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Summary: An animal (rat) model of gingival injury (“impaction”) induced a gingival inflammatory reaction, which
was characterized by a breakdown of gingival collagen and the elastic network, as well as a significant increase of
gingival elastase. The present study was conducted to investigate whether ceramides, sphingolipids composed of
sphingosine N-acyl-linked to fatty acids, a chemical structure with antielastase properties, could counteract the
development of such an inflammatory process.

The ceramides used in these experimental series were extracted from wheat and characterized. The main fatty acids
were 16: 0, 18: 1, 18 : 2, and the sphingoid moiety was phytosphingosine. Inhibition of elastase by ceramides was
demonstrated in vitro and the concentration necessary to inhibit 50% of elastase activity was 41 mg/l using the
synthetic substrate methoxysuccinyl-alanine-alanine-proline-valine-p-nitroanilide (MeOSuc-AlaAlaProValpNA).
However, this anti-elastase activity was not observed in vivo in our animal model of gingival inflammation.

A glycosaminoglycan (Heparin®), recognized as a potent inhibitor of elastase, was entrapped in ceramides. A local
treatment of impacted gingivae by encapsulated heparin led to a dose-related decrease of the elastase level in
gingival extracts. Encapsulation in ceramides potentiated the effect exerted by heparin alone. This inhibitory effect

of encapsulated heparin on elastase suggested a vector effect of these amphipathic molecules.

Introduction

Periodontitis is an infectious periodontal disease with an
irregular evolution, characterized by gingival inflamma-
tion mainly due to bacteria (1, 2). Clinical criteria such
as radiographs, pocket depth and bleeding on probing
are needed for periodontitis diagnosis. Some markers
such as enzymes') and inflammatory mediators have
also been investigated in gingival fluid in order to in-
clude biochemical criteria in the diagnosis. These mark-
ers include collagenase (3, 4), gelatinase (5, 6), lactofer-
rin (7), y-glucuronidase (8), aspartate aminotransferase
(9), and elastase (10— 14).

The gingival proteinases, collagenase and elastase, have
received a great deal of attention during the past few
years, since tissue destruction by these enzymes plays a
major role in the pathogenesis of periodontitis. In heal-
thy tissues, matrix macromolecules are protected against
elastase destruction by natural inhibitors such as a,-anti-
protease, 0j-macroglobulin and a,-antichymotrypsin
(15) which are endogenous regulators of this enzyme

1) Enzymes:
Neutrophil elastase EC 3.4.21.37;
Neutrophil collagenase EC 3.4.24.34

activity. However, during inflammatory episodes, poly-
morphonuclear leukocytes release numerous enzymes
and oxidants which can inactivate these natural inhibi-
tors. Therefore, exogenous natural or synthetic antielas-
tase compounds might be efficient in preventing tissue
damage.

Elastase is a serine proteinase capable of digesting vari-
ous components of the extracellular matrix (16), which
plays a central role in connective tissue destruction asso-
ciated with the inflammatory process. It has been de-
monstrated that several lipidic substances inhibit the ser-
ine proteases, pancreatic elastase and plasmin (17, 18).
The three-dimensional structure of leukocyte elastase
shows an unusual hydrophobic pocket near its active site
that can accommodate cis-unsaturated long chain fatty
acids and their derivatives (19, 20). By binding to this
pocket, glycosaminoglycans such as heparin and he-
paran sulphate may act as strong inhibitors of leukocyte
elastase (21).

Ceramides are sphingolipids composed of sphingosine
N-acyl linked to fatty acids, conferring an hydrophobic
character on the molecule. Owing to their hydrophobic
structure, it has been suggested that ceramides extracted
from wheat, composed of dehydrophytosphingosine,
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phytosphingosine, dihydrophytosphingosine and poly-
unsaturated fatty acids, may inhibit leukocyte elastase in
vitro and thus prevent matrix alterations (22).

In previous experiments in the rat (23), we demonstrated
that elastic components decreased significantly only
when bacteria were added to the mechanical injury. A
significant enhancement of gingival elastase level ap-
peared in parallel to the number of invading inflamma-
tory cells, mostly represented by polymorphonuclear
leukocytes, which represent the major source of re-
leased elastase.

The aim of this work was to investigate whether cera-
mides, containing or not containing an antielastase com-
pound such as heparin, could counteract the evolution
of a gingival-induced inflammation which shows many
features of periodontal diseases (23).

Materials and Methods

Reagents

Purified human leukocyte elastase was from Elastin Products Com-
pany (St. Louis, MO, USA).

Methoxysuccinyl-(Ala),-Pro-Val-pNA  was
Louis, MO).

Heparin was from Léo Lab. (Paris, Fance).

Ceramides were extracted and purified by INOCOSM (Chatenay-
Malabry, France).

from Sigma (St

Extraction of ceramides from wheat

Wheat grains (Joss variety) were ground to powder and extracted
several times with combinations of solvents containing various
proportions of methanol, chloroform and acetone (European patent
No 91-06-336 PCT/FR92/00182). Triacylglycerols were removed
by treating isolated ceramides with acetone. Ceramides were then
recrystallized, treated with active charcoal, dried, crushed and
micronized.

Characterization of wheat ceramides

Wheat ceramides were characterized by thin layer chromatography,
gas chromatography-mass spectrometry and infrared spectroscopy.

Thin-layer chromatography was performed on Silica gel 60 plates
(Merck, Darmstadt, Germany) using chioroform/hexane/methanol/
acetic acid/water (24 + 14 + 8 + 6 + 0.6 by vol.) as the solvent.
The detection reagent was 10 g of copper II sulphate in 100 ml of
80 g/1 phosphoric acid solution. Individual ceramides were quanti-
fied by densitometry coupled with a Donatec 385/16 computer.

For gas chromatography-mass spectrometry analysis, an HP 5989 A
spectrometer was used with an electron energy of 22 eV. Com-
pounds were run on a HP1 column conditioned at 280 °C with a
helium (carrier gas) pressure of 15 psi on the column head. The
standard Grob-split-splitless injector was used in the splitless
mode. Esterified fatty acids from hydrolysed ceramides was per-
formed with a NICOLET SX 730 infrared spectrometer equipped
with Fourier transformation and a silicon carbide infrared source.
Non-hydrolysed ceramides were dissolved in dimethylsulphoxide
for infrared spectroscopy.

Determination of solubilities of ceramides in
dimethylsulphoxide

Stock solutions of ceramides were prepared in dimethylsulphoxide.
Fifty microlitres were withdrawn and added to 100 mmol/l Tris/

HCI pH 8.0 containing 0.1 ml/l Triton X-100 and 0.2 g/l sodium
azide (NaN3). The turbidity of the solution was evaluated by laser
nephelometry (Behring laser nephelometer, Behring Institute,
France) and values were corrected for blanks consisting of buffer
containing the same amount of dimethylsulphoxide. Solubility lim-
its corresponded to changes in the slope of the nephelometric
curve (24).

Enzyme kinetics using MeOSucAlaAlaProValpNA

Stock solutions of methoxysuccinyl-alanine-alanine-proline-valine-
p-nitroanilide (MeOSucAlaAlaProValpNA) were prepared in N-
methylpyrrolidone and stored in the dark at 4 °C. Human neutro-
phil elastase activity was determined at 37 °C in thermostated poly-
styrene cuvettes with 100 mmol/l Tris/HCI pH 8.0 containing 0.1
ml/1 Triton X-100 and 0.2 g/l sodium azide (NaN3). Human neutro-
phil elastase (16.1 nmol/l) was preincubated for 5 min with 5 to
62.5 mg/l of ceramide. Synthetic substrate (0.025 to 0.2 mmol/l)
was then added. The release of p-nitroaniline was recorded at 410
nm with a spectrophotometer (Philips PU 8740 UV/Vis). The in-
hibitory capacity of ceramide was expressed as percentage of inhi-
bition: %I = (1-Vi/Vo) X 100 where Vi is the velocity in the pres-
ence of the inhibitor and Vo in the absence of the inhibitor, contain-
ing the same amount of dimethylsulphoxide.

Experimental gingival inflammation “Impaction”

Male Sprague-Dawley Rats (Depré, Saint-Doulchard, France)
weighing 180—200 g were housed at 21—24 °C, given chows and
distilled water ad libitum. Gingival inflammation was induced
using the bacterial strain Treponema denticola (IP 6444) as de-
scribed before (23).

Collection of samples

Animals were euthanized with ether, 10 days after impaction. Gin-
givae were dissected under a binocular microscope, weighed and
placed in sterile plastic microcentrifuge tubes (Eppendorf 0.7 ml)
containing 10 ul of phosphate-buffered saline and 0.1 g/1 Brij 35,
pH = 8, in order to minimize evaporation and protease inhibition
(25). These samples were used for elastase assay.

Elastase assays

Gingivae, frozen (—20 °C) after collection, were cut with a cryostat
into 10 pm slices and suspended in Tris buffer (100 mmol/l
Tris/HCI, NaCl 1 mol/l, Brij 35 0.1 g/l, NaN; 0.2 g/l, pH = 8).
After shaking for 24 h at 4 °C, they were centrifuged, and the su-
pernatant was collected for elastase measurement. Elastase activity
was determined using MeOSucAlaAlaProValpNA as substrate.

Briefly, a 125 mmol/l stock solution of the substrate was prepared in
N-methylpyrrolidone. Next, 20 pl of this solution were added to 960
ul of buffered solution consisting of 100 mmol/l Tris HCI, 0.1 g/1 Brij
35, 0.2 g/l NaN3, and 20 pl of sample. The mixture was incubated for
24 1 at 37 °C and absorbance was recorded at 410 nm in a spectro-
photometer (Beckman). Standard curves of substrate hydrolysis
were obtained using titrated purified human leukocyte elastase (Elas-
tin Products Company, St. Louis, MO, USA). Results were expressed
as ng of active elastase per mg of proteins of the sample.

Pharmacological assay

Rat gingivae impacted with Treponema denticola were locally
treated with ceramides (prepared with gum arabic and stored in the
dark in small sterile flasks at 4 °C) with or without heparin (25
X 10% and 50 X 10° TU/I) every day at the same hour until animal
sacrifice. Control animals were not infected.

The level of elastase measured in each biopsy was related to the
amount of protein measured by Lowry’s technique.

Statistical analysis

One way analysis of variance (Anova from the computer program
Statview II) provided an initial estimate of whether the groups were
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significantly different. Unpaired Student’s t test was calculated in
each group between treated and non-treated rats. Results were
given as means * S. E. M. Differences with p < 0.05 were consid-

ered as significant.

Results

Characterization of wheat ceramides

Table 1 and figure 1 show the composition and the struc-
ture of wheat ceramides. The major fatty acids are pal-
mitic acid (16 : 0), oleic acid (18 : 1) and linoleic acid
(18 : 2), representing 19, 12 and 53% of total fatty acids,
respectively. However the exact composition of the
mono-, di-, tri- and polyglycosyl ceramides were not de-
termined. The absence of any absorption when infrared
spectroscopy was used suggested that the sphingosine
moiety is a phytosphingosine.

{ Determination of solubility

\ Figure 2 shows the solubility limit of ceramides which
J corresponds to a change in the slope of the nephelomet-

Inhibition of elastase by ceramide

‘ ric curve. This value was equal to 80 mg/l. Therefore,
subsequent enzymatic and pharmacological studies were
performed with concentrations below this value.

For testing the inhibition of elastase by wheat ceramides
in vitro, we used the specific synthetic substrate MeO-
SucAlaAlaProValpNA. Figure 3 represents the percent-
age of inhibition of elastase by ceramide at concentra-
tions from 5 to 62.5 mg/l. Inhibition of leukocyte elas-
tase increased with the increase of ceramide concentra-
tion used (below solubility limits). Previous studies

Tab.1 Fatty acid composition of wheat ceramides.

Fatty acids Non-hydroxylated Hydroxylated
16:0 19.04 -
18:0 5.10 -
18:1 12.30 -
18:2 53.22 -
20:0 0.61 1.65
20:1 1.05 -
22:0 2.56 1.88
22:1 - 0.47
24:0 0.65 -
26:0 0.85 -
28:0 0.67 -

Phytosphingosine
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Fig.1 Fatty acid composition of wheat ceramides.
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Fig.3 Inhibition of human neutrophil elastase by wheat cera-
mides (%).

(unpublished data analysed by Baici’s equation (26))
showed that this inhibition, hyperbolic and non-competi-
tive for concentrations below 20 mg/l, becomes mixed
and linear at higher concentrations.

Pharmacological assay

Figure 4 shows that the elastase level was very low in
controls. This value was significantly increased when
gingivae were impacted with Treponema denticola. Cer-
amides did not prevent this increase. However, this
value decreased significantly in gingivae treated locally
with heparin (50 U), and this effect was dose-related
(data not shown). This effect was potentiated when hep-
arin was encapsulated in ceramides. Only these data
have been reported in figure 4.

Discussion

In the present work we demonstrated that our model of
gingival inflammation can be used to test the capacities
of some anti-clastase substances to protect and/or to pre-
vent destruction of extracellular matrix macromolecules.
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Fig.4 Amounts of neutrophil elastase (ng/mg of proteins *
SEM) in control gingivae, gingivae impacted with Treponema den-
ticola, gingivae impacted with Treponema denticola and treated
with ceramides alone or ceramides associated to heparin 25 U and
heparin 50 U.

* p < 0.05 by comparison to control value

number of animals in each group: 6 to 8.

There are a number of biological markers of periodontal
diseases but elastase derived from polymorphonuclear
leukocytes is certainly the most important one. The
increase of elastase in gingival extracts after “impac-
tion” with bacteria parallels the migration of inflamma-
tory cells (essentially polymorphonuclear leukocytes)
towards the focus of inflammation. These cells then re-
lease their lysosomal content, including enzymes and
mediators. This degranulation process is followed by de-
gradation and disorganization of the gingival elastic net-
work, especially when gingival infection occurs (23).
These results corroborated the findings of Bonnaure-
Mallet (27) who showed that pathogens play a pivotal
role in the establishment of the disease, and who ob-
served a modification of gingival elastic fibres in pa-
tients with severe periodontitis, similar to that observed
in impacted animals.

Elastase, derived from polymorphonuclear leukocytes,
has a high affinity for lipophilic substances, and an even
higher affinity for long-chain unsaturated fatty acids and
their derivatives, owing to the presence of an hydro-
phobic pocket near its active site (19, 20). Oleic acid is
the most potent inhibitor, and it is capable of combining
with either substrate or enzyme (28).

Recent data indicated that the extended substrate binding
domain of leukocyte elastase can accommodate a large
variety of hydrophobic lipids (not only fatty acids) like
fatty acyl-saccharins (29), polycyclic molecules such as

steroidal anti-inflammatory drugs (30) and some cepha-
losporin derivatives (31). It was speculated that the N-
acyl linkage of fatty acid to phytosphingosine confers
high hydrophobicity on wheat ceramides, allowing their
interaction with the active site of elastase. Besides their
physiological properties such as skin hydration, regula-
tion of cellular growth and differentiation (32), we de-
monstrated in this work that ceramides extracted from
wheat possess anti-elastase activity in vitro. The same
results were obtained when the inhibitory properties of
ceramide were tested on natural substrate (radiolabelled
elastin) or on healthy human skin (22).

Heparin and its sulphated derivative, heparan sulphate,
are strong inhibitors of leukocyte elastase (21). The
same inhibitory activity was demonstrated against both
clastase and cathepsin G by N-oleoylheparin (20). It has
been demonstrated that heparin fragments such as oleoyl
peptide conjugates are efficient in preventing emphy-
sema induced in rodents by intra-tracheal elastase instil-
lation (33, 34).

After “impaction” of gingivae, we observed a significant
enhancement of the elastase content of gingival extracts,
which parallelled the presence of migratory invading
cells (especially polymorphonuclear leukocytes)
attracted by various chemoattractants, as previously ob-
served in skin diseases (35). Unlike bifunctional inhibi-
tors, such as oleic acid, the ceramides were unable to
bind elastin (22). Protection of the substrate by cera-
mides therefore consists of inhibition of the enzyme
only.

Our experiments showed that local treatment by heparin
of impacted gingivae led to a dose related decrease of
the elastase level in gingival extract. This inhibiting ef-
fect of heparin on elastase was potentiated by associa-
tion with ceramides, suggesting the possible existence
of a vector effect of these amphipathic molecules. A
vector effect has already been demonstrated after oral
administration of encapsulated superoxide dismutase in
liposomes containing ceramides (36, 37).

This preliminary pharmacological assay performed to
validate our animal gingival lesion model with a very
potent anti-elastase substance opens a large field of in-
vestigations on natural or synthetic anti-elastase mole-
cules. Such substances might prevent the destruction of
gingival macromolecules which occurs during inflam-
matory injury and might be useful in therapeutic treat-
ment of periodontal diseases.
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