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Abstract

In this thesis, we study Gaussian processes generated by certain linear transfor-

mations of two Gaussian martingales. This class of transformations is motivated by

�nancial equilibrium models with heterogeneous information.

In Chapter 2 we derive the canonical decomposition of such processes, which are

constructed in an enlarged �ltration, as semimartingales in their own �ltration. The

resulting drift is described in terms of Volterra kernels. In particular we characterize

those processes which are Brownian motions in their own �ltration. In Chapter 3

we construct new orthogonal decompositions of Brownian �ltrations.

In Chapters 4 to 6 we are concerned with applications of our characterization

results in the context of mathematical models of insider trading. We analyze exten-

sions of the �nancial equilibriummodel of Kyle [42] and Back [7] where the Gaussian

martingale describing the insider information is speci�ed in various ways. In par-

ticular we discuss the structure of insider strategies which remain inconspicuous in

the sense that the resulting cumulative demand is again a Brownian motion.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Struktur von Gau�schen Prozessen, die

durch gewisse lineare Transformationen von zwei Gau�schen Martingalen erzeugt

werden. Die Klasse dieser Transformationen ist durch �nanzmathematische Gleich-

gewichtsmodelle mit heterogener Information motiviert.

In Kapital 2 bestimmen wir f�ur solche Prozesse, die zun�achst in einer erwei-

terten Filtrierung konstruiert werden, die kanonische Zerlegung als Semimartin-

gale in ihrer eigenen Filtrierung. Die resultierende Drift wird durch Volterra-Kerne

beschrieben. Insbesondere charakterisieren wir diejenigen Prozesse, die in ihrer ei-

genen Filtrierung eine Brownsche Bewegung bilden. In Kapital 3 konstruieren wir

neue orthogonale Zerlegungen der Brownschen Filtrierungen.

In den Kapitaln 4 bis 6 wenden wir unsere Resultate zur Charakterisierung

Brownscher Bewegungen im Kontext �nanzmathematischer Modelle an, in denen

es Marktteilnehmer mit zus�atzlicher Insider-Information gibt. Wir untersuchen Er-

weiterungen eines Gleichgewichtsmodells von Kyle [42] und Back [7], in denen die

Insider-Information in verschiedener Weise durch Gau�sche Martingale spezi�ziert

wird. Insbesondere kl�aren wir die Struktur von Insider-Strategien, die insofern

unau��allig bleiben, als sich die resultierende Gesamtnachfrage wie eine Brownsche

Bewegung verh�alt.
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CHAPTER 0

Introduction

In 1900, Brownian motion was introduced by Bachelier [6] as a model for price

uctuation in the stock market. Since then, the analysis of Brownian motion has

become a central topic in the mathematical theory of stochastic processes, quite

independent of the original �nancial motivation. In particular, Brownian motion

plays a fundamental role in the theory of continuous martingales, and it is the basis

for Itô's development of stochastic calculus.

Since the 60ies, there is a renewed interest in the �nancial interpretation of

Brownian motion. Di�usion models driven by Brownian motion have become the

canonical framework for analyzing the structure of �nancial derivatives. The Black-

Scholes formula for the price of an option is derived by computing the cost of a

perfect hedging strategy which duplicates the pay-o� of the option. The gain of

the strategy is computed as a stochastic integral of the underlying price process X.

The construction of a suitable hedging strategy involves the methods of Itô's calcu-

lus and their connection to partial di�erential equations. In such models, investors

only use the information provided by the canonical �ltration of the price process X.

Moreover, they are viewed as price takers, i.e., the underlying di�usion process of

stock prices is not inuenced by the investors' strategies. In recent years, there is a

growing literature which departs from these assumptions and introduces additional

market microstructure. For a \large investor", the price process may be modi�ed

by his investment strategy; see, e.g., Jarrow [34], [35], Frey [25], Cvitanic-Ma [19].

Moreover, the information available to the agents may be heterogeneous, i.e., some

\insider" may have access to a �ltration which is larger than the canonical �ltra-

tion (FX
t ); see, e.g., Karatzas-Pikovsky [39], Amendinger-Imkeller-Schweizer [5],

Pikovsvy [50], Grorud-Pontier [28] and Amendinger [3]. From a �nancial point of

view, it is of interest to introduce both e�ects simultaneously and to analyze their

interplay. This has been discussed in the work of Kyle [42] and Back [7]. Related

models appear, e.g., in Glosten-Milgrom [26], Kyle [41], [43], Easley-O'Hara [22],

Admati-Peiderer [1], [2], Grossman [29], Back [8], [9], O'Hara [49], Biais-Rochet

[13] and Cho-El Karoui [15], [16].

In this thesis, we follow the approach of Kyle [42] and Back [7]. Our purpose

is to investigate some mathematical problems which appear in this context. From

a mathematical point of view, the problems related to insider trading of a large

investor belong to the theory of enlargement of �ltrations and stochastic �ltering.

In Chapters 1 to 3 we are going to concentrate on the mathematical analysis of

1



2 0. INTRODUCTION

such problems. In Chapters 4 to 6 we will return to the �nancial interpretation

and discuss some application of the results in Chapters 1 to 3 in the context of a

�nancial equilibrium model.

In order to motivate the following discussion, we �rst consider a well-known

classical example. LetX = (Xt)0�t�1 be a Brownian motion with canonical �ltration

(FX
t ). In the enlarged �ltration generated by (FX

t ) and the �nal value X1, the

process X admits the representation

Xt = Wt +

Z t

0

X1 �Xu

1� u
du; (0.1)

where (Wt) is a Brownian motion with respect to the enlarged �ltration and is

independent of X1; see, e.g., Jeulin-Yor [36]. In our context, we emphasize an-

other aspect of this equation. Let W be a Brownian motion, and let X1 be an

N(0; 1)-distributed random variable independent of W . The process X de�ned as

the solution of linear stochastic di�erential equation (0.1) is a Brownian bridge tied

to the �nal value X1. Furthermore, X is again a Brownian motion with respect to

its own �ltration. Thus, the linear drift in (0.1) drives the Brownian motion W to

the new terminal value X1, using the information in the enlarged �ltration. But

it does so in such a way that the law of the process remains unchanged, i.e., the

resulting process X is again a Brownian motion. In this sense, the controlling drift

in (0.1) remains inconspicuous.

From this point of view, some natural questions arise. Replacing the normal

random variable X1 in (0.1) by some independent Gaussian martingale (St), can

we characterize those drifts in the enlarged �ltration (FW;S
t ), which are linear in

W and S, such that the original Brownian motion (Wt) is driven to the �nal value

S1? Can we construct such drifts which remain inconspicuous in the sense that the

resulting process (Xt) is again a Brownian motion? More generally, can we compute

the Doob-Meyer decomposition as a semimartingale in its own �ltration? Consider,

for example, the process X given by

Xt = Wt +

Z t

0

~Wu �Xu

1� u
du;

where ~W is a Wiener process independent of W . In Section 2.1 we will show that

this Gaussian process converges to ~W1 as t! 1, but that it is no longer a Brownian

motion with respect to its own �ltration. In fact, the canonical decomposition of X

in its own �ltration is given by

Xt = Bt +

Z t

0

Z u

0

(B + 1)(1� s)�A � (A+ 1)(1� s)�B

A(1� u)A � B(1� u)B
dXsdu; (0.2)

for 0 � t < 1, where A = (1 +
p
5)=2, B = (1 � p

5)=2, and (Bt) is a Brownian

motion.

In Chapter 2 we explore the general structure of this problem. This may be

viewed as a case study in stochastic �ltering. In order to prepare our analysis,
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we recall in Chapter 1 some basic facts concerning the representation of Gaussian

processes in terms of linear transformations of Brownian motion; this is based on

Kallianpur [38] and Hida-Hitsuda [32]. We review the structure of the Kalman-Bucy

�lter and of the Volterra representation of a Gaussian process X in the form

Xt = Bt +

Z t

0

Z s

0

l(s; u)dBuds; (0.3)

where B is a standard Brownian motion and l(s; u) is a Volterra kernel; see De�nition

1.3. In Theorem 1.2, we characterize those Volterra kernels which generate a new

Brownian motion; this is based on F�ollmer-Wu-Yor [24]. We also introduce the

canonical decomposition of a Gaussian process X of the form

Xt =

Z t

0

F (t; u)dBu;

where (Bt) is a Brownian motion such that the �ltrations (FX
t ) and (FB

t ) coincide.

In Proposition 1.2 we describe the relation between the canonical decomposition and

the Volterra representation.

In the second chapter we study Gaussian processes X de�ned as solutions of

linear stochastic equation driven by a Brownian motion W and an independent

Gaussian martingale S. Explicitly, X is given by

Xt = Wt +

Z t

0

�
f(s)S0 +

Z s

0

F (s; u)dSu +

Z s

0

H(s; u)dXu

�
ds; (0.4)

where f , F and H satisfy some integrability conditions. First we use some methods

of stochastic �ltering theory to obtain the canonical decomposition of such processes

as semimartingales in their own �ltration; see Theorem 2.1. Based on this result,

we characterize those transformations which generate a new Brownian motion. In

Theorem 2.2 we show that X is a Brownian motion if and only if the kernel H(s; u)

satis�es the relation

�H(t; s) +

Z s

0

H(t; u)H(s; u)du = f(t)f(s)var(S0) +

Z s

0

F (t; u)F (s; u)d(var(Su));

for almost all s � t. In particular, if S is a Gaussian martingale with E[S2
1 ] = 1 and

satis�esZ t

0

u

(var(Su)� u)2
du <1 and

Z t

0

1

var(Su)� u
du <1; (0.5)

for all t < 1, then the process X satisfying

Xt =Wt +

Z t

0

Su �Xu

var(Su)� u
du (0.6)

is a Brownian motion with respect to its own �ltration, and Xt converges to S1 as

t ! 1. On the other hand, consider the case where S is a Brownian motion ~W .
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Clearly, condition (0.5) does not hold in this case. In fact, it can be shown that

there is no Brownian motion of the form

Xt =Wt +

Z t

0

Yudu;

where Y is an (FW; ~W
t )-adapted drift, which converges to ~W1 as t! 1; see Proposition

2.3 below and Proposition 5.1 in F�ollmer-Wu-Yor [23].

In Chapter 3 we investigate another aspect of our basic example 0.1. In fact,

equation (0.1) induces an orthogonal decomposition of the Brownian �ltration in

the form

FX
t = FW

t � �(Xt);

see Jeulin-Yor [37]. Our purpose is to construct some related orthogonal decompo-

sition; this is based on Wu-Yor [56]. First we continue the discussion in Chapter 2

and characterize Brownian motions X of the form

Xt = Wt +

Z t

0

(f(u) ~Wu + g(u)Xu)du; (0.7)

where f and g satisfy weaker integrability conditions than in Chapter 2. Suppose

that the solution X of the equation (0.7) is a Brownian motion, and that one of

the functions f and g is not identical to 0. Then the �ltration generated by X

is strictly smaller than the �ltration generated by W and ~W . In addition, we

construct a second Brownian motion Y in the natural �ltration of W and ~W , which

is independent of the Brownian motion X. Using the process Y , we construct two

sequences (X(n)) and (Y (n)) of Brownian motions in (FW; ~W
t ) which are independent

of each other, and such that the corresponding natural �ltrations decrease. For each

n � 1, this induces an orthogonal decomposition of the �ltration generated by X

and by Y :

FX
t = FX(0)

t = �(X
(0)
t )� �(X

(1)
t )� � � � � �(X

(n)
t )� FX(n+1)

t ;

FY
t = FY (0)

t = �(Y
(0)
t )� �(Y

(1)
t )� � � � � �(Y

(n)
t )� FY (n+1)

t :

In Chapter 4 we introduce a simple �nancial market model with insider trading

of large investors; this is based on Kyle [42] and Back [7]. We recall the de�nition

of equilibrium in the sense of Back. Prices of the underlying stock are set by some

\market maker" as a function Pt = h(Xt; t) of the aggregate cumulative demand

Xt up to time t. There are \noise traders" whose cumulative demand is given by

a Brownian motion (Wt). Moreover, there is an \insider " who has in advance

additional information on the price P1 = h(S1; 1) at the �nal time 1, where S1 is

normal random variable with distribution N(0; 1) which is independent of (Wt). An

insider strategy speci�es a cumulative demand (It) based on the enlarged �ltration

generated by (Wt) and S1. Such a strategy will be called \inconspicuous" if the

resulting aggregate demand X = W + I is again a Brownian motion. Using Itô's
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calculus, it can be shown that the insider's expected gain is maximal as soon as

his demand drives the aggregate demand Xt to the �nal value S1 as t ! 1. An

equilibrium is de�ned by a pricing rule h(�; t) (0 � t < 1) and by an insider strategy

(It) such that I is inconspicuous and maximizes the expected gain. As shown in Back

[7], the mathematical discussion of the basic example in (0.1) proves the existence

of such an equilibrium, where the pricing rule h(�; �) is determined as the solution

h(x; t) =
1p

2�(1� t)

Z 1

�1
h(y; 1) exp

�
�(y � x)2

2(1� t)

�
dy (0.8)

of the heat equation �
1

2
� +

@

@t

�
h = 0;

with terminal value h(�; 1).
In Section 4.3 we study situation where the insider obtains increasing information

by observing a Gaussian martingale (St); the discussion in Back [7] corresponds to

the special case St � S1 when the �nal information is already available at time 0.

We restrict our analysis to insider strategies which are linear in S and X. Thus, we

can use our results in Chapter 2. In particular, the characterization of Brownian

motion in Section 2.3 to describe those strategies which are inconspicuous. Moreover,

we examine the existence of equilibrium in the case of increasing information. In

particular, we consider the case where the insider information is given by observing

a Gaussian martingale S which satis�es (0.5) for all t < 1. We show that there is

an equilibrium in this case. More precisely, the optimal insider strategy is given by

It =

Z t

0

Su �Xu

var(Su)� u
du; (0.9)

and the pricing rule is again given by (0.8). If the insider information S is a Brownian

motion ~W , then it can be shown that there is no equilibrium, i.e., the insider cannot

reach his maximal pro�t without being discovered.

In Chapter 5 we discuss some extension of the insider trading model presented in

Chapter 4 and a modi�ed notion of equilibrium. Again we require that the insider

strategy is inconspicuous, i.e., the insider uses strategies which turn the cumulative

order in the market into a Brownian motion. The pricing rule is assumed to min-

imize the combined expected pro�t of the informed and uninformed traders. We

give necessary and suÆcient conditions on the rational pricing rule and on optimal

inconspicuous insider strategies. We show that the rational pricing rule is of the

form (0.8), and that a strategy is optimal in a set of inconspicuous strategies if it

minimizes the L2-distance with the �nal signal S1 among the strategies in this set.

In addition, we study some modi�ed versions of insider information, in particular

the case of noisy information and of delayed information, and a model with two

insiders with di�erent degrees of information.
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In Chapter 6 we introduce information costs. The extra information the insider

gets is no longer cost-free. Is it pro�table to purchase the information? If yes, how

can he invest in an optimal way? Which kind of information should he buy? We

analyze some examples in di�erent settings.
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CHAPTER 1

Representations of Gaussian processes

In the present chapter we deal with representations of Gaussian processes in

terms of Brownian motion. In Section 1.1 we recall some basic facts about Gaussian

processes including the linear Kalman-Bucy �lter. In Section 1.2 two representations

of Gaussian processes are introduced and analyzed: the canonical representation in

terms of linear functionals of Brownian motion, and the Volterra representation as

the sum of a Brownian motion and an absolutely continuous process whose density is

given by linear functionals of Brownian motion. We discuss the relationship between

these two representations and then give some examples. In Section 1.3 we collect

some lemmas which will be useful in the sequel. In the last section of this chapter,

we shall characterize Volterra representations of a Gaussian process which generate

a Brownian motion.

1.1. Gaussian processes and the Kalman-Bucy �lter

Let (
;F ;P) be a probability space. First we recall the de�nitions and some

properties of Gaussian process and Brownian motion.

Definition 1.1. (1) A stochastic process X = (Xt)t�0 on (
;F ;P) is called
a Gaussian process, if any �nite linear combination

P
aiXti , ai 2 R, ti � 0, is a

Gaussian random variable.

(2) A process X is called a (standard, one-dimensional) Brownian motion with

respect to a �ltration (Ft)t�0, if it satis�es the following two conditions:

i) X is a continuous, (Ft)-adapted Gaussian process.

ii) For s � t the increment Xt �Xs is independent of Fs and normally distributed

with mean 0 and variance t� s.

Note that if X is a Brownian motion with respect to the �ltration (Ft), then it

is a Brownian motion relative to the �ltration generated by X. For simplicity, we

denote �-algebra generated by stochastic process X up to time t by

FX
t := �fXu; u � tg;

where the superscript denotes the process which generates this �-algebra (e.g., FX;Y

denotes the �ltration generated by the processes X and Y ).

There are several methods to check whether a process is a Brownian motion.

The following two will be often used in this thesis:

7



8 1. REPRESENTATIONS OF GAUSSIAN PROCESSES

(1) A process X is a Brownian motion with respect to its natural �ltration (FX
t ) if

and only if it is a continuous Gaussian process with covariance E[XsXt] = s^t.
(2) (L�evy's Theorem) A continuous (Ft)-adapted process X is a Brownian mo-

tion with respect to (Ft)t�0 if and only if it is a (local) martingale relative to

(Ft)t�0 and for all t � 0 the quadratic variation hXit is given by t.

The �rst statement is just a slight variation of the de�nition of Brownian motions;

as to the second, see, e.g., Karatzas-Shreve [40], Protter [51], Revuz-Yor [52].

A key tool of stochastic �ltering theory is the Kalman-Bucy �lter; see, for in-

stance, Davis [20], Liptser-Shiryaev [46], Kallianpur [38], Rogers-Williams [54]. In

this section we will describe its basic structure and we single out a special case which

is relevant for our discussion in the next chapter.

Suppose X, W and Z are three Gaussian processes. The process Z cannot be

directly observed and is called signal or system process. The process W is an (Ft)-

Brownian motion and is called the noise process. The process X, which depends

on Z and W , is observable, and therefore we call it observation process. The goal

of the Kalman-Bucy �lter is to �nd the conditional expectation of f(Zt) relative

to the �-algebra FX
t , for a real measurable function f . In other words, we try to

use the observation process to estimate a function of the signal process. Since this

conditional expectation is usually not linear in X, this is called a nonlinear �ltering

problem.

Let us begin with the following standard formulation of the Kalman-Bucy �lter:

Theorem 1.1 (Kallianpur [38]). Suppose them-dimensional signal process (Zt)t�0

and the n-dimensional observation process (Xt)t�0 are given by the stochastic di�er-

ential equations

dZt = [A0(t) + A1(t)Zt + A2(t)Xt]dt+ U(t)d �Wt (1.1)

and

dXt = [C0(t) + C1(t)Zt + C2(t)Xt]dt+ V (t)d �Wt; (1.2)

with initial values X0 = Z0 = 0, where ( �Wt)t�0 is an (n+m)-dimensional Brownian

motion, Ai, Ci, U and V (i = 0; 1; 2) are deterministic matrices of appropriate

dimensions, the entries in Ai and Ci (i = 0; 1; 2) are integrable and those in U and

V are square-integrable. Then

Ẑt := E[ZtjFX
t ];

the conditional expectation of Zt with respect to FX
t , satis�es

dẐt = [A0(t) + A1(t)Ẑt + A2(t)Xt]dt+ [P (t)CT
1 (t) + U(t)V T (t)][V (t)V T (t)]�

1
2dBt;

(1.3)
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with Ẑ0 = 0. Here (Bt)t�0 is an (FX
t )-martingale (called the innovation process),

de�ned by

Bt := Xt �
Z t

0

(C0(u) + C1(u)Ẑu + C2(u)Xu)du: (1.4)

Furthermore, the m�m matrix P (t),

P (t) = E
h�
Zt � E

�
Zt

��FX
t

��2���FX
t

i
=

�
E
h
Z

(i)
t Z

(j)
t

���FX
t

i
� E

h
Z

(i)
t

���FX
t

i
E
h
Z

(j)
t

���FX
t

i�
i;j
;

the conditional variance of Z = (Z
(1)
t ; � � � ; Z(m)

t ), satis�es the ordinary di�erential

equation

P 0(t) = A1(t)P (t) + P (t)AT
1 (t) + U(t)UT (t)

= [P (t)CT
1 (t) + U(t)V T (t)][V (t)V T (t)]�1[C1(t)P (t) + V (t)UT (t)]; (1.5)

with initial condition P (0) = 0.

Consider two independent Brownian motions W and ~W . In the sequel we will

consider linear stochastic di�erential equations

dXt = dWt + Ytdt; (1.6)

with initial value X0 = 0, where (Yt) is a linear functional in W , ~W and X. Explic-

itly, Yt is of the form

Yt =

Z t

0

F (t; u)dWu +

Z t

0

G(t; u)d ~Wu +

Z t

0

H(t; u)dXu;

where F , G and H satisfy some integrability conditions. The solution X is clearly

a Gaussian process.

Remark 1.1. If the drift term Y is not linear, then the resulting process X

given by (1.6) is in general not a Gaussian process. For example, the process (Wt +R t
0
j ~Wujdu) is no longer Gaussian. But this does not mean that all resulting processes

X of the form (1.6) with a nonlinear drift term are not Gaussian. In Section 1.3 we

shall give an example of a Gaussian process with nonlinear drift term.

The following is a simple application of Theorem 1.1.

Proposition 1.1. Let W , ~W be two independent 1-dimensional Wiener pro-

cesses and X satisfy

dXt = dWt + f(t)

Z t

0

g(u)d ~Wudt; (1.7)

with initial condition X0 = 0, where f and g satisfyZ t

0

Z u

0

f 2(u)g2(v)dvdu <1;

for all t < 1. Then
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(1) the innovation process B is an (FX
t )-Brownian motion.

(2) E

�Z t

0

g(u)d ~Wu

����FX
t

�
=

Z t

0

f(u)p(u)dBu;

(3) E
h
~Wt

���FX
t

i
=

Z t

0

f(u)q(u)dBu;

where p, q are the solutions of the following system of di�erential equations:8><
>:

q0(t) + f 2(t)p(t)q(t) = g(t);

p0(t) + f 2(t)p2(t) = g2(t);

(1.8)

with initial values p(0) = q(0) = 0.

Proof. Consider in Theorem 1.1 the particular case m = 2, n = 1, Ai � 0 for

i 2 f0; 1; 2g, C0 = C2 = 0,

C1(t) =
�
0 f(t)

�
;

U(t) =

 
1 0 0

g(t) 0 0

!
; V (t) =

�
0 1 0

�
;

and a 3-dimensional Brownian motion �Wt =
�
~Wt Wt Ŵt

�T
. It follows from (1.2)

and (1.4) that

Xt =Wt +

Z t

0

f(u)Z(2)
u du = Bt +

Z t

0

f(u)Ẑ(2)
u du;

where (Z
(i)
t ) and (Ẑ

(i)
t ) stand for the i-th component of (Zt) and (Ẑt), respectively.

This implies that the quadratic variation of the (FX
t )-martingale B equals t. By

L�evy's Theorem, B is a Brownian motion relative to the �ltration (FX
t ) and hence

the �rst assertion follows. Let

P (t) =

 
r(t) q(t)

q(t) p(t)

!

denote the conditional variance matrix. Due to (1.3) the conditional expectation Ẑt

is given by

Ẑt =

 
Ẑ

(1)
u

Ẑ
(2)
u

!
=

Z t

0

P (u)(C1(u))
TdBu =

0
BB@
Z t

0

f(u)q(u)dBuZ t

0

f(u)p(u)dBu

1
CCA :

By (1.5) we see that the functions p(t) and q(t) are determined by 
r0(t) q0(t)

q0(t) p0(t)

!
= U(t)UT (t)� P (t)CT

1 (t)C1(t)P (t)

=

 
1� f 2(t)q2(t) g(t)� f 2(t)p(t)q(t)

g(t)� f 2(t)p(t)q(t) g2(t)� f 2(t)p2(t)

!
;
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which results in the assertions 2 and 3.

Let us consider the following illustration of this proposition.

Example 1.1. Suppose the signal process (Zt)0�t�1 is given by

dZt = d ~Wt + aZtdt; (1.9)

and the observation process (Xt)0�t�1 satis�es

dXt = dWt + cZtdt; (1.10)

for two independent Brownian motions (Wt)0�t�1, ( ~Wt)0�t�1 and constants a, c.

Solving (1.9) and substituting it into (1.10) yield the representation

Xt =Wt + c

Z t

0

Z u

0

ea(u�v)d ~Wvdu:

Using Proposition 1.1, we can compute the conditional expectations

E[ ~WtjFX
t ] =

Z t

0

c[c2e2t + 2a(a+ )et � (a+ )2]

[c2e2t + (a+ )2]
dBu;

and

E

�Z t

0

e�aud ~Wu

����FX
t

�
=

Z t

0

ce�au(e2u � 1)

( � a)e2u +  + a
dBu;

where  :=
p
a2 + c2. The second statement has been shown in Rogers-Williams

[54] P.327-329.

In Chapter 2 we will discuss an extension of the linear Kalman-Bucy �lter and

some further applications.

1.2. Canonical representation and Volterra representation

Consider a centered Gaussian process X = (Xt)0�t�1 on a probability space

(
;F ;P). In this section we focus on some representations for the process X and

their relationship. Let us begin with the de�nition of the canonical representation.

Definition 1.2 (Hida-Hitsuda [32]). Suppose there exist a Brownian motion

B and a kernel given by a measurable function F (t; u) on [0; 1]� [0; 1] satisfyingZ t

0

F (t; u)du <1;

for all t, such that X admits the representation

Xt =

Z t

0

F (t; u)dBu: (1.11)

If the �ltrations generated by X and B are the same, i.e., FX
t = FB

t for all t, then

(1.11) is called the canonical representation of X, and F (t; u) is the canonical kernel.

Next we introduce the de�nition of a Volterra kernel and the Volterra represen-

tation.
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Definition 1.3. (i) A measurable function l(s; u) on (0; 1) � (0; 1) is called

Volterra kernel if l(s; u) = 0, for 0 < s < u < 1. If, furthermore, l is square-

integrable on (0; 1)� (0; 1), we shall call l(s; u) a square-integrable Volterra kernel.

(ii) Suppose that the process X can be represented in the form:

Xt = Bt +

Z t

0

Z s

0

l(s; u)dBuds; (1.12)

where B is a Brownian motion with respect to its own �ltration (FB
t ) and l(s; u) is

a Volterra kernel satisfyingZ 1

0

�Z s

0

l2(s; u)du

�1
2

ds <1: (1.13)

Then the representation (1.12) is called a Volterra representation of X. If l(s; u)

is a square-integrable Volterra kernel, then we say that (1.12) is a square-integrable

Volterra representation.

(iii) A Volterra kernel l(s; u) is said to be continuously di�erentiable if the kernel l̂

de�ned by

l̂(s; u) :=

8><
>:

l(s; u); s � u;

l(u; s); s < u;

is continuously di�erentiable for all 0 � u; s � 1.

Remark 1.2. Note that the condition (1.13) guarantees that the stochastic in-

tegral
R t
0

R s
0
l(s; u)dBuds in (1.12) is well-de�ned for all t � 1.

Remark 1.3. The Volterra representation (1.12) with a square-integrable Volterra

kernel speci�es the Doob-Meyer decomposition of X as a semimartingale with re-

spect to its own �ltration (FX
t ): the martingale part is given by the Brownian mo-

tion B, and the predictable process of bounded variation is given by the absolutely

continuous process (
R t
0

R s
0
l(s; u)dBuds).

Hitsuda [33] shows that the law of a Gaussian process (Xt)0�t�1 with E(Xt) = 0

is equivalent to Wiener measure if and only if X admits a Volterra representation

with a square-integrable Volterra kernel, i.e., we can construct a Wiener process B on

(
;F ;P) and a square-integrable Volterra kernel l such that (1.12) holds. Moreover,

this representation is unique in the sense that if X has another square-integrable

Volterra representation

Xt = ~Bt +

Z t

0

Z s

0

~l(s; u)d ~Buds;

then B = ~B and l(s; u) = ~l(s; u) for almost all s; u 2 (0; 1); see Hida-Hitsuda

[32]. But it l 62 L2((0; 1) � (0; 1)), this representation is no longer unique. In the

last section of this chapter we shall discuss di�erent Volterra representations of a

Brownian motion.
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Using the stochastic Fubini Theorem (see, e.g., Protter [51]) we can write the

representation (1.12) as

Xt =

Z t

0

�
1 +

Z t

u

l(v; u)dv

�
dBu; (1.14)

provided the Volterra kernel l(t; s) is square-integrable. The following theorem iden-

ti�es the representation (1.14) as the canonical representation (1.11) of X.

Proposition 1.2. Consider a processX which admits a square-integrable Volterra

representation (1:12). Then we have (FX
t ) = (FB

t ). In other words, a process which

has a square-integrable Volterra representation (1:12) admits a canonical represen-

tation (1:14).

Proof. Given a square-integrable Volterra kernel l, there is a unique square-

integrable Volterra kernel Rl which satis�es the equations8>>>><
>>>>:

l(t; s) +Rl(t; s) +

Z t

s

l(t; u)Rl(u; s)du = 0;

l(t; s) +Rl(t; s) +

Z t

s

Rl(t; u)l(u; s)du = 0;

(1.15)

for almost all s � t. We call Rl the resolvent kernel of l; see Chapter 4 in Yosida

[58] or Hida-Hitsuda [32]. As in Hida-Hitsuda [32] p.136-137, we can now use the

kernel Rl in order to reconstruct B in terms of X:

dXt +

Z t

0

Rl(t; u)dXudt

= dBt +

Z t

0

l(t; u)dBudt+

Z t

0

Rl(t; u)

�
dBu +

Z u

0

l(u; v)dBvdu

�
dt

= dBt +

Z t

0

�
l(t; u) +Rl(t; u) +

Z t

u

Rl(t; v)l(v; u)dv

�
dBu dt

= dBt:

Thus, we have

Xt = Bt +

Z t

0

Z s

0

l(s; u)dBu ds; (1.16)

and

Bt = Xt +

Z t

0

Z s

0

Rl(s; u)dXu ds: (1.17)

Therefore, the �ltration generated by X coincides with the one generated by B.

Hence (1.12) is the canonical decomposition of X in its own �ltration. Thus, we

know that the representation (1.14) is a canonical representation.
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Remark 1.4. Equation (1.17) in the proof shows in particular how the Brownian

motion (Bt) in (1.12) can be reconstructed from (Xt) by a linear transformation.

This method of reconstruction will often be used in the sequel. We can apply this

method not only in the case of a Brownian motion B. For example, the solution of

an integral equation

m(t) = f(t) +

Z t

0

l(t; u)f(u)du

is given by

f(t) = m(t) +

Z t

0

Rl(t; u)m(u)du:

Further properties and applications of Volterra kernels can be found in Gohberg-

Krein [27] and Corduneanu [18].

Remark 1.5. For a Volterra kernel l that satis�es (1.13) but is not square-

integrable, there exists also a corresponding resolvent kernel, but the latter is no

longer square-integrable. In some cases, the associated resolvent kernel even does

not satisfy (1.13). For instance, the resolvent kernel of l(t; s) = �1=t is given by

Rl(t; s) = 1=s for s � t, which does not satisfy (1.13). If l and Rl both satisfy (1.13)

we know that (1.16) and (1.17) hold and this results in (FX
t ) = (FB

t ). For example,

the resolvent kernel of a Volterra kernel l(t; s) = 1=t is given by Rl(t; s) = �s=t2,
which satis�es (1.13). From this result and the stochastic Fubini Theorem we can

represent the random variable

Xt = Bt +

Z t

0

Bu

u
du; (1.18)

= Bt +

Z t

0

log
t

u
dBu =

Z t

0

�
1 + log

t

u

�
dBu (1.19)

as

Bt = Xt �
Z t

0

Z u

0

v

u2
dXvdu:

Hence, (FX
t ) = (FB

t ). Consequently, (1.19) is a canonical representation of X, but

(1.18) is not a square-integrable Volterra representation, because the Volterra kernel

l(t; s) = 1=t is not in L2((0; 1) � (0; 1)). From this example we can also see that

a square-integrable Volterra representation is not guaranteed to exist even though

(FX
t ) and (FB

t ) might coincide.

1.3. Some auxiliary lemmas

Denote the space of all continuous functions on [0; 1] by C[0; 1] and let (Bt) denote
the canonical right continuous �ltration generated by the coordinate process. We

begin by recalling the de�nition of \nonanticipative functionals" in Kallianpur [38].
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Definition 1.4. A B1 � B[0; 1]-measurable functional  : C[0; 1]� [0; 1] �! R

is called nonanticipative if the process de�ned by ((�; t))0�t�1 is adapted to the

�ltration (Bt).

The next lemma shows how a square-integrable Volterra representation can be

constructed for a particular class of Gaussian processes.

Lemma 1.1 (Theorem 9.4.1 of Kallianpur [38]). Let  be a nonanticipative func-

tional, W = (Wt)0�t�1 a Wiener process and � = (�t)0�t�1 a Gaussian process

satisfying

�t = Wt +

Z t

0

(�; s)ds; (1.20)

with

P

�
! 2 
 :

Z t

0

2(�(!); s)ds <1
�
= 1; (1.21)

for all t < 1. Then � can be expressed in terms of W by the formula

�t = Wt +

Z t

0

Z s

0

G(s; u)dWuds;

for all t < 1, P-a.s., where G is a square-integrable Volterra kernel. In other words,

� possesses a square-integrable Volterra representation.

From this Lemma and the discussion of Hitsuda [33] in Section 1.2 above, we see

that the law of centered Gaussian process � of Lemma 1.1 is equivalent to Wiener

measure.

Lemma 1.2 (Lemma 2.3 of F�ollmer-Wu-Yor [23]). Suppose the process (Xt)t�0

satis�es

Xt =Wt +

Z t

0

Yudu;

with an (Ft)t�0-Brownian motion (Wt)t�0 and an (Ft)-adapted process (Yt)t�0 sat-

isfying
R t
0
EjYujdu <1 for all t.

(i) The Doob-Meyer decomposition of X as a semimartingale in its natural �ltration

(FX
t ) is given by

Xt = Bt +

Z t

0

E[YujFX
u ]du; (1.22)

where the process B de�ned by (1.22) is an (FX
t )-Brownian motion, which is often

called the innovation process of X. In particular, (Xt)t�0 is a Brownian motion if

and only if

E[YujFX
u ] = 0; dP � du� a:s::
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(ii) Furthermore, if the function s 7�! Ys is L
1-continuous on (0;1) and (Xt)t�0 is

a Gaussian process, then (Xt)t�0 is a Brownian motion if and only if

E(XsYt) = 0; (1.23)

for all 0 < s � t.

The previous lemma provides the construction of the Doob-Meyer decomposition

and an alternative characterization of Brownian motion which will be useful in the

rest of the thesis. For example, by combining this Lemma and Proposition 1.1 we

have the following corollary and example.

Corollary 1.1. Suppose the process X is given by (1.7). Then the canonical

decomposition of X is of the form

Xt = Bt +

Z t

0

f(u)

Z u

0

f(v)p(v)dBvdu; (1.24)

where p(t) is the solution of (1.8). Moreover, (1.24) is a square-integrable Volterra

representation of X.

Example 1.2. By the above corollary we get that the canonical decomposition

of X mentioned in Example 1.1 is given by

Xt = Bt + c2
Z t

0

Z s

0

ea(s�u)(e2u � 1)

( � a)e2u +  + a
dBuds;

where (Bt)0�t�1 is an (FX
t )-Brownian motion.

With the help of Lemma 1.2 we can also construct a Gaussian process with

nonlinear drift term:

Example 1.3. Consider a Wiener process (Xt)0�t�1 satisfying

dXt = dWt +
X1 �Xt

1� t
dt; (1.25)

where (Wt)0�t�1 is a Brownian motion. Clearly, the process X is a Gaussian

semimartingale with respect to the �ltration generated by the process (Wt) and

the random variable X1, and it is also one with respect to the enlarged �ltration
�Ft := �fXt; sgn(X1)g. By Lemma 1.2 the canonical decomposition ofX with respect

to this �-algebra is of the form

Xt = ~Wt +

Z t

0

E[X1j �Fu]�Xu

1� u
du

where ( ~Wt)0�t�1 is an ( �Ft)-Brownian motion. Therefore, we have to calculate the

explicit form of the conditional expectation of X1 with respect to ( �Ft):

E[X1j �Ft] = E[X1jXt; sgn(X1)] = E[X1jXt; X1 > 0]

= Xt + E[X1 �XtjXt; X1 �Xt > �Xt]:
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Let Y be an N(0; 1)-distributed random variable. We can rewrite the second term

in the above equation as

p
1� tE[Y jY > � Xtp

1� t
]:

Moreover,

E[Y jY > a] =

R1
a
y�(y)dy

P [Y > a]
=

�(a)

2(1� �(a))
;

with normal distribution � and its density function �. Taking a = � 1p
1�tXt, we get

E[X1jXt; sgn(X1)] = Xt +

p
1� t

2

�( 1p
1�tXt)

�( 1p
1�tXt)

:

Therefore, we can write (1.25) as

dXt = d ~Wt +
1

2
p
1� t

�( 1p
1�tXt)

�( 1p
1�tXt)

dt:

Thus the drift term of the Gaussian process X is clearly non-linear.

1.4. Volterra representations of Brownian motion

Consider a stochastic process (Xt)t�0 on a probability space (
;F ;P) which

admits a Volterra representation

Xt = Bt +

Z t

0

Z s

0

l(s; u)dBuds: (1.26)

As already mentioned in Section 1.2, Hitsuda [33] shows that the law ofX is identical

to that of a Brownian motion under some equivalent measure ~P � P if and only if X

admits a square-integrable Volterra representation. Hence, from the uniqueness of

the Doob-Meyer decomposition we know that if X is a Brownian motion admitting

a Volterra representation (1.26), then the associated Volterra kernel l is not square-

integrable unless l � 0. For the case l 6� 0, we can conclude that (FX
t ) $ (FB

t ),

i.e., the �ltration generated by X is strictly smaller than the one generated by

B. Otherwise, the representation (1.26) would be the Doob-Meyer decomposition

of X as a semimartingale in its own �ltration. Uniqueness of the Doob-Meyer

decomposition would imply l � 0, which is obviously a contradiction. But is it

possible to �nd a Volterra representation for Brownian motion, where the kernel l

is not square-integrable? If so, how does the associated Volterra kernel look like?

Theorem 1.2. The process (Xt)t�0 satisfying (1.26) is a Brownian motion if

and only if the Volterra kernel �l is self-reproducing, i.e.,

l(t; s) +

Z s

0

l(t; v)l(s; v)dv = 0; (1.27)

for all t and for almost all s � t. Furthermore, if the process (Xt)t�0 is a Brownian

motion, then fXs; s � tg is independent of
R t
0
l(t; u)dBu for all t > 0.
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Proof. Thanks to the second assertion in Lemma 1.2 we see that (Xt) is a

Brownian motion if and only if

E

�
Xs

Z t

0

l(t; u)dBu

�
= 0;

for all s � t. It follows from (1.26) that

E

�
Xs

Z t

0

l(t; u)dBu

�
=

Z s

0

l(t; u)du+

Z s

0

Z u

0

l(t; v)l(u; v)dvdu:

Taking derivatives with respect to s, we get the �rst assertion. Furthermore. since

both X and
R t
0
l(t; u)dBu are jointly Gaussian, the second assertion follows.

Remark 1.6. The terminology \self-reproducing" is used in Neveu [48] in a

di�erent context.

Remark 1.7. If the Volterra kernel l(t; s) is continous, then it satis�es the fol-

lowing properties:

(i) l(t; t) � 0.

(ii) jl(t; s)j �
p
l(t; t)l(s; s).

(iii) If l(t; s) 6� 0, then l(t; t) =2 L1(0; 1), and this implies l =2 L2((0; 1)�(0; 1)). This
is consistent with the above discussion. In particular we see that a non-zero

self-reproducing Volterra kernel l is not square-integrable.

Proof. Since l is continuous, we get that l satis�es (1.27) for all t and for all

s � t. Taking s = t, we have

l(t; t) = �
Z t

0

l2(t; u)du; (1.28)

which leads to assertion (i). Then it follows from H�older's inequality that

jl(t; s)j �
�Z s

0

l2(t; v)dv

� 1
2
�Z s

0

l2(s; v)dv

�1
2

�
�Z t

0

l2(t; v)dv

�1
2
�Z s

0

l2(s; v)dv

�1
2

=
p
l(t; t)l(s; s):

This gives (ii). As for (iii), assume l 6� 0. Since l is continuous, we see that l(t; t) 6= 0

for some t 2 [0; 1] due to (1.28). Let us write

fs : l(s; s) 6= 0g =
[
i

(ai; bi);

with disjoint intervals (ai; bi). Substituting (ii) in (1.27), we get

jl(t; s)j � �
p
l(t; t)l(s; s)

Z s

0

l(v; v)dv:
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This implies

�l(s; s) � l(s; s)

Z s

0

l(v; v)dv;

for all s. Since l(s; s) = 0 for s � a := infi ai, we obtainZ s

a

l(v; v)dv =

Z s

0

l(v; v)dv � �1 (1.29)

for all s 2 Si[ai; bi]. Either we have a = ai for some i or a is an accumulation point

of (ai). In both cases, (1.29) implies l(t; t) =2 L1(0; 1). In particular, we haveZ t

0

Z v

0

l2(v; u)dvdu =

Z t

0

l(v; v)dv = �1:

In order to illustrate Theorem 1.2 more explicitly, let us look at some special

cases:

Corollary 1.2. Let X be a process given by

Xt = Bt �
Z t

0

a(u)

Z u

0

b(v)dBvdu;

with X0 = 0, where a, b are deterministic functions with a 6� 0,
R t
0
b2(u)du 6= 0 and

Z t

0

ja(u)j
�Z u

0

b2(v)dv

� 1
2

du <1;

for all t > 0. Then X is a Brownian motion if and only if

a(t) = � b(t)R t
0
b2(v)dv

;

i.e., the process X is of the form

Xt = Bt �
Z t

0

b(u)R u
0
b2(v)dv

Z u

0

b(r)dBrdu: (1.30)

Furthermore, if X is a Brownian motion, then the �-algebra FX
t is orthogonal to

the stochastic integral
R t
0
b(u)dBu for all t.

Proof. Substituting the Volterra kernel l(t; s) = a(t)b(s) in (1.27) we see that

X is a Brownian motion if and only if

b(s) + a(s)

Z s

0

b2(u)du = 0;

from which we derive (1.30). For s � t, we have

E

�
Xs

Z t

0

b(u)dBu

�
=

Z s

0

b(u)du�
Z s

0

b(u)R u
0
b2(v)dv

Z u

0

b2(r)drdu = 0:

This completes the proof.
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If b is as in Corollary 1.2, then it is easy to check that the kernel

l(s; u) := � b(s)b(u)Z s

0

b2(v)dv

satis�es all properties stated in Remark 1.7. In particular, if we take b(t) = tk for

k > �1
2
, we see that the process

Xt = Bt � (2k + 1)

Z t

0

Z u

0

u�k�1vkdBvdu

is a Brownian motion. This has been discussed in L�evy [44], [45], Chiu [14] and

Hibino-Hitsuda-Muraoka [31]. Especially, for the case k = 0, i.e., the Brownian

motion

Xt = Bt �
Z t

0

Bu

u
du;

has been studied in a number of papers, e.g., Deheuvels [21], Jeulin-Yor [37], Yor

[57]. And we also know that the �-algebra FX
t is strictly smaller than FB

t for all

t > 0. In fact, we have the decomposition

FB
t = FX

t � �(Bt)

for all t; see Jeulin-Yor [37] or Chapter 1 of Yor [57]. In Chapter 3 below we shall

also discuss some generalizations of this process and the corresponding orthogonal

decompositions of the Brownian �ltration.



CHAPTER 2

Brownian motions generated by linear stochastic equations

LetW be a Wiener process, and let S be a continuous square-integrable Gaussian

martingale which is independent of W . Consider a Gaussian process X satisfying

the stochastic di�erential equation

dXt = dWt + Yt dt; (2.1)

where the drift term Y is linear in S and X. Explicitly, Yt is of the form

Yt = f(t)S0 +

Z t

0

F (t; u)dSu +

Z t

0

H(t; u)dXu; (2.2)

where f , F and H are deterministic functions satisfying some suitable integrability

conditions. Our aim is to construct the Doob-Meyer decomposition of such processes

X as semimartingales in their own �ltration. It will also be called the canonical de-

composition of X. In particular, we characterize the drifts Y such that the resulting

process X is a Brownian motion in its own �ltration. In addition, we investigate the

problem of choosing Y in such a way that Xt converges to the �nal value S1 as t! 1.

This analysis is motivated by an equilibrium problem in mathematical �nance re-

lated the role of insider trading. The �nancial interpretation will be discussed in

Chapter 4 and Chapter 5.

We begin in Section 2.1 with the discussion of a special case where S is also a

Wiener process. In Section 2.2 we shall derive the canonical decomposition of Gauss-

ian processes with linear drift term. Using this result, we are able to characterize

the processes satisfying (2.1) with drift term (2.2) which are Brownian motions in

their own �ltrations; see Section 2.3. Some examples of such Brownian motions will

be given in the last section of this chapter.

2.1. An example of canonical decomposition

Let (Wt)0�t�1 be a standard Brownian motion with respect to its canonical �ltra-

tion (FW
t )0�t�1. Now let ( ~Wt)0�t�1 be another standard Brownian motion indepen-

dent of (Wt)0�t�1. Denote the �ltration generated by these two Brownian motions

by (FW; ~W
t )0�t�1.

We know that the solution ( ~Xt)0�t�1 of the stochastic di�erential equation

d ~Xt = dWt +
~W1 � ~Xt

1� t
dt; (2.3)

21
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with initial value ~X0 = 0, is a standard Brownian motion with respect to (F ~X
t ) which

converges to the �nal value ~W1 (cf., for example, Jeulin-Yor [36]). Now we look at

the process (Xt)0�t�1 starting in X0 = 0 which is de�ned by a similar stochastic

di�erential equation

dXt = dWt +
~Wt �Xt

1� t
dt: (2.4)

Clearly, for any t 2 [0; 1], Xt is normally distributed, and (Xt) has quadratic varia-

tion hXit = t. The following lemma shows even that Xt approaches ~W1 as t ! 1.

However, we will see that (Xt)0�t�1 is no longer a Brownian motion.

Lemma 2.1. Xt ! ~W1 as t! 1:

Proof. The explicit solution of (2.4) is given by

Xt = (1� t)

Z t

0

~Ws

(1� s)2
ds+ (1� t)

Z t

0

1

(1� s)
dWs: (2.5)

The �rst term approaches ~W1 and the second goes to 0 as t ! 1, and this implies

the result. Alternatively, we could note that the process 2�
1
2 (X � ~W ) satis�es the

equation of a Brownian bridge tied down to the �nal value 0.

Lemma 2.2. For 0 � s � t < 1, we have

E[Xt
~Wt] = t+ (1� t) log(1� t); (2.6)

and the covariance function of X is given by

E[XsXt] = s+ 2s(1� t) + (2� s� t) log(1� s): (2.7)

Proof. Applying the integration by parts formula to the �rst integral in (2.5),

the solution of (2.4) is given by

Xt = (1� t)

Z t

0

dWs � d ~Ws

1� s
+ ~Wt:

Since (Wt) and ( ~Wt) are independent, we establish

E[Xt
~Wt] = t + (1� t)E

"Z t

0

~Wt(dWs � d ~Ws)

1� s

#

= t + (1� t) log(1� t);

and

E[XsXt] = E[ ~Ws
~Wt] + (1� t)(1� s)E

2
4
 Z s

0

dWu � d ~Wu

1� u

!2
3
5

+ (1� s)E

"
~Wt

Z s

0

dWu � d ~Wu

1� u

#
+ (1� t)E

"
~Ws

Z t

0

dWu � d ~Wu

1� u

#

= s+ 2s(1� t) + (2� s� t) log(1� s):
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This Lemma shows that the process (Xt)0�t�1 is not a Brownian motion, since

its covariance function di�ers from s ^ t. But from (2.4) we see that it is a semi-

martingale with respect to the �ltration (FW; ~W
t )0�t�1, and therefore it is obviously

a semimartingale relative to its natural �ltration. A natural question arises: what

is the explicit form of its canonical decomposition? This is the purpose we want to

carry out in the present section.

A simple application of Lemma 1.2 shows that

Corollary 2.1. Let the process (Xt)0�t�1 satisfy (2.4). Then the process B,

de�ned as

Bt := Xt �
Z t

0

E[ ~WujFX
u ]�Xu

1� u
du; (2.8)

is a Brownian motion relative to (FX
t )0�t�1.

Proof. Set

Yu =
~Wu �Xu

1� u
;

then from the �rst assertion in Lemma 1.2, we obtain the required result.

Recalling Lemma 1.2 we know that the process B given by (2.8) is the innovation

process of X. Therefore, if we desire to get the canonical decomposition of Xt, we

only have to compute the conditional expectation of ~Wt relative to the �-algebra

FX
t . If this is substituted in Corollary 2.1, then we get the desired result.

Lemma 2.3. Set A := 1
2
(1 +

p
5) and B := 1

2
(1�

p
5). Then for 0 � t < 1,

E[ ~WtjFX
t ] =

Z t

0

(B + 1)(1� s)�A � (A+ 1)(1� s)�B

A(1� t)�B � B(1� t)�A
dXs +Xt: (2.9)

Proof. Due to (2.8), we may choose a nonanticipative functional  such that

Xt = Bt +

Z t

0

(X; s)ds:

Using Lemma 1.1, X can be represented by

Xt = Bt +

Z t

0

Z s

0

G(s; u)dBuds;

where G is a square-integrable Volterra kernel. Let RG be the square-integrable

resolvent kernel ofG, then applying a similar argument as in the proof of Proposition

1.2, we deduce

Bt = Xt +

Z t

0

Z s

0

RG(s; u)dXuds: (2.10)
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Comparing (2.8) and (2.10), we may therefore assume that the conditional expec-

tation of ~Wt with respect to the �-algebra FX
t is of the form

E[ ~WtjFX
t ] =

Z t

0

a(t; u)dXu;

with a continuously di�erentiable square-integrable Volterra kernel a(t; u). Applying

the projection property of the conditional expectation

E[Xs( ~Wt � E[ ~WtjFX
t ])] = 0;

for all 0 � s � t < 1, as well as the martingale property we obtain

E(Xs
~Ws)� a(t; t)E(XsXt) = �

Z t

0

a2(t; u)E(XsXu)du:

Using (2.6), (2.7) and computing explicitly the left hand side (LHS) and the right

hand side (RHS) in this equation, we get

LHS = s+ (1� s) log(1� s)� a(t; t)(s+ 2s(1� t) + (2� s� t) log(1� s)):

RHS = �
Z s

0

a2(t; u)(u+ 2u(1� s) + (2� s� u) log(1� u))du

�
Z t

s

a2(t; u)(s+ 2s(1� u) + (2� s� u) log(1� s))du:

Taking the second derivatives with respect to s on both sides implies

1

1� s
� a(t; t)(t� s)

(1� s)2
= a2(t; s)�

Z t

s

a2(t; u)(u� s)

(1� s)2
du:

Multiplication of both sides with (1� s)2 leads to

1� s� a(t; t)(t� s) = a2(t; s)(1� s)2 �
Z t

s

a2(t; u)(u� s)du;

and this implies

1� s = a2(t; s)(1� s)2 +

Z t

s

a(t; u)du:

Taking further derivatives with respect to s on both sides we get

(1� s)2a22(t; s)� 2(1� s)a2(t; s)� a(t; s) + 1 = 0:

The solution of this di�erential equation is given by

a(t; s) = c1(t)(1� s)�A + c2(t)(1� s)�B + 1:

Substituting this equation in RHS and comparing the coeÆcients of s, log(1 � s)

and s log(1� s) in LHS and RHS, we derive the desired result.

Therefore, combining Corollary 2.1 and Lemma 2.3 allows us to conclude the

following proposition.
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Proposition 2.1. The canonical decomposition of the process X in (2.4) is

given by

Xt = Bt +

Z t

0

Z u

0

(B + 1)(1� s)�A � (A+ 1)(1� s)�B

A(1� u)A �B(1� u)B
dXs du; (2.11)

for 0 � t < 1.

Remark 2.1. As an alternative, we can use the Kalman-Bucy �lter to get the

same result. We may set

�t :=Wt +

Z t

0

~Wu

1� u
du:

Applying Proposition 1.1 with f = 1=(1� t) and g � 1 and Lemma 1.2 we can get

the canonical decomposition of �

�t = Bt +

Z t

0

Z u

0

1

2(1� u)

 
1�

p
5(A(1� s)A +B(1� s)B)

A(1� s)A � B(1� s)B

!
dBsdu:

Substituting it into

Xt = �t �
Z t

0

Xu

1� u
du

derives the canonical decomposition of X

Xt = Bt +

Z t

0

Z u

0

1

2(1� u)

 
1�

p
5(A(1� s)A +B(1� s)B)

A(1� s)A � B(1� s)B

!
dBsdu�

Z t

0

Xu

1� u
du:

Applying Itô's product rule and the stochastic Fubini Theorem we obtain

Xt = (1� t)

�Z t

0

dBu

1� u

+

Z t

0

Z u

0

1

2(1� u)2

 
1�

p
5(A(1� s)A +B(1� s)B)

A(1� s)A � B(1� s)B

!
dBs du

#

= Bt �
1� t

2

Z t

0

Z u

0

1

(1� u)2

 
1 +

p
5(A(1� s)A +B(1� s)B)

A(1� s)A �B(1� s)B

!
dBs du

= Bt �
Z t

0

Z u

0

(A+ 1)(1� s)A�1 � (B + 1)(1� s)B�1

A(1� s)A �B(1� s)B
dBs du (2.12)

Comparing these two equations (2.11) and (2.12), we see they are of the same form

as (1.16) and (1.17) in the proof of Proposition 1.2, and that their kernels ful�ll the

relation (1.15). In other words, they are square-integrable resolvent kernels to each

other, and (2.12) is the square-integrable Volterra representation of X.
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2.2. Linear stochastic equations and canonical decomposition

LetW be a Wiener process, and let S be a continuous square-integrable centered

Gaussian martingale which is independent of W . For simplicity, we denote the

variance of St by V (t) and assume V (1) = E[S2
1 ] = 1. Furthermore, we assume

that V (t) is di�erentiable. Suppose the process X satis�es the stochastic functional

di�erential equation with linear drift

dXt = dWt +

�
f(t)S0 +

Z t

0

F (t; u)dSu +

Z t

0

H(t; u)dXu

�
dt; (2.13)

where f 2 L2(0; 1) \ C(0; 1) and F (t; u)
p
V 0(u) and H(t; u) are square-integrable

Volterra kernels on (0; 1)� (0; 1) (Since V (s) is non-decreasing in s, V 0(s) � 0, this

implies
p
V 0(s) is well-de�ned.). We assume X0 = 0. The following theorem will

give the canonical decomposition of X, i.e., the Doob-Meyer decomposition of X as

a semimartingale in its own �ltration.

Theorem 2.1. Suppose X satis�es (2.13). Then its canonical decomposition is

given by

Xt = Bt +

Z t

0

�Z s

0

G(s; u)dBu +

Z s

0

H(s; u)dXu

�
ds; (2.14)

where B is a Brownian motion. Here G is a square-integrable Volterra kernel deter-

mined by the integral equation

G(t; s) +

Z s

0

G(t; u)G(s; u)du = f(t)f(s)V (0) +

Z s

0

F (t; u)F (s; u)V 0(u)du: (2.15)

Moreover, we have (FX
t ) = (FB

t ), i.e., the �ltrations generated by X and B are the

same.

Proof. 1) De�ne a process � by

�t :=Wt +

Z t

0

�
f(u)S0 +

Z u

0

F (u; v)dSv

�
du: (2.16)

Due to Lemma 1.2 we know that there exists a Brownian motion B such that

�t = Bt +

Z t

0

E

�
f(u)S0 +

Z u

0

F (u; v)dSv

����F �
u

�
du:

Since E[f(u)S0+
R u
0
F (u; v)dSvjF �

u](!) can be chosen to be both jointly measurable

in u and ! and (F �
u)-adapted, we can write

E

�
f(u)S0 +

Z u

0

F (u; v)dSv

����F �
u

�
= (�; u)
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with a nonanticipative functional . Furthermore, it follows from

E

�Z t

0

2(�; u)du

�
= E

"Z t

0

�
E

�
f(u)S0 +

Z u

0

F (u; v)dSv

����F �
u

��2

du

#

� E

"Z t

0

�
f(u)S0 +

Z u

0

F (u; v)dSv

�2

du

#

=

Z t

0

�
f 2(u) +

Z u

0

F 2(u; v)dv

�
du <1

that Z t

0

2(�(!); s)ds <1; P � a.s.;

for all t < 1. Applying Lemma 1.1 we know that � can be represented as

�t = Bt +

Z t

0

Z s

0

G(s; u)dBuds; P � a.s.; (2.17)

which is a square-integrable Volterra representation with respect to the Brownian

motion B. As for the relation between F and G, we can look at the equations (2.16)

and (2.17). For s � t, the covariance function of � in (2.16) is given by

E[�s�t] = E[WsWt] + E

��Z s

0

�
f(u)S0 +

Z u

0

F (u; v)dSv

�
du

�
�Z t

0

�
f(p)S0 +

Z p

0

F (p; q)dSq

�
dp

��

= s+

�Z s

0

f(u)du

��Z t

0

f(p)dp

�
V (0)

+2

Z s

0

Z u

0

Z v

0

F (u; r)F (v; r)V 0(r)drdvdu

+

Z t

s

Z s

0

Z v

0

F (u; r)F (v; r)V 0(r)drdvdu: (2.18)

And the covariance function of � satisfying (2.17) is given by

E[�s�t] = s+

Z s

0

Z u

0

G(u; v)dvdu+

Z t

s

Z s

0

G(u; v)dvdu

+2

Z s

0

Z u

0

Z v

0

G(u; r)G(v; r)drdvdu

+

Z t

s

Z s

0

Z v

0

G(u; r)G(v; r)drdvdu: (2.19)

The right-hand sides of these two equations should coincide. Di�erentiating �rst

with respect to t, and then with respect to s yield (2.15). From (2.17) and Propo-

sition 1.2, we know that the �ltrations generated by � and by B are coincide.
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2) From (2.13) and (2.16), we see that

dXt = d�t +

Z t

0

H(t; u)dXudt:

Using the same argument as in the proof of Proposition 1.2, we conclude that (FX
t ) =

(F �
t ). This implies (FX

t ) = (FB
t ) due to 1). The canonical decomposition of X is

therefore given by (2.14).

Remark 2.2. In the notation of Kallianpur [38] p.235, equation (2.15) can be

viewed as the factorization S = (I +G)(I +G?) of the integral operator S de�ned

by I + FF ? + ~F ~F ?, where F , ~F , G are integral operators with square-integrable

Volterra kernels f(t)
p
V (0), F (t; s)

p
V 0(s) and G(t; s), respectively. More precisely,

for all g; h 2 L2(0; 1), we have

h(I + FF ? + ~F ~F ?)g; hi = h(I +G)(I +G?)g; hi:
In order to see this, let g(u) = I(0;s)(u) and h(u) = I(0;t)(u) with 0 � s � t � 1.

Using the properties of Volterra kernels, we have

h(I + FF ? + ~F ~F ?)g; hi = hg; hi+ hF ?g; F ?hi+ h ~F ?g; ~F ?hi

=

Z 1

0

g(u)h(u)du+

Z 1

0

�Z 1

0

f(v)g(v)
p
V (0)dv

��Z 1

0

f(r)h(r)
p
V (0)dr

�
du

+

Z 1

0

�Z 1

0

F (v; u)g(v)
p
V 0(u)dv

��Z 1

0

F (r; u)h(r)
p
V 0(u)dr

�
du

= s+

�Z t

0

f(v)dv

��Z s

0

f(r)dr

�
V (0)

+

Z s

0

�Z s

u

F (v; u)dv

��Z t

u

F (r; u)dr

�
V 0(u)du;

which equals the right-hand side of (2.18). On the other hand,

h(I +G)(I +G?)g; hi = h(I +G?)g; (I +G?)hi

=

Z 1

0

�
g(u) +

Z 1

0

G(v; u)g(v)dv)(h(u) +

Z 1

0

G(v; u)h(v)dv

�
du

=

Z s

0

�
1 +

Z s

u

G(v; u)dv

��
1 +

Z t

u

G(v; u)dv

�
du;

which is exactly the right-hand side of (2.19).

Remark 2.3. (i) Comparing (2.13), (2.14) and Lemma 1.2, we see that

E

�
f(t)S0 +

Z t

0

F (t; u)dSu

����FX
t

�
=

Z t

0

G(t; u)dBu; (2.20)

for f 2 L1(0; 1) \ C(0; 1) and Volterra kernel F satisfyingZ 1

0

Z u

0

F 2(u; v)V 0(v)dvdu <1:
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(ii) We have obtained the conditional expectation in (2.20) under the assumption

that F (t; u)
p
V 0(u) is a square-integrable Volterra kernel. In fact, it is enough to

assume that F satis�esZ 1

0

�Z u

0

F 2(u; v)V 0(v)dv

� 1
2

du <1:

It is not diÆcult to show that for all s � t,

E

�
Xs

�
f(t)S0 +

Z t

0

F (t; u)dSu �
Z t

0

G(t; u)dBu

��
= 0;

and this result leads to the conclusion.

The representation (2.14) provides a canonical representation, but on the right-

hand side there is still a term of X. Can we represent X through B alone? In the

following we are going to give another representation for the process X satisfying

(2.14).

Proposition 2.2. The unique strong solution of (2.14) is given by

Xt = Bt +

Z t

0

Z s

0

�
G(s; u) +R�H(s; u) +

Z s

u

R�H(s; v)G(v; u)dv

�
dBuds; (2.21)

where R�H is the resolvent kernel of �H, i.e., R�H satis�es the equations8>>>><
>>>>:

R�H(t; s) = H(t; s) +

Z t

s

R�H(t; u)H(u; s)du;

R�H(t; s) = H(t; s) +

Z t

s

H(t; u)R�H(u; s)du:

Proof. De�ne

�t := Bt +

Z t

0

Z s

0

G(s; u)dBuds = Xt �
Z t

0

Z s

0

H(s; u)dXuds: (2.22)

Therefore similarly to the proof of Proposition 1.2 we get

Xt = �t +

Z t

0

Z s

0

R�H(s; u)d�uds:

Substituting the �rst representation of (2.22) into the above equation, we get (2.21).

In order to show the uniqueness of the solution, we assume there is another solution

Y of (2.14). Then from (2.22) we know that

�t = Yt �
Z t

0

Z s

0

H(s; u)dYuds;

and this implies

Yt = �t +

Z t

0

Z s

0

R�H(s; u)d�uds = Xt; P � a.s.:
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Since F (t; u)
p
V 0(u) and H(t; u) are square-integrable and since (FX

t ) = (FB
t )

due to Theorem 2.1, we can conclude that (2.21) is a square-integrable Volterra

representation of X.

Let us look at the special case where S is a standard Brownian motion ~W . Thus,

X satis�es the linear stochastic functional di�erential equation

Xt = Wt +

Z t

0

�Z s

0

F (s; u)d ~Wu +

Z s

0

H(s; u)dXu

�
ds; (2.23)

with square-integrable Volterra kernels F and H on (0; 1) � (0; 1). The following

corollary is a direct consequence of Theorem 2.1.

Corollary 2.2 (Theorem 4.1 of F�ollmer-Wu-Yor [23]). The canonical decom-

position of X satisfying (2.23) is given by

dXt = dBt +

�Z t

0

GF (t; u)dBu +

Z t

0

H(t; u)dXu

�
dt; (2.24)

where GF is determined by

GF (t; s) +

Z s

0

GF (t; u)GF (s; u)du =

Z s

0

F (t; u)F (s; u)du; (2.25)

for almost all s � t.

When F admits a factorization F (t; s) = f(t)g(s) for some continuous functions

f and g which satisfy Z t

0

Z u

0

f 2(u)g2(v)dvdu <1; (2.26)

for all t < 1, we can write the above corollary more explicitly.

Corollary 2.3 (Corollary 4.1 of F�ollmer-Wu-Yor [23]). Suppose the processX

is given by X0 = 0 and

dXt = dWt +

�
f(t)

Z t

0

g(u)d ~Wu +

Z t

0

H(t; u)dXu

�
dt; (2.27)

where f; g 2 C1(0; 1) satis�es (2.26), f 6= 0 a.s., and H(t; s) is a square-integrable

Volterra kernel. Then the canonical decomposition of X is of the form

dXt = dBt +

�
f(t)

Z t

0

�(u)dBu +

Z t

0

H(t; u)dXu

�
dt; (2.28)

where the function �(t) is the solution of the di�erential equation�
�(t)

f(t)

�0
+ �2(t) = g2(t); (2.29)

with initial condition �(0) = 0.
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Proof. We have only to prove that the solution of (2.25) is given by GF (t; s) =

f(t)�(s), where � satis�es (2.29) with initial value �(0) = 0. In fact, the right-hand

side of (2.25) is equal to

GF (t; s) +

Z s

0

GF (t; u)GF (s; u)du = f(t)�(s) + f(t)f(s)

Z s

0

�2(u)du

= f(t)�(s) + f(t)f(s)

�Z s

0

g2(u)du� �(s)

f(s)

�

= f(t)f(s)

Z s

0

g2(u)du =

Z s

0

F (t; u)F (s; u)du;

which is exactly the left-hand side of (2.25).

Remark 2.4. Due to the special form of (2.27), this corollary can be also proved

by the Kalman-Bucy �lter. Combining Theorem 1.1 and Proposition 1.1 we can get

the canonical decomposition of a process X of the form

dXt = dWt + f(t)

Z t

0

g(u)d ~Wudt:

With a simple trick we can extend it to (2.27). In fact, the second equation in

(1.8) and (2.29) are equivalent, since if we set p(t) := �(t)=f(t) in (1.8), these two

equations are identical.

Let A(a:b) be a class of functions de�ned by

A(a; b) :=
�
' : ' measurable,

Z t

a

s'2(s)ds <1 for all a � t < b

�
:

For the case g � 1, we can rewrite the integral condition (2.26) on the square-

integrable Volterra kernel F as the condition f 2 A(0; 1). Under this condition, the
equation (2.29) can be written as�

�(t)

f(t)

�0
+ �2(t) = 1;

with f 6� 0 and �(0) = 0. The corresponding solution is given by

�(t) =
f(t)	(t)

	0(t)
; (2.30)

where 	(t) is the solution of the Sturm-Liouville equation

	00(t) = f 2(t)	(t); (2.31)

with boundary conditions 	(0) = 0 and 	0(0+) = 1. Using this result we can

construct the following examples.

Example 2.1. Consider a process (Xt)0�t�1 satisfying the stochastic di�erential

equation

dXt = dWt +
a

1� t
( ~Wt �Xt)dt;
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that is, f(t) = �h(t) = a=(1� t), with a nonzero constant a. Then the correspond-

ing Sturm-Liouville equation is

�
00

(u) =
a2

(1� u)2
�(u); (2.32)

The following argument is due to M. Yor (see, F�ollmer-Wu-Yor [23]). It is immediate

to check that a function (1�u)� solves (2.32) if and only if �(��1) = a2, an equation

which admits the two solutions: �+(a) and ��(a), given by

��(a) :=
1

2
�
r
a2 +

1

4
:

Clearly, ��(a) < 0 < �+(a). Thus, the decreasing solution of (2.32) is

�(u) = (1� u)�+(a):

And from the de�nition and the boundary condition of 	(u) we can get

	(u) =
(1� u)��(a) � (1� u)�+(a)

p
1 + 4a2

:

From (2.20), the conditional expectation of ~Wt relative to FX
t is given by

E[ ~WtjFX
t ] :=

1

	
0

(t)

Z t

0

	(u)

�
a

1� u
dXu +

a2

(1� u)2
Xudu

�

= Xt + a

Z t

0

(��(a) + 1)(1� u)��+(a) � (�+(a) + 1)(1� u)���(a)

�+(a)(1� t)���(a) � ��(a)(1� t)��+(a)
dXu:

In particular, if a = 1, then �+(1) = A and ��(1) = B, de�ned as in Lemma 2.3,

and we are led to the same result as in Section 2.1.

Example 2.2. Consider the simple example. Suppose the process X is given by

dXt = dWt + a( ~Wt �Xt)dt;

with a nonzero constant a. The desired solution of the corresponding Sturm-Liouville

equation is of the form

	(t) =
1

2a
(eat � e�at):

Hence, the conditional expectation of ~Wt with respect to FX
t is given by

E[ ~WtjFX
t ] = Xt �

2

eat + e�at

Z t

0

e�audXu:

Therefore, the canonical decomposition of Xt has the form

Xt = Bt �
Z t

0

2a

eau + e�au

�Z u

0

e�avdXv

�
du;

where (Bt)0�t�1 is a Brownian motion relative to (FX
t )0�t�1.
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2.3. Characterization of Brownian motions

In the last section we have shown how to compute the canonical decomposition

of a Gaussian process with linear drift term. In the present section we are concerned

with the applications of these theorems. Applying Theorem 2.1 we get the following

characterization of Brownian motions.

Theorem 2.2. The process X satisfying (2.13) is a Brownian motion if and

only if the square-integrable Volterra kernel H satis�es

H(t; u) = �G(t; u);

where G is determined by (2.15).

Proof. 1) Suppose X is a Wiener process with respect to its own �ltration

(FX
t ). By the uniqueness of the Doob-Meyer decomposition in (FX

t ) and our repre-

sentation (2.14), we have B = X andZ t

0

(G(t; u) +H(t; u)) dXu = 0; (2.33)

P- a.s. for almost all t. But (2.33) implies

G(t; u) +H(t; u) = 0;

for almost all u � t, since X is a Brownian motion.

2) Conversely, assume that G(t; u) = �H(t; u). The canonical representation (2.14)

can be written as

Xt = Bt +

Z t

0

�Z s

0

G(s; u)dBu �
Z s

0

G(s; u)dXu

�
ds:

This implies

Xt +

Z t

0

Z s

0

G(s; u)dXuds = Bt +

Z t

0

Z s

0

G(s; u)dBuds:

We can now apply the reconstruction argument in the proof of Proposition 1.2 to

conclude X = B. In other words, X is a Brownian motion.

Using this theorem we see that

Xt =Wt +

Z t

0

�
f(s)S0 +

Z s

0

F (s; u)dSu �
Z s

0

G(s; u)dXu

�
ds; (2.34)

with a square-integrable Volterra kernel G satisfying (2.15), is a Brownian motion

with respect to its own �ltration. From (2.34) we have

Xt +

Z t

0

Z s

0

G(s; u)dXuds = �t := Wt +

Z t

0

�
f(s)S0 +

Z s

0

F (s; u)dSu

�
ds:
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As in the proof of Proposition 1.2, the solution of (2.34) is given by

Xt = �t +

Z t

0

Z s

0

RG(s; u)d�uds

= Wt +

Z t

0

Z s

0

RG(s; u)dWuds+

Z t

0

�
f(s)S0 +

Z s

0

F (s; u)dSu

�
ds

+

Z t

0

Z s

0

RG(s; u)

�
f(u)S0 +

Z u

0

F (u; v)dSv

�
duds; (2.35)

where RG is the resolvent kernel of G. The next theorem characterizes those cases

where a Brownian motion X with (2.34) is tied to the �nal value S1 of the process

S.

Theorem 2.3. Let X be a Brownian motion satisfying (2.34) with a square-

integrable Volterra kernel G given by (2.15). This process converges to S1 if and

only if there exists a function c(t) whose integral from 0 to 1 is equal to 1 such that

f(t)V (0) +

Z t

0

F (t; u)V 0(u)du = c(t) +

Z t

0

G(t; u)c(u)du:

Proof. The formula (2.35) ensures the expectation of XtSt is given by

E[XtSt] =

Z t

0

�
f(s)V (0) +

Z s

0

F (s; u)V 0(u)du

�
ds

+

Z t

0

Z s

0

RG(s; u)

�
f(u)V (0) +

Z u

0

F (u; v)V 0(v)dv

�
duds:

Hence, we can calculate the value of

E[(Xt � St)
2] = E[X2

t ] + E[S2
t ]� 2E[XtSt] = t+ V (t)� 2E[XtSt]:

The process Xt converges to S1 if and only if E[(Xt � St)
2] ! 0 as t ! 1. This

implies that the necessary and suÆcient condition for the process X tied to the �nal

value S1 is E[X1S1] = 1. In other words,Z 1

0

�
f(s)V (0) +

Z s

0

F (s; u)V 0(u)du

�
ds

+

Z 1

0

Z s

0

RG(s; u)

�
f(u)V (0) +

Z u

0

F (u; v)V 0(v)dv

�
duds = 1:

Let

c(s) := f(s)V (0) +

Z s

0

F (s; u)V 0(u)du

+

Z s

0

RG(s; u)

�
f(u) +

Z u

0

F (u; v)V 0(v)dv

�
du;

we get the necessary and suÆcient conditions for the convergence of Xt to S1 areZ 1

0

c(u)du = 1;
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and

f(t)V (0) +

Z t

0

F (t; u)V 0(u)du = c(t) +

Z t

0

G(t; u)c(u)du:

Using the above two theorems we can derive the following special case.

Theorem 2.4. (i) Suppose the process X satis�es

dXt = dWt + (f(t)St + g(t)Xt) dt; (2.36)

with initial value X0 = 0, where f and g are two non-zero continuous functions

satisfying Z t

0

f 2(u)V (u)du <1;

for all t < 1 and g 2 A(0; 1). Then this process (Xt)0�t�1 is a Brownian motion if

and only if it satis�es the stochastic di�erential equation

dXt = dWt +
cSt � c2Xt

V (t)� c2t
dt; (2.37)

with a constant c satisfying the integrability conditions

1

V (u)� c2u
2 A(0; 1) \ L1

loc([0; 1)): (2.38)

(ii) If the variance function of S satis�es (2:38) with c = 1, i.e.,

1

V (u)� u
2 A(0; 1) \ L1

loc([0; 1)); (2.39)

then the process (Xt)0�t�1 given by the stochastic di�erential equation

dXt = dWt +
St �Xt

V (t)� t
dt; (2.40)

is a standard Brownian motion. Furthermore, Xt converges to S1 as t! 1.

Proof. 1) We want to show that (2.37) is the only possible form such that the

process X with (2.36) is a Brownian motion with respect to its own �ltration. It

follows from Theorem 2.2 that the process X is a Brownian motion if and only if

the function f and g satisfy

f(t)f(s)V (s) = g(t)(sg(s)� 1)

for s � t. The associated solution of this equation is given by

f(t) =
c

V (t)� c2t
; g(t) =

�c2
V (t)� c2t

;

for some constant c.
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2) Conversely, the solution of (2.37) is given by

Xt =

Z t

0

exp

�
�
Z t

u

c2

V (v)� c2v
dv

�
dWu

+

Z t

0

exp

�
�
Z t

u

c2

V (v)� c2v
dv

�
cSu

V (u)� c2u
du: (2.41)

Note that the stochastic integral is well-de�ned due to condition (2.38). In particu-

lar, if the condition (2.39) holds, the solution of (2.40) is given by

Xt =

Z t

0

exp

�
�
Z t

u

1

V (v)� v
dv

�
dWu +

Z t

0

exp

�
�
Z t

u

1

V (v)� v
dv

�
Su

V (u)� u
du:

(2.42)

3) If X is given by (2.40), due to (2.42) we obtain

E[XtSt] =

Z t

0

exp

�
�
Z t

u

1

V (v)� v
dv

�
E[SuSt]

V (u)� u
du

=

Z t

0

exp

�
�
Z t

u

1

V (v)� v
dv

�
du

+

Z t

0

exp

�
�
Z t

u

1

V (v)� v
dv

�
u

V (u)� u
du

= t;

using an integration by parts. Therefore,

E[(Xt � St)
2] = E[X2

t ] + E[S2
t ]� 2E[XtSt] = V (t)� t; (2.43)

which is non-negative for all t � 1 and converges to 0 as t! 1.

Using this theorem, we obtain immediately the following result.

Corollary 2.4. If there exists a positive constant k such that (2:38) holds, then

for all jcj � k, the process X given by (2:37) is a Brownian motion.

What kind of process S does satisfy the condition (2.39)? For a given Gaussian

martingale S, which condition on the constant c will guarantee that condition (2.38)

holds? In the following we will discuss some examples and some conditions on the

process S and the constant c.

Lemma 2.4. (i) If c satis�es (2:38), then

c2 � m := inf
0�t�1

�
V (u)

u

�
: (2.44)

(ii) If m < 1, then (2:38) does not hold for c = �pm.

Proof. 1) Let c be a constant satisfying

inf
0�u�1

�
V (u)

u

�
< c2 < sup

0�u�1

�
V (u)

u

�
:
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1

1

0

V (t)

c
2(~t� ")

~t~t� "

c
2

c
2~t

Figure 2.1

Then the curves y = V (t) and y = c2t intersect at at least one point on (0; 1). Let

~t 2 (0; 1) be such a point, i.e., V (~t) = c2~t. We distinguish three cases to discuss.

(a) V (t) = c2t for all t 2 (~t� "; ~t) with some " 2 (0; ~t): In this case the integral of

1=(V (u)� c2u) in this neighborhood is equal to 1. This impliesZ ~t

0

1

V (u)� c2u
du =1:

(b) V (t) < c2t for all t 2 (~t� "; ~t) with some " 2 (0; ~t): Let

t1 := maxft < ~t : V (t) = c2tg:
Since V (t) is nonnegative and nondecreasing, t1 � 0 and c2t > V (t) > c2t1 for all

t 2 (t1; ~t). Hence, Z ~t

t1

1

V (u)� c2u
du �

Z ~t

t1

1

c2(t1 � u)
= �1:

(c) V (t) > c2t for all t 2 (~t � "; ~t) with some " 2 (0; ~t): Therefore, the variance

function V (t) satis�es

c2(~t� ") < c2u � V (u) � c2~t; for all ~t� " < u � ~t;

see Figure 2.1. Hence,Z ~t

~t�"

1

V (u)� c2u
du �

Z ~t

~t�"

1

c2~t� c2(~t� ")
du =

1

c2

Z ~t

~t�"

1

"
du =

1

c2
;

for all " 2 (0; ~t). This implies Z ~t

0

1

V (u)� u
du =1;
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i.e., the condition (2.38) obviously does not hold.

In summary, if condition (2.38) holds, the constant c must satisfy

c2 � m := inf
0�u�1

�
V (u)

u

�
or c2 �M := sup

0�u�1

�
V (u)

u

�
:

2) Consider a constant c satisfying

c2 �M := sup
0�u�1

�
V (u)

u

�
:

We may assume M <1. Then V (t) �Mt for all t 2 [0; 1]. This leads us to

1

V (u)� c2u
�
�

1

M � c2

�
1

u
;

which is not integrable at time 0. Therefore, from 1) and 2) we get the assertion (i).

3) If m < 1, the curves y = V (t) and y = mt intersect at at least one point. Using

the argument 1), we see that (2.38) does not hold.

Therefore, (2.44) provides only a necessary condition for the integrability con-

dition (2.38). There exist even such cases, that all constant c satisfying (2.44), but

none of them, except 0, is valid for (2.38). For example, if S is a Brownian motion,

i.e., V (t) = t, then for all c 2 R, the function 1=(V (t)� c2t) is not integrable, but

sup
0�t�1

�
V (t)

t

�
= inf

0�t�1

�
V (t)

t

�
= 1:

Lemma 2.5. (i) If V (t) > t for all t < 1 (this implies S0 6� 0), then (2:39) holds.

(ii) If V (t) = tp for 0 < p < 1, then (2:39) holds.

(iii) If S satis�es the condition (2:39), then t < V (t) � 1 for all t 2 (0; 1).

Proof. 1) Since V (u)� u > 0 for all u 2 [0; t], we have

V (u)� u � inf
v2[0;t]

(V (v)� v) > 0;

for all u 2 [0; t]. Therefore,Z t

0

u

(V (u)� u)2
du =

Z t

0

1

(V (u)� u)2
du �

Z t

0

1

inf
u2[0;t]

(V (u)� u)2
du

=
t

inf
u2[0;t]

(V (u)� u)2
<1;

and Z t

0

1

V (u)� u
du � t

inf
u2[0;t]

(V (u)� u)
<1:

2) For V (t) = tp with 0 < p < 1, we haveZ t

0

u

(V (u)� u)2
du =

Z t

0

1

u2p�1 � 2up + u
du � c1

Z t

0

u�(2p�1)du = c2t
2(1�p) <1;
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and Z t

0

1

V (u)� u
du =

Z t

0

1

up � u
du � c3t

1�p <1;

where ci, i = 1; 2; 3, are suitable positive constants.

3) From (2.43), we get V (t) � t, for all t 2 (0; 1). If there exists ~t 2 (0; 1) such that

V (~t) = ~t, using a similar argument as in the proof 1) (case (c)) of Remark 2.4 we

get the desired results.

Remark 2.5. If we drop the condition var(S1) = 1, and de�ne

t0 := infft � 0 : t � var(St)g;
then a similar argument of Theorem 2.4 shows that the process (Xt)0�t�t0 satisfying

(2.37) is a Brownian motion up to time t0.

Applying Theorem 2.4, Remark 2.5 and above discussion, we can provide the

following examples and applications.

Example 2.3. Setting St � S1 � N [0; 1], then from Theorem 2.4 we get that

the process X with

dXt = dWt +
S1 �Xt

1� t
dt;

is a Brownian motion and converges to S1. This example is of course well-known,

see, e.g., Jeulin-Yor [36].

Example 2.4. If the martingale (St)0�t�1 is given by

St :=

p
ÆN +

R t
0
g(u)d ~Wuq

Æ +
R 1

0
g2(u)du

;

where N � N(0; 1), Æ > 0, g 2 L2(0; 1) and ~W is a Wiener process independent of

W , condition in Lemma 2.5 (i) amounts toZ 1

t

g2(u)du < (1� t)

�
Æ +

Z 1

0

g2(u)du

�
:

Under this condition the process X given

dXt = dWt +
(Æ +

R 1

0
g2(u)du)(St �Xt)

Æ +
R t
0
g2(u)du� (Æ +

R 1

0
g2(u)du)t

dt;

is a Brownian motion converging to S1.

Example 2.5. Suppose the variance function V (t) of the Gaussian martingale

S is 1
4
(2t2 + t + 1). Then we have

V (t)

8>>><
>>>:

< t; if t >
1

2
;

> t; if t <
1

2
:
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Hence, V (t) does not satisfy (2.39). It is easy to check that

m = inf
0�t�1

� 1
4
(2t2 + t+ 1)

t

�
=

1 + 2
p
2

4
:

This implies the condition (2.38) is valid, if c2 < (1 + 2
p
2)=4 (for c2 = (1+2

p
2)=4,

the condition (2.38) does not hold). Hence, the process (Xt)0�t�1 satisfying the

stochastic di�erential equation

dXt = dWt +
cSt � c2Xt

1
2
t2 + (1

4
� c2)t+ 1

4

dt;

is a Brownian motion, for c2 < (1 + 2
p
2)=4.

In the following we consider a process X satisfying a linear stochastic functional

di�erential equation driven by two independent Brownian motions W and ~W . By

Corollary 2.2 and Theorem 2.2 we get the following criterion for X to be a Brownian

motion.

Corollary 2.5 (Theorem 5.1 of F�ollmer-Wu-Yor [23]). A processX satisfying

dXt = dWt +

�Z t

0

F (t; u)d ~Wu +

Z t

0

H(t; u)dXu

�
dt;

is a Wiener process with respect to its own �ltration (FX
t ) if and only if H(t; s) =

�GF (t; s), where GF is the square-integrable Volterra kernel determined by

GF (t; s) +

Z s

0

GF (t; u)GF (s; u)du =

Z s

0

F (t; u)F (s; u)du:

Using a similar argument as in the proof of Proposition 2.2, we get the following

conclusion.

Lemma 2.6. The unique solution of the equation

Xt =Wt +

Z t

0

�Z s

0

F (s; u)d ~Wu �
Z s

0

GF (s; u)dXu

�
ds

is given by

Xt =Wt +

Z t

0

�Z s

0

LF (s; u)dWu +

Z s

0

(F (s; u) +

Z s

u

LF (s; v)F (v; u)dv)d ~Wu

�
ds:

Here LF is the resolvent kernel of GF , i.e., LF satis�es the equation8>><
>>:

GF (t; s) + LF (t; s) +

Z t

s

LF (t; u)GF (u; s)du = 0;

GF (t; s) + LF (t; s) +

Z t

s

GF (t; u)LF (u; s)du = 0;

for s � t.
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As in the last section we want to look at some special cases. Let F (t; s) =

f(t)g(s) with some functions f; g 2 C1(0; 1) satisfyingZ t

0

Z u

0

f 2(u)g2(v)dvdu <1;

for all t < 1. Then we obtain immediately from Corollary 2.3, Corollary 2.5 and

(2.30) the following result.

Corollary 2.6 (Corollary 5.1 and 5.2 of F�ollmer-Wu-Yor [23]). Suppose the pro-

cess (Xt)0�t�1 satis�es

dXt = dWt +

�
f(t)

Z t

0

g(u)d ~Wu +

Z t

0

H(t; u)dXu

�
dt;

with f; g 2 C1(0; 1) satisfying (2.26) and f 6= 0, a.s. and a square-integrable Volterra

kernel H(t; s). Then X is a Brownian motion if and only if

H(t; u) = �f(t)�(u);
where �(t) is the solution of (2.29) with initial condition �(0) = 0. In other words,

if (Xt)0�t�1 is a Brownian motion with respect to its own �ltration, it must be of the

form

dXt = dWt + f(t)

�Z t

0

g(u)d ~Wu �
Z t

0

�(u)dXu

�
dt: (2.45)

In particular, if g � 1, (2.45) can be written as

dXt = dWt + f(t)

�
~Wt �

Z t

0

f(u)	(u)

	0(u)
dXu

�
dt; (2.46)

where 	(t) satis�es (2.31) with initial conditions 	(0) = 0 and 	0(0+) = 1.

Remark 2.6. If X satis�es the stochastic di�erential equation

dXt = dWt + (f(t) ~Wt + h(t)Xt)dt; (2.47)

with f; h 2 C1(0; 1) \ A(0; 1), and if one of the functions f(t) and h(t) is not

identically 0, then X cannot be a Brownian motion.

Proof. Suppose X is a Brownian motion satisfying (2.47). Then from (2.46)

we know that Z t

0

f(u)	(u)

	0(u)
dXu = cXt;

for some constant c. Consequently, we see that

f(t)	(t) = c	0(t): (2.48)

Substituting (2.48) into (2.31), we get

	00(t) = cf(t)	0(t):
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Hence, the corresponding solution of the Sturm-Liouville equation is given by

	(t) =

Z t

0

exp

�
c

Z u

0

f(v)dv

�
du:

Substituting this solution again in (2.48), and taking derivatives on both sides with

respect to t, we have

cf 0(t) + (1� c2)f 2(t) = 0;

whose solution is of the form

f(t) =
c

1� c2
1

t
:

If c 6= 0, this function f does not belong to the class A(0; 1).
In the above remark it has been shown that any process satisfying (2.47) with

f; h 2 C1(0; 1) \ A(0; 1), cannot be a Brownian motion unless f � h � 0. But as

we shall see in the next chapter, there does exist a Brownian motion satisfying the

stochastic di�erential equation (2.47). The main di�erence is that the functions f

and h which we are going to discuss in Chapter 3 do not belong to the class A(0; 1).
Clearly, the condition (2.39) does not hold, if (St)0�t�1 is a standard Brownian

motion ~W . In fact, the following proposition in F�ollmer-Wu-Yor [23] shows that a

processes X of the form

Xt = Wt +

Z t

0

Ysds (2.49)

cannot converge to ~W1, if Y is adapted to (FW; ~W
t ).

Proposition 2.3 (Proposition 5.1 of F�ollmer-Wu-Yor [23]). Let X be a Brow-

nian motion of the form (2.49) with a drift term (Yt)0�t�1 adapted to (Ft). If Z is

any (Ft)-Brownian motion such that X1 = Z1;P-a.s., then we have Zt = Xt = Wt,

and in particular, Yt = 0, dt� dP-a.s..

2.4. Some examples of Brownian motions

At the end of this chapter we want to give some examples of Brownian motions

of the form (2.13).

Example 2.6. Let k � 2 and

f(t) =

p
k(k + 1)t2k + k(k + 1)2tk

tk+1 + (k + 1)t
:

Then the solution of the Sturm-Liouville equation is given by

	(t) =
1

k + 1
tk+1 + t:

This implies that the process X satisfying

dXt = dWt +

p
k(k + 1)t2k + k(k + 1)2tk

tk+1 + (k + 1)t

 
~Wt �

r
k

k + 1

Z t

0

p
u2k + (k + 1)uk

uk + 1
dXu

!
dt
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is a Brownian motion. For the case k = 2, we see that the process X satisfying

dXt = dWt +

p
6t2 + 18

t + 3

 
~Wt �

r
2

3

Z t

0

p
u4 + 3u2

u2 + 1
dXu

!
dt

is a Brownian motion with respect to its natural �ltration.

Example 2.7. Consider the case t 2 [0; 1). Let

f(t) =
�p
2
sec
��
2
t
�
:

Then the solution of the corresponding Sturm-Liouville equation is given by

	(t) = tan
��
2
t
�
:

Hence, the process (Xt)0�t�1 starting in X0 = 0 and satisfying

dXt = dWt +
�p
2
sec
��
2
t
��

~Wt �
p
2

Z t

0

sin
��
2
u
�
dXu

�
dt;

is a Brownian motion.

Example 2.8. Setting Æ � 1 and g(t) � c in Example 2.4, we see that the

process X satisfying

dXt = dWt +
(1 + c2)(N + c ~Wt �

p
1 + c2Xt)p

1 + c2(1� t)
dt

is a Brownian motion.

In the end, we want to give an example of process X of the form

dXt = dWt +

�
f(t) ~W1 +

Z t

0

F (t; u)d ~Wu +

Z t

0

H(t; u)dXu

�
dt;

with initial value X0 = 0, f 2 C1(0; 1) \ L2(0; 1) and square-integrable Volterra

kernels F;H 2 C1;1((0; 1) � (0; 1)). We are going to apply Theorem 2.4 together

with Remark 2.5, and for this we need the following lemma.

Lemma 2.7. Suppose the process S is given by

St := f(t) ~W1 +

Z t

0

F (t; u)d ~Wu;

with f 2 L2(0; 1)\C1(0; 1) and a square-integrable Volterra kernel F 2 C1;1((0; 1)�
(0; 1)). Then the following three statements are equivalent:

(i) S is a martingale with respect to the �ltration (F ~W
t _ �( ~W1)).

(ii) The relation between f and F is given by

F (t; u) = �f(t) + (f(u)� f 0(u)(1� u)); (2.50)

i.e., S is given by

St = f(t)( ~W1 � ~Wt) +

Z t

0

(f(u)� (1� u)f 0(u))d ~Wu: (2.51)
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(iii) f and F are given by8><
>:

F (t; u) = m(t) + n(u);

f(t) = c�m(t);

(2.52)

where c, k are constants and m(t), n(t) satisfy

(1� t)m(t)�
Z t

0

n(u)du = k: (2.53)

Proof. (i) ) (ii): Let

Gt := F ~W
t _ �( ~W1):

Suppose S is a martingale, then

0 = E[St � SsjGs]

= E

�
(f(t)� f(s)) ~W1 +

�Z t

0

F (t; u)d ~Wu �
Z s

0

F (s; u)d ~Wu

�����Gs
�

= (f(t)� f(s)) ~W1 +

Z s

0

(F (t; u)� F (s; u))d ~Wu + F (t; t)E[ ~WtjGs]

�F (t; s) ~Ws �
Z t

s

F2(t; u)E[ ~WujGs]du: (2.54)

Since ~W is a Brownian motion, we have

E[ ~WtjGs] = E[ ~Wt � ~WsjGs] + ~Ws =
t� s

1� s
( ~W1 � ~Ws) + ~Ws: (2.55)

Substituting this formula in (2.54), we see

0 = (f(t)� f(s)) ~W1 +

Z s

0

(F (t; u)� F (s; u))d ~Wu +
1

1� s

Z t

s

F (t; u)du( ~W1 � ~Ws)

= (f(t)� f(s) +
1

1� s

Z t

s

F (t; u)du)( ~W1 � ~Wt) + (f(t)� f(s)) ~Wt

+
1

1� s

Z t

s

F (t; u)du( ~Wt � ~Ws) +

Z s

0

(F (t; u)� F (s; u))d ~Wu:

From the fact that ~W1 � ~Wt and ~Wu are independent for all u � t, we know that

f(t)� f(s) +
1

1� s

Z t

s

F (t; u)du = 0:

Di�erentiating with respect to s , we get (2.50).

(ii) ) (iii): Due to (2.50) we obtain the �rst equation in (2.52). Therefore,

m(t) + f(t) = f(u)� f 0(u)(1� u)� n(u) = constant c;

for all u � t. Hence,

f(u)� f 0(u)(1� u)� n(u) = c;

with f(u) = c�m(u), and it implies (2.53).
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(iii)) (i): If F and f are of the form (2.52), we have to check that E[St�SsjGs] = 0

for all s � t. From (2.54) and (2.55), we see that

E[St � SsjGs]

= (f(t)� f(s)) ~W1 +

Z s

0

(F (t; u)� F (s; u))d ~Wu +
1

1� s

Z t

s

F (t; u)du( ~W1 � ~Ws):

Substituting (2.52) and (2.53) in this formula, we get the desired result.

This result can be seen as a special case of Theorem 3.4 in Amendinger [4].

Example 2.9. The process (St)0�t�1 satisfying

St = ~Wt �
Z t

0

~W1 � ~Wu

1� u
du

= log(1� t) ~W1 +

Z t

0

(1 + log(1� u)� log(1� t))d ~Wu;

is a martingale with respect to (Gt). Furthermore, it is a Brownian motion.

Due to Lemma 2.7 and Remark 2.5 we get the following proposition.

Proposition 2.4. Let f 2 L1(0; T ) for all T <1 and

to := inf

�
t � 0 : f 2(t)(1� t) +

Z t

0

(f(u)� (1� u)f 0(u))2du � t

�
:

Then the process X starting in X0 = 0 and satisfying the stochastic di�erential

equation

dXt = dWt +
f(t)( ~W1 � ~Wt) +

R t
0
(f(u)� (1� u)f 0(u))d ~Wu �Xt

f 2(t)(1� t) +
R t
0
(f(u)� (1� u)f 0(u))2du� t

dt

is a Brownian motion on [0; t0].

Proof. Substituting (2.51) into Remark 2.5, we get the desired result.

Example 2.10. (i) For the case f(t) � c > 0, the process (Xt)0�t�c2 withX0 = 0

and

dXt = dWt +
c ~W1 �Xt

c2 � t
dt;

is a Brownian motion. Furthermore, Xt converges to c ~W1 as t! c2.

(ii) For f(t) = 1 + t, we see that

t0 = inf

�
t � 0 :

1

3
t3 � t2 + 1 � 0

�
= 1� 2 cos

�
5

9
�

�
� 1:3473:

Hence, the process X satisfying

dXt = dWt +
(1 + t)( ~W1 � ~Wt) + 2

R t
0
ud ~Wu �Xt

1
3
t3 � t2 + 1

dt;

is a Brownian motion up to time t0.
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CHAPTER 3

Orthogonal decompositions of Brownian �ltrations

Consider a process X satisfying the stochastic di�erential equation

dXt = dWt + (f(t) ~Wt + h(t)Xt)dt; (3.1)

with X0 = 0, where W , ~W are two independent Wiener processes. We have seen in

Remark 2.6 that X cannot be a Brownian motion if f and h belong to the space

A(0; 1) \ C(0; 1) with f 2 + h2 6� 0. In this chapter, we will show that there exist

Brownian motions of the form (3.1) if the conditions on f and h are relaxed.

Following Yor [57] we describe in Section 3.1 a basic orthogonal decomposition

of the Brownian �ltration. In Section 3.2 we will construct a Brownian motion X of

the form (3.1), and then another Brownian motion Y which is represented in terms

of W and ~W and is independent of X. Using iteration, we get two sequences of

Brownian motions X(n) and Y (n), which are independent of each other. This leads

to the construction of new orthogonal decompositions of Brownian �ltrations; see

Wu-Yor [56]. In Section 3.3 a similar decomposition of a Brownian motion related

to X will be investigated. In Section 3.4 we replace X by W on the right-hand side

of (3.1) and characterize Brownian motions of the form

Xt =Wt +

Z t

0

(f(u) ~Wu + g(u)Wu)du:

3.1. The basic example of an orthogonal decomposition

Let (Bt)t�0 be a standard Brownian motion. In Jeulin-Yor [37] and Chapter 1

of Yor [57] it has been shown that the natural �ltration generated by (Bt)t�0 can

be decomposed into the direct sum of two independent �-algebras

FB
t = Gt � �(Bt) (3.2)

for all t � 0, where the �-algebra Gt is given by

Gt := �
�
Bu � u

t
Bt; u � t

�

= �

�Z t

0

f(u)dBu; f 2 L2[0; t];

Z t

0

f(u)du = 0

�

= �

�
Bu �

Z u

0

Bt � Bv

t� v
dv; u � t

�

= �

�
Bu �

Z u

0

Bv

v
dv; u � t

�
:

47
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De�ne an operator T as

T (B)t := Bt �
Z t

0

Bu

u
du: (3.3)

It has been established that the process (T (B)t)t�0 is a Brownian motion; see De-

heuvels [21] and Chapter 1 in Yor [57]. For the sake of convenience, we write

T 0(B) = B. Consequently, for any non-negative integer n, the process (T n(B)t)t�0

is a Brownian motion relative to its natural �ltration. Using this notation we can

rewrite the decomposition (3.2) as

FB
t = �(Bt)� �(T (B)u; u � t):

Using the same argument as above iteratively, we can get an orthogonal decompo-

sition of �-algebra FB
t in the following form:

FB
t = �(Bt)� �(T (B)t)� �(T 2(B)u; u � t)

= �(Bt)� �(T (B)t)� �(T 2(B)t)� �(T 3(B)u; u � t) = � � � : (3.4)

From Yor [57] Chapter 1, we know that the random variable T n(B)1 can be

represented as

T n(B)1 =

Z 1

0

Ln(log(
1

u
))dBu;

where (Ln(u))n�0 is the classical Laguerre polynomials de�ned as

Ln(u) =

nX
k=0

 
n

k

!
(�u)k
k!

; (3.5)

which is a sequence of orthonormal polynomials for the measure e�udu in R+ ; in

other words, for m;n 2 N [ f0g,Z 1

0

Lm(u)Ln(u)e
�udu = Æm;n:

Remark 3.1. Since (t�
1
2T n(B)t)n2N is an orthonormal system in L2(P), we con-

clude that for �xed t � 0, the sequence (T n(B)t)n�0 is not strongly L2-convergent,

but converges weakly to 0 in L2.

3.2. Construction of orthogonal decompositions of Brownian �ltrations

In this section we want to construct a Brownian motion satisfying the stochastic

di�erential equation

dXt = dWt + (f(t) ~Wt + g(t)Xt)dt; (3.6)

where f and g satisfy some integral conditions (which we will discuss later). This

will involve some orthogonal decompositions of the Brownian �ltration similar to

(3.4).
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Let W , ~W be two independent Wiener processes. Consider the process X satis-

fying the stochastic di�erential equation

dXt = dWt +
c ~Wt � c2Xt

(1� c2)t
dt; (3.7)

with X0 = 0 and some constant jcj < 1. If c = 0, then Xt = Wt. If c 6= 0, the

solution to this equation is given by

Xt =

Z t

0

�u
t

�a
dWu +

1

c

Z t

0

�
1�

�u
t

�a�
d ~Wu; (3.8)

with the constant a de�ned by

a :=
c2

1� c2
:

Using this formula, we see that X satis�es the identity

dXt = dWt � at�a�1

Z t

0

uadWudt+
�a
c

�
t�a�1

Z t

0

uad ~Wudt: (3.9)

Proposition 3.1. For all constant 0 � jcj < 1 the process X satisfying the

stochastic di�erential equation (3.7) is a Brownian motion with respect to its own

�ltration (FX
t ).

Proof. For the case c = 0 it is clear, since X = W is a Brownian motion. For

0 < jcj < 1 and s � t, we compute the covariance function of X using (3.8)

E[XsXt] =

Z s

0

�u
s

�a �u
t

�a
du+

1

c2

Z s

0

�
1�

�u
s

�a��
1�

�u
t

�a�
du = s:

This ensures that the Gaussian process X is a standard Brownian motion with

respect to its natural �ltration.

Remark 3.2. In Remark 2.6 we saw that the solution of (3.6) cannot be a

Brownian motion, provided that f; g 2 C1(0; 1)\A(0; 1). However, the function 1=t
does not belong to A(0; 1), but to �A(0; 1), where �A(0; T ) is de�ned by

�A(0; T ) := f'(u) :
Z t

0

p
uj'(u)jdu <1 for all t < Tg:

In the following discussion of (3.7), we will always exclude the trivial case c = 0.

Now, we want to construct a new Brownian motion from W and ~W which is

independent of X. Our �rst attempt is a Brownian motion, say ~Y , of the form

d ~Yt = d ~Wt +
�cWt � c2 ~Yt

(1� c2)t
dt:

We can easily check that Xt and ~Yt are independent for all t. But the processes

X and ~Y are not independent. Hence we have to look for other Brownian motions

which might be independent of X. The following proposition gives us one example.



50 3. ORTHOGONAL DECOMPOSITIONS OF BROWNIAN FILTRATIONS

Proposition 3.2. The process Y satisfying the stochastic di�erential equation

dYt = d ~Wt +
cWt � (1� c2) ~Wt � c2Yt

(1� c2)t
dt; (3.10)

is a Brownian motion independent of X.

Proof. The solution of (3.10) is given by

Yt =
1

c

Z t

0

�
1�

�u
t

�a�
dWu �

Z t

0

�
1

a
� a+ 1

a

�u
t

�a�
d ~Wu: (3.11)

Then for s � t, it can be shown that E[YsYt] = s. It means that Y is a Brownian

motion. Furthermore, we have E[XsYt] = E[XtYs] = 0, for all s � t. This implies

X and Y are independent.

Remark 3.3. At the beginning of Section 3.1 we saw that the process (T ( ~W )t)t�0

de�ned by

T ( ~W )t = ~Wt �
Z t

0

~Wu

u
du;

is a Brownian motion and that its natural �ltration (FT ( ~W )
t ) is strictly smaller than

(F ~W
t ). Using this notation, (3.10) can be written in the form

dYt = dT ( ~W )t +
cWt � c2Yt

(1� c2)t
dt:

Since W and ~W are independent, the processes T ( ~W ) and W are clearly also in-

dependent. In the same way, we know that the process (T (W )t)t�0 is a Brownian

motion independent of ~W as well as T ( ~W ), and that FT (W )
t $ FW

t . Using again the

same argument as in Proposition 3.2, we know that the process ~X satisfying

d ~Xt = dT (W )t +
cT ( ~W )t � c2 ~Xt

(1� c2)t
dt; (3.12)

is a Brownian motion independent of Y . Looking at the processes X and ~X, we

see that the equations (3.12) and (3.7) have the same form. Only the �-algebras

generated by the driving Brownian motions T (W ) and T ( ~W ) are strictly smaller

than those generated by W and ~W , respectively. Hence, we get also F ~X
t � FX

t .

Furthermore, from

~Xs =

Z s

0

�u
s

�a
dT (W )u +

1

c

Z s

0

�
1�

�u
s

�a�
dT ( ~W )u

=

Z s

0

�u
s

�a�
dWu �

Wu

u
du

�
+
1

c

Z s

0

�
1�

�u
s

�a� 
d ~Wu �

~Wu

u
du

!
;
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we deduce

E[Xt
~Xs] =

Z t

0

�u
s

�a �u
t

�a
du�

Z s

0

1

u

�u
s

�a Z u

0

�v
t

�a
dvdu

+
1

c2

Z t

0

�
1�

�u
s

�a��
1�

�u
t

�a�
du

� 1

c2

Z s

0

1

u

�
1�

�u
s

�a�Z u

0

�
1�

�v
t

�a�
dvdu

= 0;

for all s � t. This implies F ~X
t $ FX

t .

Iterating this procedure, we de�ne

X
(n)
t :=

Z t

0

�u
t

�a
dT n(W )u +

1

c

Z t

0

�
1�

�u
t

�a�
dT n( ~W )u; (3.13)

and

Y
(n)
t :=

1

c

Z t

0

�
1�

�u
t

�a�
dT n(W )u +

Z t

0

�u
t

�a
dT n+1( ~W )u; (3.14)

for n � 0 and 0 < jcj < 1. In other words, the processes X(n) and Y (n) satisfy the

stochastic di�erential equations

dX
(n)
t = dT n(W )t +

cT n( ~W )t � c2X
(n)
t

(1� c2)t
dt; (3.15)

and

dY
(n)
t = dT n+1( ~W )t +

cT n(W )t � c2Y
(n)
t

(1� c2)t
dt: (3.16)

From Proposition 3.2 and Remark 3.3 we know that for each n � 0 the processes

X(n) and Y (n) are Brownian motions and

FX
t = FX(0)

t % FX(1)

t % � � � % FX(n)

t % � � � ;

FY
t = FY (0)

t % FY (1)

t % � � � % FY (n)

t % � � � :
Furthermore, the processes X(n) and Y (n), Y (n) and X(n+1) are mutually indepen-

dent. The next lemma provides a representation of X(n) and Y (n) as stochastic

integrals with respect to W and ~W .

Lemma 3.1. The processes X(n) and Y (n) can be represented as

X
(n)
t =

Z t

0

p(n)(log
t

u
)dWu +

1

c

Z t

0

q(n)(log
t

u
)d ~Wu; (3.17)

Y
(n)
t =

1

c

Z t

0

q(n)(log
t

u
)dWu +

Z t

0

p(n+1)(log
t

u
)d ~Wu; (3.18)

where functions p(n)(u) and q(n)(u) satisfy the recurrence relation

(n+1)(u) = (n)(u)�
Z u

0

(n)(v)dv;
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with initial conditions p(0)(u) = e�au and q(0)(u) = 1� e�au. More explicitly, p(n)(u)

and q(n)(u) can be represented in the following form:

p(n)(u) = �1

a

n�1X
k=0

rnk
(�u)k
k!

+

�
a+ 1

a

�n

e�au; (3.19)

and

q(n)(u) = Ln(u)� p(n)(u); (3.20)

where the sequence (rnk ) satis�es the recurrence relation:8>>>>>>>>>>>><
>>>>>>>>>>>>:

rn+1
0 = rn0 +

�
a+ 1

a

�n

; 8 n � 0;

rn+1
n = 1; 8 n � 1;

rn+1
k = rnk + rnk�1; 8 0 < k < n;

rpq � 0; for p � q;

(3.21)

and (Ln(u))n�0 is the sequence of Laguerre polynomials given by (3.5).

Proof. Let p(0)(u) = e�au and q(0)(u) = 1�e�au. From (3.13) and the stochastic

Fubini Theorem (see, e.g., Protter [51]) we have

X
(n)
t =

Z t

0

p(0)(log
t

u
)dT n(W )u +

1

c

Z t

0

q(0)(log
t

u
)dT n( ~W )u

=

Z t

0

�
p(0)(log

t

u
)�

Z t

u

1

v
p(0)(log

t

v
)dv

�
dT n�1(W )u

+
1

c

Z t

0

�
q(0)(log

t

u
)�

Z t

u

1

v
q(0)(log

t

v
)dv

�
dT n�1( ~W )u

=

Z t

0

p(1)(log
t

u
)dT n�1(W )u +

1

c

Z t

0

q(1)(log
t

u
)dT n�1( ~W )u

= � � � =
Z t

0

p(n)(log
t

u
)dWu +

1

c

Z t

0

q(n)(log
t

u
)d ~Wu;

where

(k+1)(log
t

u
) = (k)(log

t

u
)�

Z t

u

1

v
(k)(log

t

v
)dv;

for (k) = p(k) or q(k), and for all k � 0. Applying a change of variable, we obtain

(n+1)(u) = (n)(u)�
Z u

0

(n)(v)dv:

The relations (3.19) and (3.20) follow directly by induction.
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Remark 3.4. We can write the recurrence relation (3.21) as

rnm =

n�1X
i1=m

i1�1X
i2=m�1

� � �
im�1�1X
im=1

im�1X
im+1=0

�
a+ 1

a

�im+1

;

for n > m, with initial conditions rnn�1 = 1 and rn0 = a(a+1
a
)n � a.

In Section 3.1 it has been shown that

T n(B)1 =

Z 1

0

Ln(log(
1

u
))dBu;

for a sequence of orthonormal polynomials (Ln(u)) for the measure e�udu in R+ .

For our two new sequences of Brownian motions X(n) and Y (n), we want to know

whether the corresponding p(n)(u) and q(n)(u) are also orthonormal. The following

proposition shows that they are not. But we can see some further properties of these

two sequences.

Proposition 3.3. Let m;n be nonnegative integers, then the sequences of func-

tions (p(n)(u))n�0 and (q(n)(u))n�0 possess the following properties:

(a)

Z 1

0

p(n)(u)e�udu =

8><
>:

1� c2; n = 0;

0; n � 1:

(b)

Z 1

0

q(n)(u)e�udu =

8><
>:

c2; n = 0;

0; n � 1:

(c)

Z 1

0

p(n)(u)p(n+m)(u)e�udu =
c2m(1� c2)

1 + c2
, for all m � 0.

(d)

Z 1

0

q(n)(u)q(n+m)(u)e�udu =

8>>>><
>>>>:

2c4

1 + c2
; m = 0;

�c
2(m+1)(1� c2)

1 + c2
; m � 1:

(e)

Z 1

0

p(n+m)(u)q(n)(u)e�udu =

8>>>><
>>>>:

c2(1� c2)

1 + c2
; m = 0;

�c
2m(1� c2)

1 + c2
; m � 1:

(f)

Z 1

0

p(n)(u)q(n+m)(u)e�udu =

8>>>><
>>>>:

c2(1� c2)

1 + c2
; m = 0;

�c
2(m+1)(1� c2)

1 + c2
; m � 1:

(g)

Z 1

0

p(n)(u)p(n+m)(u)e�udu+
1

c2

Z 1

0

q(n)(u)q(n+m)(u)e�udu =

8><
>:

1; m = 0;

0; m 6= 0:
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Proof. 1) For n = 0,Z 1

0

p(0)(u)e�udu =

Z 1

0

e�(a+1)udu =
1

a+ 1
= 1� c2;

and Z 1

0

q(0)(u)e�udu =

Z 1

0

�
1� p(0)(u)

�
e�udu =

a

a+ 1
= c2:

For n > 0, from (3.19), we know thatZ 1

0

p(n)(u)e�udu = �1

a

n�1X
k=0

rnk (�1)k +
1

a+ 1

�
a+ 1

a

�n

:

Due to (3.21), we get

n�1X
k=0

rnk (�1)k = rn0 +

n�2X
k=1

rn�1
k (�1)k �

n�2X
k=0

rn�1
k (�1)k =

�
a+ 1

a

�n�1

;

and this impliesZ 1

0

p(n)(u)e�udu = �1

a
(
a + 1

a
)n�1 +

1

a+ 1

�
a+ 1

a

�n

= 0:

Using (3.20), we have, for n � 1,Z 1

0

q(n)(u)e�udu =

Z 1

0

�
Ln(u)� p(n)(u)

�
e�udu =

Z 1

0

Ln(u)e
�udu

=

nX
k=0

 
n

k

!
1

k!

Z 1

0

(�u)ke�udu =

nX
k=0

 
n

k

!
(�1)k = 0:

These ensure the assertions (a) and (b).

2) Since

X
(n)
t =

Z t

0

p(n)(log
t

u
)dWu +

1

c

Z t

0

q(n)(log
t

u
)d ~Wu

=

Z t

0

p(0)(log
t

u
)dT n(W )u +

1

c

Z t

0

q(n)(log
t

u
)d ~Wu;

and

X
(n+m)
t =

Z t

0

p(n+m)(log
t

u
)dWu +

1

c

Z t

0

q(n+m)(log
t

u
)d ~Wu

=

Z t

0

p(m)(log
t

u
)dT n(W )u +

1

c

Z t

0

q(n+m)(log
t

u
)d ~Wu;

for all n � 0, and the processes T n(W ) and T n( ~W ) are Brownian motions, we get

E[X
(n)
t X

(n+m)
t ] =

Z t

0

p(n)(log
t

u
)p(n+m)(log

t

u
)du+

1

c2

Z t

0

q(n)(log
t

u
)q(n+m)(log

t

u
)du

=

Z t

0

p(0)(log
t

u
)p(m)(log

t

u
)du+

1

c2

Z t

0

q(n)(log
t

u
)q(n+m)(log

t

u
)du:
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Hence, due to the change of variables and (3.19), we haveZ 1

0

p(n)(u)p(n+m)(u)e�udu =
1

t

Z t

0

p(n)(log
t

u
)p(n+m)(log

t

u
)du

=
1

t

Z t

0

p(0)(log
t

u
)p(m)(log

t

u
)du =

Z 1

0

p(0)(u)p(m)(u)e�udu

=

Z 1

0

(
�1

a

m�1X
k=0

rmk
(�u)k
k!

+

�
a+ 1

a

�m

e�au
)
e�(a+1)udu

= �1

a

m�1X
k=0

rmk
(�1)k

(a+ 1)k+1
+

1

2a + 1

�
a + 1

a

�m

:

If m = 0, we get Z 1

0

(p(n)(u))2e�udu =
1

2a+ 1
=

1� c2

1 + c2
;

which is exactly the same form in assertion (c) for the case m = 0. As for m � 1,

we have to compute

A(m) :=

m�1X
k=0

rmk
(�1)k

(a + 1)k+1
:

From the recurrence relation (3.21), we conclude that

A(m) =
rm0
a+ 1

+

m�1X
k=1

(rm�1
k + rm�1

k�1 )
(�1)k

(a+ 1)k+1

=
rm0
a+ 1

+

(
m�2X
k=0

rm�1
k

(�1)k
(a+ 1)k+1

� rm�1
0

a+ 1

)
� 1

a+ 1

m�2X
k=0

rm�1
k

(�1)k
(a+ 1)k+1

=
a

a+ 1
A(m� 1) +

1

a+ 1
(rm0 � rm�1

0 ) =
a

a+ 1
A(m� 1) +

(a+ 1)m�2

am�1
:

By induction, we obtain

A(m) =
a

2a+ 1

��
a + 1

a

�m

�
�

a

a + 1

�m�
:

This impliesZ 1

0

p(n)(u)p(n+m)(u)e�udu =
1

2a+ 1

�
a

a+ 1

�m

=
c2m(1� c2)

1 + c2
:

Using the same argument and the fact that (Ln(u))n�0 is orthonormal with respect

to the measure e�udu, we getZ 1

0

q(n)(u)q(n+m)(u)e�udu =

Z 1

0

q(0)(u)q(m)(u)e�udu

=

Z 1

0

(L0(u)� p(0)(u))(Lm(u)� p(m)(u))e�udu

= Æ0;m +

Z 1

0

p(0)(u)p(m)(u)e�udu�
Z 1

0

p(m)(u)e�udu�
Z 1

0

Lm(u)e
�(a+1)udu:
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For the case m = 0,

Z 1

0

(q(n)(u))2e�udu = 1 +

Z 1

0

(p(0)(u))2e�udu� 2

Z 1

0

p(0)(u)e�udu

= 1 +
1

2a+ 1
� 2

a+ 1
=

2a2

(2a+ 1)(a+ 1)
=

2c4

1 + c2
:

For m � 1, from the de�nition of Ln(u) we get

Z 1

0

Lm(u)e
�(a+1)udu =

mX
k=0

 
m

k

!
1

k!

Z 1

0

(�u)ke�(a+1)udu

=

mX
k=0

 
m

k

!
(�1)k

(a + 1)k+1
=

am

(a + 1)m+1
:

Due to assertion (a), we have

Z 1

0

q(n)(u)q(n+m)(u)e�udu = � 1

2a+ 1

�
a

a+ 1

�m+1

= �c
2(m+1)(1� c2)

1 + c2
:

Hence, the statements (c) and (d) are proved. And it follows (g).

3) It remains to show the assertions (e) and (f). Since for m;n � 0, the processes

X(n) and Y (n+m) are independent, using the same argument at the beginning of 2),

we know that the values of the integrals

Z 1

0

p(n+m)(u)q(n)(u)e�udu and

Z 1

0

p(n)(u)q(n+m)(u)e�udu

are independent of n. It follows from (3.20) and the assertions (a) to (d) that

Z 1

0

p(n+m)(u)q(n)(u)e�udu =

Z 1

0

p(m)(u)q(0)(u)e�udu

=

Z 1

0

p(m)(u)e�udu�
Z 1

0

p(m)(u)p(0)(u)e�udu

=

8>>>><
>>>>:

1� c2 � 1� c2

1 + c2
=
c2(1� c2)

1 + c2
; m = 0;

0� c2m(1� c2)

1 + c2
= �c

2m(1� c2)

1 + c2
; m � 1;
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as well asZ 1

0

p(n)(u)q(n+m)(u)e�udu =

Z 1

0

p(0)(u)q(m)(u)e�udu

=

Z 1

0

q(m)(u)e�udu�
Z 1

0

q(m)(u)q(0)(u)e�udu

=

8>>>><
>>>>:

c2 � 2c4

1 + c2
=
c2(1� c2)

1 + c2
; m = 0;

�c
2(m+1)(1� c2)

1 + c2
; m � 1:

This completes the proofs.

Remark 3.5. From the construction of X(n), Y (n) and the assertion (g) of

Proposition 3.3, we know that for every t > 0 and every n � 0, m � 1, X
(n)
t ,

X
(n+m)
t , Y

(n)
t and Y

(n+m)
t are mutually independent.

In fact, from this Proposition we even know that

E[X(n+1)
s X

(n)
t ] = E[Y (n+1)

s Y
(n)
t ] = 0

for all s � t, i.e., (X
(n+1)
s )s�t and (Y

(n+1)
s )s�t are independent of X

(n)
t and Y

(n)
t ,

respectively. The next proposition gives us more information about these two se-

quences of stochastic processes.

Proposition 3.4. For n � 0 and t � 0, we have

X
(n+1)
t = T (X(n))t

and

Y
(n+1)
t = T (Y (n))t:

Proof. From (3.13), (3.14), the de�nition of T (X(n))t, T (Y
(n))t and the sto-

chastic Fubini Theorem, we get the desired results.

Due to this Proposition we can rewrite (3.15) and (3.16) as

T n(X)t = T n(W )t +

Z t

0

cT n( ~W )u � c2T n(X)u

(1� c2)u
du;

and

T n(Y )t = T n+1( ~W )t +

Z t

0

cT n(W )u � c2T n(Y )u

(1� c2)u
du:

And from these results we see the following corollary.

Corollary 3.1. For fn; gn 2 C(0; 1) \ �A(0;1), the expectations

E

�
X

(n+1)
t

�Z 1

0

fn(u)dX
(n)
u +

Z 1

0

gn(u)dY
(n)
u

��
= 0;
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and

E

�
Y

(n+1)
t

�Z 1

0

fn(u)dX
(n)
u +

Z 1

0

gn(u)dY
(n)
u

��
= 0;

for all t � 1 if and only if fn and gn are constant. More precisely, for constants A,

B and every n � 0,

E[X
(n+1)
t (AX

(n)
1 +BY

(n)
1 )] = 0;

E[Y
(n+1)
t (AX

(n)
1 +BY

(n)
1 )] = 0:

Proof. Without loss of generality, we may assume n = 0. Furthermore, for the

sake of convenience, we denote f = f0 and g = g0. Hence, we have only to check

that

E

�
T (X)t

Z 1

0

f(u)dXu

�
= 0 and E

�
T (Y )t

Z 1

0

g(u)dYu

�
= 0;

for all t � 1 if and only if f and g are constant. From

E

�
T (X)t

Z 1

0

f(u)dXu

�
=

Z t

0

f(u)du�
Z t

0

1

u

Z u

0

f(v)dvdu;

we see that this expectation is equal to 0 if and only if f is a constant. In the same

way, we get �
T (Y )t

Z 1

0

g(u)dYu

�
= 0 if and only if g = constant:

From Remark 3.1 we know that the processes (T n(X)t)n�0 and (T n(Y )t)n�0

do not L2-converge strongly, but weakly to 0 in L2. Furthermore, the orthogonal

decompositions of the �ltrations generated by (Xt)t�0 and by (Yt)t�0, respectively,

are given by:

FX
t = FX(0)

t = �(X
(0)
t )� �(X

(1)
t )� � � � � �(X

(n)
t )� FX(n+1)

t ;

FY
t = FY (0)

t = �(Y
(0)
t )� �(Y

(1)
t )� � � � � �(Y

(n)
t )� FY (n+1)

t ;

for all t � 0. Now, we look at some more relations between the natural �ltrations

of X(n), Y (n), T n(W ) and T n( ~W ).

Proposition 3.5. (i) The �ltration generated by X(n) and Y (n) is strictly smaller

than that generated by T n(W ) and T n( ~W ), i.e., for all n � 0 and t � 0,

FX(n);Y (n)

t = FX(n)

t �FY (n)

t $ FTn(W )
t � FTn( ~W )

t = FTn(W );Tn( ~W )
t :

Moreover, we have

FX(n+1);Y (n)

t = FX(n+1)

t �FY (n)

t $ FTn(W )
t � FTn+1( ~W )

t = FTn(W );Tn+1( ~W )
t :
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(ii) For all 0 � n < m, the �-algebras FX(n)

t � FY (n)

t and FTm(W )
t � FTm( ~W )

t do not

contain each other. The same result is also valid for the �-algebras FX(n+1)

t �FY (n)

t

and FTm(W )
t �FTm+1( ~W )

t .

(iii) For jcj < 1 and t � 0,

FX+cY
t = FW+c ~W

t :

Proof. Here we prove only the case

FX(1)

t � FY (0)

t $ FW
t � FT ( ~W )

t :

The general case can be proved by a similar method. We can easily check the

inclusion

FX(1)

t � FY (0)

t � FW
t � FT ( ~W )

t ;

due to the de�nitions of (X
(1)
t ) and (Y

(0)
t ). Suppose the �-algebras FX(1)

t �FY (0)

t and

FW
t � FT ( ~W )

t coincide. Then we know from the above proposition that the random

variable X
(0)
t is independent of FX(1)

t � FY (0)

t . It is therefore also independent of

FW
t � FT ( ~W )

t . But it is easy to compute

E[X
(0)
t T ( ~W )t] =

1

c

Z t

0

�
1� (

u

t
)a
�
du� 1

c

Z t

0

1

u

Z u

0

�
1� (

v

t
)a
�
dvdu

=
�a

c(a+ 1)2
t = �c(1� c2)t;

which obviously contradicts the above assumption. The second assertion follows by

the same argument and the property E[X
(n)
t Tm�1(W )t] 6= 0 for all m > n. The last

statement follows directly from the relation:

Xt + cYt =Wt + c ~Wt;

for all t � 0.

3.3. Some related decompositions

Let us look at some further properties of the process X. Consider the process

(Zt)t�0 de�ned by

Zt := t

Z 1

t

1

u
dXu:

From Chapter 1 in Yor [57] we see that this process Z is a Brownian motion.

Furthermore, it is easy to check that Xt and Zt are independent for any t, but that

the processes X and Z are not. In this section we want to give a representation of

Z in terms of W and ~W , and compare it with the representation of X.

Lemma 3.2. The process X with (3.7) satis�es

Zt = t

Z 1

t

dXu

u
= V 1

t (W ) + V 2
t (

~W ); (3.22)
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where

V 1
t (W ) := (1� c2)t

Z 1

t

dWu

u
� c2t�a

Z t

0

uadWu;

V 2
t (

~W ) :=
ct

1� c2

Z 1

t

u�a�2

Z u

0

vad ~Wvdu:

Proof. It follows from Itô's formula and (3.9) that

t�a�1

Z t

0

uadWu � s�a�1

Z s

0

uadWu =

Z t

s

d

�
u�a�1

Z u

0

vadWv

�

=

Z t

s

�
�(a + 1)u�a�2

Z u

0

vadWvdu+ u�1dWu

�

= �1

a

Z t

s

dWu

u
+
a + 1

a

Z t

s

dXu

u
� a + 1

c

Z t

s

u�a�2

Z u

0

vad ~Wvdu: (3.23)

Due to the time-change there exists a standard Brownian motion � such that

t�a�1

Z t

0

uadWu = t�a�1�R
t

0
u2adu = t�(a+1)� 1

2a+1
t2a+1 :

Applying the law of large numbers we get

lim
t!1

t�( 1
2
r+�)�tr = 0;

for any � > 0, hence

lim
t!1

t�a�1

Z t

0

uadWu = 0:

Letting t go to 1, it follows that (3.23) can be written in the form (3.22).

From the decomposition in the previous Lemma, we can derive another repre-

sentation for (3.22).

Proposition 3.6. If the process X satis�es (3.7), then

Zt = t

Z 1

t

dXu

u
=

Z t

0

�u
t

�a
dBu +

1

c

Z t

0

�
1�

�u
t

�a�
d ~Bu; (3.24)

with B and ~B are two independent Brownian motions given by

Bt = �Wt +

Z t

0

Z 1

u

dWv

v
du;

and

~Bt = � ~Wt +

Z t

0

Z 1

u

d ~Wv

v
du:
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Proof. The covariance function of (V 1
t (W ))t�0 is given by

E[V 1
s (W )V 1

t (W )] = (1� c2)2stE

�Z 1

s

dWu

u

Z 1

t

dWu

u

�
+ c4s�at�a

Z s

0

u2adu

�(1� c2)c2st�aE

�Z 1

s

dWu

u

Z t

0

uadWu

�

= (1� c2)2s+
c4

2a + 1
sa+1t�a � (1� c2)c2

a
(s� sa+1t�a)

=

�
1� c2

1 + c2

�
sa+1t�a:

This is exactly the covariance function of the process (
R t
0
(u
t
)adBu)t�0 for some stan-

dard Brownian motion B. Similarly, we have

E[V 2
s (

~W )V 2
t (

~W )] = s�
�
1� c2

1 + c2

�
sa+1t�a;

which coincides with the covariance function of (1
c

R t
0
(1 � (u

t
)a)d ~Bu)t�0 for some

standard Brownian motion ~B. Since the processes (V 1
t (W )) and (V 2

t (
~W )) are inde-

pendent, B and ~B can therefore be selected to be independent. Hence, we get the

representation (3.24). Furthermore, fromZ t

0

�u
t

�a
dBu = V 1

t (W ) = (1� c2)t

Z 1

t

dWu

u
� c2t�a

Z t

0

uadWu;

and

1

c

Z t

0

�
1�

�u
t

�a�
d ~Bu = V 2

t (
~W ) =

ct

1� c2

Z 1

t

u�a�2

Z u

0

vad ~Wvdu;

we get the representations of B and ~B in terms of W and ~W , respectively.

3.4. A related class of Brownian motions

Let (Wt)t�0 and ( ~Wt)t�0 be two independent Brownian motions. Deheuvels [21]

has shown that the process (Xt)t�0 de�ned by

Xt = Wt +

Z t

0

g(u)Wudu;

is a Brownian motion if and only if g(t) � 0 or g(t) = �1=t. Now we want to

generalize this result; see also Wu-Yor [56]. For two functions f and g in C(0;1)\
�A(0;1) we consider the process X given by

Xt = Wt +

Z t

0

(f(u) ~Wu + g(u)Wu)du; (3.25)

and we ask for which functions f and g the resulting process X can be again a

Brownian motion.
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Theorem 3.1. Denote

Ut =

Z t

0

Ws

s
ds and ~Ut =

Z t

0

~Ws

s
ds:

For the functions f; g 2 C(0;1) \ �A(0;1), the process (Xt)t�0 given by (3.25) is

a Brownian motion if and only if f(t) = �
p
� � �2=t and g(t) = ��=t, for some

� 2 [0; 1]. In particular, both processes

X�
t := Wt �

Z t

0

�
�

s
Ws �

p
� � �2

s
~Ws

�
ds; (3.26)

are Brownian motions.

Proof. (i) Denote Zt = Wt + i
p
� � �2 ~Ut, and �t = Wt � �Ut. Therefore,

essentially from the previous computations, we �nd

E(�s�t) = E(ZsZt) = E(WsWt)� (� � �2)E( ~Us
~Ut):

Hence, the covariance of the process (Wt � �Ut �
p
� � �2 ~Ut)t�0 is

E(�s�t) + (� � �2)E( ~Us
~Ut) = s+ (�2 � �)('(s; t)� E[ ~Us

~Ut]) = s;

which implies that the process X� are Brownian motions.

(ii) Conversely, since in Deheuvels [21] the case f � 0 has been proved, here we may

assume f 6� 0. Suppose (Xt)t�0 is a Brownian motion. Then from Lemma 1.2, we

know that, for s � t,

f(t)E(Xs
~Wt) + g(t)E(XsWt) = 0:

Due to (3.25) we can compute E(Xs
~Wt) and E(XsWt), which yields:

f(t)

Z s

0

uf(u)du+ g(t)

�
s+

Z s

0

ug(u)du

�
= 0:

Taking derivatives with respect to s, we get

sf(s)f(t) + (1 + sg(s))g(t) = 0: (3.27)

Since f is continuous, there exists a countable collection of disjoint component in-

tervals f(ai; bi) : i 2 Ng in (0;1), such that

f(t)

8><
>:
6= 0; 8t 2

1S
i=1

(ai; bi);

= 0; 8t 2 (0;1) n
1S
i=1

(ai; bi):

Without loss of generality, we have only to look at the case: f 2 C(0;1)\ �A(0;1),

f(t) 6= 0 for all t 2 (a; b), and f(t) � 0 on the set (0;1) n (a; b). Then for all

s; t 2 (a; b), s < t, we can rewrite (3.27) as

sf(s) +
g(t)

f(t)
(1 + sg(s)) = 0;
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which implies g(t) = cf(t) for some nonzero constant c, for all t 2 (a; b). Plugging

this result into (3.27) it follows that

f(s) = � c

(1 + c2)s
;

which is not equal to 0 on R+ . Since f is continuous, we get (a; b) = (0;1), which

gives the results.

Remark 3.6. The intersection of the class of all processes X of the form (3.26)

and of the class of processes satisfying (3.7) for some c 2 (�1; 1) contains exactly
one element, namely, the Brownian motion X = W .

Proposition 3.7. The processes Y �
t de�ned by

Y �
t := ~Wt �

Z t

0

�
1� �

s
~Ws �

p
� � �2

s
Ws

�
ds;

are Brownian motions independent of the processes X�
t , respectively.

Proof. If we change the roles of W and ~W in the process X�, we get that the

resulting process is still a Brownian motion. Hence, we see that the process Y � is a

Brownian motion. Furthermore, it is easy to check E[X�
t Y

�
s ] = E[X�

s Y
�
t ] = 0 for

all s � t.
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CHAPTER 4

An equilibrium model of insider trading

From this chapter on we are concerned with insider trading of a large investor.

We want to investigate a mathematical model of a �nancial market, in which some

investors have more information than others, and where the investment of the traders

can inuence the price of the stock. Several such models have been proposed by a

number of authors, e.g., Back [7], Bagehot [12], Copeland-Galai [17], Easley-O'Hara

[22], Glosten-Milgram [26], Grossman [30], Kyle [42]. Our study will be based on

the model introduced by Kyle [42] and Back [7]. They develop a model with a risk

neutral informed trader who knows in advance the �nal stock price at time 1. As an

extension of their study, we also consider the case where the insider obtains more

information as time increases. This idea already appears in Back-Pedersen [11].

Our purpose is to analyze the structure of insider strategies in such an extended

setting. Our analysis will be based on the results on stochastic �ltering in Chapter

2.

In Section 4.1 we specify the basic assumptions on our model and a de�nition

of equilibrium introduced by K. Back. We shall review some results of Kyle [42]

and Back [7] in Section 4.2. In Section 4.3 we derive generalized versions of the

results in Back-Pedersen [11]. Moreover, we consider special cases of sequential

information where information is obtained by observing some Gaussian martingale,

and in particular a standard Brownian motion.

4.1. De�nition of equilibrium in the sense of K. Back

In this section we introduce a simple model of insider trading and formulate a

notion of equilibrium due to K. Back [7].

Assume that there are only one bond and one stock in the �nancial market. The

interest rate of the bond is equal to 0. Trading occurs continuously during the time

interval [0; 1]. Before the trading begins, the �nal stock price P1 at time 1 is already

determined by the outcome of some N(0; 1)-distributed random variable S1. More

precisely, we assume

P1 = h(S1; 1); (4.1)

where h(�; 1) is some continuous, strictly increasing function satisfying

E[h2(S1; 1)] <1: (4.2)

65
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Suppose all market participants are risk neutral. We can classify the agents

in the market into three groups: uninformed traders, informed trader and market

maker.

(1) uninformed traders: The uninformed traders have no information about

the future price of the stock, and they can only observe their own cumulative

demands. Their cumulative demand at time t is a standard Brownian motion

(Wt), which is price-inelastic and independent of the �nal price P1. We call

the uninformed traders also noise traders or liquidity traders.

(2) informed trader: There is only one informed trader in the market, also

called insider. He gains continuously some extra information about the �-

nal price of the stock. This information process is a continuous centered

square-integrable Gaussian martingale, denoted by (St)0�t�1. Furthermore,

the informed trader can observe the cumulative orders in the whole market,

from which he can derive, in particular, the cumulative orders W of the noise

traders. Hence, the insider can choose his cumulative orders, denoted by

(It), depending on his additional information ow (St) and the cumulative

demands by the noise traders W . Technically, this means that the insider

strategy (It) is (FW;S
t )-adapted. In the sequel, we assume that the process

(It) is a semimartingale with respect to the �ltration (FW;S
t ). We denote the

collection of such strategies by I, i.e.,
I := f(It)0�t�1 : I is an (FW;S

t )-adapted semimartingaleg:
(3) market maker: There is only one market maker in the market. He knows

from the very beginning of the trading the distribution of the stock price at

time 1. He decides the stock price according to the cumulative orders in the

whole market. Thus, at each time t 2 [0; 1) the stock price is a functional of

the demand process (Xu)u�t, where Xt := Wt + It is the sum of cumulative

demands of the uninformed and informed traders. This is a semimartingale

with respect to its own �ltration.

In this chapter we discuss only the case where the market maker uses a price

functional of the form

Pt = h(Xt; t); (0 � t < 1) (4.3)

for some continuous function h(�; t). Since stock prices rise with increasing demand,

we assume that the function h(x; t) is strictly increasing in x for each t 2 [0; 1].

Due to this assumption the inverse function h�1(�; t) exists for every �xed time t.

Furthermore, we suppose that h(x; t) is twice continuously di�erentiable with respect

to x, and once with respect to t 2 [0; 1). We also assume that h(x; t) satis�es the

integrability condition

E

�Z 1

0

h2(Wu; u)du

�
<1: (4.4)
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Definition 4.1. A function h(�; �) satisfying the preceding conditions will be

called a pricing rule. The pricing rule is called space-time harmonic if it is a solution

of the heat equation

1

2
hxx(x; t) + ht(x; t) = 0; (4.5)

for all 0 � t < 1.

Lemma 4.1. There is exactly one space-time harmonic pricing rule h(�; �) whose
boundary values h(�; 1) are given by the function in (4:1), namely the function de�ned

by

h(x; t) = E [h(x +W1 �Wt; 1)]

=
1p

2�(1� t)

Z 1

�1
h(y; 1) exp

�
�(y � x)2

2(1� t)

�
dy: (4.6)

Proof. Assumption (4.2) means that

1p
2�

Z 1

�1
h2(x; 1) exp

�
�x

2

2

�
dx <1: (4.7)

Under condition (4.7), equation (4.6) de�nes a smooth function h(x; t) which satis�es

(4.4) and (4.5); this is well known from the theory of the heat equation. Moreover,

hx(x; t) =
1p

2�(1� t)

Z 1

�1
hx(y; 1) exp

�
�(y � x)2

2(1� t)

�
dy > 0; (4.8)

and this implies that h(�; t) is strictly increasing in x for all t 2 [0; 1).

Recall that at the terminal time t = 1 we assume the stock price to be given by

a function of the �nal signal S1, i.e., P1 = h(S1; 1). Thus, given the development

(Xt) of the cumulated demand in the whole market, the resulting price process (Pt)

is given by

Pt =

8><
>:

h(Xt; t); for 0 � t < 1;

h(S1; 1); for t = 1:

Note that although the price process can (and will) be inuenced by the trading

activities over the time interval [0; 1), at the terminal time 1 it will assume to the

value h(S1; 1) regardless of what has happened before.

With this formalization of the price process at hand we are now in a position to

de�ne the pro�t resulting from a given process of cumulative demands � by

(P1 � P1�)�1� +

Z 1�

0

�u�dPu; (4.9)
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where we assume, for simplicity, that all agents have initial capital 0. For an informed

trader using strategy I = (It) 2 I, his �nal pro�t is given by

�1 := �1(h; I) := (h(S1; 1)� h(X1�; 1�))I1 +
Z 1�

0

Iu�dh(Xu; u)

= (P1 � P1�)I1 +

Z 1�

0

Iu�dPu

=

Z 1

0

(P1 � Pu�)dIu � [P; I]1�; (4.10)

where for the last equality we used Itô's product rule and where ([P; I]t)0�t�1 denotes

the optional quadratic variation of the processes (Pt) and (It).

Let us now recall the de�nition of equilibrium in Back [7].

Definition 4.2. (1) (Market EÆciency) Given an insider strategy I = (It) 2
I, a pricing rule h(x; t) is called rational given I if it satis�es

h(Xt; t) = E[h(S1; 1)jFX
t ]; (4.11)

for all t � 1.

(2) (Pro�t Maximization) Given a pricing rule h(x; t), the insider strategy I? =

(I?t )0�t�1 2 I is said to be optimal given h if it maximizes the corresponding expected
�nal pro�t

E[�1(h; I
?)] = max

I2I
E[�1(h; I)]:

(3) (Equilibrium) A pricing rule h and a strategy I? for the insider de�ne an

equilibrium (h; I?) if h is a rational pricing rule given I? and I? is an optimal insider

strategy given h. In this case, we call h an equilibrium pricing rule.

Let us now address the question of existence of an equilibrium in the above sense.

First we investigate the case of an insider with full information (Section 4.2) and

then the case of an insider with increasing extra information (Section 4.3).

4.2. Equilibrium in the case of full information

In this section we assume, as in Kyle [42] and Back [7], that the insider has full

information about the �nal stock price already at the beginning of the trading. It

is also assumed that the �nal signal S1 is independent of the Brownian motion W ,

the cumulative orders of the uninformed traders.

By using a discrete time approximation, Kyle [42] shows that there exists a

unique linear equilibrium (h; I?) for which the function h(x; t) does not depend on t

and is linear in x, provided the �nal stock price is normally distributed. Note that

Kyle [42] uses a de�nition of equilibrium di�erent from our De�nition 4.2. Rochet-

Vila [53] construct a nonlinear equilibrium model in the sense of Kyle. In the more

general setup reviewed in the previous section, Back [7] shows that there exists an

equilibrium in the sense of De�nition 4.2. He proves that the insider reaches his
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maximal pro�t if and only if he drives the cumulative orders in the whole market to

the �nal value X1 = S1. He also gives an explicit description of the equilibrium:

(B1) The rational pricing rule is given by

dPt = hx(Xt; t)dXt; (4.12)

where h(�; �) is the space-time harmonic pricing rule de�ned in (4.6).

(B2) The optimal strategy for the insider is given by

I?t =

Z t

0

S1 �Xs

1� s
ds; (4.13)

which is continuous and of bounded variation. Therefore, the optional qua-

dratic variation of P and I? vanishes identically.

(B3) The cumulative demand in the whole market (Xt)0�t�1 forms a Brownian

motion with respect to its own �ltration (see Example 2.3), and it converges

to S1 as t ! 1. In fact, equation(4.13) shows that the optimal strategy

consists in constructing a Brownian bridge tied to the �nal value S1.

Recall that Back [7] does not assume the insider strategy I to be absolutely

continuous a priori. Using Bellman's equation and an optimization argument he

shows that any optimal strategy must have this property.

Remark 4.1. Property (B3) means, in particular, that the market maker cannot

discover that there is an insider in the market. This is due to our assumption that he

can only observe the cumulative orders in the whole market. But these cumulative

orders evolve like a Brownian motion whether there is an insider (using an optimal

strategy) or not.

4.3. Equilibrium with increasing information

In this section we would like to consider a more general setup. We assume

that instead of possessing the full information from the beginning the informed

trader now gains an increasing amount of information by observing a signal process

(St)0�t�1. Here S is supposed to be a continuous centered square-integrable Gaussian

martingale with respect to its own �ltration and with �nal value S1 � N(0; 1). Back-

Pedersen [11] consider the special case

St = S0 +

Z t

0

�(u)d ~Wu;

where S0 is normally distributed with mean 0, and ( ~Wt)0�t�1 is a Wiener process,

both independent ofW . Moreover, �(u) is assumed to be a deterministic continuous

function satisfying

var(S0) +

Z 1

0

�2(u)du = 1;
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and Z 1

t

�2(u)du <
1� t

1 + �
; (4.14)

for all 0 � t < 1, with some constant � > 0. Furthermore, Back-Pedersen [11] restrict

the insider to use only absolutely continuous strategies. Under these assumptions

Back-Pedersen [11] show that there exists an equilibrium in the sense of De�nition

4.2. More precisely, the optimal strategy for the insider is of the form

I?t =

Z t

0

Su �XuR 1

u
(1� �2(v))dv

du; (4.15)

and the pricing rule is given by (4.6). Again the cumulative demand in the whole

market turns out to be a Brownian motion. Hence, we are again in a situation where

the market maker will not be able to discover the insider (c.f. Remark 4.1).

Let us now consider the existence of equilibrium in our extended model where

S is only a continuous centered square-integrable Gaussian martingale. We follow

Back-Pedersen [11] in restricting the insider to absolutely continuous strategies.

Next we are going to discuss the insider's optimization problem under this as-

sumptions. Using the same argument as in Back [7] we get the following result.

Lemma 4.2. Let I? 2 I be an absolutely continuous insider strategy and let h be

the space-time harmonic pricing rule of (4:6). If I? satis�es S1 = W1 + I?1 , then it

is an optimal strategy, i.e.,

E[�1(h; I
?)] � E[�1(h; I)];

for all I 2 I0. Moreover, if I?? is another optimal insider strategy, then I?1 = I??1 .

Proof. For a constant a in the range of h(�; 1), let

Ga(z; 1) =

Z z

h�1(�;1)(a)
(h(y; 1)� a)dy; (4.16)

so that

Ga
x(x; 1) = h(x; 1)� a: (4.17)

Since h(�; 1) is strictly increasing, Ga
x(�; 1) is strictly increasing. Hence, Ga(�; 1)

is strictly convex, and has its minimum at the point h�1(�; 1)(a). It follows from

Ga(h�1(�; 1)(a); 1) = 0 that Ga(�; 1) is nonnegative. We de�ne

Ga(x; t) = E [Ga(x +W1 �Wt; 1)]

=
1p
2�

Z 1

�1
Ga(x +

p
1� t y; 1) exp

�
�y

2

2

�
dy

for 0 � t < 1. Then Ga is a solution of the heat equation�
1

2
� +

@

@t

�
Ga = 0 (4.18)
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on the strip R � [0; 1) with boundary condition (4.16). As in (4.8), we have

Ga
x(x; t) = E[Ga

x(x +W1 �Wt; 1)] = E[h(x +W1 �Wt; 1)]� a;

hence

Ga
x(x; t) = h(x; t)� a;

since h is assumed to be space-time harmonic. Alternatively, we could directly de�ne

the function

Ga(x; t) =

Z x

h�1(�;1)(a)
(h(y; t)� a)dy +

1

2

Z 1

t

hx(h
�1(�; 1)(a); s)ds;

and check that this function does satisfy conditions (4.17) and (4.18). Let us now

apply this construction pathwise for a = h(S1; 1). It follows from (4.17) and Itô's

formula that

Gh(S1;1)(Xt; t)�Gh(S1;1)(0; 0)

=

Z t

0

Gh(S1;1)
x (Xs; s)dXs +

Z t

0

G
h(S1;1)
t (Xs; s)ds+

1

2

Z t

0

Gh(S1;1)
xx (Xs; s)dhXis

=

Z t

0

(h(Xs; s)� h(S1; 1))dXs +

Z t

0

�
1

2
� +

@

@t

�
Gh(S1;1)(Xs; s)ds

=

Z t

0

(h(Xs; s)� h(S1; 1))dXs: (4.19)

Thanks to (4.18) the last term on the third line vanishes. Since W is a Brownian

motion with respect to its natural �ltration, and sinceW and S1 are independent, we

know that W is a Brownian motion relative to the enlarged �ltration (FW
t _�(S1)).

Hence, for all t � 1,

E

�Z t

0

(h(Xs; s)� h(S1; 1))dWs

�
= 0; (4.20)

due to (4.2) and (4.3). Using (4.20), (4.17) and (4.19), we can rewrite the expected

pro�t of the insider as

E[�1] = E

�Z t

0

(h(S1; 1)� h(Xs; s))dIs

�

= E

�Z t

0

(h(S1; 1)� h(Xs; s))dXs

�

= E[Gh(S1;1)(0; 0)]� E[Gh(S1;1)(X1; 1)]:

The �rst term on the third line is �xed, since the �nal signal S1 is determined before

the trading begins. Therefore, we can reformulate the optimization problem as

E[Gh(S1;1)(X1; 1)]
!
= min

I2I
: (4.21)
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Since Gh(S1;1)(�; 1) is nonnegative and achieves its minimum 0 in S1, (4.21) certainly

holds if X1 = S1. This means that the insider can reach his maximal pro�t if he can

drive the cumulative orders Xt to the �nal value S1 as t! 1.

From now on, we assume that the informed trader does not want to be discovered.

From Remark 4.1 we infer that this is assured if we allow the insider to use only

strategies such that the resulting demand process (Wt+It) is again a Wiener process;

such strategies will also be called inconspicuous. More precisely, let us introduce

the class of strategies

I0 :=

�
(It)0�t�1 : It =

Z t

0

Yudu; where (Yu) is (FW;S
t )-adapted,

E

�Z t

0

Y 2
u du

�
<1; for all t < 1; and (Wt + It)0�t�1 is a Wiener process

�
:

Proposition 4.1. Consider an inconspicuous insider strategy I? 2 I0. If X?
t =

Wt+ I?t converges to S1 as t! 1, then there exists an equilibrium. The pricing rule

h(x; t) is given by (4:6). Furthermore, there is no jump of the stock price at time 1,

i.e., P1� = P1.

Proof. Lemma 4.2 shows that the absolutely continuous strategy I? is optimal

as soon as X?
t ! S1. Moreover, X? is a Brownian motion for I? 2 I0. Market

eÆciency (4.11) now follows from the fact that h(Xt; t) is a martingale, since h(�; �)
is space-time harmonic.

Therefore if the insider can use a strategy I? driving the terminal cumulative

demand W1 + I?1 to S1, this strategy I? is optimal, and (h; I?) is an equilibrium,

where h(�; t) is de�ned by (4.6). But conversely, if I? yields

E[�1(h; I
?)] = max

I2I
E[�(h; I)];

we cannot say that W1 + I?1 must be equal to S1, because it can happen that there

is no process I 2 I such that W1 + I1 = S1. In Subsection 4.3.2 and in the next

chapter we will give several examples for such a situation. Therefore the converse

of the lemma fails to be true in general.

In Proposition 4.1, we consider just those insider strategies which turn the cu-

mulative order process into a Brownian motion. In other words, the primary goal of

the insider is not to be discovered (cf. Remark 4.1). The discussion in Section 2.3

suggests several classes of such strategies de�ned by certain linear transformations

of W and S.

In the following two subsections, we discuss existence of equilibria in the case

where (St)0�t�1 is a Gaussian square-integrable martingale whose variance satis�es

some integrability conditions, and in the case where St = ~Wt, a standard Brownian

motion.
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4.3.1. Partial information given by observing a Gaussian martingale.

Assume that the insider's extra information is given by observing a continuous cen-

tered square-integrable Gaussian martingale (St)0�t�1. We assume that its variance

function V (t) := var(St) satis�es

V (1) = E[S2
1 ] = 1 (4.22)

and the two integrability conditions

1

V (u)� u
2 A(0; 1) \ L1

loc([0; 1)): (4.23)

Proposition 4.2. Assume condition (4:22) and (4:23) hold. Then there exists

an equilibrium (h; I?). Explicitly, the rational pricing rule is given by (4:6), and

I?t :=

Z t

0

Su �Xu

V (u)� u
du (4.24)

is an optimal insider strategy.

Proof. It follows from the second assertion in Theorem 2.4 that the process X

satisfying

Xt =Wt +

Z t

0

Su �Xu

V (u)� u
du;

is a Wiener process and converges to S1 as t ! 1. Due to Proposition 4.1 we get

the desired result.

This proposition shows the existence of an equilibrium in our present setting.

But regarding uniqueness, in the terminology in Cho-El Karoui [15] we are only

sure that there exists a weakly unique equilibrium (i.e., there is a unique pricing

rule, but there may be multiple optimal strategies in the class I0). Explicitly, due
to Lemma 4.1, we derive the uniqueness of the rational pricing rule (h(�; t)). But

we cannot prove uniqueness of the optimal insider strategy. However, the insider

strategy (4.24) is the unique optimal strategy in the collection of linear strategies

I1 :=

8>><
>>:

I = (It)0�t�1 2 I0 : It =
Z t

0

(f(u)Su + g(u)Xu) du;

where f(t)
p
V (t); g(t) 2 C1(0; 1) \ L2

loc([0; 1));

9>>=
>>; :

Proposition 4.3. I? is the unique optimal strategy in I1.

Proof. From Corollary 2.4 we see that I 2 I1 if and only if

It =

Z t

0

cSu � c2Xu

V (u)� c2u
du;
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for some jcj � 1. Hence,

E[(W1 + I1 � S1)
2] = 2� 2E[(W1 + I1)S1]

= 2� 2

Z 1

0

exp

�
�
Z 1

u

c2

V (v)� c2v
dv

�
cV (u)

V (u)� c2u
du

= 2(1� c);

which is equal to 0 if and only if c = 1.

Remark 4.2. Condition (4.23) holds if either there is enough insider information

at time 0 or the additional information at time 0 increases quickly enough. In the

next subsection and in the next chapter we will relax condition (4:23) and discuss

more general forms of insider information.

The following remark shows that Proposition 4.2 is an extension of the results

in Back-Pedersen [11].

Remark 4.3. Assume that the Gaussian martingale S is given by

St = S0 +

Z t

0

�(u)d ~Wu; (4.25)

where ~W is a Wiener process and �(t) satis�es

V (0) +

Z 1

0

�2(u)du = 1: (4.26)

To derive the results in Back-Pedersen [11] as a special case of Proposition 4.2 we

can apply the above discussion as follows. From (4.25) and (4.26) we see that

V (t) = V (0) +

Z t

0

�2(u)du = 1�
Z 1

t

�2(u)du:

Thus, (4.15) coincides with our insider strategy (4.24). The condition (4.23) can be

written as Z t

0

u

(V (0) +
R u
0
�2(v)dv)2

du =

Z t

0

u

(1� R 1

u
�2(v)dv)2

du <1 (4.27)

for all t < 1. Thus, the condition (4.14) as considered in Back-Pedersen [11] is

a special case of our condition (4.27). For instance, the case where S0 = 0 and

�(t) =
p
p tp�1 does not satisfy (4.14), but we still have (4.27). Furthermore, not

all continuous centered Gaussian martingales (St) can be represented in the form

(4.25) with a Brownian motion ~W and a deterministic function �. For example,

consider the process

St = S0 +Bg(t); (4.28)
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where S0 is an N(0; 1=4)-distributed random variable and B is a Brownian motion

independent of S0. Moreover, suppose that g is given by

g(t) :=

8>>><
>>>:

f(t); 0 � t � 1

2
;

1

4
+
1

2
t;

1

2
< t � 1;

where f(t) is the Cantor function. In this case we have hSit = g(t) for all t � 1.

And the variance

V (t) = E[S2
t ] = E[S2

0 ] + g(t) =
1

4
+ g(t) =

8>>><
>>>:

1

4
+ f(t); 0 � t � 1

2
;

1

2
+
1

2
t;

1

2
< t � 1;

is strictly larger than t for all t < 1. Suppose S can be represented in the form

(4.25). From (4.25) we see that

E[(St � S0)
2] =

Z t

0

�2(u)du;

which is absolutely continuous for all t. On the other hand, by (4.28), we conclude

that for 0 � t � 1=2,

E[(St � S0)
2] = E

�
B2
g(t)

�
= g(t) =

1

4
+ f(t):

This is clearly a contradiction, since the Cantor function f(t) is not absolutely

continuous.

Now let us consider two typical examples.

Example 4.1. As in Kyle [42], we suppose the �nal price of the stock is given

by

P1 = m+ �S1;

where m 2 R and � > 0. From Proposition 4.2 and the above discussion we see

that there exists a weakly unique equilibrium in this model. Explicitly, an optimal

strategy of the insider is given by

I?t =

Z t

0

Su �Xu

V (u)� u
du:

Using this strategy the informed trader can drive the cumulative demands Xt to S1.

Therefore, in equilibrium, the pricing rule of the stock is given by

Pt = h(Xt; t) = E[P1jFX
t ] = m+ �E[S1jFX

t ] = m + �E[X1jFX
t ] = m + �Xt:

Thus, the price process P satis�es the stochastic di�erential equation

dPt = �dXt;
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with initial value P0 = m. Since P1 and W1 are independent, the processes X and

W are both Brownian motions. The insider's expected �nal pro�t is therefore given

by

E[�1] = E

�
P1I1 �

Z 1

0

PtdIt

�
= E

�
P1(X1 �W1)�

Z 1

0

Pud(Xu �Wu)

�
= E[(m + �S1)S1] = �:

This value is independent of the expected value of the pricem. Moreover, it coincides

with the expected �nal pro�t of an informed trader who owns the full information.

Furthermore, the noise traders' expected �nal pro�t is given by

E

�
(P1 � P1�)W1 +

Z 1

0

WudPu

�
= E

�
P1W1 �

Z 1

0

PudWu � hP;W i1�
�

= E[(m + �S1)W1]� E[hm+ �X;W i1�]
= �E[h�W;W i1�] = ��:

Thus, the expected pro�t of the insider is at the expense of the noise traders.

Example 4.2. Suppose the �nal price P1 is log-normally distributed, i.e., P1 is

given by

~v = P1 = exp(m + �S1);

where S1 � N(0; 1), m 2 R and � > 0. Due to Proposition 4.2 we know that there

exists an equilibrium. Thus the price process of the stock Pt is of the form

P (Xt; t) = E[P1jFX
t ] = exp

�
m+

1

2
�2

�
E

�
exp

�
�S1 �

1

2
�2

�����FX
t

�

= exp

�
�Xt +m+

1

2
�2(1� t)

�
;

i.e., the equilibrium pricing rule is given by

h(x; t) = exp

�
�x +m+

1

2
�2(1� t)

�
:

Therefore, the price process P satis�es the stochastic di�erential equation of geo-

metric Brownian motion

dPt = �PtdXt;

with initial condition P0 = exp(m+ 1
2
�2), i.e., we are in the context of the standard

Black-Scholes models. Furthermore, from the discussion above, we conclude that

the optimal insider strategy is of the form

I?t =

Z t

0

Su �Xu

V (u)� u
du;
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and that (h; I?) forms an equilibrium. Hence, the expectation of the �nal pro�t of

the insider is given by

E[�1] = E[X1h(S1; 1)] = E[S1 exp(m + �S1)] = � exp

�
m+

�2

2

�
;

as in the case where the insider has full information. Using a similar argument as in

the last example, we see that the expected �nal pro�t of the noise traders amounts

to �� exp(m + �2=2).

Remark 4.4. From the two examples above, we see that the expected pro�t

of the insider does not depend on whether he has full or only partial information,

provided the latter satis�es the integrability condition (4.23). But what is the dif-

ference between these two cases? Let us compare the insider strategy in case of full

information

I
f
t :=

Z t

0

S1 �Xf
u

1� u
du;

and that in case of partial information:

I
p
t :=

Z t

0

Su �Xp
u

V (u)� u
du:

Here the processes Xf and Xp denote the cumulative demands in the whole market

in the cases of full information and of sequential information, respectively. We know

that both processes Xf and Xp are Brownian motions with respect to their own

�ltrations, and that S1 = X
f
1 = X

p
1 . Measuring the activity of the insider strategies

as

F f(t) :=

Z t

0

E

"�
S1 �Xf

u

1� u

�2
#
du =

Z t

0

E[S2
1 ]� 2E[S1X

f
u ] + E[(Xf

u )
2]

(1� u)2
du

=

Z t

0

1� 2E[X
f
1X

f
u ] + u

(1� u)2
du =

Z t

0

1

1� u
du = log

�
1

1� t

�
;

and

F p(t) :=

Z t

0

E

"�
Su �Xp

u

V (u)� u

�2
#
du =

Z t

0

E[S2
u]� 2E[SuX

p
u] + E[(Xp

u)
2]

(V (u)� u)2
du

=

Z t

0

V (u)� 2E[S1X
p
u] + u

(V (u)� u)2
du =

Z t

0

V (u)� 2E[X
p
1X

p
u] + u

(V (u)� u)2
du

=

Z t

0

1

V (u)� u
du

>

Z t

0

1

1� u
du = F f(t);

we see that the activity for the insider with partial information is strictly larger than

that of the insider with full information.



78 4. AN EQUILIBRIUM MODEL OF INSIDER TRADING

Remark 4.5. Up to now we have only discussed the insider information as a

Gaussian martingale with variance function satisfying (4.23). Due to the �rst asser-

tion in Theorem 2.4 we can relax condition (4.23) to get Brownian motions driven

by a more general class of Gaussian martingales. But these extra Brownian motions

may not converge to S1. In the end of Section 5.1 we shall investigate this general

situation.

4.3.2. Partial information given by a Brownian motion. In this sub-

section we want to investigate the case where the insider's additional information

consists in observing a standard Brownian motion ~W . Clearly, ~W does not satisfy

the integrability conditions (4.23). Therefore, the discussion in the last subsection

is not valid for this case. We want to ask whether there is an equilibrium in the

model. If so, what is the associated optimal insider strategy and the equilibrium

pricing rule? If not, which strategies can the insider apply to get a positive expected

pro�t?

Suppose the pricing rule h(x; t) is space-time harmonic. If the cumulative orders

in the whole market Xt converge to ~W1 as t ! 1, we know from the discussion in

Section 4.2 that the insider reaches his maximal expected pro�t. But suppose that

X is a Brownian motion satisfying the stochastic di�erential equation

dXt = dWt + Ytdt; (4.29)

with initial value X0 = 0, and where (Yt) is an (FW; ~W
t )-adapted process. Then X

does not converge to ~W1 as t ! 1 as has been shown in F�ollmer-Wu-Yor [23] (see

Proposition 2.3 above). But this does yet not imply that there is no equilibrium in

this model. A priori, it might happen that there exists an insider strategy (I?t ) such

that

E[�1(h; I
?)] = max

I2I
E[�1(h; I)];

but W1 + I?1 6= ~W1.

Definition 4.3. We say a strategy I 2 I0 belongs to I2 if I is given by

It =

Z t

0

(f(u) ~Wu +

Z u

0

G(u; v)dXv)du;

where f 2 A(0; 1) \ C(0; 1), G is a continuous square-integrable Volterra kernel.

In the following we �rst want to give an explicit representation of such strategies

I 2 I2, then to check if there exists an insider strategy I? 2 I2 such that

E[�1(P; I
?)] = max

I2I2
E[�1(P; I)]:

Due to Corollary 2.6, we see that a strategy I 2 I0 belongs to I2 if and only if

It =

Z t

0

f(u)

�
~Wu �

Z u

0

�(v)dXv

�
du; (4.30)
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where �(t) is de�ned by

�(t) =
f(t)	(t)

	0(t)
; (4.31)

and 	(t) is the solution of the Sturm-Liouville equation

	00(t) = f 2(t)	(t)

with initial conditions 	(0) = 1 and 	0(0+) = 0. In addition, solving the equation

X = W + I, we get another representation of I as

It =

Z t

0

f(s)

	0(s)

�Z s

0

	0(u)d ~Wu �
Z s

0

f(u)	(u)dWu

�
ds (4.32)

(as in the equation (70) in F�ollmer-Wu-Yor [23]).

Now let us investigate the existence of an equilibrium in this model. To simplify,

we take here a simple example where the �nal price is given by ~W1, i.e., h(x; 1) = x.

Since the price process (Pt) is (FX
t )-adapted and E[

R 1

0
P 2
udu] <1, we have

E

�Z 1

0

PudWu

�
= E

�Z 1

0

PudXu

�
= 0:

Then the corresponding expected �nal wealth of the insider is given by

E[�1(h; I)] = E

�Z 1

0

(P1 � Pu)dIu

�
= E

�
P1I1 �

Z 1

0

Pud(Iu +Wu)

�
= E[ ~W1I1]

=

Z 1

0

f(s)

	0(s)

Z s

0

	0(u)duds =

Z 1

0

�(u)du:

Remark 4.6. Note that we do not need to compute the pricing rule explicitly

here, since from the above equation we see that the insider's expected �nal pro�t is

independent of the behavior of the price process between 0 and 1�.

The following corollary provides an upper bound for the expected pro�t
R 1

0
�(u)du.

Corollary 4.1. Suppose that f 2 C1(0; 1) \ A(0; 1) and � is given by (4:31).

Then Z 1

0

�(s)ds < 1:

Proof. Due to (4.30), we have, for all 0 � t � 1,

E[(X1 � ~W1)
2] = E[X2

1 ] + E[ ~W 2
1 ]� 2E[X1

~W1]

= 2� 2

Z 1

0

f(s)

	0(s)

Z s

0

	0(u)duds = 2� 2

Z 1

0

�(s)ds;

which is nonnegative. The equality holds if and only if X1 = ~W1. But as we have

shown in Proposition 2.3, these two random variables cannot coincide. This leads

to the desired result.
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Thus,
R 1

0
�(s)ds, the expected �nal wealth of the insider, cannot be equal to 1.

But how close can the insider come to the upper bound? Let us look at a simple

example.

Example 4.3. Let f(t) = c with a constant c � 0. Then the solution of the

associated Sturm-Liouville equation is given by

	(t) =
1

2c
(ect � e�ct):

This implies

�(t) =
ect � e�ct

ect + e�ct
:

Hence, the expected �nal pro�t of the insider is

E[�1] =

Z 1

0

�(t)dt =
1

c
log

�
ec + e�c

2

�
;

which is a strictly increasing function in c which starts at 0, and approaches 1 as

c!1.

This example shows that the supremum of
R 1

0
�(s)ds is equal to 1. But the

supremum cannot be reached. Hence, we conclude that there exist no equilibrium

if the insider observes an independent Brownian motion and is inconspicuous, even

though the insider can come as close to the value 1 as he wants.



CHAPTER 5

Weak equilibrium and extended models

In Chapter 4 we have seen that an equilibrium in the sense of K. Back exists if

the informed trader has either full information or a rather special kind of sequential

information. In the present chapter, we introduce a modi�ed notion of equilibrium.

It is based on the idea that the pricing rule should minimize the expected combined

pro�t of noise trading and insider trading. In addition we consider some extensions

of the basic model: the insider information may jump at the �nal time, it may be

delayed, and there may be several insiders with di�erent degrees of information.

5.1. A modi�ed notion of equilibrium

In the general context of Section 4.3, let us consider the expected �nal pro�t of

an insider strategy I 2 I0. In contrast to the last chapter, we now admit general

pricing rules of the form

Pt =

8><
>:

h((Xu)u�t; t); t < 1;

h(S1; 1); t = 1;

(5.1)

where h is a nonanticipative functional on C[0; 1]� [0; 1] such that

E

�Z 1

0

h2((Wu)u�t; t)dt

�
<1; (5.2)

see De�nition 1.4. We assume that the process (Pt)0�t�1 de�ned by (5.1) is a semi-

martingale whose paths are continuous on [0; 1).

From now on, we only consider insider strategies belonging to I0. As before, the
cumulative order process induced by I 2 I0 is given by

Xt = Wt +

Z t

0

Yu du (0 � t � 1):

Lemma 5.1. Under the preceding assumptions on the pricing rule, the expected

pro�t of a strategy I 2 I0 is given by

E[�1(h; I)] = E[I1h(S1; 1)] = E[X1h(S1; 1)]: (5.3)

In particular, it is independent of the special choice of the pricing rule h(�; t) for

time t < 1.

81
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Proof. Using the same argument as in Section 4.1 we see that the �nal pro�t

of an absolutely continuous strategy I 2 I is given by

�1(h; I) = (P1 � P1�)I1 +

Z 1�

0

IudPu

= I1P1 �
Z 1

0

PudIu;

where we have used Itô's product rule in the last step. Since (Wt)0�t�1 is a Brownian

motion with respect to the �ltration(FW;S
t ) and independent of S1, we get

E[�1(h; I)] = E

�
(I1 +W1)P1 �

Z 1

0

Pud(Iu +Wu)

�

= E

�
X1h(S1; 1)�

Z 1

0

PudXu

�
; (5.4)

here we use the fact that condition (5.2) implies

E

�Z 1

0

PudWu

�
= 0:

If I belongs to I0, then (Xt)0�t�1 is again a Wiener process. Using again (5.2) we

see that equation (5.4) reduces to (5.3).

In view of Lemma 5.1, we denote the expected �nal pro�t of the insider by

E[�1(I)] instead of E[�1(h; I)]. Let us introduce the following notion of pro�t

maximization for the insider.

Definition 5.1 (Inconspicuous pro�t maximization). An inconspicuous in-

sider strategy I? 2 I0 is called optimal if I? maximizes the expected �nal pro�t

E[�1(I)] = E[I1h(S1; 1)] of the insider for all I 2 I0, i.e.,
E[�1(I

?)] = max
I2I0

E[�1(I)]: (5.5)

In the following discussion we will restrict ourselves to certain subclasses ~I0 of

I0.

Lemma 5.2. Consider a subclass ~I0 of I0 consisting of strategies of the form

It =

Z t

0

�
f(u)S0 +

Z u

0

F (u; v)dSv +

Z u

0

H(u; v)dXv

�
du;

where f 2 L2(0; 1)\C(0; 1) and F andH are Volterra kernels satisfying F (t; u)
p
V 0(u),

H(t; u) 2 L2((0; 1)� (0; 1)); see Section 2.2. A strategy I? 2 ~I0 satis�es
E[�1(I

?)] = max
I2~I0

E[�1(I)]

if and only if I? minimizes the L2-distance between X1 = W1+I1 and the �nal signal

S1 for all I 2 ~I0, i.e.,
E[(X?

1 � S1)
2] = min

I2~I0
E[(X1 � S1)

2];
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where X?
1 = W1 + I?1 . In particular, optimality of I? with respect to ~I0 does not

depend on the special choice of the pricing rule for all time 0 � t � 1. Furthermore,

if X?
1 = S1, then I? is an optimal inconspicuous insider strategy (in I0).

Proof. 1) First we recall that

0 � E[Nh(N; 1)] <1; (5.6)

for all N(0; 1)-distributed random variable N . In fact, since h(�; 1) is strictly in-

creasing, we see that

h(x; 1)� h(�x; 1) � 0; for all x � 0;

and this implies,

E[Nh(N; 1)] =
1p
2�

Z 1

�1
xh(x; 1) exp

�
�x

2

2

�
dx

=
1p
2�

Z 1

0

(h(x; 1)� h(�x; 1)) x exp
�
�x

2

2

�
dx � 0:

The second inequality in (5.6) follows from (4.2) and the Cauchy-Schwartz inequality.

2) Due to the special linear form of the strategies in ~I0, the distribution of (X1; S1)

is Gaussian. Thus, the conditional expectation of X1 given S1 is of the form

E[X1jS1] =
E[X1S1]

E[S2
1 ]

S1 = E[X1S1]S1:

Due to (5.3) we get

E[�1(I)] = E[h(S1; 1)X1] = E[h(S1; 1)E[X1jS1]] = E[S1h(S1; 1)]E[X1S1]: (5.7)

Moreover, we know that the �nal signal S1 and the price function h(�; 1) are already
�xed before the trading begins. Hence, the insider can only inuence the term

E[X1S1]. Furthermore, due to 1) and

E
�
(X1 � S1)

2
�

= E
�
X2

1

�
+ E

�
S2
1

�� 2E [X1S1]

= 2 (1� E[X1S1]) ;

we conclude that

E [(X?
1 � S1)

2] = min
I2~I

E
�
(X1 � S1)

2
�

() E[S1X
?
1 ] = max

I2~I
E[S1X1]

() E[�1(I
?)] = max

I2~I
E[�1(I)]:

3) If X?
1 = S1, then

min
I2I0

E
�
(X1 � S1)

2
� � min

I2~I0
E
�
(X1 � S1)

2
�
= 0:

This implies

E[�1(I
?)] = max

I2I0
E[�1(I)];
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i.e., I? is an optimal inconspicuous strategy in I0.
Let us now discuss the role of the market maker. Since the cumulative order pro-

cess in the whole market is (Xt), the combined gain of the informed and uninformed

traders is given by �
(P1 � P1�)X1 +

Z 1�

0

XudPu

�
; (5.8)

depending on the choice of the pricing rule in (5.1). We are going to characterize

those pricing rules which generate a martingale with respect to the �ltration (FX
t )

up to time 1�, and which minimize expectation of the combined gain (5.8).

Definition 5.2 (Weak Market EÆciency). Given an inconspicuous strat-

egy I 2 I0, a pricing rule h(�; t) is called rational with respect to I if the following

two conditions hold:

(i) The price process Pt = h((Xu)u�t; t) satis�es

Pt = E[P1�jFX
t ]; (5.9)

for all t < 1, and L(P1) = L(P1�). In other words, the price process is a martingale

with respect to the information of the market maker (FX
t ) up to time 1�, and the

distribution of P1� is the same as that of P1.

(ii) The expected combined pro�t of the informed and uninformed traders is minimal,

i.e.,

E

�
(h(S1; 1)� h((Xu)u<1; 1�))X1 +

Z 1�

0

Xtdh((Xu)u�t; u � t)

�
!
= min; (5.10)

over all pricing rules satisfying the assumptions preceding Lemma 5.1.

Remark 5.1. Suppose that the total pro�t on the market amounts to 0. Then

the pro�t of the market maker is equal to the entire loss of the insider and the noise

traders, i.e., at the terminal time 1 the market maker earns

�
�
(P1 � P1�)X1 +

Z 1�

0

XudPu

�
:

Thus, the problem (5.10) may be viewed as a problem of pro�t maximization for the

market maker. It means that the market maker has also a dealer function. This idea

appears in Stoll [55] and also in the the bid-ask spread model of Copeland-Galai

[17].

De�ne the class H as the set of all pricing rules satisfying the �rst condition in

De�nition 5.2, i.e.,

H = fP = (Pt)0�t<1 : P is a uniformly integrable martingale with respect to (FX
t )

and L(P1) = L(P1�)g:
First let us look at a lemma.
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Lemma 5.3. Let Z be an N(0; 1)-distributed random variable on (
;F ;P) and
let h(�) be a continuous increasing function. Then

max
N

E [Zh(N)] = E [Zh(Z)] ;

where the maximum is taken over all random variables N on (
;F ;P) with dis-

tribution N(0; 1). Furthermore, the maximum is attained if and only if N = Z,

P-a.s..

Proof. Without loss of generality, we may assume h(0) = 0. Let N be an

N(0; 1)-distributed random variable on (
;F ;P). Due to the Fubini Theorem we

get

E[Zh(N)] = E

�
Z

Z 1

0

1(N�s)dh(s)

�
� E

�
Z

Z 0

�1
1(N�s)dh(s)

�

=

Z 1

0

E
�
Z1(N�s)

�
dh(s)�

Z 0

�1
E
�
Z1(N�s)

�
dh(s):

Consider the maximum of E[Z1A] over all sets A with P(A) = 1��(s), where s � 0

and 	 is the distribution function of N(0; 1). Let A? = fZ � sg. Then for any set

A with P(A) = 1� �(s) and P(A n A?) > 0, we obtain that

E[Z1A] = E[Z1AnA?] + E[Z1A\A?]

< s P(A n A?) + E[Z1A\A?] = s P(A? n A) + E[Z1A\A?]

� E[Z1A?nA] + E[Z1A\A?] = E[Z1A?]:

We see that the maximum is attained if and only if A = A? = fZ � sg. In the

same way we see that the minimum of E[Z1A] over all sets A with P(A) = �(s) and

s � 0 is E[Z1(Z�s)]. Hence,

E[Zh(N)] �
Z 1

0

E
�
Z1(Z�s)

�
dh(s)�

Z 0

�1
E
�
Z1(Z�s)

�
dh(s) = E[Zh(Z)]

for all N � N(0; 1), and the equality holds if and only if N = Z, P-a.s..

The following theorem gives the explicit form of a rational pricing rule in this

class H.

Theorem 5.1. Given an inconspicuous strategy I 2 I0, there exists a unique

pricing rule in the class H which is rational with respect to I in the sense of Def-

inition 5.2. It is given by the space-time harmonic function h(�; �) in (4:6), hence

independent of the special choice of I 2 I0. In particular, the resulting price Pt is

only a function of the current cumulative orders Xt, not a functional of the past.

Proof. Let us �x I 2 I0. Suppose P 2 H with P1� = h(N; 1), where N is

an N(0; 1)-distributed random variable. The expected combined �nal pro�t of the
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informed and uninformed traders is given by

E

�
(P1 � P1�)X1 +

Z 1�

0

XudPu

�
= E [(P1 � P1�)X1] ; (5.11)

since P is an (FX
t )-martingale up to 1� and X is a Brownian motion. Hence, the

market maker wants to minimize

E [(h(S1; 1)� h(N; 1))X1] = E [h(S1; 1)X1]� E [h(N; 1)X1] ;

over all N(0; 1)-distributed random variables N . Since P1 = h(S1; 1) is �xed and

X1 = W1+ I1 is also �xed for the given insider strategy I, the market maker cannot

inuence the �rst term on the right-hand side. Hence, this optimization problem can

be reformulated as follows: the market maker wants to �nd an N(0; 1)-distributed

random variable N? such that

E [h(N?; 1)X1] = max
N�N(0;1)

E [h (N; 1)X1] :

Due to Lemma 5.3 we see that N? = X1. Thus, if the market maker determines the

price (Pt) with P1� = h(X1; 1), he minimizes the expected combined terminal pro�t

of the informed and uninformed traders. Moreover, from the martingale property

and the strong Markov property, the price process should be of the form

Pt = E[P1�jFX
t ] = E[h(X1; 1)jFX

t ] = EXt[h(X1�t; 1)] = h(Xt; t); (5.12)

i.e., h is the space-time harmonic pricing rule given by (4.6) above.

Combining De�nition 5.1 and De�nition 5.2 we may de�ne a modi�ed equilibrium

as follows.

Definition 5.3 (Weak Equilibrium). Consider a pricing rule h 2 H and an

insider strategy I? 2 I0. The pair (h; I?) is called a weak equilibrium if h and I?

satisfy the conditions of inconspicuous pro�t maximization (De�nition 5.1) and weak

market eÆciency (De�nition 5.2). Furthermore, if I? is an optimal inconspicuous

insider strategy in some subclass ~I0, i.e.,

E[�1(I
?)] = max

I2~I0
E[�1(I)];

then (h; I?) is called a weak equilibrium in ~I0.

Now let us look at the relation between the notion of equilibrium in the sense of

De�nition 4.2 and of De�nition 5.3.

Theorem 5.2. Let I? 2 I0 and W1+ I?1 = S1. Then the pair (h; I?), where h is

given by (4:6), is an equilibrium both in the sense of De�nition 4.2 and in the sense

of De�nition 5.3.
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Proof. 1) Due to Proposition 4.1 we see that (h; I?) is an equilibrium in the

sense of De�nition 4.2.

2) From the proof of Theorem 5.1 we see that P1� = h(X1; 1). Since X1 = S1, we

get P1� = h(X1; 1) = h(S1; 1) = P1. This implies that (Pt)0�t�1 is a martingale

with respect to (FX
t ), which coincides with the rational pricing rule in the sense of

De�nition 4.2.

This theorem implies that the equilibrium de�ned in De�nition 4.2 is equivalent

to the one de�ned in De�nition 5.3, provided that there is a process I 2 I0 which
yields Wt + It ! S1 as t ! 1. In Kyle [42], Back [7] and Back-Pedersen [11]

equilibrium is discussed only in this case. But if there is no insider in the market, a

pricing rule which is rational in the sense of De�nition 4.2 satis�es

Pt = E[P1jFX
t ] = E[h(S1; 1)jFW

t ] = E[h(S1; 1)];

and this is of course unrealistic. In our weak equilibrium, the resulting rational

pricing rule h(x; t) = x due to Theorem 5.1. In the next three sections, we will

introduce some other cases of insider information where the di�erence between these

two notions of equilibrium will appear.

In the sequel, we consider two examples where a weak equilibrium can be com-

puted explicitly.

Example 5.1. As in Kyle [42], we suppose that the �nal price of the stock is

given by P1 = h(S1; 1) = m+�S1, where m 2 R and � > 0. Thanks to Theorem 5.1

we know that the expected combined �nal pro�t of the informed and uninformed

traders is minimal if the market maker determines the stock price at time t in the

following form:

Pt = E[P1�jFX
t ] = E[h(X1; 1)jFX

t ] = E[m + �X1jFX
t ] = m+ �Xt:

Hence, the expected gain of the noise traders amounts to

E

�
(P1 � P1�)W1 +

Z 1�

0

WudPu

�
= E [P1W1]� E [hP;W i1�] = ��:

The expected combined �nal pro�t of the informed and uninformed traders is given

by

E[P1X1]� E[hP;Xi1�] = E[P1X1]� �:

(a) If there is no insider in the market,

E[P1X1] = E[h(S1; 1)W1] = 0:

Thus, the expected combined �nal pro�t of the informed and liquidity traders

equal to ��.
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(b) If there is an informed trader with full information, we know from Theorem

5.2 that it is optimal for the insider to drive the cumulative demand (Xt) to

the �nal point S1, i.e., an optimal inconspicuous insider strategies is of the

form

I?t =

Z t

0

S1 �Xu

1� u
du: (5.13)

This implies that the expected �nal pro�t of the insider is equal to �, hence

the expectation of the informed and uninformed traders' combined �nal gain

equals 0.

Example 5.2. Suppose that the �nal price of the stock is a log-normally dis-

tributed random variable with positive constants m and �, i.e, P1 = exp(m+ �S1).

Due to Theorem 5.1 we conclude that the equilibrium pricing rule is given by

Pt = E[P1�jFX
t ] = E[exp(m+ �X1)jFX

t ] = exp

�
m +

1

2
�2(1� t) + �Xt

�
;

which is a geometric Brownian motion relative to (FX
t ), i.e., Pt satis�es

dPt = �Pt dXt;

with initial value P0 = exp(m+�2=2). The expected combined loss of the uninformed

traders is given by

�E
�
(P1 � P1�)W1 +

Z 1�

0

WudPu

�
= E[hP;W i1�] = E[hP;Xi1�]

= � exp

�
m +

1

2
�2

�
:

On the other hand, if the total pro�t in the market is equal to 0, the expected pro�t

of the market maker is

E[hP;Xi1�]� E[P1X1] = � exp

�
m +

1

2
�2

�
� E[P1X1];

which depends on the cumulative orders in the whole market at time 1. The associ-

ated expected pro�t of the informed trader is E[P1X1]. Let us consider two extreme

cases:

(a) If there is no insider in the market,

E[P1X1] = E[h(S1; s)W1] = 0:

We conclude that the expected �nal gain of the market maker is given by

� exp
�
m+ 1

2
�2
�
.

(b) If the informed trader has full information, the optimal inconspicuous insider

strategy is given by (5.13), which implies X1 = S1. Hence, the maximal pro�t

of the insider is given by

E[P1X1] = E [S1 exp (m + �S1)] = � exp

�
m+

1

2
�2

�
:



5.1. A MODIFIED NOTION OF EQUILIBRIUM 89

In this case, the expected pro�t of the market maker is equal to 0.

As the last two examples, we see that the expected loss of the noise trader is

given by

�E
�
(P1 � P1�)W1 +

Z 1�

0

WudPu

�
= E[hP;Xi1�] = E[hh(X; �); Xi1�];

which does not depend on the insider strategy, i.e., even though there is no insider

in the market, the noise traders will lose a certain amounts of wealth. But when

the uninformed traders always lose their money, why should they trade? Milgrom-

Strokey [47] propose a \no trade equilibrium", where the uninformed traders trade

because of some particular exogenous reasons.

At the end of this section let us consider the model of insider trading with

increasing extra information which we have introduced in Section 4.3. Suppose the

insider information consists in observing a continuous centered square-integrable

Gaussian martingale (St) with var(S1) = 1.

1

10

1

10

V (t)

V (t)

Figure 5.1

Case 1: The variance function of the insider extra information V (t) satis�es the

integrability conditions

1

V (u)� u
2 A(0; 1) \ L1

loc([0; 1));

see Figure 5.1. Due to the second assertion of Theorem 2.4 and Theorem 5.2, we

conclude that the strategy

I?t =

Z t

0

Su �Xu

V (u)� u
du

is the unique optimal inconspicuous strategy for the insider in the class I1. Thus,
in this case, there exists a weak equilibrium.
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1

10

(c?)2

V (t)

Figure 5.2

Case 2: Suppose the variance function of S satis�es

1

V (u)� c2u
2 A(0; 1) \ L1([0; 1)); (5.14)

for some positive constant c < 1, but it does not hold for c = 1 (See Figure 5.2. The

case c = 1 is concluded in case 1). De�ne ~I1 as the class of all I 2 I1 such that the

process X = W + I solves the linear stochastic di�erential equation

dXt = dWt +
cSt � c2Xt

V (t)� c2t
dt; (5.15)

for some c satisfying (5.14). It follows from the �rst assertion in Theorem 2.4 that

for all I 2 ~I1, W + I is a Brownian motion with respect to its own �ltration.

Furthermore, given a process I 2 ~I1, we see that the solution of (5.15) is given by

Xt =

Z t

0

exp

�
�
Z t

u

c2

V (v)� c2v
dv

�
dWu

+

Z t

0

exp

�
�
Z t

u

c2

V (v)� c2v
dv

�
cSu

V (u)� c2u
du:

In fact, we only have to consider the case where P1 = S1 to get an optimal inconspic-

uous strategy in the general case; see Lemma 5.2. Hence, when the insider follows

the strategy I, the resulting expected �nal pro�t amounts to

E[�1(I)] = E[P1I1] = E[S1X1] =

Z 1

0

exp

�
�
Z 1

u

c2

V (v)� c2v
dv

�
cV (u)

V (u)� c2u
du

= c:

De�ne

c? := sup

�
c > 0 :

1

V (u)� c2u
2 A(0; 1) \ L1(0; t) for all t < 1

�
;

whose square is the largest slope of the linear function under the curve V (t) and

passing through the origin. Using a similar argument as in the proof of Lemma 2.5,
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we conclude that (5.14) does not hold for c?. This implies

c? = sup
I2~I1

E[�1(I)];

but a maximum on the right-hand side is not attained. Thus, there is no equilibrium

in ~I1 in this case.

Case 3: Suppose S does not satisfy the above two cases, i.e.,

lim
t!0

�
V (t)

t

�
<1:

Figure 5.3 shows two typical examples. In the special case where S is a Wiener

process ~W , we see from Subsection 4.3.2 that there exists no insider strategy I?

such that

E[�1(I
?)] = max

I2I0
E[�1(I)]:

This implies that there exists no equilibrium in this case. In the case where the

variance of the insider information V (t) is tp for some p � 1, (5.14) does not hold

for all c > 0. It follows from Theorem 2.4 that there exists no inconspicuous insider

strategy of the form

dXt = dWt + (f(t)St + g(t)Xt) dt;

with initial value X0 = 0, where f and g are nonzero continuous functions satisfyR t
0
f 2(u)updu < 1, for all t < 1 and g 2 A(0; 1). However, it does not imply that

the insider should not trade at all. He could start to trade a little later. In Section

5.3 we will discuss this further.

1

10

1

10

V (t)

V (t)

Figure 5.3
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5.2. Noisy information

In this section we consider the case where the insider information is obtained by

observing the process

St =

8><
>:

S1 + cN; 0 � t < 1;

S1; t = 1;

where S1 and N are independent with standard normal distribution N(0; 1), and

where c is a nonnegative constant. In contrast to the previous chapter, the Gaussian

process (St) is now constant during the interval [0; 1) and then jumps to the �nal

value S1. Thus, at time t < 1 the insider observes the �nal signal corrupted by some

noise. We call c the size of the noise. In Karatzas-Pikovsky [39] the authors discuss

this kind of insider information, but in the context of a small investor model where

the insider is a price taker. In our model prices are a�ected in this context by the

insider strategy. We want to examine the existence of weak equilibrium. According

to Theorem 5.1 a rational pricing rule exists. Hence we have only to �nd an optimal

inconspicuous strategy for the informed trader.

As before we denote by (Xt)0�t�1 the cumulative orders in the market. Suppose

that the insider follows a strategy given by a linear transformation of S1 + cN and

X. More precisely, we introduce the class Ic of all strategies I = (It)0�t�1 2 I0 such
that the process X =W + I solves the equation

Xt =Wt +

Z t

0

(f(u)(S1 + cN) + g(u)Xu)du; (5.16)

for some f 2 C1(0; 1) \ L2
loc([0; 1)) and g 2 C1(0; 1) \ A(0; 1). The requirement

I 2 I0 means that X is again a Brownian motion. The following proposition gives

a characterization of these strategies. In other words, we characterize Brownian

motions in the class of processes X which are of the form (5.16).

Proposition 5.1. A process X satisfying (5.16) is a Brownian motion with

respect to its natural �ltration if and only if f and g are of the following form

f(t) =
M

M2(1 + c2)� t
;

g(t) =
�1

M2(1 + c2)� t
;

(5.17)

where M2(1 + c2) � 1. In other words, X is a solution of

dXt = dWt +
M(S1 + cN)�Xt

M2(1 + c2)� t
dt; (5.18)

with initial value X0 = 0.
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Proof. We use a similar technique as in Chapter 2. If a solution of X (5.16) is

a Wiener process, then due to the characterization in Theorem 2.2 the functions f

and g must satisfy the relation

f(s)f(t) = (sg(s)� 1)g(t);

for almost all s � t. This implies f(t) = �Mg(t) for some constantM . Substituting

this result again into the above equation, we get (5.17). Conversely, the solution of

the process X satisfying (5.18) is of the form

Xt = (M2(1 + c2)� t)

Z t

0

dWu

M2(1 + c2)� u
+

t

M(1 + c2)
(S1 + cN): (5.19)

Hence for s � t, we have

E[XsXt] = (M2(1 + c2)� s)(M2(1 + c2)� t)

Z s

0

du

(M2(1 + c2)� u)2
+

st(1 + c2)

M2(1 + c2)2

= s:

This means that X is a Brownian motion.

From this proposition we know that all processes in the class Ic are of the form

It =

Z t

0

M(S1 + cN)�Xu

M2(1 + c2)� u
du

=
t

M(1 + c2)
(S1 + cN)� (M2(1 + c2)� t)

Z t

0

Wu

(M2(1 + c2)� u)2
du:

Using this strategy, the expected �nal wealth of the insider is given by

E[�1(I)] = E[P1I1] = E[P1X1] =
E[h(S1; 1)S1]

M(1 + c2)
:

It follows from M2(1 + c2) � 1 and E[h(S1; 1)S1] � 0 that

E[�1(I)] �
E[h(S1; 1)S1]p

1 + c2
;

for all I 2 Ic. The maximum is attained at M = 1=
p
1 + c2, and the corresponding

strategy of the informed trader is given by

I?t =

Z t

0

(1 + c2)�
1
2 (S1 + cN)�Xu

1� u
du: (5.20)

Example 5.3. Suppose the �nal price of the stock P1 is normally distributed,

i.e., h(S1; 1) = m + �S1 with constants � > 0 and m 2 R. Then the �nal pro�t of

the insider is given by

E[�1] =
E[P1S1]p
1 + c2

=
�p
1 + c2

:

The associated optimal inconspicuous strategy in Ic is of the form (5.20), which

converges to (S1 + cN)=
p
1 + c2 as t! 1. Hence, we see that

E[(X?
1 � S1)

2] = min
I2Ic

E[(X1 � S1)
2] 6= 0:
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This means that no process I in Ic yieldsW1+I1 = S1. Furthermore, due to Example

5.1 we know that the price process is of the form Pt = m+�Xt. Hence, the expected

pro�t of the uninformed traders is ��, as in Example 5.1. The expected combined

pro�t of the informed and uninformed traders amounts to ��(1� 1=
p
1 + c2).

For the case c = 0, we see that the extra information is S1, the �nal signal. The

corresponding optimal strategy is given by

I?t =

Z t

0

S1 �Xu

1� u
du:

This coincides with the results in Kyle [42] and Back [7] (see also Section 4.2).

Example 5.4. Suppose that the �nal price is of the form P1 = exp(m + �S1)

with � > 0 and m 2 R. Then, due to Lemma 5.2 and the above example, the

strategy I? de�ned in (5.20) is an optimal inconspicuous strategy in Ic and the

optimal �nal pro�t of the insider is given by

E[�(I?)] =
1p

1 + c2
� exp

�
m +

1

2
�2

�
:

The expected gain of the uninformed traders is �� exp(m + �2=2).

Remark 5.2. Let us consider the equilibrium in the sense of De�nition 4.2 for

this case. We have shown in Example 5.3 that no process in Ic converges to S1�W1

and that the optimal strategy I? in Ic is given by (5.20). If the �nal price P1 is

equal to m + �S1, then the rational price process in the sense of Back's De�nition

4.2 should be of the form

PB
t = E[h(S1; 1)jFX

t ] = E[m+ �S1jFX
t ] = m+

�p
1 + c2

Xt;

i.e., the rational pricing rule is given by

hB(x; t) = m+
� tp
1 + c2

;

for t < 1. Hence, (hB; I?) is an equilibrium in the sense of De�nition 4.2. Further-

more, we see that this equilibrium depends on the insider information and PB
t 6= Pt

if c 6= 0. In this equilibrium the expected �nal wealth of the insider is �=
p
1 + c2, as

in Example 5.3. But the expected combined pro�t of the informed and uninformed

traders amounts to

E

�
(P1 � P1�)X1 �

Z 1�

0

XudPu

�
= E

��
(m + �S1)�

�
m +

�p
1 + c2

X1

��
X1

�

= �

�
E[S1X1]� 1p

1 + c2

�
= 0;

which is not equal to the result in Example 5.3.
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5.3. Delayed information

So far we have discussed the case where the insider gets his extra information

at the initial time 0. In the present section we deal with the case where the insider

gets his information at time t0 > 0. Can he invest in such a way that the cumulative

demand in the market is again a Brownian motion? If so, which strategy yields the

maximal expected pro�t?

As before we suppose that the extra information is given by a continuous centered

square-integrable Gaussian martingale (St)0�t�1 with var(S1) = 1. The informed

trader starts to observe this process only at time t0. In order not to be discovered,

the informed trader has to invest in such a way that the cumulative demand in the

market X is again a Brownian motion.

Consider the stochastic di�erential equation

dXt =

8><
>:

dWt; t � t0;

dWt + (f(t)St + g(t)Wt0 + h(t)Xt) dt; t0 < t � 1;

(5.21)

with X0 = 0, Xt0 = Wt0 and continuously di�erentiable functions f , g, h satisfyingR t
t0
f 2(u)V (u)du <1, for all t 2 (t0; 1), g 2 L1

loc([t0; 1)) , h 2 A(t0; 1).
In the following proposition we characterize those cases where the process given

by (5.21) is again a Wiener process.

Proposition 5.2. A process X satisfying (5.21) is a Brownian motion if and

only if the functions f , g and h are of the form:

f(t) =
c

c2V (t) + t0 � t
;

g(t) =
1

c2V (t) + t0 � t
; (5.22)

h(t) =
�1

c2V (t) + t0 � t
;

where c is a nonzero constant satisfying

1

c2V (u) + t0 � u
2 A(t0; 1) \ L1

loc([t0; 1)): (5.23)

Thus, the process X satisfying

dXt =

8>><
>>:

dWt; for t < t0;

dWt +
cSt +Wt0 �Xt

c2V (t) + t0 � t
dt; for t � t0;

(5.24)

is a Brownian motion with respect to its own �ltration.

Proof. 1) If the process X is a Brownian motion, the covariance function sat-

is�es E[XsXt] = s for all 0 � s � t � 1. For t0 � s � t, applying Theorem 2.1 and
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Theorem 2.2, we see that f , g and h must satisfy

h(t)(sh(s)� 1) = V (s)f(s)f(t) + t0g(s)g(t): (5.25)

For s � t0 � t, we have due to (5.21)

Xt =Wt +

Z t

t0

(f(u)Su + g(u)Wt0 + h(u)Xu) du:

Multiplying both sides by Xs and taking expectation, we see that

s = E[XsXt] = E[XsWt] +

Z t

t0

(g(u)E[XsWt0 ] + h(u)E[XsXu]) du

= s+ s

Z t

t0

(g(u) + h(u))du:

This yields g(t) + h(t) = 0. Substituting this result in (5.25), we see that the

associated solution is given by (5.22).

2) The solution of (5.24) is given by

Xt =

8>>><
>>>:

Wt; for t � t0;

Wt0 +
1

G(t)

Z t

t0

G(u)dWu +
c

G(t)

Z t

t0

G(u)Su

c2V (u) + t0 � u
du; for t > t0;

(5.26)

with a deterministic function

G(t) := exp

�Z t

t0

1

c2V (u) + t0 � u
du

�
:

This implies E[XsXt] = s after some calculation.

Proposition 5.2 shows that possible inconspicuous insider strategies are of the

form

It :=

8>>><
>>>:

0; for t < t0

Z t

t0

cSu +Wt0 �Xu

c2V (u) + t0 � u
du; for t � t0

=

8>>><
>>>:

0; for t < t0

Z t

t0

�
G(u)

G(t)
� 1

�
dWu +

c

G(t)

Z t

t0

G(u)Su

c2V (u) + t0 � u
du; for t � t0;

(5.27)

for some c satisfying (5.23). We denote the set of such strategies by I(t0). In

particular, we have I(0) = ~I1. Note that I(s) \ I(t) = f0g, if s 6= t.

Let us consider the condition (5.23). Using a similar argument as in Section 2.3

we see that a necessary condition for the constant c to satisfy (5.23) is given by

c2 � sup
t0�t�1

�
t� t0

V (t)

�
; (5.28)
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i.e.,

1

c2
� inf

t0�t�1

�
V (t)

t� t0

�
:

This means, 1=c2 is the positive slope of an aÆne linear function under V (t) which

passes t = t0 and does not intersect V (t) on [t0; 1). Hence, we have to calculate the

lower bound of c by (5.28) and check whether all constants c larger than this lower

bound satisfy condition (5.23).

Sometimes, the insider is forced to delay his investment if he wants to remain

inconspicuous. For example, if the insider information yields limt!0(V (t)=t) < 1,

he cannot apply linear strategies of the form

It =

Z t

0

(f(u)Su + g(u)Xu)du;

where f and g are continuous and satisfy some integrability conditions; see Theorem

2.4 above. But when he starts his trading later, he can use linear inconspicuous

strategies of the form (5.27). However, we have to �nd the optimal time where the

insider starts his trading. We need three steps to compute this optimal starting

time.

a) For �xed t1 > t0, let

k = sup
t1�t�1

�
t� t1

V (t)

� 1
2

:

Furthermore, we have to check whether k satis�es (5.23).

b) If the insider starts his trading at time t1, the supremum of his expected pro�t

is given by

sup
I2I(t1)

E[�1(I)] =
1� t1

k
:

If k satis�es (5.23), there exists an optimal inconspicuous insider strategy in I(t1).
c) Let

t? := arg max
t�t0

sup
I2I(t)

E[�1(I)]:

Then t? is the optimal time for the insider to start his trading.

In the next example, we will calculate this time explicitly.

Example 5.5. Consider Example 4.1 with � = � = 1, i.e., the �nal price of the

stock is P1 = S1. The price process Pt is equal to Xt, and the expected pro�t of the

insider is given by

E[�1(I)] = E[S1X1] =
c

G(1)

Z 1

t0

G(v)V (v)

c2V (v) + t0 � v
dv =

1� t0

c
;

where we use (5.26) and integration by parts. In order to obtain the maximal

expected pro�t of the insider in the class I(t0), we have to �nd a minimal positive

constant c satisfying (5.28). Consider the following special cases:
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(1) Full information: Due to (5.28), we see that

c2 � sup
t0�t�1

�
t� t0

V (t)

�
= 1� t0:

Furthermore, we see that for (c?)2 = 1� t0,

1

(c?)2V (u) + t0 � u
=

1

1� u
2 A(t0; 1) \ L1

loc([t0; 1)):

This implies that c? is valid for (5.23). Thus, the maximal value of E[�1(I)] isp
1� t0 with c? =

p
1� t0. Therefore, the optimal strategy of the insider in this

class of strategies I(t0) is of the form:

I?t =

8>>><
>>>:

0; for t < t0;

Z t

t0

p
1� t0S1 +Wt0 �Xu

1� u
du; for t � t0:

(5.29)

The expected pro�t of the noise traders is �1. If t0 = 0, the result coincides with

the one in Section 4.2.

(2) Sequential information ( ~Wt)t0�t�1 (t0 > 0): Since var( ~Wt) = t, we have

c2 � sup
t0�t�1

�
t� t0

var( ~Wt)

�
= sup

t0�t�1

�
t� t0

t

�
= 1� t0:

We see that for (c?)2 = 1� t0,

1

(c?)2V (u) + t0 � u
=

1

t0(1� u)
2 A(t0; 1) \ L1

loc([t0; 1));

provided t0 6= 0. Therefore, if t0 6= 0, the optimal strategy in I(t0) is of the form

I?t =

8>>><
>>>:

0; for t < t0;

Z t

t0

p
1� t0 ~Wu +Wt0 �Xu

t0(1� u)
du; for t � t0;

and the corresponding maximal pro�t is
p
1� t0. In fact, for t0 ! 0, we get the

expected �nal pro�t of the insider converges to 1. Hence, there exists a sequence

of insider strategies whose expected pro�t converges to the supremum of E[�(I)].

Nevertheless, if t0 = 0, there exists no inconspicuous insider strategy in
S

0�t�1 I(t).
This coincides with the results in Section 4.3.2, i.e., there exists no optimal incon-

spicuous strategy for the insider, but he can come arbitrarily close to the maximal

value.

(3) Sequential information with V (t) = ((t� t0)=(1� t0))
p for 0 < p < 1: Since

sup
t0�t�1

�
t� t0

V (t)

�
= sup

t0�t�1

(t� t0)
1�p(1� t0)

p = 1� t0;
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(5.23) holds for c2 = 1� t0. The maximal insider pro�t in I(t0) is
p
1� t0 and the

corresponding strategy is given by

I?t =

8>>><
>>>:

0; for t < t0;

Z t

t0

cSu +Wt0 �Xu

(u� t0)[(u� t0)p�1(1� t0)p�1 � 1]
du; for t � t0:

The case p = 0 is just like the case (1) above, i.e., V (1) = 1 = E[S2
1 ].

(4) Partial information with V (t) = ((t� t0)=(1� t0))
p for p > 1: Since

sup
t0�t�1

�
t� t0

V (t)

�
=

(1� t0)
p

(t� t0)p�1
=1;

we have c = 1. This means that if the insider does not want to be discovered, he

cannot use strategies in the class ~I1 except I � 0. Nevertheless, it does not mean

that the insider should not invest. If he submits orders after time t1 > t0, he could

still get a positive pro�t without being discovered.

In the following we want to calculate the optimal time for the insider to begin

his investment. Let

k2 = sup
t1�t�1

�
t� t1

V (t)

�
= sup

t1�t�1

(t� t1)(1� t0)
p

(t� t0)p

=

8>>>><
>>>>:

�
p� 1

t1 � t0

�p�1�
1� t0

p

�p

; if t1 2 (t0; 1�
1� t0

p
);

1� t1; if t1 2 [1� 1� t0

p
; 1]:

We can check that if t1 2 (t0; 1� (1� t0)=p), the constant k does not satisfy (5.23).

On the other hand, if t1 2 [1 � (1� t0)=p; 1], (5.23) holds for k. Therefore, if the

insider starts to trade at time t1, the supremum of his expected gain for strategies

in I(t1) is given by

sup
I2I(t1)

E[�1(I)] =
1� t1

k

=

8>>>>><
>>>>>:

s
pp(1� t1)(t1 � t0)(p�1)

(p� 1)(p�1)(1� t0)p
; if t1 2 (t0; 1� 1� t0

p
);

p
1� t1; if t1 2 [1� 1� t0

p
; 1]:

Since for t1 2 [1� (1� t0)=p; 1], k satis�es (5.23). This implies that
p
1� t1 is not

only supremum, but also maximum of the expected �nal pro�t. In order to calculate

t? = arg max
t�t0

sup
I2I(t)

E[�1(I)]

and the corresponding expected pro�t, we have to consider two di�erent cases.
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i) If 1 < p � 2, the optimal time for the insider to start trading is t? = 1�(1� t0)=p.

He can use the strategy

I?t =

8>>><
>>>:

0; for t < t?;

Z t

t?

p
p(1� t0) Su +Wt? �Xu

(u� t0)
p(1� t0)

1�p + p(1� u)� (1� t0)
du; for t � t?:

to attain his maximal pro�t
p
(1� t0)=p.

ii) If p > 2, we get that

arg max
t�t0

sup
I2I(t)

E[�1(I)] =
1 + t0

2
;

i.e., the optimal time for the insider to start his trading is (1 + t0)=2. But the insider

can only come arbitrarily close to the supremum of his expected pro�tr
pp

2(p+1)(p� 1)(p�1)
(1� t0):

In particular, we may consider the case where t0 = 0, i.e., the insider information

consists in observing a continuous centered Gaussian martingale S with E[S2
t ] = tp

starting at time 0. Since inf0�t�1(V (t)=t) = 0, we conclude from the above discussion

that the insider should not trade immediately. Explicitly, we get the following

results.

1 < p < 2 p � 2

optimal time to start trading 1� 1=p 1=2

maximal expected �nal pro�t
p
1=p

r
pp

2(p+1)(p� 1)(p�1)

(maximum) (supremum)

Existence of equilibrium yes no

For the case 1 < p < 2, the optimal insider strategy in
S

0�t�1 I(t) is given by

I?t =

8>>>><
>>>>:

0; for t < 1� 1

p
;

Z t

1�1=p

p
p Su +W1�1=p �Xu

up + p(1� u)� 1
du; for t � 1� 1

p
:

(5) Partial information with V (t) = 1
4
(2t2 + t+ 1).

i) t0 > 0:2: The function (t � t0)=V (t) is increasing on the interval (t0; 1). This

implies

c2 � sup
t0�t�1

�
t� t0

V (t)

�
=

1� t0

V (1)
= 1� t0:
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For c =
p
1� t0, the condition (5.23) holds. Therefore, the optimal strategy in I(t0)

is of the form

I?t =

8>>><
>>>:

0; for t < t0

Z t

t0

4(
p
1� t0Su +Wt0 �Xu)

(1� u)(1 + 3t0 � 2u(1� t0))
du; for t � t0:

The maximal pro�t of the insider is given by
p
1� t0.

ii) t0 � 0:2: The function (t � t0)=V (t) attains its maximum on [t0; 1] at ~t =

t0 +
q
t20 +

1
2
t0 +

1
2
. Thus,

c2 � sup
t0�t�1

�
t� t0

V (t)

�
=

~t� t0

V (~t)
=

16

7

 r
t20 +

t0

2
+
1

2
� t0 � 1

4

!
=: ~c2:

Hence, the optimal insider strategy in I(t0) is of the form

I?t =

8>>><
>>>:

0; for t < t0;

Z t

t0

4(j~cjSu +Wt0 �Xu)

~c2(2u2 + u+ 1) + 4t0 � 4u
du; for t � t0:

The corresponding pro�t is given by (1 � t0)

rq
t20 +

t0
2
+ 1

2
+ t0 +

1
4
and it is easy

to check that this value is strictly smaller than
p
1� t0.

From the discussion of case (4), we see that the insider may not be able to use

linear strategies from the beginning of the trading, since otherwise he would be

discovered. However, we can also provide an example where the insider can get

some positive pro�t, provided that he invests from time 0 on. But if he delays his

orders and starts at some positive time, he could get more gain. For instance, let

V (t) =

8>>><
>>>:

7

6
t� 1

6
; if

1

4
� t < 1;

1

4
t +

1

16
; if t <

1

4
:

We see that sup0�t�1(V (t)=t) is equal to 1=2. The supremum of the insider's pro�t

in ~I1 is
p
2=2 � 0:707107. But this supremum will not be attained. Consequently,

there is no weak equilibrium in ~I1. However, if the insider starts to trade a little

later, he could get more pro�t. Since

arg max
0�t�1

1� t

sup
t�s�1

�
s� t

V (s)

�1=2
=

1

7
;

and since the associated expected pro�t amounts to (6=7)3=2 � 0:79356, we see

that in this case the insider obtains more pro�t if he begins to trade �rst at time
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1=7 instead of trading from the beginning (see Figure 5.4). Moreover, this value is

maximal. It means there exists a weak equilibrium in
S

0�t�1 I(t).
1

1/16

1/4 10

1/8

1/2

1/7

V (t)

Figure 5.4

Example 5.6. Suppose that the �nal price of the stock P1 is of the form

P1 = exp(m + �S1);

with constants m 2 R and � > 0. Thanks to (5.7) we see that the �nal pro�t of the

insider with the strategy (5.27) is given by

E[�1(I)] = E[exp(m+ �S1)X1] =
�(1� t0)

c
exp

�
m+

�2

2

�
:

We have to �nd a minimal positive constant c satisfying (5.28). The rest of the

discussion is just as in the above example.

Remark 5.3. Now let us look at the equilibrium in the sense of De�nition 4.2

in the model of delayed information. Consider the case (1) in Example 5.5, i.e., the

case where the insider knows the �nal signal S1 from the time t0 on. We know that

the optimal inconspicuous strategy is of the form (5.29). Using this optimal strategy,

the cumulative order process (Xt) converges to
p
1� t0S1 +Wt0 as t ! 1. If (PB

t )

is a rational price process in the sense of Back's De�nition 4.2, it must satisfy the

martingale property for t 2 [0; 1]. Thus,

PB
t = E[S1jFX

t ] = E

�
1p

1� t0
(Xt �Wt0)

����FX
t

�

=
1p

1� t0
Xt �

1p
1� t0

E[Wt0 jFX
t ] =

8>><
>>:

0; t � t0;

1p
1� t0

(Xt �Xt0); t > t0:

For t � t0, P
B
t is not of the form h(Xt; t). Hence, we conclude that there is no

equilibrium in the sense of De�nition 4.2 if we consider only insider strategies in

I(t0),.
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5.4. A model with two insiders

Up to now we have discussed the situation where there is one insider in the

market. In the present section we want to consider the case of two insiders with

di�erent degrees of information. Such model has been discussed in, for example,

Back-Cao-Willard [10].

Suppose the �nal stock price is given by P1 = h(N1; N2), where h is a smooth

function on R2 and N1, N2 are two independent N(0; 1)-distributed random vari-

ables. We classify the agents in the market into four groups: market maker, noise

traders, partially informed trader and fully informed trader. The roles of the market

maker and the noise traders are as before. The cumulative order of the noise trader

is a Brownian motion W which is independent of N1 and N2. Both insiders can

observe the cumulative orders in the market. The partially informed trader knows

N1 at time 0; he is not aware of the existence of the other signal N2 and the other

insider, and he assumes that the �nal price will be a function of N1. The discussion

in Section 4.2 suggests that his strategy will be given by

I
(1)
t =

Z t

0

N1 �Xu

1� u
du; (5.30)

where X is the cumulative demand in the market. The fully informed traders is

aware of the presence of the partially informed trader, and he observes the signals

N1 and N2. We want to consider the optimal strategy of the fully informed trader

under this condition.

For the fully informed trader, not to be discovered by the market maker is his

main purpose. Hence, we de�ne the class I(2) of all strategies (I
(2)
t ) of the fully

informed trader of the form

I
(2)
t =

Z t

0

(f(u)N1 + g(u)N2 + k(u)Xu)du; (5.31)

where f; g 2 C1(0; 1)\L2[0; 1), h 2 C1(0; 1)\A(0; 1), and the process W +I(1)+I(2)

is again a Wiener process. In the next proposition we want to characterize Brownian

motions of the form

dXt = dWt + dI
(1)
t + dI

(2)
t

= dWt +

��
f(t) +

1

1� t

�
N1 + g(t)N2 +

�
k(t)� 1

1� t

�
Xt

�
dt

= dWt + (F (t)N1 +G(t)N2 +K(t)Xt) dt: (5.32)
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Proposition 5.3. The process X satisfying (5.32) is a Brownian motion if and

only if the functions F , G, K are of the forms

F (t) =
k

k2(1 + c2)� t
;

G(t) =
ck

k2(1 + c2)� t
; (5.33)

K(t) =
�1

k2(1 + c2)� t
;

where k2(1 + c2) � 1.

Proof. 1) Assume that X is a Brownian motion and the process (�t)0�t�1 is

de�ned by

�t = Xt �
Z t

0

K(u)Xudu (5.34)

= Wt +

�Z t

0

F (u)du

�
N1 +

�Z t

0

G(u)du

�
N2: (5.35)

The covariance of � in (5.34) is given by

E[�s�t] = s� 2

Z s

0

uK(u)du� s

Z t

s

K(u)du+ 2

Z s

0

Z u

0

K(u)K(v)vdvdu

+

�Z s

0

uK(u)du

��Z t

s

K(u)du

�
:

The covariance of � in (5.35) is given by

E[�s�t] = s+

�Z s

0

F (u)du

��Z t

0

F (u)du

�
+

�Z s

0

G(u)du

��Z t

0

G(u)du

�
:

These two values should be identical. Di�erentiating with respect to s and t, we

know that if the process X is a Brownian motion, F , G and K must satisfy the

equation

K(t)(sK(s)� 1) = F (s)F (t) +G(s)G(t);

for s � t. Solving this equation we get (5.33).

2) The solution of (5.32) with (5.33) is given by

Xt = (k2(1 + c2)� t)

Z t

0

dWu

k2(1 + c2)� u
+

t

k(1 + c2)
(N1 + cN2): (5.36)

Hence,

E[XsXt] = (k2(1 + c2)� s)(k2(1 + c2)� t)

Z s

0

du

(k2(1 + c2)� u)2
+

st

k2(1 + c2)

=
(k2(1 + c2)� t)s

k2(1 + c2)
+

st

k2(1 + c2)
= s:

This means that X is a Brownian motion.



5.4. A MODEL WITH TWO INSIDERS 105

From this proposition we see that a strategy I(2) of the form (5.31) in I(2) if and

only if

f(t) =
k

k2(1 + c2)� t
� 1

1� t
;

g(t) =
ck

k2(1 + c2)� t
;

k(t) =
�1

k2(1 + c2)� t
+

1

1� t
;

where k2(1 + c2) � 1. Applying (5.36) we rewrite I(2) as

I
(2)
t = B(W; t) +

Z t

0

�
f(u) + k(u)

u

k(1 + c2)

�
du �N1

+

Z t

0

�
g(u) + k(u)

cu

k(1 + c2)

�
du �N2

= B(W; t) +

��
1� 1

k(1 + c2)

�
N1 �

cN2

k(1 + c2)

�
log(1� t); (5.37)

where

B(W; t) :=

Z t

0

�
k2(1 + c2)� u

1� u
� 1

�Z u

0

dWv

k2(1 + c2)� v
du

Let us look at an example.

Example 5.7. Suppose that the �nal price of the stock is given by P1 = S1 =

AN1 +
p
1� A2N2 with 0 � A � 1. This implies P1 � N(0; 1). From Example 5.1

we know that the pricing rule of the stock is h(x; t) = x, i.e., (Pt)0�t<1 = (Xt)0�t<1

and this implies

hP;W i1� = hP;Xi1� = 1:

Hence, the expected �nal pro�t of the noise traders is given by

E

�
(P1 � P1�)W1 +

Z 1�

0

WudPu

�
= E

�
W1P1 �

Z 1

0

PudWu � hP;W i1�
�

= E
h
W1(AN1 +

p
1� A2N2)� 1

i
= �1;

which is independent of the strategies of both insiders. Now let us compute the

expected pro�t of the insiders. Due to Itô's product rule, we get that the expected

pro�t of the partially informed trader is given by

E

�
(P1 � P1�)I

(1)
1 +

Z 1�

0

I(1)u dPu

�
= E

�
P1I

(1)
1 �

Z 1

0

PudI
(1)
u

�

and that the expected pro�t of the fully informed trader is of the form

E

�
(P1 � P1�)I

(2)
1 +

Z 1�

0

I(2)u dPu

�
= E

�
P1I

(2)
1 �

Z 1

0

PudI
(2)
u

�
:
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Furthermore, if the fully informed trader applies a strategy of the form (5.37), the

cumulative order X is a Brownian motion satisfying (5.36). This implies that

E

�
P1I

(1)
t �

Z t

0

PudI
(1)
u

�
= E

�
S1I

(1)
t �

Z t

0

XudI
(1)
u

�

=

Z t

0

E[S1N1]� E[S1Xu]

1� u
du�

Z t

0

E[N1X1]� E[X2
u]

1� u
du

=

Z t

0

1

1� u

�
A� u

k(1 + c2)
(A+ c

p
1� A2)� u

k(1 + c2)
+ u

�
du

=

��
1

k(1 + c2)
� 1

�
(A+ 1) +

c
p
1� A2

k(1 + c2)

�
log(1� t)

+

�
A+ c

p
1� A2

k(1 + c2)
+

�
1

k(1 + c2)
� 1

��
t:

As t ! 1, this value converges to the expected pro�t of the partially informed

trader, and this is dependent on the parameters c and k of the strategies of the fully

informed trader. In addition, using a similar method we get that the expected pro�t

of the fully informed trader amounts to

E

�
P1I

(2)
1 �

Z 1

0

PudI
(2)
u

�

= lim
t!1

E

�
P1I

(2)
t �

Z t

0

PudI
(2)
u

�
= lim

t!1
E

�
S1I

(2)
t �

Z t

0

XudI
(2)
u

�

= lim
t!1

��
1� 1

k(1 + c2)

�
(A+ 1)� c

p
1� A2

k(1 + c2)

�
log(1� t)�

�
1� 1

k(1 + c2)

�
t:

If the fully informed trader uses a strategy of the form (5.37) with

0 < c <

r
1� A

1 + A
and

1p
1 + c2

< k <
1

1 + c2

 
1 + c

r
1� A

1 + A

!
;

then his expected �nal pro�t is equal to1, but at the same time that of the partially

informed trader equals �1.

So far we have assumed that the partially informed trader is not aware of the

existence of the fully informed trader. But, since the partially informed trader can

observe the cumulative demand in the market, he also knows the process W + I(2).

Hence, if the fully informed trader does not want to be discovered by the partially

informed, he has to drive the process W + I(2) to be again a Brownian motion.

However, we can prove that a process I(2) given by (5.31) turns both W + I(1)+ I(2)
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and W + I(2) into Brownian motions if and only if f , g and k are of the form

f(t) =
k

k � t
� 1

1� t
;

g(t) =

p
k(k � 1)

k � t
;

k(t) = � 1

k � t
+

1

1� t
;

with some constant k > 1. This implies that the expected pro�t of the fully informed

trader amounts to

lim
t!1

r
(k � 1)(1� A2)

k
log

�
1

1� t

�
=1;

provided k > 1 and A < 1. Hence, if the fully informed trader applies the strategy

I
(2)
t

=

Z t

0

 �
k

k � u
� 1

1� u

�
N1 +

p
k(k � 1)

k � u
N2 +

�
1

1� u
� 1

k � u

�
Xu

!
du

=

�
k log

�
k

k � t

�
+ log(1� t)

�
N1 +

p
k(k � 1) log

�
k

k � t

�
N2

+

Z t

0

�
1

1� u
� 1

k � u

�
Xudu; (5.38)

with k > 1, then the fully informed trader can get an in�nite pro�t and the expected

loss of the partially informed trader is also in�nite. Moreover, we see that, if the fully

informed trader follows the strategy (5.38), then the combined cumulative demand

of the noise and fully informed traders is a Brownian motion independent of the

random variable N1. This means that the partially informed trader cannot discover

the fully informed trader if the latter follows the strategy (5.38).
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CHAPTER 6

Insider trading and information costs

In the last two chapters, we have studied pricing rules and insider strategies in

some models where the insider's extra information is simply given. In the paper of

Grossman-Stiglitz [30], the authors consider a model where the insider has to pay

certain costs to obtain this extra information. In this chapter, our main purpose is

to introduce information costs in our model and to analyze the optimal strategy of

the insider in such a setting.

As in Chapter 4 and 5, we assume that all market participants are risk neutral.

The uninformed traders have no extra information and their cumulative order pro-

cess W is a Brownian motion. There is a market maker who determines the price

of the stock according to the cumulative demand in the market. Furthermore, there

is an investor who may obtain some additional information. But in contrast to the

models we have discussed so far, we now consider the case where this agent has to

pay some costs to get this information.

6.1. Noisy information

Suppose the full information is S1, a standard normal random variable. The

insider can buy at time t = 0 the noisy information S1 + cN at costs �(c) � 0,

where N is an N(0; 1) distributed random variable independent of S1 and c � 0 is

the size of the noise. If c = 0, the insider buys the exact information about the

�nal stock price. If the size of the noise increases, the costs will decrease. Hence,

we assume that the cost function �(c) is non-increasing in c.

For a given value of c, it has been shown in Section 5.2 that the inconspicuous

insider strategy

I?t =

Z t

0

(1 + c2)�
1
2 (S1 + cN)�Xu

1� u
du; (6.1)

yields the maximal expected pro�t

E[�1(I
?)] =

E[h(S1; 1)X1]p
1 + c2

:

Hence, after paying the information costs the expected �nal net pro�t of the insider

amounts to

E[�1(I
?)� �(c)] =

E[h(S1; 1)X1]p
1 + c2

� �(c):

109
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Based on this quantity as a function of c, the insider will decide how much informa-

tion to buy.

Let us look at an example.

Example 6.1. Suppose the terminal stock price is given by S1. Then the �nal

pro�t of the insider is given by

E[�1] =
1p

1 + c2
� �(c);

and the associated optimal strategy I? given by (6.1). Should the investor become

an insider? If yes, what kind of information should he buy? Let us now look at

some di�erent cost functions �(c) and the corresponding optimal constants c?.

(i) � � 0. In other words, the insider candidate does not need to pay any costs to

be an insider. The optimal expected �nal wealth is given by 1=
p
1 + c2. Obviously,

it is always pro�table for the investor to get this information regardless of the size

of the noise. Figure 6.1 shows the expected pro�t of insider with noisy information

S1 + cN . We see that this value is maximal if he gets the exact information (c = 0)

at time t = 0. The corresponding optimal strategy is given by

I?t =

Z t

0

~W1 �Xu

1� u
du:

This strategy coincides with the results in the papers of Kyle [42] and Back [7]; see

section 4.2.

0.2 0.4 0.6 0.8 1
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0.75

0.8

0.85

0.9

0.95

Figure 6.1. the case (i): �(c) � 0

(ii) �(c) = 1=(1 + c2). The insider has to pay 1=(1 + c2) to obtain the information

S1+cN . Figure 6.2 shows that it is not optimal for the insider to buy the information

without noise, since the full information is too expensive. In fact, we see that if the

insider buys the exact information, his pro�t is exactly equal to 0. However, it is

always pro�table for the insider candidate to buy the information if c > 0. The

optimal c? is
p
3 and the corresponding pro�t is 1/4. This implies that the optimal

information for the insider is of the form S1 +
p
3N and the corresponding optimal
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strategy for the insider is given by

I?t =

Z t

0

S1 +
p
3N � 2Xu

2(1� u)
du:

2 4 6 8

0.05

0.1

0.15

0.2

0.25

Figure 6.2. the case (ii): �(c) =
1

1 + c2

(iii) �(c) = 1=(4c). Figure 6.3 shows that if the investor buys the exact information,

his pro�t will be �1. If the size of the noise c is larger than 1=
p
15, the informed

trader earns a positive pro�t. Thus, if c < 1=
p
15, it is not pro�table for the

insider candidate to buy the information. The optimal value of c is given by c? =

0:811149 � � � , and the corresponding maximal gain is 0:468422 � � � .

2 4 6 8 10

-0.4

-0.2

0.2

0.4

Figure 6.3. the case (iii): �(c) =
1

4c

This example shows that the decision of the investor to become an insider or not

depends on the costs of the information. It may be pro�table to buy some noisy

information, and it may be better not to buy any information.

6.2. Increasing information

Suppose the investor can choose one of several di�erent processes (St) of in-

creasing extra information. Which process should he buy to maximize his expected

pro�t?
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Suppose that the insider can get increasing information by observing a continuous

centered square-integrable Gaussian martingale (St)0�t�1 with S1 � N(0; 1). Denote

by VS(t) the variance function of St. Let us consider the L
2-distance between St and

S1 which is given by

E[(St � S1)
2] = 1� 2E[S1St] + E[S2

t ] = 1� E[S2
t ] = 1� VS(t):

The smaller this distance is, the more valuable this information is. Thus, we intro-

duce a cost function of the form Z 1

0

�(VS(u))du;

where � : [0; 1] �! R is continuous and nondecreasing in t. For example, the insider

has to pay Z 1

0

�(VS(1))du = �(1)

for obtaining the process St � S1. If (St) is a Wiener process, the information cost

is equal to
R 1

0
�(u)du. Especially, if �(t) = t for all t, then information cost of (St)

is equal to the area under the curve V (t) (see the area A in Figure 6.4).

With these information costs we conclude that the expected �nal net pro�t of

the informed trader is given by

E

�
�1(I)�

Z 1

0

�(VS(u))du

�
= E

�
h(S1; 1)I1 �

Z 1

0

�(VS(u))du

�
:

Let us �rst consider the following simple example.

Example 6.2. Suppose the �nal price P1 is given by a Gaussian random variable

S1 � N(0; 1). Furthermore, suppose �(u) is given by �u with � � 0. Then the

expected �nal pro�t of this information is given by

E[��1] := E

�
�1(I)�

Z 1

0

�(VS(u))du

�
= E[S1I1]� �

Z 1

0

VS(u)du:

First we recall some results from Section 5.1 and use them to compute the expected

net pro�t of this information.

Case 1: If S satis�es the integrability conditions

1

VS(u)� u
2 A(0; 1) \ L1

loc([0; 1)); (6.2)

then using the strategy

I?t =

Z t

0

Su �Xu

VS(u)� u
du;

the expected gross pro�t is 1; see Example 4.1. Hence, the expected net pro�t of

the insider amounts to

E[��1] = 1� �

Z 1

0

VS(u)du:
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m � t

A

B

m

1

1

VS(t)

0

Figure 6.4

Since VS(t) satis�es (6.2), using the third assertion in Lemma 2.5 we conclude that

VS(t) > t for all t 2 (0; 1). This results in

E[��1] < 1� �

Z 1

0

udu = 1� �

2
:

Case 2: If S is a Brownian motion ~W , the information cost amounts toZ 1

0

�(VS(u))du =

Z 1

0

�udu =
�

2
:

Due to the discussion in Subsection 4.3.2, we see that the insider can use this

information to realize an expected pro�t as close to 1� �=2 as he wishes.

Combining Case 1 and Case 2, we see that if � > 1, the information as in the

above two cases is not valuable. If � < 1, it is pro�table to buy the information S

which forms a Brownian motion.

Case 3: Suppose (St)0�t�1 is a continuous Gaussian martingale satisfying

1

VS(u)� c2u
2 A(0; 1) \ L1

loc([0; 1)) (6.3)

for some positive constant c < 1. But S does not satisfy (6.2). Let

c? := sup

�
c > 0 :

1

V (u)� c2u
2 A(0; 1) \ L1(0; t) for all t < 1

�
:

Thus, supremum of E[�1(I)] amounts to c?. This implies that the expected gain

E[��1] is bounded above by c? � �
R 1

0
VS(u)du. Furthermore, from the discussion in

Section 2.3 we see that

c2 � m := inf
0�t�1

�
VS(t)

t

�
� 1
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for all c satisfying (6.3). This implies c? � p
m. We can interprete m as the smallest

slope of the linear function passing the origin 0 which intersects the curve VS(u) on

the interval (0; 1]; see Figure 6.4. We see that the integral
R 1

0
VS(u)du is the area A

under the curve VS(u), and this is larger than the area B which is m=2. Hence,

E[��1] < c? � �
m

2
� p

m� � m

2
�

8>>>><
>>>>:

1� �

2
; if � � 1;

1

2�

�
> 1� �

2

�
; if � > 1:

If � � 1, the discussion is as in Cases 1 and 2. But if � > 1, it is advantageous for

the insider to buy a process S whose variance function is, for example, of the form

VS(t) =

8>>>><
>>>>:

Æ +
1

�2
t; if 0 � t � 1� Æ;

1�
�
1� 1

�2

��
1

Æ
� 1

�
(1� t); if 1� Æ < t � 1;

(6.4)

for some Æ > 0 small enough.

Case 4: Suppose the variance function of S satis�es

lim
t!0

�
V (t)

t

�
<1:

Then if the insider does not want to be discovered, he cannot use linear strategies

of the form

It =

Z t

0

(f(u)Su + g(u)Xu)du;

where f and g are continuous functions satisfying some integrability conditions; see

Theorem 2.4. However, he may start to trade at some later time t0, but he has

to pay the full information costs, since he obtains the information from time 0 on.

Suppose the insider uses a delayed strategy of the form (5.27) where the constant c

satis�es

1

c2
� m := inf

t0�t�1

�
V (t)

t� t0

�
;

see Section 5.3. Then the expected net pro�t of this information is given by

E[��1] <
p
m(1� t0)� �

Z 1

0

VS(u)du �
p
m(1� t0)� �

m(1� t0)

2

= (1� t0)

�p
m� �m

2

�
�

8>>>><
>>>>:

(1� t0)

�
1� �

2

�
; if � � 1;

1� t0

2�

�
<

1

2�

�
; if � > 1:
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1

10
t0

A

m

V (t)

Figure 6.5

From the above discussion we conclude that it is pro�table for the insider to buy

information whose variance function is linear with slope 1=�2 ^ 1 on the interval

[0; 1� Æ] for some small Æ > 0; for example, of the form (6.4).

6.3. Delayed information

In this section we look at the case where the insider can decide at which time

he buys his extra (full or partial) information (Su). When he buys the information

at time t > 0, he pays no information cost during the time interval [0; t]. Some

natural questions arise: At which point of time is it optimal for the investor to

buy the information? Can he achieve his maximal expected gain while remaining

inconspicuous?

Let (Is) be the process de�ned by

Is :=

8>><
>>:

0; for s < t;

Z s

t

cSu +Wt �Xu

c2V (u) + t� u
du; for s � t;

(6.5)

with

1

c2V (u) + t� u
2 A(t; 1) \ L1

loc([t; 1)):

From the discussion in Section 5.3 we see that if the insider starts to trade at

time t 2 (0; 1) and follows the strategy I, he will not be discovered during the whole

trading interval. Due to the discussion in the last section we see that the information

cost from time t to 1 amounts to
R 1

t
�(VS(u))du. Hence, the expected �nal pro�t is
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given by

E

�
�1(I)�

Z 1

t

�(VS(u))du

�
= E

�
h(S1; 1)X1 �

Z 1

t

�(VS(u))du

�
:

Let us look at a simple example.

Example 6.3. Suppose the �nal price of the stock is given by P1 = S1. Suppose

the insider decides to purchase the information (Su) �rst at time t � 0 and uses the

strategy given by (6.5). Then his pro�t is given by

G(t) = E

�
�1(I)�

Z 1

t

�(VS(u))du

�
=

1� t

c
�
Z 1

t

�(VS(u))du;

where � is the cost function. Let us consider the following cases:

(1) �(u) � 0, i.e., no information costs. Then the discussion is just the same as in

Example 5.5. The insider can reach his maximal pro�t if he gets the extra informa-

tion from the beginning, but in this case the cumulative demand in the market is not

necessarily a Brownian motion. This depends on the structure of the information

process (Su) the insider desires to buy. If (Su) is a standard Brownian motion, he

cannot use strategies of the form (6.5) if he does not want to be discovered. In the

case St � S1 he can achieve the maximum while remaining inconspicuous.

(2) �(t) = � � 0. SinceZ 1

t

�(VS(u))du =

Z 1

t

�du = �(1� t);

the expected pro�t of the insider is given by

G(t) =
p
1� t� �(1� t):

If � � 1=2, it is pro�table for the insider to buy the information at time 0. But

whether he can reach his maximal pro�t without being discovered depends again on

the structure of (Su).

For the case � > 1=2, if the informed trader wants to reach his maximal pro�t,

he should not buy the information at the beginning of the trading. It is easy to check

that in this case the optimal point of time for the insider to buy the information is

1� 1=(4�2). In the following we look at the optimal time for the informed trader to

buy the information for di�erent values of the constant �.

(i) � = 0:8, i.e., the pro�t of the insider is given by

G(t) =
p
1� t� 0:8(1� t):

Figure 6.6 shows that G(t) does not attain its maximum at t = 0, but at time

t = 39=64. Thus, in this case it is not optimal for the insider to buy the information

too early.

(ii) � = 1, i.e., the pro�t of the insider is given by

G(t) =
p
1� t� (1� t):
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Figure 6.6. the case � = 0:8

In this case the optimal time to buy the information is at t = 3=4. But whenever the

informed trader buys the information, he will get a non-negative pro�t; see Figure

6.7. Hence, it is always worth for the insider to buy the information.
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Figure 6.7. the case � = 1

(iii) � = 1:2. From Figure 6.8, we see that the insider should not buy his information

too early, otherwise he will get a negative pro�t. More precisely, he should not buy

the information at time t < 11=36. After this time, he will get a positive pro�t. The

optimal time to buy the information is t = 119=144.
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Figure 6.8. the case � = 1:2
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(3) �(u) = �u with a constant �. Then the information cost is given byZ 1

t

�(VS(u))du = �

Z 1

t

VS(u)du:

Hence, the pro�t of the insider is given by

G(t) =
p
1� t� �

Z 1

t

VS(u)du:

(a) If Su = S1, i.e., VS(u) = 1 for all u, then the expected gain is of the form

G(t) =
p
1� t� �(1� t):

The rest of the discussion is the same as in the case (2).

(b) If (Su) is a Brownian motion, then

G(t) =
p
1� t� 1

2
�(1� t2):

(i) � = 1. If the investor wants to get the full information from time t, he has

to pay 1
2
(1 � t2). From Figure 6.9, we see that it is optimal for him to buy the

information from the beginning of the trading. But as we have shown, there are no

such strategies which remain inconspicuous.
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Figure 6.9. the case � = 1

(ii) � = 1:8. From Figure 6.10 we see that whenever the insider buys the infor-

mation, he gets a positive pro�t, and at time t = 0:927319 � � � , he can reach his

maximal pro�t.

(iii) � = 2. See Figure 6.11. The optimal time to buy the information is t =

0:905997 � � � . In contrast to the last case, the expected pro�t of the insider will be

negative if he buys the information too early.
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Figure 6.10. the case � = 1:8
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Figure 6.11. the case � = 2
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