Serum chitotriosidase enzyme activity in patients with Crimean-Congo hemorrhagic fever

Yasemin Gulcan Kurt1, Tuncer Cayci1, Pinar Ongurur2, E. Ozgur Akgul1, Halil Yaman1,*, Ibrahim Aydin1, Hurrem Bodur3, Turker Turker2, Ismail Kurt1, M. Aydin Cevik2 and M. Kemal Erbil1

1 Department of Medical Biochemistry, Gulhane Military Medical Academy, Ankara, Turkey
2 Department of Infectious Diseases and Clinical Microbiology, Ankara Numune Education and Research Hospital, Ankara, Turkey
3 Department of Public Health, Gulhane Military Medical Academy, Ankara, Turkey

Abstract

Background: Crimean-Congo hemorrhagic fever (CCHF) is a public health problem in many countries. Chitotriosidase (ChT) is an enzyme secreted by activated macrophages that catalyzes the hydrolysis of chitin and chitin-like substrates. The goal of this study was to assess the relationship between serum ChT activity and mortality.

Methods: ChT activities on the first day of hospitalization were analyzed in serum from 46 patients with CCHF and 36 healthy controls. Serum ChT activities and other clinical and laboratory parameters for patients with non-fatal and fatal CCHF were compared.

Results: The median ChT activity was increased in all patients with CCHF [189.9 (134.8–246.6) nmol/mL/h]. The median ChT activity in the non-fatal CCHF group [220.2 (180.6–290.1) nmol/mL/h] was higher compared with the fatal CCHF group [29.2 (16.5–45.7) nmol/mL/h] (p < 0.001). In univariate analysis, platelet count, lactate dehydrogenase (LDH), and activated partial thromboplastin time were associated with mortality.

Conclusions: This is the first study investigating the association of serum ChT enzyme activity with mortality from CCHF. This study suggested that relatively low ChT enzyme activities may be a prognostic marker in patients with CCHF.

Keywords: chitotriosidase enzyme activity; Crimean-Congo hemorrhagic fever; mortality.

Introduction

Crimean-Congo hemorrhagic fever (CCHF) was first described clinically in 1944 in Crimea of the former Soviet Union during a large outbreak of over 200 cases. The CCHF virus, belonging to the genus Nairovirus of Bunyaviridae family, was identified in 1967 from a patient in Uzbekistan, and was found to be similar to a virus isolated in 1956 in Congo, and therefore, named Crimean-Congo (1). The virus is transmitted to humans through the bite of ixodid ticks or by contact with blood or tissues from infected livestock (2). CCHF is not highly contagious. However, there is a risk for spread from person to person by exposure to infected blood, respiratory secretions and excreta, resulting occasionally in nosocomial outbreaks (3).

CCHF is potentially fatal and found in more than 30 countries in Africa, Asia, southeast Europe, and the Middle East (4, 5). The virus infects the reticuloendothelial system leading to a sudden onset of symptoms. Shock and increased vascular permeability are probably a consequence of hyperactivation of the cytokine pathways (6). Hemorrhagic complications may also be related to hepatic damage and coagulopathy (7).

In humans, infection with tickborne CCHF virus often results in a serious illness followed by death. It has been estimated that one-third of patients hospitalized with CCHF die, although many recover rapidly after a febrile illness (4). After a brief incubation period, the patient has sudden onset of fever, myalgia, nausea and severe headache. Within 3–6 days of the onset of illness, development of a petechial rash and hemorrhagic symptoms, such as epistaxis, hematemesis, and melena may occur. The most extremely ill patients develop multiorgan failure characterized by shock, hemorrhage and coma (8). Mortality rates range from 15% to 60% (5).

The pathogenesis of CCHF is not well understood. The vascular endothelium is both a direct and indirect target of all hemorrhagic viruses. Mononuclear phagocytes are also targets for hemorrhagic viruses. They are activated upon infection and release certain cytokines and chemokines. These mediators indirectly target the endothelium. Serum concentrations of proinflammatory cytokines including interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) were higher in patients with fatal CCHF (9).

Chitin is an unbranched polymer formed by β-1,4-linked N-acetyl-D-glucosamine units found in insects, fungi and egg shells of some nematodes; it is not thought to occur in mammals. Catabolism of chitin is mediated by chitinases (O-glycosyl hydrolases EC 3.2.1.-). Mammalian chitinases are all related to Family 18 chitinases, with Family 19 chitinases found...
primarily in plants. Chitotriosidase (ChT), also known as macrophage chitinase, is not expressed in monocytes, but is synthesized by activated macrophages in a number of pathological settings (10, 11). It has ability to cleave chitotriose, the trimeric form of β-1,4-N-acetyl-D-glucosamine (12), and is able to catalyze the hydrolysis of chitin-like substrates, such as 4-methylumbelliferyl chitotriose (13). It was recently reported that leukocytes may also secrete plasma ChT under physiological conditions (14). It is secreted predominantly into blood, and ChT activity is an established biochemical marker of macrophage accumulation in several lysosomal diseases, especially Gaucher’s disease (10, 11). The function of ChT in humans is unknown. Approximately 6% of European Caucasians are deficient in ChT activity due to a common genetic defect (15).

The goal of this study was to assess the relationship between serum ChT activity with mortality due to CCHF.

Materials and methods

Study design and subjects

We studied 38 patients with non-fatal CCHF (14 females and 24 males), and eight patients (4 females and 4 males) with fatal CCHF admitted to The Ankara Numune Education and Research Hospital (ANERH) during the spring and summer of 2006. All patients with positive IgM and/or PCR results for CCHF virus in blood participated in the study.

For all patients, only CCHF virus was found as the causative agent. Analyses for other infectious agents were negative, including Leptospira, Salmonella, Rickettsia, Brucella, and Toxoplasma species, Coxiella burnetii, agents of Lyme disease and malaria, rubella and herpes viruses, cytomegalovirus, hepatitis A, B and C viruses. Thirty-six healthy controls (15 females and 21 males) with no clinical evidence of disease and malaria, rubella and herpes viruses, cytomegalovirus, hepatitis A, B and C viruses. Thirty-six healthy controls (15 females and 21 males) with no clinical evidence of CCHF were also included. All patients were given supportive treatment only, including erythrocytes, fresh frozen plasma and whole blood preparations, depending on the state of their hemostasis. Following admission to the hospital, antibiotics, such as doxycycline and ciprofloxacin were given for empirical treatment of common regional zoonotic diseases.

The study protocol was approved by the Ethical Committee of the Ankara Numune Education and Research Hospital, Ankara, Turkey. Written informed consent was obtained from patients or their family members and control subjects.

Samples

Serum was collected on the first day and last day (day of death for fatal CCHF or discharge day for non-fatal CCHF) of hospitalization in patients with CCHF was compared with serum ChT activity in healthy controls. We also compared serum ChT activities and other clinical and laboratory parameters in the two groups of patients with non-fatal and fatal CCHF.

ChT enzyme assay

Analyses for serum ChT enzyme activity were performed according to the method described by Tunc et al. (16). Briefly, 25 μL of serum was incubated with 100 μL of 22 μmol/L 4-methylumbelliferyl-β-D-N,N-triacetylchitotriose in McIlvain’s phosphate-citrate buffer, pH: 5.2, for 1 h at 37°C. The reaction was terminated by the addition of 120 μL 0.5 mol/L Na2CO3-NaHCO3 buffer, pH: 10.7, and the fluorescence of 4-methylumbellifereone was measured using a Microfluor 2® fluorimeter (Bio-Tek Instruments, Neufahrn, Germany; excitation: 355 nm, emission: 460 nm). Serum ChT activities were expressed as nanomoles of substrate hydrolyzed per milliliter per hour (nmol/mL/h). Serum ChT activities were measured in duplicate. The coefficient of variation was <5%.

Statistical analysis

Results were presented as medians [interquartiles (25%–75%)], frequency, and percent. Groups were compared using the χ2-test and Mann-Whitney U-test. Univariate and multivariate logistic regression analyses were used to determine variables associated with mortality. Statistical analysis was performed using SPSS® 11.5 Statistical Package Program for Windows (SPSS Inc, Chicago, IL, USA). Differences were considered significant at p < 0.05.

Results

We identified one patient with ChT deficiency in patients with fatal CCHF. Clinical and laboratory features for 46 CCHF patients are summarized in Table 1. Eight of the subjects died as a result of CCHF (fatal CCHF group). Thirty-eight cases survived (non-fatal CCHF group). There were significant differences between non-fatal and fatal CCHF groups with respect to bleeding, serum ChT activity, platelet count, AST, LDH, CK, PT and aPTT. However, no significant differences were noted with respect to age, mean duration of symptoms, history of tick bites, fever, myalgia, WBC count, ALT, INR and fibrinogen. AST, LDH, CK, PT and aPTT were significantly higher in the fatal CCHF group compared with the non-fatal CCHF group. Serum ChT activity and platelet count were significantly lower in the fatal CCHF group compared with the non-fatal CCHF group.

ChT activity increased in all patients with CCHF on the first day of hospitalization (≥9.0 nmol/mL/h), showing a median concentration of 189.9 (134.8–246.6) nmol/mL/h. The median ChT activity in healthy blood donors was 159.4 (113.4–208.2) nmol/mL/h and the median activity of ChT in the fatal CCHF group was 29.2 (16.5–45.7) nmol/mL/h. Thus, the median activity of ChT in the control group exceeded that in the fatal CCHF group by ~5-fold (p < 0.001).

The median ChT activity in the non-fatal CCHF group [220.2 (180.6–290.1) nmol/mL/h] was ~7-fold
Table 1 Comparison of demographic, clinical characteristics and laboratory test data between patients with non-fatal CCHF and fatal CCHF.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Non-fatal CCHF</th>
<th>Fatal CCHF</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>38</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Male, n</td>
<td>24 (63.2%)</td>
<td>4 (50%)</td>
<td>0.693</td>
</tr>
<tr>
<td>Age, years</td>
<td>42.5 (34–61)</td>
<td>61 (50–69)</td>
<td>0.074</td>
</tr>
<tr>
<td>Mean duration of symptoms, days</td>
<td>7 (5.0–8.25)</td>
<td>4.5 (3.25–9.0)</td>
<td>0.231</td>
</tr>
<tr>
<td>Tick-bite history, n (%)</td>
<td>22 (57.9%)</td>
<td>6 (75%)</td>
<td>0.453</td>
</tr>
<tr>
<td>Fever, n</td>
<td>34 (84.5%)</td>
<td>7 (87.5%)</td>
<td></td>
</tr>
<tr>
<td>Myalgia, n</td>
<td>35 (92.1%)</td>
<td>8 (100%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bleeding, n</td>
<td>10 (26.3%)</td>
<td>8 (100%)</td>
<td></td>
</tr>
<tr>
<td>Chitotriosidase activity*, nmol/mL/h</td>
<td>220.2 (190.6–290.1)</td>
<td>29.2 (16.5–45.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Chitotriosidase activity†, nmol/mL/h</td>
<td>261.8 (204.5–377.5)</td>
<td>33.5 (20.5–47.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>WBC count*, ×10⁹/L</td>
<td>2.2 (1.5–3.3)</td>
<td>2.3 (1.6–3.7)</td>
<td>0.650</td>
</tr>
<tr>
<td>Platelet count*, ×10⁹/L</td>
<td>76.5 (26.5–105.5)</td>
<td>15.0 (6.3–34.5)</td>
<td>0.003</td>
</tr>
<tr>
<td>AST*, U/L</td>
<td>202.5 (70–541)</td>
<td>780.5 (478–1060)</td>
<td>0.002</td>
</tr>
<tr>
<td>ALT*, U/L</td>
<td>90 (52–258)</td>
<td>220 (131–251)</td>
<td>0.080</td>
</tr>
<tr>
<td>LDH*, U/L</td>
<td>501.5 (343–789)</td>
<td>1587 (1158–3768)</td>
<td><0.001</td>
</tr>
<tr>
<td>CK*, U/L</td>
<td>236 (130–803)</td>
<td>1149 (472–2165)</td>
<td>0.049</td>
</tr>
<tr>
<td>PTT*, s</td>
<td>120 (112–131)</td>
<td>143.5 (123–147)</td>
<td>0.025</td>
</tr>
<tr>
<td>INR*</td>
<td>0.95 (0.87–1.04)</td>
<td>1.13 (0.93–1.21)</td>
<td>0.072</td>
</tr>
<tr>
<td>aPTT*, s</td>
<td>31.1 (28.4–36.9)</td>
<td>48.7 (41.8–82.0)</td>
<td>0.006</td>
</tr>
<tr>
<td>Fibrinogen*, mmol/L</td>
<td>2.45 (2.29–3.31)</td>
<td>2.50 (1.69–3.06)</td>
<td>0.794</td>
</tr>
</tbody>
</table>

Data are number (%) of patients or median [interquartiles (25%–75%)]. *On the first day of admission to the hospital. †On the last day of admission to the hospital. CCHF, Crimean-Congo hemorrhagic fever; WBC, white blood cell; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; CK, creatine kinase; PTT, prothrombin time; INR, international normalized ratio; aPTT, activated partial thromboplastin time.

higher compared with the fatal CCHF group [29.2 (16.5–45.7) nmol/mL/h] (Figure 1). The difference between the fatal and non-fatal CCHF groups was statistically significant (p < 0.001). The median activities of ChT on the final day of hospitalization in the non-fatal CCHF group [261.8 (204.5–377.5) nmol/mL/h] were significantly higher than those seen in the fatal CCHF group [33.5 (20.5–47.7) nmol/mL/h] (p < 0.001).

The mortality rate was 17.3%. Fatal cases were hospitalized a mean of 4.5 days (range 2–15) prior to death. The duration of hospitalization was ~7 days (range 2–24) in non-fatal cases.

Other parameters analyzed for mortality are shown in Table 2. In univariate analysis, platelet count, LDH and aPTT were associated with mortality (Table 2).

However, in multivariate analysis none of the variables was associated with mortality.

Discussion

Chitinases are ubiquitous chitin fragmenting enzymes present in various organisms and involved in several biological processes including defense against chitin containing pathogens, such as fungi. Human ChT is a fully active chitinase (17). It is now known that activated macrophages are the main source of ChT. The ChT enzyme can be considered an inflammatory protein since it only secreted by activated macrophages. It does not behave as an acute reactive protein but rather as a marker of chronic inflammation (18).

This enzyme is involved in the degradation of chitin containing pathogens. Little is known about physiological role of ChT and the mechanisms that could modify its activity in humans, but these might be relevant in clinical practice. High serum ChT activity in patients with atherosclerosis demonstrates in vivo the presence of activated macrophages (10). The activating factors are still unknown, and are likely to be different in the disorders studied. Increases have been observed in various lysosomal disorders, such as malaria, thalassemia and fungal infections (19–23). In addition, increased activity has been reported in tissues and plasma of guinea pigs infected by Aspergillus fumigates, and in plasma and urine of a neonate with C. albicans infection (23, 24). As increased activities of ChT have been described in neonates with bacterial infections (17), this may suggest that the spectrum of anti-microbial action of ChT...
extends to bacteria, thus playing a complementary role to lysozyme. Lysozyme has a well-documented action against bacteria but less is known about its anti-fungal activity (25, 26). However, data from another study do not support this view (12).

To our knowledge, there is no information concerning the association between serum ChT activity with CCHF. Our study is the first clinical study to assess this relationship in patients with CCHF, as well as being the first study to investigate the association of serum ChT activity with mortality from CCHF.

In the studies analyzing risk factors in patients with CCHF, parameters during the first 5 days of illness were studied (27). However, we used parameters measured on the first day of admission to predict mortality. Bakir et al. reported that INR, AST, LDH, and CK were higher in patients who died (28). In their study, serum ChT activities were significantly lower in patients with fatal CCHF compared with non-fatal CCHF and healthy controls. Serum ChT could be a prognostic marker in patients with CCHF. Different predictors of fatality were reported as risk factors in patients with non-fatal CCHF. This finding suggests that ChT may have an antiviral feature or a protective effect against secondary bacterial infections during CCHF. Further studies with larger numbers of patients are required to clarify this hypothesis and to confirm these promising but preliminary results.

References

