Bacillariophyceae |
Asterionella formosa Hass. |
e Aulacoseira baicalensis (K. Meyer) Simonsen (=Melosira baicalensis (K. Meyer) Wisl.) |
e Aulacoseira skvortzowii Edlund, Stoermer, Taylor (=Melosira (Aulacoseira) islandica O. M#SYMBOL#ll.) |
e Cyclotella baicalensis (K. Meyer) Skv. |
e Cyclotella minuta Antip. |
e Cyclotella ornata (Skv.) Flower |
Cyclostephanus dubius (Fricke) Round. |
Navicula sp. |
Nitzschia acicularis W. Sm. |
e Stephanodiscus meyerii Genkal et Popovskaya(=S. binderanus var. baicalensis Popovskaya et Genkal) |
Synedra acus Kütz. var. acus; Synedra acus Kütz. var. radians (K#SYMBOL#tz.) Hust. |
Synedra ulna (Nitzsch.) Ehr. |
Chrysophyceae |
Chromulina sp. Cienk (calculated in the group of “small flagellata”) |
Chrysidalis sp.Schiller (in this paper Chrysidalis sp. unites some species including Chrysochromulina sp.) |
Chrysococcus spp. Klebs |
Dinobryon cylindricum var. cylindricum Imh.; Dinobryon cylindricum var. alpinum Imh. |
Dinobryon sociale Imh. |
Dinobryon elegantissimum (Kors.) Bourr. |
Mallomonas vannigera Asmund |
Pseudopedinella sp. Carter |
Pyrrophyta |
Ceratium hirundinella (O.F.M.) Bergh. |
Gymnodinium baicalense Antip. |
Glenodinium spp. Ehr. |
e Peridinium baicalensis I. Kiss. et Zwetkow |
Cryptophyta |
Cryptomonas gracilis Skuja |
Cryptomonas reflexa Marsson |
Cryptomonas ovata Ehr. |
Rhodomonas pusilla (Bachm.) Javorn. (=Chroomonas acuta Uterm.) |
Rhodomonas lens Pasch. et Ruttner (=Chroomonas sp.) |
Chlorophyta |
Coelastrum sp. Nägeli |
Coenochloris polycocca (Korsch.) Hind#SYMBOL#k, 1984 (=Sphaerocystis polycocca Korsch., Sphaerocystis schroeteri Chod.) |
Elakatothrix genevensis (Reverd.) Hind. (=E. lacustris Korschik.) |
Didymocystis sp. Koschikoff |
Kephyrion sp. Pasch. |
Koliella longiseta (Vischer) Hind. f. longiseta; K. l. f. tenuis Nygaard; K .l. f. variabilis Nygaard |
Monoraphidium contortum (Thur.) Komar.-Legner. (=Ankistrodesmus angustus Bern.) |
Monoraphidium pseudomirabile (Korsch.) Hind#SYMBOL#k et Zagorenko, 1992 (= Ankistrodesmus pseudomirabilis Korsch.) |
Monoraphidium longiusculum (Hind#SYMBOL#k) Hind#SYMBOL#k |
Tetraedron sp. Kütz. |
Cyanobacteria |
Aphanizomenon flos-aquae (L.) Ralfs |
Anabaena lemmermannii P.Richt. |
Aulosira sp.1 Kirchn. |
Cyanarcus sp.Pasch. |
Lyngbya sp. C. Agardh. ex Gom. |
Pseudanabaena sp. |
Appendix C - Tab. 2. Regression models to Fig. 32: power (y = a xb) and two first order independent decay (y = a*exp(-bx) + c*exp(-dx)) models of the decrease in the dry matter (y= g m-2) as well as of the TOC and TN percentages (y = %) and the C/N ratio (y=mol mol-1) vs. water column depth; x designates the depth in (m), r² the respective squared correlation coefficient and P the significance; the mooring was deployed in the South basin from March 2001 to July 2002.
Function (y=) |
Factors |
r² |
P |
||||
a |
b |
c |
d | ||||
dry weight |
a*xb |
299.7 |
-0.09 |
- |
- |
0.69 |
<0.01 |
P= |
<0.01 |
<0.01 | |||||
TOC |
a*exp(-bx) + c*exp(-dx) |
76.2 |
0.04 |
8.8 |
1.5 10-4 |
0.92 |
<0.01 |
P= |
0.34 |
0.11 |
<0.01 |
0.238 | |||
TN |
a*exp(-bx) + c*exp(-dx) |
1.09 |
0.02 |
1.03 |
2.2 10-4 |
0.95 |
<0.01 |
P= |
<0.01 |
<0.05 |
<0.01 |
<0.01 | |||
C/N |
a*exp(-bx) + c*exp(-dx) |
223.3 |
0.09 |
9.91 |
1 10-12 |
0.50 |
0.05 |
P= |
0.98 |
0.94 |
<0.01 |
1.00 |
Appendix C - Tab. 3. Regression models to Fig. 33: single exponential (y = a + b * exp(-x/c)), two exponential (y = a*exp(-x/b) + c*exp(-x/d)), two first order independent decay (y = a*exp(-bx) + c*exp(-dx)) models of the decrease of the distinct pigments vs. water column depth; y designate the pigment content in (µmol m-2), x the depth in (m), r² the respective squared correlation coefficient and P the significance; the mooring was deployed in the South basin from March 2001 to July 2002.
Function (y=) |
Factors |
r² |
P |
||||
a |
b |
c |
d | ||||
Chlorophyll a |
a*exp(-x/b) + c*exp(-x/d) |
115.7 |
1527 |
166.5 |
56.0 |
0.87 |
<0.01 |
P= |
<0.01 |
<0.01 |
0.082 |
0.19 | |||
Pheophorbide a |
a*exp(-x/b) + c*exp(-x/d) |
129.8 |
7580 |
1399 |
40.8 |
0.93 |
<0.01 |
P= |
<0.01 |
0.67 |
<0.01 |
<0.01 | |||
Chlorophyllide a |
a*exp(-x/b) + c*exp(-x/d) |
20.7 |
2184 |
22.7 |
101.2 |
0.72 |
<0.01 |
P= |
<0.05 |
0.24 |
0.08 |
0.42 | |||
Chlorophyll c |
a*exp(-x/b) + c*exp(-x/d) |
17.5 |
1446 |
43.4 |
74.5 |
0.97 |
<0.01 |
P= |
<0.01 |
<0.01 |
<0.01 |
<0.01 | |||
Fucoxanthin |
a*exp(-x/b) + c*exp(-x/d) |
60.4 |
1574 |
204.8 |
85.4 |
0.97 |
<0.01 |
P= |
<0.01 |
<0.05 |
<0.01 |
<0.05 | |||
Diatoxanthin |
a*exp(-x/b) + c*exp(-x/d) |
6.7 |
1179 |
25.4 |
99.0 |
0.98 |
<0.01 |
P= |
<0.01 |
<0.05 |
<0.01 |
<0.01 | |||
Alloxanthin |
a + b*exp(-x/c) |
0.6 |
23.5 |
65.7 |
- |
0.95 |
<0.01 |
P= |
<0.05 |
<0.01 |
<0.01 | ||||
Chlorophyll b |
a*exp(-x/b) + c*exp(-x/d)) |
3.2 |
2160 |
8.4 |
96.9 |
0.89 |
<0.01 |
P= |
<0.01 |
0.2 |
<0.01 |
0.08 | |||
Lutein |
a + b*exp(-x/c) |
1.0 |
7.0 |
173.7 |
- |
0.92 |
<0.01 |
P= |
<0.01 |
<0.01 |
<0.01 | ||||
Violaxanthin |
a + b*exp(-x/c) |
0.04 |
1.0 |
392.2 |
- |
0.56 |
<0.01 |
P= |
0.84 |
<0.01 |
0.19 | ||||
Zeaxanthin |
a*exp(-x/b) + c*exp(-x/d) |
4.6 |
1358 |
48. 9 |
39.1 |
0.99 |
<0.01 |
P= |
<0.01 |
<0.01 |
<0.01 |
<0.01 | |||
ß-carotene |
a*exp(-x/b) + c*exp(-x/d) |
2.6 |
1592 |
6.2 |
76.9 |
0.90 |
<0.01 |
P= |
<0.01 |
0.08 |
<0.01 |
0.08 |
Appendix C - Tab. 4. Regression models to Fig. 34: linear models for the Chla/ TOC, pheophytin a/ TOC and pyropheophytin a/ TOC ratios vs. depth (y= µmol g-1); x designates the depth in (m), r² the respective squared correlation coefficient and P the significance; the mooring was deployed in the South basin from March 2001 to July 2002.
Function (y=) |
Factors |
r² |
P |
||
a |
b | ||||
Chla / TOC |
a + bx |
7.2 |
-0.002 |
0.30 |
<0.05 |
P= |
<0.01 |
<0.05 | |||
pheophytin a/ TOC |
a + b/x |
8.3 |
-241.4 |
0.33 |
<0.05 |
P= |
<0.01 |
<0.05 | |||
pyropheophytin a/ TOC |
a + b/x |
0.43 |
-13.5 |
0.61 |
<0.01 |
P= |
<0.01 |
<0.01 |
Appendix C - Tab. 5. Regression models to Fig. 36: single exponential and two exponential models of the Chla flux (representative of all labile pigments) and TOC/DM and Chlas/DM ratios at both sites (South and North) and during both deployment periods (2001-2002 and 2002-2003); x designates the depth in (m) and r² the respective squared correlation coefficient; superscript asterisks mark the significances with * P<0.05, **P < 0.005, and *** P<0.001.
|
Function (y=) |
r2 |
South mooring 2001-2002 | ||
Chla flux (nmol m-2 d-1) |
241.076*exp(-x/1527)+346.9*exp(-x/56.0) |
0.82*** |
TOC/DM (g g-1) |
0.085*exp(-x/10166)+0.58*exp(-x/25.5) |
0.89*** |
Chlas/DM (µmol g-1) |
1.87+4.33*exp(-x/75.2) |
0.54** |
South mooring 2002-2003 | ||
Chla flux (nmol m-2 d-1) |
29,13+26941/x² |
0.38* |
TOC/DM (g g-1) |
0.085+0.063*exp(-x/277.6) |
0.22* |
Chlas/DM (µmol g-1) |
0.72+554.3/x² |
0.20* |
North mooring 2001-2002 | ||
Chla flux (nmol m-2 d-1) |
176.4*exp(-x/310.4) |
0.43* |
TOC/DM (g g-1) |
0.106*exp(-x/1105) |
0.66* |
Chlas/DM (µmol g-1) |
1.89*exp(-x/374.2) |
0.29* |
North mooring 2002-2003 | ||
Chla flux (nmol m-2 d-1) |
127.8*exp(-x/173.3) |
0.92*** |
TOC/DM (g g-1) |
0.093+0.32*exp(-x/108.6) |
0.93*** |
Chlas/DM (µmol g-1) |
6.34*exp(-x/199.2) |
0.90*** |
Appendix C - Tab. 6. Regression models to Fig. 37: linear or exponential models of pigment/TOC ratios (µmol g-1) vs. water depth in the South and North basins. Curve calculations were based on mean values of the two deployment periods to simplify the visualisation; types of models were similar for both deployment periods in the respective (South or North) basin; x designates the depth in (m) and r² the respective squared correlation coefficient; superscript asterisks mark the significances with * P<0.01, **P < 0.005, and *** P<0.001; N designate rate constant significantly (at 95 % CI) different to that of the North, idem S to South, and idem SD to Selenga Delta.
Function (y =) |
r² | ||
South mooring | |||
Pheophytin a/TOC |
5.1+(-154.2)/x |
0.43* | |
Pyropheoph.a/TOC |
0.28+(-6.42)/x |
0.43** | |
Chlc/TOC |
0.77*exp(-x/1363) |
0.63*** |
N |
Fucoxanthin/TOC |
1.56+2.31*exp(-x/257.4) |
0.53* | |
Alloxanthin/TOC |
0.037+0.28*exp(-x/171.0) |
0.78*** | |
Diatoxanthin/TOC |
0.39*exp(-x/864.4) |
0.58*** |
N |
Lutein/TOC |
0.085+0.12*exp(-x/205.7) |
0.60*** | |
Zeaxanthin/TOC |
0.12+0.19*exp(-x/344.8) |
0.77*** | |
North mooring | |||
Chla/TOC |
4.88+(-0.0048)*x |
0.56* | |
Pheophorbide a/TOC |
13.6+(-0.013)*x |
0.79*** | |
Chlas/TOC |
21.8+(-0.019)*x |
0.67* | |
Chlc/TOC |
1.20*exp(-x/171.7) |
0.99*** |
S |
Fucoxanthin/TOC |
3.73*exp(-x/253.0) |
0.98*** | |
Diatoxanthin/TOC |
0.24*exp(-x/156.8) |
0.87*** |
S |
Appendix C - Tab. 7. Regression models to Fig. 40: linear and exponential models for TOC/DM ratios (mg g-1 DM) and pigment/TOC ratios (µmol g-1) vs. depth of the oxidised layer of the surface sediment; x designates the depth in (m) and r² the respective squared correlation coefficient; superscript asterisks mark the significances with * P<0.01, **P < 0.005, and *** P<0.001; N designate rate constant significantly (at 95 % CI) different to that of the North, S to South, and SD to Selenga Delta.
Function (y =) |
r² | ||
South core | |||
TOC/DM |
34.2+(-1.10)*x |
0.76*** |
N |
Chla/TOC |
0.033+0.38*exp(-x/0.58) |
0.96*** |
N, SD |
Pheophorbide a/TOC |
0.14+1.09*exp(-x/2.02) |
0.80*** |
SD |
Pheophytin a/TOC |
0.64+(-0.036)*x |
0.75*** | |
Pyropheoph. a/TOC |
0.36+(-0.023)*x |
0.81*** | |
Chlas/TOC |
2.32*exp(-x/6.36) |
0.77*** | |
Chlb/TOC |
0.098/(1+0.098*17.7*x) |
0.77*** | |
Chlbs/TOC |
0.14+(-0.0069)*x |
0.41*** | |
Chlc/TOC |
0.0044+0.050*exp(-x/0.37) |
0.92*** |
N |
Fucoxanthin/TOC |
0.046*exp(-x/1.76)+0.31*exp(-x/0.26) |
0.99*** | |
Diadinoxanthin/TOC |
0.029*exp(-x/3.84)+0.062*exp(-x/0.026) |
0.96*** | |
Lutein/TOC |
0.0064*exp(-x/8.28) |
0.61*** |
N |
Canthaxanthin/TOC |
0.0021+(-0.00013)*x |
0.78*** | |
Function (y =) |
r² | ||
North core | |||
TOC/DM |
37.9+(-2.28)*x |
0.96*** |
S, SD |
Chla/TOC |
0.022*exp(-x/3.73) |
0.84*** |
S |
Pheophorbide a/TOC |
0.21*exp(-x/1.89) |
0.95*** |
SD |
Pheophytin a/TOC |
0.39*exp(x/4.04) |
0.96*** | |
Pyropheoph. a/TOC |
0.068*exp(-x/5.55) |
0.83*** | |
Chlas/TOC |
0.66*exp(-x/3.69) |
0.97*** |
SD |
Chlb/TOC |
0.0083*exp(-x/1.72) |
0.95*** | |
Chlbs/TOC |
0.080*exp(-x/4.59) |
0.71*** | |
Chlc/TOC |
0.017*exp(-x/2.61) |
0.94*** |
S |
Lutein/TOC |
0.0011*exp(-x/1.71) |
0.80*** |
S |
Selenga Delta core | |||
TOC/DM |
30.3+(-0.98)*x |
0.97*** |
N |
Chla/TOC |
0.15*exp(-x/5.56) |
0.81*** |
S |
Pheophorbide a/TOC |
1.03*exp(-x/5.43) |
0.83*** |
S, N |
Pheophytin a/TOC |
0.38+(-0.023)*x |
0.28*** | |
Pyropheoph. a/TOC |
0.66+(-0.035)*x |
0.44*** | |
Chlas/TOC |
2.21*exp(-x/8.22) |
0.73*** |
N |
Chlbs/TOC |
0.52*exp(-x/5.67) |
0.48*** | |
Chlc/TOC |
0.0025+(-7.5e-7)*x^3 |
0.31** | |
Fucoxanthin/TOC |
0.02*exp(-x/3.1) |
0.86*** | |
Diadinoxanthin/TOC |
(-0.00089)+0.015*exp(-x/4.5) |
0.81*** | |
Diatoxanthin/TOC |
0.0029+(-9.6e-7)*x^3 |
0.43** | |
Lutein/TOC |
0.0055+(-1.9e-6)*x^3 |
0.45*** | |
Canthaxanthin/TOC |
0.0029+(-1.3e-5)*x^2 |
0.61*** |
|
© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme. | ||
DiML DTD Version 4.0 | Zertifizierter Dokumentenserver der Humboldt-Universität zu Berlin | HTML generated: 06.10.2006 |