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Summary: Connectionist systems (often termed "neural networks") are an alternative way to solve data
processing tasks. They differ radically from conventional "von-Neumann" computing devices. Recent work
on neural networks in clinical chemistry was done using supervised learning schemes, resulting in models
which resemble classical discriminant analysis. The aim of the present study is to make clinical chemists
familar with basic concepts of self-organizing neural networks employing unsupervised learning schemes.
Using a benchmark data set on the composition of milk from 22 different mammals, it is demonstrated that
self-organizing neural networks are capable of performing tasks similar to classical cluster analysis and
principal component analysis. Self-organizing neural networks could be envisaged to provide an alternative
way for reducing the dimensionality of complex multivariate data sets, thus producing easily comprehensible
low-dimensional "maps" of essential features.

Introduction

The basic concepts of connectionist computing
schemes, often referred to in a suggestive way as
"neural networks", date back to the 1940's (1). An
initial burst of enthusiasm accompanied the invention
of the "perceptron" (2), but early hopes were disap-
pointed, and only few pioneers continued studying
such models (3). The demonstration that principles of
the theoretical physics of multiparticle systems are
applicable to connectionist data processing schemes
(4) gave new respectability to the field, and the in-
vention of ingenious and efficient learning schemes
such as the error back-propagation method (5) led to
a remarkable renaissance of interest in the field.

Neural networks are an attempt to model, albeit in a
very primitive and over-simplistic way, principles of
data processing which are thought to give biological
nervous systems and brains their superb capabilities
in performing complex tasks, particularly in the wide
and important field of pattern recognition. It is only
natural therefore that neural network models have
also been studied in medical science, particularly with

the aim of recognizing patterns underlying complex
data sets and employing these patterns for diagnostic
purposes (6 — 12).

Most if not all applications of artificial neural net-
works in medicine published so far have made use of
a "supervised" learning scheme; i. e. a training data
set is presented to a network together with a desired
network output, and the network, by virtue of the
learning rules applied, "learns" to produce the correct
output. In conventional terms, the network is trained
to perform a task resembling discriminant analysis: a
given input data vector has to be transformed into
an output vector representing the correct class mem-
bership of the input data vector.

However, neural networks can easily be designed for
"unsupervised" learning: a series of input data vectors
is again presented to the network, but no output
vectors are provided. Rather, in a self-organizing
process driven only by the input data and the learning
scheme applied, the network adjusts its internal struc-
ture without reference to an external "teacher". It can
be shown that appropriately designed self-organizing
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In practical simulations, not only the maximally activated neu-
ron is allowed to adjust its weight factors upon presentation of
an input vector ("winner-take-air strategy), but also the neigh-
bouring neurons are allowed to learn, albeit to a smaller extent.
The radius defining "neighbourhood" is'usually set to larger
values in the start phase of the learning process, and is gradually
reduced; in the final phase only the maximally activated neuron
is allowed to adjust its weights (to "learn") per one input vector
presentation.
The final result of iterative process is that neurons in the
Kohonen layer which are in mutual physical neighbourhood in
the Kohonen layer, will collectively respond only and maximally
to input vectors which are "neighbours" in the multi-dimen-
sional input data space. Thus, a mapping of a possibly multi-
dimensional data space onto a two-dimensional grid of neurons
is achieved in a way that neighbourhood relations remain pre-
served to a great extent.

Importantly, the network adjusts its internal weight factors
autonomously, without reference to an external teacher. The
training process is driven only by the presentation of the input
data and by the described simple learning rule. This is in marked
contrast to the more familiar networks using the error back-
propagation technique, which have been used in most appli-
cations of neural networks in medical research so far.

In order to visualize the results of the autonomous self-organ-
ization process, the input vectors were presented to the network
again, after training. For each Kohonen neuron the input vector
eliciting the strongest activity of this neuron was recorded.
Moreover, the actual activity value attained by this neuron
upon the optimally stimulating input vector was also calculated.
This information was used for graphical representation.

Self-organization of the hidden layer in a three-layer feed-forward
network employing error back-propagation

The second approach that we studied used the conventional
error back-propagation technique, but this was not applied in
the usual way. The details of the error back-propagation tech-
nique have been explained, for example, in a paper published
(12); so we need not reiterate these issues at length.

We used the following network architecture: an input layer
consisting of four input neurons (according to the number of
four variables per case), two hidden neurons, and four output
neurons (fig. 2). As input vectors we chose, naturally, the values
of the four component variables of the milk samples. To avoid
numerical problems with too large or too small arguments for
the necessary exponentials, we transformed the data in just the
same way as described above onto the interval [0.1, 0.9]. As
output values to be used in the training phase of the network,
however, we did not use, e. g., a desired class membership; in
contrast, we chose that the output vectors should be equal to
the input vectors. Thus, we did not introduce an external
classification, although using supervised learning.

Input - Output

····· ι

Input Output

Fig. 2. Architecture for studying the behaviour of two hidden
neurons in an error back-propagation network.

Obviously, the network was thus forced to learn to perform a
somewhat surprising task: a given input vector has to be passed
through the "bottleneck" of two hidden neurons, and the re-
sulting output has to be a vector equal to the input vector.
What is the idea underlying this exercise?

We were in fact interested in the behaviour of the two hidden
neurons. Baldi & Hornik (15) demonstrated that a network
consisting of n input units, p hidden units, and n output units,
and having linear instead of non-linear activity propagation
characteristics, has two very important features: there is only
one global minimum of the error function, and if the minimum
error state is achieved, the p weight vectors of the p hidden
units represent the p first principal components with maximum
eigenvalues of the covariance matrix. The more complicated
case of non-linear network characteristics is not yet fully re-
solved theoretically, but it is thought that the hidden units are
performing an action similar to principal component analysis,
even in the case of the usually employed sigmoidal output
functions (16).
After training the network using the error back-propagation as
described, the input vectors were again presented to the trained
network, and the activities attained by the two hidden neurons
upon each input vector were plotted. Thus, the central layer of
the two hidden neurons was used to provide the x- and y-
coordinates of cases for two-dimensional display.

Comparison with conven t iona l statistical techniques

The data were analysed for comparison using program
BMDP2M of the BMDP software package. This program per-
forms a hierarchical cluster analysis of cases, based on similar-
ities of the variables associated with each case. The Euclidean
distance using standardized data was chosen as the measure of
similarity. Initially each case is considered as a separate cluster.
In a stepwise process, cases and/or clusters are joined until all
cases are combined into one single cluster. The algorithm uses
the distance between centroid clusters or the kth nearest neigh-
bor density estimator as a criterion for amalgamating clusters.

Results

I. Cluster analysis of cases

Figure 3 shows the results using conventional cluster
analysis of cases. This plot demonstrates that the
animals tested comprised two major clusters, each of
which could be split into two smaller clusters, con-
taining 8, 8, 2, and 4 animals which share a similar
composition of milk. A fine structure further splitting
these clusters into smaller groups is also visible.

II. Kohonen network

A Kohonen network consisting of 24 χ 24 neurons,
each neuron connected to four input neurons, was
exposed to the milk date and trained on them. Because
of the random initialization of the weight factors,
subsequent rounds of training the network normally
produce slightly different results, but nevertheless,
essentially the same type of clustering normally ap-
pears on the trained nets. A typical result is shown in
figure 4: to visualize the resulting net structure, a
letter is shown for each neuron in the net, representing
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Fig. 3. Cluster analysis of cases (program BMDP2M) for the
milk data shown in table 1. For letter symbols see
table 1.

Fig. 4. Structure of the Kohonen network after self-organiza-
tion. For each neuron in the Kohonen layer, the animal
evoking the strongest response was recorded. If the
activation attained exceeded 0.99, a letter symbol for
the respective animal was drawn on the corresponding
physical position of the network. For letter symbols see
table 1.

the animal which most strongly activates this neuron,
provided this maximum activation exceeds the value
of 0.99 (activity values may be in the range between
0.0 and 1.0 because a sigmoid transformation is ap-
plied to the weighted sum that each neuron computes).

It is easily seen in this drawing that neurons respond-
ing optimally to certain input vectors cluster together.
On closer inspection, one detects a striking similarity
of the clusters shown in figure 3, and the clusters of
neurons, identified by their preferred input vectors.
Indeed, even the fine structure of figure 3 is repro-
duced by the network; compare, for example, the
results describing the relationship between the milks
of reindeer (H), deer (P), whale (C) and rabbit (N),
or llama (O), bison (R), camel (K) and zebra (D).

III. Hidden layer in an error back-
propagation network

As described in the Methods section, a conventional
4-2-4 error back-propagation network was trained on
the input data with the unusual constraint that the
output vectors equalled the input vectors. A constant
learning rate of 0.30 and a constant momentum factor
of 0.50 (5) were applied, and training was continued
until the average error function (5) dropped below

0.10 (approximately 1000 training cycles were re-
quired to achieve this goal). Each input vector was
then presented to the trained network, and the output
values of both hidden neurons were taken as x- and
y-coordinates for the scatter plot shown in figure 5.

As indicated by the rectangles, the four main clusters
described above were also detected clearly by this
procedure.

1.0

0.5

0.0 I u* * v j
0.0 0.5

Activity of first hidden neuron
1.0

Fig. 5. Activation attained by the two hidden neurons in an
error back-propagation network trained on the animal's
milk composition data. For letter symbols see table 1.
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Discussion

The techniques dealt with in this paper are essentially
display techniques: each of them can serve to display
a readily understood synopsis of large and potentially
complicated data matrices. This task may be partic-
ularly important in early stages of statistical analysis
of such data sets. For the realm of clinical chemistry,
the general usefulness of clustering techniques has
been reviewed recently (17).

We could demonstrate that unsupervised learning
techniques using connectionist computing schemes
can be as useful in the field of cluster analysis and
related techniques of unsupervised pattern recogni-
tion, as are their supervised counterparts in the do-
main of discriminant analysis and classification.

Kohoncn networks are interesting types of artificial
neural networks. Their development has been strongly
stimulated by observations on real biological neural
networks (14). It has to be noted that several useful
extensions have been suggested for Kohonen type neu-
ral networks. For example, the so-called "counterpro-
pagation" network shows, in addition to the input
neurons and the Kohonen layer, a layer of output
neurons, which are designed in a manner similar to
output neurons of error back-propagation networks
and which modify their weights, in a supervised man-
ner, after the Kohonen layer has organized itself by
unsupervised learning. Hecht-Nielsen has discussed
the properties of such hybrid networks and has given
useful examples for applications (18).

The technique of using the output values of the hidden
neurons of an error back-propagation network for

low-dimensional display of multivariate data matrices
has been described, albeit in a slightly more compli-
cated version, in the domain of quantitative structure-
activity relationships in medicinal chemistry (19).
These authors have also compared the technique with
principal component analysis and non-linear mapping
techniques. They found the results of the neural net-
work technique to be comparable or even superior to
those of the more conventional techniques. We have
recently further clarified some issues related to this
novel technique (20).

It might well be that for very complex data structures
a two-dimensional display method is insufficient, be-
cause of remaining overlap between clusters. The neu-
ral network technique using the output of hidden
neurons for display could of course easily be modified
by using, e.g., three instead of two hidden neurons.
Their output values could then be taken as x-, y- and
z-components for a three-dimensional plot, thus pos-
sibly resolving the overlap between clusters.

Neural network approaches for processing of complex
data matrices seem to offer interesting avenues. Be-
sides error back-propagation networks and the net-
work types mentioned in this work, there are in fact
numerous other possible network architectures which
might offer valuable tools for variable tasks. Further
research probing these tools in connection with real
data sets, and thorough comparison of the results
with those of classical statistical techniques, are ur-
gently required to allow a fair judgement of their
value, and thence exploitation of them, in clinical
•chemistry.
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