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Abstract

This paper deals with a stochastic Generalized Assignment Problem
with recourse. Only a random subset of the given set of jobs will require to
be actually processed. An assignment of each job to an agent is decided a
priori, and once the demands are known, reassignments can be performed
if there are overloaded agents.

We construct a convex approximation of the objective function that is
sharp at all feasible solutions. We then present three versions of an exact
algorithm to solve this problem, based on branch and bound techniques,
optimality cuts, and a special purpose lower bound. Numerical results are
reported.

Keywords: Generalized assignment, integer recourse, convex approxi-
mation

Mathematics Subject Classification: 90C15, 90C11

1 Introduction

Pairing problems constitute a vast family of problems in Combinatorial Op-
timization. Different versions of these problems have been studied since the
mid-fifties due both to their many applications and to the challenge of under-
standing their combinatorial nature. The range of problems in this group is
very wide. Some can be easily solved in polynomial time, whereas others are
extremely difficult. The simplest one is the Assignment Problem, that can be
easily solved by the Hungarian Algorithm [Kuh55]. Matching Problems appear
when the underlying graph is no longer bipartite and are much more involved,
although they can still be solved in polynomial time [Edm65]. On the other
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extreme, the Generalized Assignment Problem is a very difficult combinatorial
optimization problem that is NP -hard.

In general terms, the Assignment Problem consists of finding the best assign-
ment of items to agents according to a predefined objective function. Among
its many applications, we mention the assignment of tasks to workers, of jobs
to machines, of fleets of aircraft to trips, or the assignment of school buses to
routes. However, in most practical applications, each agent requires a quantity
of some limited resource to process a given job. Therefore, the assignments have
to be made taking into account the resource availability of each agent. The prob-
lem derived from the classical Assignment Problem by taking into account these
capacity constraints is known as the Generalized Assignment Problem (GAP).
Among its many applications, we find assignment of variable length commer-
cials into time slots, assignment of jobs to computers in a computer network
([Bal72]), distribution of activities to the different institutions when making a
project plan ([ZR88]), etc. Besides these applications, it also appears as a sub-
problem in a variety of combinatorial problems like Vehicle Routing ([FJ81]) or
Plant Location ([RS77, Dı́a01]). A survey of exact and heuristic algorithms to
solve the GAP can be found in [CW92]. More recently, Savelsbergh ([Sav97])
proposed a Branch and Price algorithm, and different metaheuristic approaches
have been proposed by other authors ([BC97, DF01, YTI98, YIG99]).

As mentioned before, the GAP is a very challenging problem, not only be-
cause it is NP -hard, but also because the decision problem to know if a given
instance is feasible is NP -complete [MT90]. In fact, the GAP is in practice even
more difficult, since most of its applications have a stochastic nature. Stochas-
ticity can be due to two different sources. On the one hand, it appears when
the actual amount of resource needed to process the jobs by the different agents
is not known in advance. This happens, for instance, when assigning software
development tasks to programmers; the time needed for each task is not known
a priori. Similarly, the actual running times of jobs are not known when they
are assigned to processors. This is due to the fact that the actual running times
of jobs depend on the overall load of the system. In all these cases, the amount
of resource consumed when assigning tasks to agents should be modeled with
continuous random variables.

The second source of stochasticity is uncertainty about the presence or ab-
sence of individual jobs. In such cases, there is a set of potential jobs, but
only a subset of them will have to be actually processed. This subset is not
known when the assignment has to be decided. This is the case of emergency
services, or the assignment of repairmen to machines. In this situation, the
resource requirement of each job can be modeled as a random variable with
Bernoulli distribution. This kind of stochasticity has also been considered in
other problems, such as stochastic routing problems ([BSL88, LLM94])

The stochasticity in the GAP studied in this paper is of the latter type. The
problem will be modeled as a stochastic programming problem with recourse.

In the last decades, Stochastic Programming has become an increasingly
studied area in optimization. Problems with recourse (that is, problems where
an adaptation or recourse action is allowed once the values of stochastic pa-
rameters are known) constitute one of the most studied issues (see [KW94,
Pr95, BL97] for a general overview). An extensive bibliography on stochastic
programming can be found in [Vle01].

More recently, stochasticity has also been considered in integer programs
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(see e.g. the surveys [SSV96, SV97, KV99]). Starting with the work by Yudin
& Tsoy [YT74], several approaches have been proposed to deal with integrality
in stochastic programs (see [Wol80, LL92, LV93, KSV96, CS99, SSV98, NER98,
ATS00, RS01]).

We are aware of only two papers addressing any type of stochastic assignment
problems. Mine et al. [MFIS83] present a heuristic for an assignment problem
with stochastic side constraints. Albareda & Fernández [AF00] propose some
model-based heuristics for the same stochastic GAP considered in the present
work. To the best of our knowledge, no results on exact algorithms for any type
of stochastic GAP are known.

In this paper, we consider the following stochastic GAP: After the assign-
ment is decided, each job requires to be processed with some known probability.
In this context, we can think that jobs are customers requiring some service with
a demand distributed as a Bernoulli random variable. The problem is modeled
as a recourse problem. Assignments of customers to agents are decided a priori.
Once the actual demands are known, if the capacity of an agent is violated,
some of its assigned jobs are reassigned to underloaded agents at a prespecified
cost. For a given instance of the problem, the overall demand of the customers
requiring service can be bigger than the total capacity. In this case, part of the
customers are lost, and a penalty cost is paid.

The objective is to minimize the expected total costs. The costs consist
of two terms: the assignment costs, and the expected penalties for reassigned
and/or lost customers. This problem has relatively complete recourse, i.e., the
second-stage problem is feasible for any a priori assignment and any realization
of the demand. Additionally, due to the assumption that demands are binary,
we can build a model for the second-stage problem where only the right-hand
side contains non-deterministic elements.

We propose three versions of an exact algorithm for this stochastic GAP. All
versions have in common that the (nonconvex, discontinuous) recourse function
is replaced by a convex approximation, which is exact at all binary first-stage
solutions. Next, a cutting procedure is used to iteratively generate a partial
description of this convex approximation of the recourse function, following the
ideas presented in [VW69] and in [LL92]. Integrality of the first-stage variables
is addressed using branch and bound techniques.

The first version of the algorithm has the structure of a branch and cut
algorithm. At each node, cuts are iteratively added until no more violated valid
constraints are found. Then, if the current solution is not integer, branching is
performed.

However, in the considered stochastic GAP, the separation problem to find
the new cut to be added is highly time consuming because it requires the evalua-
tion of the convex approximation of the recourse function. To reduce the number
of evaluations of this function, a second version has been designed where, at each
iteration, an integer problem is solved using branch and bound. Once an integer
assignment is found, the associated cut is computed and added. The algorithm
terminates when the integer solution found does not violate the associated con-
straint. This approach makes a great effort to find integer solutions even at the
earliest stages when the information about the recourse function is rather poor.

A third strategy has been designed as a tradeoff between the other two. The
idea is to avoid the excessive number of evaluations of the recourse function as
well as to reduce the time invested to reach integrality. At each node of the
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enumeration tree, an associated cut is computed. If the solution of the node is
integer, the cut is added and the current problem is reoptimized. Otherwise,
branching is performed and the new cut is added to the descendant nodes.

All three algorithms compute the same upper and lower bounds initially.
The upper bound is obtained with the heuristics presented in [AF00]. The
lower bound is found by solving a family of stochastic linear subproblems with
the L-shaped algorithm.

The remainder of this paper is organized as follows: In Section 2 the two-
stage problem is modeled and its properties are studied. In particular, we
introduce a convex approximation of the non-convex recourse function. The
algorithms are described in Section 3. After that, Section 4 briefly discusses
the computation of the upper bound, and defines the lower bound. In Section
5 some strategies to improve the performance of the algorithms are discussed.
Finally, computational experiences and conclusions are presented in Sections 6
and 7 respectively.

2 The model

The Generalized Assignment Problem (GAP) consists in finding the cheapest
assignment of a set of jobs to a set of agents such that each job is assigned
exactly to one agent and capacity constraints on some resource are satisfied.

Let I and J be the index sets of agents and jobs, respectively, with |I| = ns
and |J | = nt. We define, for i ∈ I and j ∈ J ,

cij is the cost of assigning job j to agent i;

qij is the amount of resource needed by agent i to perform task j;

bi is the resource capacity of agent i (i ∈ I),

and

xij takes the value 1 if job j is assigned to agent i, and 0 otherwise.

Using this notation, the GAP is modeled as:

Min
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1 j ∈ J

∑
j∈J

qijxij � bi i ∈ I

xij ∈ {0, 1} i ∈ I, j ∈ J

Model (2.1)

Most often, however, the assignment of jobs to agents must be decided before
the actual values of the demands for resource capacity qij , i ∈ I, j ∈ J , are
known, so that the above model is no longer valid.

In this paper, the possibility of reassigning some of the jobs once the values
of the vector q are known, incurring costs Kj, j ∈ J is considered.

4



Assuming that the values of qij , i ∈ I, j ∈ J are agent independent (that is,
for each j ∈ J , qij = qj ∀i ∈ I) and that they are Bernoulli random variables,
the problem can be formulated using the following recourse model:

Min Q(x)
s.t.

∑
i∈I

xij = 1 j ∈ J

xij ∈ {0, 1} i ∈ I, j ∈ J

Model (2.2)

where1 Q(x) := Eqv(x, q) is the recourse function, and v(x, q) is the value of

Min
∑
i∈I

∑
j∈J

cijyij +
∑
j∈J

Kjzj

s.t. yij + zj � qjxij i ∈ I, j ∈ J∑
i∈I

yij � qj j ∈ J

∑
j∈J

yij � bi i ∈ I

yij ∈ {0, 1} i ∈ I, j ∈ J

zj ∈ {0, 1} j ∈ J

Model (2.3)

In the first stage, each job is provisionally assigned to an agent. The second-
stage problem determines the final assignment pattern once the demands are
known. Variables yij ((i, j) ∈ I × J) are defined like xij , and zj (j ∈ J) point
out those jobs with nonzero demand that have been reassigned. The first group
of constraints (from now on, flag constraints) set zj to 1 if job j has nonzero
demand and it is not assigned to the same agent it was assigned to a priori.
The other constraints ensure that all jobs with nonzero demand are assigned to
an agent indeed and that capacities of the agents are not violated, respectively.
Remark It would be consistent with the presentation of Model (2.2) to use
equalities in the second set of constraints of Model (2.3). However, in view of
Proposition 2.2 below, we prefer the equivalent formulation using inequalities.

This is a two-stage recourse model with binary variables in both stages.
In addition to difficulties caused by integrality of the first-stage variables, this
means that the recourse function Q is non-convex in general.

Indeed, since the parameters q are discretely distributed, this function is
lower semicontinuous but discontinuous in general [Sch93]. Moreover, evaluation
ofQ for a given x calls for solving many second-stage problems, which are binary
programming problems here. Since these second-stage problems are not easily
solvable, this is computationally very demanding. In the next section we show
how to overcome these problems by redefining the second-stage problem.

1
E denotes mathematical expectation.
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2.1 Convex approximation of the recourse function

First we introduce an alternative formulation of the second-stage problem for
GAP. Subsequently, we show that this new formulation has a nice mathemati-
cal property, which allows to drop the integer restrictions on the second-stage
variables.

Proposition 2.1 Given a feasible solution x of Model (2.2) and q a 0-1
vector, Model (2.3) is equivalent to

Min
∑
i∈I

∑
j∈J

cijyij +
∑
i∈I

∑
j∈J

Kjzij

s.t. yij + zij � qjxij i ∈ I,j ∈ J∑
i∈I

yij � qj j ∈ J

∑
j∈J

yij � bi i ∈ I

yij ∈ {0, 1} i ∈ I,j ∈ J

zij ∈ {0, 1} i ∈ I,j ∈ J

Model (2.4)

Proof. Let (y∗, z∗) be an optimal solution of Model (2.4). From the fact that
for a feasible point x each job is assigned a priori to exactly one agent it follows
that for a fixed j ∈ J at most one of the variables z∗ij (i ∈ I) takes value 1 in the
optimum and the others are 0. So, taking z̃j = maxi∈I z

∗
ij , (y

∗, z̃) is a feasible
point for Model (2.3) with the same value as (y∗, z∗).

Similarly, given an optimal solution (y∗, z∗) of Model (2.3), a feasible solution
(y∗, z̃) of Model (2.4) with the same objective value can be built as follows:

If z∗j = 0, take z̃ij = 0, ∀i ∈ I.

If z∗j = 1, then, using that
∑

i∈I xij = 1, only one of the flag constraints
is tight, say (i1, j). Set z̃i1j = 1 and z̃ij = 0, ∀i 	= i1.

Thus, both models lead to the same optimal value.

Proposition 2.2 The matrix defining the feasible region of Model (2.4) is
totally unimodular (TU).

Proof.
The structure of the matrix is

A =
(
Ins·nt Ins·nt

M O

)
,

where M is the matrix of a transportation problem, which is known to be TU.
By Proposition III.2.1 in [NW88], the matrices

M1 =
(
Ins·nt

M

)
and M2 =


M1 Ins·nt+ns+nt



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are also TU. Finally, since A is a submatrix of M2, it is TU as well.

Since the matrix defining the feasibility region of Model (2.4) is totally
unimodular, its linear relaxation will have integer optimal solutions whenever
the right-hand side is integral; moreover, in that case, the optimal values of
Model (2.4) and its relaxation are equal.

Assuming that the capacities bi, i ∈ I, are integral, the right-hand side
of Model (2.4) is integral for every feasible (i.e., binary) first-stage solution of
GAP. Thus, using Propositions 2.1 and 2.2, we redefine the function v(x, q) as
the optimal value of the LP problem

Min
∑
i∈I

∑
j∈J

cijyij +
∑
j∈J

Kjzj

s.t. yij + zj � qjxij i ∈ I,j ∈ J∑
i∈I

yij � qj j ∈ J

∑
j∈J

yij � bi i ∈ I

yij ∈ [0, 1] i ∈ I,j ∈ J

zj � 0 j ∈ J

Model (2.5)

As shown above, this function coincides with the previously defined v(x, q)
in all feasible vectors x, for any demand vector q. This is not true for fractional
vectors x, but this causes no problems since such x are not feasible anyway. The
advantages of defining v as the value function of a second-stage problem with
continuous variables are two-fold: (i) the evaluation of v can be done (much)
faster; (ii) the mathematical properties of v are much nicer. In particular, the
new function v is a convex function of x. As we will discuss next, these properties
carry over to the recourse function Q, which is defined as the expectation of v.

2.2 Properties of the recourse function

Before introducing our algorithm, we present some well-known properties of
the recourse function Q. Discussion on these and other properties in a general
context can be found in the textbooks [BL97, KW94, Pr95].

Remark Assuming that
nt � B (2.1)

where B =
∑

i∈I bi, it follows that Model (2.2) is a two-stage program with
relatively complete recourse. Assuming in addition that Kj � 0, j ∈ J , it
follows that, for every realization of the demand vector q, the second-stage value
function v is finite for all x ∈ Rns·nt.

If (2.1) is not satisfied, relatively complete recourse is obtained by introduc-
ing a dummy agent 0 ∈ I with enough capacity in the second stage, who handles
excess demand at a unit penalty cost P . That is, this dummy agent has assign-
ment costs c0j = P −Kj, j ∈ J , since any a posteriori assignment to it will also
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induce the corresponding reassignment penalty Kj; it makes no sense, however,
to pay both penalties at the same time.

Proposition 2.3 The function Q is finite and convex. Moreover, since the
random parameters are discretely distributed, Q is a polyhedral function.

Proposition 2.4 Let S be the index set of scenarios (realizations). For
s ∈ S, let ps be the probability of scenario s and qs the corresponding demand
vector, so that

Q(x) =
∑
s∈S

psv(x, qs), x ∈ Rns·nt.

Let λ(x, qs) be a vector of dual prices for the first set of constraints inModel (2.5)
for the pair (x, qs). Then u(x),

u(x) =
∑
s∈S

psλ(x, qs)diag(q̄s
1, . . . , q̄

s
nt),

is a subgradient of Q at x. Here, q̄s
j is a vector of |J | components, all equal to

the demand of customer j in scenario s.

3 Algorithms

Van Slyke and Wets used these properties of the recourse function for continuous
two-stage programs to develop the so-called L-shaped algorithm [VW69]. This
algorithm exploits the structure of the recourse function within a cutting plane
scheme similar to Benders’ partitioning algorithm.

The basic idea of that algorithm is to substitute the objective function Q(x)
of Model (2.2) by a continuous variable θ and include a constraint of the form

θ � Q(x)

in the definition of the feasible region.
This constraint is initially relaxed and successively approximated by a set of

linear cuts:
θ � α+ βx,

which are called optimality cuts.
In this work we will use two kinds of optimality cuts. From Propositions 2.3

and 2.4 we derive cuts of the form:

θ � Q(x̄) + 〈x− x̄, u(x̄)〉, (3.2)

where 〈·, ·〉 denotes the usual inner product. We will call (3.2) ∂-optimality cuts
to distinguish them from the L-L-optimality cuts defined below.

Integrality in two-stage programming was first addressed in [Wol80] where
programs with binary first-stage variables are considered. In that paper, an
implicit enumeration scheme is presented which includes the generation of op-
timality cuts at every feasible solution generated. More recently, Laporte and
Louveaux [LL92] presented a branch and cut algorithm, also for two-stage re-
course problems with binary first-stage variables. They introduced a class of
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optimality cuts that are valid at all binary first-stage solutions, for general
second-stage variables. The structure of these cuts, given a binary vector x̄, is

θ � (Q(x̄)− L)

(∑
x̄i=1

xi −
∑
x̄i=0

xi

)
− (Q(x̄)− L)(

∑
i

x̄i − 1) + L (3.3)

where L is a global lower bound of Q. See [CT98] for a generalization of these
results.

We will refer to (3.3) as L-L-optimality cuts. In addition, for our GAP
problem ∂-optimality cuts can be used due to the equivalent reformulation of
the second-stage problem using continuous second-stage variables, as derived in
Section 2.1.

We will combine both kinds of optimality cuts. Note that both types of cuts
are sharp at the (binary) solution at which they are generated.

The three versions of the algorithm presented in this work deal with in-
tegrality of the first-stage variables by means of a branch and bound scheme,
and approach the recourse function by successively adding optimality cuts. The
difference between them is the order in which these operations are done.

BFCS (Branch first, cut second) seeks for violated cuts and adds them once
an integer solution is found.

BCS (Branch and cut simultaneously) adds violated cuts at each node of
the tree, if they exist, and branches if there is any non-integer variable.

CFBS (Cut first, branch second) iteratively adds cuts to the problem at a
node until no more violated cuts are found and then it branches.

Using the reformulation presented in Section 2, the recourse function Q of
our problem is convex. Consequently, ∂-optimality cuts generated at fractional
vectors x are valid for all feasible (binary) solutions. Hence, they can be gener-
ated at any node of a branch-and-cut scheme. On the other hand, by definition
L–L-optimality cuts can only be generated at binary vectors.

3.1 BFCS

The BFCS (Branch first, cut second) version of the algorithm operates on binary
subproblems IPK , defined as

Min θ

s.t.
∑
i∈I

xij = 1 i ∈ I

αk
l + βk

l x � θ k = 1, . . . ,K, l = 1, 2
xij ∈ {0, 1} i ∈ I, j ∈ J

Model (3.1)

where the constraints in the second set are the optimality cuts generated so
far.

Then the algorithm is defined as follows:
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1. Find a lower bound θ

2. Find an initial assignment x0. Let K := 1.

3. Find (αK
1 , βK

1 ) and (αK
2 , βK

2 ) that define the L-L-optimality cut and the
∂-optimality cut associated to xK−1, respectively.

4. Using a linear integer programming solver, find (xK , θK)

as a solution of IPK .

5. Evaluate rK = Q(xK).

6. If rK = θ, let θK := rK , go to 8

7. If rK > θK , K := K + 1 and go to 2.

8. xK is an optimal solution with recourse cost θK .

Remark Observe that IPK will always be feasible, so that step 3 is well defined.

Remark If an assignment is found in step 3 in two different iterations,
say K1 < K2, then the K1-th optimality cuts will ensure that rK2 � θK2 and
the algorithm will end. Thus, by finiteness of the set of integer assignments, the
algorithm terminates in a finite number of steps.

Remark Following this scheme, the recourse function is always evaluated
at binary points so that, in this case, L–L-optimality cuts as well as ∂-optimality
cuts are appropriate. Computational experiments have indicated that informa-
tion provided by these optimality cuts is supplementary, so that it is worthwhile
to add both kinds of cuts at each iteration.

3.2 BCS

The BCS (branch and cut simultaneously) version of the algorithm operates on
LP subproblems in which some of the binary variables are fixed. Given a pair
of disjoint subsets of I × J , S = (S0, S1), we define the problem PK,S as:

Min θ

s.t.
∑
i∈I

xij = 1 i ∈ I

αk + βk · x � θ k = 1, . . . ,K

xij = 0 (i, j) ∈ S0

xij = 1 (i, j) ∈ S1

xij ∈ [0, 1] otherwise

Model (3.2)

The proposed algorithm can now be described as follows. Note that below
we generate ∂-optimality cuts at non-integer solutions. In this respect our algo-
rithm differs from the integer L-shaped algorithm presented in [LL92], because
there cuts are only generated in nodes where integer solutions are obtained.
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1. L := {(∅, ∅)} and K := 1.

2. Compute a lower bound, θ.

3. Find a feasible assignment x0, compute (α1, β1) (associated L-L cut).

Let θ̄ := Q(x0) and x∗ := x0.

4. If L is empty, go to 8.

Otherwise, take S from L following a last-in-first-out policy, and solve
PK,S to obtain (xK , θK)

5. If θK > θ̄ or PK,S is infeasible go to 4.

Otherwise find rK = Q(xK).

6. If rK = θ and xK ∈ Zn, let x∗ := xK , θ̄ := rK and go to 8.

7. There are four possibilities:

rK � θK rK > θK

xK ∈ Z
n

• If rK < θ̄, x∗ := xK ,
θ̄ := θK .

• Go to 4.

• Find1 (αK+1, βK+1),

• K := K + 1,

• Add S to L .

• Go to 4.

xK �∈ Z
n

• Take xK
ij 	∈ Z.

• Add (S0 ∪ {(i, j)}, S1),
(S0, S1∪{(i, j)}) to L .

• Go to 4.

• Find2 (αK+1, βK+1)

• K:=K+1

• Take xK
ij 	∈ Z.

• Add (S0 ∪ {(i, j)}, S1),
(S0, S1∪{(i, j)}) to L .

• Go to 4.

8. An optimal solution is given by x∗ and its recourse cost is θ̄.

1L–L cut
2∂ cut
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3.3 CFBS

This scheme is an adaptation of the branch-and-cut method developed for 0-1
mixed convex programming in [SM99] to our concrete problem.

It is similar to BCS but now branching is only done when the solution at
hand does not violate any optimality cut.

1. L := {(∅, ∅)} and K = 1.

2. Find a lower bound θ

3. Generate a feasible assignment x0 and the corresponding ∂-optimality cut
(α1, β1).

θ̄ := Q(x0) and x∗ := x0.

4. If L is empty, go to 9.

Otherwise, take S from L following a LIFO policy

5. Solve PK,S to obtain (xK , θK).

6. If θK > θ̄ or PK,S is infeasible go to 4.

Otherwise find rK = Q(xK).

7. If rk > θK ,

let K := K + 1, compute (αK , βK) (∂ cut)

If xk ∈ Zn, let K:=K+1, compute (αK , βK) (L–L cut)

go to 4.

8. If xk ∈ Z
n go to 8.

Otherwise,

Take xK
ij 	∈ Z.

Add (S0 ∪ {(i, j)}, S1), (S0, S1 ∪ {(i, j)}) to L .

Go to 4.

9. The optimal solution is given by x∗ and its value is θ̄.

4 Lower and upper bounding

All three versions of the algorithm start by computing a lower bound for the
problem and finding an initial feasible solution, which also provides an initial
upper bound. The quality of both the upper and the lower bound is crucial for
the behavior of the algorithm. A good upper bound will restrict the size of the
search tree, whereas the quality of the lower bound determines the impact of
the L-L-optimality cuts.
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4.1 Lower bound

In combinatorial optimization, lower bounding is frequently achieved by means
of linear or Lagrangian relaxations. In this paper, we strengthen the linear
relaxation in the following way.

Given a fixed customer j0 ∈ J , we know that in the optimal solution it will
be assigned a priori to exactly one agent i ∈ I; that is, in the optimal vector
x, xij0 will be 1 for exactly one i ∈ I. With z∗ denoting the optimal value
of the SGAP problem, and, for i ∈ I defining Lij0 as the value of the convex
continuous recourse problem

Min Q(x)
s.t.

∑
i∈I

xij = 1 j ∈ J

xij ∈ [0, 1] i ∈ I, j ∈ J

xi0j0 = 1

Model (4.1)

for at least one i0 ∈ I it holds that Li0,j0 � z∗. Thus, for a fixed j0, we have

min
i∈I

Lij0 � z∗ (4.4)

Since (4.4) holds for any j0 ∈ J , we obtain the valid lower bound

LB := max
j∈J

min
i∈I

Lij .

In the computational experiments reported in this paper, LB has been computed
using the L-shaped algorithm proposed in [VW69].

Obviously, the computation of this lower bound requires many evaluations of
the function Q. As we will illustrate in Section 6, these calculations can be done
efficiently, due to the reformulation of the second-stage problem as proposed in
Section 2.1, which allows to evaluate Q as the expected value function of an LP
instead of an IP problem.

4.2 Upper bound

Any assignment of each customer to an agent gives rise to an upper bound for
the problem. In this paper we have taken as initial solution the one given by
approach B from [AF00]. It consists of taking the assignment found as the
optimum of the following deterministic approximation of the problem:

Min
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1 j ∈ J

∑
j∈J

xij � b̃i i ∈ I

xij ∈ {0, 1} i ∈ I, j ∈ J

Model (4.2)
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where

b̃i =

⌈
bi

nt∑nt
k=1 bk

⌉
.

That is, auxiliary capacities are defined, proportional to the original ones,
that are just big enough to serve one unit of demand to each customer. The
solution of this problem is expected to be good, especially for instances where
the capacity constraint is tight.

5 Improving strategies

Evaluations of the recourse function Q are highly time consuming, even though
our reformulation allows its computation by solving LP problems instead of
integer problems. Therefore, some strategies directed at reducing the number
of evaluations needed to solve a problem have been considered.

5.1 Initial cuts

The first-stage problem contains no information about the capacities of the
agents and the probability of demand. Consequently, until a few cuts are gen-
erated, the solutions of problems IPK and PK,S are almost meaningless.

The first attempt to improve the behavior of all three versions of the algo-
rithm, has been to consider a few feasible assignments and generate the corre-
sponding cuts, before any optimization is performed.

To choose such assignments, several options have been considered: obtained
at random, by solving linear approximations of the problem, and so on. The
choice that gave better results was to consider, for each agent, the assignment
of all jobs to it. This leads to an initial set of ns optimality cuts. In this phase,
∂–optimality cuts have been used.

5.2 Integrality cuts

The branch and cut scheme has been reinforced with cover cuts derived from
the optimality cuts and a global upper bound for Q.

These cover cuts are lifted using the methodology presented in [Wol98]. The
order of variable lifting is decisive for the results. In this work lexicographical
order has been chosen.

6 Computational results

Computations have been made on a SUN sparc station 10/30 with 4 hyper-
SPARC processors at 100 MHz., SPECint95 2.35. To solve the problems IPK

and PK,S CPLEX 6.0 was used.

6.1 Problem statistics

All three versions of the algorithm have been tested on a set of 46 problems.
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The number of agents ranges from 2 to 4, and the number of customers from
4 to 15. Demand probabilities have been selected from the set

{0.1, 0.2, 0.4, 0.6, 0.8, 0.9},

and capacities have been chosen in such a way that the ratio of total capacity
to total demand ranges from 0.5 to 2.

In principle, the assignment costs cij have been generated randomly. How-
ever, in some cases we have modified the realizations in order to obtain more
interesting instances.

6.2 Evaluation of Q
Efficient evaluation of the function Q is crucial for both the computation of the
lower bound LB as well as for all variants of the proposed algorithm.

Due to the reformulation of the second-stage problem as proposed in Section
2.1, which allows to evaluate Q as the expected value function of an LP instead
of an IP problem, these calculations can be done much faster.

In support of this claim, Table 1 shows average CPU times (for each group of
instances with given dimensions) for evaluating Q using both formulations. For
each instance, Q was evaluated in the corresponding optimal binary solution,
and also in a randomly generated fractional solution (that is feasible with respect
to the first set of constraints in Model (2.2)).

dim
binary x fractional x

Q ∼ IP Q ∼ LP Q ∼ IP Q ∼ LP
2× 4 0.09 0.02 0.46 0.03
4× 8 2.37 0.31 14.08 0.52
3× 7 1.08 0.07 10.21 0.24
3× 8 2.46 0.16 20.96 0.37
3× 9 5.41 0.30 122.61 0.75
3× 10 11.79 0.63 160.04 1.22
3× 15 468.39 24.79 160002 75.08
4× 7 1.50 0.09 11.57 0.29
4× 8 3.21 0.19 24.64 0.77

Table 1: Average CPU times for evaluating Q at binary and frac-
tional solutions.

Table 1 shows that by using the reformulation of Q as proposed in Section
2.1, the evaluation times are reduced by a factor up to almost 19 for binary
arguments. This effect is even stronger when the argument is fractional, because
then it is harder to find integer solutions to Model (2.3). In the latter case the
speedup factor exceeds 200 for the 3 instance.

As we will see below, solving an instance from our set of test problems
typically takes several hundreds of evaluations of Q.

2Time limit reached.
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6.3 Numerical results

First, the behavior of the bounding procedures is studied. Results are shown in
Table 2. The first five columns show index numbers, dimensions, total capac-
ities, and probabilities of demand of the problems, respectively. Then percent
deviations of the upper and the lower bound from the optimal solution value are
reported, as well as the gap between both bounds, relative to the lower bound.
The CPU time (in seconds) required to compute both bounds appears in the
last column.

The relative deviations of the bounds are also shown in Figure 1.

# ns nt
total p upper lower bounding
cap. dev. dev. gap time

1 2 4 2 0.2 0.00 2.82 2.90 0.55
2 2 8 4 0.2 0.50 5.24 6.06 43.43
3 3 7 7 0.1 0.00 0.00 0.00 3.64
4 3 7 7 0.2 0.00 0.00 0.00 7.15
5 3 7 7 0.4 0.00 0.00 0.00 4.93
6 3 7 7 0.6 0.00 0.00 0.00 5.26
7 3 7 7 0.8 0.00 0.00 0.00 4.64
8 3 7 7 0.9 0.00 0.00 0.00 5.51
9 3 7 7 0.1 0.00 0.00 0.00 5.38
10 3 7 7 0.2 0.00 0.00 0.00 2.98
11 3 7 7 0.4 0.00 0.00 0.00 7.79
12 3 7 7 0.6 0.00 0.00 0.00 7.34
13 3 7 7 0.8 0.00 0.00 0.00 6.89
14 3 7 7 0.9 0.00 0.00 0.00 6.10
15 3 8 8 0.8 0.00 0.00 0.00 19.37
16 3 8 6 0.8 0.25 4.20 4.65 84.97
17 3 8 9 0.8 10.22 0.00 10.22 17.77
18 3 8 6 0.6 3.42 6.95 11.14 67.55
19 3 8 15 0.8 33.63 0.00 33.63 6.85
20 3 9 9 0.1 1.95 0.00 1.95 57.75
21 3 9 9 0.2 1.44 0.00 1.44 54.16
22 3 9 9 0.4 0.00 0.00 0.00 56.61
23 3 9 9 0.6 0.00 0.00 0.00 42.97
24 3 9 9 0.8 0.00 0.00 0.00 36.49
25 3 9 9 0.9 0.00 0.00 0.00 36.83
26 3 10 9 0.8 1.22 23.97 33.13 193.04
27 3 10 10 0.4 1.53 0.11 1.64 110.53
28 3 15 14 0.4 0.75 0.00 0.75 6906.27
29 4 7 6 0.1 0.00 0.00 0.00 44.96
30 4 7 6 0.2 0.00 0.27 0.27 65.37
31 4 7 6 0.4 0.00 4.23 4.42 122.91
32 4 7 6 0.6 0.00 7.87 8.54 99.77
33 4 7 6 0.8 0.00 6.35 6.78 67.05
34 4 7 6 0.9 0.00 4.84 5.08 111.74
35 4 8 7 0.1 0.00 0.00 0.00 95.10
36 4 8 7 0.2 0.00 0.23 0.23 146.14
37 4 8 7 0.4 0.00 3.84 3.99 210.44
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# ns nt
total p upper lower bounding
cap. dev. dev. gap time

38 4 8 7 0.6 0.00 7.84 8.51 306.18
39 4 8 7 0.8 0.02 6.63 7.12 234.86
40 4 8 7 0.9 0.09 4.96 5.31 192.87
41 4 8 7 0.1 0.00 0.00 0.00 112.36
42 4 8 7 0.2 0.00 0.30 0.30 117.29
43 4 8 7 0.4 0.00 4.44 4.65 158.55
44 4 8 7 0.6 0.03 8.79 9.68 146.13
45 4 8 7 0.8 0.15 6.64 7.28 309.64
46 4 8 7 0.9 0.00 4.94 5.20 149.43

Table 2: Relative deviations of bounds and CPU time (in seconds).
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Figure 1: Percent deviations (summed) of the bounds.

The results in Table 2 indicate that the CPU times needed to complete the
bounding phase are reasonable.

Due to its dimensions, the bounding time for problem 28 is considerably
higher than for the other instances. Its relatively large number of customers
affects the computation of the lower bound in two ways. First, the number of
subproblems Model (4.1) to be solved is higher (45 subproblems, compared to
e.g. 32 for 4× 8 instances). Secondly, as shown in Table 1, the evaluation of Q
is much more time consuming in this case since the number of realizations of
the demand vector grows exponentially with the number of customers (32768
realizations, instead of e.g. 1024 for the problems with 10 customers).
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As can be seen in Table 2 and in Figure 1, for many of the test problems the
gap between the upper and the lower bound is zero, so that an optimal solution
is already identified at the bounding phase. For such problems, Table 3 shows
the CPU time needed for bounding in the BCS column; for all other instances it
shows the total CPU time needed to find an optimal solution, for each version
of the algorithm.

# ns nt cap. p BCS CFBS BFCS

1 2 4 2 0.2 0.76 0.67 0.80
2 2 8 4 0.2 91.04 221.29 368.22
3 3 7 7 0.1 3.64 — —
4 3 7 7 0.2 7.15 — —
5 3 7 7 0.4 4.93 — —
6 3 7 7 0.6 5.26 — —
7 3 7 7 0.8 4.64 — —
8 3 7 7 0.9 5.51 — —
9 3 7 7 0.1 5.38 — —
10 3 7 7 0.2 2.98 — —
11 3 7 7 0.4 7.79 — —
12 3 7 7 0.6 7.34 — —
13 3 7 7 0.8 6.89 — —
14 3 7 7 0.9 6.10 — —
15 3 8 8 0.8 19.37 — —
16 3 8 6 0.8 2226.80 24054.04 335800.11
17 3 8 9 0.8 19.51 17.91 16.99
18 3 8 6 0.6 402.36 4903.32 18313.17
19 3 8 15 0.8 8.05 6.97 8.69
20 3 9 9 0.1 63.92 58.22 43.40
21 3 9 9 0.2 59.65 54.64 58.13
22 3 9 9 0.4 56.61 — —
23 3 9 9 0.6 42.97 — —
24 3 9 9 0.8 36.49 — —
25 3 9 9 0.9 36.87 — —
26 3 10 9 0.8 1156.66 5803.34 6581.60
27 3 10 10 0.4 122.02 113.48 119.97
28 3 15 14 0.4 7384.26 6933.17 *
29 4 7 6 0.1 44.96 — —
30 4 7 6 0.2 68.42 67.53 67.46
31 4 7 6 0.4 264.90 1216.38 283.16
32 4 7 6 0.6 990.97 16039.32 14914.99
33 4 7 6 0.8 1889.68 25202.24 89437.42
34 4 7 6 0.9 2294.23 22155.11 66.22
35 4 8 7 0.1 95.10 — —
36 4 8 7 0.2 160.36 148.85 182.15
37 4 8 7 0.4 492.42 2923.12 804.82
38 4 8 7 0.6 4957.58 110683.83 143552.59
39 4 8 7 0.8 15085.77 * 1119394.47
40 4 8 7 0.9 16552.54 * 183.49
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# ns nt cap. p BCS CFBS BFCS
41 4 8 7 0.1 112.36 — —
42 4 8 7 0.2 120.11 113.41 139.71
43 4 8 7 0.4 389.54 1860.08 351.94
44 4 8 7 0.6 5558.37 101081.14 *
45 4 8 7 0.8 17704.89 107036.85 *
46 4 8 7 0.9 15188.75 112888.18 *

Table 3: CPU times in seconds for each version of the algorithm.
(* denotes an unsolved instance; — denotes an instance solved in
the bounding phase.)
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Figure 2: Logarithm of CPU times of each version of the algorithm, for each
problem instance. (A value of 24 denotes an unsolved instance.)

For most of the test problems, an optimal solution was found by each version
of the algorithm within the prespecified limits on the number of the evaluations
of the recourse function. The limit was 5000 in the case of BFS. For BFCS,
since many cuts are expected to be added at each node of the tree, the limit
was raised to 15000. On the other hand, since BFCS requires the solution of an
integer problem before each evaluation of the recourse function, the limit was
set to only 1000 in this case.

The CFBS version of the algorithm did not solve problem instances 39 and
40. The same happened with the BFCS version on four different instances:
numbers 28 and 44 – 46. The BCS version of the proposed algorithm solved all
problem instances. Moreover, as can be seen from Table 3 and Figure 2, BCS
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is an order of magnitude faster on several hard instances (problem number 34
being a remarkable exception).

Hardness of the problem instances is not determined by their dimensions
alone. For example, we see that the solution times were very different for prob-
lems 16 and 19 (both 3 × 8) and for problems 42 and 46 (both 4× 10). In the
case of problems 16 and 19, the only difference between them is the tightness
of the capacity constraint, with total capacities of 6 and 15, respectively. Simi-
larly, problems 42 and 46 differ only in their respective probabilities of demand,
which are 0.2 and 0.9.

Finally, we compare the performance of the proposed (versions of the) al-
gorithm to a naive complete enumeration. For an instance with ns agents and
nt jobs, there are P = nsnt possible assignments of jobs to agents. For each
assignment, the recourse function Q needs to be evaluated.

For each version of the proposed algorithm, the number of evaluations of
the recourse function used was in general substantially smaller than the total
number of possible assignments, as shown in Table 4.

dim. bounding # BCS CFBS BFCS P
2× 4 22.00 1 27.00 27.00 27.00 16
4× 8 88.00 1 171.00 185.00 369.00 256
3× 7 54.25 0 — — — 2187
3× 8 113.60 4 634.50 451.00 2341.50 6561
3× 9 98.00 2 95.50 97.00 95.00 19683
3× 10 154.00 2 433.00 195.50 1213.00 59049
3× 15 199.00 1 203.00 * 202.00 14348907
4× 7 280.17 5 952.20 293.60 3754.40 16384
4× 8 334.17 10 2028.20 515.13* 6565.50* 65536

Table 4: Evaluations of the recourse function.

For each dimension, the second column contains the average number of eval-
uations of Q needed in the bounding phase. In the subsequent columns, only
problems which were not already solved in the bounding phase have been con-
sidered. The third column contains the number of such problems. The average
total number of evaluations of Q (bounding phase, initial cuts, and cuts gener-
ated by the algorithm) that each version of the algorithm required to find the
optimum are reported in the next three columns; a star denotes that at least one
of the problems was not solved. The last column shows the number of function
evaluations needed in a complete enumeration, which is equal to the number of
possible assignments.

7 Conclusions

This paper considers a stochastic Generalized Assignment Problem (GAP) where
the demand for a certain resource of each job is not known in advance, but can
be modeled as a Bernoulli random variable with known success rate. Jobs are
interpreted as customers that may or may not require a service.

An assignment of jobs to agents is designed a priori, but can be modified
once the actual demands are known. Different penalties are paid for reassigning
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jobs and for leaving unprocessed jobs with positive demand. The objective is
to minimize the total expected costs.

This GAP is modeled as a stochastic problem with recourse. The recourse
function reflects the expected cost associated to each possible a priori assign-
ment.

Due to the binary variables in the defining second-stage problem, this func-
tion is non-convex in general. In this paper, we construct a convex approxi-
mation of our particular recourse function that is sharp at all feasible points.
Based on this approximation, we propose an exact algorithm to solve the prob-
lem. Integrality of the first-stage variables is addressed using branch and bound
techniques, and the objective function is iteratively approximated using two
different kinds of cuts.

Three versions of the algorithm are proposed and tested. In the first ver-
sion (CFBS), the main effort is devoted to getting a rich approximation of the
recourse function, while the third one (BFCS), gives priority to integrality of
the current solutions. The second version (BCS) is a tradeoff between the other
two.

The computational experiences show that the performance of BCS is in
general the best one, in particular for the harder instances of GAP.

This suggests that it is more efficient to tackle integrality and stochasticity
at the same level, instead of considering these two factors separately. Indeed,
the two solution schemes that give priority to one single factor, appear to waste
a lot of time exploring solutions that are not optimal because of the other factor.

This paper also presents a lower bound for the GAP in consideration. A
stochastic subproblem is derived from each possible assignment of a single cus-
tomer and its linear relaxation is solved using the L-shaped algorithm. The
actual lower bound is obtained from the solutions to these subproblems. This
lower bound has proved to be very tight in the computational experiments.

One of the heuristics presented in [AF00] is used to obtain an initial solution,
as well as to provide the algorithm with a suitable upper bound.

CPU times required to obtain both bounds are relatively small for all but
one instance. In 43% of the cases, the bounding phase was sufficient to identify
an optimal solution. On the other hand, there are also a few instances with a
large gap between the bounds.

For those instances where the bounding phase did not already provide an
optimal solution, the exact algorithm gave satisfactory results. Times required
to solve such instances were reasonable, taking into account the high difficulty of
the problem. The success of the algorithm is mostly due to the approximation
of the recourse function that we use. It is much faster to evaluate than the
original recourse function and moreover it is convex, which allows to obtain
good approximations using a cutting plane procedure.

References

[AF00] Maria Albareda Sambola and Elena Fernández Aréizaga. The stochas-
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