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ABSTRACT 
 
In this article we model the log of the U.S. and the U.K. real oil prices in terms of fractionally 
integrated processes with a mean shift. We use different versions of the tests of Robinson (1994), 
which have standard null and local limit distributions. The results indicate that if we model the 
series without a mean shift, they are both nonstationary I(1). However, allowing for a mean shift 
during the oil crises, they become fractionally integrated with an order of integration smaller 
than one and thus, showing mean reverting behaviour. 
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1. Introduction 

Modelling macroeconomic time series has been a major focus of attention in the last twenty 

years. It was initially assumed that the series fluctuated around a deterministic trend, via a 

polynomial and/or a trigonometric function of time, which were fitted by linear regression 

techniques. A second way came after Nelson and Plosser�s (1982) influential work, who 

following the work and ideas of Box and Jenkins (1970), argued that many macroeconomic time 

series may contain a unit root.  

Much controversy in macroeconomics has revolved around the question of the suitability 

of unit roots or I(1) models for describing raw time series, which typically imply that the mean 

and the variance increase without bound over time, the precision of the forecast error is 

unbounded and the effect of the shocks persists. On the other hand, the deterministic trend 

approaches assume that the series, once it has been detrended, is I(0), implying that the mean is 

described by the trend function, the variance of the forecast errors remains finite and shocks have 

only a transitory effect. The issue of unit roots versus deterministic trend models has also very 

different implications in terms of economic policy. Thus, in the context of I(1) models, any 

shock to the economic system will have a permanent effect, so a policy action will be required to 

bring the variable back to its original long-term projection. On the other hand, in the 

deterministic I(0) approaches, fluctuations will be transitory and therefore, there will exist less 

need for policy action, since the series will in any case return to its trend sometime in the future. 

 In the last few years, however, there has been a growing literature, modelling 

macroeconomic time series in terms of fractionally integrated processes. We can consider the 

model 

...,2,1,)1( =++=− tutyL tt
d βα    (1) 

where yt is the raw time series; ut is an I(0) process, defined in this context as a covariance 

stationary process with spectral density function that is positive and finite at zero frequency; and 

d is a given real number.  Clearly, if d = 0 in (1), yt follows the deterministic I(0) approaches, 
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while d = 1, (with α = β = 0), implies the unit root models advocated by Nelson and Plosser 

(1982). However, d need not be an integer, as considered by Adenstedt (1974) and numerous 

subsequent authors, and the polynomial (1 � L)d can be expressed in terms of its Binomial 

expansion 
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For the time being, let�s assume that α = β = 0 in (1). Then, if d > 0, yt is said to be a long 

memory process, because of the strong association between observations widely separated in 

time. If 0 < d < 0.5, yt is still stationary, but its lag-j autocovariance γj decreases very slowly, like 

the power law j2d-1 as j → ∞ and so the γj are non-summable. As d increases beyond 0.5 and 

through 1, (the unit root case), yt can be viewed as becoming �more nonstationary� in the sense, 

for example, that the variance of the partial sums increases in magnitude, and if d < 1, the 

process will be mean reverting with shocks affecting the series but this returns to its original 

level sometime in the future. Processes like (1) with positive non-integer d (and α = β = 0) are 

called fractionally integrated and when ut is ARMA(p, q), yt is fractionally ARIMA (ARFIMA(p, 

d, q)) process. These models were introduced by Granger and Joyeux (1980), Granger (1980, 

1981) and Hosking (1981) and were justified theoretically by Robinson (1978) and Granger 

(1980), the former in terms of random coefficient AR(1) models, and the latter in terms of 

aggregation of AR(1) processes with a particular structure for the coefficients. 

In the following section we propose a testing procedure suggested by Robinson (1994) 

for testing this type of models, including small variations to incorporate potential mean shifts in 

the original series. This is an important issue, especially in the context of time series like those 

used in this article (the US and the UK real oil prices). In fact, the oil crises in the mid 70�s and 

80�s were major economic shocks with lasting effects on other economic variables (see, eg., 

Carruth et. al., 1998 and Blanchard, 1999). Thus, the importance of modelling this component 

becomes apparent. In Section 3, Robinson�s (1994) procedure is applied to both real oil prices 
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series. They have been widely analysed in the literature and still there is little consensus about its 

stochastic behaviour. Thus, for example, for the U.S. case, Carruth et al. (1999) consider that the 

real oil prices follow an I(1) process and look at the cointegrating relation between this variable 

and unemployment and real interest rates. Burbidge and Harrison (1984), Hamilton (1988) and 

others authors, however, consider that the real oil prices are I(0) and take the effect of oil price 

changes merely as transitory. Similar controversy arises with the U.K. data. Thus, modelling the 

U.K. unemployment, Bruno and Sachs (1982), and more recently, Henry and Nixon (1998) and 

Henry et al. (1999) argue that the real oil prices is an I(0) stationary process with a potential 

mean shift due to the oil crises in the mid 70�s and 80�s, while other authors, (eg., Harvey and 

Chung, 1999) find little support of this hypothesis, and suggest that the series may contain a unit 

root. The conclusions obtained in this article suggest that the U.S. and the U.K. real oil prices 

may both be I(1), though including a mean shift during the oil crises, both series become I(d) 

with d < 1 and thus showing mean reversion. These results are partially consistent with the 

original findings of Perron (1989, 1993) and others in that the unit root model might be rejected 

in the presence of structural breaks. However, extensions to the case of long memory processes 

have been little developed. In a recent article, Diebold and Inoue (1999) provide both theoretical 

and Monte Carlo evidence that structural breaks-based models and long memory processes are 

easily confused. Similarly, Granger and Hyung (1999) also develop a theory relating both types 

of models. In this article, we provide empirical evidence that the presence of deterministic mean 

shifts affects to the order of integration of the series, and given the lack of empirical studies 

based on fractional-based tests in this context, this work seems overdue. 

 

2. Testing I(d) processes with a mean shift 

Robinson (1994) proposes a very general testing procedure for testing unit roots and other 

nonstationary hypotheses in raw time series. However, unlike most commonly used unit root 

tests, which are embedded in autoregressive (AR) alternatives, (eg. Dickey and Fuller, 1979; 
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Phillips and Perron, 1988; etc.), the tests of Robinson (1994) are nested in a fractionally 

integrated model  

...,,2,1,)1( ==− + tuxL tt
d θ     (2) 

where d is a given real number; ut is an I(0) process with parametric spectral density f, which is a 

given function of frequency λ, and of unknown parameters, specifically, 

,),;(
2

);;(
2

2 πλπτλ
π

στσλ ≤<−= gf  

where the scalar σ2 and the (qx1) vector τ are unknown but g is of known form. The variable xt is 

the error in the regression model 

        ...,2,1,' =+= txzy ttt β     (3) 

where β is a (kx1) vector of unknown parameters; zt is a (kx1) vector of deterministic variables 

that might include, for example, an intercept and/or a linear time trend, and yt is the time series 

we observe for t = 1, 2, �, T. 

 Under the null hypothesis, defined by 

,0: =θoH      (4) 

the residuals in (2) and (3) are 
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Unless g is a completely known function (eg. g ≡ 1 as when ut is white noise), we have to 

estimate the nuisance parameter τ, for example by ),(minarg� 2
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 The test statistic, which is derived from the Lagrange Multiplier (LM) principle, is 
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 Robinson (1994) established under regularity conditions that 

,)1,0(� ∞→→ TasNr d     (6) 

and thus, an approximate one-sided 100α% test of (4) against 

   ,0: >θaH      (7) 

will be given by the rule: 

        �Reject Ho if  αzr >� �,     (8) 

where the probability that a standard normal variate exceeds zα is α. Conversely, a test of (4) 

against 

    ,0: <θaH      (9) 

will be given by the rule: 

       �Reject Ho if  αzr −<� �.             (10) 

 Robinson (1994) also showed that the above tests are efficient in the Pitman sense that 

when directed against local alternatives of form Ha: θ = δ T-1/2 for δ ≠ 0, the limit distribution is 

normal with variance 1 and mean which cannot (when ut is Gaussian) be exceeded in absolute 

value by that of any rival regular statistic. Empirical applications of this procedure to several 
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macroeconomic time series can be found in Gil-Alana and Robinson (1997) and Gil-Alana 

(2000a), and other versions of Robinson�s (1994) tests, based on quarterly and monthly data, are 

respectively Gil-Alana and Robinson (2000) and Gil-Alana (1999). 

 In the empirical applications carried out in Section 3 we will implement different versions 

of the above tests, imposing different sets of regressors in zt. Thus, we will consider the cases of 

zt = 0, (i.e., including no regressors in the undifferenced regression (3));  zt ≡ 1, (i.e., including an 

intercept);  zt = (1,t)�, (including a linear time trend); zt = St, with St = 1 if t1 < t < t2, 0 otherwise, 

and t1 and t2 given values, (i.e., including a mean shift); and finally, zt = (1,St)�. In all these cases, 

the standard null and local limit distributions of Robinson�s (1994) tests hold. This is another 

distinguishing feature of these tests compared with most unit root tests directed against AR 

alternatives (eg., Schmidt and Phillips, 1992), where the limit distribution can vary with features 

of the regressors. 

 In relation with the mean shift behaviour in yt allowed throughout the zt�s in (3), we can 

consider the model 

       ...,2,1,21 =++= txSy ttt ββ              (11) 

jointly with (2), and if we cannot reject Ho (4) for a given d, a way of testing the relative 

importance of the mean-shift component can be obtained by looking at the joint test 

     00: 2 == βθ andHo               (12) 

in (2) and (11). This possibility is not addressed by Robinson (1994) but a LM test of (12) 

against the alternative, 

    00: 2 ≠≠ βθ orHa               (13) 

is suggested in Gil-Alana and Robinson (1997). It was shown in that paper that the test statistic 

takes the form 
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just defined. We can compare (14) with the upper tail of the 2
2χ  distribution. Then, rejections of 

(12) for a given d, which was not rejected before with (5) when testing (4) in (2) and (11), will 

give us certain support in favour of the mean shift behaviour in yt. 

 

3. Empirical applications 

In this section we analyse the univariate behaviour of the log of the real oil prices series in the 

U.S. and the U.K. The data are quarterly and the sample sizes are 1954q1-1998q1 for the U.S. 

and 1966q1-1997q1 for the U.K.  

 Figures 1 and 2 show respectively the original series and the correlogram of the first 

differences in the U.S. We see in Figure 1 that the log of the U.S. real oil prices declines slowly 

during the 50�s and 60�s. It then follows a jump during the first oil crisis (1973), followed by 

another one during the second oil crisis (1980). Around 1986, the series seems to return to its 

previous level, though a much higher degree of volatility, compared with the first two decades of 

the sample, is then observed. The first 50 sample autocorrelation values of the series were 

calculated and the results clearly indicated its nonstationary nature. Looking at the 

autocorrelation values of the first differences, in Figure 2, we see significant values at some lags, 

with some decay and/or oscillation which could be indicative of fractional integration of greater 

than or less than a unit root. 

(Figures 1 � 4 about here) 
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Similarly for the U.K., Figures 3 and 4 contain respectively the plot of the original series 

and the correlogram for the first differences. The mean shift behaviour in the real oil prices is 

even more apparent here, and significant autocorrelation values are also observed in Figure 4. All 

these figures give us a motivation for testing fractional integration with a mean shift in the real 

oil prices. 

 In both countries we will start by testing (4) in (2) and (3) with d = 0, 0.10, �,(0.10), 

�,1.90 and 2, and white noise and autoregressive ut, first with zt = 0; 1 and (1,t)�, and then 

including a mean shift component in zt. A test of (12) in (2) and (11) will also be performed at 

the end of each subsection. Our findings can be briefly summarized as follows. When modelling 

the series without a mean shift, the results suggest that they are integrated of order 1, though 

fractionally integrated processes with d slightly smaller than 1 seem also plausible. However, 

allowing a mean shift during the oil crises, the unit root null hypothesis is rejected in favour of 

less (fractionally) integrated alternatives. 

 

3a. The U.S. case 

Table 1 (and also Tables 2, 4 and 5) reports values of the one-sided test statistic r�  in (5), so that 

significant positive values of this, see (8), are consistent with (7), whereas significant negative 

ones, see (10), are consistent with (9). Thus, we should expect a monotonic decrease in the value 

of the test statistic with d, because, for example, if we reject Ho (4) against the alternative (7) 

with d = 0.50, an even more significant result in this direction should be expected when testing 

Ho (4) with d = 0.40 or d = 0.30. In Table 1 we assume that ut is white noise. Starting with the 

assumption that there is no mean shift, (in columns 2, 3 and 4), we suppose that the regression 

model (3) includes respectively no regressors, an intercept and a linear time trend. The results are 

very similar for the three cases, which can give us an indication that neither the intercept nor the 

time trend are required when modelling this series. Ho (4) cannot be rejected when d = 0.90 and 
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1, and though the unit root null hypothesis (in fact, a random walk model) appears as a plausible 

alternative, lower statistics are obtained in all cases with d = 0.90.  

Columns 5 and 6 in Table 1 report respectively values of r�  with a mean shift and with an 

intercept and a mean shift. If we only include a mean shift factor, (in column 5), the results are 

similar to those given previously, with Ho (4) being non-rejected when d = 0.90 and 1. However, 

if we also include an intercept, (in column 6), the unit root null is rejected, and the non-rejection 

values occur now at d = 0.70, 0.80 and 0.90. Thus, we see that the inclusion of a mean shift 

factor in the regression model (3) can reduce the order of integration of the series and the random 

walk hypothesis may result in a rejection. Finally, we also observe across this table that r�  

always decreases monotonically with d, satisfying the desirable property previously mentioned. 

 Table 2 reports the same statistic as in Table 1, (i.e., r�  in (5)), but imposing an AR(1) 

structure on ut. Higher order autoregressions, (including seasonal autoregressions of form: 

,
1

4�
=

− +=
p

j
tjtjt uu ετ  p = 1 and 2), were also performed, obtaining similar results to those 

obtained for the AR(1) case, and are not reported here. If we do not include a mean shift, we 

observe in this table a lack of monotonic decrease in the value of r�  with respect to d, and this 

happens for the three cases of no regressors, an intercept and an intercept and a time trend.  This 

lack of monotonicity may indicate that the model is misspecified, since in the event of 

misspecification, (which, in this so specialized model is likely to occur), monotonicity is not 

necessarily to be expected. Computing r�  for different values of d is thus useful in revealing 

possible misspecification, though monotonicity is by no means necessarily strong evidence of 

correct specification. Looking at the results with a mean shift, if zt = St, we still observe a lack of 

this property. However, including also an intercept, r�  is always monotonic with d, and the non-

rejection values of d range then between 0.40 and 0.90. Therefore, the unit root null again 

produces a rejection and the lowest statistic is now obtained when d = 0.70, implying 

nonstationarity but mean reversion. The results in this table (and also in the previous one) 
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suggest that the mean shift factor should be taken into consideration when modelling this series, 

the order of integration being then smaller than 1 and thus, showing mean reverting behaviour. 

(Tables 1 � 3 about here) 

 In view of Tables 1 and 2 there is some interest in testing jointly the order of integration 

and the mean shift factor. Table 3 reports the statistic (14) for the same values of d as before. We 

see that if ut is white noise, Ho (12) is not rejected when d = 0.90 and 1, which is consistent with 

the results in Table 1 when the mean shift was not included in the regression model (3). 

However, imposing an AR(1) structure on the disturbances, the null always results in a rejection, 

suggesting, in view of the non-rejection values observed in Table 2, that the mean shift factor 

may be important when modelling this series. 

 We can summarize the results obtained in this section by saying that if ut is white noise, 

the I(1) hypothesis cannot be rejected, suggesting that the log of the real oil prices in the U.S. 

may be modelled as a random walk. However, including a mean shift during the oil crises, the 

unit root null is rejected and smaller orders of integration seem more plausible. Allowing 

autocorrelated disturbances and a mean shift component, the tests of Robinson (1994) suggest 

orders of integration ranging between 0.40 and 0.90 and, testing jointly the order of integration 

and the mean shift factor, the results emphasize the importance of the mean shift component. 

 

3b. The U.K. case 

Tables 4 and 5 are analogous to Tables 1 and 2 above, showing the results of r�  in (5), i.e., 

testing (4) in (2) and (3), with white noise and AR(1) disturbances. Starting with white noise ut, 

in Table 4, we see that the results are very similar to those obtained in the U.S. Thus, if we do 

not include a mean shift in the regression model (3), (Columns 2, 3 and 4), Ho (4) cannot be 

rejected when d = 0.90, 1 and 1.10, and the lowest statistic is obtained in all cases when d = 1. 

Including a mean shift during the oil crises, (Column 5), the non-rejection values are only 0.90 

and 1, and including also an intercept, (Column 6), the unit root null hypothesis is now rejected 
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in favour of less integrated alternatives. The non-rejection values range now between 0.60 and 

0.90, the lowest statistic being achieved in this case when d = 0.70.  

Table 5 reports the results with AR(1) ut. As with the U.S. data, we see that in all except 

the last column, the values of r�  are non-monotonic with d, which may suggest that these models 

are misspecified. Including, however, an intercept and a mean shift factor, monotonicity is 

always achieved and the non-rejection values range now between 0.30 and 0.70.  We see in this 

column that the lowest statistic across d is obtained when d = 0.30, which may indicate that this 

series is stationary but with a long memory behaviour. Extending the model to allow higher 

autoregression orders, the results were similar: r�  was non-monotonic with d in all cases except 

when zt = (1, St)� and Ho (4) was not rejected when d ∈  [0,20, 0.70]. Thus, if we allow weakly 

autocorrelated disturbances and a mean shift during the first and the second oil crises, the unit 

root null hypothesis is decisively rejected and smaller orders of integration seem more adequate. 

(Tables 4 � 7 about here) 

 Table 6 corresponds to Table 3, showing the results of the statistic (14) and thus, testing 

(12) against (13) in (2) and (11), with d = 0, 0.10, �, 1, 1.10, �, 1.90 and 2, and again, white 

noise and AR(1) disturbances. If ut is white noise, we observe three non-rejection cases, 

corresponding to values of d = 0.90, 1 and 1.10, which is completely in line with the results 

given in Table 4 (Column 3). However, if ut is AR(1), Ho (12) is always rejected. Thus, given the 

non-rejected values observed in Table 5 (last column), we may conclude by saying that if we 

model this series with AR(1) disturbances, the mean shift factor should be taken into account, the 

integration order being smaller than 1 and thus, showing mean reverting behaviour. 

 

4. Concluding comments 

We have analysed in this article the univariate behaviour of the U.S. and the U.K. real oil prices 

in terms of fractionally integrated processes. We use the tests of Robinson (1994) for testing unit 

roots and other fractionally integrated hypotheses, which have standard null and local asymptotic 
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distributions. A small variation in his tests permit us to consider fractional models with a mean 

shift factor, this not affecting to the limit distribution of the test statistics. 

 Testing the order of integration of both individual series without considering the mean 

shift factor, the results indicate that both series may contain a unit root, though smaller orders of 

integration also appear plausible. However, including a mean shift, due to the oil crises during 

the mid 70�s and 80�s, the unit root null hypothesis always results rejected and smaller order of 

integration seem to be more adequate. Testing jointly the order of integration and the mean shift 

factor, the results emphasize the importance of the mean shift component, especially if the 

disturbances are weakly autocorrelated. The results based on autoregressive disturbances were 

similar for the different AR orders whether or not the mean shift was considered. It would be 

worthwhile proceeding to get some optimal way of choosing the appropriate order of 

autoregression. However, the main goal of the paper was to show if the order of integration of 

the series changed with the inclusion of  a mean shift and, in that respect, the short-run dynamics 

were not much informative. In addition, Robinson�s (1994) tests generate simply computed 

diagnostics for departures from any real d and thus, it is not at all surprising that, when fractional 

hypotheses are confounded with autoregressions, evidence supporting different models appears. 

A nice feature observed in this context is that the order of integration does not much change with 

the AR orders, thus, finding support for a given null hypothesis across the different short-run 

dynamics. 

 The significance of the mean shift component when modelling individually the real oil 

prices series is crucial for the practitioner. Thus, if we do not take into account this effect, the 

series may appear to be I(1), being in fact I(d) with d < 1. Furthermore, when testing (4) in (2) 

and (11), the estimated β2 results significant in both series, in practically all cases where Ho (4) 

cannot be rejected, thus giving further evidence for the inclusion of the mean shift component in 

the regression model (3). 
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 Finally, finite sample critical values of the tests of Robinson (1994) can be computed in 

this context of mean shift behaviour. However, as it was shown by Gil-Alana (2000b), (for the 

case of no regressors and of a linear time trend), the difference in the power of Robinson�s 

(1994) tests when using the asymptotic and the finite-sample critical values is small for samples 

of size similar to those used in this application. Thus, the results should not differ much in this 

context of deterministic shifts. 
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TABLE 1 

Testing (4) in (2) and (3) with white noise disturbances in the log of the 
U.S. real oil prices 

 No mean shift With a mean shift 
d zt   =  0 zt     ≡  1 zt   = (1, t)� zt   =  St zt  = (1,St)� 

0.00  29.28  29.28  28.34  32.28  20.20 
0.10  20.20  27.05  26.52  30.58  17.13 
0.20  18.81  24.13  23.94  26.39   13.95 
0.30  17.03  20.51  20.57  20.46  10.87 
0.40  14.49  16.40  16.59   15.49  8.04 
0.50  11.42  12.19  12.39  11.57  5.55 
0.60  8.17  8.29  8.43  8.08  3.42 
0.70  5.10  4.99  5.06  4.96   1.59� 
0.80  2.49  2.38  2.41  2.35   0.06� 
0.90   0.43�   0.39�   0.41�   0.31� -1.19� 
1.00 -1.10� -1.07� -1.06� -1.20� -2.19 
1.10 -2.23 -2.15 -2.15 -2.31 -2.97 
1.20 -3.05 -2.96 -2.96 -3.12 -3.59 
1.30 -3.67 -3.57 -3.58 -3.73 -4.07 
1.40 -4.15 -4.05 -4.05 -4.19 -4.45 
1.50 -4.53 -4.42 -4.13 -4.57 -4.76 
1.60 -4.85 -4.73 -4.73 -4.87 -5.00 
1.70 -5.11 -4.97 -4.97 -5.13 -5.20 
1.80 -5.33 -5.17 -5.17 -5.35 -5.37 
1.90 -5.52 -5.34 -5.34 -5.54 -5.50 
2.00 -5.69 -5.49 -5.49 -5.70 -5.62 

                          St = 1 for t ∈  (1973q4, 1980q1), 0 otherwise. �: Non-rejection values of the null  
                          hypothesis (4) at the 95% significance level. 
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TABLE 2 

Testing (4) in (2) and (3) with AR(1) disturbances in the log of the U.S. 
real oil prices 

 No mean shift With a mean shift 
d zt   =  0 zt     ≡  1 zt  = (1, t)� zt   =  St zt = (1,St)� 

0.00   -1.63�  -1.63�  -1.77�  -0.14�  4.45 
0.10 -4.04 -2.31 -2.42 -2.40  4.27 
0.20 -4.63 -2.72 -2.79 -4.51  4.17 
0.30 -5.44 -2.46 -2.41 -6.05  2.71 
0.40 -6.70 -0.61 -0.29 -7.21  -0.66� 
0.50 -8.75 7.82 2.25 -8.94   0.22� 
0.60 -12.41 2.20 2.49 -12.25   0.31� 
0.70 -18.71   1.50�   1.65� -18.47  -0.09� 
0.80 -16.45   0.46�   0.53� -17.86  -0.76� 
0.90 -6.76  -0.61�  -0.58� -7.12  -1.53� 
1.00  -1.86�  -1.58�  -1.57�  -1.60� -2.28 
1.10  -0.30� -2.41 -2.41  -0.008� -2.97 
1.20  -0.34� -3.09 -3.10  -0.17� -3.57 
1.30  -0.86� -3.65 -3.66  -0.76� -4.09 
1.40  -1.43� -4.12 -4.12  -1.37� -4.53 
1.50  -1.96� -4.50 -4.50  -1.92� -4.89 
1.60 -2.43 -4.81 -4.82 -2.41 -5.19 
1.70 -2.84 -5.07 -5.08 -2.83 -5.43 
1.80 -3.21 -5.29 -5.29 -3.21 -5.63 
1.90 -3.55 -5.47 -5.47 -3.54 -5.79 
2.00 -3.84 -5.63 -5.63 -3.84 -5.93 

                    St = 1 for t ∈  (1973q4, 1980q1), 0 otherwise. �: Non-rejection values of the null hypothesis  
                   (4) at the 95% significance level, and in bold, the non-rejections values when monotonicity 
                    in the test statistic with respect to d is observed. 
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TABLE 3 

Testing  (12) against (13) in (2) and (11) in 
the log of the U.S. real oil prices 

d  White noise ut AR(1)  ut 
0.00  871.35 16.62 
0.10  739.86 13.39 
0.20  586.99 12.13 
0.30  423.67 9.92 
0.40  270.95 9.15 
0.50  149.91 8.48 
0.60  69.71 7.70 
0.70  25.60 6.90 
0.80  6.18 6.73 
0.90   0.61� 7.83 
1.00   1.56� 7.93 
1.10  6.05 8.22 
1.20  9.19 9.99 
1.30  13.21 13.29 
1.40  16.85 17.39 
1.50  20.04 20.69 
1.60  22.82 23.65 
1.70  25.23 26.27 
1.80  27.32 28.56 
1.90  29.16 30.56 
2.00  30.77 32.29 

� : Non-rejection values of the null hypothesis (12) 
 at the 95% significance level. 
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TABLE 4 

Testing (4) in (2) and (3) with white noise disturbances in the log of the 
U.K. real oil prices 

 No mean shift With a mean shift 
d zt   =  0 zt     ≡  1 zt   = (1, t)� zt   =  St zt  = (1,St)� 

0.00  26.17  26.17  26.03  26.46  22.45 
0.10  24.40  24.61  24.60  25.03  19.32 
0.20  21.81  22.41  22.49  22.19  15.29 
0.30  18.76  19.45  19.61  18.20  10.77 
0.40  15.38  15.82   16.05  14.20  6.52 
0.50  11.85  11.85  12.13  10.59  3.26 
0.60  8.42  8.09  8.35  7.31  1.20� 
0.70  5.36  4.95  5.11  4.50  -0.06� 
0.80  2.83  2.52  2.59  2.17  -0.96� 
0.90   0.85�   0.73�   0.75�  0.34�  -1.66� 
1.00 -0.62� -0.56� -0.56�  -1.01� -2.24 
1.10 -1.71� -1.51� -1.51� -2.02 -2.72 
1.20 -2.51 -2.21 -2.21 -2.77 -3.13 
1.30 -3.11 -2.74 -2.75 -3.33 -3.47 
1.40 -3.86 -3.17 -3.17 -3.76 -3.76 
1.50 -3.92 -3.51 -3.51 -4.09 -4.01 
1.60 -4.21 -3.79 -3.79 -4.36 -4.22 
1.70 -4.44 -4.03 -4.03 -4.58 -4.41 
1.80 -4.63 -4.24 -4.24 -4.76 -4.57 
1.90 -4.80 -4.42 -4.42 -4.91 -4.72 
2.00 -4.94 -4.58 -4.58 -5.04 -4.85 

                          St = 1 for t ∈  (1973q4, 1980q1), 0 otherwise. �: Non-rejection values of the null  
                          hypothesis (4) at the 95% significance level. 
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TABLE 5 

Testing (4) in (2) and (3) with AR(1) disturbances in the log of the U.K. 
real oil prices 

 No mean shift With a mean shift 
d zt   =  0 zt     ≡  1 zt  = (1, t)� zt   =  St zt = (1,St)� 

0.00  -0.27�  -0.27�  -0.07�   0.71�  2.78 
0.10 -2.23  -1.35�  -0.83�  -1.41�  2.70 
0.20 -3.52 -2.05  -1.34� -3.30  2.26 
0.30 -4.76 -2.29  -1.28� -4.98    0.02� 
0.40 -6.42  -1.41�  -0.12� -6.90   -0.13� 
0.50 -9.09   1.18� 2.09 -9.91  -0.19� 
0.60 -12.86   1.95� 2.33 -14.70  -1.05� 
0.70 -10.78   1.14�   1.32� -13.12  -1.61� 
0.80 -5.48   0.09�   0.17� -6.24 -2.01 
0.90 -2.76  -0.86�  -0.83� -2.65 -2.34 
1.00  -1.61�  -1.64�  -1.64�  -1.13� -2.64 
1.10  -1.31� -2.25 -2.26  -0.76� -2.91 
1.20  -1.44� -2.72 -2.73  -0.96� -3.15 
1.30  -1.74� -3.08 -3.09  -1.36� -3.38 
1.40 -2.09 -3.38 -3.38  -1.81� -3.58 
1.50 -2.44 -3.62 -3.62 -2.22 -3.77 
1.60 -2.76 -3.82 -3.82 -2.60 -3.95 
1.70 -3.05 -4.00 -4.00 -2.93 -4.12 
1.80 -3.31 -4.16 -4.16 -3.22 -4.27 
1.90 -3.54 -4.30 -4.30 -3.47 -4.41 
2.00 -3.75 -4.43 -4.43 -3.70 -4.54 

                          St = 1 for t ∈  (1973q4, 1980q1), 0 otherwise. �: Non-rejection values of the null 
                          hypothesis (4) at the 95% significance level, and in bold, the non-rejection values  
                          when the test statistic is mononotic with respect to d.  
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TABLE 6 

Testing  (12) against (13) in (2) and (11) in 
the log of the U.K real oil prices 

d  White noise ut AR(1)  ut 
0.00  728.12 432.7 
0.10  631.88 27.73 
0.20  518.01 20.03 
0.30  388.37 15.11 
0.40  256.68 9.32 
0.50  144.75 8.61 
0.60  68.53 7.79 
0.70  26.83 7.59 
0.80  8.28 6.89 
0.90   2.21� 6.41 
1.00   1.80� 7.26 
1.10   3.79� 7.60 
1.20  6.40 8.93 
1.30  9.08 11.07 
1.40  11.63 13.01 
1.50  13.99 14.77 
1.60  16.16 16.38 
1.70  18.15 17.90 
1.80  19.99 19.32 
1.90  21.69 20.67 
2.00  23.28 21.96 

� : Non-rejection values of the null hypothesis (12) 
 at the 95% significance level. 

 
 
 
 
 
 
 
 


