ∆ to the eigenvalue λ. Moreover, we write

E(O) :=
⊕

λ∈spec(O)
Eλ(O)
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3 The Isospectrality Problem on Orbifolds

for the space of finite sums of eigenfunctions on O.
Two compact Riemannian orbifolds O1 and O2 are called isospectral if spec(O1) =

spec(O2) with multiplicities.

Obviously, Lemma 3.2.3 implies that two isometric orbifolds are isospectral. For
overviews over the relationship between the spectrum and the geometry of a manifold
see [Gor00] or [Bro88].
The spectrum of the Laplacian on compact orbifolds was first investigated by Don-

nelly ([Don79]). He proved the following theorem for good orbifolds which was later
generalized to arbitrary orbifolds by Chiang ([Chi90]):

Theorem 3.4. Let O be a compact Riemannian orbifold. Then every eigenvalue of ∆ on
C∞(O) has finite multiplicity and spec(O) consists of a sequence 0 = λ0 < λ1 6 λ2 6 . . .,
where λi → ∞. Moreover there is an orthonormal basis {φi} ⊂ C∞(O) of the Hilbert
space L2(O) such that ∆φi = λiφi.

In light of our examples in the following sections, we should note that we obtain the
same spectrum for real- and for complex-valued functions: For a function f = u+ iv ∈
C∞(O,C) with u, v ∈ C∞(O) = C∞(O,R) set ∆f := ∆u+ i∆v. Then we have

Lemma 3.5. Let λ ∈ C and set

EC
λ (O) := {f ∈ C∞(O,C); ∆f = λf}.

Then

EC
λ (O) =

Eλ(O)⊗R C for λ ∈ R
{0} for λ ∈ C \ R

.

In particular,

dimCE
C
λ (O) =

dimREλ(O), λ ∈ R
0, λ ∈ C \ R

.

Before proving the lemma above, we note that Green’s Identity for manifolds carries
over to orbifolds.

Proposition 3.6 (Green’s Identity). Let O be a compact orientable Riemannian orbifold
and let fi ∈ C∞(O), i = 1, 2. Then∫

O
f1∆f2 =

∫
O
f2∆f1

Proof. Let {Ui} be a finite covering of O with associated charts {(Ui, Ũi/Γi, πi)} and let
{ψi} be a subordinate partition of unity. Then, by the definition of an integral and the
Laplacian,
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3 The Isospectrality Problem on Orbifolds

∫
O
f1∆f2 =

∑
i

∫
O
ψif1∆f2 =

∑
i

1
|Γi|

∫
Ũi

(ψif1∆f2) ◦ πi

=
∑
i

1
|Γi|

∫
Ũi

(ψif1) ◦ πi · ∆̃i(f2 ◦ πi).

Since (ψif1) ◦ πi has compact support in Ũi, Green’s Identity on the Riemannian
manifold Ũi implies that the last integral is equal to

∫
Ũi
f2 ◦ πi · ∆̃i((ψif1) ◦ πi), hence∫

O
f1∆f2 =

∑
i

1
|Γi|

∫
Ũi
f2 ◦ πi · ∆̃i((ψif1) ◦ πi)

=
∑
i

1
|Γi|

∫
Ũi
f2 ◦ πi ·∆(ψif1) ◦ πi =

∑
i

∫
O
f2∆(ψif1)

=
∫
O
f2∆

(∑
i

ψif1

)
=
∫
O
f2∆f1

Note that the third equality is merely the definition of the integral of the function
f2∆(ψif1) which has compact support in Ui.

Extending the integral to complex-valued functions in the usual way, one easily verifies
that ∆ is also symmetric on C∞(O,C) with respect to the Hermitian form 〈f1, f2〉 =∫
O f1f2.

Corollary 3.7. Let O be a compact orbifold and let f1, f2 ∈ C∞(O,C). Then∫
O
f1∆Cf2 =

∫
O
f2∆Cf1

Now we will prove Lemma 3.5. First note that the corollary above implies that the
eigenvalues of ∆C are real. Next let λ ∈ R. If u ∈ Eλ and z ∈ C, then ∆C(zu) = z∆u =
λ(zu), i.e., Eλ⊗RC ⊂ EC

λ . For the opposite inclusion, observe that ∆C(u+iv) = λ(u+iv)
implies u, v ∈ Eλ, and the proof of Lemma 3.5 is complete. From now on, we shall omit
the superscript C for the Laplacian on complex-valued functions.
To determine the spectrum of a product orbifold, we follow the proof for the man-

ifold setting given in [BGM71]. We will need the following lemma which is a simple
consequence of Proposition 3.6 (see [BGM71] III.A.II.1 for the manifold case).

Lemma 3.8. Let O be a compact oriented Riemannian orbifold and for each i ∈ N let
Vi be a subspace of C∞(O) such that:

1. For every i ∈ N there is λi ∈ R such that ∆φ = λiφ ∀φ ∈ Vi.

2. The sum ⊕
i∈N Vi is dense in C∞(O) with respect to the L2-norm.

Then the spectrum of O (as as set) consists of the numbers λi and for every i the space
Vi is the eigenspace of ∆ associated with the eigenvalue λi.
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3 The Isospectrality Problem on Orbifolds

Given an orbifold O and subspaces V,W of the algebra C∞(O) let V ⊗W denote the
span of {fg; f ∈ V, g ∈ W}. Moreover, for a smooth orbifold map φ : O → O′ and a
subspace V ⊂ C∞(O′) set φ∗V := {f ◦ φ; f ∈ V } ⊂ C∞(O). Using this notation, we
have the following lemma, whose proof in [BGM71] for the manifold case carries over to
the orbifold setting.

Lemma 3.9. Let O1 and O2 be two compact oriented Riemannian orbifolds and let
pi : O1 ×O2 → Oi denote the projection. Then

E(O1 ×O2) = p∗1E(O1)⊗ p∗2E(O2).

Moreover, for ν > 0:

Eν(O1 ×O2) =
⊕

λ+µ=ν
p∗1Eλ(O1)⊗ p∗2Eµ(O2).

In particular, if O1 and O2 have spectrum 0 = λ0 < λ1 6 λ2 6 . . . and 0 = µ0 < µ1 6
µ2 6 . . ., respectively, then O1 ×O2 has spectrum (λi + µj)∞i,j=0.

Proof. For each i = 1, 2 let fi ∈ C∞(Oi), let xi ∈ Oi and choose a chart (Ui, Ũi/Γi, πi)
around xi. Consider the chart (U1×U2, Ũ1× Ũ2/Γ1×Γ2, π := π1×π2) on O1×O2. Then
each fi ◦ pi ◦ π = fi ◦ πi ∈ C∞(Ũ1 × Ũ2) depends only on the i-th component. Hence
the middle term on the right hand side of Lemma 3.2.2 for ∆((f1 ◦ p1)(f2 ◦ p2))(x1, x2)
vanishes and (since the xi were arbitrary) we have

∆((f1 ◦ p1)(f2 ◦ p2)) = (f1 ◦ p1)∆(f2 ◦ p2) + (f2 ◦ p2)∆(f1 ◦ p1)

on O1 ×O2. Lemma 3.2.4 now implies that if f1 ∈ Eλ(O1), f2 ∈ Eµ(O2) are eigenfunc-
tions to the eigenvalues λ and µ, then (f1 ◦ p1)(f2 ◦ p2) ∈ Eλ+µ(O1 ×O2).
Moreover, if {f1i}i, {f2j}j are linearly independent functions on O1 and O2, respec-

tively, then the {(f1i ◦ p1)(f2j ◦ p2)}i,j are linearly independent functions on O1 × O2.
These two observations imply

(∗) Eν(O1 ×O2) ⊃
⊕

λ+µ=ν
p∗1Eλ(O1)⊗ p∗2Eµ(O2).

For the opposite inclusion, note that Theorem 3.4 implies that E(Oi) is dense in
C∞(Oi) with respect to the L2-norm, thus p∗1E(O1)⊗ p∗2E(O2) is dense in p∗1C∞(O1)⊗
p∗2C

∞(O2) with respect to the L2-norm on O1 × O2. Applying the Theorem of Stone-
Weierstrass to the compact topological space O1 × O2, we observe that p∗1C∞(O1) ⊗
p∗2C

∞(O2) is dense in C∞(O1 × O2) with respect to the supremum-norm, hence also
with respect to the L2-norm. These two observations imply that p∗1E(O1)⊗ p∗2E(O2) is
dense in C∞(O1 × O2) with respect to the L2-norm. An application of Lemma 3.8 in
connection with (∗) shows that

E(O1 ×O2) = p∗1E(O1)⊗ p∗2E(O2).
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3 The Isospectrality Problem on Orbifolds

This equation in turn implies that we have equality in (∗).

The following theorem, which is a generalization of Weyl’s formula, implies that the
spectrum of a compact orientable orbifold determines its dimension and volume.

Theorem 3.10 ([Far01]). Let O be a compact orientable n-dimensional Riemannian
orbifold with spectrum 0 = λ0 < λ1 6 λ2 6 . . .. Then for N(λ) = #{j; λj 6 λ} we have

N(λ) ∼ (2π)−nωn vol(O)λn/2

as λ → ∞ (i.e., the quotient of the two terms above converges to 1). ωn denotes the
volume of the ball of radius 1 in Rn.

The question whether an orbifold with singular points can be isospectral to a manifold
is still open. However, [GR03] contains the following obstruction.

Proposition 3.11. Let O be a compact good Riemannian orbifold with singularities and
let M be a compact Riemannian manifold. If O and M have a common Riemannian
covering manifold, then they are not isospectral.

If M/G is a good Riemannian orbifold, we obtain the Laplacian on smooth k-forms
on M/G by restricting ∆ = dd∗ + d∗d on the space Ωk(M) of k-forms on M to

Ωk(M/G) := (Ωk(M))G := {ω ∈ Ωk(M); g∗ω = ω ∀g ∈ G}.

Since g∗∆ω = ∆g∗ω = ∆ω for any ω ∈ Ωk(M/G) and g ∈ G, we indeed have
∆(Ωk(M/G)) ⊂ Ωk(M/G). The corresponding eigenspaces are then given by

Ek
λ(M/G) := Ek

λ(M) ∩ Ωk(M/G) = Ek
λ(M)G

Definition 3.12. If M is a compact Riemannian manifold and G is a subgroup of
Isom(M) acting properly discontinuously, then the eigenvalues of ∆ : Ωk(M/G) →
Ωk(M/G) with multiplicities are called the k-spectrum of M/G. Two good orbifolds
M1/G1 and M2/G2 (with Mi compact) are called k-isospectral if they have the same
k-spectrum with multiplicities.

The fact that these eigenvalues are nonnegative and have finite multiplicity follows
directly from the respective statement for the compact manifold M (cf. the appendix
of [Cha84]). Since the Laplacian is symmetric on forms, too, we observe that we again
obtain the same spectrum for the real- and the complex-valued case. Note that two good
orbifolds are 0-isospectral if and only if they are isospectral in the sense of Definition
3.3.
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4 Two Flat Orbifolds with Different
Isotropy Orders

In this section we examine a pair of orbifolds with different isotropy orders. The fact
that they are isospectral will be shown in the next section. These examples have recently
been found by Juan Pablo Rossetti.
Before giving the definitions of our orbifold pair we recall some facts from the theory

of quotients of euclidean space Rn by groups of isometries (compare [Wol74] Chapter 3).
The isometry group of Rn is given by the semidirect product I(Rn) = O(n) n Rn; i.e.,
I(Rn) consists of all transformations BLb, where B ∈ O(n), b ∈ Rn and Lb(x) = x + b
for x ∈ Rn. Note that

(∗) LbB = BLB−1b, BLbB
−1 = LBb and (BLb)−1 = B−1L−Bb

The following holds for subgroups of I(Rn) equipped with the compact-open topology.

Theorem 4.1. Let G be a subgroup of I(Rn).

1. G acts properly discontinuously if and only if G is discrete in I(Rn).

2. Let G be discrete in I(Rn).
a) Rn/G is compact if and only if I(Rn)/G is compact.
b) G acts freely on Rn if and only if G is torsion-free.

Proof. cf. [Wol74] 3.1.3

A subgroup G of I(Rn) is called cocompact if I(Rn)/G is compact. If G is discrete,
cocompact and torsion-free, it is called a Bieberbach group, and the theorem above
implies that Rn/G is a compact flat Riemannian manifold. Conversely, every compact
flat Riemannian manifold is isometric to such a quotient. The spectrum of the Laplacian
on such manifolds has been examined in [MR01] and [MR03]. In [RC06] it is shown that
in dimension three there is, up to scaling, exactly one pair of isospectral non-isometric
compact flat manifolds.
If we drop the condition that G be torsion-free, then G can have fixed points. A dis-

crete, cocompact subgroup of I(Rn) is called a crystallographic group. The corresponding
quotient Rn/G is a compact good Riemannian orbifold by Theorem 2.24. Conversely,
by Lemma 2.26, if O is a compact Riemannian orbifold of constant curvature zero then
there is a crystallographic group G ⊂ I(Rn) such that O is isometric to Rn/G.
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4 Two Flat Orbifolds with Different Isotropy Orders

In the orbifold setting we have the isotropy groups as an additional structure (unlike
in the manifold setting). [SSW06] gives a construction of an arbitrarily large number
of pairwise isospectral orbifolds each of which contains a point whose isotropy group
is not isomorphic to an isotropy group occurring in any other orbifold of this set. In
other words, the spectrum does not determine the isotropy types on an orbifold. These
examples have been exhibited using a technique by Sunada (see Theorem 6.1 below).
However, they did not rule out the possibility that the orbifold spectrum might determine
the order of the isotropy groups. We examine a pair of crystallographic groups such that
the orders of the respective largest isotropy groups are different.
Let Λ be the lattice 2Z × 2Z × Z in R3. Let τ be the quarter-rotation around the

x3-axis in the mathematically positive direction.
Then

τ =

0 −1 0
1 0 0
0 0 1

 , τ 2 =

−1 0 0
0 −1 0
0 0 1

 , τ 3 =

 0 1 0
−1 0 0
0 0 1

 , τ 4 = I3

The rotation τ leaves Λ invariant, and the relations

(τ iLλ1)(τ jLλ2) = τ i+jLτ−jλ1+λ2 and (τ iLλ)−1 = τ−iL−τ iλ

(which one easily checks using (∗)) imply that

G1 := {τ iLλ; i ∈ {0, 1, 2, 3}, λ ∈ Λ}

is a subgroup of I(R3).

Moreover, set

ρ0 := I3

ρ1 := χ1 ◦ Lb1 :=

1 0 0
0 −1 0
0 0 −1

 ◦ L(1,0,0)

ρ2 := χ2 ◦ Lb2 :=

−1 0 0
0 1 0
0 0 −1

 ◦ L(0,0,0)

ρ3 := χ3 ◦ Lb3 :=

−1 0 0
0 −1 0
0 0 1

 ◦ L(−1,0,0)

Note that Λ is invariant under every χi. Using (∗), one verifies the relations

(ρ1Lλ)−1 = ρ1L−χ1λ−(2,0,0), (ρ2Lλ)−1 = ρ2L−χ2λ, (ρ3Lλ)−1 = ρ3L−χ3λ.
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Thus
G2 := {ρiLλ; i ∈ {0, 1, 2, 3}, λ ∈ Λ}

is closed under inversion. (∗) also implies that G2 is closed under composition, hence it
is another subgroup of I(R3).
For a subgroup G of I(Rn) let η : G → O(3) denote the natural projection given by

η(BLb) = B. The image F of η is called the point group of G. The kernel of η is the
subgroup Λ of translations in G, and we have an exact sequence of groups

I3 → Λ→ G→ F → I3

and an isomorphism F ' G/Λ.
Note that, in our examples,

F1 = {I3, τ, τ
2, τ 3}, F2 = {I3, χ1, χ2, χ3}

are finite, which together with the fact that the given lattice Λ = 2Z×2Z×Z is discrete
and cocompact implies that the Gi are crystallographic ([Rat06] 7.5). However, the Gi

are not torsion-free, since, e.g., τ 4 = I3 and ρ2
2 = I3.

Let Oi = R3/Gi denote the corresponding compact good Riemannian orbifolds. They
are orientable, because all transformations in Gi are orientation-preserving.

4.1 The Fundamental Domains
On the following pages we give an exhaustive calculation of the fundamental domains of
the actions of Gi on R3 and the identifications on their boundaries given by the group
actions. The impatient reader may skip these tables and focus on the images. Section
4.2 contains the interpretation of the calculations with regard to the isotropy groups.
The cuboid [−1, 1] × [−1, 1] × [0, 1] is a fundamental domain for the action of the

lattice Λ on R3, and the torus R3/Λ can be regarded as this cuboid with opposite sides
identified by the canonical translations.

4.1.1 The Orbifold O1

Since τ is a quarter-rotation around the x3-axis, every point in [−1, 1]× [−1, 1]× [0, 1] is
equivalent to a point in [0, 1]3 under a rotation τ i. Next we examine the identifications
and fixed points on [0, 1]3 by the G1-action: For each i = 0, 1, 2, 3 we determine all λ ∈ Λ
for which there is an x ∈ [0, 1]3 such that τ iLλx ∈ [0, 1]3. We call such λ relevant and
list all pairs (x, τ iLλx) ∈ ([0, 1]3)2 corresponding to each relevant λ.

• i = 0:
τ 0Lλx = Lλx = (x1 + λ1, x2 + λ2, x3 + λ3)

The only non-zero relevant λ are λ = (0, 0,±1), which lead to the identification
(x1, x2, 0) ∼ (x1, x2, 1).
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• i = 1:
τ 1Lλx = (−x2 − λ2, x1 + λ1, x3 + λ3)

Only λ ∈ {0} × {−2, 0} × {−1, 0, 1} are relevant.

λ1 λ2 λ3 x τLλx
0 -2 -1 (x1, 1, 1) (1, x1, 0)
0 -2 0 (x1, 1, x3) (1, x1, x3) F
0 -2 1 (x1, 1, 0) (1, x1, 1)
0 0 -1 (x1, 0, 1) (0, x1, 0)
0 0 0 (x1, 0, x3) (0, x1, x3) P
0 0 1 (x1, 0, 0) (0, x1, 1)

(The letters in the last column correspond to the sides in Figure 4.1.)

• i = 2:
τ 2Lλx = (−x1 − λ1,−x2 − λ2, x3 + λ3)

Only λ ∈ {−2, 0} × {−2, 0} × {−1, 0, 1} are relevant. Since

(τ 2Lλ)−1 = L−λτ
2 = τ 2L(λ1,λ2,−λ3),

we can omit the case λ3 = −1.
λ1 λ2 λ3 x τ 2Lλx
-2 -2 0 (1, 1, x3) (1, 1, x3)
-2 -2 1 (1, 1, 0) (1, 1, 1)
-2 0 0 (1, 0, x3) (1, 0, x3)
-2 0 1 (1, 0, 0) (1, 0, 1)
0 -2 0 (0, 1, x3) (0, 1, x3)
0 -2 1 (0, 1, 0) (0, 1, 1)
0 0 0 (0, 0, x3) (0, 0, x3)
0 0 1 (0, 0, 0) (0, 0, 1)

• i = 3: Since
(τLλ)−1 = L−λτ

3 = τ 3L(λ2,−λ1,λ3),

we obtain the same identifications and fixed points as in the case i = 1.

All in all, [0, 1]3 is a fundamental domain for the action of G1 on R3 and O1 is just
[0, 1]3 with (closed) sides identified as indicated in the following picture, where we omit
the identifications of the top and bottom side given by the vertical translation Le3 .

4.1.2 The Orbifold O2

O2 is also just the cube [0, 1]3, but with different identifications: First note that every
point in [−1, 1]× [−1, 1]× [0, 1] is the image of a point in [0, 1]3 under one of the following
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x3

x1 x2

Figure 4.1: The underlying space of O1 as a quotient of the unit cube

(restrictions of) transformations in G2.

ρ1L(−2,0,−1) : [0, 1]3 → [−1, 0]× [−1, 0]× [0, 1]
ρ2L(0,0,−1) : [0, 1]3 → [−1, 0]× [0, 1]× [0, 1]

ρ3 : [0, 1]3 → [0, 1]× [−1, 0]× [0, 1]

Since [−1, 1] × [−1, 1] × [0, 1] is a fundamental domain for the action of Λ on R3, this
implies that every point in R3 is equivalent to a point in [0, 1]3 under the action of G2.
For the identifications and fixed points in [0, 1]3 we follow the algorithm above and,
for every i = 0, 1, 2, 3, determine all λ ∈ Λ for which there is an x ∈ [0, 1]3 such that
ρiLλx ∈ [0, 1]3.

• i = 0:
ρ0Lλx = Lλx = (x1 + λ1, x2 + λ2, x3 + λ3)

The only non-zero relevant λ are λ = (0, 0,±1), which lead to the identification
(x1, x2, 0) ∼ (x1, x2, 1).

• i = 1:
ρ1Lλx = (x1 + λ1 + 1,−x2 − λ2,−x3 − λ3)

The only relevant λ are λ ∈ {−2, 0} × {−2, 0} × {−2,−1, 0}.
Since

(ρ1Lλ)−1 = L−λρ
−1
1 = L(−λ1−1,−λ2,−λ3)χ1 = χ1L(−λ1−1,λ2,λ3)

= ρ1L(−λ1−2,λ2,λ3),
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4 Two Flat Orbifolds with Different Isotropy Orders

the value λ1 = 0 gives the same identifications as λ1 = −2 and we can omit the
case λ1 = 0.

λ1 λ2 λ3 x ρ1Lλx
-2 -2 -2 (1, 1, 1) (0, 1, 1)
-2 -2 -1 (1, 1, x3) (0, 1, 1− x3)
-2 -2 0 (1, 1, 0) (0, 1, 0)
-2 0 -2 (1, 0, 1) (0, 0, 1)
-2 0 -1 (1, 0, x3) (0, 0, 1− x3)
-2 0 0 (1, 0, 0) (0, 0, 0)

• i = 2:
ρ2Lλx = (−x1 − λ1, x2 + λ2,−x3 − λ3)

The only relevant λ are λ ∈ {−2, 0} × {0} × {−2,−1, 0}.
λ1 λ2 λ3 x ρ2Lλx
-2 0 -2 (1, x2, 1) (1, x2, 1)
-2 0 -1 (1, x2, x3) (1, x2, 1− x3) P
-2 0 0 (1, x2, 0) (1, x2, 0)
0 0 -2 (0, x2, 1) (0, x2, 1)
0 0 -1 (0, x2, x3) (0, x2, 1− x3) ∆
0 0 0 (0, x2, 0) (0, x2, 0)

(The letters in the last column correspond to the sides in Figure 4.2.)

• i = 3:
ρ3Lλx = (−x1 − λ1 + 1,−x2 − λ2, x3 + λ3)

The only relevant λ are λ ∈ {0} × {−2, 0} × {−1, 0, 1}.
Since (ρ3Lλ)−1 = ρ3L(λ1,λ2,−λ3), we obtain the same identifications for λ3 = −1
and λ3 = 1, and we can omit the case λ3 = 1 in the following table.

λ1 λ2 λ3 x ρ3Lλx
0 -2 -1 (x1, 1, 1) (1− x1, 1, 0)
0 -2 0 (x1, 1, x3) (1− x1, 1, x3) L
0 0 -1 (x1, 0, 1) (1− x1, 0, 0)
0 0 0 (x1, 0, x3) (1− x1, 0, x3) F

(Again, the letters in the last column correspond to the sides in Figure 4.2.)

All in all, [0, 1]3 is a fundamental domain for the action of G2 on R3, and we obtain
the following picture for O2, where we again omit the identifications by the vertical
translation Le3 .

4.2 The Isotropy Groups
Next, we examine the tables from the preceding section to find the singular points on the
orbifolds and determine their isotropy groups. We write ∼ for the equivalence of points
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x3

x1 x2

Figure 4.2: The underlying space of O2 as a quotient of the unit cube

under the action of the respective Gi. We explicitly mention all equivalences between
fixed points on [0, 1]3 apart from those arising from Le3 .

4.2.1 The Isotropy Groups on O1

The only fixed points in the table for i = 1 are (0, 0, x3) and (1, 1, x3). The table for
i = 2 contains the same fixed points and the additional fixed points (0, 1, x3) ∼ (1, 0, x3).
The corresponding isotropy groups are also easily read off from the tables (where we use
the notation of Theorem 2.24):

G1(0,0,x3) =
{
I3, τ, τ

2, τ 3
}
' Z4

G1(1,1,x3) =
{
I3, τL(0,−2,0), τ

2L(−2,−2,0), τ
3L(−2,0,0)

}
' Z4

G1(0,1,x3) =
{
I3, τ

2L(0,−2,0)
}
' Z2

Note that O1 is just the product of a 442-orbifold (in the notation of [Con92]) with
R/Z.

4.2.2 The Isotropy Groups on O2

In the table for i = 2 we find the fixed points (1, x2,
1
2), (0, x2,

1
2) (where (1, 1, 1

2) ∼
(0, 1, 1

2) and (1, 0, 1
2) ∼ (0, 0, 1

2)), (1, x2, 1) ∼ (1, x2, 0) and (0, x2, 1) ∼ (0, x2, 0). Besides,
i = 3 gives the fixed points (1

2 , 1, x3), (1
2 , 0, x3).

Each of these fixed points appears in exactly one row in the tables above, hence their
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4 Two Flat Orbifolds with Different Isotropy Orders

isotropy always is Z2:

G2(1,x2,
1
2 ) =

{
I3, ρ2L(−2,0,−1)

}
G2(0,x2,

1
2 ) =

{
I3, ρ2L(0,0,−1)

}
G2(1,x2,1) =

{
I3, ρ2L(−2,0,−2)

}
G2(0,x2,1) =

{
I3, ρ2L(0,0,−2)

}
G2( 1

2 ,1,x3) =
{
I3, ρ3L(0,−2,0)

}
G2( 1

2 ,0,x3) = {I3, ρ3}

In contrast to O1, all isotropy groups on O2 have order 6 2. In particular, by Lemma
2.21, O1 and O2 are not diffeomorphic .

The existence of singular points on the orbifolds Oi implies that none of them is
isospectral to a flat Riemannian manifold: Such a manifold would have dimension three
by Theorem 3.10 and thus be a quotient of euclidean space R3 by Lemma 2.26. By
Proposition 3.11, this is impossible, since the Oi themselves are also covered by R3.

32



5 Verification of Isospectrality
In this chapter we are going to show in three different ways that the orbifolds O1 and
O2 constructed in Chapter 4 are isospectral; see Sections 5.1, 5.2, 5.3. Moreover, in 5.2
we are going to show that O1 and O2 are not 1-isospectral.
We first summarize a few basic facts from [BGM71], [Cha84] about the spectrum of

a torus TΛ = Rn/Λ, where Λ is an n-dimensional lattice in Rn. For convenience, we let
Hµ(O) := EC

4π2µ(O) denote the eigenspace associated with the eigenvalue 4π2µ of a flat
orbifold O and set Hµ := Hµ(Rn). Since TΛ is compact, the space

Hµ(TΛ) = HΛ
µ = {φ ∈ Hµ;φ ◦ Lλ = φ ∀λ ∈ Λ}

is finite-dimensional. A basis for Hµ(TΛ) is given by

{φv; v ∈ Λ∗, ‖v‖2 = µ},

where φv(x) = e2πi〈v,x〉, and Λ∗ = {v ∈ Rn; 〈v, w〉 ∈ Z ∀w ∈ Λ} is the dual lattice of Λ.

5.1 Matching up Eigenfunctions
In the rare cases that explicit bases of the eigenspaces on a compact Riemannian manifold
M are known, one can try to verify the isospectrality of two good orbifoldsM/G1,M/G2
by matching up the eigenfunctions of the respective eigenspaces on the two quotients.
The general procedure for manifolds which are compact quotients of Rn has been outlined
in [DR04], where the authors examine the unique pair of compact three-dimensional flat
manifolds which are isospectral but not isometric.
We apply this procedure to our orbifold examples viewed as quotients of TΛ with

Λ = 2Z × 2Z × Z. Note that Λ∗ = 1
2Z ×

1
2Z × Z. Let G1, G2 be as in Chapter 4.

Then Hµ(Oi) = HGi
µ , which can be identified with certain invariant eigenfunctions on

the torus:

HG1
µ = {φ ∈ HΛ

µ ; φ ◦ τ i = φ ∀i}
HG2
µ = {φ ∈ HΛ

µ ; φ ◦ ρi = φ ∀i}
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5 Verification of Isospectrality

Define linear endomorphisms of C∞(TΛ,C) = C∞(R3,C)Λ by

σ1(φ) = 1
4(φ+ φ ◦ τ + φ ◦ τ 2 + φ ◦ τ 3)

σ2(φ) = 1
4(φ+ φ ◦ ρ1 + φ ◦ ρ2 + φ ◦ ρ3)

Then each σi is a projection which commutes with ∆ because the τ j, ρj are isometries
of R3. Moreover, σi has image C∞(Oi,C) = C∞(R3,C)Gi , hence σi(HΛ

µ ) = HGi
µ .

Isospectrality of O1 and O2 is thus equivalent to

dim σ1(HΛ
µ ) = dim σ2(HΛ

µ ) ∀µ ∈ [0,∞).

For (a, b, c) ∈ Λ∗ write φa,b,c(x) := φ(a,b,c)(x) = exp(2πi(ax1 + bx2 + cx3)) and observe
that

φa,b,c ◦ τ = φb,−a,c, φa,b,c ◦ τ 2 = φ−a,−b,c, φa,b,c ◦ τ 3 = φ−b,a,c (5.1)
φa,b,c ◦ ρ1 = e2πiaφa,−b,−c, φa,b,c ◦ ρ2 = φ−a,b,−c, φa,b,c ◦ ρ3 = e2πiaφ−a,−b,c (5.2)

If a2 + b2 + c2 = µ then

Va,b,c := spanC{φ±a,±b,±c, φ±b,±a,±c}

is a subspace of HΛ
µ which, by the relations above, is invariant under each σi.

For µ ∈ [0,∞) we set

Λ∗µ := {(a, b, c) ∈ Λ∗; 0 6 a 6 b, c > 0, a2 + b2 + c2 = µ}.

Then HΛ
µ = ⊕

(a,b,c)∈Λ∗µ Va,b,c is a (possibly empty) direct sum and

HGi
µ = σi(HΛ

µ ) = σi

 ⊕
(a,b,c)∈Λ∗µ

Va,b,c

 =
⊕

(a,b,c)∈Λ∗µ

σi(Va,b,c).

Therefore, isospectrality of O1 and O2 is equivalent to

∀µ ∈ [0,∞) :
∑

(a,b,c)∈Λ∗µ

dim σ1(Va,b,c) =
∑

(a,b,c)∈Λ∗µ

dim σ2(Va,b,c)

We observe that none of the summands above can be greater than 4:

O1: Relation (5.1) implies that for every (a, b, c) ∈ Λ∗:

σ1(φa,b,c) = σ1(φb,−a,c) = σ1(φ−a,−b,c) = σ1(φ−b,a,c),
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5 Verification of Isospectrality

hence σ1(Va,b,c) is spanned by the (not necessarily distinct) functions

Φ1 := {σ1(φa,b,c), σ1(φ−a,b,c), σ1(φa,b,−c), σ1(φ−a,b,−c)}.

O2: Relation (5.2) implies that for every (a, b, c) ∈ Λ∗:

σ2(φa,b,c) = e2πiaσ2(φa,−b,−c) = σ2(φ−a,b,−c) = e2πiaσ2(φ−a,−b,c),

hence σ2(Va,b,c) is spanned by the (not necessarily distinct) functions

Φ2 := {σ2(φa,b,c), σ2(φ−a,b,c), σ2(φb,a,c), σ2(φ−b,a,c)}.

First we assume that either none, one or three of the numbers a, b, c are zero. Under
this assumption dim σ1(Va,b,c) = dim σ2(Va,b,c), as can be read off from the following
tables which cover all possible cases: For each line one easily verifies that every element
of the corresponding Φi either coincides with one of the given functions or vanishes
completely. Moreover, writing out the definition of σi (and using the well-known fact
that the set {φr,s,t; (r, s, t) ∈ R3} is linearly independent in C∞(R,C)) shows that each
of the sets below is indeed linearly independent.

basis of σ1(Va,b,c) dim σ1(Va,b,c)
0 < a < b, c > 0 σ1(φa,b,c), σ1(φ−a,b,c), σ1(φa,b,−c), σ1(φ−a,b,−c) 4
0 < a = b, c > 0 σ1(φa,a,c), σ1(φa,a,−c) 2
0 < a < b, c = 0 σ1(φa,b,0), σ1(φ−a,b,0) 2
0 < a = b, c = 0 σ1(φa,a,0) 1
0 = a < b, c > 0 σ1(φ0,b,c), σ1(φ0,b,−c) 2
0 = a = b, c = 0 σ1(φ0,0,0) 1

basis of σ2(Va,b,c) dim σ2(Va,b,c)
0 < a < b, c > 0 σ2(φa,b,c), σ2(φ−a,b,c), σ2(φb,a,c), σ2(φ−b,a,c) 4
0 < a = b, c > 0 σ2(φa,a,c), σ2(φ−a,a,c) 2
0 < a < b, c = 0 σ2(φa,b,0), σ2(φb,a,0) 2
0 < a = b, c = 0 σ2(φa,a,0) 1
0 = a < b, c > 0 σ2(φ0,b,c), σ2(φb,0,c) 2
0 = a = b, c = 0 σ1(φ0,0,0) 1

The case that exactly two of the numbers a, b, c are zero requires more care. Since
a 6 b by assumption, we have a = 0 in this case. Recall that b ∈ 1

2N0 whereas c ∈ N0.

• If b ∈ 1
2 + N0 and c = 0, we still have equality: The functions in Φ1 coincide

(and are non-zero). As for Φ2, we observe that the first two functions coincide and
σ2(φb,0,0) = σ2(φ−b,0,0) = 0 by (5.2) (note that e2πib = −1), i.e., dim σ1(Va,b,c) =
dim σ2(Va,b,c) = 1.
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5 Verification of Isospectrality

• To complete the proof of isospectrality we need to show that for n ∈ N:

dim σ1(V0,0,n) + dim σ1(V0,n,0) = dim σ2(V0,0,n) + dim σ2(V0,n,0).

But this follows from the following two tables:
basis of σ1(Va,b,c) dim(σ1(Va,b,c))

a = 0, b = 0, c = n σ1(φ0,0,n), σ1(φ0,0,−n) 2
a = 0, b = n, c = 0 σ1(φ0,n,0) 1

basis of σ2(Va,b,c) dim(σ2(Va,b,c))
a = 0, b = 0, c = n σ2(φ0,0,n) 1
a = 0, b = n, c = 0 σ2(φ0,n,0), σ2(φn,0,0) 2

5.2 A Dimension Formula
Using the explicit basis of HΛ

µ given at the beginning of this chapter, Miatello and
Rossetti ([MR01]) derived a formula for the dimension of the eigenspace corresponding
to the eigenvalue 4π2µ on a quotient of Rn by a Bieberbach group. A closer investigation
of the proof shows that the formula remains true for crystallographic groups, i.e., in the
setting of compact good orbifolds (cf. [MR02] Remark 2.6).
Theorem 5.1. Let G be a crystallographic group acting on Rn and let F be the point
group of G. Then the dimension of the eigenspace of ∆ on C∞(Rn/G) corresponding to
the eigenvalue 4π2µ is given by

dµ(G) := dimHG
µ = |F |−1 ∑

B∈F
eµ,B(G)

where
eµ,B(G) :=

∑
v∈Λ∗: ‖v‖2=µ

Bv=v

e2πi〈v,b〉, with b chosen such that BLb ∈ G.

We are now going to apply Theorem 5.1 in order to give a second proof of isospectrality
for the orbifolds O1, O2 from Chapter 4.
First, we observe that

eµ,I3(Gi) =
∑
v∈Λ∗
‖v‖2=µ

e2πi〈v,0〉 = #{v ∈ Λ∗; ‖v‖2 = µ} =: eµ,I3

depends only on the lattice Λ, i.e., it is the same for both Gi. Moreover e0,B(Gi) =
1 ∀B ∈ F and therefore d0(Gi) = 1

4 · 4 = 1, as also follows directly from Theorem 3.4.
Now let µ > 0. Then the only v ∈ R3 with ‖v‖2 = µ which are fixed by any element

of F1 \ {I3} = {τ, τ 2, τ 3} are (0, 0,±√µ). As for F2, observe that for i = 1, 2, 3 the only
two v ∈ R3 with ‖v‖2 = µ and χiv = v are given by v = ±√µei, where ei denotes the
i-th standard unit vector.
We now distinguish the following three cases.
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1st case √µ 6∈ 1
2N: In this case the considerations above show that there are no

vectors of length √µ in Λ∗ which are fixed by a non-trivial element of F1 or F2, i.e.,
eµ,B(Gi) = 0 ∀B ∈ Fi \ {I3} and therefore dµ(G1) = 1

4eµ,I3 = dµ(G2).

2nd case √µ ∈ N:

eµ,τ i(G1) = exp(2πi〈(0, 0,√µ), 0〉) + exp(2πi〈(0, 0,−√µ), 0〉) = 2 for i ∈ {1, 2, 3},

i.e., dµ(G1) = 1
4(eµ,I3 + 6). As for O2, we have

eµ,χ1(G2) = exp(2πi〈(√µ, 0, 0), (1, 0, 0)〉) + exp(2πi〈(−√µ, 0, 0), (1, 0, 0)〉) = 2
eµ,χ2(G2) = exp(2πi〈(0,√µ, 0), (0, 0, 0)〉) + exp(2πi〈(0,−√µ, 0), (0, 0, 0)〉) = 2
eµ,χ3(G2) = exp(2πi〈(0, 0,√µ), (−1, 0, 0)〉) + exp(2πi〈(0, 0,−√µ), (−1, 0, 0)〉) = 2

and therefore
dµ(G2) = 1

4(eµ,I3 + 6) = dµ(G1).

3rd case: √µ ∈ N0 + 1
2 : eµ,τ i(G1) = 0 for all i ∈ {1, 2, 3}, since (0, 0,±√µ) /∈ Λ∗.

Thus dµ(G1) = 1
4eµ,I3 . As for O2, we calculate:

eµ,χ1(G2) = exp(2πi〈(√µ, 0, 0), (1, 0, 0)〉) + exp(2πi〈(−√µ, 0, 0), (1, 0, 0)〉) = −2
eµ,χ2(G2) = exp(2πi〈(0,√µ, 0), (0, 0, 0)〉) + exp(2πi〈(0,−√µ, 0), (0, 0, 0)〉) = 2
eµ,χ3(G2) = 0, since (0, 0,±√µ) /∈ Λ∗

Therefore dµ(G2) = 1
4eµ,I3 = dµ(G1) in this case. All in all we have dµ(G1) = dµ(G2) for

every µ > 0, i.e., O1 and O2 are (0-)isospectral.
Remark. Note that alternatively we also could have used Theorem 5.1 in connection with
Lemma 3.9 regarding the spectrum of a product orbifold to determine the spectrum of
O1. Moreover, the same lemma (in connection with the remark after Definition 2.22)
gives a simple method to construct isospectral pairs of higher-dimensional orbifolds with
isotropy groups of different orders.
We are now going to show that, however, O1 and O2 are not isospectral on 1-forms.

In fact, [MR01] also contains a formula for the dimension of the eigenspaces for the
Laplace-Beltrami operator acting on k-forms. Let G be a crystallographic group acting
on Rn. For k ∈ N and µ ∈ [0,∞) set Hk,µ = {ω ∈ Ωk(Rn); ∆ω = 4π2µω} and

HG
k,µ = {ω ∈ Hk,µ; g∗ω = ω ∀g ∈ G}

Let τk : O(n) → End(Λk(Rn)) be the canonical representation of O(n) on the finite-
dimensional space Λk(Rn) given by

τk(B)ω[X1, . . . , Xk] = (B−1)∗ω(X1, . . . , Xk) = ω[B−1X1, . . . , B
−1Xk]
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5 Verification of Isospectrality

and write trk(B) := tr τk(B). As a generalization of Theorem 5.1, the following formula
holds, whose purely algebraic proof in [MR01] for Bieberbach groups again carries over
to good orbifolds (as remarked in [MR02]).

Theorem 5.2. Let G be a crystallographic group and let F be the point group of G.
Then the dimension of the eigenspace of the Laplace-Beltrami operator on Ωk(Rn/G)
corresponding to the eigenvalue 4π2µ is given by

dk,µ(G) := dimHG
k,µ = |F |−1 ∑

B∈F
trk(B)eµ,B(G),

where eµ,B(G) is defined as in Theorem 5.1.

The coefficients τk(B) can easily be read off from the characteristic polynomial of B:
Let A = (aij)ni,j=1 be an arbitrary n × n-matrix. For a multi-index I = {i1 < . . . < ik}
in {1, . . . , n} let AI denote the k × k-matrix (aiαiβ)kα,β=1. Recall that the coefficients of
the characteristic polynomial

det(λIn − A) =
n∑
k=0

skλ
n−k

are given by sk = (−1)k∑I det(AI), where the sum runs over all multi-indices I of order
k in {1, . . . , n}. Moreover, a simple calculation shows

A∗(dxi1 ∧ . . . ∧ dxik) (ei1 , . . . , eik) = det(AI),

hence
tr(A∗|Λk(Rn)) =

∑
I

det(AI) = (−1)ksk

or
det(λIn − A) =

n∑
k=0

(−1)k tr(A∗|Λk(Rn))λn−k.

For B ∈ O(n) we finally have

det(λIn −B) = det(λIn −Bt) = det(λIn −B−1) =
n∑
k=0

(−1)k tr((B−1)∗|Λk(Rn))λn−k

=
n∑
k=0

(−1)k trk(B)λn−k

In particular, tr0(B) = 1 and tr1(B) = trB.

In order to apply the theorem above to our three-dimensional examples, observe that

tr(τ) = 1, tr(τ 2) = −1, tr(τ 3) = 1
tr(χ1) = tr(χ2) = tr(χ3) = −1.
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To show that O1 and O2 are not isospectral on 1-forms, we choose µ such that√µ ∈ N.
Using the results for eµ,B(Gi) from the second case above, we obtain

d1,µ(G1) = 1
4(3eµ,I3 + 2− 2 + 2) = 3

4eµ,I3 + 1
2

d1,µ(G2) = 1
4(3eµ,I3 − 2− 2− 2) = 3

4eµ,I3 −
3
2 = d1,µ(G1)− 2.

Hence, O1 and O2 are not 1-isospectral. Since both our point groups Fi lie in SO(3)
and, as one easily shows, trk(B) = det(B) trn−k(B), we have dk,µ(Gi) = dn−k,µ(Gi); i.e.,
O1 and O2 are 0- and 3-isospectral, but neither 1- nor 2-isospectral.

5.3 The Heat Kernel
Another way to verify the isospectrality of compact good Riemannian orbifolds is the
use of the so-called heat kernel.

Definition 5.3. Let O be an oriented Riemannian orbifold. A smooth function K :
(0,∞)×O ×O → (0,∞) is called a heat kernel (or a fundamental solution of the heat
equation) if it has the following properties:

(K1) ( ∂
∂t

+ ∆x)K(t, x, y) = 0, where ∆x is the Laplacian acting on the second variable.

(K2) limt→0+
∫
OK(t, x, y)f(y)dy = f(x) for every smooth function f with compact sup-

port on O.

Remark. For more on the heat kernel on manifolds see [Cha84].

Theorem 5.4 ([Don79]). Let M be a connected Riemannian manifold and let G be a
subgroup of the isometry group Isom(M) acting properly discontinuously on M such that
M/G is compact. Then there is a unique heat kernel K on the Riemannian manifold M
and a unique heat kernel K̄ on the Riemannian orbifold M/G. Moreover, for t > 0 and
x, y ∈ O one has

K̄(t, x, y) =
∑
g∈G

K(t, x̃, gỹ),

where x̃, ỹ are preimages of x, y under the projection M → M/G. The convergence of
the sum ist uniform on each subset of the form [t1, t2]×M ×M .

Remark. Note that the sum on the right hand side is well-defined because for all h, k ∈ G
we have K(t, hx̃, gkỹ) = K(t, x̃, h−1gkỹ) and g 7→ h−1gk is a bijection of G.
The relation between the eigenfunctions of the Laplacian and the heat kernel K̄ on

a compact good orbifold M/G is now contained in the following theorem (cf. Theorem
3.4).
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5 Verification of Isospectrality

Theorem 5.5 ([Don79]). Let M/G be a compact good Riemannian orbifold with heat
kernel K and spec(O) = (0 = λ0 < λ1 6 λ2 6 . . .), and let {φi}i>0 ⊂ C∞(O) be an
orthonormal basis of L2(O) such that ∆φi = λiφi. Then

K(t, x, y) =
∑
i>0

e−λitφi(x)φi(y),

∑
i>0

e−tλi =
∫
M/G

K(t, x, x) dx.

We set trKt =
∫
M/GK(t, x, x) dx, the trace of the heat kernel on M/G. The following

corollary allows us to verify isospectrality by calculating the respective heat kernel traces.

Corollary 5.6. Two compact good orbifolds are isospectral if and only if their heat traces
coincide.

Proof. Let M/G be a compact good orbifold. By Theorem 5.5, the spectrum λi deter-
mines the heat trace trKt on M/G. Conversely, trKt determines the spectrum: We
know λ0 = 0. Inductively, assume that λ0, . . . , λk have been found. Then λk+1 is the
largest value λ such that

lim
t→∞

trKt −
∑k
i=0 e

−λit

e−λt

is finite.

We are now going to apply the preceding statements in order to give a third proof of
isospectrality for O1, O2. It is well-known that the function

H(t, x, y) = (4πt)−3/2e−|x−y|
2/4t

is the heat kernel on R3. LetK denote the heat kernel on the torus TΛ = R3/Λ. Theorem
5.4 gives

K(t, x, y) = (4πt)− 3
2
∑
λ∈Λ

e−|x−(y+λ)|2/4t

(where we use the same letter for a point in R3 and its image in TΛ). Let Ki denote the
heat kernel on the orbifold Oi = R3/Gi. Then, again by Theorem 5.4, if x̃ denotes the
preimage of x ∈ Oi in TΛ, and τ i, ρi denote the isometries of TΛ induced by τ i, ρi:

tr(K1
t ) =

∫
O1
K1(t, x, x) dx =

∫
O1

3∑
i=0

K(t, x̃, τ ix̃) dx =
3∑
i=0

∫
O1
K(t, x̃, τ ix̃) dx

tr(K2
t ) =

∫
O2
K2(t, x, x) dx =

∫
O2

3∑
i=0

K(t, x̃, ρix̃) dx =
3∑
i=0

∫
O2
K(t, x̃, ρix̃) dx

The last expression in each line makes sense here because O1, O2 happen to be quo-
tients of TΛ by abelian groups (of order four). Hence, not only x 7→ ∑3

i=0K(t, x̃, τ ix̃)
and x 7→ ∑3

i=0K(t, x̃, ρix̃) are well-defined functions on O1, resp. O2, but already the
individual terms in the sum are well-defined.
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5 Verification of Isospectrality

By our remark under Definition 2.25 concerning integration on very good orbifolds,
the equations above imply

tr(K1
t ) = 1

4

3∑
i=0

∫
TΛ
K(t, x, τ ix)dx (5.3)

tr(K2
t ) = 1

4

3∑
i=0

∫
TΛ
K(t, x, ρix)dx (5.4)

In order to compute the latter integrals, we apply Theorem 5.4 to the covering R3 →
R3/Λ = TΛ. Since there won’t be any more integrals over Oi, we return to the use of
the letter x for points in TΛ or in R3.

The heat kernel trace on O1

First note that ∫
TΛ
K(t, x, x) dx =

∫
[−1,1]2×[0,1]

∑
λ∈Λ

H(t, x, x+ λ)dx

= (4πt)−3/2
∫

[−1,1]2×[0,1]

∑
λ∈Λ

e−|λ|
2/4tdx

= (4πt)−3/2 · 4
∑
λ∈Λ

e−|λ|
2/4t.

For λ = (2m1, 2m2,m3) ∈ Λ = 2Z× 2Z× Z we calculate:

|x− (τx+ λ)|2 = (x1 + x2 − 2m1)2 + (x2 − x1 − 2m2)2 +m2
3

|x− (τ 2x+ λ)|2 = (2x1 − 2m1)2 + (2x2 − 2m2)2 +m2
3

|x− (τ 3x+ λ)|2 = (x1 − x2 − 2m1)2 + (x2 + x1 − 2m2)2 +m2
3

Thus

∫
TΛ
K(t, x, τx) dx =

∫
[−1,1]2×[0,1]

∑
λ∈Λ

H(t, x, τx+ λ) dx

= (4πt)−3/2 ∑
m1,m2,m3∈Z

∫
[−1,1]2×[0,1]

e[(−(x1+x2−2m1)2−(x2−x1−2m2)2−m2
3)/4t] dx

= (4πt)−3/2A
∑
m3∈Z

e−m
2
3/4t

with A := ∑
m1,m2∈Z

∫ 1
−1
∫ 1
−1 exp [(−(x1 + x2 − 2m1)2 − (x2 − x1 − 2m2)2)/4t] dx1dx2.

Note that interchanging summation and integration was allowed by uniform convergence
(see Theorem 5.4).
To obtain A, we observe, using uniform convergence and rearranging sums over posi-
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5 Verification of Isospectrality

tive terms:
∑
m1∈Z

∑
m2∈Z

2|m1−m2

∫ 1

−1

∫ 1

−1
exp

[
(−(x1 + x2 − 2m1)2 − (x2 − x1 − 2m2)2)/4t

]
dx1 dx2

=
∑
m1∈Z

∑
l∈Z

∫ 1

−1

∫ 1

−1
exp[(−(x1 + (x2 − 2m1))2 − ((x2 − 2m1)− x1 − 4l)2)/4t]dx2dx1

=
∑
l∈Z

∫ 1

−1

∫ ∞
−∞

exp
[
(−(x1 + x2)2 − (x2 − x1 − 4l)2)/4t

]
dx2 dx1

=
∑
l∈Z

∫ 1

−1

∫ ∞
−∞

exp[(−((x1 + 2l) + (x2 − 2l))2 − ((x2 − 2l)− (x1 + 2l))2)/4t]dx2dx1

=
∑
l∈Z

∫ 1

−1

∫ ∞
−∞

exp
[
(−((x1 + 2l) + x2)2 − (x2 − (x1 + 2l))2)/4t

]
dx2 dx1

=
∫ ∞
−∞

∫ ∞
−∞

exp
[
(−(x1 + x2)2 − (x2 − x1)2)/4t

]
dx2 dx1

=
∫ ∞
−∞

∫ ∞
−∞

exp
[
(−x2

1 − x2
2)/2t

]
dx2 dx1

=
∫ ∞
−∞

e−x
2
1/2t dx1

∫ ∞
−∞

e−x
2
2/2t dx2

=
√

2πt ·
√

2πt = 2πt

Analogously, the sum over m1 ∈ Z, m2 ∈ Z with 2|m1 −m2 + 1 also equals 2πt, hence
A = 4πt and ∫

TΛ
K(t, x, τ̄x) dx = (4πt)−3/24πt

∑
m3∈Z

e−m
2
3/4t.

Comparing the terms for |x− (τ 3x+ λ)|2 and |x− (τx+ λ)|2 and interchanging the role
of m1 and m2 in the calculation above, we observe that∫

TΛ
K(t, x, τ̄ 3x) dx =

∫
TΛ
K(t, x, τ̄x) dx = (4πt)−3/24πt

∑
m∈Z

e−m
2/4t.

Moreover,∫
TΛ
K(t, x, τ 2x) dx =

∫
[−1,1]2×[0,1]

∑
λ∈Λ

H(t, x, τ 2x+ λ) dx

= (4πt)−3/2 ∑
m1,m2,m3∈Z

∫
[−1,1]2×[0,1]

exp[(−(2x1 − 2m1)2 − (2x2 − 2m2)2 −m2
3)/4t] dx

= (4πt)−3/2 ∑
m1∈Z

∫ 1

−1
e−(x1−m1)2/t dx1︸ ︷︷ ︸

2
√
πt

∑
m2∈Z

∫ 1

−1
e−(x2−m2)2/t dx2︸ ︷︷ ︸

2
√
πt

∑
m3∈Z

e−m
2
3/4t

= (4πt)−3/24πt
∑
m∈Z

e−m
2/4t.
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5 Verification of Isospectrality

Plugging the four terms for
∫
TΛ
K(t, x, τ ix) dx, i = 0, 1, 2, 3, into (5.3), we finally obtain

tr(K1
t ) = (4πt)−3/2

∑
λ∈Λ

e−|λ|
2/4t + 3πt

∑
m∈Z

e−m
2/4t

 .
The heat kernel trace on O2

Since all the χi are diagonal, the analogous calculations for O2 are a little easier: For
λ = (2m1, 2m2,m3) ∈ Λ = 2Z× 2Z× Z we have

|x− (ρ1x+ λ)|2 = (2m1 + 1)2 + (2x2 − 2m2)2 + (2x3 −m3)2

|x− (ρ2x+ λ)|2 = (2x1 − 2m1)2 + (2m2)2 + (2x3 −m3)2

|x− (ρ3x+ λ)|2 = (2x1 − 2m1 − 1)2 + (2x2 − 2m2)2 +m2
3.

Thus∫
TΛ
K(t, x, ρ1x) dx =

∫
[−1,1]2×[0,1]

∑
λ∈Λ

H(t, x, ρ1x+ λ) dx

= (4πt)−3/2 ∑
m1,m2,m3∈Z

∫
[−1,1]2×[0,1]

e[(−(2m1+1)2−(2x2−2m2)2−(2x3−m3)2)/4t] dx

= (4πt)−3/2 · 2
∑
m1∈Z

e−(2m1+1)2/4t ∑
m2∈Z

∫ 1

−1
e−(x2−m2)2/t dx2︸ ︷︷ ︸

2
√
πt

∑
m3∈Z

∫ 1

0
e−(x3−

m3
2 )2/t dx3︸ ︷︷ ︸

2
√
πt

= (4πt)−3/28πt
∑
m∈Z

e−(2m+1)2/4t,

∫
TΛ
K(t, x, ρ2x) dx =

∫
[−1,1]2×[0,1]

∑
λ∈Λ

H(t, x, ρ2x+ λ) dx

= (4πt)−3/2 ∑
m1,m2,m3∈Z

∫
[−1,1]2×[0,1]

e[(−(2x1−2m1)2−(2m2)2−(2x3−m3)2)/4t] dx

= (4πt)−3/2 ∑
m1∈Z

∫ 1

−1
e−(x1−m1)2/t dx1︸ ︷︷ ︸

2
√
πt

·2
∑
m2∈Z

e−(2m2)2/4t ∑
m3∈Z

∫ 1

0
e−(x3−

m3
2 )2/t dx3︸ ︷︷ ︸

2
√
πt

= (4πt)−3/28πt
∑
m∈Z

e−(2m)2/4t
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5 Verification of Isospectrality

and ∫
TΛ
K(t, x, ρ3x) dx =

∫
[−1,1]2×[0,1]

∑
λ∈Λ

H(t, x, ρ3x+ λ) dx

= (4πt)−3/2 ∑
m1,m2,m3∈Z

∫
[−1,1]2×[0,1]

e[(−(2x1−2m1−1)2−(2x2−2m2)2−m2
3)/4t] dx

= (4πt)−3/2 ∑
m1∈Z

∫ 1

−1
e−(x1−m1−1/2)2/t dx1︸ ︷︷ ︸

2
√
πt

∑
m2∈Z

∫ 1

−1
e−(x2−m2)2/t

︸ ︷︷ ︸
2
√
πt

∑
m3∈Z

e−m
2
3/4t

= (4πt)−3/24πt
∑
m∈Z

e−m
2/4t.

Plugging these three terms and the one for
∫
TΛ
K(t, x, x) dx above into (5.4), we obtain

tr(K2
t ) = (4πt)−3/2

∑
λ∈Λ

e−|λ|
2/4t + 2πt

∑
m∈Z

e−(2m+1)2/4t + 2πt
∑
m∈Z

e−(2m)2/4t

+ πt
∑
m∈Z

e−m
2/4t


= (4πt)−3/2

∑
λ∈Λ

e−|λ|
2/4t + 3πt

∑
m∈Z

e−m
2/4t

.
Hence, tr(K1

t ) = tr(K2
t ) and the two orbifolds O1 and O2 are 0-isospectral by Corollary

5.6.
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6 More Isospectral Flat Orbifolds
Although the following examples are not interesting from the point of view of the ex-
istence of isospectral orbifolds with different isotropy orders, we give two more pairs of
compact flat isospectral orbifolds of dimension three. The first example resembles our
main example from the two preceding chapters. Although its construction is consider-
ably simpler, its maximal isotropy groups are again not isomorphic. Our second pair
is easily seen to be k-isospectral for all k > 0, and we will show that the two orbifolds
are indeed “Sunada-isospectral” (in a sense to be made precise in Section 6.2). Note
that in all our figures we again omit the identification of the top and bottom side by the
respective vertical translation.

6.1 Two Orbifolds with Non-isomorphic Maximal
Isotropy Groups

Let Λ = 2Z× 2Z× 2Z and

τ =

0 −1 0
1 0 0
0 0 1

 .
Similarly as before,

G1 := {τ iLλ; i = 0, 1, 2, 3, λ ∈ Λ}

is a crystallographic group. Set O1 := R3/G1.
It is easily seen that [0, 1]× [0, 1]× [0, 2] is a fundamental domain for the action of G1

on R3. The top and bottom side are identified by the canonical translation L2e3 , and
the rest of the boundary is identified as indicated in Figure 6.1.
The isotropy groups on O1 are the same as those given in section 4.2.1; i.e., the sin-

gular stratum consists of two copies of S1 with isotropy Z4 and one copy of S1 with
isotropy Z2 (where each of these copies of S1 now has length 2).
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6 More Isospectral Flat Orbifolds

x1 x2

x3

Figure 6.1: The underlying space of O1 as a quotient of [0, 1]× [0, 1]× [0, 2]

Next set

ρ0 = I3

ρ1 =

1 0 0
0 −1 0
0 0 −1



ρ2 =

−1 0 0
0 1 0
0 0 −1



ρ3 =

−1 0 0
0 −1 0
0 0 1

 ,
and note that

G2 := {ρiLλ; i = 0, 1, 2, 3, λ ∈ Λ}

also is a crystallographic group. Then set O2 := R3/G2.
A fundamental domain for the action of G2 on R3 is given by [0, 1]× [0, 1]× [0, 2]. To

see this, just note that the following restrictions of transformations in G2 are bijections
(and that there are no non-trivial elements in G2 identifying points within (0, 1)×(0, 1)×
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6 More Isospectral Flat Orbifolds

x1 x2

x3

Figure 6.2: The underlying space of O2 as a quotient of [0, 1]× [0, 1]× [0, 2]

(0, 2)):

ρ1L(0,−2,−2) : [0, 1]× [1, 2]× [0, 2]→ [0, 1]× [0, 1]× [0, 2]
ρ2L(−2,0,−2) : [1, 2]× [0, 1]× [0, 2]→ [0, 1]× [0, 1]× [0, 2]
ρ3L(−2,−2,0) : [1, 2]× [1, 2]× [0, 2]→ [0, 1]× [0, 1]× [0, 2]

Regarding the identifications on the boundary, note that the top and bottom side are
identified by the canonical translation L2e3 . The rest of the boundary is identified as
indicated in Figure 6.2, the corresponding transformations are given in the following
table.

F ∆ L P
ρ1L(0,−2,−2) ρ1L(0,0,−2) ρ2L(−2,0,−2) ρ2L(0,0,−2)

One easily verifies the following sets of fixed points of the given elements of G2:

ρ1L(0,λ2,λ3) : {(r,−λ2/2,−λ3/2); r ∈ R}
ρ2L(λ1,0,λ3) : {(−λ1/2, r,−λ3/2); r ∈ R}
ρ3L(λ1,λ2,0) : {(−λ1/2,−λ2/2, r); r ∈ R}

Since Λ = 2Z × 2Z × 2Z, the points with two coordinates in Z and one in R \ Z have
isotropy Z2, whereas those in Z×Z×Z have isotropy isomorphic to {I3, ρ1, ρ2, ρ3} ' Z2×
Z2, the Klein four-group. All other points have trivial isotropy. Taking the identifications
within [0, 1] × [0, 1] × [0, 2] into account, we observe that the singular stratum on O2
consists of twelve open line segments with isotropy Z2 and eight points with isotropy
Z2 × Z2.
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6 More Isospectral Flat Orbifolds

Taking isospectrality (which we are going to verify below) for granted, we should point
out that O1, O2 is a pair of isospectral orbifolds whose maximal isotropy groups have
the same order but are not isomorphic (Z4 6' Z2×Z2). The first examples of such pairs
have been given in [SSW06]. Note that, moreover, in our example the sets of points of
maximal isotropy have different dimension as topological manifolds: dimension one in
the case of O1 but dimension zero in the case of O2.
Isospectrality is easily verified using Theorem 5.1: We have Λ∗ = 1

2Z×
1
2Z×

1
2Z. Let

F1 = {I3, τ, τ
2, τ 3}, F2 = {I3, ρ1, ρ2, ρ3}

denote the point groups of G1 and G2. Note that they are the same as for our example
from Chapters 4 and 5. Therefore the next paragraph is merely a repetition of our
reasoning in Section 5.2.
Since d0(G1) = 1 = d0(G2) (by Theorem 3.4 or Theorem 5.1), it suffices to consider

dµ(Gi) for µ > 0. The only v ∈ R3 with ‖v‖2 = µ which are fixed by any element of
F1 \ {I3} = {τ, τ 2, τ 3} are (0, 0,±√µ). As for F2, observe that for i = 1, 2, 3 the only
v ∈ R3 with ‖v‖2 = µ and ρiv = v are given by v = ±√µei, where ei denotes the i-th
standard unit vector. Next set

eµ,I3 := #{v ∈ Λ∗; ‖v‖2 = µ}.

We now distinguish the following two cases.

1st case √µ ∈ (0,∞) \ 1
2N: Since there are no vectors of length √µ in Λ∗ fixed by a

non-trivial element of F1 or F2, we have eµ,B(Gi) = 0 for every i and every B ∈ Fi \{I3}.
Thus

dµ(G1) = 1
4eµ,I3 = dµ(G2).

2nd case √µ ∈ 1
2N: The calculation of fixed points given above implies, for j ∈

{1, 2, 3},

eµ,τ j(G1) = exp(2πi〈(0, 0,√µ), (0, 0, 0)〉+ exp(2πi〈(0, 0,−√µ), (0, 0, 0)〉 = 2.

Similarly, eµ,ρj(G2) = 2 for j = 1, 2, 3 and therefore

dµ(G1) = 1
4(eµ,I3 + 6) = dµ(G2).

All in all, we deduce that O1 and O2 are 0-isospectral. However, an application of The-
orem 5.2 shows that they are not 1-isospectral.

Note that the formulas in Theorem 5.1 imply that we obtain the same spectrum if we
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6 More Isospectral Flat Orbifolds

replace O1 by O′1 := R3/G′1 with G′1 := {τ iLλ; i = 0, 1, 2, 3, λ ∈ Λ}, where

τ ′ =

0 −1 0
1 0 0
0 0 1

L(b1,b2,0)

with bi ∈ R. However, all the O′1 are isometric to O1 by Lemma 2.27: For v = 1
2(b1 +

b2, b2 − b1, 0) one easily verifies that (Lv)−1τ iLv = L−vτ
iLv = τ ′i.

Similarly, one could (without changing the spectrum) replace the ρi by

ρ′0 = I3

ρ′1 =

1 0 0
0 −1 0
0 0 −1

L(0,b2,b3),

ρ′2 =

−1 0 0
0 1 0
0 0 −1

L(b1,0,b3),

ρ′3 = ρ′1ρ
′
2 =

−1 0 0
0 −1 0
0 0 1

L(b1,b2,0),

and set G′2 := {ρ′iLλ;λ ∈ Λ}. But again, observe that for w := 1
2(b1, b2, b3), we have

L−wρiLw = ρ′i, hence O2 and O′2 := R3/G′2 are isometric.

6.2 Two Sunada-isospectral Orbifolds
Consider the lattice Λ := Z× Z× 1√

2Z. Let

τ :=

 0 −1 0
−1 0 0
0 0 −1


and

ρ :=

−1 0 0
0 −1 0
0 0 1


Both matrices are involutions in SO(3), hence they are rotations by the angle π

around a line through the origin. Calculating the respective one-dimensional eigenspaces
associated with the eigenvalue 1, we observe that τ is a rotation by π around the 1-
dimensional space spanned by the vector (1,−1, 0), whereas ρ is a rotation by π around
the x3-axis.
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x1

x3

x2

Figure 6.3: The underlying space of O1

Since Λ is invariant under τ and ρ, it easily follows that

G1 := {τ jLλ; j = 0, 1, λ ∈ Λ}, G2 := {ρjLλ; j = 0, 1, λ ∈ Λ}

are groups, which are crystallographic by a reasoning similar to the one in Chapter 4.
In the following, we will show that the orbifolds Oi := R3/Gi are k-isospectral for all

k > 0.
It is not hard to see that a fundamental domain both of the actions of G1 and of G2

on R3 is given by the prism of height 1√
2 over the triangle with vertices (0, 0, 0), (1, 0, 0),

(0, 1, 0).
Following the same algorithm as in Chapter 4, we obtain the identifications for O1

given in Figure 6.3. Instead of giving the whole calculation (which would of course
automatically yield the singular points on O1), we only show which points are fixed
under non-trivial elements of G1. Since Lλ with λ ∈ Λ \ {0} has no fixed points, it
suffices to consider transformations of the form τLλ. But

τLλx = (−x2 − λ2,−x1 − λ1,−x3 − λ3),

which (since Λ = Z×Z× 1√
2) implies that x is fixed by a nontrivial element of G1 if and

only if x1+x2 ∈ Z and x3 ∈ 1
2
√

2Z. Each such point x is fixed by τL(−x1−x2,−x1−x2,−2x3) but
no other element of G1 \ {I3}. Taking the identifications within the given fundamental
domain into account, we deduce that the singular stratum of O1 consists of two copies
of S1 represented by the horizontal line segments {(t, 1 − t, 0); t ∈ [0, 1]} and {(t, 1 −
t, 1/(2

√
2)); t ∈ [0, 1]} of length

√
2 as depicted in Figure 6.3, and all singular points

have isotropy Z2.
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x1

x3

x2

Figure 6.4: The underlying space of O2

The orbifold O2 is the product of a so-called 4-pillow (here: quadratic with side
length 1/2) with R/( 1√

2Z). Its underlying space is given in Figure 6.4. Since ρLλx =
(−x1−λ1,−x2−λ2, x3+λ3), the fixed points under nontrivial elements of G2 are precisely
the points x ∈ R3 satisfying x1, x2 ∈ 1

2Z. Each such point x is fixed by τL(−2x1,−2x2,0) but
no other element of G2 \ {I3}. Taking the identifications within the given fundamental
domain (whose rigorous justification we again omit) into account, we observe that the
singular stratum of O2 consists of four copies of S1 represented by the vertical line
segments of length 1/

√
2 over the points (0, 0, 0), (0, 1/2, 0), (1/2, 0, 0), (1/2, 1/2, 0),

and all singular points have isotropy Z2.
The structure of the singular strata in connection with Lemma 2.21 implies that O1

and O2 are not diffeomorphic.
For the calculation of the spectrum note that τ and ρ do not involve translations,

hence
eµ,χi(Gi) = #{v ∈ Λ∗; χiv = v, ‖v‖2 = µ}

for χ1 = τ and χ2 = ρ in the notation of Theorem 5.1.

O1: If µ > 0, the only vectors in R3 of length √µ which are fixed by τ are(√
µ/2,−

√
µ/2, 0

)
and

(
−
√
µ/2,

√
µ/2, 0

)
. We have Λ∗ = Z × Z ×

√
2Z and there-

fore

eµ,τ (G1) =


1, µ = 0
2, √µ ∈

√
2N

0, otherwise
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O2: For µ > 0 the only vectors of length √µ fixed by ρ are (0, 0,±√µ) and therefore we
obtain the same values: eµ,ρ(G2) = eµ,τ (G1) ∀µ > 0. Since, moreover, the characteristic
polynomials of τ and ρ coincide, we have trk τ = trk ρ for all k, hence the orbifolds O1
and O2 are k-isospectral for all k > 0 by Theorem 5.2.

Sunada-Isospectrality
In a certain sense (cf. [Pes97]), most pairs of isospectral quotients of a fixed compact
Riemannian manifold by finite groups can be constructed using a general technique by
Sunada ([Sun85]), which has first been generalized to orbifolds in [Bér92]. A common
feature of isospectral manifolds or orbifolds arising from Sunada’s method is that they
are k-isospectral for all k. Thus one is led to suspect that our given pair O1, O2 might
also arise from that technique. In fact, this will turn out to be the case.
First, we are going to summarize the generalization of Sunada’s result to good orb-

ifolds. Let Γ be a finite group and for each g ∈ Γ let [g]Γ denote the conjugacy class of
g in Γ. Two subgroups Γ1,Γ2 of Γ are called almost conjugate if

#([g]Γ ∩ Γ1) = #([g]Γ ∩ Γ2) ∀g ∈ Γ.

This condition is easily seen to be equivalent to the existence of a bijection Φ : Γ1 → Γ2
such that every γ ∈ Γ1 is conjugate in Γ to Φ(γ) ∈ Γ2.

Theorem 6.1. Let M be a compact Riemannian manifold and let Γ1 and Γ2 be almost
conjugate in a finite subgroup Γ of Isom(M). Then speck(M/Γ1) = speck(M/Γ2) ∀k > 0.

Proof. Note that the eigenforms on M/Γi are given by the Γi-invariant eigenforms on
M . Then follow the same steps as in the manifold case (cf. [Gor00] or the original proof
in [Sun85]).

Remark. Of course, conjugate subgroups Γ1,Γ2 of Γ as in the theorem above are almost
conjugate. However, the resulting orbifold quotients M/Γ1, M/Γ2 would be isometric
by Lemma 2.27 and hence irrelevant for the construction of non-isometric isospectral
orbifods. Only the fact that there are almost conjugate pairs which are not conjugate
(see [Bro88] for some examples) makes the theorem above fruitful.

Definition 6.2. Let O1, O2 be compact Riemannian orbifolds. If there is a tuple
(M,Γ,Γ1,Γ2) satisfying the conditions in the theorem above such that there are isome-
tries O1 'M/Γ1 and O2 'M/Γ2, then O1 and O2 are called Sunada-isospectral.

Concerning our example, note that for Λ = Z×Z× 1√
2Z there is no finite subgroup Γ

of Isom(TΛ) such that the tuple (TΛ,Γ, 〈τ〉, 〈ρ〉) satisfies the conditions of the definition
above: If the two-element subgroups 〈τ〉, 〈ρ〉 of Isom(TΛ) were almost conjugate in Γ ⊂
Isom(TΛ), then they would automatically be conjugate in Isom(TΛ), and the orbifoldsO1,
O2 would be isometric by Lemma 2.27. However, we are now going to show that there
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is a certain torus TΛ′ covering O1 and O2 and a corresponding Sunada triple (Γ,Γ1,Γ2),
which will imply that O1 and O2 are Sunada-isospectral.
First, we will determine the isometry group of a general n-dimensional torus. Let Λ

be an arbitrary lattice in Rn, denote the corresponding torus by TΛ and write p : Rn →
Rn/Λ = TΛ for the quotient map. If ψ ∈ C∞(Rn,Rn) satisfies

p ◦ ψ ◦ Lλ = p ◦ ψ ∀λ ∈ Λ,

we denote the induced map in C∞(TΛ, TΛ) by ψ. Note that, given two such maps ψ1,
ψ2, we have ψ1 ◦ ψ2 = ψ1 ◦ ψ2.

Lemma 6.3. Let Λ = spanZ{v1, . . . , vn} be a lattice in Rn, and set

O(Λ) := {B ∈ O(n);BΛ ⊂ Λ}

and
P (v1, . . . , vn) :=

{
n∑
i=1

tivi; ti ∈ [0, 1)
}
.

Then O(Λ) is a finite group, and the isometry group on the torus is given by

Isom(TΛ) = {BLb; B ∈ O(Λ), b ∈ P (v1, . . . , vn)}.

Proof. The only non-trivial part of the proof that O(Λ) is a subgroup of O(n) is closeness
under inversion. For an arbitrary lattice Γ in Rn let sΓ denote the function

R+ 3 r 7→ #{γ ∈ Γ; ‖γ‖ = r} ∈ N0.

Note that each set on the right hand side is finite, since it is a discrete subset of the
compact sphere of radius r. Now let B ∈ O(Λ). By assumption, BΛ ⊂ Λ. Moreover,
B ∈ O(n) implies sBΛ = sΛ. Thus BΛ = Λ, in particular B−1Λ ⊂ Λ.
O(Λ) is finite by the following direct argument: For every i ∈ {1, . . . , n} the set
{γ ∈ Γ; ‖γ‖ = ‖vi‖} contains only a finite number of vectors. Since every element of
O(Λ) maps each vi to a vector of length ‖vi‖ and is uniquely determined by its values
on the basis vectors v1, . . . , vn, the group O(Λ) is finite.
Regarding the statement on the isometry group, first note that BLb as above indeed

induces a smooth map TΛ → TΛ: If λ ∈ Λ, then

p ◦BLb ◦ Lλ = p ◦BLλLb = p ◦ LBλBLb = p ◦BLb.

If we assume that B1, B2 ∈ O(Λ), b1, b2 ∈ P (v1, . . . , vn) and B1Lb1 = B2Lb2 , then

IdTΛ = B1Lb1(B2Lb2)−1 = B1Lb1−b2B
−1
2 = B1B

−1
2 LB2(b1−b2)

and therefore there is λ ∈ Λ such that B1B
−1
2 LB2(b1−b2) = Lλ, which implies B1 = B2

and B2(b1 − b2) ∈ Λ. Thus b1 − b2 ∈ Λ, which implies b1 = b2 by our choice of the bi. In
other words, the BLb in the lemma are pairwise distinct and form a set.
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⊃: Since BLb is an isometry, BLb is a local isometry. Its inverse is given by (BLb)−1,
i.e., it is an isometry on the torus.

⊂: Let f : TΛ → TΛ be an isometry. Let f̃ : Rn → Rn be a lift of f ◦ p via p. Then f̃
is an isometry on Rn, hence there is a unique B ∈ O(n) and a ∈ Rn such that f̃ = BLa.
If we denote the unique element of P (v1, . . . , vn) ∩ (a+ Λ) by b, then f = BLb.

Now we return to our example and set

Λ′ := spanZ


1

1
0

 ,
−1

1
0

 ,
 0

0√
2


 ⊂ Λ.

Since the three vectors lie in Λ and are linearly independent, Λ′ is a sublattice of Λ.
Moreover, one easily verifies that it is invariant under τ and ρ. To determine represen-
tatives of the abelian group Λ/Λ′ note that

1 −1 0
1 1 0
0 0

√
2


−1

=

 1/2 1/2 0
−1/2 1/2 0

0 0 1/
√

2

 .
Hence, if (k1, k2, k3/

√
2) with ki ∈ Z is an arbitrary element of Λ, then its coordinates

with respect to the basis of Λ′ given above are 1/2 1/2 0
−1/2 1/2 0

0 0 1/
√

2


 k1

k2
k3/
√

2

 =

(k1 + k2)/2
(k2 − k1)/2

k3/2

 .
By requiring that each of these coordinates lie in [0, 1), we obtain the following full set
of representatives of Λ/Λ′:

0
0
0

 ,
0

1
0

 ,
 0

1
1/
√

2

 ,
 0

0
1/
√

2


 .

Now set

A :=

−1/2 −1/2 1/
√

2
1/2 1/2 1/

√
2

1/
√

2 −1/
√

2 0

 .
It is easily verified that A lies in O(3) and leaves Λ′ invariant, hence A ∈ O(Λ′). More-
over, since the first two rows ofA span the eigenspace of τ corresponding to the eigenvalue
−1 and the last row is a fixed point of τ , we have the crucial relation

AτA−1 = AτAt = ρ.
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We consider the following subgroups of Isom(TΛ′):

Γ1 := {τ iLλ; i ∈ {0, 1}, λ ∈ Λ/Λ′},
Γ2 := {ρiLλ; i ∈ {0, 1}, λ ∈ Λ/Λ′}

Then we have the following isometries:

O1 ' TΛ′/Γ1

O2 ' TΛ′/Γ2.

As for the first isometry, we note that the covering TΛ′ → TΛ induces a map
f : TΛ′/Γ1 → TΛ/〈τ̄〉 which is bijective and seen to be a homeomorphism by ele-
mentary topology. The isometries lifting f as required in Definition 2.20 are given by
suitable restrictions of the Riemannian covering TΛ′ → TΛ. Hence TΛ′/Γ1 is isometric to
TΛ/〈τ̄〉 which itself is isometric to O1 = R3/G1 by a similar argument. The proof for O2
is analogous.
Let H denote the subgroup of O(Λ′) generated by τ, ρ and A. By Lemma 6.3, H is

finite. Then set p

Γ := {BLb; B ∈ H, b ∈ (Λ′/4)/Λ′} ⊂ Isom(TΛ′).

Note that Γ is a group, because Λ′/4 is invariant under H. Since H and (Λ′/4)/Λ′ are
finite, so is Γ. Moreover, Γ1 and Γ2 are subgroups of Γ. To see that they are almost
conjugate in Γ, we define a bijection Φ : Γ1 → Γ2 by Lλ 7→ Lλ for λ ∈ Λ/Λ′ and

τ 7→ ρ

τL(0,1,0) 7→ ρL(0,0,1/
√

2)

τL(0,0,1/
√

2) 7→ ρL(0,1,0)

τL(0,1,1/
√

2) 7→ ρL(0,1,1/
√

2).

The fact that every γ ∈ Γ1 is Γ-conjugate to Φ(γ) follows from the relation

AτLλA
−1 = ρLAλ

in connection with

L(−1/4,1/4,0)(ρLA(0,1,0)t)L(1/4,−1/4,0) = ρL(0,0,−1/
√

2) ∼ ρL(0,0,1/
√

2)

L(1/4,−1/4,0)(ρLA(0,0,1/
√

2)t)L(−1/4,1/4,0) = ρL(0,1,0)

ρLA(0,1,1/
√

2)t = ρL(0,1,−1/
√

2) ∼ ρL(0,1,1/
√

2),

where the sign ∼ between two elements of I(R3) means that they induce the same
element of Isom(TΛ′). Eventually, note that indeed A,L(1/4,−1/4,0) ∈ Γ.
We conclude that the tuple (TΛ′ ,Γ,Γ1,Γ2) satisfies the conditions of Theorem 6.1,

55



6 More Isospectral Flat Orbifolds

and the orbifolds O1 ' TΛ′/Γ1 and O2 ' TΛ′/Γ2 are Sunada-isospectral. Note that
the unique nontrivial pair of (0-)isospectral compact flat manifolds of dimension three
([RC06]) is not 1-isospectral ([DR04]) and therefore not Sunada-isospectral.
It remains an interesting open question whether there exists a pair of flat orbifolds

which are k-isospectral for all k and have maximal isotropy groups of different order.
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