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This thesis will first criticize standard financial theory. The focus will be on 

return distributions, efficient market hypothesis and the independence of 

returns. Part two gives the intuition to look at markets in a different view. 

Namely the one proposed by B. Mandelbrot who has shown that nature itself 

can often be described with fractals. Then the relationship between fractal 

power laws and scaling will be explained.  

The main part focuses on the estimation of the tail index as a scaling parameter 

with the help of three different techniques: 1. OLS regression on a log-log plot,  

2. Hill estimator and 3. the alpha exponent within the stable distribution.  

In the last section a different power law exponent will be estimated to test for  

long memory effects (i.e. nonperiodical  cycles) in return distributions. The last 

section gives a conclusion.   

Keywords: efficient market hypothesis, fractal, self-similarity, scaling, power 

law, Hurst, fractional Brownian motion 
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ACF                      Autocorrelation Function  

AR( )                     Autoregressive Process of order (…) 

ARMA                  Autoregressive Moving Average Process 

B/M                       Book to market ratio   

ARCH                   Autoregressive Conditional Heteroscedasticity   

APV                      Adjusted Present Value Method 

CAPM                   Capital Asset Pricing Model 

DCF                       Discounted Cash Flow Method 

EMH                      Efficient Market Hypothesis 

EUREX                 European Exchange  

FIGARCH             Fractionally Integrated GARCH 

FBM                      Fractional Brownian Motion 

FGN                      Fractional Gaussian Noise 

GARCH                General Autoregressive Conditional Heteroscedasticity   

LTCM                    Long Term Capital Managed Fund 

NASDAQ              National Association of Securities Dealers Automated  

NYSE                    New York Stock Exchange 

OLS                       Ordinary Least Squares  

R/S                         Rescaled Range Analysis  

S & P                     Standard & Poors  
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Modern financial theory is of very heavy use nowadays. It is thought in almost 

every business school. In practice people make decisions based on it. They use 

it to decide if to invest in a project or not.  

Corporate finance models like DCF or APV rely on risk factors given by the 

CAPM. In option pricing, the famous Black and Scholes model is of heavy use. 

But what are the underlying assumptions and how correct are they?  

Louis Bachelier introduced in (1900) the first „modern” model for stock prices. 

In his PhD thesis he proposed that prices follow a random walk. Which is 

interpreted as that investors cannot profit from a given strategy. Prices are 

unpredictable. One implication of this is that markets are supposed to be 

efficient.  

But what is the explanation for crashes like that of  wall street 1929 and 1987 

or the Asian crises 1997 or the internet bubble in 2000. An another example 

which is often cited is the Russian default on government bonds. The LTCM 

hedge fund who had about 200 billion dollar under exposure and a capital base 

of only 4,8 billion dollar almost collapsed after the Russian crises. The 

interesting aspect here is that two of the leading financial theorists were 

managing this fund. Namely Myron Scholes and Robert C. Merton. Both 

received the Nobel price in economics in 1997 for there well known option 

pricing formula. Only with the help of the Federal Reserve the fund did not 

collapse (Sornette, 2003).  

Also the stock market crash of 1987 with 20 % happened without any 

fundamental news. It has been the biggest decrease of the U.S. stock market in 
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a single day so far. After events happened analysts have reasonable 

explanations of why it happened but were not able to predict.     

Is such a drop compatible with rational behaving agents? It seems that human 

behaviour is more irregular than standard financial models assume.  

The behavioural finance literature has several examples where the market or 

individuals fail to behave as the standard fundamental analysis suggests.  

The next two introductory sections look closer at statistical and economical 

reasoning’s the standard theory has to offer and were the theory might fail.
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In almost all popular models return distributions are assumed to be Gaussian. 

In Markowitz’s portfolio theory risk is measured with respect to the mean and 

the variance. But if returns do not follow the normal, not only standard 

portfolio theory would be useless also the CAPM and hence all corporate 

finance models based on beta as a measure of risk.   

To test if  the mean and the variance do describe return distributions properly 

we can measure the skewness and kurtosis (i.e. the third and fourth moment).  

Skewness is defined as 
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The estimators are defined as  
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for kurtosis.  

A joint test for normality is the well known Jarque-Bera procedure. It tests for 

skewness and excess kurtosis at the same time. The test is  

                                                ( ) ( )23
246

222 χ~K̂TŜT −+                         (1.5) 

Empirical tests have shown that most financial time series exhibit no skewness 

but they do have kurtosis greater than 3. Which means they have fat tails      

(also known as leptokurtosis). The probability for large values is higher than 

under the normal distribution. A stylized fact of financial time series is that the 

shorter the time horizons the more excess Kurtosis we have (Cont, 2001).  

To give an impression for the probability of extreme events, Table 1.1 shows 

the probability for some values in the Gaussian bell shaped world.    
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Table 1.1: X is the number times the standard deviation for some value in the 

Gaussian world. Next, the probability for the given value of X is shown. The last 

column translates the probability in calendar time (days in this example) one has to 

wait to  experience such a return. Source.: Sornette (2003)    

Here a market return of more than 4% should be observed only once in 63 

years. In fact, the market drop October 19, 1987 should never happened.  

The theoretical question is that: are large market drops outliers or do we face a 

distribution were “large” deviations are within the usual range? An alternative 

family of distribution is described in part three. These do exhibit fat tails in a 

natural way. In table 1.2 the Kurtosis is tested for six stocks and shows high 

values, an indication that the normal distribution is not a good candidate to 

describe the distribution of returns.  

Stock Kurtosis 

Telekom 5,63 

SAP 8,05 

Allianz 7,15 

Pfizer 5,50 

INTEL 8,55 

Microsoft 8,57 

Table 1.2: Estimation of Kurtosis for 3 stocks of DAX and 3 of Dow Jones indicating 

that the tails are fatter than those of the normal distribution.(daily returns). 
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It is well established that return of financial returns do not exhibit significant 

autocorrelation (Cont, 2001). This means that the price increments are 

uncorrelated and one cannot predict prices (which will be more discussed in the 

next section). However, important is that the ACF of absolute and squared  dies 

out in hyperbolic way which gives rise to some nonlinear dependence. Could it 

be that very distant observations have some influence of current ones? This 

property known as long memory is discussed and tested in section for.  

Figure 1.1 shows the typical picture of the ACF for absolute or squared returns. 

Figure 1.1: ACF for Deutsche Telekom,  showing the typical hyperbolic decay 

in contrast to exponential decay inherent in most models   

An another stylized fact of financial time series is the phenomenon of volatility 

clustering and is well studied and resulted in the invention of ARCH and 

GARCH models. Large price deviations are more likely to be followed by 

large price deviations.  
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An another empirical finding contradicting the independence assumption of 

returns is the existence of drawdowns  (Sornette, 2003). These are defined as 

persistent decreases in prices over consecutive days. Hence, it is the cumulative 

loss from the last maximum to the next minimum. The persistence of such 

drawdowns is not measured by return distributions because they not recognize 

the relative position of  losses. Important here is to note that these dependence 

structures do only appear at special times when we have a few large losses in a 

row. The probability to have three consecutive losses of  10 % in an 

independent Gaussian world would be 910− . However, for example the Dow 

Jones experienced seven drawdowns with cumulative losses of more than 15 % 

and the highest with 30,7 %. To reject independence in returns completely 

cannot be justified by these facts!    	
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This section shows the main theoretical concepts from an economist point of 

view regarding the behaviour of financial markets. It is better to begin with the 

random walk theory because the efficient market hypothesis is supposed to be a 

result of  the former.  

1.2.1  Random walk    

A variable tX  follows a random walk with a drift δ , if  

                                            11 ++ ++= ttt XX εδ                                          (1.6) 

with 1+tε  as an identically and independently distributed random variable.  

The efficient market hypothesis is supposed to be a logical result of a random 

walk. It will be stressed in the next section that we have to distinguish between 
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predictability and the correctness of prices and hence between predictability 

and market efficiency.  
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Market efficiency is still the hottest debated topic in finance. M.C. Jensen 

(1978) stated “there is no other proposition in economics which has more solid 

empirical evidences supporting it than the efficient market hypothesis”. It 

means that prices do reflect all relevant  information. On average, it is not 

possible to make abnormal profits with any given strategy. Fama who defends 

the efficient market  states in his review article (1991) states that there are only 

slight deviations. It has become a dogma since.  

To show the EMH formally it is helpful to the concept of the martingale. 

Mathematically speaking, prices follow a martingale if we assume that agents 

are risk neutral, they all have the same discount factor 		
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access to the same information tΩ , (Cuthbertson, 1996). 

An arbitrage free price would satisfy:  
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which means that the current price is equal to the discounted expected value of 

the dividend, 1+td , plus the expected resale price in the next period, conditional 

on information tI . After transformation we have  
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For high-frequency data we have that 01 ≈+td  and 0≈ρ , which leads to  

                                              [ ]ttt pEp Ω1+=                                           (1.10) 

�4�4�4�			7�
��
�����	�����
��
�	��	��
	�68		

In the following, a few theoretical drawbacks of the efficient market hypothesis 

are shown. First of all the no-trade-theorem says that any offer that deviates 

from previous prices reveals private information. Other agents would agents 

would be reluctant to accept the offer because they would loose from trading 

with a presumably better informed agent. The price would adjust and 

incorporate the information without trade taking place, (Cuthbertson 1996). So 

even if we have asymmetric information, it is not sufficient to stimulate trade. 

This argument stays in absolute contrast to the immense trading we see 

nowadays in financial markets. 

The second theoretical drawback is known as the Grossman-Stiglitz-Paradox 

(Grossman Stiglitz, 1980). If the market is in equilibrium and hence all 

arbitrage opportunities are eliminated is it possible that the market can be 

always in equilibrium? No. Arbitrageurs then make no return from there costly

information gathering activity.  

This leads us to think about arbitrage. It is a very important argument in every 

analysis of markets. All modern finance models build on the assumption of  the 

possibility of perfect arbitrage. As shown by Shleifer and Vishny (1997) 

arbitrage is limited. Not every asset has a perfect substitute. Arbitrage is risky. 

The S & P 500 Index Future does have a perfect substitute, namely the 

underlying stocks of the index. But what is the substitute for GM, Chrysler?  
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What if mispricing becomes even more severe? Noise traders could bring the 

price even more from its fundamental value. This risk is called noise trader

risk. Shleifer (2000) shows a recent example. In 1997 the S & P 500 Index   

reached a very high value compared to its historical price earnings ratio. 

Federal Reserve chairman Alan Greenspan called it in 1997 a “irrational 

exuberance”. An arbitrageur should short the S & P 500 in this situation. The 

problem was that the situation became even more worse. The arbitrageur would 

have lost 33,4 percent and 28,6 percent the next year.  
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How do investors behave? Is it according to models like CAPM?  The growing 

behavioural finance literature pointed out so many examples of people not 

acting in a rational way. As Fischer Black (1986) described it, many investors 

trade on noise rather than information. They follow the advice of financial 

Gurus, do not diversify correctly, sell winning stocks and hold on losing stocks 

with increasing tax liabilities (Odean, 1998). They hold  expensively managed 

funds although these funds do not even generate there fees (Carhart, 1997).  

Nobel Psychologists Kahneman and Tversky have shown that investors deviate 

from maxims of economic rationality in a systematic way. People have 

difficulties with simple probability reasoning. Prospect theory states that 

people do not asses risky gambles as to achieve the highest possible outcome. 

They look at gains and losses in respect to some reference point which varies 

from situation to situation. This psychological bias can be shown by a loss 

function which is steeper than the gain function. Shleifer (2000) argues that 

this could be a possible explanation for the equity premium puzzle (Mehra and 

Prescott, 1985), the fact that stocks earned 7 percent on a yearly basis and 

bonds only 1 percent. Figure 1.2 shows the function from the original paper by 

Kahnemann and Tversky. 
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Figure 1.2: The value function of Kahneman and Tverskys „Prospect Theory” Source: 

Kahneman and Tversky (1979) 

For explaining the puzzle Benartzi and Thaler (1993) add to loss aversion the 

fact that people exploit mental accounting. It will be explained by a simple 

example. Suppose an agent has the following utility function   

                                                                 x              x�0
                                                      U(x)=  
                                                                 2,5x         x<0,                            

If he is asked to do a bet, in case of winning he will receive 200 with 

probability 50 percent and in case of losing he must pay 100 with probability 

50 percent. P. Samuelson asked this question his colleague who wouldn’t 

accept this bet.  

With two bets the colleague would have an positive expected value 

(400,0,25;100,0,50;-200,0,25). The crucial point is that this applies only if he 

would not evaluate his bet after the first session. For the stock market suppose 

we have a risky asset with an expected return of 7 percent a year and a standard 

deviation of 20 percent. On the other hand we have the riskless bond with a 

return of just 1 percent a year. This together with loss aversion is called Myopic 

Loss Aversion and is an attractive explanation why people invest in bonds in 

such an environment. But it fails to take into account that stocks are much 

more risky than seen by standard risk measures! 
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There are many more examples in which people do deviate from Bayesian 

rationality. The argument for the efficient market hypothesis lies in that these 

heuristics cancel each other out. But as shown by the theories from Khaneman 

and Tversky people tend to behave in same direction! We cannot assume that 

these mistakes are uncorrelated. Investors herd!  

All these criticism of the efficient market hypothesis from the behavioural 

finance literature should make us sensible for questioning the underlying 

assumptions of modern finance and for finding new ways to model financial 

markets. As Richard Thaler has put it in his survey (2002) „ Directly testing the 

validity of a model’s assumptions is not common practice in economics, 

perhaps because of Milton Friedman’s influential argument that one should 

evaluate theories based on the validity of their predictions rather than the 

validity of their assumptions. Whether or not this is sound scientific practice, 

we note that much of debate over the past twenty years has occurred precisely 

because the evidence has not been consistent with the theories, so it may be a 

good time to start worrying about the assumptions. If a theorist wants to claim 

that fact X can be explained by behaviour Y, it seems prudent to check whether 

people actually do Y”.  
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There are also a lot of empirical facts showing that the efficient market 

hypothesis is not true. One of the first important works was Shiller’s finding 

that stock prices are much more volatile than justified by dividends. With the 

efficient market hypothesis stock prices should only change when there are 

some news since the hypothesis states that prices are correct at all times! The 

volatility of stock prices shouldn’t be much higher than of the dividends. 

Figure 1.3 shows the big discrepancy between 1881 and 2003. For markets to 

be efficient the stock price should jump around the present value of dividends 

not in such dramatic way. Short recessions cannot be the explanation for this 

large volatility.  
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Figure 1.3:  S & P 500 Index, 1881-2004 (heavy irregular curve), and present 

values, 1881-2003, of real dividends calculated by three different discount 

rates. Source: Shiller (2004) 

The point is that it is true that forecasting stock prices is a very difficult task, 

but this does not mean that prices reflect the underlying fundamental value. A 

random walk must not imply correct prices. Shiller (2004) argues, the fact that 

we cannot predict day to day changes does not mean that we cannot predict any 

change. As described by the noise trader models, arbitrage is risky and smart 

investors are not able to bring prices down to fundamental value at every point 

in time. Shiller received hard critique, notably from nobel laureate Robert C. 

Merton who also managed the LTCM Hedge Fund described in the 

Introduction.   

It is very important to emphasize that the efficient market hypothesis does not 

only mean that one cannot make excess returns given some Information set. It    

implies also that prices are right at every point in time. The Nasdaq high of 

5000 in 2000 and also other indices around the world is a remarkable example 

of prices deviating from fundamentals in a extraordinary way. There were 
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companies with skyrocket P/E ratios. Figure 1.4 shows this for the whole US 

market. In peaks P/E ratios reached levels one cannot justify by the 

fundamental valuation formula where the price is just the sum of all discounted 

dividends.  

Figure 1.4: Price-earnings ratio, monthly, January 1881 to January 2005. Numerator: 

real (inflation-corrected) S &P Price Index, January. Denominator: moving average 

over preceding ten years of real S & P Composite earnings. Years of peaks are 

indicated. Interest rate is the yield of long term U.S. government bonds January 1881 

to January 2005. Source: Shiller (2004)  

Thaler (2002) finds that statements like „prices are right” and there is „no free 

lunch” are not equivalent. Both are true in an efficient market, but the „no free 

lunch” condition holds also in an inefficient market. That prices are away from 

fundamental value does not mean that we can predict anything or that there are 

any excess risk-adjusted average return available.  
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Still many researcher point out the fact that fund managers do not generate 

excess returns is strong evidence for market efficiency and conclude that prices 

are right. The arbitrage argument with fundamental risk and noise trader risk 

does provide an explanation why this is not true. Also as shown in Figure 1.4 it 

seems very strange to argue that the market values assets always by its 

fundamental values.   

Empirically there are also some other findings contradicting the efficient 

market hypothesis. In the literature they are called anomalies. For example    

the size premium, meaning that small cap stocks earn a higher return than 

justified by some equilibrium model (e.g. CAPM). Fama and French (1992) 

document that the average return on small cap stocks have a return 0,74 percent 

higher than the largest decile in terms of market capitalization.      

Also well known is the study from De Bondt and Thaler (1985). They rank all 

stocks traded on NYSE by their prior three-year cumulative return and form 

„winner” and „loser” portfolios. Afterwards average returns are measured 

subsequent to there formation. The result is that loser portfolios outperform 

winner portfolios by 8 percent a year. Figure 1.5 shows this remarkable 

finding. 
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Figure 1.5: Cumulative average residuals for winner and loser portfolios of  35 stock 

(1-36 months into the test period) Source: De Bondt and Thaler (1985) 

In relation to the finding of Thaler and De Bondt is that of Jagadesh and 

Titman (1993). They found that when looking on a shorter time periods the 

opposite is true. Winners continue to wine and losers continue to perform 

poorly which is now known as momentum.

The last factor, which should not influence the risk premium, found statistically 

significant, is the book-to-market ratio. Fama and French (1992) grouped 

stocks of  NYSE  and NASDAQ into deciles based on their B/M ratios. The 

highest decile produced a monthly return 1,53 percent higher than the lowest 

decile. This suggests that value strategies do outperform growth strategies. 

As a result the following regression is used to study abnormal returns, e.g. 

Carhart (1997) the performance of mutual fund managers.       

ittitititmtiitit YRPRHMLSMBrRrR εββββα ++++−+=− 1)()( 4321  (1.11)	

It basically says that the return over the risk free interest rate tr  a mutual fund 

manager i earns can be explained by the CAPM beta ( i1β ) , a small cap ( i2β ), 

market to book ( i3β )  and a momentum factor  ( i4β ). Only the return corrected 

by these risk factors is what he has generated by his “strategy”. The excess 

return is measured by iα̂ .  
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The efficient market hypothesis implies that one only has to hold the market 

portfolio and does not need to care about future upcoming events, since the 

investor always earns his appropriate return with respect to risk. All news are 

quickly incorporated in prices. If this were true, why do we see so much 

actively managed funds? Stock picking would be a useless activity.  Why is 

there so much trading around the world without a comparable amount of 

upcoming relevant news?  

In corporate finance, it is very important to have meaningful discount factors.   

The rate of return is a measure of the opportunity costs of funds corrected for 

risk. It is used to discount cash flows from physical investment projects. If 

stock prices are very low compared to its true value then the corporate treasurer 

will accept projects that he otherwise would have not.  

In the case of new share issues there is no gain in delaying a project in hope 

that financing conditions will improve. Under the efficient market hypothesis 

the current price is the correct price and the project is correctly incorporated in 

price. If the stock price is irrationally low then projects are rejected that would 

be accepted under efficient markets. 

   

 To sum up, we have at least five assumptions which do not apply in the real 

world: 1.the assumption of rationality, 2.efficient markets, 3.the assumption of 

normality,  4. independence and 5. perfect arbitrage.   

   

Thus, the discussion so far should lead us to view financial markets in a 

different way. One alternative is the one of  fractal, scaling and self similarity

explained in section two and then applied to finance in section three and for. 	
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The discussion in the first part suggests that the description of financial 

markets by models of modern finance seems to be not very accurate. A view   

that is not based on any economic assumption comes from Benoit Mandelbrot  

In his book „The fractal geometry of nature” he describes that Euclidian 

geometry describes spheres, cones and circles in a nice way. But nature is not 

smooth. Mountains are not like cones, Coastlines not like circles (Mandelbrot 

1982). The world is much more complex. Hence, we need other tools to 

describe properties of nature.  

The main concept which drives the fractal view is self-similarity. For example 

the mammalian lung consists of the main branch trachea and then divides into 

sub branches and these two divide further (Peters 1994). At each branch 

generation the average diameter decreases according to a power law. But 

within a generation we have randomness. This is the key concept of self 

similarity, global determinism (average branch size) and local randomness 

(individual branch size).  

A tree also has qualitatively self-similar branches, on the other hand every 

branch is unique. On different scales the branches look the same.  

In physics complex systems such as turbulence are described by power laws.  

�4�	���
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An another key to fractals is dimension. For a smooth curve the length L(r) is 

given by the product of the number N  of straight-line elements of length r  

needed to step along the curve from one end to the other and the length is r: 
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L(r) = rN ⋅ . When the step size r  goes to zero, L(r) approaches a finite limit L 

(Schroeder, 1991). 

With fractals the product rN ⋅ goes to infinity as r goes to zero. 

Asymptotically this divergence behaves like a power law. Thus, there is a 

exponent HD  > 1 so that the product  HDrN ⋅  stays finite. If the exponent is 

smaller than  HD  the product diverges to infinity and for larger values it tends 

to zero. The explained exponent is called the Hausdorff dimension. So we have  

                                                   
)/1log(

loglim
0 r

ND
rH →

=                                      (2.1) 

     

With fractals the dimension lies somewhere between 1 and 2.  
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The often used Brownian motion as a model of the behaviour of stock market 

prices can also be seen as a statistically self-similar process (Schroeder, 1991). 

This is illustrated in figure 2.1. Here we have a typical Brownian motion of a 

particle between points A and B (A). Between point A and B the particle does 

not move in a straight line which is shown in (B). The particles motion is 

shown 100 times faster and the result is magnified 10 diameters. Now does the 

particle move in a straight line between C and D? No. If we look 100 times 

more often between C and D we get the same result as with points A and B.  

We can do the same iteration once again and would get the same result. In 

general if we increase the spatial resolution by a factor of 1/r we get 
2/1~)( rrN  more pieces to cover. Thus, the Hausdorff dimension is given by  
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r
rNDH                                       (2.2) 

The scaling range of Brownian motion  is between powers of 810 to 1 covered 

by a continuum of intermediate scales.   

Figure 2.1: (A) Brownian motion. (B) The segment AB of the Brownian motion in part 

A sampled 100 times more frequently and magnified 10 times. Source.: Schroeder 

(1991). 
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2.2.2 The Sierpinski triangle  

In this section a geometrical fractal will be shown. The algorithm behind is 

rather simple. We have a triangle. Then we choose one point within this 

triangle. Next, we choose one corner of the triangle, move half away and draw 

the next point. This is done 50000 times. What comes out is a prima facie 

example of self similarity. If one looks closer at the triangle you have the same 

structure. The same sort of triangle. But the process behind is random.  

Figure 2.3: Sierpinski triangle, an example of a fractal which displays self similarity, 

local randomness and global determinism (also a property of chaos theory). 
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Figure 2.3 shows the triangle computed in Xplore. The code is provided in 

Appendix A.  
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Formally, if we have an observable ψ  which depends on a parameter x then 

under an arbitrary change x → xλ  , x is said to be scale invariant if there exists 

a number )(λμ  such that   

                                             )()( xx λμψψ =                                                 (2.3) 

	

The solution of 2.3 is simply a power law  αψ xx =)(  (Sornette, 2003). The 

exponent � is given by  

                                              
λ
μα

ln
ln−=                                                        (2.4) 

This can be shown by inserting 2.4 in 2.3. The importance here lies in the fact 

that the ratio 
)(
)(

x
x

ψ
λψ  = αλ  does not depend on x and that the relative values 

depend only  on the ratio of two scales. A stochastic process encountering this 

self similar property is shown in section 4.3. In physics a branch called 

renormalization group uses the above relation to describe complex systems. 
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The main object of this thesis is to show two statistical features of stock market 

time series where the fractal view applies. Namely, the power law behaviour of 

the tail of stock market returns and the detection of long term dependence.  
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Benoit Mandelbrot invented both ideas to finance and gave them biblical 

names according to two stories in the old testament. He called the power law 

behaviour of stock returns the Noah effect and the long memory property as the 

Joseph effect. In Noah’s six hundredth year, God ordered a great flood to clean 

a wicked world. As with market crashes the flood came without warning.  

The long memory property, meaning that the market moves in cycles, comes 

from the story of Joseph a Hebrew slave. He reported that the pharaoh of Egypt 

saw that after seven years of very good corn harvest seven bad will follow. 

Joseph advised the pharaoh to stock in good years. One could see this as a first 

arbitrage behaviour.  
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In this section it will be shown that the Gaussian assumption is rejected in 

many instances and that tail of financial returns scales. The distribution is than 

well described by a power law. This approach is proposed by a new branch 

called econophysics. Before coming to the study of returns, I will show that 

this approach is applied in many fields. In fact, it came from the study of 

income distributions.    

	
;4�	�������	��	�	����
����	��1	
	
"
;4�4�	?��
���		
�1
�	��1	��		�����
"������������	""
	
	
One of the earliest power laws in economics has been introduced by Vilfredo 

Pareto an Italian economist. He was on of the first economists who looked at 

data to study the distribution of income. His findings contradicted the classical 

economic school, because he found that income is far more distributed to the 

rich. He developed the following  density function (Chipman, 1976) : 

                                   1m
u)m(f += α

αα  (0<u <≤ m � ; )1>α                          (3.1) 

Let N(x) be the number of individuals with incomes exceeding x; then the 

cumulative distribution function, defining the proportion p of the population 

earning incomes less than or equal to x, is given by  
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where  

                                                      A=N(u)u α

The proportion q=1-p of the total population with incomes exceeding x is then  
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Let R(x) be the sum total of incomes exceeding x thus,  
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The proportion r of total income which exceeds x, i.e. the relative share of  

those earning more than m is   
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is the mean of the distribution, equal to per capita income (Chipman, 1976).  

The expression 
α

	


�

�


�

m
u gives the probability that the proportion q exceeds the 

income level m, where x is often defined as the minimum income. Pareto found 

power laws in the region of 3/2.  

Figure 3.1: Pareto’s original diagram from 1909 of how wealth is distributed through 

any human society. In any age or country. Rising income is on the vertical scale, 

population on the horizontal (which was switched later on). The number of people 

with income between levels m and p is represented by the shaded area. Source: 

Mandelbrot (2004). 

Edgeworth criticized “that a close fit to a given statistics is not,  per se and 

apart from a priori reasons, a proof that the curve in question is the form proper 

to the matter in hand”.    

Pareto replied a „rational” theory should be given more weight than to an 

empirical law. The point is that the later has to precede the theory (Chipman, 
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1976). Like the critics of the efficient market hypothesis, Pareto was accused of 

contradicting the well-established theory.   
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An important example of scaling comes from linguistic studies. George 

Kingsley Zipf found that the frequency of any word is roughly inversely 

proportional to its rank, which means that the most frequent word will occur 

twice as much the second. In mathematical terms the power law exponent � is 

one: 

                                                 α/~)( 1r
ArQ −                                              (3.9) 

Related to the above finding is the so called Zipf plot. Here the rank order axes 

and the  frequency axes are both plotted in log form. Zipf’s law has been 

applied in many fields such as in biology. An example of the application where 

Zipf’s law applies is if we look at the accesses of documents  in the world wide 

web. Crovella, Taqqu and Bestravos (1998) found that for a data set of 46.830 

unique files the slope of a log-log plot with the number of references to each 

file as a function of the files rank in reference count is -0.986 with =2R 1.00. 

The exponent is thus nearly 1.   

  

Figure 3.2: Zipf’s law applied to web documents. Source: Crovella et al (1998)  
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Stanley et al (1996) examined the statistical behaviour of corporate growth. It 

is just an another instance where economic theory fails to take into account the 

empirics of the data. For example Gibrat’s model assumes that growth is 

independent of the company size and uncorrelated in time. The process is 

therefore  

                                                    )( ttt e1S +−+ Δ                                            (3.10) 

   

with te uncorrelated and a mean close to zero and a standard deviation smaller 

than one. As a result log tS  follows a random walk and the firm size is log-

normally distributed. This model is still used as a benchmark in current studies 

of  firm size behaviour. 

The data set used by Stanlay et al (1996) consisted of 16 years, they  defined 

the growth rate as R= 01 SS /  with S as sales in the given year. In logarithmic 

scales  r = log( )/ 01 SS  and 00 log Ss = .  

They calculated the conditional distribution )( 0srp of the growth rates. 

It was found that the data did not fit to a Gaussian but rather an exponential 

distribution with the form of 

                                 )( 0srp = 	
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−
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)(2
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0

0

0 s
srr

s σσ
                  (3.11) 

   

depending on the chosen initial value 0s  (Figure 3.3).                                                                
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Figure 3.3: Probability density  ( )0srp  of the annual growth rate, for three different 

bins of initial sales: 5,9
0

5,8 44 << S  (circles), 5,12
0

5,11 44 << S (squares) and 
5,15

0
5,14 44 << S (triangles). The data were averaged over all 16 one-year periods 

between 1975 and 1991. The solid lines are fits to equation (1) using the mean 
)( 0sr and standard deviation )( 0sσ Source: Stanley et. al (1996).  

The plot in Figure 3.3 suggests that the data is well described by equation 3.11.  

The regression from sales of 10 4  up to 1011  dollar 

                                      as =)( 0σ ββ −=− 00 )exp( aSs                               (3.12) 

yielded a�6.66 and 15.0=β ± 0.03. To look for the scaling phenomena 

Stanley et al graphed the dependent variable against the scaled independent 

variable. If  scaling holds the curves must collapse. Figure 3.4 shows this 

remarkable result.  
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Figure 3.4: Scaled probability density ( )00
2/1 )(2 srpspscal σ=  as a function of the 

scaled growth rate [ ] )(/)(2 00
2/1 ssrrrscal σ−=  of sales(circles). The values were 

rescaled using the measured values of )( 0sr and )( 0sσ .The same analysis has been 
done with the number of employees. Source: Stanley et. al. (1996) 

It is notable that Stanley et at get the same result with the number of employees 

(Figure 3.4). Here they found a slope of β = 0.16 ± 0.03.  

Also three indicators of growth are described by equation 3.11 and 3.12. 

Namely, cost of goods sold β = 0.16 ± 0.03, assets β = 0.17 ± 0.04 and 

property plant and equipment β = 0.18 ± 0.04.  
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Related to the topic of power laws is the proposition that financial returns 

follow a stable distribution. Other distributions one could use are the Student’s 

t, hyperbolic, normal inverse Gaussian. One advantage of using stable 

distributions is that they are supported by the generalized Central Limit

Theorem, which states that a stable law is the only possible limit distribution 

for properly normalized sums of independent identically distributed random 
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variables (Härdle et al, 2005). Stable laws were introduced by Paul Levy when 

he investigated the behaviour of sums of independent random variables. A sum 

of two independent random variables having an α -stable distribution with 

index α  is again α -stable with the same indexα . This invariance property 

does not hold for differentα ’s.    

Another advantage of stable distributions is that they can resemble fat tails and 

asymmetry at the same time. If one wants to model extreme events like market 

crashes or natural catastrophes the stable distribution is a good candidate. The 

fractal property can be seen as that with a power law behaviour of the tail of 

the distribution the ration of      does not depend on x.  

To describe the stable distribution one needs four parameters: the tail index   

α ∈  [0,2], a skewness parameter β ∈  [-1,1], a scale parameter 0>σ and a 

location parameter ℜ∈μ . If α  = 2 then we have the Gaussian distribution. If  

α  < 2 the variance is infinite and the tails are asymptotically like a Pareto law 

and hence like a power law.  

The current empirical research finds that log returns  )pln()pln(r ttt 1−−=

exhibit an exponent of  3 so we have a cubic law (Stanley et. al. 2003)

                                 (3.13)                                   

   

It is remarkable that this was found for 10 countries (Australia, Canada, 

France, Germany, Japan, Hong-Kong, Netherlands, South Korea, Spain, United 

Kingdom) and for foreign exchange markets as well. The literature interprets 

this as an exclusion of the stable distribution family. However, Weron (2001) 

shows that if α  > 2 we do not need to exclude stable Levy distributions. In 

fact, a much lower alpha is confirmed by some studies e.g. Kaizoji (2004), 

Mantegna (1996).   
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By using the Central Limit Theorem it can be shown that  

                                  α
α

α σβ )1()(lim +=>∞→ CxXPxx                           (3.14) 

                                  α
α

α σβ )1()(lim +=−>∞→ CxXPxx

where                   
2
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�
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∞
− dxxxC                     (3.15) 

	

The convergence to power law tails depends on α . It is slower for „large” 

values (Härdle et al, 2005), which is shown in Figure 3.  

  

STFstab01.xpl

	
Figue 3.3.2.: Left: A semilog plot of symmetric )0( == μβ α -stable probability 
density functions  for α =2 (black solid line),  α =1.8 (red  line), α =1.5 and  α =1 
(green  line). The Gaussian (α =2) density forms parabola and is the only distribution 
with exponential tails. Right: tails of symmetric α -stable cumulative distribution 
function (right tails) for α =2 (black line), 195 (red line), 1.5 (green line) on double 
logarithmic scale. For  α <2 the tails have straight lines with slope - α .Source : 
(Härdle, et al 2005)  
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If  α  > 1, the mean of the distribution exists and is equal to μ . Generally, the 

pth moment of a stable random variable is finite if and only if p < α . The 

distribution is skewed to the right if the skewness parameter β  is positive and 

to the left if the parameter is negative. With α  going to 2, β  loses its effect 

and the distribution approaches the Gaussian regardless of β  (Härdle et al, 

2005). σ  and μ  are the scale and location parameters, σ  determines the 

width and  μ  the peak of the density.  

	
STFstab02.xpl

Figure 3.6.: Only three densities have closed form formulas, Gaussian (black 
line), Cauchy with α =1 (red line) and Levy  α =0,5 β =1 (blue line). The 
Levy is totally skewed in +ℜ . In general, for  α <1  and β =1 (-1) the 
distribution totally skewed. Source:  (Härdle et al, 2005) 

There are only three instances where the Levy family has a closed form 

formula which is shown in Figure 3.6. For our economic examples the Cauchy 

would mean that income is distributed more to the rich and for the growth of 

companies example that business is more concentrated with large firms. 
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Because in most circumstances we have no closed form formula it is 

convenient to express the stable distributions by its characteristic functions  

(i.e. there inverse characteristic functions). A popular parameterization of the 

characteristic function of  a stable random variable ),,(~ μβσαSX
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The location parameters of the representations are related by 

2
tan0

παβσμμ −=  for 1≠α  and σ
π

βσμμ ln2
0 −=  for  1=α .

It is notable that the traditional scale parameter Gσ  of  the Gaussian: 
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,                             (3.17) 

is not the same � in the above formulas. The relation is 

                                              σσ 2=G                                                      (3.18) 
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Because of the lack of closed form formulas one has to use numerical 

procedures to for maximum likelihood estimation. However, these are 

computationally extensive. There are two ways of solving the problem. The 

first is fast Fourier transform (FFT) and the second direct numerical 
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integration. The advantage of the FFT approach is that it is faster for larger 

samples (Härdle et al, 2005).  

If we set 
2

tan παβς −=  then we can express the density f ( βα ,;x  ) of a α

stable random variable in 0S , i.e. X ~ )0,,1(0 βαS as 
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Formula 3.19 requires numerical integration of the function g ( · )exp{-g( · )}, 

where g ( �;x,�,�) = ).,;()( 1 βαθς α
α

Vx −−
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The main problem when we want to estimate stable parameters is, as noted 

above, the lack of closed form formulas in most circumstances.  As shown in 

the previous section, numerical integration is very demanding in calculation.  

If the data comes not from an � stable distribution we can apply direct tail 

estimation or the Hill estimator. 
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The easiest way to estimate values of � empirically is to use log-log 

complementary distribution (CD) plots. These show the complementary 

distribution function [ ]xXPxFxF >=−= )(1)(  on log-log axes (Taqqu et al, 

2000). Now we have the property that  

                                                    α−~
log

)(log
xd
xFd                                      (3.25) 

	

for large values of x. A simple possibility in practice is to select a minimal 

value of  0x  from which the log-log plot appears to be linear. However, the 

method is very sensitive to the size of the sample. Figure 3.7 illustrates that a  

regression in a small sample can lead to a false conclusion that we are outside 

the stable family (Weron, 2001).  

Figure 3.7: Double logarithmic plot of the right tail of an empirical symmetric 1.9 
stable distribution function for a sample size of  N=10 4 (left) and N=10 6 (right). Red 
lines present the regression fit. The tail index estimate 7320,3ˆ =α with the smaller 
sample is close to initial power law like decay of the left plot. The far tail 
estimate of 9309,1ˆ =α  is close to the true value of �. Source: (Härdle et al, 
2005) 
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Next, the regression method described above will be applied to monthly tick 

data from the EUREX-Dax-Future (ca.600.000 observations per month). The 

estimated values indicate that we are not far from the stable regime. The tail 

index for January 2007 2006 with -1,60 and -1,48 fits to the theoretical analysis 

so far. However, the observed value mean that tick by returns are much more 

risky since these alphas are very low.       

Figure 3.8: Estimation of tail in by OLS regression for Eurex tick data Januar 2006. 

The first value is -2,38 and for the tail -1,48. 
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Figure 3.9: Estimation of tail in by OLS regression for Eurex tick data April 2006. 

The first value is -2,17 and for the tail -2,05.  

Figure 3.10: Estimation of tail in by OLS regression for Eurex tick data Januar 2007. 

The first value is -1,95 and for the tail -1,58. 
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Figure 3.11: Estimation of tail in by OLS regression for Eurex tick data Januar 2007. 

The first value is -2,19 and for the  tail -1,60.  
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The second method for estimating the tail index is the Hill estimator. The Hill 

estimator gives an estimate of α  as a function of the k largest elements in the 

data set (Taqqu et al, 2000),  

                                         ( )�
=

+−=
k

i
kink XX

k
H

1
)1()(, loglog1                        (3.26) 

with )()1( ... nXX ≥≥  denoting the dataset’s order statistics. The procedure is 

nonparametric which means that it does not assume any distribution. The 

estimator tends to overestimate the tail index if � is close to two and the sample 

is small (Härdle et al, 2004).  
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The requirement of a large data set means that one should choose high-

frequency data to analyse the tail of stock returns with this estimator. Weron 

(2001) shows by simulating the stable distribution that the Hill estimator can 

overestimate the tail exponent, see Figure 3.12.  

  "
Figure 3.12: Plot of the Hill estimator versus the maximum order statistic 

k. The red line represents the true value of  �. A good estimate is obtained only for 

values of  k=500,…,1300. Source (Härdle et al, 2005). 

Now, the Hill estimator is applied to the EUREX tick data in first analysed in 

the preceding section. The exponents do not exactly equal those of the OLS 

regression but the indication that we cannot reject the hypothesis of being 

inside the stable distribution is given. All alphas are in the range 1,5-2,5 and 

hence we cannot reject Levy distributions. The overestimation noted by Weron 

(2001) does not seem to hold either by using OLS or the Hill estimator.   
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Figure 3.13: Estimation of Hill Estimator for January 2006, EUREX DAX  tick data.

Figure 3.14: Estimation of Hill Estimator for April  2006, EUREX Dax  tick data. 
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Figure 3.15: Estimation of Hill Estimator for Mai  2006, EUREX  Dax tick data.

Figure 3.16: Estimation of Hill Estimator for January  2007, EUREX  Dax tick data.
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If we have a sample  nxx ,...,1  of independent and identically distributed (i.i.d.) 

Random variables we define the characteristic function with 

                                                      �
=

=
n

j

itx je
n

t
1

,1)(φ̂                                      (3.27) 

Because )(ˆ tφ  is bounded by unity all moments of  )(ˆ tφ  are finite and, for any 

fixed t, it is the sample average of i.i.d. random variables exp ( )jitx . It follows 

that )(ˆ tφ  is a consistent estimator of the characteristic function )(tφ . A 

regression type method is developed by Koutrouvelis (1980). He starts with an 

initial estimate of the parameters and proceeds until some convergence 

criterion is satisfied (Härdle et al, 2005). One iteration is composed of  two 

weighted regression runs. How many points we have to use depends on the 

sample size and the starting value of � . The convergence depends on the initial 

estimates.  

We can derive equation from 3.16. 

                                        ( ) tt ln)2ln()(lnln 2 ασφ α +=−                           (3.28) 

	

Real and imaginary parts of  ( )tφ  with 1≠α  are 
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these two equations lead to  

                           { }
{ } ,)(

2
tan

)(
)(arctan αα παβσμ

φ
φ ttsignt

tR
tI +=		




�
��



�
               (3.31) 

Equation 3.31 depends only on α  and σ  we can therefore regress 

( )2)(lnln ty nφ−= on w = ln t  in the model  

                                      ,kkk wmy εα ++=     k=1,2,…,K                          (3.32) 

with kt  as an appropriate set of real numbers, m=ln(2� )α , and kε  as the error 

term. Koutrouvelis (1980) suggested to use Kkktk ,...,2,1,
25

== π  ; with K 

ranging between 9 and 134 for different estimates of  � and sample sizes.  

When α  and σ  have been fixed at some value, then we can also estimate �

and 	 by the use of 3.31. This procedure is then repeated until prespecified 

criterions are satisfied (Härdle et al, 2005). The above technique is now applied 

to the tick data set also used to estimate via OLS and Hill. As shown in Figures 

3.17-3.21 the stable is much more accurate when describing tick by tick data. 

Moreover the very low alphas indicate that the estimates by OLS and Hill are 

not misleading. However the values of OLS fit more to the values in Table 3.1.  

  



55

Figure 3.17: Estimation of  the stable distribution  and Gaussian (red line) for 

EUREX tick data January 2006. Also shown is the empirical cdf. 

                                                                 

Figure 3.18: Estimation of  the stable distribution  and Gaussian (red line) for 

EUREX tick data April 2006. Also shown is the empirical cdf. 
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Figure 3.19: Estimation of  the stable distribution  and Gaussian (red line) for 

EUREX tick data April 2006. Also shown is the empirical cdf. 

Figure 3.20: Estimation of  the stable distribution  and Gaussian (red line) for 

EUREX tick data April 2006. Also shown is the empirical cdf. 
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Month alpha sigma beta mu A. D. Kolm. 
Jan 2006 1,2264 0,0000 -0,0053 0,000 252,38 13,91 
Apr.2006 1,3334 0,0000 0,0059 0,000 231,45 14,57 
Mai2006 1,3595 0,0000 -0,091 0,000 382,40 16,90 
Jan 2007 1,3705 0,0000 -0,01 0,000 354,78 17,95 

Table 3.1: Estimation of  parameters and test values for the stable distribution  for 
months of DAX tick data 

Month mean std. A.D. Kolm. 
Jan 2006 0,0000 0,0001 INF 120,39 
Apr.2006 0,0000 0,0001 INF 75,29 
Mai2006 0,0000 0,0001 INF 108,70 
Jan 2007 0,0000 0,0002 INF 153,51 

Table 3.2: Estimation of  parameters and test values for the Gaussian  for months of 
DAX tick data 
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There are other power laws found in empirical analysis. For example Stanley et 

al (2003) report the scaling of price impact of trades, size of large investors and 

for the number of trades. Here, I will shortly examine the power law exponent 

of volume. This is maybe an important one, because one can imagine that more 

volume leads to more volatility. In Figure 3.21 a OLS regression on log-log 

plot is done with IBM tick data. Remarkably, as with returns, the line becomes 

straight suggesting a power law exponent is at work. The slope here is 1,8. 

Stanley et al (2003) report “half a cubic law”.  
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            Figure 3.21: OLS regression on a log-log plot for IBM volume  

"
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A second property where the fractal view of financial markets comes in to play  

is the presence of long memory and hence fractional Brownian motion as an 

alternative for modelling stock price time series.  

Long memory is now studied in depth by econometricians (e.g. Granger 1993). 

ARIMA and FIGARCH models can be used to account for long memory in 

financial time series. Here we pursue the R/S analysis of  the hydrologist Hurst  

who developed this powerful method to analyse the sequence of  floods of the 

river Nil. His exponent can also be interpreted as a power law, but one that 

does account for memory in the data instead of the distribution.  
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One of the earliest finding of a long memory effect has been in the 19th  

century with astronomy. Other examples include hydrology, geophysics, 

climatology, economics and agronomy.       

We can divide the findings of  long correlations in two categories (Beran 

1994).  

1. The long memory property is expected a priori due to the nature of the 

phenomenon 

2. Observations are expected to be (more or less) independent 
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In economics Granger  (1966)  was the first who recognized the spectral shape 

of economic variables even after he removed trends in business cycles etc. For 

economic time series the shape of the spectral density is a function with the 

pole at the origin (Beran, 1994). 

One of the first examples found for long memory was for spatial data in 

agronomy. The method used was called uniformity trials which is a method to 

determine the best size of a plot. It was found that the variance of the average 

yield of a plot converged slower to zero than if they were independent.  

A third classic example comes from astronomy where the correlation was 

unexpected (the two previous examples refer to 1.). It was observed that errors 

affect whole groups of observations which drastically increases probable 

errors. Therefore the traditional error was to small. This sort of  error is called 

semi systematic error.

	

=4�4�	?��

���
�	��	����	�
����	
���
��
�	

	

Suppose we have a random sample nXXX ,...,, 21  from a population and all 

variables have the same marginal distribution F. To show why it is important to 

study processes with long memory one has to recall what the assumption of  

classical statistics are.  

1. that the population mean )( iXE=μ  exists and is finite  

2. that the variance )var(2
iX=σ  exists and is finite 

3. nXXX ,...,, 21  are uncorrelated  

   	

The third assumption is the important assumption for the following analysis 

(the second has been the one for third part) and means that  

                                               0),( =jiρ  for i ≠ j                                          (4.1) 

where 
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                                                2

),(),(
σ

γρ jiji =                                              (4.2) 

is the autocorrelation between iX  and jX , and  

                                         )])([(),( μμγ −−= ji XXEji                               (4.3) 

The first two assumptions depend only on the marginal distribution F .  

The analysis now focuses on what happens if the third assumption is not valid.  

If  	 is constant the variance of  �
=

−=
n

i
iXnX

1

1 is equal to  

                                � �
=

−− ==
n

ji

n

ji
jinjinX

1, ,

222 ),(),()var( ρσγ                      (4.4) 

In the case that the correlations ad up to zero we have  

                                     � � �
= = =

===
n

ji

n

i

n

i
niiji

1, 1 1

22),(),( σσγγ                        (4.5) 

So if  we have �
≠

=
n

ji
ji 0),(ρ  the variance is just  

                                                    12)var( −= nX σ                                          (4.6) 

as in elementary statistics. But the variance is  

                                                   12 )](1[ −+ nn ρδσ                                          (4.7) 

   

if the observations are correlated. The correction term is  

                                              �
≠

−=
ji

n jin ),()( 1 ρρδ                                       (4.8) 
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In case that the correlation depends only on the first lag ji −  4.8 gets 
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k ρρδ                                     (4.9) 

If we take an AR (1) process  

                                         ,1 iii aXX ε+= −    a ∈  (-1,1)                               (4.10) 

the autocorrelation (ACF) is now 

                                                     jiaji −=),(ρ                                           (4.11) 

As a result we get: 
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which can be written as 

                                             [ ] 1212 )()(1 −− =+ nacna nn σδσ                        (4.14) 

with 
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Asymptotically: 

                                 [ ] 1212 )()(1)var( −− =+≈ nacnaX σδσ                        (4.16) 

with 

                                                       
a

aa
−

=
1
2)(δ                                           (4.17) 

How much the correction factor c(a) differs from the standard formula depends 

on a. If a tends to one then c(a) → � and if a tends to minus one c(a) → 0. In 

these cases 12 −nσ  is a poor estimate of the variance and one needs a good 

estimate of   c(a). 

The problem here is not only to find a appropriate value of  c(a) but also that 

the  variance of  X  decays more slowly to zero than 1−n . If the data generating 

process is such that the variance decays so slow than we cannot find a suitable 

value of c . Rather c is increasing with n . If one tries to fit an ARMA model in 

such an environment we would have many parameters. Statistical inference is 

then difficult to interpret. A natural simple way to model the slow decay would 

be α−n with � ∈  (0,1),  

                                                αρσ −≈ ncX )()var( 2                                    (4.18)              

and 

                                            �
≠

−

∞→
=

jin
jinc ),(lim)( 2 ρρ α                                 (4.19) 

If we consider specific lags and an increasing sample size it from 4.9 and 4.19  

that 
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Because alpha is assumed to be less than one, we have  

                                                       �
∞

−∞=

∞=
k

k)(ρ                                          (4.21) 

which means that the correlations do not sum up.  

As a result if 4.20 holds we have 

                                                       αρ −≈ kck p)(                                        (4.22) 

when k  tends to infinity and pc is a constant. It is now shown that 4.23is a 

process with long memory.  
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A way to detect long memory processes (Joseph effect) is the so called R/S 

analysis. Hurst (1951) developed the analysis as follows if we want to find the 

ideal capacity of the Nil river under the assumption of no storage losses. The 

goal is that the outflow is uniform, that the reservoir is full and that the 

reservoir never outflows. iX  is the inflow at time i. The formula for the ideal 

capacity is: 

                      ][max
10

nXXR i

k

inkn −= �
=≤≤

][min
10

nXX i

k

ink
−− �

=≤≤
              (4.23) 

nR  is the adjusted range. In a second step the above formula will be 

standardized by 

                                      2

1

1 )(�
=

− −=
i

nin XXnS                               (4.24) 
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As a result we have the R/S  statistic.  

                                                    
n

n

S
R

SR =/                                         (4.25) 

The interesting thing is that as Hurst plotted  the log of  R/S  with large values 

of  k  the scattering was around a straight line with a slope above ½  which 

means (and is in a sense the fractal property here). 

                                    ,log]/[log nHaSRE +≈    with H>1/2                 (4.26) 

This finding was in sharp contradiction with standard Markov processes where 

the time series is assumed to be independent. With stationary processes and 

just some short range dependence we should have 2/1H . However, Hurst found 

long term dependence for many hydrological, geophysical and climatological 

cases. Figure 4.1 shows Hurst’s original findings. 

	
Figure 4.1: Hurst’s original R/S analysis. In the derivation above H is equal to K 

 Source: Peters (1994) 
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Next, the R/S test is done along with a extension proposed by Lo (1991). 

Instead of using  nS  Lo uses  )(ˆ qnσ

                                           =)(ˆ 2 qnσ �
= +

−+
q

j
jq

i
1

2 ˆ
1

12 γσ                          (4.27) 

with 2σ  and jγ̂ as the sample variance and autocovariance estimators of  X. 

The truncation lag  q can be chosen with respect to the data but should not be 

to small Lo (1991).	

	
	
Stock Hurst  Lo q 5 Lo q 10 Lo q 25 
Telekom 0.36 5,16* 4,22* 3,08* 
SAP 0.41 4,18* 3,62* 2,89* 
Allianz 0,36 3,78* 3,09* 2,29* 
Pfizer 0,41 3,29* 2,89* 2,37* 
Intel 0,44 3,91* 3,49* 2,78* 
Microsoft 0,39 3,74* 3,30* 2,64* 

	
Table 4.1: Estimators for the Hurst exponent and Lo’s alternative for six blue-chip 

stocks .Here daily data was used.       

	
	
	
	
Table 4.1 shows the estimators for 6 “blue chip” stocks. Apparently the Hurst 

coefficient is lower than ½ indicating rather negative persistence (i.e. a higher 

probability of positive returns to be followed by negative ones and vice versa). 

However, the Lo statistic does reject the null of no long memory in all cases. 

This finding shows that we still have to look for more powerful tests to detect 
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long range dependence. To improve the estimation technique on could also 

bootstrap H. This was done by Härdle et al (2005).   

	

        
=4;		����������	)��1����	������	

	

In this section a stochastic process will be introduced which resembles the 

property of self similarity explained in section two.  

Definition 4.1: Beran (1994) defines a stochastic process as self similar if with 

any stretching factor c and the new time scale ct  , ct
HYc−  has the same 

distribution as the original process.  

This definition basically means that for any time point ktt ,...,1  and any positive 

constant c , ),...,,(
21 kctctct

H YYYc−  has the same distribution as ),...,,(
21 kttt YYY .  

Definition 4.2:  A stochastic process HB (t)  with continuous sample path and 

the following properties  is called fractal Brownian motion : 

1. HB (t) is a Gaussian process                                                                    (4.27)          

2. HB (0) = 0                                                                                                (4.28) 

3. 0)]()([ =− sBtBE HH                                                                              (4.29)   

4. )(
2

)](),([ 222
2

HHH
HH ssttsBtBCov +−−= σ                                    (4.30)  

for any )1,0(∈H  and 2σ  a variance scaling parameter. Only the covariance 

structure is different from the Gaussian case. A value of  H = 0,5 means that we 

have the standard Brownian motion as a special case of the above process. The 

next charts show simulated series of fractional Brownian motion and fractional 

Gaussian noise which is the first difference of the former and stationary. The 

first simulation is for a short memory process (H 0,35) and the second for a 



68

long memory process (H 0,75). Strikingly, the ACF for the long memory 

example dies out in a hyperbolic way which is what we observe in reality and 

is shown in the Telekom example in section 1.1.2. 

Figure 4.2: ACF  for  simulated fractional Gaussian noise with H=0,35. As opposed 

to a long memory process the ACF dies out exponentially.             XFGSimFBM.xpl

Figure 4.3: Simulated  Fractional Gaussian Noise and Fractional Brownian Motion 

for a process with H 0,35 and hence short memory.                        XFGSimFBM.xpl
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Figure 4.4: ACF  for  simulated fractional Gaussian noise with H=0,75.As   empirical 

data show the ACF dies out exponentially.                      XFGSimFBM.xpl

Figure 4.5:Simulated  Fractional Gaussian Noise and Fractional Brownian Motion 

for a process with H= 0,75  and hence short memory.                    XFGSimFBM.xpl
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An another power law is empirically observed for the autocovariance function 

(Lux, 2006).  

                                  (4.31) 

   

The value of  
 estimated empirically is about 0,2-0,3 (Granger 1993). This 

power law is related to the analysed Hurst exponent from section 4.2.   

Furthermore, the literature (Lux 2006) finds that returns can be described by 

multi-fractality meaning that markets exhibit multi-scaling properties. Different 

moments have different scaling laws. This can be shown such that: 

   

                         (4.32) 

A multi-fractal brownian process which accounts for such properties is shown 

in Appendix B. Lux (2006) has tested this model against GARCH, FIGARCH  

and stochastic volatility models and found a remarkable advantage when 

forecasting volatility.  
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In this thesis the scaling of  returns and other financial time series was 

presented as an alternative to standard financial models. It was first shown that 

a few important assumptions these models make fail. Independence, normality 

of returns (also stationarity), rationality of agents and the market as a whole 

were among these. Most important, the efficient market hypothesis as a 

building block of  “modern finance” also implies the correctness of prices at 

every time, which is hard state in such a volatile environment.  

The notion of fractal and self-similarity was introduced and explained by some 

examples. Scaling and power laws provide a powerful environment to examine 

empirical time series. Physics use them to explain complex systems where 

fractal structures are relevant. In fact, Stanley et al develop a theory which is 

based on several power laws observed in finance. Some of them were studied 

in this thesis. One should build a theory on empirical facts and not the other 

way around. 

It is very important for risk managers and traders in financial institutions to 

take these findings into account. The market seems much more riskier than 

assumed, even with a power law exponent of  3 which is not clear at least for 

the Dax-Future tick data set analysed in this thesis were a exponent of around 

1,5 has been found.  

The detection of long memory could not be confirmed with simple R/S but 

Lo’s alternative gave long memory in all cases. The topic remains important.   

We still have to look for better techniques to model financial markets. One 

could be the proposed multifractal model of  Lux (2006). However, a full 

explanation of markets is very hard to imagine, since we do not observe the 

generator behind it, only realizations, see Taleb (2007).   
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library("plot") 
proc(ve)=p() 

i = 1 
xa0=330 
ya0=150 
ve = #(320,1)'|#(1,200)'|#(640,200)'|#(xa0,ya0)' 
x = xa0 
y=ya0 

while (i <10000) 
randomize2(i) 
r = uniform(1) 

if (r <0.34) 

x= x + (-(x-320)*(x<=320) - (x-320)*(x>320)).*0.5 
y= y - (y-1)/2 

else 
if (r>0.67) 

x= x-(x-1)/2 
y= y-(y-200)/2 
else 

x= x-(x-640)/2 
y= y-(y-200)/2 

endif 
endif 
;x~y~r 
ve = ve|#(x,y)' 

i = i+1 
endo 
endp 

obj = p() 
pp = #(320,1)'|#(1,200)'|#(640,200)'|obj[100:rows(obj),] 
disp = createdisplay(1,1) 
show(disp,1,1,setmask(pp, "tiny")) 
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Here, some power law mathematics will be presented. The aggregation 

properties are especially interesting for theoretical and empirical work (Stanley 

et al, 2003).  

A random variable has a power law behaviour if there is a 0>xς such that  

xx
xXP ς

1~)( >

The probability density is then : 

1

1~)( +xx
xp ς

One could also express the above definition as a slowly varying function 

)(xL and a xς  s.t. 1/)(~)( +xxxLxp ς  , so that the tail follows a power law up to  

logarithmic corrections. yx ςς <  is the expression for Y  having fatter tails than 

X  , thus large X’s are more frequent than large Y’s . A implication is that with 

0>α and , [ ]αXE = ∞  for xςα > and [ ]αXE < ∞  for xςα < . For example if   

returns 3=rς  , then [ ]αrE  for .3>α  The Kurtosis of the returns is then 

infinite and the skewness almost infinite.  

A technical advantage of power laws is that the property as a power law is 

valid after addition, multiplication, polynomial transformation and min, max. If 

we combine two power laws the smaller one (with the fatter tail) dominates. 

YXYX ×+ = ςς = ( )YX ,maxς =min ( )YX ςς ,  

=power law of the fattest variable 

YXYX ςςς +=),min(
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If  X  is a power law  xς for  ∞<xς , and Y  is a power law variable with an 
exponent YX ςς ≥  then X + Y , X×Y, max (X,Y)  are still power laws. This is 
also true if  Y would be normal, lognormal or exponential ( i.e. ∞=yς  ).  
An advantage here is that estimating power law ‘s is still possible even if we 

have a lot of noise in the data (Stanley et al 2003). Small effects do not affect 

the power law exponent.     

   

"
"
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The model mentioned in part 4.4 takes the relation to turbulent flows also 

exhibiting multiscaling properties. To model the break-off of small eddies to 

bigger ones one starts with a uniform probability measure over the unit interval 

[0,1].  In the first step, this interval is split up into two subintervals (smaller 

eddies) which receive fractions 1p  and 1- 1p  of their „mother intervals” (Lux 

2006). This procedure is repeated infinitely. It generates a heterogeneous 

structure in which the final outcome after n steps of ever smaller eddies can 

take any value mn
2

m
1 pp − , 0 � m <n. The process is highly autocorrelated. since 

on average several joint components. In the limit n → � multi-fractality can be 

shown to hold.   

This Markov-Switching Multi-Fractal process (MSM) is a special case of 

Markov-Switching  and stochastic volatility models. Returns over a unit time 

interval are modelled as: 

                                                       ttt ur σ=                                                

 with innovations tu  drawn from a standard Normal distribution N (0,1) and 

instantaneous volatility tσ being determined by the product of  k volatility 

components or multipliers, )K(
t

)2(
t

)1(
t M,...,M,M  and a constant scale factor δ : 

                                               ∏
=

=
k

0i

)i(
t

t2
t Mσσ                                         

Each volatility component is renewed at time t with probability  

                                                 )1(
1 )1(1 −−−=
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i γγ                                     
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with parameters ]1,0[∈iγ  and ),1( ∞∈b . This specification is derived as a 

discrete approximation to a continuous-time multi-fractal process with Poisson 

arrival probabilities and geometric progression of frequencies. It can be shown 

when that when the grid size goes to zero, the above model converges to a 

continuous-time process.  

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"



77

�
�
�
��
�"
"
"
Bachelier, L. (1900). Theorie  de la speculation, Annales de l’Ecole Normale 

Superieure   

Beran, J. (1994). Statistics for Long-Memory Processes, New York 
               Chapman & Hall  

Black, F. (1986). Noise, Journal of Finance, 41, 529-543 

Carhart, M. (1997). On Persistence in Mutual Fund Performance, Journal of  
               Finance 52(1), 57-82

Chipman, J. (1976). The Paretian Heritage, Working paper, University of 
Minesota 

Cont, R. (2001). Empirical properties of asset returns: stylized facts and 
statistical issues, Quantitative Finance Volume one 223-236 

Crovella M.E., Taqqu M.S., BestravosA. Heavy-Tailed Distributions in the     
World Wide Web, in Adler, R.J., Feldman, R.E. and M.S. Taqqu 
(2000)  A Practical Guide to Heavy Tails, Birkhäuser  

                               
Cuthbertson, K. (1996). Quantitative Financial Economics, Wiley and Sons 

Cuthbertson, K. , Nitzsche, D. & O’Sullivan, N. ( 2005). Mutual Fund  
               Performance : Skill or Luck,?, Working Paper Cass Business School,    
               City University London   

De Bondt, W. and Thaler R. H. (1985). Does the Stock Market Overreact,  
Journal of Finance, 793-805 

Fama, E. , French K. (1992). The Cross section of expected Stock Returns 
Journal of Finance, 47 (1992) 427-466  

Fama, E. (1991). Efficient capital markets. II, Journal of Finance, 46, 1575-                            
617 

Granger, C. (1966). The typical spectral shape of an economic variable,  
Econometrica, 34 (1), 150-161  

Granger, C., Z.R. Ding, A Long Memory Property of Stock Market Returns                                        
               and a new Model, Journal of empirical Finance, 1,1993, 83-106 
  



78

Grossman, S.,  Stiglitz, J. (1980). On the impossibility of informationally 
efficient markets. American Economic Review, 70, 39-408 

Härdle, W., Hall, P., Kleinow, T., Schmidt, P.(2000). Semiparametric bootstrap  
               approach to hypothesis tests and confidence intervals for the Hurst   
               coefficient, Statistical Inference for stochastic Processes  3      

Härdle, W., Borak, S., Weron, W. (2005). Stable Distributions in  Härdle, W., 
Cizek, P., Weron, W. (2005) Statistical Tools for Finance and  
Insurance, Springer Berlin 

Hurst, H.E. (1951). Long-term storage capacity of reservoirs, Transactions of 
the Society of Civil Engineers, 116, 770-799, 800-808  

Jegadeesh, N.,  Sheridan, T. (1993). Returns to Buying Winners Selling    
Losers: Implications for Stock Market Efficiency, Journal of Finance, 
48, 65-91  

Jensen, M. (1968). The Performance of Mutual in the Period 1945-1964,  
               Journal of Finance, 23, 389-416  
  
Jensen, M. (1978). Some Anomalous Evidence Regarding market Efficiency,  
              Journal of Financial Economics, 6, 95-102  

Kahnemann, D., Tverky, A. (1979). Prospect theory: An analysis of decision 
under risk, Econometrica, 47, 263-291     

Kaizoji, T., Kaizoji M. (2004). Power law for ensembles of stock prices, 
Physica A, 240-243 

Koutrouvelis, I.A. (1980) Journal of American Statistical Association 75, 918 

Lo, A.W. (1991). Long term memory in stock market prices, Econometrica,  
              59, 1279-1313 

Lux, T. (2006). Applications of Statistical Physics in Finance and Economics, 
fourthcoming in the Journal of Economic Dynamics and Control  

Mandelbrot, B. (1982). The Fractal Geometry of Nature, Freeman San 
Francisco 

Mantegna, R., Stanley H. Scaling Behaviour in the Dynamics of an economic 
index, Nature, 46-49 

Odean, T. (1998). Are investors reluctant to realize their losses?,                  
Journal of Finance, 53, 1775-98 

Peters, E. (1994). Fractal Market Analysis, Wiley & Sons 



79

Schroeder, M. (1991). Fractals, Chaos and Power Laws, Freeman 

Shleifer, A. (2000). Inefficient Markets: An Introduction to Behavioral 
Finance, Oxford University Press, New York 

                
Shleifer, A.,  Vishny, R. (1997). The limits of Arbitrage, Journal of Finance, 

52, 35-55  

Shiller, R. (2004). Irrational Exurbance, second Edition, Princeton University 
Press 

Sornette, D. (2003). Why Stock Markets Crash, Critical Events in Complex         
Financial Systems, Princeton University Press                         

Stanley, H.R. et. al. (1996) Scaling behavior in the growth of companies, 
Nature, 379, 804-806 

Stanley, H.R. et. al. (2003). A Theory of  Large Fluctuations in Stock Market 
Activity,  MIT Working Paper No. 03-30

Taleb, N.N., (2007). The Black Swan, Random House  

Thaler, R. (2002).  A survey of behavioural finance, in Advances in 
Behavioural Finance, Princeton University Press  

Weron, W. (2001). Levy-Stable Distributions Revisited: Tail Index  � > 2 does 
not exclude the Levy-Stable Regime, International Journal of 
Modern Physics, 12, 209-223  


