Local recognition of the line graph of an anisotropic vector space

Kristina Altmann and Ralf Gramlich
(Communicated by A. Pasini)

Abstract. Let $n \geq 7$ and let V be an $(n + 2)$-dimensional vector space endowed with an anisotropic sesquilinear form. In this article we characterise the graph whose vertices are the two-dimensional subspaces of V and in which two vertices are adjacent if and only if the corresponding two-dimensional spaces are perpendicular with respect to the sesquilinear form.

1 Introduction

A central problem in synthetic geometry is the characterisation of graphs and geometries. The local recognition of locally homogeneous graphs forms one category of such characterisations, which works as follows. Let Σ be a graph. A graph Γ is called locally Σ if for each vertex x of Γ the graph Γ_x is isomorphic to Σ, where Γ_x is the induced subgraph of Γ on the set of vertices adjacent to x. It is a natural question to ask for all isomorphism types of connected graphs which are locally some graph Σ. This classification question is called the local recognition problem for graphs that are locally Σ, which can be found in great quantities in the literature. One of the earliest and most influential is [3].

In the present article we focus on the line graph of an n-dimensional vector space over some field \mathbb{F} endowed with an anisotropic sesquilinear form. Let $n \in \mathbb{N}$, let $V = V_n$ be an n-dimensional vector space over \mathbb{F} and let (\cdot, \cdot) be a scalar product on $V \times V$. For a subspace $U \subseteq V$ the polar of U is $U^\perp = \{x \in V : (x, u) = 0 \text{ for all } u \in U\}$. The line graph $S(V_n)$ of the vector space V_n is the graph on the two-dimensional subspaces of V_n, the lines of V_n, where two distinct lines l and k of V_n are adjacent, in symbols $k \perp l$, if and only if $l \subseteq k^\perp$ or, equivalently, if $k \subseteq l^\perp$. For a vertex x of $S(V_n)$ the local graph $S(V_n)_x =: x^\perp$ is the subgraph induced by $S(V_n)$ on the set of vertices $\{y \in S(V_n) \mid x \perp y\}$, the neighbours of x in the graph $S(V_n)$. For a set of vertices X of $S(V_n)$ the graph X^\perp is defined as $\bigcap_{x \in X} x^\perp$.

*The second author gratefully acknowledges a Heisenberg fellowship by the Deutsche Forschungsgemeinschaft.
The main result of this paper is the following local recognition theorem. Note that because of the size of the involved dimensions the field \mathbb{F} is necessarily infinite.

Main Theorem. Let $n \geq 7$ and let Γ be a connected locally $\mathbb{S}(V_n)$ graph. Then Γ is isomorphic to $\mathbb{S}(V_{n+2})$.

For $n = 6$ there exist counterexamples to the statement of the Main Theorem arising from anisotropic twisted forms of the semisimple algebraic group $E_6(\mathbb{F})$. In the first author’s PhD thesis [1] the situation $n = 6$ is dealt with for the field $\mathbb{F} = \mathbb{C}$. Theorem 4.1.2 of [1] is an analogue of our main theorem for that case under a mild extra assumption. We would like to stress that the case $n = 6$ is much more difficult than the case $n \geq 7$ presented here. The proof given in [1] is based on a construction of a large automorphism group of the graph Γ, the existence of a subgraph of Γ isomorphic to the reflection graph of the Coxeter groups of type A_7, respectively E_6 (this makes serious use of [3]), and a recognition of the automorphism group via Lie theory and Phan theory (cf. [7]).

In Section 2 we discuss group-theoretic applications of our main result. Sections 3 and 4 provide some basic facts about the reconstruction of $\mathbb{P}(V_n)$ from $\mathbb{S}(V_n)$ and how the induced subgraphs $x \bot, x \in \mathbb{S}(V_n)$, relate to codimension two subspaces of $\mathbb{P}(V_n)$. Finally, in Section 5 we prove the main result. The strategy used in that section is the same as in [4], [6].

2 Group-theoretic consequences

Assume that the automorphism group of $\mathbb{S}(V_n)$ acts transitively on the set of ordered triangles of $\mathbb{S}(V_n)$, as is the case for $\mathbb{F} = \mathbb{C}$ and the standard scalar product. (We refer the reader to [5] for a detailed investigation of fields admitting such a transitivity.) Then our main result implies the following group-theoretic recognition theorem.

Local Recognition Theorem. Let $n \geq 7$, let \mathbb{F} be a field admitting an anisotropic sesquilinear form such that the automorphism group of $\mathbb{S}(V_n)$ acts transitively on the set of ordered triangles of $\mathbb{S}(V_n)$, and let G be a group containing an involution x and a subgroup $K \subseteq C_G(x)$ such that

1. $K \cong \mathbb{S}U_n(\mathbb{F})$;
2. $C_G(K)$ contains a subgroup $X \cong \mathbb{S}U_2(\mathbb{F})$ with $x = Z(X)$;
3. there exists an involution $g \in G$ such that $Y := gxg$ is contained in K;
4. if V is a natural module for K, then the commutator $[Y, V] = \{yv - v \in V \mid y \in Y, v \in V\}$ has \mathbb{F}-dimension two;
5. $G = \langle K, gKg \rangle$; moreover, there exists $z \in K \cap gKg$ which is a gKg-conjugate of x and a K-conjugate of gxg.

Then $G/Z(G) \cong \mathbb{P}SU_{n+2}(\mathbb{F})$.

Proof. Define $y := gxg$ and $J := gKg$. By 4. the group X is a fundamental subgroup of J with centre x and Y is a fundamental subgroup of K with centre y. Since the group K is isomorphic to $\mathbb{S}U_n(\mathbb{F})$ and since y and z are centres of fundamental subgroups of K with
If there exists an element \(h \in G \) such that \((hxh^{-1}, hyh^{-1}) = (a, b)\). Since \(G \) induces the action of \(\text{Sym}_3 \) on \(\{x, y, z\} \), this definition of adjacency is completely symmetric, and we have defined an undirected graph \(\Gamma \) in which the elements \(x, y, z \) form a triangle.

The stabiliser of \(\{x, y\} \) permutes \(x \) and \(y \) and therefore interchanges \(C_G(x) \supseteq K \) and \(C_G(y) \supseteq J \). Hence the stabiliser of \(x \) together with the stabiliser of \(\{x, y\} \) generates \(G \), as \(G = \langle J, K \rangle \leq \langle C_G(x), C_G(y) \rangle \). Consequently, the graph \(\Gamma \) is connected.

Moreover, \(\Gamma \) is a locally isomorphic to a line graph by construction. To prove this, it is enough to show that any triangle in \(\Gamma \) is a conjugate of \(\{x, y, z\} \). Let \((a, b, c)\) be a triangle and let \(h \in G \) with \((hxh^{-1}, hyh^{-1}) = (a, b)\). Notice that the elements \(b = hyh^{-1}, d = hzh^{-1} \) of \(hK^h \) commute. The edges \((a, b)\) and \((a, c)\) are both conjugate in \(G \) to \((x, y)\), so that they are conjugate to each other by an element of \(C_G(a) \supseteq hK^h \). Since \(b \in hK^h \), we have \(c \in hK^h \) as well. We have proved that \(b, c, d \) are centres of fundamental subgroups of \(hK^h \). Since \([b, c] = 1 = [b, d]\), the elements \(c \) and \(d \) are conjugate by an element of \(C_{hK^h-1}(b) \). Therefore \((a, b, c)\) and \(\{x, y, z\} \) are conjugate in \(G \). Hence by the Main Theorem \(\Gamma \) is isomorphic to \(S(V_{n+2}) \) and the claim follows.

There is an analogue of the above theorem for finite fields. See [2] for the case \(n \geq 7 \) and [8, Section 7.2.1] for the case \(n = 6 \).

3 Reconstruction of projective space

In this section we collect some basic properties of the line graphs of the unitary vector spaces \(V_n \) for \(n \geq 5 \), such as their diameters, cf. Proposition 3.2 and Proposition 3.3. We will also construct from \(S(V_n) \) a point-line geometry \(\mathcal{G} = (\mathcal{P}, \mathcal{L}, \supseteq) \) which is isomorphic to the projective space given by the points and lines of \(V_n \).

Since the behaviours of \(V_5 \) and \(V_n, n \geq 6 \), are slightly different, we will consider these graphs separately where appropriate.

Lemma 3.1. Let \(l \) and \(m \) be distinct lines of \(V_5 \). Then the distance of \(l \) and \(m \) in \(S(V_5) \) is

- one if and only if \(l \subseteq m^n \) or \(m \subseteq l^n \);
- two if and only if \(\langle l, m \rangle \) is a three-dimensional subspace of \(V_5 \);
- three if and only if \(l \) and \(m \) do not intersect, are not perpendicular and satisfy that the intersection \(l^n \cap m \) is one-dimensional;
- four if and only if \(l \) and \(m \) do not intersect and satisfy that the intersection \(l^n \cap m \) is trivial.

Proof. These claims are straightforward to prove. We leave this as an exercise to the reader. \(\square \)
Proposition 3.2. The graph $S(V_5)$ is connected of diameter four. Moreover, the graph $S(V_5)$ is locally $S(V_5)$.

Proof. This is immediate from Lemma 3.1, because any pair of distinct lines l and m belongs to one of the four cases considered in 3.1.

Proposition 3.3. Let $n \geq 6$. Any two elements of $S(V_n)$ have a common neighbour. In particular, the graph $S(V_n)$ is connected of diameter two.

Proof. Let l and m be two different two-dimensional subspaces of V_n, $n \geq 6$. The dimension formula implies $\dim(l^\pi \cap m^\pi) = \dim(l^\pi) + \dim(m^\pi) - \dim((l^\pi, m^\pi)) \geq n - 4 \geq 2$. Hence, in V_n there exists a two-dimensional subspace $h \subseteq l^\pi \cap m^\pi$. □

Proposition 3.4. For $n \geq 6$, the graph $S(V_n)$ is locally $S(V_{n-2})$.

Proof. For each vertex l of $S(V_n)$, the space $l^\pi \subseteq V_n$ is an $(n - 2)$-dimensional vector space endowed with an anisotropic sesquilinear form $(\cdot, \cdot)_{l^\pi \times l^\pi}$. The claim follows. □

Definition 3.5. Let U be a subspace of the unitary vector space V_n. The set of all lines in U is denoted by $L(U)$.

Lemma 3.6. Let l and m be vertices of $S(V_n)$ with $\{l, m\}^\perp \neq \emptyset$. Then the vertex set of the graph $\{l, m\}^\perp \perp \perp$ equals the line set $L(\{l, m\})$.

Proof. Since the vertex set of z^\perp equals $L(z^\pi)$, we have $\{l, m\}^\perp \perp \perp = (\{l, m\}^\perp)^\perp = \cap_{z \in \{l, m\}^\perp} z^\perp = \cap_{z \in \{l, m\}^\perp} L(z^\pi)$. Moreover, for every $z \in \{l, m\}^\perp$ we have $L(\{l, m\}) \subseteq L(z^\pi)$. Therefore the set $L(\{l, m\})$ is a subset of the vertex set of $\{l, m\}^\perp \perp \perp$.

Conversely, let p be a one-dimensional subspace not contained in $\{l, m\}$. This implies $\langle l, m \rangle^\pi \nsubseteq p^\pi$ and $\langle l, m \rangle \subseteq p^\pi$. Let t be a one-dimensional subspace of $\langle l, m \rangle^\pi$ which is not contained in p^π.

By assumption $3 \leq \dim(\langle l, m \rangle) \leq 4$ if $n \geq 6$ and $\dim(\langle l, m \rangle) = 3$ if $n = 5$, thus we have $\dim((l^\pi, m^\pi) \cap p^\pi) = \dim((l^\pi, m^\pi) + \dim(p^\pi) - \dim((p^\pi, (l, m)^\pi)) = \dim((l, m)^\pi) - 1 \geq 1$. Hence there exists a one-dimensional subspace $s \subseteq (l, m)^\pi \cap p^\pi$. The two-dimensional subspace $h = \langle s, t \rangle$ is a vertex of the graph $\{l, m\}^\perp$, so $\{l, m\}^\perp \perp \perp \subseteq h^\perp = L(h^\pi) \subseteq L(p^\pi)$. Thus $\{l, m\}^\perp \perp \perp$ cannot contain two-dimensional subspaces containing p as no line of $L(p^\pi)$ contains the point p.

The claim follows because p is an arbitrary one-dimensional subspace not contained in $\langle l, m \rangle$. □

A similar statement can be proved about three different vertices under some additional assumptions.

Lemma 3.7. Let k, l and m be three distinct vertices of $S(V_n)$. Suppose $k \cap l \cap m$ contains a one-dimensional subspace of V_n, and suppose that $\{k, l, m\}^\perp \neq \emptyset$. Then $L(\langle k, l, m \rangle) = \{k, l, m\}^\perp \perp \perp$.
Proof. Since the lines k, l and m intersect in a common point in V_n, the dimension of $\langle k, l, m \rangle$ equals three or four.

If (k, l, m) is a three-dimensional subspace, then m is contained in $\langle k, l \rangle$ and $\langle k, l, m \rangle = \langle k, l \rangle$. From Lemma 3.6 it follows that $L(\langle k, l, m \rangle) = L(\langle k, l \rangle) = \{ k, l \} \perp \perp = \{ k, l \} \perp \perp$ as $\emptyset \neq \{ k, l, m \} \perp \perp \subseteq \{ k, l \} \perp \perp$.

In case $\dim(\langle k, l, m \rangle) = 4$ pick a line s in $\langle k, l, m \rangle$. For $n \geq 6$ we consider the two-dimensional orthogonal subspace $t = s^\perp \cap \langle k, l, m \rangle$. By Lemma 3.6 again we have $L(\langle k, l, m \rangle) = L(\langle s, t \rangle) = \{ s, t \} \perp \perp$. Hence the claim follows by

$$\{ k, l, m \} \perp \perp = (\{ k, l, m \} \perp \perp) = \bigcap_{z \in \{ k, l, m \} \perp \perp} z = \bigcap_{z \in L(\langle k, l, m \rangle^\perp)} z = \bigcap_{z \in L(\langle s, t \rangle^\perp)} z = \{ s, t \} \perp \perp.$$

If $n = 5$ and $\dim(\langle k, l, m \rangle) = 4$, then the orthogonal subspace $\langle k, l, m \rangle^\perp$ is of dimension one. This implies that $\{ k, l, m \} \perp$ is the empty graph, so we are done. \qed

Remark 3.8. Suppose l and m are distinct lines which intersect in a common point in V_5. Then $\dim(\langle l, m \rangle) = 3$, which implies that $\{ l, m \} \perp \neq \emptyset$ using Lemma 3.1. Moreover by Lemma 3.6 the vertex set of the induced subgraph $\{ l, m \} \perp \perp$ in $S(V_5)$ equals the line set $L(\langle l, m \rangle)$ and therefore the double perp $\{ l, m \} \perp \perp$ is minimal with respect to inclusion (i.e. for any distinct vertices s_1, s_2 in the double perp $\{ l, m \} \perp \perp$ we have the equality $\{ s_1, s_2 \} \perp \perp = \{ l, m \} \perp \perp$).

Lemma 3.9. Two different lines l and m of V_n, for $n \geq 6$, intersect in a common point if and only if the double perp $\{ l, m \} \perp \perp$ in $S(V_n)$ is minimal with respect to inclusion (i.e. for any distinct vertices $s_1, s_2 \in \{ l, m \} \perp \perp$ we have $\{ s_1, s_2 \} \perp \perp = \{ l, m \} \perp \perp$).

Proof. Certainly, if l and m are two different intersecting lines in V_n, then $\dim(\langle l, m \rangle) = 3$. For any two distinct elements $s_1, s_2 \in \{ l, m \} \perp \perp = L(\langle l, m \rangle)$, the subspace $\langle s_1, s_2 \rangle$ has dimension three implying that $\langle s_1, s_2 \rangle = \langle l, m \rangle$. By Lemma 3.6, $L(\langle l, m \rangle) = \{ l, m \} \perp \perp$ and $L(\langle s_1, s_2 \rangle) = \{ s_1, s_2 \} \perp \perp$, thus $\{ s_1, s_2 \} \perp \perp = L(\langle s_1, s_2 \rangle) = L(\langle l, m \rangle) = \{ l, m \} \perp \perp$.

Suppose $\dim(\langle l, m \rangle) = 4$ then l and m are two non-intersecting lines in V_n. Let $h \in L(\langle l, m \rangle)$ such that $\dim(h \cap l) = 1$. Then the span of h and l is of dimension three and $\{ h, l \} \perp \perp = L(\langle h, l \rangle) \supseteq L(\langle l, m \rangle) = \{ l, m \} \perp \perp$ by Lemma 3.6, which shows that the double perp $\{ l, m \} \perp \perp$ is not minimal with respect to inclusion. \qed

As mentioned in the beginning of this section, our strategy is to reconstruct the projective space on the one-dimensional and two-dimensional subspaces of V_n from the graph $S(V_n)$. The two-dimensional subspaces are easily recovered; we can simply take the vertex set of $S(V_n)$ as the line set of the geometry. In a projective space of sufficient dimension each point is uniquely determined by the set of lines incident with it. We call such a set a line pencil. A successful description of line pencils essentially depends on the understanding when three lines intersect in a common point. Again we have to distinguish the cases $n = 5$ and $n \geq 6$.

Three different pairwise intersecting lines k_1, k_2, k_3 of the vector space V_5 intersect in one point if we can find a line s in V_5 such that

- the line s intersects the line k_i, if $s \neq k_i$, for $1 \leq i \leq 3$,
- $\langle s, k_1, k_2 \rangle$ is a four-dimensional subspace in V_5.

This observation motivates the following definition in terms of double perps.

Definition 3.10. Let Γ be a graph isomorphic to $S(V_5)$. Two different vertices k and l of Γ are defined to intersect if the induced subgraph $\{k, l\}^\perp$ is not empty. Three different pairwise intersecting vertices k_1, k_2 and k_3 of Γ are defined to intersect in one point if the graph Γ contains a vertex s with the following properties:

- the vertex s intersects each vertex k_i, if $s \neq k_i$, for $1 \leq i \leq 3$,
- the graph $\{k_1, k_2, s\}^\perp$ is empty.

An interior point of the graph Γ is a maximal set S of different pairwise intersecting vertices of Γ such that any three elements of S intersect in one point. These maximal sets exist by Zorn’s lemma. Moreover, it is easily seen that every point of V_5 can in fact be realised by three pairwise intersecting lines. We denote the set of all interior points of Γ by \mathcal{P}. Moreover, an interior line of the graph Γ is a vertex of the graph Γ. The set of all interior lines of Γ is denoted by \mathcal{L}.

For $n \geq 6$ the geometric properties of three different pairwise intersecting lines have a slightly different meaning in terms of double perps.

Definition 3.11. Let $n \geq 6$ and Γ be graph isomorphic to the line graph $S(V_n)$. Two different vertices k and l of Γ are defined to intersect if the double perp $\{k, l\}^\perp$ is minimal in Γ with respect to inclusion (among double perps of distinct vertices). Three distinct pairwise intersecting vertices k_1, k_2 and k_3 of Γ are defined to intersect in one point if there is a vertex s in Γ satisfying the following conditions:

- the vertex s intersects k_i, if $s \neq k_i$, for $1 \leq i \leq 3$,
- the graph $\{k_1, k_2, s\}^\perp$ is non-empty and $\{k_1, k_2\}^{\perp\perp} = L(\langle k_1, k_2 \rangle) \subset L(\langle k_1, k_2, s \rangle)$

An interior point of the graph Γ is a maximal set S of distinct pairwise intersecting vertices of Γ such that any three elements of S intersect in one point. We denote the set of all interior points of Γ by \mathcal{P}. Moreover, an interior line of the graph Γ is a vertex of the graph Γ. The set of all interior lines of Γ is denoted by \mathcal{L}.

By construction we obtain the following:

Proposition 3.12. Let $n \geq 5$ and let Γ be a graph isomorphic to $S(V_n)$. The geometry $\mathcal{G} = (\mathcal{P}, \mathcal{L}, \supset)$ on the interior points and interior lines of Γ is isomorphic to the projective space of the vector space V_n.

For a graph $\Gamma \cong S(V_n)$ we call the space $\mathcal{G} = (\mathcal{P}, \mathcal{L})$ the interior space on Γ. Note that this interior space carries a canonical polarity π given by $l \mapsto l^\perp$. Hence we also obtain information about the automorphism group of $S(V_n)$.
Corollary 3.13. Let \(n \geq 5 \). The automorphism group of \(S(V_n) \) is isomorphic to the automorphism group of the projective space of \((V_n, (\cdot, \cdot)) \).

4 Subspaces arising from local graphs

Let \(n \geq 7 \) and let \(\Gamma \cong S(V_n) \). Proposition 3.12 allows us to reconstruct a projective space \(\mathcal{G} = (\mathcal{P}, \mathcal{L}) \) isomorphic to \(\mathbb{P}(V_n) \) from \(\Gamma \). By Proposition 3.4 the graph \(\Gamma \) is locally \(S(V_{n-2}) \). Hence for a vertex \(x \) of \(\Gamma \) Proposition 3.12 also allows us to reconstruct a projective space \(\mathcal{G}_x = (\mathcal{P}_x, \mathcal{L}_x) \) isomorphic to \(\mathbb{P}(V_{n-2}) \) from the induced subgraph \(x^\perp \).

The purpose of this section is to show that there is a canonical way to consider interior space \(\mathcal{G}_x \) as a subspace of \(\mathcal{G} \). We will spell out the details for the more complicated case \(n = 7 \) and leave the easier case \(n \geq 8 \) as an exercise to the reader.

Notation. Every object of the interior space \(\mathcal{G}_x \) will be indexed by the vertex \(x \). In particular, for vertices \(l, k, m \) of the subgraph \(x^\perp \) we use the notation \(\{k, l, m\}^\perp_x := \{k, l, m\}^\perp \cap x \cap x^\perp \) and \(\{k, l, m\}^{\perp\perp}_x := \{\{k, l, m\}^\perp_x\}^\perp \cap x^\perp \).

Obviously the line set \(\mathcal{L}_x \) is properly contained in the line set \(\mathcal{L} \). Therefore again we only have to understand the behaviour of the interior points.

Lemma 4.1. Let \(p \) be a point of \(\mathcal{G} \) and let \(l, m \in p \cap \mathcal{L}_x \). Then the lines \(l \) and \(m \) intersect each other in \(\mathcal{G}_x \).

Proof. The claim follows from the second item of Lemma 3.1 once we have shown that \(\{l, m\}^{\perp\perp}_x \neq \emptyset \).

Since \(l, m \in x^\perp \) and \(\{l, m\}^{\perp\perp}_x \) is minimal with respect to inclusion, the three-dimensional subspace \(\langle l, m \rangle \) is contained in \(x^\pi \). Thus \(\dim(x^\pi \cap \langle l, m \rangle^\pi) = 2 \) implying that \(\{l, m\}^{\perp\perp}_x = \{l, m, x\}^{\perp\perp} \neq \emptyset \).

Lemma 4.2. Let \(p \) be a point in \(\mathcal{G} \) and let \(k_1, k_2, k_3 \in p \cap \mathcal{L}_x \) be pairwise distinct elements. Then the corresponding interior lines intersect in a common point of \(\mathcal{G}_x \).

Proof. By Definition 3.10 and Lemma 4.1 it suffices to find a vertex \(s \in x^\perp \) such that

- for each \(i \in \{1, 2, 3\} \), the graph \(\{s, k_i\}^{\perp\perp}_x \) is not empty,
- the graph \(\{s, k_1, k_2\}^{\perp\perp}_x \) is empty.

The vertices \(k_1, k_2 \) and \(k_3 \) are adjacent to the vertex \(x \), thus \(\langle k_1, k_2, k_3 \rangle \subseteq x^\pi \) in \(\mathcal{G} \).

If \(\langle k_1, k_2, k_3 \rangle \) is a four-dimensional subspace of \(\mathcal{G} \), then one can choose \(s = k_3 \). Then \(\langle k_1, k_2, s \rangle^\pi \cap x^\pi \) is a point \(z \) and any line \(l \) of \(\langle k_1, k_2, s \rangle^\pi \) intersects \(x^\pi \) in the point \(z \) or not at all. Thus \(\{k_1, k_2, s\}^{\perp\perp}_x = \emptyset \).

Hence suppose \(\langle k_1, k_2, k_3 \rangle \) is three-dimensional. By assumption \(k_1, k_2 \) and \(k_3 \) are elements of the point \(p \in \mathcal{P} \). Since each of the \(k_i \) is a neighbour of \(x \), the point \(k_1 \cap k_2 \cap k_3 = d \) in fact lies in \(x^\pi \). Fix a point \(y \) in \(\langle k_1, k_2, k_3 \rangle^\pi \cap x^\pi \) and consider the line \(s = \langle d, y \rangle \). The line \(s \) is contained in \(x^\pi \) and intersects each line \(k_i, i \in \{1, 2, 3\} \), in the point \(d \). By Lemma 3.1, the graph \(\{s, k_i\}^{\perp\perp}_x \) is not empty. Since \(y \not\in \langle k_1, k_2 \rangle \), the
subspace \(\langle s, k_1, k_2 \rangle \) has dimension four, and it follows, using the arguments from above, that \(\{ s, k_1, k_2 \}^\perp \) is empty.

\(\square \)

Proposition 4.3. Let \(p \) be a point in \(\mathcal{G} \) with \(p \cap \mathcal{L}_x \neq \emptyset \). Then \(p \cap \mathcal{L}_x \) is a point of \(\mathcal{G}_x \).

Proof. By Lemma 4.1 and Lemma 4.2, the intersection \(p \cap \mathcal{L}_x \) is a subset of some interior point \(p_x \) if \(|p \cap \mathcal{L}_x| \geq 2 \).

Let \(l \in p \cap \mathcal{L}_x \), then \(l \cap m \subseteq x^\pi \) for each element \(m \in p \). As \(\dim(x^\pi) = 5 \) we can find a two-dimensional subspace \(n \) properly contained in \(x^\pi \) such that \(l \cap n = l \cap m \). Certainly \(n \) is an element of \(p \) implying that \(|p \cap \mathcal{L}_x| \geq 2 \).

To complete the proof of the statement, it remains to show that each \(k \in p_x \) satisfies \(k \in p \). The vertex \(k \) corresponds to a line in the subspace \(x^\pi \) of \(\mathcal{G} \) incident to the point \(d = l \cap m \) for two different elements \(l, m \in p \).

Furthermore, for each \(n \in p \) different from \(k \), the space spanned by \(k \) and \(n \) is three-dimensional as \(n \) intersects \(k \) in the point \(d \). Lemma 3.9 implies that \(\{ k, n \}^{\perp \perp} \) is minimal with respect to inclusion, which is the first condition of Definition 3.11. To establish the second condition of this definition, let \(n, t \in p \) be distinct lines and different from \(k \). The lines \(k, n, t \) mutually intersect, by the arguments from above, so the subspace \(\langle k, n, t \rangle \) has dimension three or four. If \(\dim(\langle k, n, t \rangle) = 4 \), then \(\{ k, n \}^{\perp \perp} = L(\langle k, n \rangle) \subseteq L(\langle k, n, t \rangle) = \{ k, n, t \}^{\perp \perp} \) by Lemma 3.6 and Lemma 3.7. If \(\{ k, n, t \} \) is three-dimensional, then \(\langle k, n, t \rangle = \langle k, n \rangle \). Therefore there certainly exists a line \(s \) intersecting the lines \(k, n, t \) in the point \(d \) such that \(\langle k, n, s \rangle \) is a four-dimensional space in \(\mathcal{G} \) and \(\{ k, n \}^{\perp \perp} = L(\langle k, n \rangle) \subseteq L(\langle k, n, s \rangle) = \{ k, n, s \}^{\perp \perp} \) by Lemma 3.6 and Lemma 3.7. Hence \(k \in p \), which proves the claim.

Next we show that each point \(p_x \) of the interior space \(\mathcal{G}_x \) on \(x^\perp \) is contained in a unique point \(p \) of the interior space \(\mathcal{G} \) of \(\Gamma \).

Lemma 4.4. Let \(p_x \) be a point in \(\mathcal{G}_x \) and let \(k, l \) be two distinct elements of \(p_x \). Then \(k \) and \(l \) intersect in \(\mathcal{G} \).

Proof. By Definition 3.11 we have to check that \(\{ k, l \}^{\perp \perp} \) is minimal with respect to inclusion. By Lemma 3.9 this is the case if and only if the span of \(k \) and \(l \) is three-dimensional subspace. By way of contradiction assume that \(k \) and \(l \) span a four-dimensional subspace. Since \(k, l \in p_x \), thus \(\langle k, l \rangle \cap x \) has dimension zero and therefore the subspace \(\langle k, l, x \rangle \) is of dimension six. Hence \(\dim(\langle k, l, x \rangle^\pi) = 1 \), which means that \(\{ k, l, x \}^\perp = \{ k, l \}^\perp \cap x^\perp = \emptyset \), a contradiction to \(k, l \in p_x \), cf. Definition 3.10.

Lemma 4.5. Let \(p_x \) be a point in \(\mathcal{G}_x \) and let \(k_1, k_2, k_3 \) three different interior lines of \(p_x \). Then the corresponding interior lines of \(\mathcal{G} \) intersect in a common point.

Proof. By Lemma 4.4, it remains to show, cf. Definition 3.11, that there is a vertex \(s \) of \(\Gamma \cong S(V_7) \) such that

- for \(i \in \{ 1, 2, 3 \} \), if \(s \neq k_i \), the double perp \(\{ s, k_i \}^{\perp \perp} \) is minimal with respect to inclusion,
- \(\{ k_1, k_2 \}^{\perp \perp} = L(\langle k_1, k_2 \rangle) \subseteq L(\langle k_1, k_2, s \rangle) = \{ k_1, k_2, s \}^{\perp \perp} \).
As \(k_1, k_2, k_3 \in p_x\), we find a line \(s\) in \(G_x\) such that \(\{k_i, s\}^\perp \neq \emptyset\) if \(s \neq k_i\), for each \(i \in \{1, 2, 3\}\) and \(\{k_1, k_2, s\}^\perp = \emptyset\). By Remark 3.8 and Lemma 3.6 the double perp \(\{s, k_1\}^{\perp \perp}\) is minimal with respect to inclusion, if \(s \neq k_i\), for \(i \in \{1, 2, 3\}\).

Furthermore \(\emptyset = \{k_1, k_2, s\}^\perp \subsetneq \{k_1, k_2\}^\perp\) implying that \(\{k_1, k_2\}^{\perp \perp} = \mathcal{L}(\langle k_1, k_2 \rangle)\) is a subspace of \(x^\perp\) of dimension at least four. Hence \(\langle k_1, k_2 \rangle \subsetneq \langle k_1, k_2, s \rangle\) and \(s \not\subset \langle k_1, k_2 \rangle\), so \(\{k_1, k_2\}^{\perp \perp} \subsetneq \{k_1, k_2, s\}^{\perp \perp}\).

Proposition 4.6. Let \(\Gamma \cong S(V_7)\) and let \(x \in \Gamma\). Any point \(p_x\) of the interior space \(G_x\) on \(x^\perp\) is contained in a unique point \(p\) of the interior space \(G\) of \(\Gamma\). The resulting embedding of \(G_x\) into \(G\) turns \(G_x\) into a codimension two subspace of \(G\).

Proof. It remains to prove the claim about the codimension. This, however, follows from the fact that \(G_x \cong \mathbb{P}(V_5)\) and \(G \cong \mathbb{P}(V_7)\).

The analogue holds for arbitrary \(n \geq 8\).

Proposition 4.7. Let \(n \geq 8\), let \(\Gamma \cong S(V_n)\), and let \(x \in \Gamma\). Any point \(p_x\) of the interior space \(G_x\) on \(x^\perp\) is contained in a unique point \(p\) of the interior space \(G\) of \(\Gamma\). The resulting embedding of \(G_x\) into \(G\) turns \(G_x\) into a codimension two subspace of \(G\).

Proof. Left to the reader as an exercise.

5 The global space

In this section we prove the main result, i.e., we prove that if \(\Gamma\) is a connected graph which is locally isomorphic to \(S(V_n)\) for \(n \geq 7\), then \(\Gamma\) is isomorphic to \(S(V_{n+2})\). For every vertex \(x\) of \(\Gamma\) Proposition 3.12 allows us to construct the interior space \(G_x\) on \(x^\perp\) isomorphic to \(\mathbb{P}(V_n)\). Our approach towards a proof of the main theorem is via a construction of a global geometry on \(\Gamma\) using the family \((G_x)_{x \in \Gamma}\) of local interior spaces. This global geometry will turn out to be a projective space. Observe that so far geometric objects (points, lines, planes, etc.) only exist in the local interior spaces \(G_x\) for \(x \in \Gamma\). For emphasis we call these objects local. Moreover, we index every local object by the vertex \(x\) whose interior space it belongs to. One task will be to show that there exists a well-defined notion of global objects in order to define our global geometry.

Notation. In this section we use the following convention for the fonts of variables. Each vertex \(x\) of a graph is denoted in boldface. If \(x\) and \(y\) are adjacent vertices in \(\Gamma\), then the line of \(G_x\) corresponding to the vertex \(y\) is denoted by \(y_x\). Moreover, we will use the notation \(y_{\perp x}\) if we want to emphasise that we consider the vertex \(y\) as an element of the induced subgraph \(x^\perp\) rather than \(\Gamma\). So, for example, the symbol \(y_{\perp x}\) denotes the subgraph \(\{x, y\}^\perp\). The interior space obtained from the graph \(y_{\perp x}\) will be denoted by \(G_{y_{\perp x}}\).
Definition 5.1. A global line of Γ is a vertex of the graph Γ. The set of all global lines of Γ is denoted by L_Γ.

Let $x, y, z, w \in \Gamma$ such that $z \perp x \perp y \perp w$. Then $U_{x,y}^z := (z_x, y_x)^\perp = z_x^\perp \cap y_x$ is a subspace of the interior space G_x and of the interior space $G_{x,z}$. Proposition 3.12 implies $G_{x,z} = G_{x,z}$, because both $G_{x,z}$ and $G_{x,z}$ are interior spaces of the same graph $x^\perp \cap z^\perp$. Hence by Propositions 4.6 and 4.7 this space $U_{x,y}^z$ can be considered as a subspace of the interior space G_x, in fact of x_x^\perp. For emphasis we denote $U_{x,y}^z$ by $U_{x,y}^z$ when considering it as a subspace of G_x. Altogether any local object contained in $U_{x,y}^z \cap U_{x,w}^z$ is a local object of each of the interior spaces G_x, G_y, G_z, G_w.

Proposition 5.2. Let $n \geq 7$ and let Γ be a connected graph which is locally isomorphic to $S(V_n)$. Then Γ has diameter two. Moreover, if $z \perp x \perp y \perp w$ is a chain of vertices in Γ, then there exists $l \in \{z, y, w\}^\perp$.

Proof. Let $z \perp x \perp y \perp w$ be a chain of vertices in Γ. We will distinguish between the cases that $n \geq 8$ and $n = 7$.

- **$n \geq 8$:** The dimension of the intersection of $U_{x,y}^z$ and $U_{x,y}^w$ is at least two as $\dim(U_{x,y}^z \cap U_{x,w}^z) = \dim(U_{x,y}^z) = \dim(x_x^\perp) + \dim(w_w^\perp) - \dim(x_x^\perp, w_w^\perp) \geq n - 4$ and both $U_{x,y}^z$ and $U_{x,y}^w$ are subspaces of x_x^\perp. Therefore we can choose an interior line l_y in $U_{x,y}^z \cap U_{x,y}^w$. This interior line l_y corresponds to a vertex l_y of Γ and is adjacent to all of x, y, z, w.

- **$n = 7$:** In view of the preceding paragraph it remains to deal with the case where $U_{x,y}^z \cap U_{x,y}^w = p_y$ is an interior point of G_y, whence also of each of the interior spaces $G_x, G_{x,y}, G_z$. Fix an interior line n_x of the at least three-dimensional subspace $U_{x,y}^z \cap U_{x,y}^w$ that is adjacent to the interior point p_y. Hence n_x corresponds to a vertex $n \in \Gamma$ adjacent to x, y, z. Therefore we can consider the chain $z \perp n \perp y \perp w$ instead of $z \perp x \perp y \perp w$. Again there is an interior point $q_w = U_{x,y}^z \cap U_{x,y}^w$ in G_n. The interior points p_y and p_y are different, because p_y lies on the two-dimensional subspace n_x and q_w is orthogonal to n_x. Hence the span $l_y = \langle p_y, q_w \rangle$ is a line contained in $w_w^\perp \subseteq G_y$. This line l_y corresponds to a vertex l_y adjacent to y and w.

We have constructed the chain $z \perp n \perp y \perp l_y \perp l_y$ in Γ with the property that the dimension of the span $\langle n_y, l_y \rangle$ is three as the interior lines n_y and l_y intersect in the interior point p_y in G_y. Thus $\dim(U_{x,y}^z \cap U_{x,y}^n) = n - 3$ and therefore $\dim(U_{x,y}^z \cap U_{x,y}^n) \geq n - 4 - n - 3 + n - 2 = n - 5 = 2$. Hence there is a vertex $l \in \Gamma$ adjacent to the vertices z, n, y, l_y. The vertices y and z_x correspond to interior lines y_z and z_x in G_y and the intersection of y_z and z_x is of dimension three. Furthermore the subspace $y_z^\perp \cap z_x^\perp$ contains the interior points p_y and q_y induced by p_y, respectively q_y. Hence the interior line l_z is incident to $U_{z,y}^x$. Therefore I and z_x are adjacent in Γ, so that z_x and w have distance at most two.

In both cases it follows by induction that the connected graph Γ has diameter 2.

Our next goal is to define a notion of global points for Γ. The following observation is the reason why such a definition is possible.
Proposition 5.5. Let \(p \) be a global point and \(x \) be a vertex of \(\Gamma \).

- The intersection \(L_x \cap p \) is either empty or an interior point of \(G_x \).
- The global point \(p \) does not depend on the starting interior point \(p_x \subseteq p \).
The triple $G_\Gamma = (\mathcal{P}_\Gamma, \mathcal{L}_\Gamma, \supset)$ is a point-line geometry, called the global geometry on Γ.

Proposition 5.6. The point-line geometry $G_\Gamma = (\mathcal{P}_\Gamma, \mathcal{L}_\Gamma, \supset)$ is a projective space.

Proof. We have to show that the geometry G_Γ satisfies the axioms of a projective space, i.e., G_Γ is linear and satisfies the axiom of Veblen and Young. Note that G_Γ is automatically thick, because the spaces $G_x, x \in \Gamma$, are.

We start with proving linearity. Let p and q be two distinct global points of G_Γ and fix two global lines $l \in \mathcal{P}$ and $m \in \mathcal{P}$. By Proposition 5.2 there exists a vertex $z \in \Gamma$ adjacent to l and m. Hence Proposition 5.5 implies that $p \cap L_z = p_z$ and $q \cap L_z = q_z$ are interior points of G_z. By Proposition 3.12, i.e., since the projective space G_z is linear, there is a unique interior line k_z of G_z incident to both p_z and q_z. Thus we have found a global line k joining the global points p and q. If l were another global line joining the global points p and q, Proposition 5.2 would give us a vertex $m \in \{k, l\}$ and a contradiction to the linearity of G_m. So G_Γ is linear.

We now turn to the axiom of Veblen and Young. Let a, b, c, d, e be global points of G_Γ such that the global points a, b, c and a, d, e are collinear triples on distinct global lines, say $l^{a,b,c}$ and $l^{a,d,e}$. We need to prove that the line $m^{b,d}$ joining b and d intersects the line $n^{c,e}$ joining c and e. By Proposition 5.2 there exists $z \in \Gamma$ satisfying $m^{b,d} \perp z \perp n^{c,e}$. The claim follows from local analysis of the interior space G_z and Propositions 3.12 and 5.5. Indeed the interior space G_z contains the interior lines $m_z^{b,d}$ and $n_z^{c,e}$ and the interior points b_z, c_z, d_z, e_z. Moreover, the space G_z contains the lines joining the pair b_z, c_z and the pair d_z, e_z. This means that $l_z^{a,b,c}$ and $l_z^{a,d,e}$ are lines of G_z. Therefore the interior point $a_z = a \cap L_z$ exists in G_z. By the validity of the axiom of Veblen and Young in the projective space G_z the interior lines $m_z^{b,d}$ and $n_z^{c,e}$ intersect in a point f_z. Extending this local point to a global point f finishes the proof.

Definition 5.7. Let $x \in \Gamma$. Then $\langle x^\perp \rangle$ denotes the pair $(\mathcal{P}_x^\perp, L_x^\perp) \subseteq (\mathcal{P}_\Gamma, \mathcal{L}_\Gamma)$ where \mathcal{P}_x^\perp contains the global points which have a non-empty intersection with L_x, i.e. $p \in \mathcal{P}_x^\perp$ if and only if $p \cap L_x \neq \emptyset$. For a global point p we denote by $\langle p^\perp \rangle$ the pair $(\mathcal{P}_p, L_p) := (\bigcup_{x \in p} \mathcal{P}_x^\perp, \bigcup_{x \in p} L_x^\perp) \subseteq (\mathcal{P}_\Gamma, \mathcal{L}_\Gamma)$.

It turns out that for each $\langle x^\perp \rangle$ is a hyperline and each $\langle p^\perp \rangle$ is a hyperplane of G_Γ, cf. Propositions 5.9 and 5.11.

Lemma 5.8. Let $n \geq 7$. The geometries $\langle x^\perp \rangle$ and $\langle p^\perp \rangle$ are subspaces of G_Γ. Moreover, $\langle x^\perp \rangle \cong G_x$.

Proof. We start with proving that $\langle x^\perp \rangle$ is a subspace. We have to show that for distinct $p, q \in \mathcal{P}_x^\perp$ the line $l \in \mathcal{L}_\Gamma$ joining p and q lies in L_x. Proposition 5.5 yields interior points $p_x = p \cap L_x$ and $q_x = q \cap L_x$ of the interior space G_x. By Proposition 3.12 there exists a unique interior line l_x incident to both p_x and q_x. Hence $l \in L_x$. The map $\langle x^\perp \rangle \to G_x : p \mapsto p \cap L_x$ and $l \mapsto l$ for every $p \in \mathcal{P}_x^\perp$ and $l \in L_x$ is the desired isomorphism.
The projective space \mathcal{G}_Γ has vector space dimension $n + 2$.

Proof. Indeed, the codimension two subspace $\langle x^\perp \rangle \cong \mathcal{G}_x$ has vector space dimension n. \hfill \square

Proposition 5.11. Let $n \geq 7$ and let p be a global point of Γ. Then $\langle p^\perp \rangle$ is a hyperplane of \mathcal{G}_Γ.

Proof. Certainly the subspace $\langle p^\perp \rangle$ is a proper subspace of \mathcal{G}_Γ. Indeed, $p \not\in \langle p^\perp \rangle$ as $p \cap L_x = \emptyset$ for each vertex $x \in p$. It remains to prove that each global line meets $\langle p^\perp \rangle$. Let $l \in \Gamma$ and let k be a global line of p. By Lemma 5.2 there exists a line $z \in \Gamma$ satisfying...
90
Kristina Altmann and Ralf Gramlich

\[k \perp z \perp l. \] The orthogonal space \(p_z \) of \(p_z \) is a hyperplane of \(G_z \). Therefore the interior line \(l_z \) intersects \(p_z \) in at least one interior point \(q_z \). Hence \(l \) is incident to the global point \(q \). Moreover, there exists \(m \in p \) such that \(m \cap p_z \) contains the interior point \(q_z \). This implies \(q \cap L_m \neq \emptyset \), whence \(q \) is a point of the subspace \(\langle p \rangle \) incident to \(l \).

Proposition 5.12. Let \(n \geq 7 \) and let \(\Gamma \) be a connected graph locally \(S(V_n) \). The point-line geometry \(G_\Gamma = (P_\Gamma, L_\Gamma) \) is isomorphic to \(\mathbb{P}(V_{n+2}) \).

Proof. In view of Corollary 5.10 the only remaining question is the one for the isomorphism type of the underlying field. That field, however, is equal to the field underlying the projective spaces \(G_x, x \in \Gamma \).

Lemma 5.13. Let \(H \) be a hyperline of \(G_\Gamma \). Then there exists a unique vertex \(h \in \Gamma \) satisfying \(H = \langle h \rangle \).

Proof. Let \(k \) be a global line in the hyperline \(H \). By Lemma 5.9 the subspace \(\langle k \rangle \) is a hyperline of \(G_\Gamma \). Moreover, the intersection \(L := \langle k \rangle \cap H \) is a hyperline of \(H \), because \(k \) and \(\langle k \rangle \) intersect trivially. Therefore \(L \) is also a hyperline of \(\langle k \rangle \) and induces a local hyperplane \(L_k \equiv L \) in the interior space \(G_k \equiv \langle k \rangle \). Thus \(L_k = L_k^\perp \) for some interior line \(l_k \). Obviously, \(k \in \langle l \rangle \) and \(L \subseteq \langle l \rangle \). By dimension arguments we obtain \(H = \langle k, L \rangle = \langle l \rangle \).

Let \(m \in \Gamma \) another vertex satisfying \(H = \langle m \rangle \). By Proposition 5.2 there exists \(z \in \Gamma \) satisfying \(l \perp z \perp m \). The equality \(\langle l \rangle = \langle m \rangle \) implies \(\langle l \rangle \cap \langle z \rangle = \langle z \rangle \). Local analysis of \(G_z \equiv \langle z \parallel \rangle \) (cf. Lemma 5.8) yields \(l = m \).

Lemma 5.14. Let \(P \) be a hyperplane of \(G_\Gamma \). Then there exist a unique global point \(p \) of \(G_\Gamma \) satisfying \(P = \langle p \rangle \).

Proof. Let \(k \) be a global line of the hyperplane \(P \). By Lemma 5.9 the subspace \(\langle k \rangle \) is a hyperline of \(G_\Gamma \). The intersection \(L := \langle k \rangle \cap P \) is a hyperline of \(\langle k \rangle \) \(\equiv G_k \). Thus \(L \) induces a unique local hyperplane \(L_k \) in \(G_k \). Hence \(L_k \) is the orthogonal space of some interior point \(p_k \). Consequently, \(k \in \langle p \parallel \rangle \) and \(L \subseteq \langle p \parallel \rangle \). Hence by dimension arguments \(P = \langle k, L \rangle = \langle p \rangle \). Uniqueness of \(p \) follows by an argument as given in the proof of Lemma 5.13.

Denote the set of all hyperplanes of the projective geometry \(G_\Gamma \) with \(\mathcal{H}_\Gamma \). Define

\[
\pi_\Gamma : \mathcal{P}_\Gamma \cup \mathcal{H}_\Gamma \to \mathcal{P}_\Gamma \cup \mathcal{H}_\Gamma \n\]

\[
p \mapsto \langle p \rangle \n\]

\[
\langle p \rangle \mapsto p. \n\]

Let \(S(G_\Gamma) \) be the line graph of \(G_\Gamma = (P_\Gamma, L_\Gamma) \). This means the vertex set of \(S(G_\Gamma) \) is the set of global lines of \(G_\Gamma \) in which two distinct global lines \(k \) and \(l \) are adjacent if and only if \(k \in \langle l \rangle = \pi_\Gamma(l) \) or, equivalently, if and only if \(l \in \langle k \parallel \rangle = \pi_\Gamma(k) \).

Proposition 5.15. The graph \(\Gamma \) is isomorphic to the line graph \(S(G_\Gamma) \) of \(G_\Gamma \).
Local recognition of the line graph of an anisotropic vector space

Proof. The identity map $\Gamma \to S(\mathcal{G}_\Gamma)$ is an isomorphism. \hfill \qed

The Main Theorem is proved.

Acknowledgements. The authors express their gratitude to Antonio Pasini and to an anonymous referee for several very helpful comments and suggestions.

References

Received 14 October, 2007
K. Altmann, c/o Holger Grothe, Fachbereich Mathematik, TU Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
Email: altmann@mathematik.tu-darmstadt.de

R. Gramlich, Fachbereich Mathematik, TU Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
Email: gramlich@mathematik.tu-darmstadt.de

Second author’s alternative address: R. Gramlich, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Email: ralfg@maths.bham.ac.uk