
i
i

“mit-07-10-14” — 2014/10/27 — 14:10 — page 1 — #1 i
i

i
i

i
i

SHAPE SENSITIVITIES FOR AN INVERSE PROBLEM IN MAGNETIC INDUCTION
TOMOGRAPHY BASED ON THE EDDY CURRENT MODEL⇤

MICHAEL HINTERMÜLLER†, ANTOINE LAURAIN‡, AND IRWIN YOUSEPT§

Abstract. In this paper the shape derivative of an objective depending on the solution of an eddy current approximation of
Maxwell’s equations is obtained. Using a Lagrangian approach in the spirit of Delfour and Zolésio, the computation of the shape
derivative of the solution of the state equation is bypassed. This theoretical result is applied to magnetic impedance tomography, which
is an imaging modality aiming at the contactless mapping (identification) of the unknown electrical conductivities inside an object given
measurements recorded by receiver coils.
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1. Introduction. Magnetic induction tomography (MIT) is a low-contrast resolution mapping modality
for non-contacting measurement of electric properties of conducting materials which has been developed
for industrial processes about twenty years ago and whose use is more recent in medical imaging; see
[12, 17, 26, 27, 30]. The technology of MIT involves an oscillating magnetic field generated by a transmitter
coil, which in turn induces an eddy current inside the conducting materials. The resulting magnetic field
arising from the eddy current depends on the conductivity distribution in the region surrounded by the coil
array and it is detected by a set of receiver coils. Compared to other imaging techniques such as electrical
impedance tomography, the advantage of MIT is to avoid electrode-skin contact since the magnetic field can
penetrate through the insulating barrier, making it a contactless and non-invasive technique. The goal of
this paper is to study an inverse problem of a simplified MIT system governed by the time-harmonic eddy
current equations. In fact, given measurements, which depend on the electric field E and the current density
J and which are recorded at receiver coils surrounding the region of interest, we aim at reconstructing the
conductivity (function) � associated with objects contained in the region of interest.

Eddy current equations play a significant role in many advanced technologies involving electromagnetic
phenomena. These equations arise from Maxwell’s equations by neglecting the presence of displacement
currents. In a low frequency range, they provide a reasonable approximation of the full Maxwell equations;
see [2]. For recent results on the mathematical and numerical analysis of the optimal control of eddy current
equations, we refer to [24, 35, 40–42]. The use of the eddy current model in MIT is justified by the small
wavelength of its operating frequencies. Typically, the frequencies lie between 10 and 100 MHz, i.e. in the
range of some micrometers, so that the wavelength is small compared to the size of the conductor.

The inverse problem of MIT is ill-posed, in the sense that, besides other structural difficulties, there is
no uniqueness and stability of the solution. In many practical applications, this may be exacerbated by the
small number of available measurements and by low regularity of the hidden objects: typically the associated
(conductivity) functions are bounded but not continuous. A few algorithms have been proposed to solve the
inverse problem in two dimensions or in the discrete setting; see [10, 31, 32, 37, 39] and references therein.

In order to deal with the ill-posedness in numerical studies, one often introduces a regularization in
the reconstruction process. A widely used solution approach to inverse problems consists in minimizing
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an L2-misfit between the reconstruction pertinent to a certain number of experiments and the data usually
collected in measurements devices placed outside or on the boundary of the observed region, plus a regular-
ization term to obtain the appropriate regularity of the unknown function. The choice of the regularization
is crucial for the quality of the reconstruction and for qualitative properties. Popular regularizers are the
L2-norm (Tikhonov), the H1-norm or the total variation (TV) semi-norm. Recently, the latter has received
a considerable amount of attention due to its capacity of preserving discontinuities while still sufficiently
filtering noise.

Alternatively, based on a priori considerations, in this paper we take the approach of directly working
in a class of functions with a given regularity and structural properties. In fact, we consider the case of
piecewise constant functions

� =

nX

i=0

�
i

�⌦i

with discontinuity sets @⌦
i

having finite perimeter, i.e. a subclass of functions of bounded variation. Here,
�⌦i denotes the indicator function of a set ⌦

i

⇢ RN , {�
i

}n
i=0 2 Rn and {⌦

i

}n
i=0 is a partitioning of

the set ⌦. Such a structural assumption is often meaningful in applications, for instance in nondestructive
testing, geophysics, or in medicine, where each organs have their respective electrical properties. Using the
assumption of piecewise constant parameter functions, then the main issue is to localize the discontinuity
sets of �, i.e. to determine the partition {⌦

i

}n
i=0. In this framework, the inverse problem takes the form

of a shape optimization problem. Such geometry based approaches have been successfully applied for the
detection of sharp interfaces in inverse problems and image analysis in the last few years; see for instance
[3, 5, 13, 14, 18, 21–23, 25, 29, 36]

The rest of the paper is organized as follows. In Section 2 the geometry of the problem is discussed, and a
shape optimization approach is formulated to solve the inverse problem. In Section 3 the forward problem of
the eddy current model is studied. Moreover, its variational formulation is given and existence and regularity
of the solution is proved. Higher regularity results are also obtained using additional regularity assumptions
on the data. The notion of shape differentiability is defined in Section 4 and a saddle point formulation is
used to compute the shape derivative. Further, in Sections 4.5 and 4.6, the domain and boundary expressions
of the shape gradient are obtained, respectively. The paper ends by drawing conclusions.

2. Problem formulation. Let ⌦ ⇢ R3 be a bounded and simply connected Lipschitz domain. We
assume that inside this domain, there resides a Lipschitz domain ⌦

C

satisfying ⌦

C

⇢ ⌦. This subdomain
consists of conducting biological tissues. For simplicity, we assume that ⌦

C

has a connected boundary
� := @⌦

C

. Further, the set ⌦
I

:= ⌦ \ ⌦
C

is assumed to be a non-conducting region; see Figure 2.1 for a
description of the geometry. We consider an applied current density J generated by an open Lipschitz set
of transmitter coils ⌦

T

which is strictly contained in ⌦

I

, i.e., ⌦
T

⇢ ⌦

I

. Note that the applied current J
is introduced in the non-conducting region ⌦

I

. This describes the physical situation where the coils only
induce a magnetic field and are not affected by the corresponding reaction field from the eddy current.

The E-based time-harmonic eddy current equations are described by

(2.1)

8
>>>>>>>>><

>>>>>>>>>:

curlµ�1curlE + i!�E = 0 in ⌦

C

,

curlµ�1curlE = �i!J in ⌦

I

,

divE = 0 in ⌦

I

,

µ�1curlE ⇥ n = 0 on @⌦,
E · n = 0 on @⌦,

JE ⇥ nK� = Jµ�1curlE ⇥ nK� = 0 on �.

2
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FIG. 2.1. Description of the geometry. The transmitter coils ⌦T and receiver coils ⌦R are placed on two annuli around the
conducting region ⌦C . The insulating region is a large box denoted by ⌦I . The inclusions ⌦1 are contained in ⌦C .

Here, E denotes the electric field, ! the angular frequency, i the imaginary unit, n the outward unit normal
vector, and J·K� the jump of a quantity across the interface �. Further, the scalar function µ is the magnetic
permeability of ⌦, and � denotes the electric conductivity of ⌦

C

. In this setting, the magnetic permeability
µ is assumed to be known data given by

(2.2) µ =

(
µ
C

in ⌦

C

,

µ
I

in ⌦

I

,

with positive constants µ
C

and µ
I

representing the magnetic permeability of ⌦

C

and ⌦

I

, respectively.
Furthermore, the applied current density is assumed to satisfy:

(2.3) J ⌘ 0 in ⌦

I

\ ⌦
T

, divJ ⌘ 0 in ⌦

T

, J · n ⌘ 0 on @⌦
T

.

In order to model the receiver coils, we introduce an open set ⌦
R

satisfying ⌦

R

⇢ ⌦

I

and ⌦

R

\⌦
T

= ;.
3
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This three-dimensional set ⌦
R

contains different receiver coils in the sense that

⌦

R

=

n[

k=1

R
k

, n 2 N,

where R1, . . . , Rn

are Lipschitz domains satisfying R
k

\ R
j

= ; for all k, j 2 {1, . . . , n}. Following
[34, 38], the measurement in the k-th receiver coil R

k

is defined as

(2.4) Mk

(E) =

Z

Rk

E · J
k

,

where every J
k

, k = 1, . . . , n, is a given current density for an artificial unit current passing through the
receiver coil R

k

.
The inverse problem consists in reconstructing the conductivity � : ⌦

C

! R from reference measure-
ments Mk,ref on R

k

. For this purpose we introduce

(2.5) J(E,�) := K(E) + L(�),

where

(2.6) K(E) :=

1

2

nX

k=1

|Mk

(E)�Mk,ref |2 and L(�) =

Z

⌦C

|D�|,

i.e., the functional J is composed of a data misfit term K and a total variation regularization term L. Here,
 > 0 denotes a reguarization parameter, and as usual we have

Z

⌦C

|D�| = sup

⇢Z

⌦C

� divp : p 2 C1
0(⌦C

), |p(x)|  1, 8x 2 ⌦

C

�
,

where C1
0(⌦C

) := C1
0 (⌦C

)

3 is the space of continuously differentiable functions with compact support in
⌦

C

. In what follows, given �, let E(�) denote the solution of (2.1). This allows us to introduce the reduced
functional

(2.7) J(�) := J(E(�),�).

In many applications of MIT the unknown electric conductivity � of biological tissues ⌦

C

can be
assumed piecewise constant, i.e.,

(2.8) � =

n�X

j=0

�
j

�⌦j ,

where {⌦
j

}n�
j=0 is a partitioning of ⌦

C

, n
�

2 N the number of inclusions, and �⌦j the characteristic function
on the set ⌦

j

. For every j = 1, . . . , n
�

, we assume that

(2.9) ⌦

j

2 O := {D ⇢ ⌦

C

: D is an open set of class C2,1 and inf

x2D,y2@⌦C

|x� y| � d0},

with a given positive constant d0. Due to the last condition in O, the boundary �

j

:= @⌦
j

for every
j = 1, . . . , n

�

does not touch the boundary of ⌦
C

. Thus, the regularization term becomes
Z

⌦
|D�| =

n�X

j=1

|�0 � �
j

|P(�

j

),

4
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where P(�

j

) stands for the perimeter of �
j

. Note that the unknown conductivity � may be written as a
mapping

� : (R+
)

n�+1 ⇥On�+1 ! BV(⌦

C

),
�
{�

j

}n�
j=0, {⌦j

}n�
j=0

�
7! �({�

j

}n�
j=0, {⌦j

}n�
j=0),

where BV (⌦

C

) is the Banach space of functions of bounded variation on ⌦

C

; see [16] for a general defini-
tion. This gives rise to the so-called shape functional

J ({�
j

}n�
j=0, {⌦j

}n�
j=0) : = J(�({�

j

}n�
j=0, {⌦j

}n�
j=0))

=

1

2

nX

k=1

|Mk

(E(�({�
j

}n�
j=0, {⌦j

}n�
j=0)))�Mk,ref |2 + 

n�X

i=1

|�0 � �
i

|P(�

i

).

In view of (2.9), the functional J does not explicitly depend on ⌦0. Therefore, the inverse problem reads as
follows:

(2.10) min

{�j}n�
j=0,{⌦j}n�

j=1

J ({�
j

}n�
j=0, {⌦j

}n�
j=1),

where {�
j

}n�
j=0 2 (R+

)

n�+1 and ⌦

j

2 O for all j = 1, . . . , n
�

. In this paper, we only consider the case
where n

�

= 1 and �0,�1 are fixed given constant (see Sect. 3). The analysis can be straightforwardly
extended to the general case n

�

> 1.

3. Forward problem. We start by introducing notations and function spaces. The notation k · k
X

is
used for a standard norm in a Banach space X . If X is continuously embedded into another Banach space
Y , then we write X ,! Y . We use a bold typeface to indicate a three–dimensional vector function or a
Banach space of three-dimensional vector functions. For any Lipschitz domain D ⇢ R3, let us define

H(curl ;D) :=

⇢
v 2 L2

(D)

���� curlv 2 L2
(D)

�
,

H(div;D) :=

⇢
v 2 L2

(D)

���� div v 2 L2
(D)

�
,

where the curl- and div-operators are understood in the distributional sense. The space L2
(D) denotes the

Hilbert space of square Lebesgue integrable complex-valued three-dimensional vector functions on D. Also,
we denote by Hs

(D), with s 2 R+, a standard Sobolev space [1]. Let us now introduce the state space

V :=

⇢
v 2 H(curl ;⌦) \H(div;⌦

I

)

���� v · n = 0 on @⌦
�
,

where the normal trace v · n is understood in the distributional sense (see [15]). The space V is endowed
with the following norm:

kvkV := (kvk2L2(⌦) + kcurlvk2L2(⌦) + k div vk2
L

2(⌦I)
)

1
2 .

3.1. Variational formulation. The weak formulation of (2.1) reads: Given J 2 L2
(⌦

I

), find E 2 V
such that

Z

⌦
µ�1curlE · curlv + i!

Z

⌦C

�E · v +

Z

⌦I

divE div v = �i!

Z

⌦T

J · v 8v 2 V ,(3.1)

5
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where v denotes the complex conjugate of v. Existence of a unique solution to (3.1) is a well-known result
which follows from the Lax-Milgram lemma (see [2]). We shall show that (3.1) admits a unique solution
E 2 V satisfying divE = 0 in ⌦

I

. Thus, (3.1) is equivalent to the standard variational formulation of
(2.1). The key point for the existence result is the upcoming Poincaré-Friedrichs-type inequality, which
holds in our case due to our simplifying geometric assumption that both ⌦

C

and ⌦ are simply connected
with connected boundaries.

LEMMA 3.1 ( [2, Lemma 2.2]). There exists a constant c > 0, depending only on ⌦, such that

(3.2) kvkL2(⌦I)  c(kcurlvkL2(⌦) + kvkL2(⌦C) + k div vk
L

2(⌦I)) 8v 2 V .

Based on Lemma 3.1, we easily obtain the following existence and uniqueness result:
LEMMA 3.2. Assume that � : ⌦

C

! R satisfies �  �  � almost everywhere (a.e.) in ⌦

C

for some positive real numbers 0 < � < �. Then, the weak formulation (3.1) admits a unique solution
E = E(�) 2 V satisfying divE = 0 in ⌦

I

.
Proof. We introduce the sesquilinear form a

�

: V ⇥ V ! C, defined by

a
�

(u,v) :=

Z

⌦
µ�1curlu · curlv + i!

Z

⌦C

�u · v +

Z

⌦I

divu div v.

Since the scalar functions µ : ⌦ ! R and � : ⌦

C

! R are bounded, the sesquilinear form a
�

: V ⇥V ! C
is bounded. Further, by our assumption, we have

1p
2

⇣
max{µ

C

, µ
I

}�1kcurlvk2L2(⌦) + �!kvk2L2(⌦C) + k div vk2
L

2(⌦I)

⌘
 |a

�

(v,v)| 8v 2 V .

Therefore, in view of Lemma 3.1, the sesquilinear form a
�

: V ⇥ V ! C is coercive. Moreover, the right
hand side in (3.1) induces a continuous linear functional on V . Thus, the Lax-Milgram lemma implies that
the weak formulation (3.1) admits a unique solution E = E(�) 2 V .

To show that divE = 0 in ⌦

I

, let us define

D(�) := { 2 H1
(⌦

I

) | r 2 H(div;⌦
I

),  |� = 0, r · n = 0 on @⌦}.

By definition, we see that every gradient field v = r ˆ with

(3.3) ˆ =

⇢
 2 D(�) in ⌦

I

,
0 in ⌦

C

belongs to V , since  satisfies  |� = 0 and r · n = 0 on @⌦. Then, setting v = r ˆ in (3.1) and using
(2.3) yields

(3.4)
Z

⌦I

(divE)

�
div(r )

�
= 0 8 2 D(�),

where we have also used the identity curlr ⌘ 0. Consider now the following variational problem

(3.5) (r�,r )L2(⌦I) = �(u, )
L

2(⌦I) 8 2 H1
�(⌦I

) := { 2 H1
(⌦

I

) |  |� = 0}.

For every u 2 L2
(⌦

I

), the Lax-Milgram-Lemma implies that (3.5) admits a unique solution � 2 H1
�(⌦I

).
Further, in view of the distributional definition of the divergence and the normal trace, this solution satisfies

div(r�) = u and r� · n = 0 on @⌦,
6
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and so � 2 D(�). Consequently, we obtain from (3.5) that
Z

⌦I

(divE)u = 0 8u 2 L2
(⌦

I

),

yielding divE = 0 in ⌦

I

which concudes the proof.

3.2. Higher regularity. In the previous section we have shown the existence of a solution E 2 V
to (3.1). For obtaining the boundary representation of the shape derivative in Section 4.6, we need higher
regularity of E, which is the purpose of this section.

LEMMA 3.3. Let � : ⌦

C

! R be bounded and uniformly positive. Let E = E(�) 2 V be the solution
of the weak formulation (3.1). Then, the regularity property

curlE 2 H1
(D)

holds true for every open set D satisfying D ⇢ ⌦

C

.
Proof. Inserting v =

ˆ in (3.1) with

ˆ =

⇢
 2 C1

0 (⌦

C

)

3 in ⌦

C

,
0 otherwise

results in
Z

⌦C

µ�1curlE · curl + i!

Z

⌦C

�E · = 0 8 2 C1
0 (⌦

C

)

3,

and hence, by (2.2), we obtain that
Z

⌦C

curlE · curl =

Z

⌦C

(�i!µ
C

�E) · 8 2 C1
0 (⌦

C

)

3.

For this reason, the distributional definition of the curl-operator yields

(3.6) curl curlE = �i!µ
C

�E 2 L2
(⌦

C

) =) curlE 2 H(curl ;⌦
C

).

As � is connected, a well-known result (see [28, Theorem 3.38]) yields the existence of a vector potential
A 2 H1

(⌦

C

) satisfying divA = 0 in ⌦

C

such that

(3.7) curlE = curlA in ⌦

C

.

In view of (3.6), it follows that

�i!µ
C

�E = curl curlE = curl curlA =|{z}
divA=0

�A in ⌦

C

,

from which we deduce that

�A
j

2 L2
(⌦

C

) for j = 1, 2, 3.

For this reason, a well-known interior elliptic regularity result implies that

A
j

2 H2
(D) for j = 1, 2, 3,

7
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holds true for every open set D satisfying D ⇢ ⌦

C

. In conclusion, the assertion follows from the above
regularity and (3.7).

Based on Lemma 3.3, we are now able to prove an interior regularity result for the solution E of (3.1).
The following theorem will be important for our subsequent analysis.

THEOREM 3.4. Let ⌦1 be an open C2,1-set satisfying ⌦1 ⇢ ⌦

C

. We set ⌦0 := ⌦

C

\ ⌦1 and

(3.8) � = �0�⌦0 + �1�⌦1 �0,�1 2 R+.

Then, the solution E = E(�) 2 V of the weak formulation (3.1) satisfies

E 2 H2
(⌦1).

Further, for every open set D of class C2,1 satisfying ⌦1 ⇢ D and D ⇢ ⌦

C

, we have

E 2 H2
(D \ ⌦1).

Proof. Let D be an open C2,1-set satisfying ⌦1 ⇢ D and D ⇢ ⌦

C

. We find a C1-domain D with a
connected boundary satisfying D ⇢ D ⇢ ⌦

C

. Setting v = rˆ� in (3.1) with

ˆ� =

⇢
� 2 H1

0 (D) in D,
0 otherwise,

yields

(3.9)
Z

D
�E ·r� = 0 8� 2 H1

0 (D).

Furthermore, applying the Helmholtz decomposition [28, Theorem 3.45], the vector field E considered as a
function in L2

(D) can be decomposed as

(3.10) E = rp+ curlA in D,

with p 2 H1
0 (D) and A 2 H1

(D) satisfying divA = 0 in D. By Lemma 3.3, it follows that

H1
(D) 3 curlE = curl curlA = �A,

and hence, by classical results on interior elliptic regularity, we infer that

(3.11) A 2 H3
(D) =) curlA 2 H2

(D).

In particular, as ⌦1 ⇢ D, we obtain curlA 2 H2
(⌦1). Denote by n1 the outer unit normal vector to ⌦1.

Since ⌦1 is of class C2,1, we have n1 2 C1,1
(�1), where �1 := @⌦1. Thus, since curlA 2 H

3
2
(�1), we

obtain

(3.12) curlA · n1 2 H
3
2
(�1).

Multiplying (3.10) by �r�, where � 2 H1
0 (D), and then integrating the resulting equality over D yields

Z

D
�E ·r� =

Z

D
�rp ·r�+

Z

D
�curlA ·r� 8� 2 H1

0 (D).

8
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Then, in view of (3.8) and (3.9), it follows that
Z

D
�rp ·r� = ��0

Z

D\⌦1

curlA ·r�� �1

Z

⌦1

curlA ·r�

= (�0 � �1)

Z

�1

curlA · n1 �, 8� 2 H1
0 (D),

(3.13)

where we have also used Green’s theorem as well as the identity div curl ⌘ 0 for the last equality. Thanks
to (3.12), a well-known regularity result for elliptic transmission problems (see [7, Chapter 5, Theorem
5.2.1.]) implies that the solution p 2 H1

0 (D) of (3.13) satisfies

(3.14) p 2 H3
(⌦1) and p 2 H3

(D \ ⌦1).

From (3.11) and (3.14), we finally come to the conclusion that

E = rp+ curlA 2 H2
(⌦1) and E = rp+ curlA 2 H2

(D \ ⌦1).

This completes the proof.

4. Shape sensitivity analysis. The major difficulty in dealing with sets of shapes is that they do not
have a vector space structure. In order to be able to define shape derivatives and study the sensitivity of
shape functionals, we need to construct such a structure for the shape spaces. In the literature, this is done
by considering perturbations of an initial domain; see [9, 19, 33].

Therefore, essentially two types of domain perturbations are considered in general. The first one is the
method of perturbation of the identity operator, and the second one is the velocity or speed method which is
based on the deformation obtained by the flow induced by a velocity field. The speed method is more general
than the method of perturbation of the identity operator. The equivalence between deformations obtained by
a family of transformations and deformations obtained by the flow of velocity field may be shown [9, 33].
The method of perturbation of the identity operator is a particular kind of domain transformation, and in
this paper the main results will be given using a simplified speed method. We point out that using one or
the other is rather a matter of preference as several classical textbooks and authors rely on the method of
perturbation of the identity operator as well.

For the presentation of the speed method, we mainly rely on [9, 33]. We also restrict ourselves to shape
perturbations by autonomous vector fields, i.e., time-independent vector fields. Let ✓ : R3 ! R3 be an
autonomous vector field and assume that

(4.1) ✓ 2 ⇥k

:= {✓ 2 Ck

(R3,R3
) : ✓ has compact support},

with k � 0. For ⌧ > 0, we introduce a family of transformations

(4.2) T
t

(✓)(X) = x(t,X)

as the solution to the ordinary differential equation

(4.3)

(
d

dt
x(t,X) = ✓(x(t,X)), 0 < t < ⌧,

x(0, X) = X 2 R3.

For sufficiently small ⌧ the system (4.3) has a unique solution (see e.g. [33]). Now, the transformation T
t

(✓)
allows to define a family of domains

(4.4) ⌦(t) := T
t

(✓)(⌦),

9
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which we will use for the differentiation of the shape functional. We refer to [9, Chapter 7] and [33, Theorem
2.16] for theorems establishing the regularity of the transformation T

t

(✓).
Let J(⌦) be a shape functional well-defined for any measurable set ⌦ ⇢ R3. We recall the following

notions of differentiability with respect to the shape:
DEFINITION 4.1 (Eulerian semiderivative). Let ✓ 2 ⇥k with k � 0. Then the Eulerian semiderivative

of the shape functional J(⌦) at ⌦ in the direction ✓ is defined as the limit

(4.5) dJ(⌦;✓) = lim

t&0

J(⌦(t))� J(⌦)

t
,

if the limit exists in R.
DEFINITION 4.2 (Shape Differentiability). The functional J(⌦) is shape differentiable (or differen-

tiable for simplicity) at ⌦ if it has a Eulerian semiderivative at ⌦ in all directions ✓ and the map

(4.6) ✓ 7! dJ(⌦,✓)

is linear and continuous from ⇥k into R. The map (4.6) is then sometimes denoted by rJ(⌦) and referred
to as the shape gradient of J , and we have

(4.7) dJ(⌦,✓) = hrJ(⌦),✓i⇥�k
,⇥k ,

where ⇥�k is the dual of ⇥k.
If the data are smooth enough, i.e. when the boundary of the domain ⌦ and the velocity field ✓ are

smooth enough (this will be observed later on), then the shape derivative has a particular structure. More
precisely, it is concentrated on the boundary @⌦ and depends only on the normal component of the veloc-
ity field ✓ on the boundary @⌦. This result, often called the structure theorem or Hadamard formula, is
fundamental in shape optimization.

4.1. Inverse problem. We assume that the electric conductivity � : ⌦

C

! R is a piecewise constant
function. For the sake of simplicity of the presentation, we take n

�

= 1, but the results for arbitrary n
�

can
be deduced straightforwardly. In this framework, � takes the following form:

(4.8) � = �0�⌦0 + �1�⌦1 ,

where ⌦0 and ⌦1 constitute a partition of ⌦
C

, i.e., ⌦0 \ ⌦1 = ; and ⌦

C

= ⌦0 [ ⌦1 with

⌦1 2 O = {D ⇢ ⌦

C

: D is an open set of class C2,1 and inf

x2D,y2@⌦C

|x� y| � d0 > 0}.

We assume that �0 and �1 are fixed given positive constant. Therefore, due to the last condition in O, the
shape functional J ({�0,�1}, {⌦0,⌦1}) depends only on the variable ⌦1. Also, in order to emphasize the
dependence of the function � on ⌦1, we write

�(⌦1) = �0�⌦0 + �1�⌦1 .

Now, the considered shape optimization problem reads as follows:

(4.9)
minimize J (⌦1) :=

1

2

nX

k=1

|Mk

(E(�(⌦1)))�Mk,ref |2 + |�0 � �1|P(�1),

subject to ⌦1 2 O,

where �1 = @⌦1, and E(�(⌦1)) 2 V denotes the unique solution of (3.1) associated with the electric
conductivity � = �(⌦1).

10
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4.2. Saddle point formulation. The electric field E(�) = E 2 V may be split into its real and
imaginary parts yielding

(4.10) E = E1 + iE2,

where E1 := ReE and E2 := ImE. The same notation is also used for J . In view of (4.10), the variational
formulation (3.1) is equivalent to the following coupled formulation involving only real-valued functions:

(µ�1curlE1, curlv)L2(⌦) � !(�E2,v)L2(⌦C) + (divE1, div v)
L

2(⌦I) = (!J2,v)L2(⌦T ),

(µ�1curlE2, curlv)L2(⌦) + !(�E1,v)L2(⌦C) + (divE2, div v)
L

2(⌦I) = �(!J1,v)L2(⌦T ),
(4.11)

for real-valued test functions v. The coupled system (3.1) may actually be obtained from the real part or
from the imaginary part of (2.1). Therefore it is equivalent to consider the variational formulation (3.1) or
only the real or the imaginary part of it. This consideration allows to introduce now a real-valued Lagrangian
where only the real part of (2.1) is penalized, but which allows to recover the complete state equations (4.11).

Following the theory developed in [9, Chapter 9, section 5], we build an appropriate Lagrangian func-
tional L : V ⇥ V ⇥O ! R to derive optimality conditions for the shape optimization problem (4.9):

L (E,F ,⌦1) := K(E) +Re

✓Z

⌦
µ�1curlE · curlF + i!

Z

⌦C

�(⌦1)E · F
◆

+Re

✓Z

⌦E

divE divF + i!

Z

⌦T

J · F
◆
.

Here, F is the dual variable. Since

sup

F2V
L (E,F ,⌦1) =

⇢
K(E(�(⌦1))) if E = E(�(⌦1)),
+1 if E 6= E(�(⌦1)),

the objective functional J can be expressed through the following saddle point formulation:

(4.12) J (⌦1) =

✓
inf

E2V
sup

F2V
L (E,F ,⌦1)

◆
+ L(�(⌦1)).

The Lagrangian L is convex and continuous with respect to E. Moreover, it is linear and continuous,
and thus concave, with respect to F . Therefore, for every ⌦1 2 O, the Lagrangian L has a saddle point if
and only if the saddle point equations

Find E 2 V , @F L (E,F ,⌦1;
ˆF ) = 0 8 ˆF 2 V ,(4.13)

Find F 2 V , @EL (E,F ,⌦1;
ˆE) = 0 8 ˆE 2 V ,(4.14)

have a solution (E,F ); see [11]. Note that equation (4.13) is the so-called state equation and coincides
with (3.1) or equivalently with (4.11). According to Lemma 3.2, there exists a unique solution E 2 V of
(3.1) and thus for (4.13). Similarly to Lemma 3.2, the Lax-Milgram lemma implies that the adjoint equation
(4.14) admits a unique solution F 2 V . Its explicit variational formulation is specified below. Thus, for
every ⌦1 2 O, the Lagrangian L admits a unique saddle point in V ⇥ V .

11
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4.3. Differentiability of a saddle point. In order to study the shape differentiability of J (⌦1), we
need to differentiate the saddle point (4.12). For the convenience of the reader, we repeat in this section an
abstract result on differentiation of saddle point problems following [9]. Let us consider a functional

(4.15) f : Z ⇥ Y ⇥ [0, ⌧ ] ! R,

for some constant ⌧ > 0 and Banach spaces Z and Y . For each t 2 [0, ⌧ ] define

(4.16) l(t) := inf

z2Z

sup

y2Y

f(z, y, t), h(t) := sup

y2Y

inf

z2Z

f(z, y, t),

and the associated sets

Z(t) :=

⇢
zt 2 Z : sup

y2Y

f(zt, y, t) = l(t)

�
,(4.17)

Y (t) :=

⇢
yt 2 Y : inf

z2Z

f(z, yt, t) = h(t)

�
.(4.18)

Note that the inequality h(t)  l(t) holds. If l(t) = h(t) the set of saddle points is given by

(4.19) S(t) := Z(t)⇥ Y (t).

We state a simplified version of a result of [8] derived from [6] which gives realistic conditions that allow to
differentiate l(t) at t = 0. The main difficulty is to obtain conditions which allow to exchange the derivative
with respect to t and the inf-sup in (4.16).

THEOREM 4.3 (Correa and Seeger [6]). Let the Banach spaces Z, Y , the constant ⌧ > 0, and the
functional

(4.20) f : Z ⇥ Y ⇥ [0, ⌧ ] ! R

be given. Assume that the following assumptions hold:
(H1) S(t) 6= ; for 0  t  ⌧ .
(H2) The partial derivative @

t

f(z, y, t) exists for all (z, y, t) 2 Z ⇥ Y ⇥ [0, ⌧ ].
(H3) For any sequence {t

n

}
n2N, with t

n

! 0, there exist a subsequence {t
nk}k2N and z0 2 Z(0),

z
nk 2 Z(t

nk) such that for all y 2 Y (0),

lim

t&0,k!1
@
t

f(z
nk , y, t) = @

t

f(z0, y, 0).

(H4) For any sequence {t
n

}
n2N, with t

n

! 0, there exist a subsequence {t
nk}k2N and y0 2 Y (0),

y
nk 2 Y (t

nk) such that for all z 2 Z(0),

lim

t&0,k!1
@
t

f(z, y
nk , t) = @

t

f(z, y0, 0).

Then there exists (z0, y0) 2 Z(0)⇥ Y (0) such that

dl

dt
(0) = @

t

f(z0, y0, 0).

12
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4.4. Function space parameterization. Let ✓ 2 ⇥k, with k � 2, and ⌦1 2 O be given. We assume
that ✓ has a compact support in a C2,1-domain D satisfying ⌦1 ⇢ D and D ⇢ ⌦

C

, so that only �1 := @⌦1

is affected by the transformation T
t

(✓), i.e., we have

T
t

(✓)(⌦
C

) = ⌦

C

8t 2 [0, ⌧ ].

We consider the family of domains ⌦1(t) = T
t

(✓)(⌦1) as defined in (4.2)-(4.3). In what follows, to simplify
the notation, we write T

t

:= T
t

(✓).
In this section, we apply Theorem 4.3 to obtain the shape gradient of

(4.21) J (⌦1(t)) =

✓
inf

E2V
sup

F2V
L (E,F ,⌦1(t))

◆
+ L(�(⌦1(t))).

As it is classical in shape optimization, the shape derivative @
t

J (⌦1(t))|
t=0 may be written as a boundary

integral on �1 including in particular the trace of E · F on �1, which requires higher regularity of E and F
in ⌦1 and D \ ⌦1. This regularity is guaranteed by Theorem 3.4.

In order to differentiate L (E,F ,⌦1(t)) with respect to t, the integrals in L (E,F ,⌦1(t)) on the do-
mains ⌦0(t) and ⌦1(t) need to be transported back to the fixed domains ⌦0 and ⌦1 using the transformation
T
t

. However, composing by T
t

inside the integrals creates terms E � T
t

and F � T
t

which might be non-
differentiable. To avoid this problem, we need to parameterize the space V by composing the elements of
V with T�1

t

. However, unlike the case of H1, it is a well-known difficulty of shape optimization problems
for Maxwell equations that this transformation modifies V globally [20, 28], i.e.

(4.22) V 6= { � T�1
t

, 2 V }.

Indeed, the transformation T�1
t

which corresponds to a transport from ⌦1 to ⌦1(t) modifies the curl oper-
ator as can be seen in the following formula (see [20, Section 3] for instance)

(4.23) curl = ⇠(t)DT�1
t

(DT�⇤
t

⌦D( � T�1
t

) � T
t

),

where DT
t

: R3 ! R3⇥3 is the Jacobian matrix function of T
t

, ⇠(t) = det(DT
t

), and ⌦ the tensor product.
Further, the notation M⇤ denotes the transpose of a matrix M and M�⇤

= (M�1
)

⇤. One observes on the
right-hand side of (4.23) that D( � T�1

t

) appears and  � T�1
t

must be in H1 for  to be in V . This is a
well-know issue when one tries to compute the shape derivative for Maxwell problems. To get around this
problem, we consider the transformation

e = DT�⇤
t

 � T�1
t

.

According to [28, Corollary 3.58], we have the following identity

(4.24) (

]curl e ) � T
t

= ⇠(t)�1DT
t

curl ,

where ]curl denotes the operator with respect to the transformed variable y = T
t

(x). Therefore

curl 2 L2
(⌦) () ]curl e 2 L2

(⌦).

Since ✓ ⌘ 0 in ⌦

I

, we clearly have e =  in ⌦

T

[ ⌦

R

[ ⌦

I

, and finally we obtain

(4.25) V = {DT�⇤
t

 � T�1
t

:  2 V }.
13
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Using this reparameterization, we do not change the saddle point J (⌦1(t)) and so we may write

(4.26) J (⌦1(t)) =

✓
inf

E2V
sup

F2V

fL (E,F , t)

◆
+ L(�(⌦1(t))),

with

fL (E,F , t) := L (DT�⇤
t

E � T�1
t

, DT�⇤
t

F � T�1
t

,⌦1(t)).

By the definition of L , the explicit expression of fL (E,F , t) is obtained in the following form:

fL (E,F , t) = K(E) +Re

✓Z

⌦
µ�1]curl (DT�⇤

t

E � T�1
t

) · ]curl (DT�⇤
t

F � T�1
t

)

◆
(4.27)

+Re

 
i!�0

Z

⌦0(t)
(DT�⇤

t

E � T�1
t

) · (DT�⇤
t

F � T�1
t

)

!
(4.28)

+Re

 
i!�1

Z

⌦1(t)
(DT�⇤

t

E � T�1
t

) · (DT�⇤
t

F � T�1
t

)

!
,(4.29)

+Re

✓Z

⌦I

divE divF + i!

Z

⌦T

J · F
◆
.(4.30)

where ⌦0(t) := ⌦

C

\ ⌦1(t). Note that K(E) and the integrals on ⌦

I

, ⌦
T

and ⌦

R

in fL (E,F , t) are
not affected by the transformation since ✓ ⌘ 0 in ⌦

I

. Using (4.24) and applying the change of variable
y = T

t

(x) in (4.27)-(4.29) we get

fL (E,F , t) = K(E) +Re

✓Z

⌦
µ�1A(t)curlE · curlF + i!�0

Z

⌦0

C(t)E · F + i!�1

Z

⌦1

C(t)E · F
◆

+Re

✓
i!

Z

⌦T

J · F +

Z

⌦I

divE divF

◆
,

where

A(t) := |⇠(t)|�1DT ⇤
t

DT
t

, C(t) := |⇠(t)|DT�1
t

DT�⇤
t

= A(t)�1.(4.31)

Notice that, for every t 2 [0, ⌧ ], the matrix functions A(t), C(t) 2 Ck�1
(R3,R3⇥3

) are symmetric. Analo-
gously to (4.13)-(4.14), the saddle point (Et,F t

) of fL (E,F , t) is defined as the solution of

(4.32)

Find Et 2 V such that for all ˆF 2 V :

Z

⌦
µ�1A(t)curlEt · curl ˆF + i!�0

Z

⌦0

C(t)Et · ˆF

+ i!�1

Z

⌦1

C(t)Et · ˆF +

Z

⌦I

divEt

div

ˆF = �
Z

⌦
i!J · ˆF

(4.33)

Find F t 2 V such that for all ˆE 2 V :

Z

⌦
µ�1A(t)curlF t · curl ˆE + i!�0

Z

⌦0

C(t)F t · ˆE

+ i!�1

Z

⌦1

C(t)F t · ˆE +

Z

⌦I

divF t

div

ˆE = �K 0
(Et

)

ˆE,

14
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where

K 0
(Et

)

ˆE =

nX

k=1

Re

✓
Mk

(Et

)�Mk,ref

◆
Re

✓Z

Rk

ˆE · J
k

◆

+

nX

k=1

Im
✓
Mk

(Et

)�Mk,ref

◆
Im

✓Z

Rk

ˆE · J
k

◆
.

4.5. Domain expression of the shape gradient. In this section the shape derivative of J (⌦1(t)) ex-
pressed as a domain integral is obtained in Theorem 4.4 using the results of Section 4.3, which requires first
to check the hypothesis of Theorem 4.3. In our case, the Banach spaces Z, Y and the functional f from
Theorem 4.3 are chosen as

Z = Y = V and f =

fL .

We start with (H1). Choose ⌧ small enough such that ⇠(t) = |⇠(t)| for all t 2 [0, ⌧ ]. We have the following
expansions which are valid in the norm of ⇥k:

⇠(t) = 1 + t div(✓) + o(t),(4.34)
DT

t

= I
d

+ tD✓ + o(t),(4.35)

DT�1
t

= I
d

� tD✓ + o(t),(4.36)

where I
d

2 R3⇥3 denotes the identity matrix and o(t
n

)/t
n

! 0 for t
n

! 0, t
n

6= 0 for all n. In view of
(4.31) and (4.34)-(4.36) we get

A(t) = I
d

+ t(� div(✓)I
d

+D✓ +D✓⇤) + o(t),

C(t) = I
d

+ t(div(✓)I
d

�D✓ �D✓⇤) + o(t).

We observe that A(t), C(t) are small perturbations of the identity in the L1-norm. We choose now ⌧ > 0

to be sufficiently small such that the matrix functions A(t), C(t) are uniformly positive definite for every
t 2 [0, ⌧ ]. Thus, analogously to Lemma 3.2, the Lax-Milgram lemma implies that the system (4.32)-(4.33)
admits, for every t 2 [0, ⌧ ], a unique solution (Et,F t

) 2 V ⇥ V satisfying

kEtkV  ckJkL2(⌦),(4.37)

kF tkV  c(kEtkV + 1),(4.38)

with a constant c > 0 independent of t. Therefore, for every t 2 [0, ⌧ ], we obtain Z(t) = {Et} 6= ; ,
Y (t) = {F t} 6= ;, and so

S(t) = Z(t)⇥ Y (t) 6= ; 8t 2 [0, ⌧ ].

In conclusion, (H1) is satisfied.
To check (H2), we compute @

t

fL (E,F , t). It is given by

@
t

fL (E,F , t) =Re

✓Z

⌦
µ�1A0

(t)curlE · curlF + i!�0

Z

⌦0

C 0
(t)E · F + i!�1

Z

⌦1

C 0
(t)E · F

◆
.

15
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Define ✓
t

(X) := ✓(T
t

(X)) and B(t) := DT�⇤
t

. The derivative of the inverse of a matrix M in direction Q
is given by D(M�1

)(Q) = �M�1QM . Therefore we have

(4.39) B0
(t) = �B(t)D✓⇤

t

B(t), ⇠0(t) = tr(D✓
t

B(t)⇤)⇠(t).

Since C(t) = ⇠(t)B(t)⇤B(t), using the chain rule yields

C 0
(t) = ⇠0(t)B(t)⇤B(t) + ⇠(t)B0

(t)⇤B(t) + ⇠(t)B(t)⇤B0
(t)

= tr(D✓
t

B(t)⇤)C(t)�B(t)⇤D✓
t

C(t)� C(t)D✓⇤
t

B(t).

Since A(t) = C(t)�1 we have

A0
(t) = �A(t)C 0

(t)A(t)

= �A(t) tr(D✓
t

B(t)⇤)C(t)A(t) +A(t)B(t)⇤D✓
t

C(t)A(t) +A(t)C(t)D✓
t

B(t)A(t)

= �A(t) tr(D✓
t

B(t)⇤) +A(t)B(t)⇤D✓
t

+D✓⇤
t

B(t)A(t).

By the choice of ✓ 2 ⇥k, with k � 2, the mappings t 7! ✓
t

and t 7! D✓
t

are continuous on [0, ⌧ ] and
consequently also t 7! (B(t), A(t), A0

(t), C 0
(t)). For this reason, @

t

fL (E,F , t) exists everywhere in [0, ⌧ ]
for all E,F 2 V . Therefore, the condition (H2) is satisfied.

Now, we check (H3) and (H4). According to (4.37)-(4.38), the sequence {(Et,F t

)}0t⌧

is bounded
in V ⇥ V . Consequently, by possibly extracting a subsequence, we find a pair ( eE, eF ) in V ⇥ V such that

(4.40) Et * eE F t * eF weakly in V as t ! 0.

In addition, we have the following uniform convergences

A(t) ! I
d

C(t) ! I
d

strongly in Ck�1
(R3,R3⇥3

) as t ! 0.(4.41)

Therefore, passing to the limit t ! 0 in the variational equations (4.32)-(4.33), it follows from (4.40)-(4.41)
that the pair ( eE, eF ) is exactly the solution of

(4.42)

Find E 2 V such that for all ˆF 2 V :

Z

⌦
µ�1curlE · curl ˆF + i!�0

Z

⌦0

E · ˆF

+ i!�1

Z

⌦1

E · ˆF +

Z

⌦I

divE div

ˆF = �
Z

⌦
i!J · ˆF ,

and

(4.43)

Find F 2 V such that for all ˆE 2 V :

Z

⌦
µ�1curlF · curl ˆE + i!�0

Z

⌦0

F · ˆE

+ i!�1

Z

⌦1

F · ˆE +

Z

⌦I

divF div

ˆE = �K 0
(E)

ˆE.

In other words, the pair ( eE, eF ) 2 V ⇥ V is the solution of the saddle point equations (4.13)-(4.14), or
equivalently it is the unique saddle point of L . Therefore, since fL (·, ·, 0) = L (·, ·,⌦1), we obtain

eE 2 Z(0) and eF 2 Y (0).
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Now for every fixed F 2 V , the mapping (t,E) ! @
t

fL (E,F , t) is strongly continuous in t and weakly
continuous in E. Similarly, for every fixed E 2 V , the mapping (t,F ) ! @

t

fL (E,F , t) is strongly
continuous in t and weakly continuous in F in view of the above expression of @

t

fL (E,F , t). Therefore
we have the convergences:

lim

t&0,k!1
@
t

fL (Etnk ,F , t) = @
t

fL (E,F , 0),

lim

t&0,k!1
@
t

fL (E,F tnk , t) = @
t

fL (E,F , 0).

Thus, assumptions (H3) and (H4) are satisfied. From this we conclude that all assumptions of Theorem 4.3
are satisfied.

It is a standard result [9, 19, 33] in shape optimization that

(4.44) @
t

L(�(⌦1(t)))|t=0 = |�0 � �1|
Z

�1

H1✓ · n1d�

where H1 is the curvature associated with the boundary of the domain ⌦1. The curvature H1 has regularity
C0,1 for ⌦1 2 O.

Thus, we arrive at the following formula for the shape derivative:
THEOREM 4.4. Let ✓ 2 ⇥k, with k � 2, and ⌦1 2 O be given. Assume that ✓ has compact support in

a C2,1-domain D satisfying ⌦1 ⇢ D and D ⇢ ⌦

C

. Then,

dJ (⌦1;✓) = @
t

fL (E,F , 0) + @
t

L(�(⌦1(t)))

= Re

✓Z

⌦
µ�1A0

(0)curlE · curlF + i!�0

Z

⌦0

C 0
(0)E · F + i!�1

Z

⌦1

C 0
(0)E · F

◆

+ |�0 � �1|
Z

�1

H1✓ · n1d�.

(4.45)

with

C 0
(0) = �A0

(0) = div(✓0)�D✓0 �D✓⇤0

and where the pair (E,F ) 2 V ⇥ V is the solution of (4.42)-(4.43).

4.6. Boundary expression of the shape gradient. Expression (4.45) of the shape gradient is consti-
tuted of domain integrals which are well-defined for (E,F ) 2 V ⇥ V . It is readily seen that the mapping

⇥k 3 ✓ 7! dJ (⌦1;✓) 2 R(4.46)

is linear and continuous. So by the structure theorem [9, Chapter 8, Theorem 3.5], if �1 is of class Ck+1,
then n1 is in Ck

(�1;R
3
) and there exists a scalar distribution g(�1) 2 Ck

(�1)
0 such that

dJ (⌦1;✓) = hg(�1),✓ · n1iCk(�1).(4.47)

In the case of g(�1) 2 L1
(�1), we also have the following integral representation:

dJ (⌦1;✓) =

Z

�1

g(�1)✓ · n1d�1.(4.48)
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Our goal now is to verify that g(�1) 2 L1
(�1) and to provide an explicit expression for the function g(�1).

For this purpose we make use of the following result [19, Corollary 5.2.3]:
THEOREM 4.5 (Hadamard formula). Let ✓ 2 ⇥k, k � 1, and [0, ⌧ [3 t ! �(t, ·) 2 L1

(D
t

) where
D

t

:= T
t

(D) and D is a given measurable bounded set. Assume

(4.49) [0, ⌧ [3 t ! �(t, ·) := �(t, T
t

(·)) 2 L1
(D) is differentiable at 0.

and that there exists a linear and continuous extension operator P : L1
(⌦) ! L1

(R3
) such that

P (�(0, ·)) 2 W 1,1
(R3

).

Then there exists an extension [0, ⌧ [3 t ! e�(t, ·) 2 L1
(R3

) of t ! �(t, ·) which is differentiable at zero
with

e�0(0, ·) = �

0
(0, ·)�rP (�(0, ·)) · ✓.

In addition

t ! I(t) :=

Z

Dt

�(t, x)dx

is differentiable at 0, and setting �0(0, x) := e�0(0, x) we get

(4.50) I 0(0) =

Z

D
div(�(0, x)✓) + �0(0, x)dx.

If D is Lipschitz, then

(4.51) I 0(0) =

Z

@D
�(0, x)✓ · n d�+

Z

D
�0(0, x)dx,

where n is the outward unit normal vector to D.
In order to obtain the boundary expression of the shape gradient, the idea is to differentiate the expres-

sion (4.27)-(4.30) directly using Theorem 4.5 and then apply Theorem 4.3. We consider the integrals in
(4.27)-(4.30) separately. The terms K(E) in (4.27) and the term (4.30) are clearly independent of t. For the
other terms, we make use of Theorem 4.5 with D

t

= ⌦0(t) and D
t

= ⌦1(t) successively. First we choose

�(t, x) = (DT�⇤
t

E � T�1
t

(x)) · (DT�⇤
t

F � T�1
t

(x)) 2 L1
(⌦1(t)).

Let us now verify the hypothesis of Theorem 4.5. First of all, for ✓ 2 ⇥k, with k � 1, the mapping
t 7! T

t

is of class C1
([0, ⌧ ],⇥k

) (see [9, Chapter 7, Theorem 4.3]). Also, the mapping t 7! DT
t

is well-
defined as an element in C1

([0, ⌧ ], Ck�1
(R3,R3⇥3

)). In view of (4.39), for t small enough, we also have
that the mapping t 7! DT�1

t

is of class C1
([0, ⌧ ], Ck�1

(R3,R3⇥3
)).

Since (E,F ) 2 V ⇥ V , we obtain

�(t, T
t

(·)) = �(t, ·) = (DT�⇤
t

E) · (DT�⇤
t

F ) 2 L1
(⌦1)

and �(t, ·) is differentiable at t = 0 with

�

0
(0, ·) = �(D✓⇤E) · F �E · (D✓⇤F ) 2 L1

(⌦1).
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We also have �(0, ·) = E · F . According to Theorem 3.4, we have E|⌦1
2 H2

(⌦1). Similarly to Theorem
3.4, we can show that F|⌦1

2 H2
(⌦1). Therefore, (E ·F )|⌦1

2 W 1,1
(⌦1) holds by the Sobolev embedding

theorem. A linear and continuous extension P : L1
(⌦1) ! L1

(R3
) such that P ((E · F )|⌦1

) 2 W 1,1
(R3

)

exists as long as ⌦1 is of class C1; see [4]. Thus, since ⌦1 2 O, we may apply Theorem 4.5 with

I1(t) :=

Z

⌦1(t)
�(t, x)dx.

Also, we may use (4.51) to obtain

(4.52) I 01(0) =

Z

�1

E · F ✓ · n1 d�+

Z

⌦1

˙E · F +E · ˙F dx,

where

˙E :=

d

dt
DT�⇤

t

E � T�1
t

����
t=0

= �DE✓ �D✓⇤E,

˙F :=

d

dt
DT�⇤

t

F � T�1
t

����
t=0

= �DF✓ �D✓⇤F .

Note that we have used the fact that r(E · F )

��
⌦1

= rP ((E · F )|⌦1
).

In a similar way, we apply Theorem 4.5 with

I0(t) =

Z

⌦0(t)
�(t, x)dx and

�(t, x) = (DT�⇤
t

E � T�1
t

(x)) · (DT�⇤
t

F � T�1
t

(x)) 2 L1
(⌦0(t)).

Then we obtain

I 00(0) =

Z

�1

E · F ✓ · n0 d�+

Z

⌦0

˙E · F +E · ˙F dx,

where n0 is the outward unit normal vector to ⌦0.
To compute the derivative of the integral in (4.27), we split it into three integrals on ⌦

I

[ ⌦

T

,⌦1(t)
and ⌦0(t). The derivative of the integral on ⌦

I

[ ⌦

T

is zero since ✓ has compact support in ⌦

C

. For the
integrals on ⌦0(t) and ⌦1(t), we apply Theorem 4.5. We take

�(t, x) = ]curl (DT�⇤
t

E � T�1
t

)(x) · ]curl (DT�⇤
t

F � T�1
t

)(x).

In view of (4.25), we have

�(t, T
t

(·)) =: �(t, ·) = ]curl (DT�⇤
t

E � T�1
t

)(T
t

(·)) · ]curl (DT�⇤
t

F � T�1
t

)(T
t

(·)) 2 L1
(⌦1).

According to Theorem 3.4, E,F enjoy higher regularity in H2
(⌦1). Therefore, ˙E, ˙F are in H1

(⌦1) and
the time-derivative of �(t, x) at t = 0 is given by

�

0
(0, ·) = curl ˙E · curlF + curlE · curl ˙F +D[curl (E)]✓ · curl (F ) + curl (E) ·D[curl (F )]✓.
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Thus with ✓ 2 ⇥k we get �0
(0, ·) 2 L1

(⌦1). We also have

rP ((curlE · curlF )|⌦1
) = r(curlE · curlF )|⌦1

= �D[curl (E)]✓ · curl (F )� curl (E) ·D[curl (F )]✓

which yields

�0(0, ·) = curl ˙E · curlF + curlE · curl ˙F .

Defining

Icurl ,i(t) :=

Z

⌦i(t)
�(t, x)dx, i = 0, 1,

we get

I 0curl ,i(0) =

Z

@⌦i

�
curlE · curlF

�
✓ · n

i

d�+

Z

⌦i

curl ˙E · curlF + curlE · curl ˙F dx, i = 0, 1.

According to Lemma 3.3, curlE and curlF are in H1
(⌦

C

). Thus, the above integral on @⌦
i

is well-
defined and

(4.53)
Z

@⌦0

�
curlE · curlF

�
✓ · n0 d� = �

Z

@⌦1

�
curlE · curlF

�
✓ · n1 d�.

Now we check that ˙E and ˙F are in V . Indeed we have

curl ˙E = curl (�DE✓ �D✓⇤E)

= �(DcurlE)✓ + (D✓ � (div ✓)I)curlE

Since E 2 V and by Lemma 3.3, we get curl ˙E 2 L2
(⌦) and consequently ˙E 2 V . Since ˙E and ˙F have

compact support in ⌦

C

and taking (4.53) into account, we obtain

I 0curl ,1(0) + I 0curl ,2(0) =

Z

⌦C

curl ˙E · curlF + curlE · curl ˙F dx

=

Z

⌦
curl ˙E · curlF + curlE · curl ˙F dx.

Gathering the previous results we get

@
t

fL (E,F , 0) = Re

✓Z

⌦
µ�1curl ˙E · curlF dx+ i!

Z

⌦0

�0 ˙E · F dx+ i!

Z

⌦1

�1 ˙E · F dx

◆
(4.54)

+Re

✓Z

⌦
µ�1curlE · curl ˙F dx+ i!

Z

⌦0

�0E · ˙F dx+ i!

Z

⌦1

�1E · ˙F dx

◆
(4.55)

+Re

✓Z

�1

i!J�E · F K�1 ✓ · n1 d�

◆
(4.56)
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where

J K�1(x) = lim

y2⌦1,y!x

 (y)� lim

y2⌦\⌦1,y!x

 (y)

is the jump over �1 of a function  at x 2 �1. The expressions on the right hand sides of the equalities (4.54)
and (4.55) vanish since they correspond to the variational formulations for the state and the adjoint (4.42)
and (4.43) with the test functions ˙E and ˙F 2 V where we also use the fact that ˙E and ˙F have compact
support in ⌦

C

.
Finally Theorem 4.3 gives the shape derivative

dJ (⌦1;✓) = @
t

fL (E,F , 0) + @
t

L(�(⌦1(t)))|t=0.

Summarizing the previous results, we obtain the following theorem:
THEOREM 4.6. Let ✓ 2 ⇥k, with k � 1, and ⌦1 2 O be given. Then the shape derivative of J at ⌦1

in the direction ✓ is given by

dJ (⌦1;✓) =

Z

�1

⇥
Re
�
i!J�E · F K�1

�
+ |�0 � �1|H1

⇤
✓ · n1 d�,(4.57)

where (E,F ) 2 V ⇥ V is the solution of (4.42)-(4.43) and H1 is the curvature of ⌦1.

5. Conclusions. Magnetic induction tomography (MIT) is a promising non-invasive imaging modal-
ity. The time harmonic eddy-current system formulated in terms of the electric field represents a suitable
approximation of the full Maxwell system in a low frequency regime. It serves as a proper state system
in an output least squares formulation for identifying hidden inclusions from measurements of the electric
field in receiver coils surrounding the region of interest. The sharp interface formulation proposed in this
paper considers, in addition to conductivity values, the shape of the hidden inclusions as the unknown. This
puts the problem into the realm of shape optimization and requires shape sensitivity analysis for obtaining
a shape gradient related descent direction for the numerical solution of the problem or to decide whether a
given set of inclusions is first-order optimal.

To establish the domain and boundary form of the shape gradient, we have adapted a saddle point
approach introduced in [8]. An interesting feature of our result, which is specific to the Maxwell equations,
is the use of an unusual function space parameterization when differentiating the inf-sup of the Lagrangian.
While the domain form of the shape gradient can be used as the basis for, e.g., a level-set based shape
optimization algorithm for iteratively solving the output least squares problem, the well-known Hadamard-
Zolesio structure theorem suggests to rather use a boundary form of the shape gradient. However, for
obtaining the latter in the present context higher regularity of the electric field had to be established. The
corresponding boundary expression has the advantage of yielding lower dimensional quantities in numerical
realizations. Structurally, it is composed of the real part of the product of the electric field and the associated
adjoint state plus a weighted curvature term, where the weight accounts for conductivity differences in
different regions within the domain of interest. While the latter term has a curve shortening (in 2D) or
surface diminishing (in 3D) effect and results from regularization, the former is due to the quadratic misfit
functional in the overall objective. Both, the domain as well as the boundary expression are suitable for
being implemented in a shape sensitivity based minimization scheme.

As our current investigation has an intrinsic 3D character in connection with MIT, the efficient numerical
treatment of the problem is an interesting, yet challenging task in its own right. Based on the theoretical
findings of this paper, the design and implementation of a level-set based shape optimization method a
future research task.
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Another aspect, which is open for future research is the computation of topological sensitivities for
the underlying identification problems. The associated topological derivative is useful for detecting the
topological distribution of hidden objects and may be used for initializing the shape sensitivity based method
addressed above.
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