
Querying Semistructured Data Based On Schema Matching

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

im Fach Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakult�at II

Humboldt-Universit�at zu Berlin

von

Herr Dipl.-Inf. Andr�e Bergholz

geboren am 20. M�arz 1971 in Berlin

Pr�asident der Humboldt-Universit�at zu Berlin:

Prof. Dr. Dr. h.c. Hans Meyer

Dekan der Mathematisch-Naturwissenschaftlichen Fakult�at II:

Prof. Dr. sc. nat. Bodo Krause

Gutachter:

1. Prof. Johann Christoph Freytag, Ph. D.

2. Prof. Dr. Heinz Schweppe

3. Prof. Alex Brodsky, Ph. D.

eingereicht am: 25. November 1999

Tag der m�undlichen Pr�ufung: 24. Januar 2000

Abstract

Most of today's data is still stored in �les rather than in databases. This fact has

become even more evident with the growth of the World Wide Web in the 1990s.

Because of that observation, the research area of semistructured data has evolved.

Semistructured data is typically stored in documents and has an irregular, partial, and

implicit structure. The thesis presents a new framework for querying semistructured

data. Traditional database management requires design and ensures declarativity. The

possibilities to design are limited in the �eld of semistructured data, thus, a more

exible approach is needed.

We argue that semistructured data should be represented by a set of partial schemata

rather than by one complete schema. Because of irregularities of the data, a complete

schema would be very large and not representative. Instead, partial schemata can serve

as good representations of parts of the data. While �nding a complete schema turns

out to be diÆcult, a database designer may be able to provide partial schemata for the

database. Also, partial schemata can be extracted from user queries if the query lan-

guage is designed appropriately. We suggest to split the notion of query into a \What"-

and a \How"-part. Partial schemata represent the \What"-part. They cover semanti-

cally richer concepts than database schemata traditionally do. Among these concepts

are predicates, variable de�nitions, and path descriptions. Schemata can be used for

query optimization, but they also give users hints on the content of the database. Find-

ing the occurrences (matches) of such a schema forms the most important part of query

execution. All queries of our approach, such as the focus query or the transformation

query, are based on this matching. Query execution can be optimized using knowledge

about containment relationships between di�erent schemata.

Our approach and the optimization techniques are conceptually modeled and im-

plemented as a prototype on the basis of Constraint Satisfaction Problems (CSPs).

CSPs form a general class of search problems for which many techniques and heuristics

exist. A CSP consists of variables that have a domain associated to them. Constraints

restrict the values that variables can simultaneously take. We transform the problem

of �nding the matches of a schema in a database to a CSP. We prove that under certain

conditions the matches of a schema can be found without any search and in polyno-

mial time. For optimization purposes the containment relationship between schemata

is explored. We formulate a suÆcient condition for schema containment and test it

again using CSP techniques. The containment relationship can be used in two ways

depending on the direction of the containment: It is either possible to reduce the search

space when looking for matches of a schema, or it is possible to present the �rst few

matches immediately without any search. Our approach has been implemented into

the constraint system ECLiPSe and tested using XML documents.

Keywords:

Semistructured data, Query languages, Query processing, Constraint Satisfaction Prob-

lems

Zusammenfassung

Daten werden noch immer gr�o�tenteils in Dateien und nicht in Datenbanken gespei-

chert. Dieser Trend wird durch den Internetboom der 90er Jahre nur noch verst�arkt.

Daraus ist das Forschungsgebiet der semistrukturierten Daten entstanden. Semistruk-

turierte Daten sind Daten, die meist in Dokumenten gespeichert sind und eine impli-

zite und irregul�are Struktur aufweisen. HTML- oder BibTEX-Dateien oder in ASCII-

Dateien gespeicherte Genomdaten sind Beispiele. Traditionelles Datenbankmanage-

ment erfordert Design und sichert Deklarativit�at zu. Dies ist im Umfeld der semistruk-

turierten Daten nicht gegeben, ein
exiblerer Ansatz wird gebraucht. In dieser Arbeit

wird ein neuer Ansatz des Abfragens semistrukturierter Daten pr�asentiert.

Wir schlagen vor, semistrukturierte Daten durch eine Menge von partiellen Schema-

ta zu beschreiben, anstatt zu versuchen, ein globales Schema zu de�nieren. Letzteres ist

zwar geeignet, einen eÆzienten Zugri� auf Daten zu erm�oglichen; ein globales Schema

f�ur semistrukturierte Daten leidet aber zwangsl�au�g an der Irregularit�at der Struktur

der Daten. Wegen der vielen Ausnahmen vom intendierten Schema wird ein globales

Schema schnell sehr gro� und wenig repr�asentativ. Damit wird dem Nutzer ein ver-

zerrtes Bild �uber die Daten gegeben. Hingegen k�onnen partielle Schemata eher ein

repr�asentatives Bild eines Teils der Daten darstellen. Mit Hilfe statistischer Methoden

kann die G�ute eines partiellen Schemas bewertet werden, ebenso k�onnen irrelevante

Teile der Datenbank identi�ziert werden. Ein Datenbanksystem, das auf partiellen

Schemata basiert, ist
exibler und re
ektiert den Grad der Strukturierung auf vielen

Ebenen. Seine Benutzbarkeit und seine Performanz steigen mit einem h�oheren Grad

an Struktur und mit seiner Nutzungsdauer.

Partielle Schemata k�onnen auf zwei Arten gewonnen werden. Erstens k�onnen sie

durch einen Datenbankdesigner bereitgestellt werden. Es ist so gut wie unm�oglich, eine

semistrukturierte Datenbank komplett zu modellieren, das Modellieren gewisser Teile

ist jedoch denkbar. Zweitens k�onnen partielle Schemata aus Benutzeranfragen gewon-

nen werden, wenn nur die Anfragesprache entsprechend entworfen und de�niert wird.

Wir schlagen vor, eine Anfrage in einen
"
Was\- und einen

"
Wie\-Teil aufzuspalten. Der

"
Was\-Teil wird durch partielle Schemata repr�asentiert. Partielle Schemata beinhalten

reiche semantische Konzepte, wie Variablende�nitionen und Pfadbeschreibungen, die

an Konzepte aus Anfragesprachen angelehnt sind. Mit Variablende�nitionen k�onnen

verschiedene Teile der Datenbank miteinander verbunden werden. Pfadbeschreibungen

helfen, durch das Zulassen einer gewissen Unsch�arfe, die Irregularit�at der Struktur der

Daten zu verdecken. Das Finden von Stellen der Datenbank, die zu einem partiellen

Schema passen, bildet die Grundlage f�ur alle Arten von Anfragen. Im
"
Wie\-Teil der

Anfrage werden die gefundenen Stellen der Datenbank f�ur die Antwort modi�ziert. Da-

bei k�onnen Teile der gefundenen Entsprechungen des partiellen Schemas ausgeblendet

werden oder auch die Struktur der Antwort v�ollig ver�andert werden. Wir untersuchen

die Ausdrucksst�arke unserer Anfragesprache, in dem wir einerseits die Operatoren der

relationalen Algebra abbilden und andererseits das Abfragen von XML-Dokumenten

demonstrieren.

Wir stellen fest, da� das Finden der Entsprechungen eines Schemas (wir nennen ein

partielles Schema in der Arbeit nur Schema) den aufwendigsten Teil der Anfragebear-

beitung ausmacht. Wir verwenden eine weitere Abstraktionsebene, die der Constraint

Satisfaction Probleme, um die Entsprechungen eines Schemas in einer Datenbank zu

�nden. Constraint Satisfaction Probleme bilden eine allgemeine Klasse von Suchproble-

men. F�ur sie existieren bereits zahlreiche Optimierungsalgorithmen und -heuristiken.

Die Grundidee besteht darin, Variablen mit zugeh�origen Dom�anen einzuf�uhren und

dann die Werte, die verschiedene Variablen gleichzeitig annehmen k�onnen, �uber Neben-

bedingungen zu steuern. In unserem Ansatz wird das Schema in Variablen �uberf�uhrt,

die Dom�anen werden aus der Datenbank gebildet. Nebenbedingungen ergeben sich aus

den im Schema vorhandenen Pr�adikaten, Variablende�nitionen und Pfadbeschreibun-

gen sowie aus der Graphstruktur des Schemas. Es werden zahlreiche Optimierungstech-

niken f�ur Constraint Satisfaction Probleme in der Arbeit vorgestellt. Wir beweisen, da�

die Entsprechungen eines Schemas in einer Datenbank ohne Suche und in polynomialer

Zeit gefunden werden k�onnen, wenn das Schema ein Baum ist, keine Variablende�ni-

tionen enth�alt und von der Anforderung der Injektivit�at einer Einbettung abgesehen

wird. Zur Optimierung wird das Enthaltensein von Schemata herangezogen. Das

Enthaltensein von Schemata kann auf zwei Weisen, je nach Richtung der Enthalten-

seinsbeziehung, genutzt werden: Entweder kann der Suchraum f�ur ein neues Schema

reduziert werden oder es k�onnen die ersten passenden Stellen zu einem neuen Schema

sofort pr�asentiert werden.

Der gesamte Anfrageansatz wurde prototypisch zun�achst in einem Public-Domain

Prolog System, sp�ater im Constraintsystem ECLiPSe implementiert und mit Anfragen

an XML-Dokumente getestet. Dabei wurden die Auswirkungen verschiedener Opti-

mierungen getestet. Au�erdem wird eine gra�sche Benutzerschnittstelle zur Verf�ugung

gestellt.

Schlagw�orter:

Semistrukturierte Daten, Anfragesprachen, Anfragebearbeitung, Constraint Satisfacti-

on Probleme

2

Acknowledgment

I am grateful to Professor Johann Christoph Freytag, Professor Heinz Schweppe, and

Professor Alex Brodsky for reviewing my thesis. For the past three years, Professor

Freytag has supervised my work and helped me with numerous discussions and com-

ments. He also made it possible for me to meet other researchers, in particular the

Lore group at Stanford University. Professor Schweppe also helped me to improve my

work with many discussions.

I would like to thank all members of the Graduate School in \Distributed Informa-

tion Systems", in particular its chair Professor Oliver G�unther. The internal workshops

provided a critical forum, that e�ected the progress of my work in a very positive man-

ner. Furthermore, every student bene�ted from the many invited talks by prominent

researchers. Many thanks for numerous discussions to all the members of the Grad-

uate School, in particular to Professor Bernhard Thalheim, Dr. Myra Spiliopoulou,

Lukas Faulstich, Marcus J�urgens, Ulf Leser, and Felix Naumann. The research of the

Graduate School is supported by the German Research Society, Berlin-Brandenburg

Graduate School in Distributed Information Systems (DFG grant no. GRK 316).

The database group at Humboldt-University made my everyday life very enjoyable.

I am most grateful to Felix Naumann for reviewing many papers and drafts, for an

in�nite number of comments, and for his patience with me. I would like to thank all

members of our group for numerous discussions and comments, and for providing a

pleasant atmosphere to work in during the past three years. Karsten L�ucke helped

me with the implementation of the project. I thank Heinz Werner for his continuous

technical support and Ulrike Scholz for solving many administrative problems.

Last, but most important, I would like to thank my mother and Michael Wiederhold

for their love and their imperturbable faith in me. Thank you all!

Berlin, 26th May 2000

Andr�e Bergholz

3

Contents

I Introduction 10

1 Semistructured Data 12

1.1 Those good old days: Traditional data management 12

1.2 These scary new days: Semistructured data 13

1.3 Queries, Queries, Queries . 14

1.4 A
exible query framework for semistructured data 16

1.5 Related areas . 18

1.6 Thesis outline . 20

II The Query Language 22

2 Labeled Graphs for Data Representation 24

2.1 Labeled directed graphs . 24

2.2 Mappings between graphs . 27

2.3 An algebraic and a relational characterization 28

2.4 Three examples . 34

2.5 Other representations for semistructured data 38

2.6 Summary . 42

3 Schemata and Instances 44

3.1 Predicate schemata and naive conformity 44

3.2 Adding variables . 46

3.3 Adding paths . 47

3.4 Other notions of schema . 53

3.5 Summary . 56

4 Queries and Answers 57

4.1 Simple schema queries . 57

4.2 Adding a focus . 58

4

4.3 Transforming the answer . 59

4.4 On the expressiveness of our query language 61

4.5 Intermezzo: Graph transformations . 65

4.6 Other query languages for semistructured data 68

4.7 Summary . 72

III Query Processing 73

5 Schema Matching as a Constraint Satisfaction Problem 75

5.1 Introduction to Constraint Satisfaction Problems 76

5.2 Transformation of the schema matching problem 78

5.2.1 The basic principles of the transformation 79

5.2.2 Dealing with variables and paths 81

5.2.3 Correctness and completeness of the transformation 85

5.3 Cost-based query processing for semistructured data 87

5.4 Summary . 88

6 Optimization Techniques for Constraint Satisfaction Problems 89

6.1 Consistency techniques . 89

6.2 Search algorithms . 91

6.3 Variable ordering . 94

6.4 Observations on the properties of our approach 95

6.5 Summary . 97

7 Schema Containment and Optimization 98

7.1 Schema containment . 98

7.2 Testing schema containment using constraints 100

7.3 Making use of schema containment . 102

7.4 Traditional query containment . 104

7.5 Summary . 104

IV Implementation and Conclusion 106

8 Implementation 108

8.1 First steps: A Prolog-based schema matcher 108

8.2 Integrating XML documents . 112

8.3 An ECLiPSe-based answering system . 114

8.4 The user interface . 118

5

8.5 Summary . 119

9 Conclusion 120

9.1 Summary of the thesis . 120

9.2 Discussion . 121

V Appendices 123

A Frequently Asked Questions 125

B Fundamentals of Graph Theory and Partially Ordered Sets 128

B.1 Fundamentals of Graph Theory . 128

B.2 Fundamentals of Partially Ordered Sets 132

C Documentation of the ECLiPSe-based Answering System 135

C.1 The ECLiPSe modules . 135

C.2 The user interface . 141

C.3 The XML support . 143

D List of Mathematical Symbols 145

6

List of Figures

1.1 An excerpt from a BibTEX-�le . 14

1.2 A new query framework for semistructured data 17

2.1 A labeled directed graph . 25

2.2 The lattice of all subgraphs of a simple tree 27

2.3 A simple directed graph . 32

2.4 Example 1: A simple person database 35

2.5 Example 2: A relational database . 35

2.6 Example 2: A relational database as labeled directed graph 36

2.7 A simple XML document represented as a labeled directed graph 39

2.8 Labels on nodes and arcs - Transformations 41

2.9 An edge-labeled tree with cycles . 42

3.1 A simple predicate schema . 45

3.2 The predicate schema and its minimal matches 46

3.3 Adding variables . 46

3.4 Three directed graphs and their corresponding trail graphs 47

3.5 Adding paths . 50

3.6 A more detailed look into conformity . 50

3.7 A problem with minimal matches . 51

3.8 An OEM source together with two DataGuides 54

3.9 A Document Type De�nition for articles 55

4.1 A focus query . 59

4.2 A transformation query . 60

4.3 An idea to introduce aggregation . 60

4.4 Representing the selection . 61

4.5 Representing the projection . 62

4.6 Representing the crossproduct . 63

4.7 Representing the natural join . 63

4.8 Equal attribute-value pairs . 64

7

4.9 A simple schema query for XML documents 65

4.10 Linking di�erent parts of an XML document 65

4.11 An attributed graph rule . 67

4.12 The host graph before and after the application of the rule 68

4.13 A relational database as edge-labeled tree 70

5.1 A queen restricting the possible positions of the other queens 76

5.2 The set of constraints for the 4-queens problem 77

5.3 Solutions of the 4-queens problem . 77

5.4 The constraint graph for the 4-queens problem 78

5.5 The basic idea of the transformation . 79

5.6 The predicate schema revisited . 80

5.7 Variables in a schema revisited . 82

5.8 Paths in a schema revisited . 83

6.1 An arc consistent CSP with no solution 91

6.2 The search space for the 3-Queens Problem 92

6.3 Theoretical evaluation of backtracking algorithms 94

6.4 The widths of ordered constraint graphs 96

6.5 A tree-structured schema and the corresponding constraint graph 96

7.1 Three semantically identical schemata 100

7.2 Schema containment . 101

7.3 Reducing the search space . 103

7.4 First few matches . 104

8.1 Architecture of the Prolog-based schema matcher 109

8.2 Graphical user interface to the ECLiPSe-based schema matcher 118

B.1 A Hasse diagram . 133

8

List of Tables

2.1 Characterizations of mappings . 28

2.2 Comparison of di�erent models for semistructured data 42

4.1 Classi�cation of the relational operators 61

4.2 Comparison of di�erent query languages for semistructured data 72

8.1 Performance of the Prolog-based schema matcher 111

8.2 Schema containment in the Prolog-based schema matcher 112

9

Part I

Introduction

10

Chapter 1

Semistructured Data

The important thing in science is not so much to obtain new facts

as to discover new ways of thinking about them.

(Sir William Bragg)

1.1 Those good old days: Traditional data management

With the amount of electronically available data growing tremendously during the

past decade the management of electronic data becomes more and more important.

Database management systems (DBMSs) are extremely valuable tools for achieving

this. They are widely used in all areas of today's society. The major advantage of

database management systems is that they provide a \centralized control of : : : data"

[Dat95]. Date explains the advantages of DBMSs in more detail:

� Redundancy of data can be avoided, because applications share data instead of

having their own private �les.

� Thus, inconsistency of data can be avoided.

� Data can be shared. Not only existing applications can share data, but new

applications can be built on top of a database.

� Standards on data representation can be enforced. This is very desirable e.g., for

data exchange.

� Security restrictions can be applied. Rules can be speci�ed for each type of access

on each piece of data. The centralized management of data in fact requires a good

security system.

� Integrity of data can be maintained.

12

� Most important, data independence can be provided. Knowledge of data organi-

zation and access techniques is no longer needed on the application level.

Relational DBMSs are most widely used today. There are a number of good reasons

for their popularity. First, they have a solid theoretical foundation, the relational model

[Cod70]. Second, they o�er declarative access to the data. That is, access to the data is

based on the structure rather than the content. Third, query processing techniques are

well-developed and relational systems scale to today's demands on data management.

The downside of relational database management is, however, that it requires de-

sign. A data administrator de�nes the structure of the data; he enforces standards.

Only then does querying based on this structure become possible for every user; and

the vision of many applications sharing the same data can become true. We will see in

the next section that one of the most important challenges of today's database research

is to handle data that cannot be put into a prede�ned structure.

1.2 These scary new days: Semistructured data

Semistructured data has emerged as an important research topic within the database

�eld [Abi97, Bun97]. There are several reasons for this development. First, the amount

of electronically available data in a vast variety of representations has grown enormously

over the last couple of years. The World Wide Web is the driving force behind this

growth. Treating the Web like a database is desirable, however, the Web cannot be

constrained by a schema. A second reason for the importance of semistructured data

is data exchange. We would like to have
exible means for exchanging data between

di�erent places. Third, even when dealing with structured data it may be convenient

to view them as semistructured for certain purposes, such as browsing.

Documents of markup languages are the most cited examples of semistructured

data. BibTEX-�les [Lam94] are related examples, because they have many properties

in common with documents of markup languages. The example in Figure 1.1 presents

a BibTEX-�le containing two entries. They share attributes, yet they are not derived

from some \superclass". Within the entries there are attributes that are mandatory

and others that are optional. Furthermore, arbitrary annotation is permitted. Most

important, the structure is given within the document itself.

Informally, semistructured data is \data that is neither raw data nor strictly typed"

[Abi97]. We pick three aspects of semistructured data that seem very characteristic.

1. The structure may be irregular. The data may be more speci�c or less speci�c

than some intended schema. Attributes may be missing, extra annotation may

be given. Di�erent types may be used for the same attribute. An address can

13

@inproceedings{Abi97,

author="Abiteboul, S.",

title="Querying Semi-Structured Data",

booktitle="Proceeding of the

International Conference on Database Theory (ICDT)",

year=1997}

@book{Dat95,

author="Date, C. J.",

title="An Introduction To Database Systems",

publisher="Addison-Wesley",

year=1995,

series="The System Programming Series",

edition="6th"}

Figure 1.1: An excerpt from a BibTEX-�le

be just a string or be split into street, city and zip code. The latter may be an

integer or a string.

2. The structure may be partial. Over a discourse world the degree of structure may

vary. Bitmaps or text have little structure, whereas other parts of the data may

be well structured.

3. The structure of the data may be implicit. The structure becomes clear only after

analyzing the actual value of the data. Because semistructured data is very often

stored in documents, the aspect of implicity of structure is very typical. BibTEX

is a good example for this.

We recognize that semistructured data is really a new and demanding challenge

for database researchers. The most important question, that arises in this context, is

certainly: How we can query semistructured data in the same declarative manner, that

we are used to with, say, relational data? But there is more: Many traditional areas of

database research, such as query optimization, indexing, or views have to be adapted

to cope with the new challenge.

1.3 Queries, Queries, Queries

Because querying is probably the most important requirement that people have for a

database system, we take a closer look at various kinds of queries that users pose.

14

grep command The command grep 'Carpenter' *.txt in a Unix-system takes all

�les in the current directory with the extension txt as its \database" and returns

occurrences of the string given. These occurrences are in a sense the answer to

the query. They take the form <filename> : <line_of_occurence>. Instead

of a string a regular expression can be given as the �rst argument. This type of

querying does not respect any kind of structure of the database, it is a purely

content-based kind of querying.

Search engines Search engines on the World Wide Web provide a somewhat di�erent

kind of functionality. For them, the \database" is the set of HTML-pages they are

aware of. The user can enter one or several strings and the engine returns URLs of

HTML-pages containing these strings. Most search engines also support boolean

operations, e.g., the user can specify that the page should contain one string, but

not another. So far, this kind of querying is also purely content-based. However,

because HTML is a markup language the user can typically also pose queries

based on tags. At AltaVista [Alt] such a query takes the form <tag>:<string>;

the system returns all pages where <string> occurs in a text marked up by <tag>.

This introduces a little structure to querying. However, because HTML tags are

prede�ned and do not usually re
ect the structure of a document very well, this

type of search engines really does only slightly better than a Unix-grep. Other

search engines, such as Yahoo! [Yah], provide a hierarchically organized catalog

of preselected pages. With such a system, the query is �rst matched against the

catalog returning a set of categories and pages from the preselected set. Querying

the complete set of pages is performed afterward or can be performed on demand.

Relational algebra In contrast to the above, this query language of the relational

model is purely structure-based. Queries are expressed in terms of relation and

attribute names. For example, the user can specify a query asking for the names

of all persons born in 1971. This query is purely based on the relation name

Person and on the attribute names name and yearOfBirth. Operators of the

relational algebra include the selection (denoted by �), the projection (�), the

Cartesian product (�), the Join (./), the division (�) and the set operations union

([), intersection (\), and di�erence (n). The example query can be written as

�fnameg(�yearOfBirth=1971(Person)). The answer consists of a relation containing

one attribute name �lled with 1-tuples of names. Querying in this structure-based

manner is possible, because the data is well-structured and organized in relations.

Note that this language has a formal set-based semantic.

SQL SQL is the standard query language for relational database systems. Its theoreti-

15

cal foundation is the tuple relational calculus. It is also a structure-based language

(also called declarative language). The example query from the previous point can

be expressed in SQL as SELECT name FROM Person WHERE yearOfBirth=1971;.

However, SQL provides a richer functionality. The user can express queries that

include concepts, such as outer joins or aggregations. These concepts cannot be

formalized within the set-theoretic approach of the relational algebra. The former

introduces NULL-values and the latter often requires the presence of an ordering

on the values. A query language similar to SQL is what we would like to have

for semistructured data as well.

1.4 A
exible query framework for semistructured data

In this section we present the main idea of this thesis, namely a new framework for

querying semistructured data. The following chapters demonstrate how this framework

is put into practice. A preliminary version of the ideas presented in this thesis can also

be found in [Ber99].

Consider again relational systems. We identify three abstract layers: the opera-

tional layer, the schema layer and the instance layer. The tuples form the instance

layer; and the tables form the schema layer. On the operational layer there are con-

cepts, such as queries, views, or constraints. We note that the items of the operational

layer are expressed using the items of the schema layer, i.e., queries are expressed using

tables. We would like to adapt this framework for querying semistructured data. As we

have learned in the previous sections, the serious problem of semistructured data is its

lack of known-in-advance structure. We observe that for relational data every item on

the instance layer (every tuple) belongs to exactly one item on the schema layer (one

table). Certainly, this constraint has to be relaxed in the context of semistructured

data.

The query framework, adapted to cover semistructured data, is shown in Figure 1.2.

Because semistructured data is usually represented as a graph, we show example graphs

for the two bottom layers. Partial schemata in the middle layer conform to some parts

of the database in the bottom layer. There is no further restriction, i.e., a partial

schema can have an arbitrary number of instances in the database, and instances can

conform to an arbitrary number of schemata.

The crucial layer of this approach is the middle one, the layer of the schemata.

There are a number of interesting questions: How do we get those schemata? What

are they good for? How do we manage them? The simplest way to get them is

from a database designer. Remember that the data is called semistructured rather

than unstructured. So at least some parts of a database can potentially be modeled.

16

Schemata

Schema query Focus query Transformation query

Instances

Operations

Figure 1.2: A new query framework for semistructured data

A database designer may thus be able to provide some meaningful partial schemata.

Another way to get partial schemata is the following. A query posed to the system uses

both schema and operational layer. In other words, a query consists of a \What"-part

(i.e., a partial schema) and a \How"-part (i.e., an operation). As an analogy, in the

relational world we can consider a selection to correspond to the \What"-part and a

projection correspond to the \How"-part of a query. Now, an obvious approach is to

cache the \What" 's, i.e., to extract partial schemata out of queries. To make this

possible we lift some concepts typically found in queries (such as selection conditions)

to the layer of the schemata. Partial schemata are useful for two main purposes. First,

they can give users hints on the content of a database. Second, they can be used for

query optimization. Note, that schemata being good for the former are not necessarily

good for the latter and vice versa.

What are the advantages of our approach? A system designed in this way re
ects the

degree of structure of a database on many levels. If a database is well structured there

will be large schemata with many instances. Thus, users will get a lot of information

about the data; and the performance of the system will be good as well. If, however,

the database is not well structured there will be only some useful schemata. Thus, the

user will not get full knowledge about the database; and the performance will su�er

as well. The schema layer can serve as an indication on the degree of structure of

the database. The existence of large schemata with many instances indicates that the

database is rather well structured. Parts of the database, that are not covered by any

schema, are probably not very interesting or have a rather obscure structure. We will

17

conclude this section with three paradigms that shall guide our approach:

1. Answering a query works without schema information.

2. Answering a query bene�ts from schema information.

3. Answering a query induces new schema information.

1.5 Related areas

In this section we introduce areas that substantially in
uence this thesis. For now,

we only give overviews of the areas. More speci�c relationships will be pointed out

whenever appropriate in the later chapters. We start by introducing other projects on

semistructured data and observe two of the areas that strongly in
uenced semistruc-

tured data: Data integration and Web querying. Ideas from the area of graph trans-

formations are used in our approach for specifying queries. Constraint satisfaction

techniques play an important role in this work, they are used for query optimization.

Semistructured data We already introduced the notion of semistructured data in

Section 1.2. The Lore project at Stanford [MAG+97] and the UnQL query language at

the University of Pennsylvania [BDHS96] will be discussed in detail. The reason why is

that the two have semistructured data in general and not just one speci�c application

in mind.

Lore initially used a simple and
exible data model, the Object Exchange Model

(OEM) [PGMW95], to represent the data. Recently, Lore switched to using XML

[Xml]. In OEM all objects are self-describing; there is initially no need for classes

or schemata. For this model a query language named Lorel (\Lightweight Object

Repository Language") has been developed [QRS+95]. Syntactically, Lorel is similar

to SQL/OQL. It supports simple queries, boolean connectors, subqueries, and label

markers to distinguish pre�xes in paths. The semistructured
avor comes through

by the introduction of general path expressions. They serve two purposes: One can

use wildcards for paths, and one can de�ne regular expressions over the labels. In a

next step some schema information in the form of dynamically created and maintained

DataGuides is introduced [GW97]. They help the user to get a better view on the data,

e.g., for query formulation in a QBE-like manner. Additionally, DataGuides are useful

for optimization; they might serve as an index.

A similar, more theoretical project is the University of Pennsylvania's UnQL project.

The query language UnQL (\Unstructured Query Language") has been developed

[BDHS96]. Edge-labeled trees are used as the data model. The query language UnQL

18

has a similar functionality as Lorel. Edge-labeled trees or labels can be the result of a

query. One interesting aspect is the explicit treatment of restructurings of a database

by using the traverse-command. Again, post-de�ned schemata for the purpose of

optimization are introduced [BDFS97].

Abiteboul, Cluet and Milo provide techniques for the management of data stored

in �les [ACM93]. The translation between structured strings and databases is inves-

tigated. Thus, �le querying and manipulating by using database technology becomes

possible. Furthermore, optimization techniques from relational databases are adapted.

Data integration Projects on semistructured data often originated together with in-

formation integration projects. Often these integration projects focused on a low-level,

syntactical integration of data sources. A good example is the Lore project, which orig-

inated from The Stanford-IBM Manager of Multiple Information Sources (TSIMMIS,

[CGMH+94]). TSIMMIS provides tools for integration of heterogeneous information

sources. It uses the wrapper/mediator architecture to translate and combine informa-

tion from di�erent sources [Wie92]. Furthermore, TSIMMIS allows browsing of data

sources over the Web.

Similarly, IBM's partner project Garlic aims at enabling large-scale multimedia

information systems [CHN+95]. It shall be capable of integrating data from a variety

of repositories. Garlic uses wrappers and a metadata repository. It is based on an

object-oriented data model.

Querying the World Wide Web More related work arises in the context of query-

ing the World Wide Web. A main focus lies on query languages suited for the Web.

AT&T's Strudel is a Web-site management system that addresses the problems of

handling multiple data sources and of automating the management of site content and

structure [FFK+98]. It selects and manages data at Web sites, organizes the structure

of the data at individual pages as well as between multiple pages, and designs a visual

presentation of pages. In this context, the query language StruQL for semistructured

data is presented.

The ARANEUS project, located at the University of Rome and the University della

Basilicata, aims at developing tools for the management of data coming from the World

Wide Web [AMM97]. Web sites are described using a formal data model. Based on

this model, tools and methodologies for wrapping, querying, integrating, designing and

implementing Web sites have been developed.

W3QS (\WWW Query System"), a system developed at the Technion Israel In-

stitute of Technology, uses the SQL-like query language W3QL that addresses both

19

structure and content of WWW nodes [KS95]. Similar languages are Concordia's We-

bLog and Toronto's WebSQL [LSS96, MMM96].

Abiteboul and Vianu address the problem from the theory point of view [AV97].

They consider �rst oder logic, Datalog, and Datalog with negation in the context of

the Web and characterize them with respect to computability.

Graph transformations Graph transformations address the dynamic aspects of

graphs. Implemented systems are typically rule-based and can be used to model be-

havior or work
ow. A graph transformation rule can be described by two graphs: a

left-hand side and a right-hand side. Informally, in an application of the rule a match

for the left-hand side in the host graph is replaced by the right-hand side. An in-

troduction into computation by graph transformations can be found in the book by

Rozenberg [Roz97].

Two popular systems are PROGRES [Sch97] and AGG [Agg]. Particularly inter-

esting from our point of view is how the matching of left-hand side graphs into the

host graph is performed. PROGRES uses a database-like approach [Zue93] AGG uses

a constraint-based approach [Rud98].

Constraint Satisfaction Problems Constraint Satisfaction Problems (CSPs) form

a general class of search problems for which many techniques and heuristics exist. In a

CSP variables with domains associated to them are given; and constraints restrict the

values that variables can simultaneously take. A solution to a CSP is an assignment

of values from the domains to the variables such that all constraints are satis�ed.

CSPs have a wide variety of applications ranging from airport counter allocation to

multiple DNA and protein sequence alignment. Bartak [Bar98] and Kumar [Kum92]

provide an introduction to the �eld. They give various algorithms, heuristics and useful

background information to eÆciently solve CSPs.

1.6 Thesis outline

This thesis is organized as follows. The query language in accordance with the frame-

work outlined in Section 1.4 is described in the Chapters 2, 3, and 4. The three chapters

correspond to the three layers shown in Figure 1.2. Chapter 2 describes the underlying

syntax of labeled directed graphs as well as mappings between them. We also intro-

duce our running examples. In Chapter 3 we introduce the notion of schema and de�ne

conformity between schemata and objects. Schemata can include predicates, variable

de�nitions, and path descriptions. The queries on top of the schemata are described

in Chapter 4. We investigate the expressiveness of the query language. Furthermore,

20

we give an introduction to the �eld of graph transformations, which is a conceptual

inspiration for our approach.

The following Chapters 5, 6, and 7 deal with the problem of query optimization.

In Chapter 5 we point out that the challenging part of answering a query is to �nd

the matches of a given schema in a database graph. We give an introduction to the

�eld of Constraint Satisfaction Problems (CSPs) and reformulate the problem of �nding

schema matches in this framework. Chapter 6 discusses various optimization techniques

for CSPs. Among them are domain reduction by applying consistency techniques,

search algorithms, and the order of instantiation of the variables. We also prove an

interesting property of our approach: If the injectivity requirement is ignored, matches

of a tree-shaped schema without variable de�nitions can be found without search and

in polynomial time. In Chapter 5 we incorporate the notion of schema containment

into our optimization. To this end, we de�ne the notion of schema containment and

give a suÆcient condition for it. We describe how to test this condition, again using

CSP techniques. Furthermore, we present how we make use of the knowledge about

schema containment once we detect it.

Chapter 8 describes the implementation part of this work. We made our initial

experiences with a Prolog prototype of a schema matcher and then switched to the

commercial constraint solver ECLiPSe. In this chapter we also outline how we incor-

porate XML documents into our system. We conclude with a summary and a discussion

of the thesis in Chapter 9. In the appendices we answer frequently asked questions,

give fundamentals of graph theory and partially ordered sets, provide a documentation

of our ECLiPSe-based answering system, and give a list of the mathematical symbols

used in this thesis.

21

Part II

The Query Language

22

Chapter 2

Labeled Graphs for Data

Representation

If it can't be expressed in �gures,

it is not science; it is opinion.

(Lazarus Long)

This chapter describes the underlying syntax of our approach. We use a very general

graph model that we introduce in Section 2.1. Mappings between graphs play an

important role in later parts of this thesis when we talk about schemata and instances

and about query processing. De�nitions of such mappings are given in Section 2.2.

To broaden our understanding of graphs, two alternative characterizations of graphs

and mappings are presented in Section 2.3: an algebraic and a relational one. In

Section 2.4 we give three examples that will be used several times throughout the whole

work. Section 2.5 takes a look at other work on semistructured data and their data

representations. In particular, we give a short introduction into XML, a model that

has recently enjoyed great popularity. Finally, Section 2.6 summarizes this chapter.

2.1 Labeled directed graphs

We use a general graph model to represent the data we are interested in. Graph models

seem to be \the unifying idea in semi-structured data" [Bun97]. We do not require any

speci�c restrictions to our graphs. In particular we allow labels on both vertices and

arcs and do not require the graph to be acyclic, a tree, connected etc.

De�nition 2.1 (Total directed graph). A tuple G = (V;A; s; t) is a total directed

graph if V is a set of vertices, A a set of arcs, and s and t are total functions from A

to V assigning each arc its source and target vertex, respectively.

24

We sometimes use the term node instead of vertex. However, we always use the

term arc instead of edge to emphasize that we consider directed graphs. In our model

two nodes can be linked by more than one arc. Furthermore, cycles are allowed. The

following de�nition introduces labels on nodes and arcs.

De�nition 2.2 (Labeled directed graph). Let L be an arbitrary set of labels. A

tuple G = (V;A; s; t; l) is a (L-)labeled directed graph if (V;A; s; t) is a total directed

graph and l : V [A �! L is a total label function assigning each vertex and arc a label

from L.

Now, an object is a labeled directed graph. We also use the term database instead of

object when we talk about a \large" object that is to be queried. Note that we usually

denote objects with lower-case letters (i.e., o1; o2; : : :), but graphs with upper-case

letters (i.e., G1; G2;H; : : :) to be consistent with both worlds.

Figure 2.1 presents an example that we shall use many times throughout the work.

It shows a semistructured database on persons having names, surnames, a year of birth,

a profession etc. Additionally, a sibling relationship relates di�erent people.

Root

#1 #2 #3

Smith

Suzy

1942

Carpenter

CarpenterCarpenter

person person

brother sister

name
surname name

name
surname

yearOfBirthprofession

person

Harry

v1

v2 v3 v4

v5

v6

v7

v8

v9

v10

v11

a1 a2 a3

a4 a5

a6 a7 a8
a9

a10 a11 a12

Figure 2.1: A labeled directed graph

Paths play an important role in semistructured data, because it is usually not ex-

actly known where to �nd a certain piece of information. Thus, fuzziness and traversal

are needed. We take a closer look at paths from the graph theory point of view.

De�nition 2.3 (Walk, Trail, Path). A nonempty sequence (vi0 ; ai1 ; vi1 ; : : : ; aim ; vim)

is called a walk in the graph G = (V;A; s; t) if s(aij) = vij�1
and t(aij) = vij

for all

positive j � m. If all arcs in a walk are pairwise distinct the walk is called a trail. If

additionally all vertices are pairwise distinct the walk is called a path.

Usually we only give the arc sequences when specifying walks, trails and paths.

This notion suÆces, because the missing vertices are determined by the source and the

target functions of the respective graph. Only walks consisting of exactly one vertex

are exceptions. We call the number of arcs in a walk the length of the walk. Walks of

length one are called atomic.

25

In our approach we are speci�cally interested in the trails of a graph. The main

advantage over the walks is that in an arbitrary total directed graph the set of all

trails is always �nite. The main advantage over the paths is that the notion of trail

is more general. Because in semistructured data the term path is well-established, we

compromise at this point. We denote the set of all nonempty trails by P
+ and in-

clude this set in a graph (i.e., G = (V;A; P+
; s; t)) when appropriate. The source

and target functions can be naturally extended to cover walks, trails, and paths:

s((vi0 ; ai1 ; vi1 ; : : : ; aim ; vim)) := vi0
and t((vi0 ; ai1 ; vi1 ; : : : ; aim ; vim)) := vim . We call

two walks p1 and p2 concatenable if t(p1) = s(p2). The concatenation of concaten-

able walks p1 = (v10 ; a11 ; v11 ; : : : ; a1m ; v1m) and p2 = (v20 ; a21 ; v21 ; : : : ; a2n ; v2n) is de-

�ned as p1 Æ p2 = (v10 ; a11 ; v11 ; : : : ; a1m ; v1m = v20
; a21

; v21
; : : : ; a2n

; v2n
). The con-

catenation is associative, i.e., for concatenable walks p1, p2 and p3 the proposition

(p1 Æ p2) Æ p3 = p1 Æ (p2 Æ p3) holds.

For specifying answers to queries we will need the notion of a subobject of a

database. The following de�nitions and lemmata assume some basic knowledge of

partially ordered sets. For an introduction see e.g., [Tro92].

De�nition 2.4 (Subobject). An object o2 = (V (o2)
; A

(o2)
; s

(o2)
; t
(o2)

; l
(o2)) is a sub-

object of o1 = (V (o1)
; A

(o1)
; s

(o1)
; t
(o1)

; l
(o1)) if V (o2) � V

(o1), A(o2) � A
(o1), s(o2) =

s
(o1)j

A(o2) , t
(o2) = t

(o1)j
A(o2) , and l

(o2) = l
(o1)j

V (o2)[A(o2) . We denote this by o2 � o1.

Intuitively, if o2 � o1, then o2 is the \more general" object and o1 is the \more

speci�c" object. For a given object o we denote the set of all its subobjects by P(o).

Lemma 2.1. For a given object o the structure [P(o);�] is a partially ordered set, i.e.,

� is a re
exive, antisymmetric, and transitive binary relation over P(o).

Proof. � is re
exive, because o � o holds for all objects o. Let o1 and o2 be two objects

with o1 = (V (o1)
; A

(o1)
; s

(o1)
; t
(o1)

; l
(o1)) and o2 = (V (o2)

; A
(o2)

; s
(o2)

; t
(o2)

; l
(o2)). Now,

o1 � o2 and o2 � o1 immediately imply that V (o1) = V
(o2) and A

(o1) = A
(o2) and thus,

o1 = o2. Hence, � is antisymmetric. Let o3 = (V (o3)
; A

(o3)
; s

(o3)
; t
(o3)

; l
(o3)). o1 � o2

and o2 � o3 imply V (o1) � V
(o3) and A

(o1) � A
(o3). We prove the restriction condition

for the source functions. For the target and label functions it can be shown in a similar

manner. o1 � o2 and o2 � o3 imply s
(o3) = s

(o2)j
A(o3) = (s(o1)j

A(o2))jA(o3) . Because

A
(o3) � A

(o2) this is equal to s(o1)j
A(o3) . Hence, � is transitive.

Lemma 2.2. For a given object o the structure [P(o);�] is a lattice, i.e., every non-

empty subset of P(o) has a least upper and a greatest lower bound.

Proof. Let o be an object and M = fo1; : : : ; omg be an arbitrary subset of P(o). Let

oglb = (
T
i
V
(oi)

;

T
i
A
(oi)

; s
(o)
jT

i
A
(oi) ; t

(o)
jT

i
A
(oi) ; l

(o)
jT

i
V
(oi)[A(oi)) be the \intersection

26

object". We show that oglb is a greatest lower bound for M . A construction of a least

upper bound can be done in a similar manner using a \union object". First, we observe

that oglb is indeed an object. If an arc is in A(oglb) =
T
i
A
(oi) it is also in all A(oi). Then

its source and target vertices are in all V (oi) and thus, in V
(oglb). Now, oglb � oi holds

for all 1 � i � m, because V (oglb) � V
(oi) and A

(oglb) � A
(oi). Hence, oglb is a lower

bound for M . Suppose we have another lower bound o
0 for M , and o

0
� oglb does not

hold. Then there exists a vertex or an arc x 2 V
(o
0

)
[A

(o
0

) with x =2 V
(oglb) [A

(oglb).

This implies that there exists an object oi with x =2 V
(oi) [A

(oi). But this immediately

leads to o0 * oi, which is a contradiction to the fact that o0 is a lower bound forM .

With these lemmata we proved that we are in a well structured environment where

such notions as \minimal element", \maximal antichain" etc. are de�ned. As an ex-

ample we show in Figure 2.2 the Hasse diagram of all subgraphs of a directed tree with

three nodes. Appendix B gives an introduction into notions related to partially ordered

sets.

Figure 2.2: The lattice of all subgraphs of a simple tree

2.2 Mappings between graphs

To de�ne a notion of conformity between schemata and objects, we introduce mappings

between graphs based on their structure. We adopt the notion of graph morphism.

De�nition 2.5 (Graph morphism). A graph morphism from one directed graph

G = (V (G)
; A

(G)
; s

(G)
; t
(G)) into another directed graph H = (V (H)

; A
(H)

; s
(H)

; t
(H))

is a function m : V (G)
[A

(G)
�! V

(H)
[A

(H), such that

1. for all x 2 V (G)
[A

(G) it is true that m(x) 2 V (H) if and only if x 2 V (G), and

27

m(x) 2 A(H) if and only if x 2 A(G) (vertices are mapped to vertices and arcs are

mapped to arcs) and

2. s(H)
Æmj

A(G) = m Æ s
(G) and t

(H)
Æmj

A(G) = m Æ t
(G) (source and target of arcs

are preserved by the morphism).

As opposed to people from the area of graph transformation we do not require that

labels are preserved by graph morphisms. This requirement is too strong to be suitable

for modeling mappings between di�erent \kinds" of graphs. A graph morphism m is

called partial if not all elements from V
(G)
[A

(G) are in the range of m, and total

otherwise. Similarly, we introduce the notions of surjective, injective, and bijective

graph morphisms. General characterizations of an arbitrary mapping f :M �! N are

shown in Table 2.1.

M �! N M � N

Totality total surjective

Uniqueness unique injective

Table 2.1: Characterizations of mappings

De�nition 2.6 (Graph isomorphism). A total and bijective graph morphism is

called a graph isomorphism.

2.3 An algebraic and a relational characterization

In this section we give two alternative views on labeled directed graphs. We start with

an algebraic characterization that is frequently used by the people in the area of graph

transformations. Second, we give a characterization based on relations that may be

interesting for database people.

An algebraic characterization We start with the de�nition of an algebra. Any

algebra is based on a signature.

De�nition 2.7 (Signature). A signature � is a tuple (S;
). S = fs1; : : : ; smg is the

set of the sorts and
 = f!1; : : : ; !ng is the set of the operation symbols on these sorts.

Every !j 2
 has an operation symbol type from S
�
� S, where S� is the union of all

lists of sorts of arbitrary length.

As an example consider this signature for operating on natural numbers. Remember

that a signature is something purely syntactical. The intuition that is induced by the

sorts and the operation symbols is not semantically manifested anywhere.

Signature NUMBERS

28

Sorts and operation symbols

fNat;Boolg T; F : �! Bool

succ : Nat �! Nat

add;mult : NatNat �! Nat

eq : NatNat �! Bool

De�nition 2.8 (Algebra). An algebra A = (AS ; A
) over a signature � = (S;
)

consists of carrier sets Asi
for every si 2 S and of operations a!j

: Asj1
� � � � �

Asj(k�1)
�! Asj

k

for every operation symbol !j : sj1; : : : ; sj(k�1)
�! sjk

.

The following algebraA provides the natural semantics for the signatureNUMBERS

that was previously introduced.

Signature NUMBERS

Algebra A

Carrier sets and operations

ANat := f0; 1; 2; 3; 4; : : : g aT : () := True

ABool:= fTrue; Falseg aF : () := False

asucc : (x) := x+ 1

aadd : (x; y) := x+ y

amult : (x; y) := x � y

aeq : (x; y) := (x = y)

Before we present a signature for labeled directed graphs we introduce two more

notions in the context of algebras. We will see that in the context of labeled directed

graphs they correspond to notions we introduced earlier in this chapter. The �rst

notion is that of a subalgebra.

De�nition 2.9 (Subalgebra). A subalgebra A
0 of an algebra A over the signature

� = (S;
) consists of a family of subsets A0
si
� Asi

for every sort si 2 S. These

subsets have to be closed with respect to the operations in A, i.e., for every operation

a!j
: Asj1

� � � � �Asj(k�1)
�! Asj

k
and all (x0sj1

; : : : ; x
0
sj(k�1)

) 2 A0
sj1
� � � � �A

0
sj(k�1)

it

is true that a!j (x
0
sj1
; : : : ; x

0
sj(k�1)

) 2 A0
sj
k

.

De�nition 2.10 (�-Homomorphism). A homomorphism between two algebras A

and B over the same signature � = (S;
) is a tuple of functions f = (fs1 ; : : : ; fsm)

29

where every fsi
is a total mapping between the carrier sets of the sort si 2 S (fsi :

Asi
�! Bsi

). The homomorphism property holds for all operation symbols and their

operations, i.e., for all operation symbols !j : sj1 ; : : : ; sj(k�1)
�! sjk

and arbitrary

(xsj1 ; : : : ; xsj(k�1)
) from Asj1

�� � ��Asj(k�1)
it is true that fsj

k
(a!j (xsj1 ; : : : ; xsj(k�1)

)) =

b!j
(fsj1 (xsj1); : : : ; fsj(k�1)

(xsj(k�1)
)).

We provide an example of a second algebra B over the signature NUMBERS that

implements a group of cardinality ten. Then we de�ne a tuple (fNat; fBool) that is a

�-homomorphism between A and B.

Signature NUMBERS

Algebra B

Carrier sets and operations

BNat := f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g bT : () := True

BBool:= fTrue; Falseg bF : () := False

bsucc : (x) := x+ 1(mod 10)

badd : (x; y) := x+ y(mod 10)

bmult : (x; y) := x � y(mod 10)

beq : (x; y) := (x = y)

Functions of the homomorphism

fNat(x) := x(mod 10)

fBool(x) := x

An inverse homomorphism does not exist, because fNat is not an injective function.

Just as before we also have the notion of isomorphism.

De�nition 2.11 (�-Isomorphism). An isomorphism between two algebras A and

B over the same signature � = (S;
) is a homomorphism f = (fs1 ; : : : ; fsm), such that

f
�1 := (f�1s1

; : : : ; f
�1
sm

) is a homomorphism between B and A as well.

We now present a signature for labeled directed graphs. Any algebra over this

signature is a labeled directed graph.

Signature GRASIG

Sorts and operation symbols

fNode;Arc; Labelg source; target : Arc �! Node

nlabel : Node �! Label

alabel : Arc �! Label

30

This notion of a labeled directed graph is equivalent to the one introduced in Sec-

tion 2.1. The notions of subgraph from that section and of subalgebra from this one

are equivalent as well.

The algebraic characterization presented is heavily used in the area of graph trans-

formations. It forms the base for describing graph rules using the pushout concept

from category theory.

A relational characterization A completely di�erent kind of characterization of

graphs is the relational one. It is based on binary relations between arcs and vertices.

De�nition 2.12 (Directed graph). A tuple G = (V;A; S; T) is called directed graph

(or digraph) if V is a set of vertices, A is a set of arcs and S; T � V � A are unique

relations called source incidence and target incidence.

The basic operation is the product of two relations. It is de�ned only for relations

of type R � X � Y and S � Y � Z for arbitrary sets X;Y;Z and the result will be of

type R Æ S � X � Z. The product of two relations is de�ned as

R Æ S := f(x; z) 2 X � Zj9Y 2 Y : (x; y) 2 R ^ (y; z) 2 Sg

Usually we write RS instead of RÆS. The product can be used to characterize relations.

Recall Table 2.1 on Page 28. The properties introduced in that table can be described

using the product of relations. Let I denote the identity relation. A relation R is called

1. total if and only if I � RR
T ,

2. unique if and only if RT
R � I,

3. surjective if and only if I � R
T
R and

4. injective if and only if RRT
� I.

In this context RT denotes the transpose of the relation R, i.e., RT := f(x; y)j(y; x) 2

Rg. The subset relation R � S means that (x; y) 2 R implies (x; y) 2 S.

A simpler kind of directed graph is the 1-graph. No parallel arcs are allowed in

a 1-graph. Hence, it can be de�ned by a set of nodes V and a binary association

relation A � V � V only. A directed graph does not have parallel arcs if and only if

SS
T
\ TT

T
� I. The corresponding 1-graph can be found by setting A := S

T
T .

Look at the example in Figure 2.3. It shows a simple directed graph. This graph

31

v1

v2 v3

a1

a2

a3

Figure 2.3: A simple directed graph

can be described by relations as follows:

V = fv1; v2; v3g

A = fa1; a2; a3g

S =

0
B@
1 0 0

1 0 0

1 0 0

1
CA

T =

0
B@
0 1 0

0 1 0

0 0 1

1
CA

The corresponding 1-graph \glues" the arcs a1 and a2 together. We are left with two

arcs linking v1 to v2 and v3, respectively. This fact can also be veri�ed using the

previously given formula:

A := S
T
T

=

0
B@
1 1 1

0 0 0

0 0 0

1
CA
0
B@
0 1 0

0 1 0

0 0 1

1
CA

=

0
B@
0 1 1

0 0 0

0 0 0

1
CA

Note that the matrix representation of the relations allows the product of relations to

be computed similar to the traditional matrix product. Instead of + and � the boolean

operations _ and ^ are used. Using the other formula given above we check whether

32

there are any parallel arcs in the graph.

SS
T
\ TT

T =

0
B@
1 0 0

1 0 0

1 0 0

1
CA
0
B@
1 1 1

0 0 0

0 0 0

1
CA \

0
B@
0 1 0

0 1 0

0 0 1

1
CA
0
B@
0 0 0

1 1 0

0 0 1

1
CA

=

0
B@
1 1 1

1 1 1

1 1 1

1
CA \

0
B@
1 1 0

1 1 0

0 0 1

1
CA

=

0
B@
1 1 0

1 1 0

0 0 1

1
CA

We observe that the result is not a subset of the identity matrix. Hence, parallel arcs

exist. In fact, we can use the result to recognize that a1 and a2 are parallel.

The de�nitions of morphisms are also based on the product of relations.

De�nition 2.13 (Graph homomorphism, isomorphism). Let G1 and G2 be two

directed graphs with G1 = (V1; A1; S1; T1) and G2 = (V2; A2; S2; T2). The tuple

(MV ;MA) is called a homomorphism between G1 and G2 if MV and MA are total

and unique mappings, i.e., MT

V
MV � I, I � MVM

T

V
, MT

A
MA � I and I � MAM

T

A
,

and the morphism properties S1 � MAS2M
T

V
and T1 � MAT2M

T

V
hold. (MV ;MA) is

an isomorphism if both (MV ;MA) and (MT

V
;M

T

A
) are homomorphisms.

As an example consider a second graph consisting of just one arc, i.e., let V2 be

fv1; v2g, A2 be fa1g and S2 =
�
1 0

�
and T2 =

�
0 1

�
. Let the homomorphism map

this arc to a2 in graph in Figure 2.3. Therefore the two nodes v1 and the two nodes v2

are also mapped to each other. The homomorphism (MV ;MA) is de�ned as

MV :=

1 0 0

0 1 0

!
MA :=

�
0 1 0

�

We check the uniqueness and the totality just for MV . Uniqueness is given if and only

if MT

V
MV � I holds. Intuitively, this formula says that going back from G2 and forth

again returns back to the same point.

M
T

V MV =

0
B@
1 0

0 1

0 0

1
CA

1 0 0

0 1 0

!

=

0
B@
1 0 0

0 1 0

0 0 0

1
CA

� I

33

Intuitively, totality means that going forth from G1 and back again covers all the

original points, i.e., I �MVM
T

V
must hold.

MVM
T

V
=

1 0 0

0 1 0

!0B@
1 0

0 1

0 0

1
CA

=

1 0

0 1

!

� I

The morphism properties S1 � MAS2M
T

V
and T1 � MAT2M

T

V
intuitively say that

source and target vertices of an arc in G1 can also be reached by going forth from the

arc, then to the source or target of its image in G2 and then back to G1 again.

MAS2M
T

V =
�
0 1 0

�0B@
1 0 0

1 0 0

1 0 0

1
CA

1 0 0

0 1 0

!

=
�
1 0

�
� S1

MAT2M
T

V
=
�
0 1 0

�0B@
0 1 0

0 1 0

0 0 1

1
CA

1 0 0

0 1 0

!

=
�
0 1

�
� T1

For 1-graphs the notion of homomorphism can be de�ned in an easier manner, because

the arcs are not treated separately and only one mappingM (the equivalent of MV) is

needed. The requirements change to MT
M � I, I �MM

T and A1 �MA2M
T .

This relational characterization demonstrated that describing and manipulating

graphs is possible on a purely operational basis. With these two alternative views

on labeled directed graphs we hope to give the impression that various mathematical

formalisms exist to cope with our syntactical model.

2.4 Three examples

This section presents three examples of databases that we shall use throughout the

thesis. The �rst one is a toy example and will be used to illustrate the concepts of the

34

query language. The second example is derived from a relational database, the third

one from an XML document. Both will be used to illustrate the expressiveness of the

language. The �rst example is presented in Figure 2.4. Incidently, it is the same as the

one in Figure 2.1. The example consists of three persons with varying attributes, such

as name, surname etc. Furthermore, a sibling relationship is illustrated.

Root

#1 #2 #3

Smith

Suzy

1942

Carpenter

CarpenterCarpenter

person person

brother sister

name
surname name

name
surname

yearOfBirthprofession

person

Harry

v1

v2 v3 v4

v5

v6

v7

v8

v9

v10

v11

a1 a2 a3

a4 a5

a6 a7 a8
a9

a10 a11 a12

Figure 2.4: Example 1: A simple person database

The second example is a relational database. It consists of two tables, one describing

persons and the other one relating persons to projects they are working on. Figure 2.5

shows the relational representation of the example.

Person:

ID Name Surname

01 Smith John

02 Miller Steve

03 Smith Rita

WorksOn:

ID Project

01 Holiday

02 Holiday

02 GetRich

Figure 2.5: Example 2: A relational database

We transform this relational representation into a graph representation using the

ideas presented by Buneman and associates [BDHS96]. From the root down we split

the database into relations, then into tuples and �nally according to the attributes

of the relations. Figure 2.6 shows the result of this transformation. Note that this

transformation always leads to a tree of �xed height.

Finally, we use an XML representation of our database group as a third example.

We split the aspects concerning our group into members, research, lectures and pub-

lications. Next we present an excerpt from the complete XML document. How this

document is transformed into the graph representation is described in Section 8.2.

<DBIS name="LFE Datenbanken und Informationssysteme">

<MEMBERS>

<HEAD id="jcf">

<NAME> Freytag </NAME>

<SURNAME> Johann </SURNAME>

35

Surname
Name

ID

01

Smith

John

Surname
Name

ID

02

Miller

Steve

Surname
Name

ID

Smith

03 Rita

ID

01 Holiday

Project ID

Holiday

Project ID Project

02 GetRich02

Root

R1T01 R1T02 R2T01 R2T02R1T03 R2T03

R1 R2

Tuple Tuple Tuple Tuple

Person WorksOn

Tuple Tuple

v10

v11

v12

v4

a9 a11a10

v13

v14

v15

v5

a12 a13 a14

v6

a16 a17a15

v16

v17

v18

v7

a18

v19 v20

a19

v21 v22 v23 v24

v8 v9

a20 a21 a22 a23

v1

v2 v3

a1 a2

a3 a4 a5 a6 a7 a8

Figure 2.6: Example 2: A relational database as labeled directed graph

<SURNAME> Christoph </SURNAME>

<DEGREE> Ph.D. </DEGREE>

<EMAIL> freytag@dbis.informatik.hu-berlin.de </EMAIL>

<PHONE> 2093 3009 </PHONE>

<FAX> 2093 3010 </FAX>

</HEAD>

<STAFF>

<PERSON id="rc">

<NAME> Conrad </NAME>

<SURNAME> Rainer </SURNAME>

<DEGREE> Dr. </DEGREE>

<EMAIL> rconrad@dbis.informatik.hu-berlin.de </EMAIL>

<PHONE> 2093 3020 </PHONE>

</PERSON>

<PERSON id="ab">

<NAME> Bergholz </NAME>

<SURNAME> Andre </SURNAME>

<EMAIL> bergholz@dbis.informatik.hu-berlin.de </EMAIL>

<PHONE> 2093 3024 </PHONE>

<HOBBY> Go </HOBBY>

</PERSON>

...

</STAFF>

<SECRETARY id="us">

...

</SECRETARY>

<TECHNICAL>

...

</TECHNICAL>

<STUDENTS>

...

<PERSON id="kl">

<NAME> Luecke </NAME>

36

<SURNAME> Karsten </SURNAME>

<EMAIL> luecke@dbis.informatik.hu-berlin.de </EMAIL>

</PERSON>

</STUDENTS>

<ALUMNS>

...

</ALUMNS>

</MEMBERS>

<RESEARCH>

<PROJECT>

<NAME> AQUES - An Agent-based Query Evaluation System </NAME>

<HEAD idref="jcf"/>

<MEMBER idref="ms"/>

</PROJECT>

<PROJECT>

<NAME> CABS - Comprehensive Analysis of Biological Sequences </NAME>

<HEAD idref="jcf"/>

<MEMBER idref="ab"/>

<PARTNER> Kelman GmbH </PARTNER>

</PROJECT>

...

</RESEARCH>

<LECTURES>

<LECTURE>

<TITLE> Grundlagen von Datenbanksystemen </TITLE>

<LECTURER idref="jcf"/>

<ASSISTANT idref="rc"/>

<ASSISTANT idref="ds"/>

</LECTURE>

...

<SEMINAR>

<TITLE> Forschungsseminar: Neue Entwicklungen im Datenbankbereich </TITLE>

<LECTURER idref="jcf"/>

<ASSISTANT idref="ab"/>

</SEMINAR>

</LECTURES>

<PUBLICATIONS>

<PUBLICATION>

<AUTHORS>

<AUTHOR idref="fn"/>

<AUTHOR> Ulf Leser </AUTHOR>

<AUTHOR idref="jcf"/>

</AUTHORS>

<TITLE> Quality-driven Integration of Heterogeneous Information Sources

37

</TITLE>

<BOOKTITLE> Proceedings of the

International Conference on Very Large Databases (VLDB 99)

</BOOKTITLE>

<LOCATION> Edinburgh </LOCATION>

<YEAR> 1999 </YEAR>

<MONTH> September </MONTH>

</PUBLICATION>

<PUBLICATION url="99dbpl.ps">

<AUTHORS>

<AUTHOR idref="ab"/>

<AUTHOR idref="jcf"/>

</AUTHORS>

<TITLE> Querying Semistructured Data based on Schema Matching

</TITLE>

<BOOKTITLE> Proceedings of the International Workshop

on Database Programming Languages (DBPL, in conjunction with VLDB'99)

</BOOKTITLE>

<LOCATION> Kinloch Rannoch </LOCATION>

<YEAR> 1999 </YEAR>

<MONTH> September </MONTH>

</PUBLICATION>

...

</PUBLICATIONS>

</DBIS>

2.5 Other representations for semistructured data

Most other approaches to semistructured data also use a graph-based syntax. The

recently popular language Extensible Markup Language (XML, [Xml]) is no exception.

An XML document consists of constructs of one of the following types:

� Element: An element is a collection object that can have child objects (such

as data or more elements). Elements are denoted by tags and can be further

speci�ed by attributes with values.

� Data: Data is nothing but plain text. It can appear anywhere in an XML docu-

ment.

� Document type de�nition: A DTD speci�es a grammar for documents. It can by

included within an XML document itself, or it can be speci�ed externally.

38

� Processing instruction: A processing instruction is information meant for a po-

tential application using the XML document. Typical examples are command

names or parameters.

� Comment

Syntactically, XML is closely related to HTML. The important di�erence is that

the tags de�ning the elements can be arbitrary (i.e., user-de�ned) in XML, but are pre-

de�ned in HTML. XML documents can be accompanied by a Document Type De�nition

(DTD), which is essentially a grammar describing valid languages of XML documents

(primarily by specifying allowed tags). Let us take a look at a simple example:

<?xml version="1.0" standalone="yes"?>

<!-- This is a most simple example. -->

<EXAMPLE id="1" foo="bar">

This is a test.

</EXAMPLE>

The �rst line is an introductory head line. There is a comment on the second line

and an element with two attributes on the third to �fth line. The id-attribute has a

prede�ned meaning; it introduces a symbolic object identi�er. Elements provide the

platform for nesting. In the example there is data nested in the EXAMPLE-element. Such

a document can naturally be represented as a graph, e.g., as in Figure 2.7.

head EXAMPLE
comment

... ...

Root

1 barThis is a test.

id foo

Figure 2.7: A simple XML document represented as a labeled directed graph

The advantage of XML is that it has a richer semantics, i.e., more constructs with a

\meaning". On the other hand, this can also easily be the source of problems. Clearly,

XML has great advantages over HTML, because the tags introducing some structure

can be user-de�ned. This gives users a tool for directly describing the structure of

a document that they have in mind. Take a look at this HTML example from my

publications page:

Bergholz, A., Heymann, S., Schenk, J. A., Freytag, J. C.:

"Sequence comparison using a relational database approach",

39

Proceedings of the International Database Engineering

and Applications Symposium (IDEAS) 1997, Montreal, August 1997

(talk slides)

Clearly, this is not very well-structured. Most important, the structure is mainly

layout-driven and not content-driven. The same content could be encoded in XML as

follows:

<PUBLICATIONS>

<PUBLICATION url="97ideas.ps" url2="97ideatk.ps">

<AUTHORS>

<AUTHOR id="ab"> Bergholz, A. </AUTHOR>

<AUTHOR id="sh"> Heymann, S. </AUTHOR>

<AUTHOR id="js"> Schenk, J. A. </AUTHOR>

<AUTHOR id="jcf"> Freytag, J. C. </AUTHOR>

</AUTHORS>

<TITLE> Sequence comparison using a relational database approach

</TITLE>

<BOOKTITLE> Proceedings of the International Database Engineering

and Applications Symposium (IDEAS)

</BOOKTITLE>

<LOCATION> Montreal </LOCATION>

<YEAR> 1997 </YEAR>

<MONTH> August </MONTH>

</PUBLICATION>

</PUBLICATIONS>

This representation is much better, because it re
ects the structure that the author

had in mind. To sum it up, XML is an emerging standard for representing information

in documents. An XML document can be seen as a labeled directed graph, although

XML has richer semantic concepts that graphs have not. Nevertheless, from a database

point of view the graph representation seems like a reasonable abstraction.

Before switching to XML the Lore project at Stanford used a very similar model, the

Object Exchange Model (OEM, [PGMW95]). OEM is a data model that is particularly

suited for data exchange in heterogenous, dynamic environments. An object in OEM is

a tuple (label; type; value; object-ID), where label denotes the kind of the object,

type is a data type (atomic, composed or reference), value denotes the actual value

and object-ID gives an identi�er. This model is very
exible and simple. All objects

40

are self-describing, there is initially no need for classes or schemata. The component

label, on the other hand, serves two purposes. It describes the semantics of the object,

but it also identi�es the object within a super-object. OEM is, like our own approach,

semantically poorer, but simpler and more general than XML. There is for instance no

distinction between nested elements and attributes in OEM; both of them would be

represented as subobjects. We present an example for a composed OEM object next.

<person-record, set, fcmpnt1; cmpnt2; cmpnt3g>

cmpnt1 is <person-name, string, \Fred">

cmpnt2 is <oÆce-number-in-building, integer, 333>

cmpnt3 is <department, string, \toy">

Represented as a graph an OEM object is a connected directed graph with a root,

where labels are allowed on the arcs and on the leaf nodes, but not on the inner nodes.

This is very similar to XML.

The UnQL project at UPenn uses a slightly di�erent model [BDHS96]. The main

di�erence is that labels are allowed only on the arcs. As shown in Figure 2.8 there are

simple transformations between graphs with labels on both nodes and arcs and graphs

with labels on arcs only or on nodes only. So allowing labels on arcs only certainly

makes some formalisms easier and more elegant. On the other hand it is less intuitive.

There are good reasons for allowing labels at least on the leaf nodes, because these

labels typically represent values or data, whereas the other labels typically represent

attribute names.

a

b

c

a

b

c

a

c

b

Figure 2.8: Labels on nodes and arcs - Transformations

In UnQL a database is an edge-labeled tree. An arbitrary edge-labeled tree can be

constructed using

1. the empty tree: fg

2. the addition of a root and an edge labeled l to an already existing tree t: fl) tg

3. and the union of the roots of two trees t1 and t2: t1 [t2.

41

Furthermore, tree markers identify subtrees to introduce cycles. Using the abbrevia-

tions l for l) fg and fl1) t1; l2) t2g for fl1) t1g [fl2) t2g, and omitting the

braces around singleton trees the \tree" in Figure 2.9 is described by X1 where

X1 = fa) X2; c) fd; e) X1gg

X2 = fb) X2g:

c

d

e
a

b

Figure 2.9: An edge-labeled tree with cycles

We described typical representations for semistructured data in this section. All

approaches to semistructured data and querying the WWW use similar models. Ta-

ble 2.2 summarizes the properties of the di�erent approaches presented in this chapter.

The conclusion is that graph models in one way or another seem to be an appropriate

choice. Our approach is the most general one, because it does not restrict the structure

of the graph nor does it restrict where to put the labels. Other models certainly have

other advantages, such as a more elegant theory or a closer relationship to currently

popular technologies, such as XML.

Our approach XML OEM UnQL model

Labels are allowed everywhere arcs / leaves arcs / leaves arcs only

Root node not necessary necessary necessary necessary

Cycles yes yes yes yes

Parallel arcs yes yes yes yes

Semantic concepts none many object types none

Table 2.2: Comparison of di�erent models for semistructured data

2.6 Summary

This chapter introduced the underlying syntax of our approach. The basic notion is

that of a labeled directed graph. We characterized this notion in di�erent ways. The

traditional way presented in Section 2.1 will be used throughout the thesis. Additionally

we looked at an algebraic representation used in the area of graph transformations, and

42

at a relational representation based on operations between relations. Mappings between

graphs have also been characterized in these di�erent manners. We provided three

running examples that will be used in the following chapters. Finally we characterized

other representations for semistructured data, such as XML and other graph models.

43

Chapter 3

Schemata and Instances

There are no facts, only interpretations.

(Friedrich Nietzsche)

This chapter introduces the notions of schema and conformity between schemata

and objects. These concepts form the base for querying as introduced in the next

chapter. Potentially, although not within the scope of this work, it can also be the

base for other database concepts, such as views or constraints. Is a view not nothing

but a named schema or a named query? This notion of conformity provides \
exible

declarativity", if you like.

When we talk about schemata we do not mean a complete database schema as we

know it for instance from relational databases. Rather, we talk about something that

describes certain parts of a database. In that sense, the term partial schema that we

used in the introduction chapter would be more correct. From now on we abbreviate

this notion and talk about schemata. We thought about using other terms, such as

description or pattern, but schema still seems to be more appropriate.

This chapter is organized as follows. Section 3.1 introduces preliminary simple

notions of schema and conformity by using predicates as object labels. We gradually

enhance the schema notion by adding variable de�nitions in Section 3.2 and path

descriptions in Section 3.3. To achieve the latter, we introduce a notion related to a

graph closure, the corresponding trail graph. Finally, Section 3.4 looks at other work

in this area; and Section 3.5 gives a summary.

3.1 Predicate schemata and naive conformity

This section presents a preliminary notion of schema for our approach. Informally, a

schema is an object that describes a set of objects. In the simpler syntactic framework

of the label world, this schema concept certainly exists as well. One label might de-

44

scribe a set of other labels. This is frequently done; data types, predicates and regular

expressions are examples. As as �rst step toward schemata in the graph world we as-

sign schemata from the label world to the elements of the graph. We choose predicates

to be the label world schemata.

De�nition 3.1 (Predicate schema). Given a set of unary predicates P, a predicate

schema (over P) is an object s = (V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)) where the elements are

labeled with predicates (l : V (s)
[A

(s)
�! P).

We give an example in Figure 3.1. Note that we treat a quoted constant c (such as

'Carpenter' in the example) as an abbreviation for the predicate X = c. The predicate

true() serves as a wildcard; it holds for every label in the database.

true()

true()

’Carpenter’

Figure 3.1: A simple predicate schema

To establish a relationship between a schema and the objects described by it, we

establish the notion of conformity between both of them. Depending on the direction

of the mapping, we say that we match a schema into an object, or we interpret an

object by a schema.

De�nition 3.2 (Naive conformity). A match (or a match function) of a predicate

schema s into an object o is an isomorphic embedding of s into o, i.e., a total, injective

graph morphism m : s �! o, such that for all x 2 V
(s)
[A

(s) the predicate l(s)(x) is

true for l(o)(m(x)).

If there exists a match of the schema s into the object o we say that o conforms to

s (or o can be interpreted by s) and we call o an instance (or also a match) of s.

Let o be a database, s be a schema and o1 � o a match of s. Then every superobject

o2 of o1 (i.e., o1 � o2 � o) is also a match of s. LetM(s)(o) denote the set of all matches

of s in o. BecauseM(s)(o) is a subset ofP(o) the structure [M(s)(o);�] is also a partially

ordered set. We call a minimal element in this partially ordered set a minimal match

(or a minimal instance) of s in o. We denote the set of minimal matches of s in o

with M
(s)

min
(o). In Figure 3.2 we show the same schema as in Figure 3.1, but this time

together with its minimal matches in the database from Figure 2.4.

45

true()

’Carpenter’

#1 #1 #2

CarpenterCarpenterCarpenter

(1) (2) (3)

true() name nameprofession

Figure 3.2: The predicate schema and its minimal matches

3.2 Adding variables

We gradually improve the expressiveness of the schemata. Remember that we propose

to have richer concepts on the schema layer, because they ensure more
exibility in

representing data. Thus, we lift some concepts known in query languages to the schema

layer. In this section we add variable de�nitions. They enable us to enforce links

between di�erent parts of a database based on the labels. We add variable de�nitions

in the following manner: Let s be a predicate schema, V be a set of variables and

v
(s) : V (s)

[A
(s)
�! V be a partial mapping from the nodes and arcs in the schema

into the variables. Then we call (V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)
; v

(s)) a predicate schema with

variables. Intuitively, nodes and arcs that are mapped to the same variable are \joined",

i.e., their labels must be the same on the instance level. Thus, we additionally require

for a mapping m to be a match of s into an object o, that for all x1; x2 2 V
(s)
[A

(s),

if v(x1) and v(x2) exist and v(x1) = v(x2) then l
(o)(m(x1)) = l

(o)(m(x2)). A predicate

schema with variables and its minimal matches in the database from Figure 2.4 are

shown in Figure 3.3. In this example the set of variables V consists of just one variable;

and the two nodes at the bottom are mapped to it. This is indicated by the label

X : true(). Intuitively, the schema matches every object where the name equals the

profession.

’name’ name

X:true() X:true()

true()

Carpenter

(1)

Carpenter

#1

profession’profession’

Figure 3.3: Adding variables

This section has been on a rather informal level. We will give a complete de�nition

of schemata covering variable de�nitions and more concepts in the next section.

46

3.3 Adding paths

In this section we give our �nal de�nition of a schema. We further enhance the notion

given before by representing paths, a very important concept in semistructured data.

The reason behind is that it is often not known how the data is structured. For example,

a date can be represented as an atomic value or it can be split into year, month and

day. The latter makes it necessary to go one level deeper into the database. Skipping

some levels can be achieved by making use of paths.

Let G = (V;A; s; t) be a total directed graph. As de�ned before, a trail is an arc

sequence (ai1 ; : : : ; aim) where all aij are distinct and there exist nodes vi0 ; : : : ; vim , such

that for all aij s(aij) = vij�1
and t(aij) = vij

. Note that this notion does not require

the vi0 ; : : : ; vim to be distinct. The number of arcs in a trail is called the length of the

trail. Despite the fact that we are talking about trails we denote the set of all trails in

a graph by P and the set of nonempty trails by P
+, because from the intuition point

of view we are talking about paths. For a nonempty trail pi = (ai1 ; : : : ; aim) 2 P
+

we introduce a source and target function sP ; tP : P+
�! V , which are de�ned in a

canonical manner as sP (pi) = s(ai1) and tP (pi) = t(aim), respectively.

The ultimate goal of this section is to give a notion of conformity between schemata

and objects representing paths. To this end, we need some structural relationship

between graphs that allows arcs to be in relationship with paths. As a �rst step toward

achieving this goal we introduce the notion of a corresponding trail graph.

De�nition 3.3 (Corresponding trail graph). The corresponding trail graph to a

graph G = (V (G)
; A

(G)
; s

(G)
; t
(G)) is de�ned as GP = (V (G)

; P
+(G)

; s

(G)

P
; t

(G)

P
).

Intuitively, in the corresponding trail graph the trails are materialized as arcs. This

notion is related to the notion of transitive closure of a graph as de�ned in [Jun90]. The

only di�erence between the two notions is as follows: The transitive closure includes

only one arc for every pair of reachable nodes, whereas we include an arc for every

trail via which they are reachable. Nonetheless, the corresponding trail graph is always

�nite, because only �nite many trails exist for any directed graph. Figure 3.4 shows

three examples of directed graphs and their corresponding trail graphs.

(a) (b) (c)

Figure 3.4: Three directed graphs and their corresponding trail graphs

Lemma 3.1. A directed graph is always a subgraph of its corresponding trail graph.

47

The lemma holds, because there is a natural embedding ai �! (ai) of the arcs in

A into the trails in P
+. The following lemma is equally obvious.

Lemma 3.2. If a directed graph G1 is subgraph of G2 then the corresponding trail

graph of G1 is a subgraph of the corresponding trail graph of G2.

Now we can extend our notion of schema. We introduce two additional functions

qmin and qmax, that let us specify length constraints on paths in the matching objects.

Furthermore, as a remnant from the previous section, we need a set of variables V and

a variable mapping v.

De�nition 3.4 (Schema). Given a set of labels L and a set of variables V a schema

s is a tuple (V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)
; v

(s)
; q

(s)

min
; q

(s)

max) where

1. V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s) are de�ned as before,

2. v : V (s)
[A

(s)
�! V is the variable mapping, a partial mapping from the nodes

and arcs in the schema into the variables, and

3. q
(s)

min
: A(s)

�! N+ and q

(s)

max : A
(s)
�! N+ [f+1g are length restrictions.

Furthermore, if for an arbitrary arc ai 2 A
(s) a variable binding v(s)(ai) exists, then

q

(s)

min
(ai) = q

(s)

max(ai) = 1 holds.

To assign some meaning to a schema we (re-)de�ne the notion of conformity between

schemata and objects.

De�nition 3.5 (Conformity). Let s = (V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)
; v

(s)
; q

(s)

min
; q

(s)

max) be a

schema and o = (V (o)
; A

(o)
; s

(o)
; t
(o)
; l
(o)) be an object. A match of s into o is an iso-

morphic embedding of s into oP , i.e., an isomorphic embedding of (V (s)
; A

(s)
; s

(s)
; t
(s))

into (V (o)
; P

+(o)
; s

(o)

P
; t

(o)

P
), so that the following properties hold:

1. For all nodes x 2 V (s) the predicate l(s)(x) is true for l(o)(m(x)).

2. For all arcs x 2 A(s) the predicate l(s)(x) is true for the labels l(o)(yj) of all the

arcs yj in the trail m(x).

3. For all elements x1; x2 2 V
(s)
[A

(s) for which v
(s)(x1) and v

(s)(x2) exist and

v
(s)(x1) = v

(s)(x2), the labels are the same l(o)(m(x1)) = l
(o)(m(x2)).

4. For all arcs x 2 A(s) the length of the trailm(x) is at least q
(s)

min
(x) and no greater

than q

(s)

max(x).

If a match between a schema s and an object o exists we say that o conforms to s.

48

The following theorem states that we indeed enhanced our initial notion of schema,

i.e., our new notion of schema does not contradict the initial one.

Theorem 3.3. A predicate schema s conforms to an object o in the naive manner if

and only if it conforms to o, assuming that v(s) is the empty mapping, and q

(s)

min
and

q

(s)

max equal one for all arcs in s.

Proof. Let s = (V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)) be a predicate schema. Let o be an object

conforming to s in the naive manner and m
0 be the match between s and o. Then we

can construct a match m between s and o in the following manner:

m(x) :=

8<
:m

0(x) if x 2 V (s)

(m0(x)) if x 2 A(s)

First, we observe that we indeed de�ned a graph morphism m. For every arc x

the property s

(o)

P
(m(x)) = m(s(s)(x)) holds, because s

(o)

P
(m(x)) = s

(o)

P
((m0(x))) =

s
(o)(m0(x)) = m

0(s(s)(x)) = m(s(s)(x)) and m
0 being a graph morphism. Analogously,

t

(o)

P
(m(x)) = m(t(s)(x)) holds.

Now we check if m ful�lls the conditions of a match. The condition on node labels

holds for m, because it holds for m0. An arbitrary arc x 2 A(s) is mapped to (m0(x)).

This trail has always length one, hence the fourth condition on trail lengths holds. The

condition on arc labels also holds, because it holds for m0. Finally, the condition on

variable bindings holds, because the variable mapping is empty.

Vice versa, let m be a match of s into o; and let v(s) be the empty mapping, and

q

(s)

min
and q

(s)

min
equal one for all arcs in s. Then we can construct a graph morphism m

0

between s and o as follows:

m
0(x) :=

8<
:m(x) if x 2 V (s)

first(m(x)) if x 2 A(s)

In this de�nition, first returns the �rst arc of a trail. Note, that m(x) always contains

exactly one arc, because q

(s)

min
and q

(s)

max equal one. Thus, m0 preserves source and

target, because m does so as well, i.e., s(o)(m0(x)) = s
(o)(first(m(x))) = s

(o)

P
(m(x)) =

m(s(s)(x)) = m
0(s(s)(x)) and the same for the target function. Furthermore, for all

x 2 V
(s)
[A

(s) the predicate l(s)(x) holds for l(o)(m0(x)), because it holds for l(o)(m(x))

if x is a vertex and for all l(o)(m(x)) if x is an arc.

Consider the example in Figure 3.5. There is a `+'-sign on the �rst arc in the

schema. It indicates that the length of the paths it matches is bound by 1 and +1.

Thus, the schema intuitively matches every object that emanates from the root via a

path of positive length and leads to a `name'-arc. We observe that the second person

49

’Root’

true()

Root Root Root Root Root

#1 #1 #2 #3 #3

Carpenter

Carpenter

Carpenter

Carpenter

Smith
#2#2

(1) (2) (3) (4) (5)

name

name

name sister

name

name

person person person person person

brother

true() +

true()
’name’

Figure 3.5: Adding paths

in the database can be reached via di�erent paths: either \directly" from the root, or

via the sibling relationships. Note that we started to use the term \path", although

strictly speaking we meant \trail". We shall use the term path when talking about the

generally useful concept in semistructured data, but we will continue to use the term

trail when mathematical correctness is needed.

Let us look at this example in more detail. Figure 3.6 shows the same schema

together with the second match from the database graph. Remember, that the match

is a subgraph of the corresponding trail graph of the database. The match of the

schema is indicated by solid lines, whereas the dashed lines represent arcs from the rest

of the corresponding trail graph of the database.

#1

#2

brother

person

Carpenter

name

o

true()

s

’Root’ Root

true() +

’name’

true()

a1

a4

a9

P

x4

x2

x5

x3

x1 v1

v2

v3

v8

Figure 3.6: A more detailed look into conformity

50

The schema can formally be written as:

V = fx1; x3; x5g

A = fx2; x4g

s = f(x2; x1); (x4; x3)g

t = f(x2; x3); (x4; x5)g

l = f(x1;
0
Root

0); (x2; true()); (x3; true()); (x4;
0
name

0); (x5; true())g

v = fg

qmin = f(x2; 1); (x4; 1)g

qmax = f(x2;+1); (x4; 1)g

The match m between the schema and the part of the database is now as follows:

m = f(x1; v1); (x3; v3); (x5; v8);

(x2; (a1; a4)); (x4; (a9))g

The example makes some subtleties apparent. A match of s in o is supposed to

be a subobject of o. However, the scope m(s) of the match function m is a subobject

of oP . These subtleties become a serious problem when we adapt the de�nition of

minimal match. The notion of minimal match is important for the de�nition of queries

as we will see in the next section. Consider Figure 3.7. (We omitted the node labels,

because they are not relevant to this problem.) The schema on the left is matched into

’b’

’a’ +

s

b

a

a

a

o

a

b

(1)

a

a

b

(2)

a

a

a

b

(3)

Figure 3.7: A problem with minimal matches

the database right beside it. All the three matches are potentially \interesting", but

only the �rst one is minimal, because it is a subobject of the others. Beside, if one

of the matches was more interesting than the others, wouldn't it be the one with the

longest path, i.e., the one on the right? But we observe, that all the three matches

result from di�erent match functions. The scopes of their respective match functions

51

are incomparable subobjects of oP . Thus, we de�ne minimal matches with respect to

the match function. To achieve this we need a flatten-function that takes a subobject

of oP and produces a subobject of o. Informally, flatten decomposes the trails into arcs

and adds all source and target nodes to the node set. Formally, let o0 be a subobject

of oP then:

flatten(o0) :=(V (o
0

)
[fvj9a 2 A

(o
0

) : 9ai 2 a : v = s
(o)(ai) _ v = t

(o)(ai)g;

faij9a 2 A
(o
0

) : ai 2 ag;

s
(o)
j
V (flatten(o0))[A(flatten(o0)) ; t

(o)
j
V (flatten(o0))[A(flatten(o0)) ;

l
(o)
j
V (flatten(o0))[A(flatten(o0)))

Now, we can de�ne the set of minimal matches of s in o as:

M
(s)

min
(o) := fflatten(m(s))jm is a match of s into og

We observe, that every flatten(m(s)) is indeed a match of s in o, because s can be

embedded into flatten(m(s))P using m. Furthermore, the following lemma says that

we indeed gave a useful de�nition of minimal matches.

Lemma 3.4. For every match o0 of s in o (i.e., every element of M(s)(o)) there exists

a minimal match in M
(s)

min
(o) being a subobject of o0.

Proof. Let o0 be a match of s in o. Hence, there exists a match function m embedding

s into o0
P
. Because o0 � o and thus o0

P
� oP , the mapping m embeds s also into oP .

Hence, flatten(m(s)) is an element of M
(s)

min
(o). If we can show, that flatten(m(s)) �

o
0 holds, the lemma is proven.

Let v be a node in flatten(m(s)). We can distinguish two cases: If v is also in

m(s) then there exists a node vs in s, such that m(vs) = v. This implies v 2 V
(o
0

P
);

and thus, v 2 V (o
0

). If v is not in m(s) it was introduced by the flatten-function. In

this case there exists an arc a in a trail (a1; : : : ; ak) 2 m(s), such that v is either the

source or the target of a. Because A(o
0

)
� A

(o) and (a1; : : : ; ak) 2 A
(o
0

P
), all the ajs are

in A
(o
0

). In particular, a 2 A(o
0

). Because o0 is an object, v is in V
(o
0

).

Let a be an arc in flatten(m(s)). There exists an arc as in s, such that a 2

m(as). Because m(as) 2 A
(o
0

P
) and A

(o
0

)
� A

(o), it follows that all arcs in m(as) are

also in A
(o
0

). In particular, a 2 A
(o
0

). We have shown, that V (flatten(m(s)))
� V

(o
0

)

and A
(flatten(m(s)))

� A
(o
0

); and because both flatten(m(s)) and o are objects, the

proposition flatten(m(s)) � o
0 follows.

With the revised de�nition of minimal match all the three matches on the right

hand side of Figure 3.7 are minimal.

Up to this point we have only talked about nonempty trails and paths. The reason

for this is that it makes many things easier, for instance to introduce source and target

52

functions. However, if we take a closer look we realize that incorporating the empty

path is not diÆcult. The key point to realize is, that in an arbitrary graph there is no

single empty path, but rather jV j-many empty paths, i.e., one for every vertex. For-

mally, they are walks consisting of exactly one vertex. Now things become simple. The

notions of source and target function are well-de�ned and the notion of corresponding

trail graph can easily be adapted. Thus, the empty path can be integrated into the

notions of schema and conformity.

In this section we have given full de�nitions of the notions of schema and conformity

between schemata and objects. To incorporate path descriptions we have introduced

the notion of a corresponding trail graph. We have proven that our new notion of

conformity is not contradictory to, but rather an enhancement of the previous notion

of naive conformity. Finally, we revised to notion of minimal match.

3.4 Other notions of schema

Other people's work in this area concentrates on de�ning a complete schema for a

semistructured database. An important example of such a schema is the DataGuide

[GW97] used in the Lore project. They point out, that a schema serves two important

purposes. First, a schema enables users to understand the structure of the database

and form meaningful queries over it. Second, a schema can help the query processor

to devise eÆcient plans for computing query results. Hence, a DataGuide is a hybrid

concept between schema and index. It is intended to be a concise, accurate and conve-

nient summary of the structure of a database. Conciseness means, that every unique

label path of the source appears exactly once in the DataGuide. Accuracy means, that

the DataGuide does not encode a label path that does not appear in the source. Con-

venience means, that a DataGuide itself can be treated as an OEM object, the basic

data model of Lore.

Creating a DataGuide over a source database is equivalent to conversion of a

non-deterministic �nite automaton (NFA) to a deterministic �nite automaton (DFA)

[NUWC97]. From automata theory it is known, that a single NFA may have many

equivalent DFAs. Similarly, one source OEM database can have multiple DataGuides.

This fact is illustrated in Figure 3.8. The DataGuide on the right is in fact minimal in

the sense that no other DataGuide with fewer nodes exists. Minimal DataGuides are,

however, not the best possible choice when it comes to the question of which DataGuide

to choose. First, incremental maintenance of a minimal DataGuide can be very expen-

sive. Just imagine in Figure 3.8 a new child object to object 10 being added. Second,

minimal DataGuides are harder to annotate.

Therefore the notion of a strong DataGuide is introduced. A DataGuide is strong if

53

1

2 3 4

5 6 7

8 9 10

C C C

D D D

BA B

11

12 13

14 15

16 17

18

19

20

21

A B

C C

D D

C

D

A B

OEM source object Two Dataguides

Figure 3.8: An OEM source together with two DataGuides

each set of label paths, that share the same (singleton) target set in the DataGuide, is

exactly the set of label paths, that share the same target set in the source. The minimal

DataGuide in Figure 3.8 is not strong. B:C has the target set f6; 7g in the source. No

other label path in the source has this target set. In the minimal DataGuide, however,

B:C has the target set f20g, which is also the target set of A:C. The �rst DataGuide

in Figure 3.8 is strong.

A strong DataGuide guarantees a one-to-one mapping between target sets in the

source and DataGuide objects. This makes strong DataGuides easy to compute and

to maintain. This property is also of use for query optimization, because a strong

DataGuide can serve as path index. In polynomial time to the length of a path, a

strong DataGuide can be used to �nd all source objects reachable via that path. This

property holds independently of the size of the source.

A DataGuide can also be used for query formulation in a QBE-like manner [Zlo77].

In Lore the user can interactively explore the DataGuide and formulate queries using

the DataGuide. No knowledge of the Lore language is necessary.

Because DataGuides can be expensive to compute for large, cyclic databases, their

de�nition has recently be relaxed. An approximate DataGuide may have \false posi-

tives, i.e., it is no longer required that all DataGuide paths must exist in the source

database [GW99].

Theoretical research results within the UnQL project are presented in [BDFS97].

They give a formal de�nition of graph schema based on bisimulation between graphs

(rather than isomorphy). Bisimulation relaxes the constraints in the way, that a relation

between nodes is required rather than a mapping. The advantage of this approach is,

that simulations can be computed in polynomial time [HHK95]. The disadvantage

is, that the notion of isomorphy seems to re
ect the notion of conformity in a more

natural manner. Their approach is similar to ours in that predicates are used as labels

in the schema, and similar to DataGuides in that a schema always models the complete

database. Subsumption, ordering, and equivalence of schemata are discussed in some

54

detail. The knowledge about such schemata can be used for optimization in the query

language UnQL.

There is no real notion of schema in the context of XML yet, although there are

many activities within this �eld. Document Type De�nitions are more in the
avor

of grammars. In Figure 3.9 we present a DTD for articles that was �rst presented in

[CACS94]. As an example a section can either consist of a title and at least one \body"

(a �gure or a paragraph) or of a title, an arbitrary number of bodies and at least one

subsection.

<!DOCTYPE article [

<!ELEMENT article - - (title, (author+), affil, abstract,

(section+), (bib & ack))>

<!ELEMENT title - O (#PCDATA)>

<!ELEMENT author - O (#PCDATA)>

<!ELEMENT affil - O (#PCDATA)>

<!ELEMENT abstract - O (#PCDATA)>

<!ELEMENT ack - O (#PCDATA)>

<!ELEMENT bib - O (#PCDATA)>

<!ELEMENT section - O ((title, (body+)) |

(title, (body*), (subsectn+)))>

<!ELEMENT subsectn - O (title, (body+))>

<!ELEMENT body - O (figure | paragr)>

<!ELEMENT figure - O (picture, (caption?))>

<!ELEMENT picture - O (#PCDATA)>

<!ELEMENT caption - O (#PCDATA)>

<!ELEMENT paragr - O (#PCDATA)>

]>

Figure 3.9: A Document Type De�nition for articles

How grammar-like DTDs and database schemata can be integrated will be one of

the challenging research issues in the near future.

Our notion of schema is signi�cantly di�erent from all of the above work. First,

our schemata include advanced concepts, that are typical for query languages. Among

them are variable de�nitions and path descriptions. In a sense, a schema in our ap-

proach is more like a view. Second, we believe, that partial schemata (rather than

complete schemata) are more appropriate within the �eld of semistructured data. Al-

though complete schemata are closer to the traditional notion of a database schema we

believe, that for semistructured databases they will lead to some unwanted results. A

55

complete schema will be useful for serving as an index. Due to the irregular structure

of semistructured databases, however, a complete schema will cover many exceptions.

Thus, it will be much larger than it ought to be. Additionally, it will not be very useful

in giving users information about the database, because the many exceptions cannot

be distinguished from the representative parts of the schema.

3.5 Summary

This chapter presented our notion of schema, which forms the base for queries. We

incorporate rich semantical concepts typically found in query languages into our notion

of schema. As a �rst step we introduced a simple notion of schema. A predicate

schema is an object labeled with unary predicates. The notion of conformity between

a predicate schema and an object is based on the graph theoretic notion of isomorphic

embedding. Gradually we integrated variable de�nitions and path descriptions into our

notion of schema. The notion of conformity between a schema and an object is based

on an isomorphic embedding of the schema into the corresponding trail graph of the

database, which is similar to a graph closure of the database. We close the chapter

with a discussion of similar notions, in particular DataGuides used in the Lore project.

56

Chapter 4

Queries and Answers

Computers are useless. They can only give you answers.

(Pablo Picasso)

This chapter concludes the de�nition of the query language of our approach. All

the queries we introduce are based on matching a schema as introduced in the previous

chapter. Whereas the schemata form the \What"-part of a query, the operations

de�ned in this chapter form the \How"-part. By splitting a query in this manner we

set up a more natural environment. It can for instance be used for query optimization.

We store and reuse the \What"-part of a query, i.e., the schema.

In Section 4.1 we observe that a schema itself is already a simple form of a query.

We introduce the notion of answer. The �rst operation, the focus, is introduced in

Section 4.2. Section 4.3 shows how a schema match can be restructured completely.

The idea is based on graph transformations, which we brie
y introduce in Section 4.5.

Before that, we examine the expressiveness of our query language in Section 4.4. We

look at other query languages for semistructured data in Section 4.6 and �nish the

chapter with a summary in Section 4.7.

4.1 Simple schema queries

We observe that a schema itself already forms the most simple kind of query. It queries

all subobjects of a database that conform to it.

De�nition 4.1 (Schema query). A schema query is a tuple q = (s) where s is a

schema.

When we pose such a query we are usually not interested in all matches of the

schema, but only in the minimal ones.

57

De�nition 4.2 (Answer). The answer to a schema query q = (s) with respect to a

database o is the set of minimal matches of s in o, i.e., M
(s)

min
(o).

As an example of a schema query you can imagine any of the schemata from the

previous chapter.

4.2 Adding a focus

With a schema query we are able to formulate conditions. This roughly corresponds

to a selection operation in the relational world. It, again, re
ects the \What"-part of a

query. Now we touch the subject of the \How"-part of a query. With a schema query

you can express something like the following SQL query:

SELECT *

FROM Person

WHERE name = 'Carpenter'

However, a query including a projection operation, e.g., something like

SELECT surname

FROM Person

WHERE name="Carpenter"

cannot be expressed. In this type of query we explicitely state that we want only the

surnames of the persons, i.e., we explicitly say how we want the answer to look like.

Hence, we are talking about the \How"-part of a query. We start by introducing an

operation that is comparable to the projection operation of the relational world. We

give a focus to the schema forming the base of the query.

De�nition 4.3 (Focus query). A focus query is a tuple q = (s1; s2) where s1 is a

schema and s2 is a subobject of s1. We call s2 the focus of the query.

De�nition 4.4 (Answer). The answer to a focus query q = (s1; s2) with respect to

a database o is the union of the minimal matches of s2 over all minimal matches of s1

in o, i.e.,
S
x2M

(s1)

min
(o)
M

(s2)

min
(x).

As an example we use the second of the preceding SQL-statements. The query in

Figure 4.1 queries for the surnames of all persons with the name 'Carpenter'. The focus

of the query is indicated by the dashed box.

58

’name’ ’surname’

’Carpenter’ true()

true()

Harry

(1)

Figure 4.1: A focus query

4.3 Transforming the answer

Sometimes we prefer to restructure the answer to a query completely. To achieve this

we adopt concepts from the area of graph transformations. In Section 4.5 we look

into this area in more detail. The general idea of the area of graph transformations is

the rule-based manipulation of a host graph. In our context, the idea is that the user

can specify a graph structure for the query answers. Furthermore, new labels can be

computed by using terms over the old ones. With the operation that we describe in

this section, we can express something like the following, which could not be expressed

before.

SELECT id, (1999 - yearOfBirth) AS age

FROM Person

WHERE name = 'Smith'

AND surname = 'Suzy'

De�nition 4.5 (Transformation query). A transformation query is a tuple q =

(s; t) where s is a schema and t is an object labeled with terms over the elements in s.

De�nition 4.6 (Answer). The answer to a transformation query q = (s; t) with

respect to a database o is built by creating for every match of s in o, i.e., for every

element of M
(s)

min
(o), a new object isomorphic to t, labeled with the evaluated terms of

t, instantiating the terms by using the match.

Again, we use the preceding SQL-statement as guidance for our example in Fig-

ure 4.2. It queries for the age of Suzy Smith. The age is derived from the year of birth.

Because this part of the work is conceptual we are not going into detail about

speci�c terms, typing and applicability of terms. Of course, the term 1999� x7 we use

in the example, is only applicable to instantiations of x7 that are numbers. Correct

typing can for instance be enforced via the predicates in the schema. So we used the

predicate integer() at x7 instead of, say, true().

59

#3

(1)s

’Suzy’

’Smith’

true()

’name’
’surname’

’yearOfBirth’ age

integer()

x1

t

’age’

1999-x7
x3

x2 x1 x6

x7

x5

x4

57

Figure 4.2: A transformation query

The transformation query forms the most general query in our approach. Note that

schema and focus queries can be expressed as transformation queries.

This concludes the introduction of our query language. The types of queries pro-

posed in this section should be seen as instances of the operational layer as described

in the introduction in Chapter 1 or, which is essentially the same, as the \How"-part

of a query.

true()

s

integer()

’yearOfBirth’

’person’

true()

(1)

1942

Aggregation

avg_year

’Aggregation’

’avg_year’

avg(x5)

a

x2

x4

x1

x3

x5

Figure 4.3: An idea to introduce aggregation

An obvious limitation of our approach is that every type of query always returns

one answer per schema match. Thus, we currently do not support aggregation. A �rst

idea how to overcome this limitation is to adapt the notion of transformation query.

Figure 4.3 presents an aggregation query. The matches of the schema on the left are

not presented one at a time. Rather, they are collected and the aggregation on the

labels is performed and one result graph is presented. Again, the same problems of

applicability of speci�c functions to speci�c kinds of labels arise. Furthermore, paths

introduce another kind of problem. If some node included in aggregation is reached via

di�erent paths, it will appear several times during the aggregation.

Our language was presented in [BF99b], and in a preliminary form in [BF98]. We

think that our approach can also be extended to cover restructurings of a database. To

this end, ideas from the area of graph transformations can play an even more signi�cant

role.

60

4.4 On the expressiveness of our query language

This section takes a deeper look at the expressiveness of our query language. We

concentrate on comparing it to the operations of the relational algebra, because they

are well-known and well-studied. On the other hand, we also investigate peculiarities

of the semistructured world by looking at some XML-related examples.

First, let us classify the operations of the relational algebra into \What" and \How"

as well. Our result is shown in Table 4.1. Only the crossproduct is not so easy to classify,

Operation \What" \How"

Selection x

Projection x

Crossproduct (x) (x)

Union x

Di�erence x

Table 4.1: Classi�cation of the relational operators

it does not really belong solely to either class. The set operations are not part of our

approach. If they were they should probably be part of the schema language, because

they clearly belong to the \What"-part of a query.

We move on to show how these operations can be performed using our approach.

We will use the example shown in Figures 2.5 and 2.6 on Page 35.

Selection As an example we want to have all the information belonging to the person

with the identi�er '01', i.e., we want the answer to the query �ID=0010(Person). This

can be done using a simple schema query or, optionally, a focus query. The schema

we need is shown in Figure 4.4. Optionally, a focus, for instance the one indicated by

the dashed box, can be speci�ed. One problem is the need to specify all the attributes

’01’

true()

true()

true()

’ID’ ’Surname’
’Name’

’Root’

true()

’Person’

’Tuple’

Figure 4.4: Representing the selection

61

explicitely. This is due to the fact that in an arbitrary graph we cannot know whether

a certain node has only outgoing arcs that lead directly to leaf nodes. The sample

database we are using for this example is well-structured; every leaf node has exactly

depth three.

Projection We use the query �Name(Person) as an example. Contradictory to what

we have said so far, e.g., with Table 4.1, we do not necessarily need a focus query, i.e.,

concepts belonging to the \How"-part of a query, to express the projection. In our

approach, wanted attributes have to be \projected in" (see the preceding example for

the selection operation), whereas in relational algebra unwanted attributes are \pro-

jected out". Furthermore, our example shows a \pure" projection, i.e., one that is not

combined with a selection. We can again express this query using a simple schema

query or, optionally, a focus query. Figure 4.5 shows the schema.

true()

’Root’

true()

’Person’

’Tuple’

’Name’

true()

Figure 4.5: Representing the projection

Crossproduct How can we express Person �WorksOn? Now we de�nitely need

a transformation query. The schema on the left of Figure 4.6 produces on match per

tuple in the crossproduct of the two relations. This match has to be transformed in

such a way, that it appears as a tuple of one result relation. The term-labeled graph on

the right does exactly that. Keep in mind, that you get one graph isomorphic to it per

match of the schema. By the way, the complexity of this example is a consequence of

the redundant representation of relational data, which is a necessity in graph models.

Join As a special case of what we have seen so far, we demonstrate the natural

join Person ./ WorksOn. The selection involved in this join compares labels in the

database graph to other labels. This is di�erent from what we have seen in the example

about the selection, where we compared labels to constants or checked predicates on the

labels. The only di�erence in the schema in Figure 4.7 compared to the one in Figure 4.6

62

true()

true()

’Tuple’

true()

true()

true()

’ID’ ’Surname’
’Name’

true()

’Tuple’

’Root’

true()
true()

true()

’Project’

’Person’ ’WorksOn’

’ID’

x1

x4 x5

x2 x3

x6 x7

x8 x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x1

x11
x13

x15
x17

’Tuple’

’Person x WorksOn’

concat(x8,’x’,x9)

concat(x4,’x’,x5)

x10

x14
x12 x16

x19

x18

Figure 4.6: Representing the crossproduct

is that a variable links the two nodes representing the ID's. The term-labeled graph

on the right is adapted accordingly; we need one \column" less.

true()

true()

’Tuple’

true()

true()

true()

’ID’ ’Surname’
’Name’

true()

’Tuple’

’Root’

true()

’Project’

’Person’ ’WorksOn’

’ID’

x4 x5

x2 x3

x6 x7

x8 x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x1

’Tuple’

X:true()
X:true()

’Person |x| WorksOn’

concat(x4,’|x|’,x5)

concat(x8,’|x|’,x9)

x13
x19x11

x15

x12

x18x10

x14

x1

Figure 4.7: Representing the natural join

Set operations The set operations lead to some unexpected problems. Of course,

one can easily introduce set operations on sets of schema matches. Then a query, such

as �Name(Person) [�Surname(Person), can easily be expressed and give the results

we expect. However, with the di�erence operation things are a little more subtle. Let

us use �ID(Person) n �ID(WorksOn) as an example. We would want to get f(03)g

as the answer, because only the person with the identi�er '03' is not involved in any

projects. In our approach, however, we would get f(01); (02); (03)g as the answer. The

reason is that the identi�ers of the Person-part of the database and the ones of the

WorksOn-part of the database are strictly distinct, because they are unique nodes,

i.e., they are di�erent subgraphs of the database. The semantics of our approach is

strictly identity-based rather than value-based. This also in
uences the projection

operation. Our projection behaves like the SELECT-statement in SQL rather than like

the SELECT DISTINCT-statement. Using a composition of queries we can de�ne a little

workaround for this problem. We can use the semijoin to �nd the identi�ers in the

Person table that have partners in the WorksOn table. Afterward we can perform

63

the di�erence operation solely on the identi�ers of the Person table, which will lead to

the intended result. Altogether, we simulate the query �ID(Person) n �ID(Person n

WorksOn). Although the di�erence operation can be used to de�ne the intersection

operation (i.e., R \ S = R n (R n S) = S n (S n R)) we would like to point out that in

our approach the result would be a \table-speci�c" intersection, i.e., the result would

be either the intersection using the tuples from R or using the tuples from S.

Other issues Due to the very nature of semistructured data, our approach can be

used to link data and structural parts of the database. This cannot be achieved using

relational algebra. The schema in Figure 4.8 matches tuples having the same value at

the same attribute. The answer to this schema query with respect to the database in

Figure 2.5 on Page 35 consists of the tuples with ID = 01 and ID = 02 from the tables

Person and WorksOn, respectively. Due to the injectivity requirement of the match

function (in particular with respect to the arcs indicating the relations) this schema

does not match the two di�erent tuples with ID = 02 in table WorksOn.

true()

true()

’Tuple’

true()

Y:true()

X:true()

true()

true()

’Tuple’

Y:true()

X:true()

’Root’
true()

Figure 4.8: Equal attribute-value pairs

Examples involving paths can also not be expressed in relational algebra; however,

they are not very useful in such a structured and unnested environment.

Querying XML documents Of course, our language is well-suited for querying

XML documents. With the predicates, the variable de�nitions, and the path descrip-

tions general concepts of other languages for semistructured data are represented. A

special feature of our approach, however, is that no knowledge of a root node or of

speci�c paths going out from the root node is required. Consider the simple example

in Figure 4.9 together with the XML document covering various kinds of information

on our database group. This document was introduced in Section 2.4. The schema

matches every object with a name, a surname, and a phone number, regardless of

where they appear in the document.

Due to the way XML documents are transformed into labeled directed graphs,

di�erent parts of a document can be linked. Remember, that the example document

64

true()

true()

true()

true()

’PHONE’’NAME’
’SURNAME’

Figure 4.9: A simple schema query for XML documents

basically consists of four parts covering the member, the research, the lectures, and

the publications of our group. The example schema in Figure 4.10 matches the title

of every publication in 1999 I am involved in. The arc labeled true()+ matches the

linking path AUTHORS.AUTHOR.idref. Again, no knowledge of a possible path from the

root node is necessary.

true()

’PUBLICATION’

true()

true() ’1999’

’TITLE’ ’YEAR’

true()

’Bergholz’

’NAME’

true() +

Figure 4.10: Linking di�erent parts of an XML document

4.5 Intermezzo: Graph transformations

In this section we will provide a brief introduction to the �eld of graph transforma-

tions. This area has signi�cantly in
uenced our work, in particular on concepts like

the transformation query, but also on query processing using constraints. In a sense,

we extend the notion of graph transformation through our schema concept and provide

a richer notion of left-hand sides for rules. We will concentrate on the Single-Pushout

approach to graph transformations [L�ow93].

Graph transformations are about making changes to some host graph. In the con-

text of graph transformations graphs are usually attributed. Every vertex and arc in a

graph is associated with a type; and the label of the vertex or arc must be of this type.

Now, a graph rule is simply a graph morphism r : L �! R. On the left-hand side a

constellation of objects to be rearranged is described. This is related to what we call

a schema. The morphism describes the changes to be done. Objects being involved

in the morphism are preserved; all other objects are deleted from the host graph. In

addition, new objects can be created by the morphism. A redex of a left-hand side

L in a host graph G is a total graph morphism m : L �! G. The redex indicates

occurrences of the left-hand side of a rule in the host graph. This morphism has to

65

be total, because only in this case the conditions formulated in the left-hand side are

completely ful�lled in the host graph. Of course, the host graph can, and typically will,

be much larger than the left-hand side of a rule. Hence, there exists typically more

than just one redex for every rule, just as there exist multiple matches of a schema in

a database. The part of the host graph, that is not in the scope of the redex, is called

the context.

The result of applying a graph rule r : L �! R to a host graph G using a redex

m : L �! G can formally be described using the pushout concept from category

theory (hence the name Single-Pushout). Instead, we outline the construction of the

result for the non-attributed case and give an example later on. The result graph H is

constructed in two steps:

1. Glue and add: Every object in the left-hand side L of the rule r has a corre-

sponding object in the host graph G via the redex m. We add all the objects to

G, that are added by r to R. Furthermore, we glue objects being uni�ed by m

together; i.e., let x; y 2 L be glued (i.e., m(x) = m(y)), then everything, that is

added in R to r(x) and r(y), is added to the single object m(x) = m(y) in G.

2. Delete: We delete all the objects m(x) for which no r(x) exists. During this

process dangling arcs can occur. They are also deleted. The constructed graph

is the result graph H.

Note that a graph rule speci�es three components: the part of the graph to be deleted,

i.e., Lndom(r), the subobject of L to be preserved, i.e., dom(R) and the added structure,

i.e., R n r(L).

A rule, such as the one in Figure 4.11, can be formulated in the graph transformation

system AGG [Agg]. A box stored in a depot is to be put onto a vehicle. The morphism

r between the left-hand side of the rule and the right-hand side of the rule is implicitly

given by the object names, i.e., the depot object on the left is mapped to the depot

object on the right etc. Note that rules can be accompanied by attributes. After the

application of a rule the number of boxes in the depot is reduced by one and the weight

of the box is added to the weight of the vehicle. In Figure 4.12 we show a host graph

before and after the application of the rule in Figure 4.11. There are two vehicles,

one on a parking lot and one in front of the depot. Three boxes carrying a variety of

goods are in the depot and on the second vehicle, respectively. After applying the rule

one box is moved from the depot to the second vehicle. Note that the values of the

attributes are updated accordingly. In the example we observe that an arbitrary redex

is used in this transformation. Instead of the box with cookies the box carrying apples

could have been moved to the vehicle as well.

66

Depot

Vehicle Box

in_front_of

on

Depot

Vehicle Box

inin_front_of

L R

Boxes = x

Weight = z Weight = y Weight = z+y

Boxes = x-1

Figure 4.11: An attributed graph rule

To avoid unwanted results one can specify application conditions for redices. A

redex m is called

� injective, if m(x) = m(y) implies x = y for all x; y 2 L. An injective redex never

glues nodes together.

� d-injective (from delete-injective), if m(x) = m(y) implies x = y or x; y 2

dom(R). D-injectivity requires a one-to-one correspondence between candidates

for deletion in G and L.

� con
ict-free, ifm(x) = m(y) implies either x; y 2 dom(R) or x; y =2 dom(R). This

guarantees that an element of G is either meant to be preserved or meant to be

deleted. D-injectivity ensures con
ict-freeness. A con
ict-free redex is also said

to ful�ll the identi�cation condition.

� d-complete, if for every edge e 2 G with s(e) 2 codom(mjLndom(r)) or with

t(e) 2 codom(mjLndom(r)) also e 2 codom(mjLndom(r)) holds. This condition en-

sures, that the complete structural context of the elements in G to be deleted, is

described in L, i.e., no dangling edges can occur.

As opposed to the Single-Pushout approach the older Double-Pushout approach

makes use of a gluing graph [EPS73]. A graph rule is thus a tuple (L;K;R) and K,

typically a subgraph of both L and R, describes the part of the left-hand side that is

to be preserved by an application of the rule. A rule is applicable to a host graph G

if G contains a homomorphic image of L. In the �rst step, the application of the rule

removes the part of G that corresponds to L�K. This leads to the context graph D.

Then all items in R � K are added to D. Finally, these new items from R � K are

embedded into D in accordance with the relation between R�K and K.

67

Box

Content = Gravel

Weight = 1200

Box Box

Content = Cookies Content = Apples

Weight = 230Weight = 120Vehicle

Parking Lot

on

Weight = 0 Depot

Boxes = 2
in_front_of

on

in

Box Box

Content = Cookies Content = Apples

Weight = 230Weight = 120Vehicle

Parking Lot

on

Weight = 0 Depot

on

in_front_of

Vehicle

Box

Content = Gravel

Weight = 1200

Weight = 1320

Vehicle

Weight = 1200

Boxes = 1

in

in
on

License = "B 203"

License = "B 971"

License = "B 203"

License = "B 971"

Figure 4.12: The host graph before and after the application of the rule

4.6 Other query languages for semistructured data

In this section we summarize other query languages for semistructured data. We pri-

marily present two languages, Stanford's Lorel [AQM+97] and University of Pennsyl-

vania's UnQL [BDHS96].

Lorel Lore is a pioneering project in semistructured data. Originally, the language

Lorel (i.e., Lore language) was implemented on top of the object-oriented DBMS O2

[BDK92a]. Now it has been rebuilt as a stand-alone system. We describe Lorel in its

re�ned version called Lorel96 as presented in [AQM+97]. The original language, now

dubbed Lorel1, was presented in [QRS+95]. Lorel was designed to be a query language

for the Object Exchange Model OEM, but it can now also be used to query XML

documents.

We describe Lorel's functionality using an example with data on restaurants listed in

some guide. Lorel supports OQL-like basic functionality as shown in the next example.

68

The user can specify conditions; they can also be connected using boolean connectors.

select Guide.restaurant

(from Guide)

where Guide.restaurant.entree.name = "Green_curry";

We observe that a from-clause is not really necessary. Furthermore, equality is a

diÆcult issue in this language. The path expression Guide.Restaurant.Entree.Name

returns a set of objects if there exist entrees with several names. In that case the

comparison would return true if there existed a name in the set of names equaling the

value.

A very important concept of Lorel is that of a path expression. It is used for a

navigational querying of the data. Label marker can be used to �x paths or pre�xes.

They can be useful if the user for instance wants to query a book with two authors.

Then each of the two author paths has to be distinguished. Label markers can also

make the semantics of a query clearer. The previous example query becomes clearer if

written like this:

select Guide.restaurant R

where R.entree.name = "Green_curry";

General path expressions allow both regular expressions and label completion to be

used in paths. Consider the following examples of path expressions.

Guide.restaurant(.address)?.zip%

Guide.restaurant.#@P.name

Guide.restaurant(.nearby)*{R}.name

The �rst expression matches paths starting from Guide followed by a restaurant edge,

then an edge with a label beginning with zip (the intention being zip or zipcode,

of course), possibly with an address edge inbetween. The second expression matches

every path starting with Guide.restaurant and ending with a name edge. An arbitrary

subpath can occur inbetween. This subpath is matched to # and bound to the variable

P. In the third example the variable R is bound to the object immediately before the

name edge. It is obvious that these kinds of path expressions can be used to pose

powerful queries, such as the one presented next.

select R.name

from Guide.restaurant R

where R.zip% = 92310

and R.% = "cheap"

69

Label markers can be used for at least two more purposes. The path-of function

allows the user to discover the structure of the database. The next query would return

paths, such as restaurant, restaurant.address, or restaurant.nearby.address.

select distinct path-of(P)

from Guide.#@P.zipcode

Furthermore, label markers can be used to construct results. The following example

illustrates this fact.

select R.name, R.address

from Guide.restaurant R

In its O2 implementation Lorel also featured elements of data manipulation.

UnQL UnQL is a simple yet powerful language for querying semistructured data. In

fact, it is strictly more powerful than Lorel, because of its possibilities to restructure

query results.

R1 R2

Tup Tup Tup TupTup

CDA B C A B C C D C D

a 2 3 b 4 5 3 c 5 d 5 e

Figure 4.13: A relational database as edge-labeled tree

When a relational database is transformed into an edge-labeled tree as in Figure 4.13

UnQL is equivalent to relational algebra. An SQL-query

SELECT A, D

FROM R1, R2

WHERE R1.C = R2.C;

would be expressed in UnQL as:

select {Tup => {A => x, D => z}}

where

R1 => Tup => {A => \x, C => \y} <-- DB,

R2 => Tup => {C => y, D => \z} <-- DB

70

Understanding this query requires understanding the notion of edge-labeled trees in-

troduced in Section 2.5. In the previous query the two edge-labeled tree patterns

R1 => Tup => {A => \x, C => \y} and R2 => Tup => {C => y, D => \z} will be

searched in the database. The variables are instantiated at the points where they are

pre�xed with a backslash. The join is achieved through the variable y, and in the

select-clause the projection is performed.

Path expressions similar to those in Lorel are introduced. The following query

returns the set of all strings in the database.

select {l}

where _* => \l => _ <-- DB, isstring(l)

With UnQL it is also possible to powerfully restructure the database. This makes

UnQL unique among the query languages for semistructured data. The following query

replaces all foo-edges by bar-edges. Additionally, it is also possible to change the graph

structure of a database.

traverse DB giving X

case foo => _ then X := {bar => X}

case \l => _ then X := {l => X}

Other languages: XML-QL Closely related are also the query languages for the

World Wide Web mentioned in Section 1.5 mentioned. The query language XML-QL,

designed speci�cally for XML, is similar to our approach in that it uses element patterns

as the \What"-part of a query [DFF+99]. Consider the following example.

WHERE <book>

<publisher> <name> Addison-Wesley </> </>

<title> $t </>

<author> $a </>

</> IN "www.foo.net/bib.xml"

CONSTRUCT <result>

<author> $a </>

<title> $t </>

</>

With the WHERE-clause the element pattern is de�ned. It matches every book with a

publisher named \Addison-Wesley" and arbitrary title and author. The CONSTRUCT-

clause represents the \How"-part of the query. The user speci�es that he wants the

result tagged as \result" and within the result element the author �rst, followed by the

71

title. Like our approach, XML-QL supports nested queries, tag variables and regular

path expressions. Unfortunately the examples in the mentioned paper are sometimes

contradictory to the grammar given. It is not clear at this time what the language will

�nally look like and what in
uence it will have on the database community.

Our approach Lorel UnQL XML-QL

Conditions yes yes yes yes

Boolean operations partly yes yes yes

Path expressions yes yes yes yes

Nested queries no yes yes yes

Root node not necessary necessary necessary not necessary

Ordering the result no yes no yes

Answer is a / an graph OEM object \tree" or label XML doc

Aggregation no yes no no

Restructurings no no yes no

Table 4.2: Comparison of di�erent query languages for semistructured data

Table 4.2 summerizes features supported by the di�erent query languages presented

in this chapter. Of course, the criteria listed in this table are somewhat subjective, but

we tried to pick typical concepts of query languages. A more detailed comparison

between �ve di�erent query languages speci�cally designed for XML can be found in

[BC99].

4.7 Summary

This chapter presented our notion of query. We moved from the very simple notion

of a schema query via the focus query to the transformation query. A schema query

consists just of a schema as presented in the previous chapter. It queries for the

minimal matches of the schema. A focus can be given to project to interesting aspects.

With a transformation query the answer can be completely restructured. Ideas for this

querying approach were taken from the area of graph transformations, from which basic

concepts were also presented in this chapter. We compared the expressiveness of our

query language to the relational algebra and pointed out peculiarities when querying

XML documents. Finally, we looked at other query languages for semistructured data.

72

Part III

Query Processing

73

Chapter 5

Schema Matching as a Constraint

Satisfaction Problem

When you have eliminated the impossible,

whatever remains, however improbable, must be the truth.

(Arthur Conan Doyle)

This chapter is the �rst of three chapters dealing with the problem of query opti-

mization. Our work focuses again on the \What"-part of a query, because �nding the

matches of a given schema is the most diÆcult part of processing a query. The opera-

tions introduced in the previous chapter can all be performed easily once the schema

matches are found.

We choose to base our query processing on constraints. This idea comes from the

area of graph transformations where constraints are used in the AGG-system [Agg,

Rud98]. There are at least two good reasons for this approach. First, this additional

layer of abstraction permits us to extend our schema language later on, without having

to change too much on the optimizer. Second, many techniques and heuristics already

exist for this general class of search problems.

In this chapter we demonstrate how to �nd the matches of a schema in a database

directly, i.e., without any additional information. In the next chapters we discuss

optimization in more detail and demonstrate how to make use of previously matched

schemata. This chapter is organized as follows. Section 5.1 gives an introduction to

the �eld of Constraint Satisfaction Problems. In Section 5.2 we demonstrate how the

problem of �nding a match to a given schema can be transformed into an equivalent

Constraint Satisfaction Problem. Optimization techniques for Constraint Satisfaction

Problems are discussed in the next chapter. We discuss other approaches to query

processing in semistructured data in Section 5.3. Section 5.4 provides a summary of

the chapter.

75

5.1 Introduction to Constraint Satisfaction Problems

Constraint Satisfaction Problems form a general class of search problems. They deal

with solving problems by stating properties or constraints that any solution must ful�ll.

De�nition 5.1 (Constraint Satisfaction Problem). A Constraint Satisfaction Prob-

lem (CSP) is a tuple (X;D;C) where

� X is a set of variables fx1; : : : ; xmg,

� D is a set of �nite domains Di, one for each variable xi 2 X and

� C is a set of constraints fCS1
; : : : ; CSng restricting the values that the variables

can simultaneously take. The Si = (xSi1 ; : : : ; xSik) are arbitrary tuples of vari-

ables from X; and each CSi
is a relation over the crossproduct of the domains of

these variables (CSi
� DSi1

� � � � �DSi
k

).

Because variables and domains are linked to each other we also call every tuple

< xi;Di > with xi 2 X and Di 2 D a domain variable. A variable interpretation

for a given set of domain variables is a mapping � : X �! D, such that �(xi) 2 Di

holds for every xi 2 X. A variable interpretation � satis�es a constraint C(xSi1
;:::;xSi

k

) if

(�(xSi1); : : : ; �(xSik)) 2 C(xSi1
;:::;xSi

k

). A solution to a CSP is a variable interpretation,

such that all constraints are simultaneously satis�ed.

Q

Figure 5.1: A queen restricting the possible positions of the other queens

A typical example for a CSP is the N-queens problem; we illustrate it as the 4-queens

problem. The problem is to place four chess queens on a 4�4-board, such that no queen

can capture another (in chess semantics). In Figure 5.1 a queen restricting the possible

positions of the other queens is depicted. In the corresponding CSP four variables

x1; : : : ; x4 representing the four rows are introduced. This is already a simpli�cation,

because it is based on the observation that in any solution there can be at most one

queen per row. The domain of every variable is f1; 2; 3; 4g. xi = j represents the fact

that the queen in the i-th row is located at position (column) j. As shown in Figure 5.1,

76

three classes of constraints are derived. One class represents that no two queens can

be in the same column. The other two classes represent the left and the right diagonal.

8i; j; i < j � 4 : Ccol

(xi;xj)
= f(x; y) 2 Di �Dj jy 6= xg

8i; j; i < j � 4 : C
left

(xi;xj)
= f(x; y) 2 Di �Dj jy 6= x� (j � i)g

8i; j; i < j � 4 : C
right

(xi;xj)
= f(x; y) 2 Di �Dj jy 6= x+ (j � i)g

For the 4-queens problem there are six constraints in every one of the three classes.

In Figure 5.2 we show the set of constraints.

C
col

(x1;x2)
= f(1; 2); (1; 3); (1; 4); (2; 1); (2; 3); (2; 4); (3; 1); (3; 2); (3; 4); (4; 1); (4; 2); (4; 3)g

C
col

(x1;x3)
= f(1; 2); (1; 3); (1; 4); (2; 1); (2; 3); (2; 4); (3; 1); (3; 2); (3; 4); (4; 1); (4; 2); (4; 3)g

: : :

C
col

(x3;x4)
= f(1; 2); (1; 3); (1; 4); (2; 1); (2; 3); (2; 4); (3; 1); (3; 2); (3; 4); (4; 1); (4; 2); (4; 3)g

C
left

(x1;x2)
= f(1; 1); (1; 2); (1; 3); (1; 4); (2; 2); (2; 3); (2; 4); (3; 1); (3; 3); (3; 4); (4; 1); (4; 2); (4; 4)g

C
left

(x1;x3)
= f(1; 1); (1; 2); (1; 3); (1; 4); (2; 1); (2; 2); (2; 3); (2; 4); (3; 2); (3; 3); (3; 4); (4; 1); (4; 3); (4; 4)g

: : :

C
left

(x3;x4)
= f(1; 1); (1; 2); (1; 3); (1; 4); (2; 2); (2; 3); (2; 4); (3; 1); (3; 3); (3; 4); (4; 1); (4; 2); (4; 4)g

C
right

(x1;x2)
= f(1; 1); (1; 3); (1; 4); (2; 1); (2; 2); (2; 4); (3; 1); (3; 2); (3; 3); (4; 1); (4; 2); (4; 3); (4; 4)g

C
right

(x1;x3)
= f(1; 1); (1; 2); (1; 4); (2; 1); (2; 2); (2; 3); (3; 1); (3; 2); (3; 3); (3; 4); (4; 1); (4; 2); (4; 3); (4; 4)g

: : :

C
right

(x3;x4)
= f(1; 1); (1; 3); (1; 4); (2; 1); (2; 2); (2; 4); (3; 1); (3; 2); (3; 3); (4; 1); (4; 2); (4; 3); (4; 4)g

Figure 5.2: The set of constraints for the 4-queens problem

The so de�ned CSP has two solutions: (2; 4; 1; 3) and (3; 1; 4; 2). They correspond

to the actual solutions of the 4-queens problem as depicted in Figure 5.3.

Q

Q

Q

Q

Q

Q

Q

Q

Figure 5.3: Solutions of the 4-queens problem

Determining whether a given CSP has a solution is an NP-complete problem. Be-

cause 3-SAT is NP-complete, Constraint Satisfaction with at most two values per do-

77

main and at most three variables per constraint is NP-complete. However, only the

worst-case scenario is exponential. We will see that the need to search is not fatal.

The simplemost idea to solve a CSP is to follow the generate-and-test paradigm.

Every possible variable interpretation is generated; and then every constraint is checked.

This is, of course, a very ineÆcient approach, because it always considers the all possible

variable instantiations. If there are m variables and every domain has size n then n
m

many possible instantiations exist.

In the future, we restrict ourselves to binary CSPs, i.e., to CSPs where the con-

straints are between at most two variables. Every CSP with arbitrary constraints can

be converted to an equivalent binary CSP [RPD89]. The idea of the transformation

as as follows. For an arbitrary constraint CSi
= C(xSi1

;:::;xSi
k

) we introduce a new

variable ySi that has the constraint CSi
as its domain. Then k new binary constraints

C(ySi
;xSi1

); : : : ; C(ySi
;xSi

k

) link the original constraint represented by ySi
to its k com-

ponents. Thus, the original constraint can be removed.

A binary CSP can be represented by a constraint graph, where every node repre-

sents a variable and every arc represents a constraint between two variables. Unary

constraints are represented by loops, i.e., by arcs originating and terminating at the

same node. The constraint graph for the 4-queens problem is shown in Figure 5.4.

x1

x2 x3

x4

Figure 5.4: The constraint graph for the 4-queens problem

Constraint satisfaction techniques are used for a variety of applications. They

range from algorithmic problems, such as graph colorings via DNA sequencing, to

airport counter allocation [Bar98]. Scheduling problems are among the most popular

applications.

5.2 Transformation of the schema matching problem

This section illustrates how to transform the problem of �nding the matches for a given

schema in a database to an equivalent CSP. This work was also presented in [BF99a].

The problem we are addressing is related to the SUBGRAPH-ISOMORPHISM prob-

lem, which is known to be NP-complete [Coo71]. However, our problem is exponentially

78

hard in the size of the schema, but only linearly hard in the size of the database. Fur-

thermore, the labels in the graphs greatly reduce the average complexity. We start

with giving the basic transformation steps for predicate schemata in the �rst subsec-

tion. Then we move on to show how to deal with variables and paths. In the �nal

subsection we prove the correctness and the completeness of the transformation.

5.2.1 The basic principles of the transformation

We will illustrate the process of transforming a schema matching problem into a CSP

in detail for the simplest sort of schema, the predicate schema, �rst. We use our

well-known database graph in Figure 2.4 on Page 35 and the predicate schema in

Figure 3.1 on page 45 as an example. The basic idea is the same as for the more so-

phisticated schema concepts. The database graph is transformed into suitable domains

and variables are introduced for the elements in the schema. Furthermore, constraints

representing the match semantics are introduced. They can be categorized into the

ones that represent the label part and the ones that represent the structural part of

the match semantics. The basic idea of the transformation is illustrated in Figure 5.5.

Schema Database

?

1: Domains

2: Variables

3: Constraints

Figure 5.5: The basic idea of the transformation

In general, let us assume we have a database object o = (V (o)
; A

(o)
; s

(o)
; t
(o)
; l
(o))

and a schema s = (V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)). The following transformation is performed:

1. From the database graph we deduce domains DV = V
(o) and DA = A

(o).

In our example we get:

DV = fv1; v2; v3; v4; v5; v6; v7; v8; v9; v10; v11g

DA = fa1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11; a12g

2. A variable xi is introduced for each element in V
(s)
[A

(s). As a shorthand, we

use the variable as a synonym for the corresponding element and say that \xi is

an arc" instead of \xi represents an arc". X is the set of these variables.

79

3. For each variable xi 2 X we de�ne its domain Di as Di := DV if xi is a node,

and Di := DA if xi is an arc. D is the set of the Di.

true()

’Carpenter’

true()

x3

x2

x1

Figure 5.6: The predicate schema revisited

We repeat the schema graph in Figure 5.6 to illustrate the variable assignment. We

get:

X = fx1; x2; x3g

D1 = D3 = DV

D2 = DA

4. For every variable xi we introduce a unary label constraint C lab

(xi)
. They repre-

sent the semantics of the respective predicate in the schema. A node or arc is

in the constraint if its label makes the predicate of xi true (C lab

(xi)
= f(dik) 2

Dijl
(s)(xi)(l

(o)(dik)) = trueg).

In the example x1 is labeled with the predicate true(), which holds for any label.

So there is not really a constraint on DV and we could actually skip this one. The same

holds for the arc x2. x3 is labeled
0
Carpenter

0, which is a shorthand for the predicate

X = Carpenter. The nodes v5, v7, and v8 in the database graph carry this label.

C
lab

(x1)
= f(d1i) 2 D1jtrue(l

(o)(d1i))g

= f(v1); (v2); (v3); (v4); (v5); (v6); (v7); (v8); (v9); (v10); (v11)g

C
lab

(x2)
= f(d2i) 2 D2jtrue(l

(o)(d2i))g

= f(a1); (a2); (a3); (a4); (a5); (a6); (a7); (a8); (a9); (a10); (a11); (a12)g

C
lab

(x3)
= f(d3i) 2 D3jCarpenter = l

(o)(d3i)g

= f(v5); (v7); (v8)g

5. For every variable xi 2 AS and its source and target node xs and xt we introduce

two structure constraints C
src

(xi;xs)
and C

tar

(xi;xt)
. They ensure the preservation of

the graph structure of the schema (morphism property, Csrc

(xi;xs)
= f(dik ; dsl) 2

Di �Dsjs
(o)(dik) = dsl

g, Ctar

(xi;xt)
= f(dik ; dtl) 2 Di �Dtjt

(o)(dik) = dtl
g).

80

There is only one arc in the schema graph, namely x2. We link it to its source

vertex x1 and to its target vertex x3. One should read such a constraint as follows: \If

x2 is assigned to a1 then v1 is a valid value for x1" etc.

C
src

(x2;x1)
= f(d2k ; d1l) 2 D2 �D1js

(o)(d2k) = d1l
g

= f(a1; v1); (a2; v1); (a3; v1); (a4; v2); (a5; v4); (a6; v2);

(a7; v2); (a8; v2); (a9; v3); (a10; v4); (a11; v4); (a12; v4)g

C
tar

(x2;x3)
= f(d2k ; d3l) 2 D2 �D3jt

(o)(d2k) = d3l
g

= f(a1; v2); (a2; v3); (a3; v4); (a4; v3); (a5; v3); (a6; v5);

(a7; v6); (a8; v7); (a9; v8); (a10; v9); (a11; v10); (a12; v11)g

6. For every pair of variables that are nodes and every pair of variables that are

arcs we introduce an injectivity constraint. These constraints ensure that no two

nodes and no two arcs in the schema are mapped to the same node or arc in the

database graph (C
inj

(xi;xj)
= f(dik ; djl) 2 Di �Dj jdik 6= djl

g).

In our example we have only two nodes and one arc. Thus, we need only one

constraint between the two nodes x1 and x3.

C

inj

(x1;x3)
= f(d1k ; d3l) 2 D1 �D3jd1k 6= d3l

g

= f(v1; v2); (v1; v3); (v1; v4); : : : ; (v1; v11);

(v2; v1); (v2; v3); (v2; v4); : : : ; (v2; v11);

(v3; v1); (v3; v2); (v3; v4); : : : ; (v3; v11);

: : : ;

(v11; v1); (v11; v2); (v11; v3); : : : ; (v11; v10)g

7. C is the set of all introduced constraints.

Our sample CSP has the solutions (v2; a6; v5), (v2; a8; v7), and (v3; a9; v8) for the

variables (x1; x2; x3). They correspond to the matches of the schema as depicted in

Figure 3.2 on Page 46.

5.2.2 Dealing with variables and paths

We move on to explain how we map the more advanced concepts, e.g., variables and

paths, into the CSP. For the variables we reuse the example from Figure 3.3 on Page 46.

We show it again in Figure 5.7.

81

x2 x4

true()

X:true() X:true()

’name’ ’profession’
x1

x3 x5

Figure 5.7: Variables in a schema revisited

Just as in the previous subsection we introduce variables fx1; x2; x3; x4; x5g with

their domains. Furthermore, we introduce constraints C lab

(x1)
, C lab

(x2)
, C lab

(x3)
, C lab

(x4)
, and

C
lab

(x5)
derived from the labels of the schema, constraints Csrc

(x2;x1)
, Ctar

(x2;x3)
, Csrc

(x4;x1)
, and

C
src

(x4;x5)
derived from the structure of the schema, and injectivity constraints C

inj

(x1;x3)
,

C

inj

(x3;x5)
, C

inj

(x1;x5)
, and C

inj

(x2;x4)
. To represent the variables located at x3 and x5 we do

the following:

� For every pair xi; xj of variables with v(xi) = v(xj) we introduce a constraint

that ensures that the labels of the mappings of xi and xj are the same (Cvar

(xi;xj)
=

f(dik ; djl) 2 Di �Djjl
(o)(dik) = l

(o)(djl)g).

In the example we get:

C
var

(x3;x5)
= f(d3k ; d5l) 2 D3 �D5jl

(o)(di) = l
(o)(dj)g

= f(v1; v1); (v2; v2); (v3; v3); (v4; v4); (v5; v5); (v5; v7); (v5; v8); (v6; v6);

(v7; v5); (v7; v7); (v7; v8); (v8; v5); (v8; v7); (v8; v8); (v9; v9); (v10; v10); (v11; v11)g

This CSP then has the solution (v2; a6; v5; a8; v7) that directly corresponds to the

match shown in Figure 3.3 on Page 46.

For dealing with paths we need an additional domain. We put the trails of the

database graph into a new domain.

� From the database graph we deduce the domain DP = P
+(o).

For the sample database in Figure 2.4 on Page 35 we get:

DP = f(a1); (a2); (a3); (a4); (a5); (a6); (a7); (a8); (a9); (a10); (a11); (a12);

(a1; a4); (a1; a6); (a1; a7); (a1; a8); (a2; a9); (a3; a5); (a3; a10); (a3; a11); (a3; a12);

(a4; a9); (a5; a9); (a1; a4; a9); (a3; a5; a9)g

As an example we reuse the schema from Figure 3.5 on Page 50. We show it again

in Figure 5.8.

We observe that the variable x2 gets DP as its domain, whereas x1, x3, and x5 get

DV and x4 gets DA as before. The constraints C lab

(x1)
, C lab

(x3)
, C lab

(x4)
, and C

lab

(x5)
as well as

82

true()

’Root’

true() +

true()
’name’x4

x2

x5

x3

x1

Figure 5.8: Paths in a schema revisited

C
src

(x4;x3)
and Csrc

(x4;x5)
, and C

inj

(x1;x3)
, C

inj

(x3;x5)
, and C

inj

(x1;x5)
are de�ned in the same manner

as before. Only the constraints involving x2 have to be adapted.

� For every arc xi with domain DP we introduce a unary label constraint C
lab

(xi)

that represents the semantics of the respective predicate in the schema. A trail

is in the constraint if the labels of all its arcs make the predicate of xi true

(C lab

(xi)
= f(dik) 2 Dij8aj 2 dik : l

(s)(xi)(l
(o)(aj) = trueg).

� For every arc xi 2 AS with domain DP and its source and target node xs and

xt we introduce two structure constraints C
src

(xi;xs)
and C

tar

(xi;xt)
that ensure the

preservation of the graph structure of the schema (Csrc

(xi;xs)
= f(dik ; dsl) 2 Di �

Dsjs
(o)

P
(dik) = dsl

g, Ctar

(xi;xt)
= f(dik ; dtl) 2 Di �Dtjt

(o)

P
(dik) = dtl

g).

In the example this leads to:

C
lab

(x2)
= f(d2k) 2 D2j8aj 2 d2k : true(l

(s)(xi)(l
(o)(aj))g

= f((a1)); ((a2)); ((a3)); ((a4)); ((a5)); ((a6)); ((a7)); ((a8)); ((a9));

((a10)); ((a11)); ((a12)); ((a1; a4)); ((a1; a6)); ((a1; a7)); ((a1; a8)); ((a2; a9));

((a3; a5)); ((a3; a10)); ((a3; a11)); ((a3; a12)); ((a4; a9)); ((a5; a9));

((a1; a4; a9)); ((a3; a5; a9))g

C
src

(x2;x1)
= f(d2k ; d1l) 2 D2 �D1js

(o)

P
(d2k) = d1l

g

= f((a1); v1); ((a2); v1); ((a3); v1); ((a4); v2); ((a5); v4); ((a6); v2);

((a7); v2); ((a8); v2); ((a9); v3); ((a10); v4); ((a11); v4); ((a12); v4);

((a1; a4); v1); ((a1; a6); v1); ((a1; a7); v1); ((a1; a8); v1); ((a2; a9); v1);

((a3; a5); v1); ((a3; a10); v1); ((a3; a11); v1); ((a3; a12); v1);

((a4; a9); v2); ((a5; a9); v4); ((a1; a4; a9); v1); ((a3; a5; a9); v1)g

83

C
tar

(x2;x3)
= f(d2k ; d3l) 2 D2 �D3jt

(o)

P
(d2k) = d3l

g

= f((a1); v2); ((a2); v3); ((a3); v4); ((a4); v3); ((a5); v3); ((a6); v5);

((a7); v6); ((a8); v7); ((a9); v8); ((a10); v9); ((a11); v10); ((a12); v11);

((a1; a4); v3); ((a1; a6); v5); ((a1; a7); v6); ((a1; a8); v7); ((a2; a9); v8);

((a3; a5); v3); ((a3; a10); v9); ((a3; a11); v10); ((a3; a12); v11);

((a4; a9); v8); ((a5; a9); v8); ((a1; a4; a9); v8); ((a3; a5; a9); v8)g

Furthermore, we need two additional constraints representing the conditions on the

length of the path.

� For every arc xi 2 AS with domainDP we introduce two length constraints. They

re
ect the conditions on path lengths de�ned by q
(s)

min
and q

(s)

max (C
min

(xi)
= f(dik) 2

Dijq
(s)

min
(xi) � length(dik)g, C

max

(xi)
= f(dik) 2 Dijq

(s)

max(xi) � length(dik)g).

Because q

(s)

min
(x2) = 1 and q

(s)

max(x2) = +1, there is no real constraint in our

example, i.e., the constraints look the same as C lab

(x2)
. We can observe that the domain

of the arcs DA is actually a special case of the domain of the paths DP with the length

constraints already manifested within the domain.

Hence, we must not forget to introduce somewhat subtle injectivity constraints.

Because DA is a subset of DP (in the sense that there is a natural embedding of DA

into DP), we must also link the variables that indicate paths to the variables that

indicate arcs.

� For every pair of variables (xi; xj) that are arcs we introduce an injectivity con-

straint. These constraints ensure that no arcs in the schema are mapped to the

same trail in the database graph (C
inj

(xi;xj)
= f(dik ; djl) 2 Di � Dj jdik 6= djl

g).

This de�nition assumes that an arc is equal to the atomic trail consisting of that

arc.

In the example this leads to:

C

inj

(x2;x4)
= f(d2k ; d4l) 2 D2 �D4jd2k 6= d4l

g

= f((a1); a2); ((a1); a3); ((a1); a4); : : : ; ((a1); a12);

((a2); a1); ((a2); a3); ((a2); a4); : : : ; ((a2); a12); : : : ;

((a12); a1); ((a12); a2); ((a12); a3); : : : ; ((a12); a11);

((a1; a4); a1); ((a1; a4); a2); ((a1; a4); a3); : : : ((a1; a4); a12); : : : ;

((a3; a5; a9); a1); ((a3; a5; a9); a2); ((a3; a5; a9); a3); : : : ((a3; a5; a9); a12)g

84

This step concludes the transformation. Our example problem has �ve solutions:

(v1; (a1); v2; a6; v5), (v1; (a1; a4); v3; a9; v8), (v1; (a2); v3; a9; v8), (v1; (a3; a5); v3; a9; v8),

and (v1; (a3); v4; a10; v9). They correspond directly to the matches of the schema as

shown in Figure 3.5 on Page 50.

5.2.3 Correctness and completeness of the transformation

We conclude this section with the proof that our transformation is correct and complete,

i.e., that solutions of the CSP and matches of the schema correspond to each other.

Theorem 5.1. Let o be an object and s be a schema. Let (X;D;C) be the CSP with

k variables X = fx1; : : : xkg that has been de�ned in accordance with the above trans-

formation. A tuple (d1i ; : : : ; dki) 2 D1 � � � � �Dk is a solution of the CSP if and only

if the subobject of o induced by it is a minimal match of s in o.

Before we are going to prove the theorem we clarify what we mean by \by a solution

of a CSP induced subobject". Let (d1i ; : : : ; dki) be a solution of the CSP. Let V (0) := ;

and A
(0) := ;. For every dji 2 (d1i ; : : : ; dki) we do the following. If dji is a vertex then

let V (j) := V
(j�1)

[fdjig and A
(j) := A

(j�1). If dji is an arc then let V (j) := V
(j�1)

and A
(j) := A

(j�1)
[fdjig. If dji is a trail then let V

(j) := V
(j�1) and A

(j) :=

A
(j�1)

[faji jaji 2 dji
g. Because the domains were constructed from the original

object o, we observe V (k)
� V

(o) and A
(k)
� A

(o). Now we set V (oi) := V
(k)
[fv 2

V
(o)
j9a 2 A

(k) : v = s
(o)(a) _ v = t

(o)(a)g and A
(oi) := A

(k). The so de�ned object

oi = (V (oi)
; A

(oi)
; s

(o)
j
A
(oi) ; t

(o)
j
A
(oi) ; l

(o)
j
V
(oi)[A(oi)) is the subobject of o that is induced

by (d1i ; : : : ; dki). This resembles the flatten-function de�ned in Section 3.3.

Proof. Let o = (V (o)
; A

(o)
; s

(o)
; t
(o)
; l
(o)) be an arbitrary, but �xed object and s =

(V (s)
; A

(s)
; s

(s)
; t
(s)
; l
(s)
; v

(s)
; q

(s)

min
; q

(s)

max) be a schema. Let (X;D;C) be the CSP with

k variables X = fx1; : : : xkg that has been de�ned in accordance with the trans-

formation. Let (d1i ; : : : ; dki) 2 D1 � � � � � Dk be a solution of the CSP. Let oi =

(V (oi)
; A

(oi)
; s

(oi)
; t
(oi)

; l
(oi)) be the subobject of o that is induced by (d1i ; : : : ; dki). We

�rst show that oi is a match of s in o and then prove that oi is minimal. Let m be a

mapping between V (s)
[A

(s) and V (o)
[P

+(o) de�ned as m(xj) := dji
, where dji is the

value of the variable xj that was introduced in the CSP to represent nodes and arcs of

the schema. Let us do two simpli�cations here. First, we use the CSP variables xj as

a synonym for the node or arc they represent. Second, we do not distinguish between

the domains DA and DP , but rather see any arc dij from DA as being identical to the

atomic trail (dij) from DP . Thus, we do not care if an m(xj) is in DA or DP , but

rather view them as members of P+(o). We show that m is a match function, because

it ful�lls all conditions of De�nition 3.5:

85

1. The mapping m is an isomorphic embedding of s into oP . It is obvious that m is

a total function. Let xj be an arbitrary arc from s, and xj1 and xj2 be its source

and target nodes. Then (dij ; dij1) 2 C
src

(xj ;xj1
)
and (dij ; dij2) 2 C

tar

(xj ;xj2
)
, because

the constraints exist and (d1i ; : : : ; dki) is a solution of the CSP. Because of the

de�nition of these two constraints, it is clear that dij1 and dij2 are the source and

target node of dij in oP . We can similarly prove that m is an injective function

by using the injectivity constraints C
inj

(xj1
;xj2

)
.

2. Let xj be a node. Then dij 2 C
lab

(xj)
, hence the predicate l(s)(xj) holds for l

(oP)(dij).

Similarly, let xj be an arc. Then dij 2 C
lab

(xj)
and hence for all arcs in dij the pred-

icate l(s)(xj) holds for their labels. Thus, conditions one and two of De�nition 3.5

hold.

3. Let xj1 and xj2 be two variables with v
(s)(xj1) = v

(s)(xj2). If no two such variables

exist, condition three holds trivially. If they exists then (dij1 ; dij2) 2 C
var

(xj ;xj1
)
,

because the constraint exists, and (d1i ; : : : ; dki) is a solution of the CSP. This

implies that the labels of dij1 and dij2
are the same, because of the de�nition of

the constraint. Thus, condition three is ful�lled.

4. Let xj be an arbitrary arc. If it has DA as its domain then q

(s)

min
(xj) = 1 and

q

(s)

max(xj) = 1. Obviously, dj has exactly length one in this case, so condition four

is ful�lled. If xj has domain DP then constraints Cmin

(xj)
and C

max

(xj)
exist; and dj

is a member of both, because it is a member of a solution of the CSP. Because

of the de�nition of the constraints, dj is no shorter than q

(s)

min
(xj) and no longer

than q

(s)

min
(xj). Thus, condition four is also always ful�lled.

We have seen that m is a match function. oi is a minimal match of s in o, because

oi = flatten(m(s)). Hence, we proved correctness of the transformation.

Vice versa, let oi = (V (oi)
; A

(oi)
; s

(oi)
; t
(oi)

; l
(oi)) be a minimal match of s in o. Let

m be the match function. Let (d1i ; : : : ; dki) := (m(x1); : : : ;m(xk)). We observe that

(d1i ; : : : ; dki) 2 D1 � � � � � Dk, i.e., that (d1i ; : : : ; dki) is potentially a solution of the

CSP. We show that it is indeed a solution by showing that it satis�es all constraints.

1. Let C lab

(xj)
be an arbitrary label constraint. If xj is a node then the predicate

l
(s)(xj) is true for l

(o)(m(xj)), because m is a match function. This implies

m(xj) 2 C
lab

(xj)
and thus, dji 2 C

lab

(xj)
. If xj is an arc then the predicate l(s)(xj)

is true for all arcs in the trail m(xj), because m is a match function. Thus,

dji
2 C

lab

(xj)
holds also in this case.

2. Let Csrc

(xj1
;xj2

)
be an arbitrary structure constraint of type src. Because s(s)(xj1) =

xj2
and m is a match function, s

(o)

P
(m(xj1)) = m(xj2) holds. This implies

86

(m(xj1);m(xj2)) 2 C
src

(xj1
;xj2

)
and thus, (dij1 ; dij2) 2 C

src

(xj1
;xj2

)
. A similar rea-

soning can be done for an arbitrary structure constraint Ctar

(xj1
;xj2

)
of type tar.

3. Let C
inj

(xj1
;xj2

)
be an arbitrary injectivity constraint. Because xj1

6= xj2
and m

is a match function, it is true that m(xj1) 6= m(xj2). Thus, (m(xj1);m(xj2)) 2

C

inj

(xj1
;xj2

)
and (dij1 ; dij2) 2 C

inj

(xj1
;xj2

)
hold.

4. Let Cvar

(xj1
;xj2

)
be an arbitrary variable constraint. This implies that v(s)(xj1) =

v
(s)(xj2). Because m is a match function, we get l(o)(m(xj1)) = l

(o)(m(xj2)).

Thus, (m(xj1);m(xj2)) 2 C
var

(xj1
;xj2

)
and (dij1 ; dij2) 2 C

var

(xj1
;xj2

)
hold.

5. Let Cmin

(xj)
be an arbitrary length constraint of type min. Because m is a match

function, it is true that length(m(xj)) � q

(s)

min
(xj). Thus, m(xj) 2 C

min

(xj)
and

dji
2 C

min

(xj)
hold. Similarly, dji 2 C

max

(xj)
.

We have shown that (d1i ; : : : ; dki) satis�es all introduced constraints. Hence, it is

a solution of the CSP. We also proved completeness of the transformation.

5.3 Cost-based query processing for semistructured data

A more traditional approach to query optimization is used in the Lore system. A

query is parsed and preprocessed; and a single logical query plan providing a high-

level description of the execution strategy is generated. Statistics and a cost model

are used to transform the logical query plan into a physical plan. Lore uses several

di�erent indexing structures. The value index supports �nding all atomic objects with

a given incoming edge label and satisfying a given predicate. The label index supports

�nding all parents of a given object via an edge with a given label. The edge index

supports �nding all parent-child object pairs connected via a speci�ed label. Finally,

the DataGuide [GW97] provides the functionality of a path index.

Lore distinguishes di�erent strategies of query evaluation [MW99]. The top-down

strategy simply traverses a path starting from the root in a forward manner. This

strategy is similar to pointer-chasing in object-oriented systems. The bottom-up strat-

egy uses the value index to �nd objects that satisfy the given predicate, and the label

index to traverse back through the data. A third strategy is to mix the two together:

evaluate parts of a path expression top-down and traverse back from the leaf objects

simultaneously. A join between the two temporary results leads to complete satisfying

paths. This strategy is called the hybrid strategy. For every one of these strategies

there are examples making the respective strategy perform best.

87

For UnQL a calculus called UnCAL provides a formal basis for deriving optimiza-

tion rewrite rules [BDHS96]. However, a cost-based optimizer does not exist. The

Strudel system is di�erent in that the data may reside anywhere in an arbitrary format

[FFK+98]. Query languages for XML, such as XML-QL or XQL, are not yet in a stage

where a full optimizer exists.

Query processing on the basis of Constraint Satisfaction Problems is signi�cantly

di�erent from cost-based query processing. The latter introduces a planning phase,

where an eÆcient query execution plan is generated from a set of alternative plans.

When solving a CSP only little planning is performed. At each step in the process of

solving the problem a decision on how to carry on is made dynamically. We will focus

on techniques for solving CSPs eÆciently in the next chapter.

5.4 Summary

This chapter introduced basic ideas of our query processing based on constraints. We

identi�ed that the diÆcult part of answering a query is to �nd the matches of a schema

in a database. We reduced this problem to an equivalent Constraint Satisfaction Prob-

lem. We provided an introduction to the �eld of Constraint Satisfaction Problems and

demonstrated the transformation. We proved the correctness and the completeness of

the transformation. In the �nal section we looked at the more traditional cost-based

query optimization used in the Lore project.

88

Chapter 6

Optimization Techniques for

Constraint Satisfaction Problems

"Contrariwise", continued Tweedledee, "If it was so, it might be;

and if it were so, it would be;

but as it isn't, it ain't. That's logic."

(Lewis Carrol)

After we have seen how to create a Constraint Satisfaction Problem (CSP) from

our original problem of �nding schema matches in a database, we move on to discuss

optimization techniques for these CSPs. Our basic assumption is that we are interested

in all solutions of a CSP, not just in one. The latter would lead to completely di�erent

heuristics, because it would not necessarily require to consider the complete search

space. Furthermore, we are restricting ourselves to binary CSPs as we explained in

Section 5.1.

The chapter is organized as follows. In Section 6.1 we start with domain reduc-

tion, i.e., with eliminating values violating constraints. We move on to consider more

intelligent search algorithms in Section 6.2 and conclude in Section 6.3 with obser-

vations on how the order, in which the variables are instantiated, plays a signi�cant

role. In Section 6.4 we prove an interesting property about our approach: Matches

of a tree-shaped schema without variable de�nitions can be found without search and

in polynomial time if the requirement of injectivity of the match function is ignored.

Section 6.5 provides a summary of the chapter.

6.1 Consistency techniques

A �rst approach to solving CSPs more eÆciently is to reduce the domains of the vari-

ables, and thus, to reduce the search space. Eliminating only one value from one

89

domain in a problem with m variables and domain size n reduces the number of pos-

sible instantiations by a factor of n

n�1 or, by an absolute size of nm�1. Techniques

that eliminate such inconsistent values from domains are called consistency techniques.

They are deterministic, as opposed to search, which is non-deterministic. Thus, the

deterministic computation is usually performed as soon as possible. Nevertheless, the

consistency techniques are rarely used alone to solve a CSP completely, although they

could be.

An obvious �rst idea is to eliminate values that violate unary constraints. Suppose

there is a variable x with domain f1; 2; 3g and a unary constraint Codd

(x)
= f(1); (3)g

then a solution to the CSP with x = 2 cannot exist.

De�nition 6.1 (Node consistency). A variable x in a CSP is called node consistent

if for every value in the current domain of x each unary constraint on x is satis�ed.

The notion of node consistency is derived from the constraint graph. Node consis-

tency can obviously be achieved in polynomial time.

This basic consistency idea can be extended to cover more than one variable. Con-

sider two variables x and y and a binary constraint C(x;y) between them. Values u in

the current domain of x for which no value v in the current domain of y exists, such

that (u; v) satis�es the constraint, are inconsistent.

De�nition 6.2 (Arc consistency). The variable pair (x; y) is arc consistent if for

every value u in the current domain of x there exists some value v in the current

domain of y, such that x = u and y = v is permitted by every binary constraint

between x and y.

Actually, the original de�nition de�nes arc consistency per arc in the constraint

graph, i.e., per binary constraint. Note that arc consistency is directional: If (x; y) is

arc consistent then (y; x) is not necessarily arc consistent as well.

Various algorithms have been proposed to achieve arc consistency for every arc in a

CSP. The theoretical worst-case time complexity of achieving arc consistency is O(cn2),

where c is the total number of binary constraints and n is the domain size for each

variable. To verify arc consistency, each arc must be inspected at least once, which

takes O(n2) time. Mohr and Henderson present an algorithm that achieves exactly this

lower bound [MH86]. Another popular algorithm is AC-3 [Mac77]; it has running time

O(cn3).

Arc consistency still does not eliminate the need to search. Consider Figure 6.1. It

shows an arc consistent CSP, because for every instantiation of an arbitrary variable

one can �nd a value for the other variables that satis�es the \not equal"-constraint.

But there exists no solution to the CSP, which will become clear only after performing

search.

90

X: {0,1}

Y: {0,1} Z: {0,1}

Figure 6.1: An arc consistent CSP with no solution

The last statement is actually not completely true. Search is only necessary if we

do not have more advanced consistency notions. The consistency idea can of course be

extended to cover even more variables.

De�nition 6.3 (k-consistency, strong k-consistency). A constraint graph is k-

consistent if the following is true: Choose values of any k � 1 variables that satisfy all

the constraints among these variables. Then choose any kth variable. There exists a

value in the current domain of this variable that satis�es all the constraints among all

the K variables. A constraint graph is strongly k-consistent if it is j-consistent for all

j � k.

Node consistency is equivalent to strong 1-consistency; arc consistency is equiv-

alent to strong 2-consistency. Algorithms exist to make a constraint graph strongly

k-consistent, but their worst-case running time is exponential [Coo89]. Clearly, if a

constraint graph with m nodes is strongly m-consistent, then a solution to the CSP

can be found without any search.

Consistency techniques can be applied at any stage of a search procedure. They can

be applied \statically", i.e., before the search starts. During the search, if a variable

gets instantiated to some value a new, \virtual" CSP is de�ned, in which this variable

has a domain consisting only of the value it got instantiated to. Then consistency

techniques can be applied again. The reductions performed in this case are of course

temporarily; they have to be revoked once the variable gets instantiated to some other

value.

6.2 Search algorithms

Suppose we have a given CSP with m variables and assume for simplicity that all

underlying domains have the same size n. Then there exist nm possible instantiations

for the variables. With the ineÆcient but simple generate-and-test approach a total

assignment is generated. Then the validity of the constraints is tested. Of course,

more eÆcient methods are needed. We introduce some basic algorithms in this section.

Several other algorithms, in particular hybrid algorithms combining two or more of the

methods, have been developed.

91

A search space (or search tree) for a CSP is a tree in which the nodes at level i

represent an instantiation of i variables. Thus, the set of the leaf nodes represents

the set of the possible instantiations. At each level, the tree is split according to the

possible values for some �xed uninstantiated variable. The ordering of the variables,

according to which the tree is built, in
uences the number of inner nodes of the search

space and thus, the size of the search space. We show one search space for the 3-Queens

Problem in Figure 6.2.

x1

x2

x3

{1} {2} {3}

{1,1} {1,2} {1,3} {2,1} {2,2} {2,3} {3,1} {3,2}

...

{}

{3,3}

Figure 6.2: The search space for the 3-Queens Problem

Backtracking (BT) We present the simplemost form of backtracking �rst. The idea

of backtracking is to extend partial solutions. An initially empty assignment is

extended by assigning one variable at a time. In each step the validity of the

constraints is tested, i.e., consistency checks between the instantiation of the

current variable and the instantiations of the earlier variables, starting with the

�rst variable, are performed. When a contradictory partial assignment is found,

the next domain value of the current variable is tried. If there are no more

domain values left, the backtracking to the most recently instantiated variable

is performed. A solution is recorded every time all consistency checks succeed

at the lowest level. Hence, this method is also called chronological backtracking

[BR75]. Standard measures for performance of a backtracking algorithm are the

number of nodes visited in the backtrack tree generated by the algorithm, and

the number of consistency checks performed.

The main advantage of backtracking is its simplicity. Although backtracking

performs better than the naive generate-and-test approach there is still plenty of

room for improvement. One major disadvantage is thrashing [Mac77]. Suppose

you have two variables xi and xj, and a constraint C(xi;xj)
between them. Now

suppose that xi is assigned to a value, for which the constraint can never be

true. Then each assignment for xj results in failure, but unfortunately all the

variables between xi and xj in the ordering of instantiation are reconsidered again

and again after each failure for xj , although they have nothing to do with that

92

failure. No doubt we can recognize by now where the name \thrashing" comes

from.

Backjumping (BJ) Backjumping addresses the drawback of thrashing. Instead of

backtracking chronologically backjumping jumps back to the deepest past variable

that con
icted with the current variable [Gas78]. The consistency checks are

performed in the original order of instantiation. A drawback of backjumping

is that it cannot perform \multiple backjumps". Additionally, a big backjump

causes the loss of information gained inbetween.

Con
ict-directed backjumping (CBJ) The behavior of con
ict-directed backjump-

ing [Pro93] is even more sophisticated. Every variable has its own con
ict set

consisting of the past variables that failed consistency checks with its current

instantiation. Once there are no more values to be tried for the current variable,

the backtracking goes to the deepest variable in the con
ict set. In this case the

con
ict set is propagated, so that no con
ict information is lost.

Backmarking (BM) Backmarking addresses another drawback of backtracking. Con-

sistency checks are performed without keeping the information, which of them

were already performed at an earlier stage. Backmarking imposes a marking

scheme [Gas77]. This marking scheme is based on two observations, again iden-

ti�ed in [Nad89]:

1. If, at the most recent node where a given instantiation was checked, the

instantiation failed against some past instantiation that has not yet changed,

then it will fail against it again.

2. If, at the most recent node where a given instantiation was checked, the

instantiation succeeded against all past instantiations that have not yet

changed, then it will succeed against them again.

Backmarking visits exactly the same nodes of the search tree that backtracking

visits. So the disadvantage of thrashing is not addressed. However, the advantage

of backmarking is that sometimes no consistency checks are necessary at all.

Forward checking (FC) In contrast to all the above methods forward checking per-

forms the consistency checks forwardly, i.e., values in the domains of future vari-

ables that are inconsistent with the current instantiation of the current variable

are removed [HE80]. If, during that process, one of these domains is annihilated,

then the temporal changes caused by the Forward checking are undone, and back-

tracking is invoked. Otherwise the next variable gets instantiated to some value

93

from its now �ltered domain. A solution is recorded every time the last variable

gets instantiated.

A theoretical evaluation of selected backtracking algorithms is presented in [KvB97].

The algorithms are compared with respect to the number of nodes they visit in the

search tree and to the number of consistency checks they perform. The study is based on

the assumptions that the variable ordering is static and that all solutions of a CSP are

sought. We restrict the results to the algorithms we have discussed and shown them in

Figure 6.3. The results are shown as Hasse diagrams. Chronological backtracking visits

BT = BM

BJ

CBJ FC

(1)

BT

BJ

CBJ

BM

FC

(2)

Figure 6.3: Theoretical evaluation of backtracking algorithms

the most nodes in the search tree (left diagram) and performs the most consistency

checks (right diagram, incomparable with forward checking). From the diagrams we get

the impression that con
ict-directed backjumping performs best, although the original

paper suggests that a hybrid algorithm between forward checking and con
ict-directed

backjumping [Pro93] performs even better.

6.3 Variable ordering

The order, in which the variables are instantiated, can have a substantial in
uence on

the performance of an arbitrary backtracking algorithm. The reason is the �rst-fail

heuristic. Once a consistency check fails we get rid of a complete subtree of the search

tree. Obviously, we want that subtree to be as large as possible. Hence, we want

consistency checks to fail as early as possible. This reasoning is again based on the

assumption that we are interested in all solutions of a CSP, because only in this case we

have to consider the complete search space. How can the order, in which the variables

are instantiated, have an e�ect on the performance?

1. If we instantiate variables with small domains �rst, we ensure that once a con-

sistency check fails, the subtree we get rid of is reasonably large, because the

variables with the large domain come last. Furthermore, the search space is

smallest if the variables are instantiated in this manner. Let (xi1 ; : : : ; xim) be

94

a �xed variable ordering. The search space built according to that ordering

has size 1 + jDi1
j + jDi1

jjDi2
j + � � � + jDi1

j : : : jDim
j. This number is equal to

1+ jDi1
j(1 + jDi2

j(: : : (1 + jDim j) : : :)). From this expression we can see that the

size of the search space is minimal if jDi1
j � jDi2

j � � � � � jDim
j.

2. If a variable is involved in many constraints, it is likely that it is diÆcult to �nd

a consistent value for it and that many consistency checks will fail. Hence, it is

a good idea to instantiate such variables �rst.

An intelligent variable ordering can also help to reduce thrashing by putting variables

that are involved in the same constraint close to each other. The variable ordering

can also be handled dynamically; a backtracking algorithm that maintains full arc

consistency and performs dynamic variable ordering has been proposed in [SF94].

6.4 Observations on the properties of our approach

In this section we prove an important property of our approach. We give a condition,

under which a CSP in our approach can be solved without search and in polynomial

time. This theorem is based on the following well-known theorem by Freuder [Fre82].

Theorem 6.1. If a constraint graph is strongly k-consistent, and k > w where w is

the width of the constraint graph, then there exists a search order that is backtrack-free.

To understand this theorem we must clarify the notion of width of a constraint

graph. An ordered constraint graph is a constraint graph whose vertices have been

ordered linearly. The width of an ordered constraint graph is de�ned as the maximum

number of arcs leading from an arbitrary vertex to previous vertices. The width of a

constraint graph is the minimum width over all its ordered constraint graphs. Intu-

itively, the width is an indicator of how many already instantiated variables have to be

taken into account once an uninstantiated variable gets instantiated. Figure 6.4 shows

a constraint graph together with all its ordered constraint graphs and their widths.

The width of the constraint graph is 1.

Now, the proof of the above theorem is straightforward. There exists an ordering

of the constraint graph, such that the number of arcs leading from any vertex of the

graph to the previous vertices, is at most w. If the variables are instantiated using

this ordering, then whenever a new variable is instantiated, a value for this variable

is consistent with all the previous assignments. The reason is that this value is to be

consistent with the assignments of at most w other variables, and the graph is strongly

(w + 1)-consistent.

95

x

y z

x

y

z

x

z

z

y

y

x

y

z

x

z

x

y

z

y

x
1 1 1 2 1 2

Figure 6.4: The widths of ordered constraint graphs

We are ready to formulate our theorem.

Theorem 6.2. Let s be a tree-structured schema with an empty variable mapping.

Using the previously described transformation into a CSP and ignoring the requirement

of injectivity, the matches of s in an arbitrary database can be found without any search

and in polynomial time.

Proof. The key to the proof is the following: If the schema is a tree and does not contain

any variable de�nitions then the resulting constraint graph for the constructed CSP

is a tree as well. We observe that the CSP has only label and structure constraints,

but no variable or injectivity constraints. The label constraints are unary, so they can

be incorporated into the domains and thus, be ignored for this proof. Hence, we only

must care about the structure constraints. When we want to construct the constraint

graph we simply replace every arc in the schema by a vertex representing the variable

introduced for the arc. The only constraints being introduced are the source and the

target constraints for these arcs. In the constraint graph two edges are added between

every newly introduced vertex and the vertices representing the source and target of

the respective arc. Figure 6.5 illustrates this construction by showing a tree-structured

schema on the left side and the resulting constraint graph on the right side. During the

x1

x2 x4

true()

’name’ ’profession’

x3 x5

true()true() x5

x1

x2 x4

x3

Figure 6.5: A tree-structured schema and the corresponding constraint graph

construction of the constraint graph the properties connectivity and acyclicity remain

untouched. Hence, if the schema is a tree the constraint graph is a tree as well.

A tree-structured constraint graph always has width one [Fre82]. Because of the

Theorem 6.1, it is clear that after making our CSP node and arc consistent, there exists

96

a search order that is backtrack-free. This search order can be found by using breath-

�rst traversal of the constraint graph [Fre82]. Making a CSP node and arc consistent

can be achieved in polynomial time [Mac77, MH86].

It is important to note that the injectivity constraints heavily blow up the constraint

graph. Because every pair of vertices and every pair of arcs in the schema is linked by

an injectivity constraint, the constraint graph then contains two cliques of sizes jV (s)
j

and jA(s)
j. This immediately implies that the constraint graph has a width of at least

max(fjV (s)
j�1; jA(s)

j�1g). Hence, no polynomial algorithm can ensure the necessary

level of consistency. Thus, it might be preferable to postpone the injectivity check

and reduce a possibly larger set of CSP solutions in a separate postprocessing step.

However, our own practical experiences described in Section 8.1 do not support this.

6.5 Summary

In this chapter we outlined optimization techniques for Constraint Satisfaction Prob-

lems. Consistency techniques help to reduce the sizes of domains. Various levels of

consistency can be de�ned; a CSP can be solved with consistency techniques alone.

However, because algorithms for achieving arbitrary levels of consistency are not poly-

nomial in time, various search methods exist. They can be compared with respect to

the number of nodes in the search tree they visit, and to the number of consistency

checks they perform. The order, in which the variables are instantiated, has an in
u-

ence on the size of the search tree. A good variable ordering must support the �rst-fail

heuristic. In the remainder of the chapter we proved an important observation of our

approach. Ignoring the injectivity constraint matches of tree-shaped schemata with no

variable de�nitions can be found without search and in polynomial time.

97

Chapter 7

Schema Containment and

Optimization

As far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain, they do not refer to reality.

(Albert Einstein)

In this chapter we want to explore the optimization potential of our approach. In

Chapter 5 we described how we can �nd the matches of a schema in a database graph

without any further information given. In Chapter 6 we showed how to do this more

eÆciently. Now we describe how we can incorporate the information of previously

matched schemata. This optimization is based on the concept of schema containment.

Section 7.1 de�nes the notion of schema containment. We prove a suÆcient con-

dition for schema containment. In the following Section 7.2 we show how we test this

suÆcient condition using similar techniques to those in Section 5.2 for transforming

the matching problem. We make use of the knowledge of schema containment in two

ways and demonstrate them in Section 7.3. If we are looking for the matches of the

contained schema and the matches of the containing schema are known, the search

space can be reduced. If we are looking for the matches of the containing schema and

the matches of the contained schema are known, we can present the �rst few matches of

the containing schema immediately without any search. Because the notion of schema

containment is related to the more traditional notion of query containment, we review

query containment in Section 7.4. Finally, Section 7.5 gives a summary of this chapter.

7.1 Schema containment

In this section we de�ne the notion of schema containment and give a suÆcient condition

for it. The de�nition is straightforward.

98

De�nition 7.1 (Schema containment). A schema s1 contains a schema s2 (de-

noted by s1 � s2) if for all databases o all matches of s2 are also matches of s1.

This de�nition is related to the more traditional notion of query containment as

de�ned in [ASU79]. Intuitively, the potential for optimization using schema contain-

ment is the following. From the de�nition we immediately observe that if a schema s1

contains another schema s2 then

1. matches of s2 can only be found among the matches of s1. If we want to �nd the

matches of s2 and already have the ones for s1 we can reduce the search space.

2. all matches of s2 are also matches of s1. If we want to �nd the matches of s1 and

already have the ones for s2 we can present the �rst few matches immediately,

thereby reducing the latency. Of course, there may exist more matches for s1.

We will discuss this in more detail in Section 7.3. Before we make use of schema

containment we have to �nd a way to get the information about it. In this section we

give a suÆcient condition for schema containment; and in the next section we describe

how we test this condition using constraints.

The following condition assumes the notion of predicate containment. A predicate

p1 contains a predicate p2 if for all labels x the implication p2(x) �! p1(x) holds.

Theorem 7.1. A schema s1 contains another schema s2 if

1. the graph of s1 is a subgraph of the graph of s2,

2. for all nodes and arcs in s1 the predicate of the node or arc contains the predicate

of the respective node or arc in s2,

3. for every pair of nodes or arcs in s1 being mapped to the same variable, their

corresponding elements in s2 are also mapped to the same variable or are labeled

with the same constant predicate, and

4. for all arcs in s1 the path descriptions, if present, indicate that paths in s1 are at

least as long as the respective ones in s2.

Proof. Let s1 and s2 be two schemata that ful�ll the conditions of the theorem. Let o

be at match of s2. We have to prove that o is also a match of s1. Let m be the match

function between s2 and o. Let i be the isomorphic embedding of s1 into s2. Let m0

be m Æ i. We show that m0 is a match function between s1 and o.

1. For any x 2 V (s1) the predicate l(s2)(i(x)) holds for the label of the node m(i(x))

in the object o, because m is a match function between s2 and o. The predicate

l
(s2)(i(x)) is contained in the predicate l(s1)(x). Therefore, the predicate l(s1)(x)

also holds for the label of the node m(i(x)), i.e., for l(o)(m0(x)).

99

2. Similarly, for any arc x 2 A
(s1) the predicate l(s2)(i(x)) holds for the labels of

all arcs in the trail m(i(x)) in the object o. Therefore l(s1)(x) also holds for the

labels of all arcs in m(i(x)).

3. For an arbitrary pair of elements x1; x2 2 V
(s1) [A

(s1) being mapped to the

same variable (i.e., v(s1)(x1) = v
(s1)(x2)), we know that either v(s2)(i(x1)) =

v
(s2)(i(x2)), or the labels of i(x1) and i(x2) are the same constant predicate.

Either property ensures that the labels of their matching elements in the object

o are the same, i.e., that l(o)(m(i(x1))) = l
(o)(m(i(x2))) and thus, l(o)(m0(x1)) =

l
(o)(m0(x2)).

4. For any arc x 2 A
(s1) the length of the trail m(i(x)) (which is the same as

m
0(x)) is bound by q

(s2)

min
(i(x)) and q

(s2)

max(i(x)). Because q
(s1)

min
(x) � q

(s2)

min
(i(x)) and

q

(s1)

max(x) � q

(s2)

max(i(x)), the match condition is also ful�lled for m0.

Hence, m0 is a match function between s1 and o.

The reverse direction of this implication does not hold as can be seen in Figure 7.1.

The three schemata are \semantically identical" (i.e., they match the same objects),

but they do not ful�ll the conditions of the theorem.

’Top’

’Bottom’ ’Bottom’

’Top’ ’Top’

’Bottom’
true() true()

p() [1,2]

p() [2,3]

p() [2,3]

p() [1,2]

p() [3,5]

Figure 7.1: Three semantically identical schemata

7.2 Testing schema containment using constraints

We describe the testing of the correctness criterion speci�ed in the previous section

again as a CSP. This problem is, like the problem of matching a schema into a database,

related to the SUBGRAPH-ISOMORPHISM problem. Similar to the principles shown

in Figure 5.5 in Section 5.2, we transform schema s2 into domains and schema s1 into

variables. Again, we derive constraints representing the label part, and constraints

representing the structure part of the containment. Let us call the mapping that we

are searching a containment embedding from s1 into s2. Keep in mind that it is s2 that

is contained in s1 once we �nd this mapping.

The simple example in Figure 7.2 shows two schemata s1 and s2 where s2 is con-

tained in s1. We are thus looking for a containment embedding of s1 into s2 to verify

100

true()

true()

’name’

true() true()

true()

’name’ ’profession’

s1 s2

a1 a2

x3

x1

v2 v3

v1

x2

Figure 7.2: Schema containment

this. Variables and domains are introduced as in Section 5.2.

X = fx1; x2; x3g

D1 = D3 = DV = fv1; v2; v3g

D2 = DA = fa1; a2g

The structure constraints are also the same as before.

C
src

(x2;x1)
= f(a1; v1); (a2; v1)g

C
tar

(x2;x3)
= f(a1; v2); (a2; v3)g

For the label part we must ensure that the predicates in s1 contain the respective ones

in s2 using the de�nition of predicate containment. In the example, this is rather easy

to achieve. The predicate true() contains every predicate and a constant predicate

X = c is contained by a predicate p if p(c) holds.

C

pred

(x1)
= f(v1); (v2); (v3)g

C

pred

(x2)
= f(a1)g

C

pred

(x3)
= f(v1); (v2); (v3)g

In the general case, we assume that information on predicate containment is explicitely

given. Such information can be provided in various ways:

1. A speci�c predicate can be in an unconditional relationship to all other predicates:

true() � p, false() � p.

2. A class of predicates can be in a conditional relationship to all other predicates:

p � (x = c), if p(c).

3. Two speci�c predicates can be in an unconditional relationship to each other:

number() � integer().

4. Within a class of predicates conditional relationships can exist: x < a � x < b, if

a � b.

101

In all of the preceding examples, p denotes an arbitrary predicate.

The CSP for the example has the solution (v1; a1; v2), which corresponds to the

containment embedding that we already were aware of. We rewrite the embedding

as f(x1; v1); (x2; a1); (x3; v2)g, store it, and see how we can make use of it in the next

section.

Variables and paths are also treated in a similar manner as before. If s1 contains

elements that are linked via a variable, we must make sure that the respective elements

in s2 are also linked via a variable or have the same constant predicate as their la-

bel. Constraints on the path length ensure that paths in s1 are not shorter than the

respective ones in s2.

It is important to note that the test for schema containment is independent of the

size of the database. Only the number of such containment testings has an in
uence

on the run-time.

7.3 Making use of schema containment

In this section we describe how we make use of schema containment once we detect it

using the methods described in the previous section. As we already mentioned before

we can make use of both containment directions. If a schema s1 contains another

schema s2 and know the matches

1. of s1 then we can reduce the search space when looking for the matches of s2.

2. of s2 then we can present the �rst few matches of s1 immediately.

We show how we can often dramatically reduce the search space if we have a schema

s1 together with its matches in a database and another schema s2 that is contained

in s1 and whose matches we are looking for. Consider the example in Figure 7.3.

On top of the �gure there a schema s2. The schema s1 containing s2 is shown on

the left of the �gure. The containment is the same as in Figure 7.2 in the previous

section. We have renamed the elements a little, the containment embedding is now

f(y1; x1); (y2; x2); (y3; x3)g.

We are interested in the matches of s2 in our standard sample database shown in

Figure 2.4 on Page 35. There is nothing we can do about the variables x4 and x5

in our optimization, because they are not in the scope of the containment embedding.

However, x1, x2, and x3 can only be matched to the matches of their respective partners

in the containment embedding. Intuitively, we are looking for those matches of s1 that

102

true() true()

true()

’name’ ’profession’x2 x4

true() #1

CarpenterCarpenter

(1) (2) (3)

name name

true()

’name’

#2 #3

name

Smith

a10

s1

s2

x1

x5x3

y1

y2

y3

v2

a6

v5

v3

a9

v8

v4

v9

Figure 7.3: Reducing the search space

can be extended by a profession-arc. We get the following variables and domains:

X = fx1; x2; x3; x4; x5g

D1 = fv2; v3; v4g

D2 = fa6; a9; a10g

D3 = fv5; v8; v9g

D4 = DA = fa1; a2; a3; : : : ; a12g

D5 = DV = fv1; v2; v3; : : : ; v11g

We immediately observe that we greatly reduced the domains of x1, x2 and x3. The

reduction will probably be even more substantial in real life examples. To fully exploit

the containment information we introduce an additional constraint.

C
sol

(x1;x2;x3)
= f(v2; a6; v5); (v3; a9; v8); (v4; a10; v9)g

Vice versa, consider the case that we have a schema s2 together with its matches

and a schema s1 containing s2 whose matches we are looking for. We can immediately

derive some matches of s1 by looking at the containment embedding of s1 into s2.

Consider the example in Figure 7.4. The schemata are the same as in the previous

example, but we are now interested in the matches of s2 and have the ones for s1. The

containment embedding of s1 into s2 is f(y1; x1); (y2; x2); (y3; x3)g, just as before.

The matches of x1, x2 and x3 are immediately also matches of y1, y2 and y3. Thus,

(v2; a6; v5) is one solution of the CSP constructed for s1. There may be more solutions,

though. Incidently, there are more solutions in this case as we demonstrated in the

previous example in Figure 7.3.

103

true() true()

true()

’name’ ’profession’x2 x4

#1

Carpenter Carpenter

name professiona8a6

(1)

’name’

true()

true()

s1

s2

y1

y3

y2

x5x3

x1 v2

v5 v7

Figure 7.4: First few matches

7.4 Traditional query containment

Query containment deals with the following general problem: Given two queries, can

a relationship between them be established that says that the answers to one of the

queries is always a subset of the answer to the other one, no matter what database

is queried. More formally, a query q1 contains a query q2, written q1 � q2, if for all

databases the answers of q2 are a subset of the answers of q1. The queries q1 and q2

are equivalent, written q1 � q2, if q1 � q2 and q2 � q1.

Query containment has a variety of applications. Originally it was used for query

optimization [CM77, ASU79, SY81]. More recently, it has become an important notion

in the context of rewriting of queries using views [LMSS95, CKPS95]. In particular,

this notion plays a signi�cant role for materializing views in data warehouses. Levy

and Sagiv use the notion of query containment to investigate kinds of queries that are

independent of updates [LS93]. Query containment can also be applied to deciding

which views to materialize in a data warehouse [HRU96].

Query containment for �rst order conjunctive queries is decidable and even NP-

complete [CM77]. On the other hand, containment of Datalog programs is undecidable

[Shm93]. In the context of semistructured data Florescu, Levy, and Suciu showed

that query containment for a union-free, negation-free subset of their StruQL language

is decidable [FLS98]. Additionally, they proved that query containment for a further

subset of this language restricting the allowed kinds of path expressions is NP-complete.

7.5 Summary

In this chapter we demonstrated how to make use of schema containment for query op-

timization purposes. We introduced the notion of schema containment, gave a suÆcient

104

condition for schema containment, and proved its suÆciency. We then incorporated

the concept of schema containment into our constraint-based optimization. Testing

the suÆcient condition is again reduced to an equivalent CSP using similar techniques

as before. We showed how the knowledge of schema containment can be used in two

di�erent ways depending on the direction of the containment. If we are looking for

the matches of the contained schema and the matches of the containing schema are

known, the search space can be reduced. Vice versa, if we are looking for the matches

of the containing schema and the matches of the contained schema are known, we

can present the �rst few matches of the containing schema immediately without any

search, thus reducing latency. Finally, we discussed the more traditional notion of

query containment.

105

Part IV

Implementation and Conclusion

106

Chapter 8

Implementation

Programming today is a race between software engineers

striving to build bigger and better idiot-proof programs,

and the Universe trying to produce bigger and better idiots.

So far, the Universe is winning.

(Rich Cook)

This chapter describes our implementation e�orts and their results. Again, we em-

phasize matching schemata, because this is the computationally challenging part. We

use the optimization techniques described in the previous chapters. Our implemen-

tation is threefold: In Section 8.1 we describe our �rst steps consisting of a schema

matcher implemented in Prolog. We test various optimization ideas there. We outline

how we integrate XML documents in Section 8.2. Finally, Section 8.3 describes our

schema matcher based on the constraint solving system ECLiPSe. The user interface

to this system is presented in Section 8.4. We conclude with a summary in Section 8.5.

8.1 First steps: A Prolog-based schema matcher

To gain some experience with the constraint-based optimization, we �rst implemented

a schema matcher based on the public domain SWI-Prolog software [Swi]. Our system

consists of several components as shown in Figure 8.1. The arrows indicate, which

components are needed by which other components.

Object and schema maintainer These two components manage the databases and

the schemata. They provide predicates for creating and destroying objects as well

as for creating and destroying vertices and arcs. Automatic checking for dangling

arcs is performed. Other auxiliary predicates are provided: for prettyprinting ob-

jects, for �nding paths and their sources and targets, and for computing induced

108

Schema containment Subgraph Isomorphism

Schema matcher

Predicate component

Object maintainer

Schema maintainer

Binary constraint solver

Optimization organizer

Figure 8.1: Architecture of the Prolog-based schema matcher

subobjects (induced by some set of vertices and arcs). Furthermore, the schema

maintainer can analyze the labels. It can detect their \type", i.e., whether it

contains variable de�nitions or path descriptions. The schema maintainer can

extract the predicate from a label and store all relevant information in some

prede�ned form.

Binary constraint solver The binary constraint solver can solve binary CSPs. The

user can specify a CSP by de�ning variables, domains, and constraints. The

domains can be speci�ed either by assigning them to a variable or by giving them

an identi�er. The latter is useful if several variables share domains. The following

optimization techniques are implemented: node consistency, two di�erent variable

orderings (smallest domain �rst, most constraints �rst), and domain reducing

functions.

Domain reducing functions were initially proposed by Rudolf [Rud98]. We il-

lustrate them in the context of graph matching. Once we instantiate a variable

representing an arc, we immediately know that there is only one possible value

remaining for the variables representing its source and target vertex. This can

also be achieved by dynamically performing arc consistency algorithms, but com-

puting it via functions source and target is certainly more eÆcient, because no

domain access is necessary. We did not make good experiences with the inverse

functions incoming and outgoing, which we applied to instantiated vertices. The

main reason for this is that in our approach these functions also compute all in-

coming and outgoing paths, which slows down the query processing considerably.

Because these functions have to be called whenever a variable gets instantiated,

the overhead gets bigger if many instantiations are \useless".

Subgraph isomorphism component This component creates a CSP that solves the

SUBGRAPH-ISOMORPHISM problem. This CSP serves as the base for both

109

direct schema matching and testing schema containment. Only the constraints

representing the structure part of the match and the injectivity constraints are

introduced here. Optimization potential lies in testing the injectivity of the match

afterward (instead of ensuring it by constraints), and in precomputing constraints.

The source and target constraints are the same for every arc in a schema and also

for every schema to be matched against a �xed database.

Predicate component The predicate component implements the prede�ned predi-

cates and containment information between them. The supported predicates are:

� true and false: These predicates are always or never ful�lled, respectively.

The predicate true contains every other predicate, the predicate false is

contained in any other predicate.

� caseignore(Atom): This predicate is true for every label that is the equal to

Atom, ignoring the case of the letters. caseignore(Atom) contains the con-

stant predicate Atom. In general, every predicate p contains the predicate

X = c if p(c) holds.

� sgrep(Atom): This predicate holds for every label that has Atom as a sub-

label. The predicate sgrep(Atom1) contains sgrep(Atom2) if Atom1 is a

subatom of Atom2. In the example in Figure 2.4 on Page 35 the predi-

cate sgrep(0arp0) would match only the nodes labeled 0
Carpenter

0, i.e., v5,

v7, and v8. In contrast, sgrep(0ar0) would additionally match the node v6

labeled 0
Harry

0.

� integer and number: They hold if the label is an integer or a number,

respectively. number contains integer.

� lessthan(eq)(Num) and greaterthan(eq)(Num): These predicates hold if

the label is a number and this number is less than, less than or equal, greater

than, or greater then or equal to Num, respectively. The containment infor-

mation is as follows: lessthan(eq)(Num1) contains lessthan(eq)(Num2) if

Num1 � Num2, greaterthan(eq)(Num1) contains greaterthan(eq)(Num2)

if Num1 � Num2.

Schema containment component This component detects containments between

schemata. It uses the subgraph isomorphism component and the predicate com-

ponent. The techniques discussed in Section 7.2 are implemented here.

Schema matcher The schema matcher is the main component of the system and uses

all the other components. Its purpose is to �nd all the matches of a schema in

a database. With the help of the subgraph isomorphism component the basic

110

CSP is constructed. This CSP is adapted in case variable and path descriptions

are present in the schema. One can optionally turn on the usage of the schema

containment component, both to reduce the search space and to present the �rst

few matches immediately.

The optimization organizer arranges the optimization switches into levels to handle

them easier. We will now demonstrate the e�ect the di�erent optimization techniques

have on the performance. We summarize our results in Table 8.1. The database we use

is our standard example in Figure 2.4 on Page 35. Schema 1 is the schema in Figure 3.1

on Page 45, Schema 2 is the schema in Figure 3.3 on Page 46, and Schema 3 is the

schema in Figure 3.5 on Page 50. Schema 1 contains only constants and predicates,

Schema 2 contains a variable de�nition, and Schema 3 contains a path description. The

performance is measured in the number of logical inferences. The tests were run using

SWI-Prolog version 3.2.8.

Schema 1 Schema 2 Schema 3

No optimization 25,895 104,840 268,348

Node consistency (NC) 15,459 57,369 162,868

Variable ordering (smallest domain / VO1) 25,925 104,906 106,791

Variable ordering (most constraints / VO2) 26,046 14,489 91,509

NC + VO1 15,508 12,182 63,855

NC + VO2 15,725 12,902 115,779

External Injectivity check (EI) 26,645 159,538 326,512

Precompute constraints (PC) 26,781 103,265 266,774

Function-based domain reduction (FDR) 26,147 106,036 270,148

NC + VO1 + PC 16,394 10,607 62,281

NC + VO2 + PC 16,611 11,327 114,205

NC + VO1 + PC + FDR 16,598 10,042 61,309

NC + VO2 + PC + FDR 16,815 10,762 74,833

Table 8.1: Performance of the Prolog-based schema matcher

One can easily see that the performance heavily depends on the choice of optimiza-

tions. An improvement of a factor of 15 can be achieved. It is not so easy to discover,

which of the switches are best, though. VO2 on its own seems better than VO1, how-

ever, NC + VO1 is better than NC + VO2. The other optimizations seem to have little

in
uence. Function-based domain reduction has almost no e�ect on the performance.

Combined with PC it signi�cantly improves the performance of NC + VO2 only for

Schema 3. To check the injectivity of the match externally does not seem to be a good

idea. Precomputing the constraints will improve the performance only when several

111

schemata are matched against the same database.

Schema 1 Schema 2 Schema 3

No optimization 25,895 104,840 268,348

Search space reduction 15,008 22,156 205,619 79,414

Containment test only 2,087 2,897 2,427 2,911

Number of possible containment tests 6 29 26 65

Table 8.2: Schema containment in the Prolog-based schema matcher

Table 8.2 summarizes our results with respect to making use of schema containment.

The �rst row shows again the performance if no optimization is used. For getting the

results in the second row we used one schema containing the respective example and

precomputed its matches in the database. So the numbers depend on the choice of

the containing schema. For Schema 3 we used two di�erent containing schemata. The

third row of the table shows how many inferences were needed to prove the schema

containment. Remember that this test is included in the complete matching process,

i.e., the numbers in the third row are included in those in the second row. We observe

that one containment test alone takes about a constant amount of time. Note that this

test is independent of the size of the database. Computed from the �rst three rows, the

fourth row indicates how many containment tests between schemata can be performed,

so that the complete number of inferences is still less than the number in the �rst row.

Note that this number depends on the size of the database, because the numbers in

the �rst and second row depend on the size of the database. Because we used a very

small database, the numbers in the fourth row will dramatically increase for real life

examples, whereas the numbers in the third row will remain the same.

8.2 Integrating XML documents

In this section we describe how we transform XML documents into labeled directed

graphs, so that we can use them in our approach. We have already discussed XML in

Section 2.5. There we have seen that an XML document consists of constructs of �ve

di�erent types: element, data, document type de�nition, processing instruction and

comment. From the database point of view only elements and data are interesting.

Document Type De�nitions could be used to generate some schema information.

We have developed a parser that turns XML documents into de�nitions of labeled

directed graphs. Subelements and the attributes attached to elements are turned into

subgraphs. A tree structure is constructed in this manner. The only exception, where

the database constructed is not a tree, arises when links using the id- and the idref-

attribute are present. For every idref-attribute an additional arc to the de�ning

112

element (the one that has the appropriate id-attribute) is added. Our parser was

implemented using lex and yacc, or rather their GNU versions
ex and bison. The

simple example that we introduced in Section 2.5 was:

<?xml version="1.0" standalone="yes"?>

<!-- This is a most simple example. -->

<EXAMPLE id="1" foo="bar">

This is a test.

</EXAMPLE>

A graphical representation of this example can be found in Figure 2.7 on Page 39. Our

parser generates the following Prolog code.

% This file was automatically generated using XML2PL.

:- begin_object('XML_Document').

:- create_vertex('XML_Document',id_0,"XML_Document").

:- create_vertex('XML_Document',id_1,"XML").

:- create_arc('XML_Document',id_6,id_0,id_1,"XML Declaration").

:- create_vertex('XML_Document',id_2,"1.0").

:- create_arc('XML_Document',id_3,id_1,id_2,"version").

:- create_vertex('XML_Document',id_4,"yes").

:- create_arc('XML_Document',id_5,id_1,id_4,"standalone").

:- create_vertex('XML_Document',id_7," This is a most simple example. ").

:- create_arc('XML_Document',id_8,id_0,id_7,"comment").

:- create_vertex('XML_Document',id_9,"This is a test.").

:- create_arc('XML_Document',id_16,id_0,id_9,"EXAMPLE").

:- create_vertex('XML_Document',id_10,"1").

:- create_arc('XML_Document',id_11,id_9,id_10,"id").

:- create_vertex('XML_Document',id_12,"bar").

:- create_arc('XML_Document',id_13,id_9,id_12,"foo").

:- end_object('XML_Document').

The begin_object/1 and end_object/1 predicates tell the object maintainer that the

predicates inbetween contain the complete object de�nition. Hence, the object main-

tainer can perform a check that no dangling arcs exist. Only in this case the predicate

end_object/1 will succeed. The predicate create_vertex/3 takes the database, the

identi�er and a label as its arguments, create_arc/5 additionally takes the identi�ers

of the source and target vertices.

113

8.3 An ECLiPSe-based answering system

ECLiPSe (ECLiPSe Common Logic Programming System) is a Prolog-based system

whose aim is to serve as a platform for integrating various logic programming exten-

sions, in particular Constraint Logic Programming (CLP) [Ecl]. We used the expe-

riences we gained from the Prolog-based schema matcher to build a schema matcher

based on ECLiPSe. This system has a similar architecture as the former one (see

Figure 8.1). There is of course no constraint solver in this new system, because this

functionality is provided by ECLiPSe. Furthermore, we omitted the optimization or-

ganizer. We do provide a graphical user interface based on Tcl/Tk. ECLiPSe provides

an interface for data exchange between the core of ECLiPSe and Tcl/Tk. Because the

system is in its architecture very similar to the Prolog-based system, we omit repeating

the description of the components. Rather, this section explains in some detail how

the constraints are represented and the search is performed.

For solving the Constraint Satisfaction Problems we use the Finite Domain Library

provided by ECLiPSe. This library implements constraints over �nite domains. These

constraints can contain integer as well as atomic (i.e., atoms, strings,
oats, etc.) and

ground compound (e.g., f(a, b)) elements. CSP variables are called domain variables

in the ECLiPSe context. They are associated to domains represented as lists using

the in�x predicate ::/2. We implement unary constraints by explicitely reducing the

domain of the variable. The following example introduces a variable with domain

f1; 2; 3g and then implements the unary constraint Codd

(x)
= f(1); (3)g.

example(X) :-

% introduce the variable and assign a domain

X :: [1,2,3],

% retrieve the domain and unify it with Domain

dvar_domain(X,Domain),

% convert the unary constraint from a list into a domain

list_to_dom([1,3],ConstrainedDomain),

% build the intersection between the original domain

% and the constraint

dom_intersection(Domain,ConstrainedDomain,NewDomain,_),

% set the domain to its new value

dvar_update(X,NewDomain).

Obviously this technique cannot be used to implement constraints of an arity greater

than one. An eÆcient way of implementing such constraints is to link their components

via an index over lists using the element/3 predicate. The following example introduces

two variables x and y with domains f1; 2; 3g and fa; bg and a binary constraint stating

114

y to be a if and only if x is odd, i.e., a constraint C(x;y) = f(1; a); (2; b); (3; a)g. One

can easily see that this technique can be used to implement constraints of arbitrary

arity.

example(X,Y) :-

% introduce the two variables

X :: [1,2,3],

Y :: [a,b],

% link the possible value pairs by the index variable I

element(I,[1,2,3],X),

element(I,[a,b,a],Y).

The element/3 predicates are examples of delayed goals. Execution of these goals is

suspended until the involved domains are changed, either explicitely by a dvar_update/2

predicate or implicitly by the backtracking procedure. If the above predicate is called

like

[eclipse 1]: example(X,Y), X = 2.

then the trace of the execution shows that once X gets uni�ed with 2 the suspended

element/3 predicates are woken.

(7) 3 RESUME element(I{[1..3]}, [1, 2, 3], 2) %> creep

(7) 3 EXIT element(2, [1, 2, 3], 2) %> creep

(10) 3 RESUME element(2, [a, b, a], Y{[a, b]}) %> creep

(10) 3 EXIT element(2, [a, b, a], b) %> creep

Y = b

X = 2

yes.

Now, the backtracking works as follows. The solution/1 predicate implements a

simple version of chronological backtracking. The argument given is a list of unbound

domain variables. The deleteff/3 predicate selects the variable with the smallest

domain to be the chosen one for instantiation. This predicate guarantees a dynamic

variable ordering; the variable with the smallest domain at the current point in time,

i.e., after performing the full lookahead using the suspend/wake mechanism, gets cho-

sen. An alternative is the deleteffc/3 predicate, which chooses the variable that is

involved in the highest number of constraints. After the selection of a variable the

predicate indomain/1 is used to instantiate the chosen variable. Because the dynamic

115

domain reduction is performed automatically for all variables, it is suÆcient to re-

cursively call the solution/1 predicate with the remaining list of unbound domain

variables.

solution([]) :- !.

solution(List) :-

% use variable with smallest domain

deleteff(Var,List,Rest),

% instantiate the variable to a member of its domain

indomain(Var),

% continue with the rest list

solution(Rest).

Because ECLiPSe does not provide a tool for counting the number of logical infer-

ences, we decided to implement a counter for the number of backtracks. This number

seems to be a good measure for the quality of both constraint propagation and search

heuristics. The predicates shown next implement such a counter. We use ideas from

the ECLiPSe tutorial here.

:- local variable(backtracks), variable(deep_fail).

init_backtracks :-

setval(backtracks,0).

get_backtracks(B) :-

getval(backtracks,B).

count_backtracks :-

% succeeds on the first call...

setval(deep_fail,false).

count_backtracks :-

getval(deep_fail,false),

setval(deep_fail,true),

% ...but increments counter when backtracking occurs

incval(backtracks),

% continue the backtracking

fail.

The
ag deep_fail/0 ensures that backtracking to exhausted choices does not in-

crement the count. The solution/1 predicate has to be adapted to incorporate the

counter.

116

solution(List) :-

% set the counter to zero

init_backtracks,

(

% from List = List1 to List2 = [] do

fromto(List,List1,List2,[]) do

% use variable with smallest domain

deleteff(Var,List1,List2),

% call the counting predicate,

% actual counting only occurs during backtracking

count_backtracks,

% instantiate the variable to a member of its domain

indomain(Var)

% set List1 to List2

),

% get the number of backtracks and print it

get_backtracks(B),

printf("Solution found after %d backtracks.%n",[B]).

It turns out that with the used heuristic of always instantiating the variable with

smallest domain the results are very good. For our standard example in Figure 2.4 on

Page 35 the �rst solution for all tested schemata was found without any backtracking

at all. We get the same positive result when using the second example database (the

relational one) in Figure 2.6 on Page 36 together with the schemata from Section 4.4.

This is a quite amazing result, because the CSPs resulting from these schemata consist

of close to 20 variables.

The largest example that we used to test our system was an XML document con-

taining Shakespeare's \Hamlet". Using our parser described in the previous section

this document was turned into a database consisting of more than 13,000 nodes and

arcs. This database takes 82 seconds to be loaded into ECLiPSe. Searching the node

containing \To be, or not to be: that is the question:" takes 161 seconds. These tests

were run on a Sun with four UltraSPARC II processors and one gigabyte of RAM.

The tests demonstrate that solving our kinds of CSPs can be done virtually without

backtracking, but that building the CSPs can consume a considerable amount of time

for large examples. An attempt to solve this problem would be to store the facts about

the database vertices and arcs in a relational database management system and build

the domains and constraints using SQL.

117

8.4 The user interface

ECLiPSe provides a programming interface to the script language Tcl/Tk. This gives us

the possibility to combine the sophisticated techniques of the ECLiPSe constraint solver

with the comfort of graphical user interfaces. We used the programming interface to

implement an intuitive graphical user interface to the ECLiPSe-based schema matcher.

This interface allows the user to deal with multiple databases and schemata and to

get details on matches between them. Figure 8.2 gives the reader an impression of the

interface.

Figure 8.2: Graphical user interface to the ECLiPSe-based schema matcher

With this interface the user can comfortably open, close, and select databases and

schemata. The user can also invoke the computation of schema matches. Furthermore,

118

we incorporated the integration of XML documents.

Technically, we use Tk as a client to the ECLiPSe system. The tk/1-predicate

allows to start a Tk script from the ECLiPSe command line. The library tk must be

loaded beforehand. The embedded prolog command provides means for communica-

tion from the Tk script to the core ECLiPSe system.

8.5 Summary

This chapter presented our implementation e�orts. To gain some experiences with

programming using constraints we �rst implemented a schema matcher into a Prolog

system. Various optimization techniques have a signi�cant e�ect on the performance.

We showed how we integrated XML documents into the system. The ECLiPSe-based

schema matcher uses the �nite domain library to solve CSPs. We demonstrated how

the constraints are represented. In all our experiments we found out that typically

only very little backtracking is needed. Furthermore, we presented our graphical user

interface.

119

Chapter 9

Conclusion

Prediction is very diÆcult, especially about the future.

(Niels Bohr)

9.1 Summary of the thesis

Traditional database management requires design and ensures declarativity. Semistruc-

tured data, \data that is neither raw data nor strictly typed" [Abi97], lacks a �xed and

rigid schema. Often their structure is irregular and implicit. Examples for semistruc-

tured data include XML and HTML �les, BibTEX �les, and genome data stored in

ASCII �les. In this �eld a more
exible approach for querying is needed. We propose

to split the notion of query into a \What"- and a \How"-part. The major advantage

of this idea is that the \What"-part can be stored and used as a partial schema for the

database. Partial schemata can give users an idea about the content of the database.

Furthermore, they can be used for query optimization. A database system designed in

this manner re
ects the degree of structure of the data on many levels. Its usability and

its performance grow with a higher degree of structure and with the time the system

has been in usage.

Chapter 1 provides an introduction to the �eld of semistructured data and illus-

trates the basic idea of our approach. Furthermore, pointers to related �elds are given.

In Chapter 2 we present the underlying syntax of labeled directed graphs taking into

account graph theoretic aspects. Chapters 3 and 4 introduce the proposed query lan-

guage. In Chapter 3 the \What"-part of a query is characterized by introducing the

notion of (partial) schema. These schemata are represented as labeled directed graphs

and cover semantic concepts, such as predicates, variable de�nitions, and path de-

scriptions. The notion of conformity between schemata and databases is de�ned using

graph morphisms. Chapter 4 addresses the \How"-part of a query. We propose how

120

to process matches of a schema in a database and introduce schema, focus, and trans-

formation queries. The three chapters also introduce other models for semistructured

data, such as XML and OEM, other notions of schema, such as DataGuides, and other

query languages, such as Lorel, UnQL, and XML-QL.

We identify that the most challenging part of query execution is to �nd the matches

of a schema in a database. We tackle this problem using techniques from the area of

Constraint Satisfaction Problems (CSPs). Chapter 5 provides an introduction to the

�eld of Constraint Satisfaction. In a CSP variables are associated to domains. Con-

straints restrict the values that variables can simultaneously take. We demonstrate

how the problem of �nding all matches of a schema in a database can be reduced to a

CSP. We prove the correctness and the completeness of this transformation. Chapter 6

discusses optimization techniques for CSPs. We observe that consistency techniques,

search algorithms, and the order in which the variables are instantiated have a signi�-

cant in
uence on the performance. We prove an interesting property of our approach:

The matches of tree-shaped schema without variable de�nitions can be found without

search and in polynomial time if the requirement of injectivity of the match function is

ignored. In Chapter 7 we discuss optimization using schema containment. We de�ne

the notion of schema containment and provide a suÆcient condition for schema con-

tainment. We describe how to test this condition again by reducing it to a CSP. Schema

containment can be used in two ways depending on the direction of the containment:

It is either possible to greatly reduce the search space when looking for matches of a

schema, or to present the �rst few matches immediately without any search. These

three chapters also discuss more traditional cost-based optimization used in the Lore

system and the notion of query containment.

Chapter 8 presents our implementation e�orts. To gain more experience with con-

straint programming we �rst implemented a schema matcher into a Prolog system.

We experimented with various optimization techniques and concluded that they in-

deed have a signi�cant in
uence on the performance. The constraint system ECLiPSe

provides a far better environment for our approach. We demonstrate how constraints

are represented in ECLiPSe and give some performance results. Furthermore, we show

how to integrate XML documents into the system and provide a comfortable graphical

user interface.

9.2 Discussion

This work demonstrates two points. First, partial schemata play an important role in

handling semistructured data. Second, query processing using constraint techniques

applies general search techniques and provides a more abstract and extensible frame-

121

work.

Semistructured data needs to be handled in a more
exible manner than well-

structured data, such as data in relational databases. We argue that trying to provide

a complete schema leads to ad-hoc results, which do not represent the data very clearly.

Instead, we suggest to use semantically rich partial schemata. Partial schemata can be

of more meaningful nature and ignore irrelevant parts of the database. Statistics on

the number of matches that a partial schema has in a database can be used to deduce

information on the degree of the structure of the database, and to identify relevant

and irrelevant parts of a database. If a large partial schema has many matches then

the database is probably rather well-structured; if even small partial schemata have

only few matches the database is probably unstructured. Around this idea we de�ne

a query language based on matching partial schema. We ensure that partial schemata

must not necessarily come from a database designer, but can also be extracted from

user queries. Furthermore, we argue that containment relationships between partial

schemata can be used for query optimization.

Using Constraint Satisfaction Problems lifts the problem of query processing to

a more abstract and extensible level. We demonstrate that applying general search

techniques can be an alternative to reasoning about tree traversal strategies. In our

approach the query processing is dynamic in the sense that at any point in time deci-

sions on how to proceed further are made. Our theoretical and practical results show

that in general only very little backtracking is necessary for processing a query. Thus,

we provide an interesting alternative to the traditional cost-based query processing.

There are several possible directions into which future research could lead. Most

important, managing the partial schemata needs to be improved. Certainly not all

schemata induced by queries can be stored for future use. Rather, an intelligent selec-

tion has to be made. To achieve this goal, ideas from materializing views in the data

warehouse context can be used. Furthermore, the relationship to XML could be inves-

tigated in more detail. In particular, it would be interesting to exploit the relationship

between DTDs and partial schemata. To increase the usability of a system a more

comfortable interface for specifying a query has to be de�ned.

122

Part V

Appendices

123

Appendix A

Frequently Asked Questions

1. Can you put the message of this thesis into one sentence?

No, but in two, because to me there are two main ideas in this thesis: The �rst

one is to split up a query into a \What"- and a \How"-part, thus enabling a more

exible query framework. The second one is that, because of its generality and

its sophisticated search strategies, query processing using constraints seems to be

a feasible alternative to traditional cost-based query optimization.

2. Couldn't the data be modeled more intelligently?

No. One of the key ideas in semistructured data to me is that the data is not mod-

eled beforehand using Entity-Relationship diagrams, UML or similar techniques.

Rather, semistructured data is more related to the idea of reverse engineering.

The data is taken as it comes and one tries to get the best out of it. Hence, a

general and simple model seems to be the appropriate choice.

3. Is this data representation suitable for the Internet?

Because the model is rather general, virtually everything can be modeled using it.

There is, however, even an intuitive way to model Web domains. Clearly, single

HTML pages should correspond to nodes and links should correspond to arcs.

Furthermore, a single HTML document itself is similar to an XML document in

that it can be transformed into a graph using the ideas presented in Sections 2.5

and 8.2.

4. Your notion of subobject does not conform to my understanding of object-oriented

systems. Can you enlighten me?

Let us call my notion of subobject the syntactic one and your notion of subobject

the semantic one. The notion in this thesis is based on the notion of subgraph,

125

which is purely syntactic. Your intuition is re
ected by the idea of schema con-

tainment. If a predicate schema is a subobject in the syntactic sense of another

predicate schema then all matches of the latter are also matches of the former.

That makes the latter a subobject of the former in the semantic sense. We prefer

to call this property schema containment.

5. Your notion of schema is confusing and in particular contradictory to the tradi-

tional notion of database schema. Can you explain that in more detail?

I admit that this notion is a bit confusing. A database for semistructured data

does not have a schema in the traditional sense. Other approaches try to compute

a complete schema for such a database once the database is built. Our approach

is based on a set of partial schemata covering parts of the database. This ap-

proach seems to be more natural, because a computed complete schema is almost

guaranteed to be awkward and not very representative. So, instead of having a

complete schema for a database, we have a set of partial schemata each of which

we call schema. I seriously thought about other names for this concept: pattern,

description, view, : : : However, I felt that none of them really works.

6. Who is going to ask such queries?

Although we do not provide a tool that makes this language a visual query lan-

guage, implementing such a tool seems quite possible. We have not thought

about a representation of this language in a select-from-where manner, although

this seems quite possible too. An important aspect of this language is to repre-

sent concepts of query languages for semistructured data in an abstract manner.

So our language could serve as a middle layer for some other language, such as

XML-QL.

7. Doesn't the user have to have a lot of knowledge about the schema (in the tradi-

tional meaning) to formulate meaningful queries?

Yes. A system designed in this way should be seen as going through an evolution.

The very �rst query posed will probably be not very meaningful. But as the

system is �lled with more and more of the partial schemata (ideally �ltered in

some intelligent way) the user will get a pretty good idea about the database.

Furthermore, a designer may provide partial schemata at least for some parts of

the database, so that the system starts already at a higher level of usability.

8. Is this whole backtracking not necessarily too slow and, thus, not suited for

databases?

I do not think so. Combined with suitable heuristics and lookahead techniques

the search can be performed reasonably eÆcient. Our theoretical and practical

126

observations demonstrate this. A more serious problem to me is that constraint

systems are main-memory systems and lack eÆcient storage mechanisms.

9. Can you provide a result on the decidability of schema containment in your

approach?

No. With respect to schema containment this work is rather pragmatic. We only

need a suÆcient condition (a correctness criterion) for our ideas and that is all

we investigated.

10. Didn't you implement the same thing twice? Why? Wasn't it a very time-

consuming thing to do?

Yes, the ECLiPSe implementation is an extension of the Prolog implementation.

The Prolog implementation was done to get some experiences with programming

using constraints and with various optimization techniques. We could reuse many

parts of the code for the ECLiPSe implementation, because ECLiPSe is also a

Prolog-based system. Only the core functionality involving the constraints had

to be reimplemented completely.

127

Appendix B

Fundamentals of Graph Theory

and Partially Ordered Sets

This appendix introduces some basic notions from graph theory and the theory of

partially ordered sets. The �rst part is mainly based on the books by Foulds and

Jungnickel [Fou92, Jun90], the second one on the book by Trotter [Tro92].

B.1 Fundamentals of Graph Theory

De�nition B.1 (Graph). A graph (V;E) is an ordered pair where V is a �nite and

nonempty set, whose elements are called vertices or nodes, and E is a set of unordered

pairs of distinct nodes from v, whose elements are called edges.

Some authors permit V to be empty or in�nite. We say that an edge e = fp; qg 2 E

(or just e = pq) links the nodes (or points) p and q. In this case we call p and q incident

to e and adjacent to each other. Edges are called adjacent, if they share a node. We

denote the set of all nodes adjacent to v by �(v).

De�nition B.2 (Digraph (directed graph)). A digraph (or directed graph) is an

ordered pair (V;A), where V is a �nite and nonempty set and A is a set of ordered

pairs of distinct elements of V .

In contrast to graphs the elements of A in a digraph are usually called arcs. If (u; v)

(or uv) is an arc in a digraph then we call u the predecessor of v and v the successor

of u. An oriented graph is a digraph that for every pair of nodes u; v 2 V contains at

most one of the arcs (u; v) and (v; u).

Two graphs G1 = (V1; E1) and G2 = (V2; E2) are called isomorphic (we write G1
�=

G2), if there exists a bijection f : V1 �! V2, such that uv 2 E1 () f(u)f(v) 2 E2.

In this case f is called an isomorphism. Isomorphic graphs have the same number of

128

nodes of every degree and the same number of edges. Isomorphisms keep the adjacency.

An automorphism of a graph G is an isomorphism of G onto itself.

Various notions of subgraphs are useful. Let G = (V;E) be a graph. A graph

G
0 = (V 0

; E
0) is called subgraph of G, if V 0

� V and E0
� E. Let V 0

� V . Then we call

the graph G0 = (V 0
; E

0) with E0 = f(u; v) 2 Eju 2 V 0
^v 2 V

0
g, that contains all edges

from G linking nodes from V
0 the by V

0 induced subgraph of G. Let E0 be a (proper)

subset of E. The graph G
0 = (V;E0) is called a (proper) subgraph of G.

De�nition B.3 (Complete graph). A graph, in which every pair of its n nodes is

linked directly via an edge, is called complete graph (or clique) and is denoted by Kn.

If we remove the node v (all nodes of the graph G
0) from a graph G together with

all incident edges, then we denote the resulting graph by G� v (G�G0). If we remove

an edge e we denote the resulting graph by G� e.

Connectivity A sequence (e1; : : : ; en) of edges in graph is called walk, if nodes

v0; : : : ; vn with ei = vi�1vi for all 1 � i � n exist. We say that the walk links v0

and vn. A walk is closed if v0 = vn and open otherwise. If all the edges are distinct

then we call the walk a trail. If all the nodes are distinct (and thus all the edges as

well) then we call the walk a path.

De�nition B.4 (Connected graph). A graph is called connected if every pair of

nodes is linked via a path.

A graph is called k-connected if at least k edges have to be removed to make the

graph unconnected.

De�nition B.5 ((Connected) Component). A connected subgraph H of an arbi-

trary graph G is called (connected) component if it is maximal in the sense that there

exists no supergraph H 0 of H that is a connected subgraph of G as well.

A closed trail that consists of at least three nodes with all nodes except the �rst

and the last being distinct is called a cycle. A cycle is called even if its number of

edges is even and odd otherwise. A cycle with three edges is also called a triangle. We

denote a cycle with n edges by Cn.

De�nition B.6 (Acyclic graph). A graph that does not contain any cycles is called

acyclic.

A node v (an edge e) is called cut point (bridge) if G� v (G � e) consists of more

components than G. A graph without cut points is called inseparable. A maximal

inseparable subgraph is called a block.

Theorem B.1. The following properties hold:

1. In every graph the number of nodes with an odd degree is even.

129

2. A graph with n nodes and k components cannot have more than 1

2
(n�k)(n�k+1)

edges.

3. Every graph that has more edges than nodes contains a cycle.

Trees We can give alternative de�nitions for trees, they are at the same time descrip-

tions of properties of trees.

De�nition B.7 (Tree). A tree is a connected and acyclic graph.

1. A tree is a connected graph with n nodes and n� 1 edges.

2. A tree is an acyclic graph with n nodes and n� 1 edges.

3. A tree is a graph, in which there exists exactly one path between every pair of

nodes.

De�nition B.8 (Forest). An acyclic graph is called a forest.

The components of a forest are trees.

A tree together with a speci�cally marked node is called rooted tree and the node

is called the root of the tree. Trees without a root are sometimes called free.

De�nition B.9 (Binary tree). A binary tree is a rooted tree consisting of at least

three nodes, in which the root has degree two and all the other nodes have degree one

or three.

Digraphs We already de�ned elementary concepts for digraphs. Now we want to

present notions and properties that are di�erent from their counterparts for undirected

graphs.

Let G = (V;A) be a digraph. An alternating sequence (v0; a1; v1; : : : ; an; vn) is

called a walk if every arc ai is vi�1vi for 1 � i � n. The walk is closed if v0 = vn, and

spanning if fv0; v1; : : : ; vng = V . A walk is termed a trail if all of its arcs are distinct

and a path if additionally all of its nodes are distinct. A closed trail that consists of

at least two nodes with all nodes except the �rst and the last being distinct is called

a cycle. A digraph that contains a cycle is called cyclic, otherwise it is called acyclic.

We call v2 reachable from v1 if there exists a path from v1 to v2.

A semiwalk is an alternating sequence (v0; a1; v1; : : : ; an; vn) where every arc ai is

either vi�1vi or its converse vivi�1. A semiwalk is termed a semitrail if all of its arcs are

distinct, a semipath if all of its vertices are distinct, and a semicycle if it contains at least

130

three vertices and all of its vertices are distinct except for the fact that v0 = vn. These

notions form the base for the various notions of connectivity that exist for digraphs.

De�nition B.10 (Strongly / unilaterally / weakly connected digraph). A di-

graph is called strongly connected if every two of its distinct vertices v1 and v2 are so

that v2 is reachable from v1 and v1 is reachable from v2. The digraph is called uni-

laterally connected if v2 is reachable from v1 or v1 is reachable from v2. A digraph is

called weakly connected if v1 and v2 are linked by a semipath.

A digraph is called disconnected if it is weakly connected.

Theorem B.2. The following properties hold:

1. A digraph is strongly connected if and only if it has a spanning closed walk.

2. A digraph is unilaterally connected if and only if it has a spanning walk.

3. A digraph is weakly connected if and only if it has a spanning semiwalk.

Just as there are three kinds of connectivity for digraphs there are three kinds of

components as well. Note that a subdigraph of a digraph G = (V;A) is a digraph

G
0 = (V 0

; A
0), such that V 0

� V and A
0
� A.

De�nition B.11 (Strong / unilateral / weak component). A strong (unilateral,

weak) component in a digraph G is a maximal strongly (unilaterally, weakly) connected

subdigraph of G.

There are interesting notions of traversability for digraphs. A digraph G is called

Eulerian if it contains a closed trail that traverses every arc of G exactly once. A

digraph G is termed Hamiltonian if it has a cycle containing all of the vertices of G.

A digraph is Eulerian if and only if it is connected and each of its vertices has an

out-degree equal to its in-degree.

De�nition B.12 (Directed tree). A directed tree is a weakly connected digraph that

does not contain a semicycle.

Of particular interest for computer science are those directed trees that have a root.

De�nition B.13 (Arborescence). A directed tree is said to be an arborescence if it

contains exactly one vertex, called the root, with no arcs directed toward it, and if all

the arcs on any semipath are directed away from the root.

Theorem B.3. The following properties hold for any arborescence G:

1. Every vertex in G, other than the root, has exactly one arc directed toward it.

131

2. There is a path from the root of G to any other vertex in G.

3. Every vertex in G, other than the root, is reachable from the root. The root is not

reachable from any other vertex.

B.2 Fundamentals of Partially Ordered Sets

De�nition B.14 (Partially Ordered Set). A structure [M;�] is called a (re
exive)

partially ordered set or simply a poset if M is an arbitrary set (the ground set) and �

is a re
exive, antisymmetric and transitive binary relation over M.

The elements of the ground set are also called points. A poset is called �nite if its

ground set is �nite. Instead of writing (x; y) 2� we usually stick to the in�x-notation

x � y. In addition, we write x < y for x � y and x 6= y.

As an example let M = f;; fag; fa; bg; fb; cg; fa; b; cgg and R = f(A;B) 2 M �

M jA � Bg. Then [M;R] is a poset. In general, every family of sets together with the

subset-relation is a poset.

Let x; y 2M and x 6= y. We call x and y comparable and write x?y if either x < y

or y < x. Otherwise we call them incomparable and write x k y. We say that y covers

x (or x is covered by y) and write x <: y if x < y and no z with x < z and z < y exists.

Every subsetM of a ground setM forms together with the restricted binary relation

� jM also a poset. We call it a subposet.

The dual poset of a given poset [M;�] is the structure [M;�], in which for all

x; y 2M the relation x � y holds if and only if in [M;�] the relation y � x holds. A

poset [M;�] is called self-dual if [M;�] = [M;�].

A poset [M;�] is called connected if for all x; y 2 M with x 6= y a sequence of

points x = x0; x1; : : : ; xn = y with xi?xi+1 for all i = 0; 1; : : : ; n� 1 exists. A subposet

[M;� jM] of [M;�] is called a component of [M;�] if it is connected and no other

connected subposet [N;� jN] with N �M exists.

Posets are usually visualized using a so called Hasse diagram. It consists of a graph

where the points in the ground set are the vertices and an edge is included for every

pair (x; y) with x <: y. Usually the \smaller" points are located at the bottom, i.e.,they

have a smaller vertical coordinate. Figure B.1 shows the Hasse diagram for the example

given above.

Chains and Antichains; Maximum and Minimum

De�nition B.15 (Chain, Antichain). A poset [M;�] is called a chain if every pair

of points from M is comparable. A poset [M;�] is called an antichain if every pair of

points from M is incomparable.

132

{a, b, c}

{a, b} {b, c}

{a}

{}

Figure B.1: A Hasse diagram

We can extend these notions to subsets of the ground set.

De�nition B.16 (Chain, Antichain 2). A subset M of the ground set of a poset

[M;�] is called a chain (antichain) if the subposet [M;� jM] is a chain (antichain).

A chain (antichain) in a poset is called a maximum chain (maximum antichain) if

no other chain (antichain) with a higher cardinality exists. The height of a poset is

the cardinality of the maximum chain, the width of a poset is the cardinality of the

maximum antichain.

De�nition B.17 (Maximal, minimal point). A point x 2 M is called maximal

point (minimal point) if no y 2M with y > x (y < x) exists.

We denote the set of the set of maximal points of a poset [M;�] by max([M;�])

and the set of minimal points by min([M;�]).

De�nition B.18 (Maximum, minimum point). A point x 2 M is called maxi-

mum point or greatest point (minimum point or least point) of the poset [M;�] if for

all y 2M the relation y � x (y � x) holds.

We can apply the notions of maximal and minimal points to chains and antichains.

The set of all chains (antichains) of a poset forms together with the subset-relation

a new poset. The maximal points of this new poset are called the maximal chains

(antichains) of the original poset.

De�nition B.19 (Maximal chain, maximal antichain). A chain (antichain) C 2

M is called maximal chain (maximal antichain) of the poset [M;�] if no other chain

(antichain) D 2M with D � C exists.

In a poset [M;�] both max([M;�]) and min([M;�]) are maximal antichains.

133

Mappings between Posets Let [M;�] and [N;�] be posets and f : M �! N a

mapping between their ground sets. f is called:

� order preserving, if for all x1; x2 2 M with x1 � x2 the relation f(x1) � f(x2)

holds,

� order reversing, if for all x1; x2 2 M with x1 � x2 the relation f(x1) � f(x2)

holds.

De�nition B.20 (Isomorphism). A mapping f : M �! N between posets [M;�]

and [N;�] is called isomorphism, if f is a bijection and for all x1; x2 2M the relation

x1 � x2 holds if and only f(x1) � f(x2) holds.

If there exists an isomorphism between the posets [M;�] and [N;�] we call the

posets isomorphic and write [M;�] �= [N;�]. An isomorphism between [M;�] and

[M;�] is called automorphism. An isomorphism between [M;�] and a subposet of

[N;�] is called an embedding of [M;�] into [N;�]. We usually do not distinguish

between isomorphic posets, we rather say that [M;�] is contained in [N;�] if an

embedding exists. We also write [M;�] = [N;�] instead of [M;�] �= [N;�]

Lower and upper bound; Lattice Let [M;�] be a poset and M � M. A point

x 2M is called upper bound (lower bound) for M if y � x (y � x) holds for all y 2M .

An upper bound (lower bound) x for M is called least upper bound (greatest lower

bound) for M (we write lub(M) and glb(M), respectively) if x � x
0 (x � x

0) holds for

every upper (lower) bound x0 for M .

De�nition B.21 (Lattice). A poset [M;�] is called a lattice if every nonempty sub-

set M �M has a least upper and a greatest lower bound.

Finite lattices always have a greatest and a least point. If the lattice contains more

then one point the greatest point is traditionally called one and the least point zero. For

lattices [M;�] we have naturally de�ned functions _(join) and ^(meet) from M�M

into M:

x _ y = lub(fx; yg)

x ^ y = glb(fx; yg)

134

Appendix C

Documentation of the

ECLiPSe-based Answering

System

In this appendix we describe the implemented software system. We �rst describe

the modules that are primarily involved in the schema matching processes. Next, we

describe the graphical user interface to the system. In the �nal section we explain how

to transform XML documents into databases for our system.

C.1 The ECLiPSe modules

The ECLiPSe-based schema matcher consists of a set of hierarchically ordered modules.

For a description of the system see Section 8.3. In this appendix we describe the

predicates that the individual modules provide. The package consists of the following

�les:

COPYRIGHT The copyright note.

README A short description.

go.pl A short demo.

misc.pl Module MISC: Miscellaneous supporting predicates

objmain.pl Module OBJMAIN: The object maintainer

preds.pl Module PREDS: The predicate component

samples/ Directory of sample databases and schemata

scontain.pl Module SCONTAIN: Schema containment component

smain.pl Module SMAIN: The schema maintainer

smatch.pl Module SMATCH: The schema matcher (main module)

subgraph.pl Module SUBGRAPH: The subgraph tester

135

We describe the set of modules in a top-down fashion, i.e.,we start with the schema

matcher and end with the supporting predicates.

Module SMATCH The schema matcher (main module)

Uses modules: SCONTAIN, SUBGRAPH, PREDS, SMAIN, OBJMAIN, MISC

Exports predicates:

� schema_matches(+Schema,+DB,-List) gives a list List of newly created

objects that are the minimal matches of schema Schema in database DB.

� is_schema_match(?Schema,?DB,?Match) succeeds if Match is a minimal

match of schema Schema in database DB. The matches are stored as lists

of associations Elem(Value).

� set_opt_oldMatches activates the optimization of reusing stored schema

matches if present.

� is_opt_oldMatches tests for the optimization of reusing stored schema

matches if present.

� unset_opt_oldMatchesdeactivates the optimization of reusing stored schema

matches if present.

� set_opt_containTest activates the optimization of using schema contain-

ment for reducing the search space.

� is_opt_containTest tests for the optimization of using schema contain-

ment for reducing the search space.

� unset_opt_containTest deactivates the optimization of using schema con-

tainment for reducing the search space.

� set_opt_firstFew activates the optimization of using schema containment

for computing the �rst few schema matches immediately.

� is_opt_firstFew tests for the optimization of using schema containment

for computing the �rst few schema matches immediately.

� unset_opt_firstFew deactivates the optimization of using schema contain-

ment for computing the �rst few schema matches immediately.

Module SCONTAIN Schema containment component

Uses modules: SUBGRAPH, PREDS, SMAIN, MISC

Exports predicates:

� schema_containments(+S1,+S2,-List) returns a list List of containment

mappings from S2 into S1, if S2 contains S1, and the empty list otherwise.

136

Module SUBGRAPH The subgraph tester

Uses modules: OBJMAIN, MISC

Exports predicates:

� iso_subgraphs(+Obj1,+Obj2,-List) returns a list List of subobjects of

Obj2 that are isomorphic to Obj1. The objects in this list are created

during the process.

� construct_csp(+Obj1,+Obj2,-VList,-EList) constructs a CSP for the

SUBGRAPH-ISOMORPHISM problem. Variables for the elements of Obj1

are introduced and collected in VList, their corresponding elements are col-

lected in EList.

� create_domains(+Obj) creates the domains of the vertices and arcs for

object Obj to be used in a CSP.

� create_var_list(-VList,+EList) creates a list of domain variables for

the elements of EList and uni�es the result with VList.

� precompute_constraints(+Obj) precomputes the structure constraints for

object Obj to be used in a CSP.

� find_domain_variables(-VList1,+EList1,+VList2,+EList2)�nds those

variables from VList2 that correspond to the elements in EList1, a sublist

of EList2, and uni�es the result with VList1.

� find_domain_variable(-Var,+Elem,+VList,+EList)�nds the single vari-

able from VList that corresponds to Elem, an element of EList, and uni�es

the result with Var.

� association_terms(?VList,?EList,?AList) produces a list of associa-

tions Elem(Var) of elements from EList and their corresponding domain

variables and uni�es the result with AList.

� solution(+List) produces a CSP solution for the list of domain variables

List. Backtracking can be used to produce all solutions.

� labeling(+List) is a synonym for solution(+List).

� build_solutions(+Obj2,+SList,-DList) builds Vertex/Arc descriptions

of the CSP solutions, subobjects of Obj2, given in SList and uni�es the

result with DList.

� create_solutions(+Obj1,+Obj2,+DList,-OList) creates the solution ob-

jects from the descriptions given in DList and stores their identi�ers in OList.

� encode_solution(+Obj1,+Obj2,+Num,?ID) creates an identi�er ID for the

Num'th solution of the SUBGRAPH-ISOMORPHISM problem for Obj1 and

Obj2.

137

� decode_solution(+ID,?Obj1,?Obj2,?Num) reconstructs the object identi-

�ers Obj1 and Obj2 as well as the solution number Num from the solution

object identi�er ID.

� is_domain(?Obj,?ID,?Dom) succeeds if there exists a domain of type ID

de�ned for object Obj and with domain Dom.

� is_precomputed_constraint(?Obj,?ID,?C1,?C2) succeeds if there exists

a precomputed binary constraint of type ID formed by C1 and C2 de�ned

for object Obj.

� set_opt_oldSolutions activates the optimization of using stored CSP so-

lutions if present.

� is_opt_oldSolutions tests for the optimization of using stored CSP solu-

tions if present.

� unset_opt_oldSolutions deactivates the optimization of using stored CSP

solutions if present.

Module PREDS The predicate component

Uses modules: MISC

Exports predicates:

� predicate(+Pred,+Lab) succeeds if Pred(Lab) holds.

� predicate_contain(+Pred1,+Pred2) succeeds if the predicate Pred1 is

contained in the predicate Pred2.

Module SMAIN The schema maintainer

Uses modules: OBJMAIN, MISC

Exports predicates:

� begin_schema(+Schema)must be called before de�ning the schema Schema.

� end_schema(+Schema) �nishes up the de�nition of the schema Schema.

� destroy_schema(+Schema) destroys the schema Schema.

� is_schema(?Schema) succeeds if there exists a schema Schema.

� detect_types(+Schema) detects for all vertices and arcs in the schema

whether a label is a constant, a predicate, a variable de�nition or a mul-

tiple element (path).

� is_type(?Schema,?Elem,?Type) succeeds if Type is the type of the vertex

or arc Elem in schema Schema.

� is_binding(?Schema,?Elem,?Var) succeeds if Var is a variable associated

to the vertex or arc Elem in schema Schema.

138

� is_size_min(?Schema,?Elem,?Min) succeeds if Min is the minimum length

associated to the (vertex or) arc Elem in schema Schema.

� is_size_max(?Schema,?Elem,?Max) succeeds if Max is the maximum length

associated to the (vertex or) arc Elem in schema Schema.

� extract_predicate(+Type,+Lab,-Pred) extracts the predicate from label

Lab of type Type and uni�es it with Pred.

� extract_predicate(+Schema,+Elem,+Lab,-Pred) extracts the predicate

from label Lab of vertex or arc Elem in schema Schema and uni�es it with

Pred.

� is_constant(+Pred) succeeds if the predicate Pred is a constant predicate.

Module OBJMAIN The object maintainer

Uses modules: MISC

Exports predicates:

� objmain_init initializes the object maintainer. All existing objects, ver-

tices, arcs and labels are removed.

� begin_object(+Obj)must be called before actually de�ning an object Obj.

Then the system automatically keeps track of "open"arcs where source or

target vertices are still missing.

� create_vertex(+Obj,+Vert,+Lab) de�nes a vertex Vert in object Obj la-

beled Lab.

� create_arc(+Obj,+Arc,+Src,+Tar,+Lab) de�nes an arc Arc in object Obj

going from Src to Tar and labeled Lab. Src and Tar either already exist or

are remembered as "must be de�ned later".

� end_object(+Obj) �nishes the de�nition of the object Obj. This will only

succeed if all arcs have their source and target vertices de�ned.

� is_object(?Obj) succeeds if there exists an object Obj.

� is_vertex(?Obj,?Vert) succeeds if there exists a vertex Vert in object Obj.

� is_arc(?Obj,?Arc,?Src,?Tar) succeeds if there exists an arc Arc from Src

to Tar in object Obj.

� is_label(?Obj,?Elem,?Lab) succeeds if there exists a vertex or an arc

Elem in object Obj labeled Lab.

� print_object(+Obj) writes information on the object Obj to stdout.

� destroy_object(+Obj) destroys the object Obj.

139

� simple_path(?Obj,?Path) succeeds if Path is a (nonempty) trail in object

Obj. Can also be used to generate all trails of an object.

� source(?Obj,?Path,?Vert) succeeds if Vert is the source of the arc or trail

Path in object Obj.

� target(?Obj,?Path,?Vert) succeeds if Vert is the target of the arc or trail

Path in object Obj.

� sourcecheck(+Obj,+Path,?Vert) succeeds if Vert is the source of the arc

or trail Path in object Obj.

� targetcheck(+Obj,+Path,?Vert) succeeds if Vert is the target of the arc

or trail Path in object Obj.

� induced_subobject(+Obj,+EList,?VList,?AList) computes the by the

list of vertices and arcs EList induced subobject of Obj and uni�es the

resulting vertex list with VList and the resulting arc list with AList. The

induced subobject is computed by adding the source and target vertices of

the arcs in EList.

Module MISC Miscellaneous supporting predicates

Uses modules: {

Exports predicates:

� atom_list(?Atom,?List) converts between the atom representation and a

list of the ASCII codes of the characters. At least one of the arguments must

be instantiated.

� between(+Lower,+Upper,+Num) succeeds if Num is a number between Lower

and Upper.

� deleteall(+List1,+Elem,?List2) deletes all occurrences of Elem from

List1 and uni�es the result with List2.

� indexlist(+NestedList,+Index,-List) collects the Index'th elements from

every sublist of NestedList and uni�es the resulting list with List.

� is_list(+Arg) succeeds if Arg is a list.

� is_set(+Arg) succeeds if Arg is a list and does not contain multiple occur-

rences of the same element.

� last(?Elem,?List) succeeds if Elem uni�es with the last element of List.

At least one of the arguments should be instantiated.

� listcaseequal(+List1,+List2) succeeds is List1 and List2 are lists of

ASCII codes representing upper and lower case letters and the words they

are representing are the same ignoring the case of the letters.

140

� listprefix(?List1,+List2) succeeds if List1 uni�es with an arbitrary pre-

�x of List2. Can also be used to generate all pre�xes of List2.

� nth1(+Index,+List,?Elem) succeeds if Elem un�es with the Index'th ele-

ment of List. The �rst element of List has index 1.

� pairlist(?PairList,?List1,?List2) succeeds if PairList uni�es with the

list of pairs of corresponding elements (i.e.,elements at the same position)

from List1 and List2. This predicate can also be used to split a PairList.

� setequal(+Set1,+Set2) succeeds if Set1 and Set2 are both sets and are

the same.

� split(+List,+Elem,-List1,-List2) splits List into List1 and List2, guided

by the �rst occurrence of Elem. Elem will not be a member of either List1

or List2. If Elem is not a member of List the predicate fails.

� sublist(+List1,+List2) succeeds if List1 is a continuous sublist of List2

starting at an arbitrary element of List2. Uses listpre�x/2.

� term_atom(?Term,?Atom) converts between the term and the atom repre-

sentation. At least one of the arguments should be instantiated.

C.2 The user interface

Two �les have to be added to the ECLiPSe-based schema matcher to provide a graphical

user interface.

kshow.tcl The actual interface implemented in Tcl/Tk

tkiface.pl A set of supporting Prolog predicates

The interface can be invoked by calling the predicate tk([file('kshow.tcl')]).

This opens a window similar to the one shown in Figure 8.2 on Page 118. The top

half of the screen is used to show details on the open databases and schemata, whereas

the bottom half presents matches of schemata in databases. In addition there is a

menu situated at the very top of the window. The list box at the top left allows the

user to switch between open databases. Schemata are selected by clicking once on

their name. For both, databases and schemata, the details are updated automatically.

Double-clicking on a schema name produces the list of matches of that schema in the

current database. The names of the matches are presented at the bottom left. Again,

clicking once on a name produces the details of the match. In the following we describe

the individual menu entries:

Menu File Interaction with �les, open and close databases and schemata

141

� Open Database opens a dialog window that allows the user to open a database

from a .pl-�le. Note that the module OBJMAIN must be loaded.

� Open Schema opens a dialog window that allows the user to open a schema

from a .pl-�le. Note that the module SMAIN must be loaded.

� Open XML-File opens a dialog window that allows the user to open a database

from an .xml-�le. A separate window is opened for setting a database name.

Note that the module OBJMAIN must be loaded.

� Close Database closes the current database.

� Close Schema closes the selected schema.

� Quit quits the graphical user interface.

Menu Database Everything that has to do with the databases

� Display displays details of the current database. A graphical representation

is planned, but not yet implemented.

Menu Schema Everything that has to do with the schemata

� Display displays details of the selected schema. A graphical representation

is planned, but not yet implemented.

� Match invokes the computation of the matches of the selected schema in the

current database. Note that the module SMATCH must be loaded.

� Statistics displays some statistics of the selected schema and its matches

in the current database. This is not implemented yet.

Menu Optimization Set optimization switches

� Use old solutions Do not solve a CSP again when solution objects of the

schema match problem already exist.

� Use old matches Do not solve a CSP again when solutions of the CSP

already exist.

� Reduce search space Use schema containment to reduce the search space

of CSPs.

� Present first few matches Use schema containment to present the �rst

matches of the schema immediately.

Menu Help Overview of the tool

� Introduction provides an online help for the tool.

� About displays the name and the current version number of the tool.

142

The Tcl/Tk-script that implements the graphical user interface is based on an

ECLiPSe module. This module exports the functionality of the schema matcher.

Module TKIFACE Provides functionality to the graphical user interface

Uses modules: SMATCH, SMAIN, OBJMAIN

Exports predicates:

� all_objects(?List) uni�es the list of ids of all currently existing objects

with List.

� all_schemata(?List)uni�es the list of ids of all currently existing schemata

with List.

� all_databases(?List)uni�es the list of ids of all currently existing databases

with List. Databases are objects that are neither schemata nor matches.

� all_vertices(+Obj,?List) uni�es the list of ids of all vertices of object

Obj (the id given as a string) with List.

� all_arcs(+Obj,?List) uni�es the list of ids of all arcs of object Obj (the

id given as a string) with List.

� database_destroy(+Obj) destroys the database with id Obj (given as a

string).

� schema_destroy(+Obj) destroys the schema with id Obj (given as a string).

� find_schema_matches(+Schema,+DB,-List) gives a list List of newly cre-

ated objects that are the minimal matches of schema Schema in database

DB. Both Schema and DB have to be given as strings.

C.3 The XML support

The package XML2PL is a parser that transform an XML document into a database

that can be used in our system. The package consists of the following �les:

COPYRIGHT The copyright note.

Make�le The Make�le.

README A short description.

simple.xml A simple sample.

xml2pl.c The main program.

xmllex.l A lexer for XML documents.

xmlparse.y The parser that generates Prolog output.

The program can be compiled by typing make. Possibly, some library
ags must

be adapted in the Make�le. The Make�le contains default values that should work for

143

Linux and Solaris operating systems. An executable called xml2pl should be created.

In the simplemost case the program can be called like this:

./xml2pl <XML-file>

This will write the generated Prolog code to stdout. The way the document is trans-

formed into a database is described in Section 8.2. The database generated is named

`XML document' by default. The name can be changed by giving a second argument.

./xml2pl <XML-file> <name>

Of course, the output can be redirected into a �le like this:

./xml2pl <XML-file> <name> > <output-file>

This output �le can be read in from the ECLiPSe system by using the compile pred-

icate. The only prerequisite is that the module objmain, the object maintainer, must

already be loaded.

144

Appendix D

List of Mathematical Symbols

Symbol Description Section

G;G1; G2; G
0
;H (Labeled) total directed graph 2.1

L Set of labels 2.1

o; o1; o2; o
0 Object 2.1

V;A; V
(o)
; A

(o) Set of vertices, arcs (of object o) 2.1

s; t; l; s
(o)
; t
(o)
; l
(o) Source, target, label function (of object o) 2.1

p; p1; p2 Walk, trail, path 2.1

P; P
+
; P

(o) Set of (nonempty) trails (of object o) 2.1

p1 Æ p2 Concatenation of walks, trails, paths 2.1

o1 � o2; o1 � o2 Subobject relationship 2.1

P(o) Set of all subobjects of o 2.1

m;m1;m2;m
0 Graph morphism 2.2

� Signature 2.3

s; s1; s2 Sort 2.3

S Set of sorts 2.3

!; !1; !2 Operation symbol 2.3

 Set of operation symbols 2.3

A;A1; A2; A
0
; B Algebra 2.3

f �-Homomorphism (�-Isomorphism) 2.3

S; T Source, target incidence 2.3

R Æ S;RS Product of relations 2.3

I Identity relation 2.3

R
T Transpose of a relation 2.3

(MV ;MA);M Graph homomorphism (isomorphism) 2.3

P Set of predicates 3.1

s; s1; s2; s
0 Predicate schema 3.1

145

Symbol Description Section

m;m1;m2;m
0 (Naive) match 3.1

M(s)(o);M
(s)

min
(o) Set of (minimal) matches of s in o 3.1

V Set of variables 3.2

sP ; tP Source, target for nonempty trails 3.3

GP ; oP Corresponding trail graph 3.3

s; s1; s2; s
0 Schema 3.3

v; v
(s) Variable mapping (of schema s) 3.3

qmin; qmax; q
(s)

min
; q

(s)

max Length restrictions (of schema s) 3.3

m;m1;m2;m
0 Match (function) 3.3

M(s)(o);M
(s)

min
(o) Set of (minimal) matches of s in o 3.3

q; q1; q2; q
0 Schema, focus, transformation query 4.1 - 4.3

t term-labeled graph 4.3

a aggregation graph 4.3

r Graph rule 4.5

L Left-hand side of a graph rule 4.5

R Right-hand side of a graph rule 4.5

m Redex of a left-hand side 4.5

(X;D;C) Constraint Satisfaction Problem 5.1

x; x1; x2; y Variable in a CSP 5.1

X Set of variables in a CSP 5.1

D;D1; D2 Domain in a CSP 5.1

D Set of domains in a CSP 5.1

C;C1; C2; CS ; C(x;y) Constraint in a CSP 5.1

S; S1; S2 Tuple of variables in a CSP 5.1

C Set of constraints in a CSP 5.1

w Width of a constraint graph 6.4

s1 � s2; s1 � s2 Schema containment relationship 7.1

146

Bibliography

[ABGVG87] S. Abiteboul, C. Beeri, M. Gyssens, and D. Van Gucht. An introduction

to the completeness of languages for complex objects and nested relations.

In Proceedings of the International Workshop on Theory and Applications

of Nested Relations and Complex Objects in Databases, pages 117{138,

Darmstadt, Germany, April 1987.

[Abi97] S. Abiteboul. Querying semi-structured data. In Proceedings of the In-

ternational Conference on Database Theory (ICDT), pages 1{18, Delphi,

Greece, January 1997.

[ACM93] S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the �le.

In Proceedings of the International Conference on Very Large Databases

(VLDB), pages 73{84, Dublin, Ireland, August 1993.

[Agg] The AGG-Homepage, http://tfs.cs.tu-berlin.de/projekte/gragra/agg/.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. M. Myers, and D. J. Lipman. Basic

local alignment search tool. Journal of Molecular Biology, 215:403{410,

1990.

[AGM+97] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views

for semistructured data. In Proceedings of the Workshop on Management

of Semistructured Data (in conjunction with SIGMOD/PODS), Tucson,

AZ, USA, May 1997.

[AKW88] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The awk Programming

Language. Addison-Wesley, Reading, MA, USA, 1988.

[Alt] AltaVista HOME, http://www.altavista.com/.

[AMM97] P. Atzeni, G. Mecca, and P. Merialdo. To weave the web. In Proceedings

of the International Conference on Very Large Databases (VLDB), pages

206{215, Athens, Greece, August 1997.

147

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel

query language for semistructured data. Journal of Digital Libraries,

1(1):68{88, 1997.

[ASU79] A. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions.

SIAM Journal on Computing, 8(2):218{246, 1979.

[AV97] S. Abiteboul and V. Vianu. Queries and computation on the web. In

Proceedings of the International Conference on Database Theory (ICDT),

pages 262{275, Delphi, Greece, January 1997.

[Bar98] R. Bartak. Guide to constraint programming, 1998.

http://kti.ms.m�.cuni.cz/ bartak/constraints/.

[Bar99] R. Bartak. Constraint programming: In pursuit of the holy grail. In

Proceedings of the Week of Doctoral Students (WDS), Prague, Czech Re-

public, June 1999.

[BB89] D. Balfanz and A. Bergholz. Digitale kodierung von alphabeten.

Nachrichtentechnik / Elektronik, 39(6):220{222, 1989.

[BC99] A. Bonifati and S. Ceri. Comparitive analysis of �ve XML query lan-

guages. Submitted for publication, 1999.

[BDFS97] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure

to unstructured data. In Proceedings of the International Conference on

Database Theory (ICDT), pages 336{350, Delphi, Greece, January 1997.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language

and optimization techniques for unstructured data. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages

505{516, Montreal, Canada, June 1996.

[BDK92a] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-

Oriented Database System: The Story of O2. Morgan Kaufmann, San

Francisco, CA, USA, 1992.

[BDK92b] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema

merging. In Proceedings of the International Conference on Extending

Database Technology (EDBT), pages 152{167, Vienna, Austria, March

1992.

[BDS95] P. Buneman, S. B. Davidson, and D. Suciu. Programming constructs

for unstructured data. In Proceedings of the International Workshop

148

on Database Programming Languages (DBPL), Gubbio, Italy, Septem-

ber 1995.

[Ber93] A. Bergholz. A general diagnostic engine based on an assumption-based

truth maintenence system, February 1993. Midterm thesis at University

of Edinburgh.

[Ber95] A. Bergholz. Begleitung: Rezension des Buches \Der LaTeX-Begleiter".

alpha, 29(10):27, 1995.

[Ber96] A. Bergholz. Suche nach genetisch korrelierten Proteinabschnitten unter

Verwendung einer relationalen Datenbank. Master's thesis, Humboldt-

University Berlin, August 1996. German Diploma thesis.

[Ber99] A. Bergholz. Rich schemata for semistructured data: Thesis proposal. In

Conference on Advanced Information Systems Engineering (CAiSE*99),

6th Doctoral Consortium, Heidelberg, Germany, June 1999.

[Ber00] A. Bergholz. Querying Semistructured Data Based On Schema Matching.

PhD thesis, Humboldt-University Berlin, 2000.

[BF98] A. Bergholz and J. C. Freytag. A three-layer approach to semistructured

data. In Proceedings of the International Workshop on Theory and Appli-

cation of Graph Transformations (TAGT), Paderborn, Germany, Novem-

ber 1998.

[BF99a] A. Bergholz and J. C. Freytag. Matching schemata by utilizing con-

straint satisfaction techniques. In Proceedings of the Workshop on Query

Processing for Semistructured Data and Non-Standard Data Formats (in

conjunction with ICDT'99), Jerusalem, Israel, January 1999.

[BF99b] A. Bergholz and J. C. Freytag. Querying semistructured data based

on schema matching. In Proceedings of the International Workshop on

Database Programming Languages (DBPL), Kinloch Rannoch, Scotland,

UK, September 1999.

[BF00a] A. Bergholz and J. C. Freytag. Integration biologischer Sequenzdaten zum

Aufbau eines Genomwarehouses. In Proceedings of the Workshop \Infor-

mationssysteme in der Biotechnologie", Magdeburg, Germany, February

2000.

[BF00b] A. Bergholz and J. C. Freytag. Managing schemata for semistructured

databases using constraints. In Proceedings of the East-European Con-

149

ference on Advances in Databases and Information Systems (ADBIS),

Prague, Czech Republic, September 2000.

[BHSF97] A. Bergholz, S. Heymann, J. A. Schenk, and J. C. Freytag. Sequence com-

parison using a relational database approach. In Proceedings of the In-

ternational Database Engineering and Applications Symposium (IDEAS),

pages 126{131, Montreal, Canada, August 1997.

[BR75] J. R. Bitner and E. M. Reingold. Backtrack programming techniques.

Communications of the ACM, 18(11):651{656, 1975.

[BSMM93] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. M�uhlig. Taschen-

buch der Mathematik. Harri Deutsch, Thun, Frankfurt, Germany, 1993.

[BTBN91] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion

as a query language. In Proceedings of the International Workshop on

Database Programming Languages (DBPL), pages 9{19, Nafplion, Greece,

August 1991.

[BTBW92] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query

languages. In Proceedings of the International Conference on Database

Theory (ICDT), pages 140{154, Berlin, Germany, October 1992.

[Bun97] P. Buneman. Semistructured data. In Proceedings of the Symposium

on Principles of Database Systems (PODS), pages 117{121, Tucson, AZ,

USA, May 1997.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scoll. From structured

documents to novel query facilities. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, pages 313{323,

Minneapolis, MN, USA, May 1994.

[CAW98] S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying

changes in semistructured data. In Proceedings of the International Con-

ference on Data Engineering (ICDE), pages 4{13, Orlando, FL, USA,

February 1998.

[CDAR97] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Using taxonomy,

discriminants, and signatures for navigating in text databases. In Proceed-

ings of the International Conference on Very Large Databases (VLDB),

pages 446{455, Athens, Greece, August 1997.

150

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-

stantinou, J. Ullman, and J. Widom. The TSIMMIS project: Integra-

tion of heterogenous information sources. In Proceedings of the Informa-

tion Processing Society of Japan (IPSJ) Conference, pages 7{18, Tokyo,

Japan, October 1994.

[Che76] P. P.-S. Chen. The Entity-Relatioship-Model { toward a uni�ed view of

data. ACM Transactions on Database Systems (TODS), 1(1):9{36, 1976.

[CHMW96] M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams. PESTO:

An integrated query/browser for object databases. In Proceedings of the

International Conference on Very Large Databases (VLDB), pages 203{

214, Bombay, India, September 1996.

[CHN+95] W. F. Cody, L. M. Haas, W. Niblack, M. Arya, M. J. Carey, R. Fagin,

D. Lee, D. Petkovic, P. M. Schwarz, J. Thomas, M. Tork Roth, J. H.

Williams, and E. L. Wimmers. Querying multimedia data from multiple

repositories by content: The Garlic project. In Proceedings of the Inter-

national Conference on Visual Database Systems (VDB), pages 17{35,

Lausanne, Switzerland, March 1995.

[CHY96] M. S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a

database perspective. IEEE Transactions on Knowledge and Data Engi-

neering, 8(6):866{883, 1996.

[CK97] M. J. Carey and D. Kossmann. On saying \Enough Already!" in SQL.

In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 219{230, Tucson, AZ, USA, May 1997.

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimiz-

ing queries with materialized views. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 190{200, Taipei, Taiwan,

March 1995.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive

queries in relational databases. In Proceedings of the ACM Symposium

on Theory of Computing, pages 77{90, Boulder, CO, USA, May 1977.

[CN91] B. J. Cox and A. J. Novobilski. Object-Oriented Programming: An Evo-

lutionary Approach. Addison-Wesley, Reading, MA, USA, 2nd edition,

1991.

151

[Cod70] E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377{387, 1970.

[Cod72] E. F. Codd. Relational completeness of data base sublanguages. In

R. Rustin, editor, Data Base Systems, number 6 in Courant Computer

Science Symposia Series, pages 65{98. Prentice-Hall, San Jose, CA, USA,

1972.

[Cod80] E. F. Codd. Data models in database management. In Proceedings of the

Workshop on Data Abstraction, Databases, and Conceptual Modelling,

pages 112{114, Pingree Park, CO, USA, June 1980.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceed-

ings of the ACM Symposium on Theory of Computing, pages 151{158,

Shaker Heights, OH, USA, May 1971.

[Coo89] M. C. Cooper. An optimal k-consistency algorithm. Arti�cial Intelligence,

41:89{95, 1989.

[Dat95] C. J. Date. An Introduction To Database Systems. The System Program-

ming Series. Addison-Wesley, Reading, MA, USA, 6th edition, 1995.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query

language for XML. In Proceedings of the International World Wide Web

Conference, pages 1155{1169, Toronto, Canada, May 1999.

[DFS99] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data

with STORED. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, pages 431{442, Philadelphia, PA, USA,

June 1999.

[DJ88] R. Dechter and Pearl J. Network-based heuristics for constraint-

satisfaction problems. Arti�cial Intelligence, 34:1{38, 1988.

[DKA+86] P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer,

V. Lum, P. Pistor, and G. Walch. A DBMS prototype to support extended

NF2 relations: An integrated view on
at tables and hierarchiesa. In Pro-

ceedings of the ACM SIGMOD International Conference on Management

of Data, pages 356{367, Washington, DC, USA, May 1986.

[Ecl] ECLiPSe - The ECRC Constraint Logic Parallel System,

http://www.ecrc.de/eclipse/.

152

[EPS73] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An alge-

braic approach. In Proceedings of the IEEE Symposium on Switching and

Automata Theory, pages 167{180, Iowa City, IA, USA, October 1973.

[FFK+98] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching

the boat with Strudel: Experiences with a web-site management system.

In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 414{425, Seattle, WA, USA, June 1998.

[FLM98] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the

world-wide web: A survey. SIGMOD Record, 27(3):59{74, 1998.

[FLS98] D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive

queries with regular expressions. In Proceedings of the Symposium on

Principles of Database Systems (PODS), pages 139{148, Seattle, WA,

USA, June 1998.

[Fou92] L. R. Foulds. Graph Theory Applications. Springer-Verlag, Berlin { Hei-

delberg { New York, 1992.

[Fre82] E. Freuder. A suÆcient condition for backtrack-free search. Journal of

the ACM, 29(1):24{32, 1982.

[FS98] M. Fernandez and D. Suciu. Optimizing regular path expressions using

graph schemas. In Proceedings of the International Conference on Data

Engineering (ICDE), pages 14{23, Orlando, FL, USA, February 1998.

[Gas77] J. Gaschnig. A general backtracking algorithm that eliminates most re-

dundant tests. In Proceedings of the International Joint Conference on

Arti�cial Intelligence (IJCAI), Cambridge, MA, USA, 1977.

[Gas78] J. Gaschnig. Experimental case studies of backtrack vs. waltz-type vs. new

algorithms for satisfying assignment problems. In Proceedings of the Con-

ference of the Canadian Society for Computational Studies of Intelligence,

1978.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, New

York, USA, 1979.

[GMW99] R. Goldman, , J. McHugh, and J. Widom. From semistructured data to

XML: Migrating the lore data model and query language. In Proceed-

ings of the International Workshop on the Web and Databases (WebDB),

Philadelphia, PA, USA, June 1999.

153

[Gol91] C. F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, UK,

1991.

[Got82] O. Gotoh. An improved algorithm for matching biological sequences.

Journal of Molecular Biology, 162:705{708, 1982.

[GSVGM98] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-

Molina. Proximity search in databases. In Proceedings of the International

Conference on Very Large Databases (VLDB), pages 26{37, New York,

USA, August 1998.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling query formulation

and optimization in semistructured databases. In Proceedings of the In-

ternational Conference on Very Large Databases (VLDB), pages 436{445,

Athens, Greece, August 1997.

[GW99] R. Goldman and J. Widom. Approximate DataGuides. In Proceedings

of the Workshop on Query Processing for Semistructured Data and Non-

Standard Data Formats (in conjunction with ICDT'99), Jerusalem, Israel,

January 1999.

[HE80] R. M. Haralick and G. L. Elliot. Increasing tree search eÆciency for

constraint satisfaction problems. Arti�cial Intelligence, 14:263{313, 1980.

[HHK95] M. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on

�nite and in�nite graphs. In Proceedings of the Symposium on Founda-

tions of Computer Science, pages 453{462, Milwaukee, WI, USA, October

1995.

[HNP95] J. M. Hellerstein, J. F. Naughton, and A. Pfe�er. Generalized search

trees for database systems. In Proceedings of the International Conference

on Very Large Databases (VLDB), pages 562{573, Z�urich, Switzerland,

September 1995.

[HRU96] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data

cubes eÆciently. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, pages 205{216, Montreal, Canada, June

1996.

[HSBM95] S. Heymann, J. A. Schenk, A. Bergholz, and B. Micheel. What else is in

a genome - minimum information, a new concept. in preparation, 1995.

154

[JGJ+95] M. Jarke, R. Gallersdoerfer, M. A. Jeusfeld, M. Staudt, and S. Eherer.

ConceptBase - a deductive object base for meta data management. Jour-

nal of Intelligent Information Systems, 4(2):167{192, 1995.

[Jun90] D. Jungnickel. Graphen, Netzwerke und Algorithmen. Wissenschaftsver-

lag, Mannheim { Wien { Z�urich, 1990.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in

strings. SIAM Journal on Computing, 6(2):323{350, 1977.

[KS95] D. Konopnicki and O. Shmueli. W3QS: A query system for the World-

Wide Web. In Proceedings of the International Conference on Very Large

Databases (VLDB), pages 54{65, Z�urich, Switzerland, September 1995.

[Kum92] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI

Magazine, 13(1):32{44, 1992.

[KV98] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and

constraint satisfaction. In Proceedings of the Symposium on Principles

of Database Systems (PODS), pages 205{213, Seattle, WA, USA, June

1998.

[KvB97] G. Kondrak and P. van Beek. A theoretical evaluation of selected back-

tracking algorithms. Arti�cial Intelligence, 89:365{387, 1997.

[KWP+91] E. A. Kabat, T. T. Wu, H. M. Perry, K. S. Gottesman, and C. Foeller. Se-

quences of Proteins of Immunological Interest. Number 91-3242. National

Institutes of Health Publications, Bethesda, MD, USA, 1991.

[Lam94] L. Lamport. LaTEX. Addison-Wesley, Reading, MA, USA, 1994.

[LL95] S. M. Lang and P. C. Lockemann. Datenbankeinsatz. Springer-Verlag,

Berlin { Heidelberg { New York, 1995.

[LMSS95] A. Y. Levy, A. M. Mendelzon, Y. Sagiv, and D. Srivastava. Answering

queries using views. In Proceedings of the Symposium on Principles of

Database Systems (PODS), pages 95{104, San Jose, CA, USA, May 1995.

[L�ow93] M. L�owe. Algebraic approach to single-pushout graph transformation.

Theoretical Computer Science, 109:181{224, 1993.

[LP85] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity

searches. Science, 227:1435{1441, 1985.

155

[LS93] A. Y. Levy and Y. Sagiv. Queries independent of updates. In Proceedings

of the International Conference on Very Large Databases (VLDB), pages

171{181, Dublin, Ireland, August 1993.

[LSS96] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A declarative

language for querying and restructuring the web. In Proceedings of the

International Workshop on Research Issues in Data Engineering (RIDE),

pages 12{21, New Orleans, LA, USA, February 1996.

[Mac77] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intel-

ligence, 8(1):99{118, 1977.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A

database management system for semistructured data. SIGMOD Record,

26(3):54{66, 1997.

[MEB88] J. Moore, A. Engelberg, and A. Bairoch. Using PC/GENE for protein

and nucleic acid analysis. Biotechniques, 6(6):566{572, 1988.

[MH86] R. Mohr and T. C. Henderson. Arc and path consistency revisited. Ar-

ti�cial Intelligence, 28:225{233, 1986.

[MMM96] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World-Wide

Web. In Proceedings of the Conference on Parallel and Distributed Infor-

mation Systems (PDIS), pages 80{91, Miami Beach, FL, USA, December

1996.

[MMM97] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World-Wide

Web. Journal of Digital Libraries, 1(1):68{88, 1997.

[MS99] T. Milo and D. Suciu. Index structures for path expressions. In Proceed-

ings of the International Conference on Database Theory (ICDT), pages

277{295, Jerusalem, Israel, January 1999.

[MW97] J. McHugh and J. Widom. Integrating dynamically-fetched external infor-

mation into a DBMS for semistructured data. SIGMOD Record, 26(4):24{

31, 1997.

[MW+98] J. McHugh, , J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Index-

ing semistructured data. Technical report, Stanford University, Stanford,

CA, USA, 1998.

156

[MW99] J. McHugh, , and J. Widom. Query optimization for XML. In Proceedings

of the International Conference on Very Large Databases (VLDB), pages

315{326, Edinburgh, Scotland, UK, September 1999.

[Nad89] B. A. Nadel. Constraint satisfaction algorithms. Computational Intelli-

gence, 5:188{224, 1989.

[NUWC97] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative

objects: Concise representations of semistructured, hierarchical data. In

Proceedings of the International Conference on Data Engineering (ICDE),

pages 79{90, Birmingham, UK, April 1997.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal

of Molecular Biology, 48:443{453, 1970.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange

across heterogenous information sources. In Proceedings of the Interna-

tional Conference on Data Engineering (ICDE), pages 251{260, Taipei,

Taiwan, March 1995.

[PL88] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence

comparision. Proceedings of the National Academy of Sciences (PNAS),

85:2444{2448, 1988.

[PR69] J. L. Pfaltz and A. Rosenfeld. Web grammars. In Proceedings of the

International Joint Conference on Arti�cial Intelligence (IJCAI), pages

609{619, Washington, DC, USA, 1969.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.

Computational Intelligence, 9(3):268{299, 1993.

[PV99] Y. Papakonstantinou and V. Vassalos. Query rewriting for semistructured

data. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 455{466, Philadelphia, PA, USA, June 1999.

[QRS+95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying

semistructured heterogeneous information. In Proceedings of the Interna-

tional Conference on Deductive and Object-Oriented Databases (DOOD),

pages 319{344, Singapore, December 1995.

[Rit94] O. Ritter. The integrated genomic database. Computational Methods in

Genome Research, pages 57{73, 1994.

157

[RLS98] J. Robie, J. Lapp, and D. Schach. XML query language (XQL). In

Proceedings of the W3C Query Languages Workshop, Boston, MA, USA,

December 1998.

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformations, volume 1. World Scienti�c, London, UK, 1997.

[RPD89] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint sat-

isfaction problems. Technical Report ACT-AI-222-89, Microelectronics

and Computer Technology Corporation, Austin, TX, USA, 1989.

[Rud98] M. Rudolf. Utilizing constraint satisfaction techniques for eÆcient graph

pattern matching. In Proceedings of the International Workshop on The-

ory and Application of Graph Transformations (TAGT), Paderborn, Ger-

many, November 1998.

[Sch97] A. Schuerr. Programmed graph replacement systems. In G. Rozenberg,

editor, Handbook of Graph Grammars and Computing by Graph Trans-

formations, volume 1. World Scienti�c, London, UK, 1997.

[SF94] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in con-

straint satisfaction. In Proceedings of the European Conference on Arti-

�cial Intelligence, pages 125{129, Amsterdam, The Netherlands, August

1994.

[SGRS95] M. Senger, K. H. Glatting, O. Ritter, and S. Suhai. X-husar, an x-based

graphical interface for the analysis of genomic sequences. Computational

Methods and Programs in Biomedicine, 46(2):131{141, 1995.

[Shm93] O. Shmueli. Equivalence of datalog queries is undecidable. Journal of

Logic Programming, 15(3):231{241, 1993.

[SLR96] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implemen-

tation of a sequence database system. In Proceedings of the International

Conference on Very Large Databases (VLDB), pages 99{110, Bombay,

India, September 1996.

[SS86] H.-J. Schek and M. H. Scholl. The relational model with relation-valued

attributes. Information Systems, 11(2):137{147, 1986.

[Sto96] M. Stonebraker. Object-Relational DBMSs: The Next Great Wave. Mor-

gan Kaufmann, San Francisco, CA, USA, 1996.

[Swi] SWI Prolog, http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

158

[SY81] Y. Sagiv and M. Yannakakis. Equivalence among relational expressions

with the union and di�erence operators. Journal of the ACM, 27(4):633{

655, 1981.

[TMD92] J. Thierry-Mieg and R. Durbin. Syntactic de�nitions for the ACEDB

data base. Technical report, MRC Laboratory for Molecular Biology,

Cambridge, UK, 1992.

[Tro92] W. T. Trotter. Combinatorics and Partially Ordered Sets. The John

Hopkins University Press, Baltimore, MD, USA, 1992.

[TYF86] T. J. Teorey, D. Yang, and J. P. Fry. A logical design methodology for

relational databases using the entity-relationship model. ACM Computing

Surveys, 18(2):197{222, 1986.

[Wie92] G. Wiederhold. Mediators in the architecture of future information sys-

tems. IEEE Computer, 25(3):38{49, 1992.

[Xml] Extensible Markup Language (XML), http://w3c.org/XML/.

[Yah] Yahoo!, http://www.yahoo.com/.

[Zlo77] M. Zloof. Query by example. IBM Systems Journal, 16(4):324{343, 1977.

[Zue93] A. Zuendorf. A heuristic for the subgraph isomorphism problem in exe-

cuting PROGRES. Technical Report AIB 93-5, RWTH Aachen, Aachen,

Germany, 1993.

159

Index

1-graph, 31{34

algebra, 28{31

relational, see relational algebra

answer, 57{59, 64, 104

to a focus query, 58

to a schema query, 57{58, 64

to a transformation query, 59

arc consistency, 90{91, 95{97, 109

backjumping, 93

con
ict-directed, 93{94

backmarking, 93

backtracking, 92{95, 115{117

chronological, see backtracking

closure

transitive, 47

completeness, 85{87

concatenation, 26

conformity, 27, 45, 48, 47{54

naive, 45, 53

consistency

arc, see arc consistency

k-, see k-consistency

node, see node consistency

consistency check, 92{95

consistency techniques, 89{91

constraint graph, 78, 90{91, 95{97

ordered, 95

Constraint Satisfaction Problem, 20, 76,

76{97, 109{111, 114{117

binary, 78

containment

predicate, see predicate containment

query, see query containment

schema, see schema containment

containment embedding, 100{103

correctness, 85{86

corresponding trail graph, 47{48, 50, 53

CSP, see Constraint Satisfaction Prob-

lem

data warehouse, 104

database, 12{20, 25, 25{26, 28, 34{38,

40, 41, 44{66, 70{72, 78{87, 96{

97, 99, 100, 102, 104, 108{113,

117{119

relational, 12{13, 15{19, 35, 44, 70,

117

DataGuide, 18, 53{54, 87

approximate, 54

Document Type De�nition, 38{39, 55,

112

domain variable, 76, 114, 115

double-pushout approach, 67

DTD, see Document Type De�nition

ECLiPSe, 114{119

empty path, 52{53

Extensible Markup Language, see XML

�rst-fail heuristic, 94{95

forward checking, 93{94

generate-and-test, 78, 91{92

160

graph

directed

labeled, 25{38, 40, 64, 112

total, 24, 47

graph isomorphism, 28, 33{34, 109{110

graph morphism, 27, 27{28, 33{34, 45,

49, 65{67

graph transformation, 18, 20, 28{31, 59,

60, 65{67, 75

Hasse diagram, 27, 94

homomorphism, 29{31, 33{34

HTML, 15, 39{40

Hypertext Markup Language, see HTML

instance, 16, 17, 45

minimal, 45

isomorphism, 30{31, 33{34

graph, see graph isomorphism

k-consistency, 91, 95

strong, 91, 95

length

of a trail, 47{49, 84, 100, 102

of a walk, 25

Lore, 18{19, 40{41, 53{54, 68, 87

Lorel, 18{19, 68{72

match, 45{46, 48, 48{52, 57{66, 78{87,

96, 98{103, 108{112, 114{119

minimal, 45{46, 52, 51{53

match function, 45, 51{52, 64, 85{87,

99{100

morphism

graph, see graph morphism

N-queens problem, 76{78, 92

node consistency, 90{91, 96{97, 109, 111

object, 25, 25{27, 38, 40{41, 44{54, 59,

64{67, 79, 85{87, 99{100, 108{

109, 113

sub-, see subobject

Object Exchange Model, see OEM

OEM, 18, 40{42, 53, 68, 72

partially ordered set, 26{27, 45

path, 25, 25{26, 47{54, 64{65, 81{85,

99, 102, 109, 111

empty, see empty path

poset, see partially ordered set

predicate containment, 99{102, 110

pushout, 31, 66

query, 14{16, 51, 57{65

focus, 58, 60{62

schema, 57{58, 60{62, 64

transformation, 59{60, 62, 65

query containment, 99, 104

relation, 31{34

product of, 31{34

relational algebra, 15{16, 61{64, 70

restructuring

of a database, 19, 60, 72

schema, 13, 16{19, 27, 41, 48, 44{53,

57{66, 78{87, 96{103, 108{112,

114{119

predicate, 45, 79{81

predicate, with variables, 46, 81{82

schema containment, 98{103, 110{112

search engine, 15

search space, 91{95, 99, 102{103

search tree, see search space

semistructured data, 13, 13{14, 16{19,

25, 26, 38{42, 50, 53{56, 64{65,

68{72, 87{88

signature, 28{31

161

single-pushout approach, 65{67

solution

to a CSP, 76

SQL, 15{16, 18, 19, 58, 59, 63, 70, 117

subalgebra, 29{31

subobject, 26, 26, 41, 51{52, 57, 58, 66,

85{87, 109

trail, 25, 25{26, 47{50, 52, 82{86, 100

atomic, 84, 85

empty, see empty path

UnQL, 18{19, 41{42, 54{55, 68, 70{72,

88

variable interpretation, 76, 78

variable ordering, 92, 94{95, 109, 111,

115

walk, 25, 25{26, 53

atomic, 25

width

of a constraint graph, 95{97

World Wide Web, 13, 15, 18{20, 42, 71

WWW, see World Wide Web

XML, 18, 38, 35{42, 55, 61, 64{65, 68,

71, 72, 88, 112{113, 117, 119

XML-QL, 71{72, 88

162

Erkl�arung

Ich erkl�are hiermit, da�

1. ich die vorliegende Dissertationsschrift \Querying Semistructured Data Based On

Schema Matching" selbst�andig und ohne unerlaubte Hilfe angefertigt habe;

2. ich mich nicht bereits anderw�arts um einen Doktorgrad beworben habe oder einen

solchen besitze;

3. mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakult�at

II der Humboldt-Universit�at zu Berlin bekannt ist.

Berlin, den 26. Mai 2000

Andr�e Bergholz

163

Curriculum Vitae

Personal Information

Name: Andr�e Bergholz

Email: bergholz@dbis.informatik.hu-berlin.de

Day of birth: March 20th, 1971

Place of birth: Berlin

Marital status: single

Professional Experience

06/98-01/00 Project work and consulting in the human-genome area (Kelman GmbH)

12/94-11/96 Freelance work as an IT-consultant (ICG mbH)

10/93-07/94 Instructor for a student's project on Computer Algebra Systems (Hum-

boldt-University Berlin)

09/91-07/92 Teacher for Computer Science (Pupil's Society for Mathematics, Berlin)

Education

01/98-03/98 Research stay at the database group of Stanford University (Lore

project)

12/96-01/00 Graduate study of Computer Science (Graduate School in \Distributed

Information Systems", Database group of Humboldt-University Berlin)

08/96 Diplom Computer Science (diploma degree; very good) from Humboldt-

University Berlin; Diploma thesis: \Search for Genetically Correlated

Protein Segments by Using a Relational Database"

07/93-09/93 Internship Bioinformatics (Max Delbr�uck Center for Molecular Medicine

Berlin Buch)

10/92-06/93 Undergraduate study of Arti�cial Intelligence Computer Science (Uni-

versity of Edinburgh, Scotland, UK); Midterm thesis: \A General Diag-

nostic Engine based on an Assumption-Based Truth-Maintenance Sys-

tem"

164

03/92 Vordiplom Computer Science (intermediate examination; good) from

Humboldt-University Berlin

11/89-04/90 Military service

09/89-08/96 Undergraduate study of Mathematics and Computer Science (Hum-

boldt-University Berlin)

07/89 Abitur (high school graduation; very good) from Heinrich-Hertz-Ober-

schule

09/85-08/89 High school (Heinrich-Hertz-Oberschule, extended secondary school

with mathematical, scienti�c, and technical pro�le), Berlin

09/77-08/85 Elementary school (Paul-Zobel-Oberschule), Berlin

Berlin, 26th May 2000

Andr�e Bergholz

165

Lebenslauf

Pers�onliche Daten

Name: Andr�e Bergholz

Email: bergholz@dbis.informatik.hu-berlin.de

Geburtsdatum: 20. M�arz 1971

Geburtsort: Berlin

Familienstand: ledig

Berufserfahrung

06/98-01/00 Industrieprojekt und Firmenberatung im Humangenom-Bereich (Kel-

man GmbH)

12/94-11/96 freiberu
iche T�atigkeit als IT-Berater (ICG mbH)

10/93-07/94 Leiter eines Projekttutoriums Computeralgebrasysteme (Humboldt-

Universit�at Berlin)

09/91-07/92 Kursleiter Informatik (Mathematische Sch�ulergesellschaft Berlin)

Ausbildung

01/98-03/98 Forschungsaufenthalt in der Datenbankgruppe der Stanford Universit�at

(Lore Projekt)

12/96-01/00 Promotionsstudium Informatik (Graduiertenkolleg
"
Verteilte Informati-

onssysteme\, Datenbankgruppe der Humboldt-Universit�at Berlin)

08/96 Diplom Informatik (sehr gut) an der Humboldt-Universit�at Berlin; Di-

plomarbeit:
"
Suche nach genetisch korrelierten Proteinabschnitten unter

Verwendung einer relationalen Datenbank\

07/93-09/93 Praktikum in Bioinformatik (Max-Delbr�uck-Centrum f�ur Molekulare

Medizin Berlin-Buch)

166

10/92-06/93 Studium der Informatik und K�unstlichen Intelligenz (University of Edin-

burgh, Scotland, UK); Projektarbeit: \A General Diagnostic Engine

based on an Assumption-Based Truth-Maintenance System"

03/92 Vordiplom Informatik (gut) an der Humboldt-Universit�at Berlin

11/89-04/90 Grundwehrdienst

09/89-08/96 Studium der Mathematik und Informatik (Humboldt-Universit�at Berlin)

07/89 Abitur (sehr gut) an der Heinrich-Hertz-Oberschule

09/85-08/89 GymnasiumHeinrich-Hertz-Oberschule, Berlin (Spezialschule mathema-

tisch-naturwissenschaftlich-technischer Richtung)

09/77-08/85 Grundschule Paul-Zobel-Oberschule, Berlin

Berlin, den 26. Mai 2000

Andr�e Bergholz

167

