The Peroxidase-like Activity of the Hemoglobin-Haptoglobin Complex

By H. Mattenheimer and E. C. Adams, Jr.

From the Departments of Biochemistry and Medicine, Presbyterian-St. Luke's Hospital, and Department of Biochemistry, University of Illinois, College of Medicine, Chicago, Illinois and Ames Research Laboratory, Ames Company, Division of Miles Laboratories, Elkhart, Indiana

(Eingegangen am 20. Juli 1967)

There is a conflict in the literature as to whether haptoglobin enhances or inhibits the peroxidase-like activity of hemoglobin. This conflict arises from: 1. the effect of the concentration of \(\text{H}_2\text{O}_2 \) on the activity, 2. the use of different parameters to express the activity.

In our own experience using \(\text{o}-\text{tolidine} \) as the donor, we found that, depending on the concentration of \(\text{H}_2\text{O}_2 \), activation or inhibition by haptoglobin was observed when the maximum color development was the parameter for the activity. With low concentrations of \(\text{H}_2\text{O}_2 \), activation and with higher concentrations of \(\text{H}_2\text{O}_2 \), inhibition was found. However, when the initial reaction rate was used to express the activity, there was always activation regardless of the peroxide concentration. The sequence of events when \(\text{H}_2\text{O}_2 \) is added to HgbO\(_2\) and HgbO\(_2\): Hp and Methgb and Methgb: Hp was followed by observing changes in the spectra. The results from the change of the spectra together with the reaction rate of curves of the peroxidase reactions lead us to the conclusion that the complex formed between hemoglobin and haptoglobin enhances the peroxidase-like activity of hemoglobin and that it also increases the susceptibility to the destruction by \(\text{H}_2\text{O}_2 \).

Widersprechende Resultate in der Literatur dafür, ob Haptoglobin die peroxydaseähnliche Aktivität von Hämoglobin beschleunigt oder hemmt, lassen sich auf zwei Ursachen zurückführen: 1. den Effekt der Konzentration von \(\text{H}_2\text{O}_2 \) auf die Enzymaktivität und 2. den Gebrauch verschiedener Parameter für die Enzymaktivität.

Wir fanden, daß mit \(\text{o}-\text{Tolidin} \) als Chromogen und der maximalen Farbentwicklung als Maß für die Aktivität, Aktivierung oder Hemmung durch Haptoglobin von der \(\text{H}_2\text{O}_2 \)-Konzentration abhängig. Bei niedrigen \(\text{H}_2\text{O}_2 \)-Konzentrationen beobachteten wir Aktivierung, bei höheren Hemmung. Wir registrierten die Enzymaktivität jedoch auf die Anfangsgeschwindigkeit der Reaktion bezogen, so fanden wir bei allen \(\text{H}_2\text{O}_2 \)-Konzentrationen eine Beschleunigung.

Reaktionsablauf bei der Einwirkung von \(\text{H}_2\text{O}_2 \) auf HgbO\(_2\), HgbO\(_2\): Hp, Methgb und Methgb: Hp wurde mit Registrierung der Spektren verfolgt. Diese Resultate, zusammen mit dem Verlauf der Zeit-Umsatzkurven der Enzymreaktion, deuten wir folgendermaßen: der Hämoglobin: Haptoglobin-Komplex hat eine höhere Peroxydaseaktivität als freies Hämoglobin, ist aber gleichzeitig einer schnelleren Zerstörung durch \(\text{H}_2\text{O}_2 \) ausgesetzt.

In a preceding paper (1) we discussed the difficulties one encounters in the determination of microgram-quantities of hemoglobin in urine. Urine contains potent inhibitors for the peroxidase-like activity of hemoglobin. By gel filtration with Sephadex hemoglobin can be separated from the inhibitors. Recovery of hemoglobin from Sephadex columns and separation from the inhibitors were greatly increased when hemoglobin was present as the hemoglobin: haptoglobin complex. When haptoglobin was added to a hemoglobin solution, we observed a sharp decrease of the peroxidase-like activity (max. O. D.) under the conditions of our peroxidase-assay-system, which contained \(\text{o}-\text{tolidine} \) as chromogen and 640 \(\text{mm}\text{H}_2\text{O}_2 \).

This observation was in contrast to the report by Connell and Smithies (2) who found that Hp enhances the oxidation of guaiacol by Hgb in the presence of \(\text{H}_2\text{O}_2 \). Initially we believed that this difference was based on the unlikeness of the chromogens - guaiacol and \(\text{o}-\text{tolidine} \). Our belief was supported by the results from Lupovitch and Zack (3), who found inhibition of the peroxidase-like activity of Hgb by Hp with \(\text{o}-\text{dianisidine} \) (like \(\text{o}-\text{tolidine} \) a derivate of benzidine) as chromogen. Only when we altered the assay conditions in our system, in order to study the initial velocity of the peroxidase reaction, did we observe that the activity (max. O. D.) of the Hgb: Hp-complex with one and the same chromogen can be higher or lower than the activity of free Hgb, depending inter alia on the concentration of \(\text{H}_2\text{O}_2 \). Recently Tarukoski (4) reported activation of peroxidase activity of Hgb by Hp, with \(\text{o}-\text{dianisidine} \) and ethylhydroperoxide.

The present report describes the effect of Hp and \(\text{H}_2\text{O}_2 \) on the peroxidase-like activity of Hgb.

1) No. 2 in the series: Quantitative Determination of Hemoglobin in Urine.
4) Abbreviations used in this work: \(\text{EtOOH} \): Ethylhydroperoxide; Hgb: hemoglobin; Hp: haptoglobin; \(\text{H}_2\text{O}_2 \): hydrogen peroxide; Methgb: methemoglobin; Methgb-OOH: Methemoglobin-hydroperoxide complex; HgbO\(_2\): Oxynhemoglobin; Hgb (hemoglobin) is used synonymously with HgbO\(_2\) (oxyhemoglobin). Only in the spectra is the abbreviation HgbO\(_2\) to avoid misunderstanding.
Methods

Reagents

Hemoglobin (Hgb): Hgb was prepared by lysing human erythrocytes with distilled H2O and standardized as cyanmethemoglobin. A Hgb stock solution with appr. 60 mg/ml was stable for at least four weeks when kept refrigerated. Each day appropriate dilutions were prepared by dilution with saline.

Haptoglobin (Hp): Human Hp was prepared for us by Drs. NITSCHMANN and STAUFFER (5), University of Berne, Switzerland. The preparation used in the present study contained appr. 50% Hp and was free of Hgb. Solutions were prepared in saline.

Hemoglobin-Haptoglobin Complex (Hgb: Hp): equal volumes of Hgb and Hp were mixed. Ratio Hgb/Hp at least 1:1 (calculated as pure Hp).

O-Tolidine-tartrate-buffer (reagent buffer): 43.6 mg o-tolidine-2HCl were dissolved in 100 ml 0.1M tartrate buffer pH 4.2 (correction of pH to 4.2 if necessary). For some experiments o-dianisidine was used. (O-Dianisidine-2HCl was dissolved in hot water, filtered over charcoal and recrystallized).

Hydrgenperoxidase: fresh dilutions were prepared each day from a 30% solution (standardized with permanganate titration).

Peroxidase Test

The maximum absorbance of the blue reaction product with o-tolidine is at 635 nm. Some experiments were done at this wavelength in a Zeiss PMQ II spectrophotometer, others were measured in an Eppendorf photometer with filter Hg 578 nm (mercury light source). Although the absorbance of the blue product is less at 578 nm by the factor of appr. 1.8, measurements with the Eppendorf photometer were preferred because of certain technical advantages of this instrument. All measurements were performed at 25°C in a thermostat cuvette holder. The maximum absorbance of the green reaction product with o-dianisidine is at 650 nm. Measurements were made at this wavelength in the Zeiss spectrophotometer and reaction curves were recorded. Reagent buffer 2.25 ml and 900 μl saline were mixed in a 10 mm cuvette; 100 μl Hgb or Hgb: Hp were added by pipetting the solution into the reagent mixture without touching the wall of the cuvette. After mixing the O. D. was adjusted to zero. The reaction was started by adding 250 μl H2O2 under vigorous stirring with a motor driven rotating mixer.

Final concentrations: o-Tolidine or o-dianisidine 1 mM, H2O2 varied in most experiments. Total volume of digest: 3.5 ml. Polyethylene constriction pipettes (6) were used for Hgb, Hgb: Hp and H2O2.

Parameters for the peroxidase activity: The "activity" has to be more clearly defined. Correctly the parameter should be the initial velocity of the enzyme reaction. But some investigators, including ourselves (1), have chosen the maximum of the color development as parameter. It is our experience that the initial velocity (ΔO. D./min.) of Hgb increased with increasing concentrations of H2O2 and reached a plateau at about 200 mM H2O2. Only at concentrations above 500 mM H2O2 did the activity slightly decline. The initial velocity (ΔO. D./min.) with Hgb increased with the H2O2 concentration; the curve rose rather sharply at concentrations of H2O2 up to about 40 mM, to become less steep and directly related to the concentration of H2O2.

Results

Variation of H2O2 Concentration

Hgb and Hgb: Hp with o-tolidine as chromogen

The concentration of H2O2 was varied from 10—500 mM (fig. 1) and from 0.85—34 mM (fig. 1a). The activity (max. O. D.) of Hgb increased with increasing concentrations of H2O2 and reached a plateau at about 200 mM H2O2. Only at concentrations above 500 mM H2O2 did the activity slightly decline. The initial velocity (ΔO. D./min.) with Hgb increased with the H2O2 concentration; the curve rose rather sharply at concentrations of H2O2 up to about 40 mM, to become less steep and directly related to the concentration of H2O2.

The activity (max. O. D.) of Hgb: Hp increased slightly with decreasing concentrations of H2O2 between 500 and 250 mM. With lower concentrations of H2O2 the increase became exponential (fig. 1) and reached a peak at approximately 4—5 mM H2O2. At a lower H2O2 concentration the activity declined sharply. The initial velocity (ΔO. D./min.) at all levels of H2O2 was very much higher than with free Hgb. The curve for Hgb: Hp was almost parallel to the curve with Hgb. The max. O. D. with Hgb: Hp was lower than with Hgb at high concentrations of H2O2 and higher with low concentrations of H2O2. At about 90 mM the two curves crossed (fig. 1) which means that the reaction catalyzed by free Hgb and Hgb: Hp reached the same max. O. D. Figure 3 shows the time-reaction curves for Hgb and Hgb: Hp with three concentrations of H2O2. Hgb accelerated the initial velocity at all levels of H2O2; but the curves bent sharply at high concentrations, while the lower the concentrations of H2O2, the more of the blue oxidation product of o-tolidine was formed. Free Hgb behaved conversely. Initial velocity and maximum color formation increased with the concentration of H2O2. At 90 mM H2O2 the reactions with Hgb and Hgb: Hp reached about the same max. O. D., but the initial velocity (ΔO. D./min.) of the reaction with Hgb: Hp was faster than that with free Hgb.

Hgb and Hgb: Hp with o-dianisidine as chromogen

Generally the same types of curves were obtained with o-dianisidine as with o-tolidine. Equal max. O. D. were obtained with Hgb and Hgb: Hp at about 130 mM H2O2 (fig. 2). The time reactions curves (fig. 4) also demonstrated the accelerating effect of Hp on the initial velocity of the reaction at all levels of H2O2. The green oxidation product of o-dianisidine was less stable than the blue oxidation product of o-tolidine and hence the curves declined at a faster rate.

Fig. 1
Variation of H_2O_2, 15—500 mM. Chromogen: o-tolidine. Hgb = 7 μg, Hp-preparation = 14 μg.
Peroxidase activity:
Hgb, max. O. D. o — o, Δ O. D./min. • — •
Hp, max. O. D. o — o, Δ O. D./min. • — •

Fig. 1a
Variation of H_2O_2, 85—34 mM. Chromogen: o-tolidine. Hgb = 3.8 μg, Hp-preparation = 8 μg.
Peroxidase activity:
Hgb: o — o max. O. D., • — • Δ O. D./min.

Fig. 2
Variation of H_2O_2, 32—640 mM. Chromogen: o-dianisidine.
Hgb = 7 μg, Hp-preparation = 14 μg. Tartrate buffer pH 4.2.
Peroxidase activity:
Hgb: o — o, max. O. D., • — • Δ O. D./min.
Hp: • — •, max. O. D.

Fig. 3
Time reaction curves with o-tolidine at various concentrations of H_2O_2:
A = 128 mM, B = 90 mM, C = 16 mM. Hgb = 6 μg, Hp-preparation = 12 μg.
Hgb o — o, Hp: • — •

Fig. 4
Time reaction curves with o-tolidine (tartrate buffer pH 4.2) at various concentrations of H_2O_2:
A = 32 mM, B = 64 mM, C = 128 mM, D = 640 mM. Hgb = 7 μg.
Hp-preparation = 14 μg.
Hgb o — o, Hp: • — •
Variation of o-tolidine
The effect of the concentration of o-tolidine was measured at three concentrations of \(\text{H}_2\text{O}_2 = 64, 213 \) and 640 mM (see fig. 5). At all concentrations of \(\text{H}_2\text{O}_2 \) we found an increase of the activity (max. O. D.) of both Hgb and Hgb : Hp. With 64 mM \(\text{H}_2\text{O}_2 \) the effect of concentration of o-tolidine on Hgb activity was only very slight, but the activity of Hgb : Hp increased sharply with concentration of o-tolidine. Due to the poor solubility of o-tolidine the use of final concentrations of o-tolidine greater than 1 mM is impractical.

The effect of the sequence of addition of the components of the reaction on the peroxidase activity (all experiments with 64 mM \(\text{H}_2\text{O}_2 \))

The sequence in which the Hgb-solution and the reagents were pipetted into the cuvette was of influence on the peroxidase activity. Whenever a Hgb-solution was added to the cuvette first, a very low activity was obtained. It was observed that Hgb sticks to the glass and forms there a blue precipitate as soon as the reaction has been started. Adhering to the glass was occasionally also observed when Hgb was pipetted into a solution in the cuvette by holding the tip of the pipette to the glass wall. Thereby, the activity was decreased. When Hgb-solutions are to be pipetted into another solution, touching the glass wall with the tip of the pipette should be avoided. When \(\text{H}_2\text{O}_2 \) was added to Hgb or Hgb : Hp prior to the chromogen, no color development occurred.

A standard procedure was adopted to pipette the solutions in the following order: chromogen-buffer, saline, Hgb, \(\text{H}_2\text{O}_2 \). When Hgb was added last, max. O. D. was only slightly higher, but the initial velocity (\(\Delta \) O. D./min.) was found to be almost double (tab. 1). This led to investigating the influence of the time Hgb was exposed to the o-tolidine-buffer, before the reaction was started with \(\text{H}_2\text{O}_2 \) (tab. 2).

From 20 sec. to 4 min. identical max. O. D. was found and even after 13 min. this value decreased only slightly. But a marked difference was observed in the initial velocity, which declined with time. This means that the initial velocity of the reaction has no relation to the maximum color development. With Hgb : Hp the sequence of addition had no significant influence on max. O. D., whether or not the solutions of Hgb and Hp were premixed or added separately (tab. 3). A definitely lower max. O. D. was found when Hgb : Hp was added last. \(\Delta \) O. D./min. varied somewhat but in no obvious relation to the sequence of addition.

Tab. 1
Variation of the sequence of adding o-tolidine (T), Hgb, saline (S) and \(\text{H}_2\text{O}_2 \). Hgb = 7 \(\mu \text{g}, \text{H}_2\text{O}_2 = 64 \text{mM} \)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>max. O. D. (\times 10^3)</th>
<th>(\Delta) O. D. (\times 10^3/\text{min.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T—Hgb—S—(\text{H}_2\text{O}_2)</td>
<td>300</td>
<td>180</td>
</tr>
<tr>
<td>T—S—Hgb—(\text{H}_2\text{O}_2)</td>
<td>300</td>
<td>180</td>
</tr>
<tr>
<td>T—S—(\text{H}_2\text{O}_2)—Hgb</td>
<td>325</td>
<td>350</td>
</tr>
</tbody>
</table>

Tab. 2
Variation of time before adding \(\text{H}_2\text{O}_2 \) to the mixture of o-tolidine (T), saline (S) and Hgb. Hgb = 7 \(\mu \text{g} \), \(\text{H}_2\text{O}_2 = 64 \text{mM} \)

<table>
<thead>
<tr>
<th>Time before adding (\text{H}_2\text{O}_2) to T—S—Hgb</th>
<th>max. O.D. (\times 10^3)</th>
<th>Time [min.] to reach max.</th>
<th>(\Delta) O. D. (\times 10^3/\text{min.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 sec.</td>
<td>300</td>
<td>4</td>
<td>340</td>
</tr>
<tr>
<td>1 min.</td>
<td>300</td>
<td>4</td>
<td>240</td>
</tr>
<tr>
<td>4 min.</td>
<td>300</td>
<td>9</td>
<td>125</td>
</tr>
<tr>
<td>7 min.</td>
<td>280</td>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>13 min.</td>
<td>280</td>
<td>10</td>
<td>125</td>
</tr>
</tbody>
</table>

Tab. 3
Variation of the sequence of adding Hgb, Hp, o-tolidine (T), saline (S), and \(\text{H}_2\text{O}_2 \). Hgb = 7 \(\mu \text{g}, \text{H}_2\text{O}_2 = 64 \text{mM} \)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>max. O. D. (\times 10^3)</th>
<th>(\Delta) O. D. (\times 10^3/\text{min.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T—S—Hgb—(\text{H}_2\text{O}_2) (control)</td>
<td>300</td>
<td>220</td>
</tr>
<tr>
<td>T—S—Hp—(\text{H}_2\text{O}_2) (control)</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>T—S—Hgb—Hp—(\text{H}_2\text{O}_2)</td>
<td>420</td>
<td>275</td>
</tr>
<tr>
<td>T—S—Hp—Hgb—(\text{H}_2\text{O}_2)</td>
<td>430</td>
<td>240</td>
</tr>
<tr>
<td>T—S—Hgb—(Hgb : Hp)</td>
<td>375</td>
<td>240</td>
</tr>
<tr>
<td>T—Hp—S—Hgb—(\text{H}_2\text{O}_2)</td>
<td>420</td>
<td>250</td>
</tr>
<tr>
<td>Hp—T—Hgb—S—(\text{H}_2\text{O}_2)</td>
<td>430</td>
<td>240</td>
</tr>
<tr>
<td>S—Hgb— Hp—T—(\text{H}_2\text{O}_2)</td>
<td>440</td>
<td>260</td>
</tr>
</tbody>
</table>

Fig. 5
Variation of o-tolidine at various concentrations of \(\text{H}_2\text{O}_2 \):
A = 640 mM, B = 213 mM, C = 64 mM.

Fig. 6
Variation of the amount of Hp. Concentration of \(\text{H}_2\text{O}_2 = 20 \text{mM} \).
Hgb = 5 \(\mu \text{g} \)
The saturation of Hgb with Hp
The molecular weight of Hp is approximately 85,000 and Hp binds to Hgb in a molar ratio of 1 : 1 (8). 1 μg Hgb binds accordingly 1.25 μg Hp. The Hp-preparation of NITSCHMANN und STAUFFER (5) was claimed by the authors to contain at least 50% Hp. This is expressed as Hp and not Hgb combining equivalent as other authors have used.

Our results confirm this activity. With H₂O₂ concentrations < 90 mM the peroxidase activity of Hgb (max. O. D. and Δ O. D./min.), increases until saturation is reached. At higher concentrations of H₂O₂ max. O. D. decreases until the saturation point is reached (1).

Spectra of Hgb and Hgb: Hp and their complexes with H₂O₂
The results are given in figures 8—14 and table 5. For the interpretation of the curves see the discussion.

Concentration of Hgb and Hgb: Hp versus peroxidase activity at various levels of H₂O₂ concentrations
A directly proportional relationship between the concentration of Hgb and the peroxidase activity was found at the investigated concentrations of H₂O₂ between 32 and 128 mM and as reported earlier at 640 mM (1). The relationship deviated from linearity with Hgb: Hp at H₂O₂ concentrations less than 128 mM.

At lower concentrations the peroxidase activity was unproportionately higher with larger amounts of Hgb: Hp (fig. 16).

Discussion
JAYLE (7) observed that Hp accelerated the Hgb catalyzed oxidation of iodide by ethylhydroperoxide, and developed a method for the determination of Hgb based on this principle. NYMAN (8) reinvestigated and extended this study and confirmed the activating effect of Hp. CONNELL and SMITHEES (2) described the same effect of Hp. At pH 4 free Hgb had almost no peroxidase activity with guaiacol as chromogen and H₂O₂ while the Hgb: Hp complex was active.

In contrast, LUPOVITCH and ZACK (3) reported that with o-dianisidine and H₂O₂ the activity of Hgb: Hp was less than the activity (max. O. D.) of free Hgb. These authors quoted NYMAN (8) incorrectly in stating that NYMAN found an inhibitory effect of Hp. TARUKOSKI (4) used o-dianisidine and Ethylhydroperoxide and found Hgb: Hp to be more active (max. O. D.) than free Hgb. The differences in the experimental conditions used by the two groups of investigators were the following: LUPOVITCH and ZACK employed H₂O₂ at 0°C and TARUKOSKI Ethylhydroperoxide at room temperature.

Our investigations demonstrated that the effect of Hp depended inter alia on the concentration of H₂O₂. Figure 1 shows two pairs of curves: the activity of free Hgb and of Hgb: Hp expressed as Δ O. D./min. and a max. O. D. Expressed as Δ O. D./min. Hp activated the peroxidase activity at all levels of H₂O₂, and the activity of both free Hgb and Hgb: Hp increased with in-

<table>
<thead>
<tr>
<th>R¹</th>
<th>time²</th>
<th>Δ O. D.</th>
<th>max. O. D.</th>
<th>spectrum³</th>
<th>time²</th>
<th>Δ O. D.</th>
<th>max. O. D.</th>
<th>spectrum³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>I</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>IV</td>
</tr>
<tr>
<td>500</td>
<td>3</td>
<td>19</td>
<td>53</td>
<td>II</td>
<td>12</td>
<td>24</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>17</td>
<td>50</td>
<td>III</td>
<td>12</td>
<td>24</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>VI</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>X</td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>VII</td>
<td>12</td>
<td>74</td>
<td>96</td>
<td>XI</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>44</td>
<td>96</td>
<td>IX</td>
<td>12</td>
<td>64</td>
<td>49</td>
<td>XIII</td>
</tr>
</tbody>
</table>

¹) R = [H₂O₂] /[Hgb].
²) Time of incubation at various R-values before aliquot was withdrawn for peroxidase activity measurement.
³) Curves I—III see fig. 11, IV and V fig. 12, VI—IX fig. 13, X—XII fig. 14.
creasing concentrations of \(\text{H}_2\text{O}_2 \). In contrast the curves for the maximum color development (max. O. D.) were entirely different.

With free Hgb max. O. D. increased with increasing amounts of \(\text{H}_2\text{O}_2 \) until a plateau was reached at about 200 mM. In the presence of Hp the max. O. D. increased with decreasing concentrations of \(\text{H}_2\text{O}_2 \) at first slightly and from about 100 mM \(\text{H}_2\text{O}_2 \) down almost exponentially (fig. 1). The curve reached a peak at approx. 4—5 mM \(\text{H}_2\text{O}_2 \) and then declined (fig. 1a). The curves for Hgb: Hp and Hgb crossed at about 90 mM \(\text{H}_2\text{O}_2 \).

Results following the same pattern were obtained with o-dianisidine as chromogen in tartrate buffer (fig. 2 and 4).

LUPOVITCH and ZACK (3) found inhibition of the peroxidase-like activity of free hemoglobin by Hp with o-dianisidine as chromogen at a level of \(\text{H}_2\text{O}_2 \) according to LUPOVITCH and ZACK (3).

Author 16—320 mM. Chromogen: o-dianisidine.

Variation of \(\text{H}_2\text{O}_2 \) concentration. The two curves crossed at about 64 mM \(\text{H}_2\text{O}_2 \) (fig. 7). It must be emphasized that the conditions for the experiment in figure 7 differed from those in figure 2, where tartrate buffer of pH 4.2 was used. Whether the difference in pH or the nature of the buffer caused the shift of the crossing point of the Hgb and Hgb: Hp curves from about 170 mM \(\text{H}_2\text{O}_2 \) to about 64 mM \(\text{H}_2\text{O}_2 \) has not been investigated. At 0°C the two curves do not cross in the range between 16 and 320 mM \(\text{H}_2\text{O}_2 \), but at 16 mM \(\text{H}_2\text{O}_2 \) the activity of Hgb: Hp was only 10% less than that of free Hgb. At 64 mM \(\text{H}_2\text{O}_2 \) the activity of Hgb: Hp was about 50% of that of Hgb, which agrees well with the results of LUPOVITCH and ZACK. The authors described a photochemical effect, that is an enhancement of the reaction with o-tolidine, by white light and almost complete inhibition of color development in the dark.

We were not able to confirm this. In our experiments there was no difference in max. O. D. or the shape of the reaction curves with free Hgb and Hgb: Hp whether we incubated in the light or in the dark. It should be mentioned that we used o-dianisidine-HCl which was filtered over charcoal and recrystallized. Maybe impurities in the chromogen caused the effect observed by LUPOVITCH and ZACK.

Table 4 summarizes the results cited from the literature in comparison to our investigation. We had found earlier (1) that the relationship between the concentration of Hgb and of Hgb: Hp and the peroxidase-like activity was directly proportional. While this held true for Hgb at \(\text{H}_2\text{O}_2 \) concentrations investigated down to 32 mM, the relationship deviated from linearity with Hgb: Hp at \(\text{H}_2\text{O}_2 \) concentrations below 128 mM (fig. 16). We are at present not able to give any explanation for the latter fact, but it becomes obvious that any quantitative determinations of the Hgb: Hp complex with o-tolidine and \(\text{H}_2\text{O}_2 \) concentrations smaller than 128 mM require calibration curves.

KEILIN and HARTREE (9) observed spectroscopically the formation of a complex between Methgb and \(\text{H}_2\text{O}_2 \), similar to the horseradish peroxidase-hydroperoxide complex III with characteristic bands (α) 589 and (β) 545 nm in solutions between pH 5.5 and 9.2. When the molar ratio (R) of \(\text{H}_2\text{O}_2 \) to heme was R = 1 the formation of Methgb-OOH was 80% complete. Between R = 2.5—5 the complex formation was 100%, but on

Table 4

<table>
<thead>
<tr>
<th>Author</th>
<th>Electron donor</th>
<th>Peroxide</th>
<th>Peroxide Concentrations mM</th>
<th>Buffer pH</th>
<th>Temp. °C</th>
<th>Effect of Hp</th>
<th>Figure Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNELL et al. (2)</td>
<td>Guaiacol</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>(< 10—10)</td>
<td>Acetate 4.2</td>
<td>30°</td>
<td>Activation</td>
<td></td>
</tr>
<tr>
<td>Nyman (8)</td>
<td>Iodide</td>
<td>(\text{EtOOH})</td>
<td>(< 10—250)</td>
<td>Acetate 4.2</td>
<td>25°</td>
<td>Activation</td>
<td></td>
</tr>
<tr>
<td>TARUKOSHI (4)</td>
<td>o-Dianisidine</td>
<td>(\text{EtOOH})</td>
<td>3</td>
<td>Acetate 4.4</td>
<td>32°</td>
<td>Activation</td>
<td></td>
</tr>
<tr>
<td>LUPOVITCH (3) et al.</td>
<td>o-Dianisidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>64</td>
<td>Phosphate 4.1</td>
<td>room</td>
<td>Activation</td>
<td></td>
</tr>
<tr>
<td>Present study</td>
<td>o-Dianisidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>16</td>
<td>Acetate 3.8</td>
<td>0°</td>
<td>Inhibition</td>
<td>7</td>
</tr>
<tr>
<td>Present study</td>
<td>o-Dianisidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>64</td>
<td>Acetate 3.8</td>
<td>0°</td>
<td>Inhibition</td>
<td>7</td>
</tr>
<tr>
<td>Present study</td>
<td>o-Dianisidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>64</td>
<td>Acetate 3.8</td>
<td>25°</td>
<td>Inhibition</td>
<td>7</td>
</tr>
<tr>
<td>Present study</td>
<td>o-Dianisidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>130</td>
<td>Tartrate 4.2</td>
<td>25°</td>
<td>Activation</td>
<td>2</td>
</tr>
<tr>
<td>Present study</td>
<td>o-Tolidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>90</td>
<td>Tartrate 4.2</td>
<td>25°</td>
<td>Activation</td>
<td>1</td>
</tr>
<tr>
<td>Present study</td>
<td>o-Tolidine</td>
<td>(\text{H}_2\text{O}_2)</td>
<td>90</td>
<td>Tartrate 4.2</td>
<td>25°</td>
<td>Activation</td>
<td>1</td>
</tr>
</tbody>
</table>

standing Methgb was liberated and underwent destruction. At R = 25 the band split into two peaks at 578 and 592 nm. With an even higher concentration of H$_2$O$_2$ (R = 250—500) the band at 592 nm became invisible and the spectrum was indistinguishable from that of HgbO$_2$.

From this the authors concluded that the reaction between Methgb and H$_2$O$_2$ is as follows: formation of Methgb-OOH which on further reaction with H$_2$O$_2$ decomposes H$_2$O$_2$ and H$_2$O. This reaction is accompanied by the reduction of Methgb to Hgb and the oxygenation of the latter to HgbO$_2$. The decomposition of H$_2$O$_2$ and the appearance of HgbO$_2$ are followed by the destruction of the heme nucleus, with disappearance of the absorption bands.

At pH 4.5 KEILIN and HARTREE (9) found that with R = 100 Methgb was gradually replaced by a relatively stable compound with a wide absorption band 590 nm. There was evidence that oxidation of the porphyrin ring occurred, but the authors did not mention whether they regard this compound as catalytically inactive. With a great excess on H$_2$O$_2$, R = 100, Methgb was rapidly replaced by HgbO$_2$.

We recorded the spectra of Methgb and HgbO$_2$ with and without Hp in the absence of and in the presence of various concentrations of H$_2$O$_2$ in tartrate buffer pH 4.2 (conditions of our assay system). Two sets of experiments were conducted. From the results in the first series we obtained information on the time course of the changes of the spectra in dependence on R. With R = 1 the spectrum of HgbO$_2$ (fig. 8) changed gradually. The peaks at 540 and 575 nm decreased. When R was increased after 14 min. to 2 the change was a little faster. The same experiment was repeated with HgbO$_2$-Hp (fig. 9), the changes occurred faster.

Methgb (fig. 10) had a broad maximum between 500 and 530 nm and a lower peak at 625 nm, and hinted peaks at 545 and 580 nm. Immediately after the addition of H$_2$O$_2$, R = 1, the peak at 625 nm diminished, and was very little further change within the next 5 min. At that time R was increased to 3 and no further change was observed during the next 10 min. The spectrum of Methgb : Hp was different (fig. 10) with a maximum and peak at 500 nm and shoulder between 560 and 580 nm and a distinct peak at 630 nm. Immediately after the addition of H$_2$O$_2$, R = 1, the spectrum began to change, and over the next 4 min. the peak at 500 decreased slightly and a peak at 580 nm became distinct, while the peak at 630 nm diminished. No further change was observed during the following 6 min., at which time H$_2$O$_2$ was increased to R = 2. The peak at 500 nm decreased further and the peak at 580 nm increased and shifted to 590 nm. On increasing R to 3 no further change occurred.

In the second series the spectra were recorded concomitantly with activity measurements (tab. 5). The change of the spectrum of HgbO$_2$ after addition of H$_2$O$_2$, R = 500, is shown in figure 11. The curves approached the spectrum of Methgb, but the peaks at 540 and 575 nm were still prominent. The activity after 3 min. (curve II) was 53\% of that before the addition of H$_2$O$_2$ and after 15 min. (curve III) was still 50\%. This means that about 50\% of the Hgb must have been “destroyed”, because Hgb and Methgb have the same peroxidase activity.

The spectrum of HgbO$_2$: Hp (fig. 12, curve IV) was identical with that of HgbO$_2$. Twelve minutes after the addition of H$_2$O$_2$, R = 500, a change similar to that with Hgb was seen in curve V, but the activity was only 38\% of that before the addition of H$_2$O$_2$. In the presence of Hp the “destruction” of Hgb was thus accelerated. The spectrum of Methgb (fig. 13, curve VI) changed on the addition of H$_2$O$_2$, R = 500, within 2 min. to an
almost straight declining curve (VII) between 500 and 650 nm. The activity was only 20% of that before the addition of \(\text{H}_2\text{O}_2 \). On addition of much less \(\text{H}_2\text{O}_2 \), \(R = 5 \), the shoulder between 500 and 530 nm rose and the flat peak at 630 nm disappeared already after 1 min. (curve VIII). The activity remained at 100%. This curve could represent the Methgb-OOH complex. After 12 min. the curve (IX) was slightly lower, the activity was still 96%.

The spectrum of Methgb : Hp (fig. 14, curve X) was different from that of Methgb, a peak at 580 nm became visible, the peak at 625 nm shifted to 630 nm and became very pronounced. One min. after the addition of \(\text{H}_2\text{O}_2 \), \(R = 500 \), the curve (XI) was comparable to the corresponding curve of Methgb (VIII), the activity was diminished to 9%. With \(\text{H}_2\text{O}_2 \), \(R = 5 \), (curve XII) the peak at 580 nm shifted to 590 nm after 1 min. and became the maximum of the curve. The activity was 86%. After 12 min. the curve (XIII) was lower and a peak appeared at 530 nm. The activity was 49%. As in the case of Hgb, Hp definitely accelerated the "destruction" of Methgb.

The spectrum of Methgb : Hp in tartrate buffer, pH 4.2 was very similar to the spectrum reported by Keilin and Hartree (9) for Methgb in phosphate buffer pH 6.8. We, therefore, recorded the spectra of Methgb and Methgb : Hp under these conditions (fig. 15) and found them to be identical spectra at pH 6.8. Methgb is known to dissociate to hematin and globin at pH < 5. Hp apparently prevents the dissociation and the spectrum of Methgb : Hp was the same or at least very similar to the spectrum of Methgb at pH > 5.

In the presence of \(\text{H}_2\text{O}_2 \), \(R = 5 \), the spectrum of Methgb : Hp (fig. 14) had a maximum at 590 nm and resembled the description given by Keilin and Hartree for Methgb with \(\text{H}_2\text{O}_2 \), \(R = 100 \). The compound in our experiment still had 49% of the peroxidase activity of Methgb : Hp.

We do not know yet if any of these spectra are characteristic for the complex of Methgb : Hp with \(\text{H}_2\text{O}_2 \). The only conclusion justified is that Methgb : Hp is much more susceptible to the changes which are brought about with free Methgb with much higher concentrations of \(\text{H}_2\text{O}_2 \). This most likely includes both the formation of the complex with \(\text{H}_2\text{O}_2 \) and the destruction of the enzyme.

Jayle (7) was the first to recognize that the enzymatic characteristics of Hgb : Hp resembled the characteristics of a true peroxidase better than did free Hgb. Robert...
and SERPICELLI (10) attributed the effect of Hp to the stabilization of Hgb, but the investigations of MORETTI and YON (11) showed unequivocally activation of the peroxidase activity of Hgb by complex formation with Hp. Our data provide evidence that Hp does not stabilize Hgb, but renders Hgb more susceptible to the effects of H_2O_2, both to the formation of the active complex with H_2O_2 and to the destruction by excess H_2O_2.

The results of the spectra together with the time reaction curves of the peroxidase activity measurement suggest the following mechanism: the oxidation of Hgb to Methgb and the formation of the Methgb-H_2O_2-complex is faster with Hgb : Hp than with free Hgb, but at the same time the destruction of the enzyme is accelerated when present as the Hp-complex. The curves in figure 3 can be interpreted in this manner:

16 mm H_2O_2: the Hgb : Hp curve had a much faster initial velocity and a higher max. O. D. than the Hgb curve, because of the increased velocity of the oxidation to Methgb and the formation of the complex with H_2O_2 in the presence of Hp.

128 mm H_2O_2: the initial reaction of Hgb : Hp was still faster than that of free Hgb, but the destruction of the enzyme was also accelerated so that the curve bends sharply and the max. O. D. was lower than that of the curve with free Hgb. In the latter reaction, the formation of the H_2O_2 complex was faster over a longer period of time than the destruction.

90 mm H_2O_2: the max. O. D. was equal with both free Hgb and Hgb : Hp, but the initial velocity of the latter was faster and max. O. D. was reached after 3—4 min. as compared to 7—8 min. with free Hgb. Finally the decline of the Hgb : Hp curve was faster than that of the Hgb curve because of the faster destruction of Hgb : Hp.

There was, of course, one fundamental difference in the experimental conditions between the spectra-experiments and the activity measurements. While in the former the ratio of H_2O_2 to the prosthetic groups was between 1 and 500, it was of the order of 1×10^4 in the latter. Why then is Hgb not completely inactivated on the addition of H_2O_2? We have found that when H_2O_2 was added to Hgb before the chromogen, no color development occurred. The chromogen as such must, therefore, have a protecting influence on the enzyme. With o-tolidine as chromogen a blue oxidation product is formed by peroxidases in the presence of hydroperoxides. The blue compound with an absorption maximum at 630 nm (tartrate buffer pH 4.2) was unstable under our experimental conditions with H_2O_2. After max. O. D. had been reached, the color was stable for about 8 min. and then faded and turned into a greenish yellow. With Hgb : Hp as enzyme, the blue color was even less stable and we believed for a while that Hp accelerated the oxidation of the blue first product to the second oxidation compound. But the following experiment proved that the second step of conversion is independent of a peroxidase reaction. At the point of maximum color development catalase was added to one of two parallel tests to destroy excess H_2O_2. Figure 17 demonstrates that the fading of the blue color was accelerated after the destruction of H_2O_2.

The catalase experiments suggest the following interpretations:

1. It can be concluded for certain that the oxidation of the blue oxidation product of o-tolidine is independent of H_2O_2.
2. One can conclude that the oxidation is non enzymatic because it occurs in the absence of the substrate (H_2O_2) of the enzyme (Hgb) unless a direct reaction between the chromogen and Hgb without an oxygen donor is postulated, but for which there is no evidence.
3. The faster development of the second oxidation product after H_2O_2 destruction suggests two alternative possibilities:
 a) Oxygen, developed by the catalase is the oxidizing agent.
 b) The slower decline of the reaction curve in the presence of H_2O_2 is caused by a continued production of the first oxidation product and an equilibrium exists at the peak of the curve between formation and further oxidation of the blue product. It should be recalled here that Hgb has some catalase effect, so that oxygen is produced from H_2O_2 for the second step of oxidation.
 c) A combined effect of a) and b).

The diminished stability of the blue oxidation product in the presence of Hgb : Hp is most likely due to the accelerated destruction of the enzyme, which leads to a shortened period of equilibrium between the enzymatic formation of the blue oxidation product and its further non enzymatic oxidation.

While most of the phenomena associated with the peroxidase like activity of Hgb and the Hgb-Hp complex as discussed in the first paper have been dealt with here, we have not described further the effects of sodium alginate. A third paper in this series on this effect and on the nature of the blue oxidation product is being prepared.

The authors wish to thank Mrs. HENNY DEBRUIN, Mrs. HELEN THACH and Miss LUDMILLA DEMIDOW MA for their skillful technical assistance.
Zur Bestimmung der „α-Hydroxybutyratdehydrogenaseaktivität“ im Serum

Von G. MÜLLER und M. HäUSLER

Aus der II. Medizinischen Klinik und Poliklinik der Martin-Luther-Universität Halle-Wittenberg (Direktor: Prof. Dr. K. Seige)

(Eingegangen am 30. Juni 1967)

Durch methodische und klinische Untersuchungen an 117 Probanden wird gezeigt, daß die Bestimmung der LDH-Aktivität im Serum mit α-Ketobutyrat bei optimalen Substratkonzentrationen der mit Pyruvat entspricht. Hierdurch wird eindeutig bestätigt, daß die HBDH-Aktivität im Serum der Wirkung der LDH zuzuordnen ist.

By methodical and clinical studies on 117 probands, it was shown that values for LDH activity, determined in serum with optimal concentrations of α-ketobutyrate, correspond to those determined with pyruvate. This confirms that the HBDH activity in serum can be attributed to the action of LDH.

Lactatdehydrogenase ist bekannt, daß sie aus vier Monomeren besteht, die durch Kombination der Untereinheiten H und M entstehen (1). Die LDH-Aktivität im Serum ist für Lebererkrankungen, Muskelerkrankungen, Herzinfarkte empfohlen, Erhöhungen werden jedoch auch bei Lebererkrankungen, Muskelerschwillungen, Leukämien, megaloblastischen Anämien, nephrotischem Syndrom, Lungenerkrankungen, Tumoren und anderen Erkrankungen beobachtet (5, 6, 7, 8).

Zur Methodik

Die LDH-Aktivität wurde nach WROBLEWSKI und LAPIDE (9, 10) mit Hilfe des optischen Tests bei 340 nm im 3 m/ Testansatz bestimmt. Die Pyruvatkonzentration betrug 0,3 mm. Die Messung der LDH-Aktivität erfolgte analog mit Natrium-α-ketobutyrat, das aus α-Ketobuttersäure hergestellt wurde.

Sulfonate zeigen besonders große Inhibitorwirkung auf die LDH. Das Herzmuskelisoenzyme wird durch Bindung von Hydro-xyazin-4-sulfonat am stärksten gehemmt (14). Oxalat besitzt eine ähnliche Wirkung (15).

References

Prof. H. Mattenheimer, M. D.
1753 West Congress Parkway
Chicago, Ill. 60612 / USA