1 Iwamoto, HS et al.: Effects of birth-related events on blood flow distribution. Pediatr Res 1987; 22: 634-640
2 Gibson ,DL et al.: Retinopathy of prematurity-induced blindness : birth weight-specific survival and the new epidemic. Pediatrics 1990; 86: 405-412
3 Saugstad, OD : Chronic lung disease: oxygen dogma revited. Acta Paediatr 2001; 90: 113-115
4 Weinberger, B et al.: Oxygen toxicity in premature infants. Toxicol Appl Pharmacol 2002; 181:60-67
5 Harman, D : Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11 : 298-300
6 Forster, MJ et al.: Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 1996 ; 93: 4765-4769
7 Gabbita, SP et al.: Increased nuclear DNA oxidation in the brain in Alzheimers’s disease. J Neurochem 1998; 71: 2034-2040
8 Mecocci, P et al.: Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994; 36: 747-751
9 Polidori, MP et al.: Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci Lett 1999; 272: 53-56
10 Del Maestro, R et al.: Free radicals as mediators of tissue injury. Acta Physiol.Scand.Suppl. 1980; 492: 43-57
11 Jenkinson, SG: Oxygen toxicity. New Horiz 1993; 1: 504-511
12 Frank, L and Sosenko, IRS: Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: Increased susceptibility to pulmonary oxygen toxicity compared with term rabbits. Pediatr Res 1991;29: 292-296
13 Nishida, A et al .: Developmental expression of copper, zinc-superoxide dismutase in human brain by chemiluminescence. Brain Dev 1994; 16: 40-43
14 Halliwell, B and Gutteridge, JMC : Free Radicals in Biology and Medicine. Oxford University Press 1999
15 Dorey, CK et al.: Correlation of vascular permeability factor/vascular endothelial growth factor with extraretinal vascularization in the rat. Arch Ophthalmol 1996 ; 114: 1210-1217
16 Aiello, LP: Vascular endothelial growth factor and the eye. Arch Ophthalmol 1996; 114: 1252-1254
17 Blaymore-Bier, L et al.: Outcome of extremely low-birth-weight infants : 1980-1990. Acta Paediatr.1994; 83: 1244-1248
18 Hack, M et al.: Very low birth weight outcomes of the NICHD neonatal network. Pediatrics 1991; 87: 587-597
19 Emsley, HC et al.: Increased survival and deteriorating developmental outcome in 23 to 25 week old gestation infants, 1990-1994 compared to 1984-1990. Arch Dis Child Fetal Neonatal Ed. 1998; 78: F99-F104
20 Vohr, BR et al. : Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993-1994. Pediatrics 2000; 105: 1216-1226
21 Berkowitz, GS and Papiernik, E: Epidemiology of preterm birth. Epidemiol Rev 1993; 15: 414-443
22 Vexler, ZS and Ferriero, DM: Molecular and biochemical mechanismen of perinatal brain injury. Semin Neonatal 2001:6: 99-108
23 Kirpalani, H and Asztalos, E: Neonatal brain injury. Curr Opin Pediatr 2001; 13: 227-233
24 Maalouf, EF: Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001; 107: 719-727
25 Volpe, JJ: Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001; 50: 553-562
26 Collins, MP et al.: Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 2001; 50: 712-719
27 Katoh, S et al: The rescuing effect of nerve growth factor is the result of up-regulation of bcl-2 in hyperoxia-induced apoptosis of a subclone of pheochromocytoma cells, PC12h. Neurosci Lett 1997; 29: 71-74
28 Taglialatela, G et al.: Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis. Free Radic Biol Med 1998; 25: 936-942
29 Barone, FC and Feuerstein, GZ: Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 1999; 19: 819-834
30 Del Zoppo, G et al.: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol.2000; 10: 95-112
31 Stuart, M et al.: Cytokines and acute neurogegeneration. Neuroscience 2001; 2: 734-744
32 Baud, O et al.: Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. New Engl J Med 1999; 341: 1190-1196
33 Pinto-Martin, JA et al.: Cranial ultrasound prediction of disabling and nondisabling cerebral palsy at age two in a low birth weight population. Pediatrics 1995; 95: 249-254
34 Whitaker, AH: Psychiatric outcomes in low-birth-weight children at age 6 years: relation to neonatal cranial ultrasound. Arch Gen Psychiatry 1997; 54: 847-856
35 Yoon, BH et al.: Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 1997; 117: 19-26
36 Nelson, KB et al.: Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol. 1998; 44: 665-675
37 Deguch, IK et al.: Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 1997; 16: 296-300
38 Dammann, O et al.: Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm. Ment Retard Dev Disabil Res Rev 2002; 8: 46-50
39 Gomez, R et al.: Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am 1997; 11: 135-176
40 Berger, A et al.: Microbial invasion of the amniotic cavity at birth is associated with adverse short-term outcome of pretem infants. J Perinat Med 2003; 31: 115-121
41 Sonntag, J et al.: Effect of C1-inhibitor in a rat model of necrotizing enterocolitis. Biol Neonate 1999; 76: 235-241
42 Kadhim, H et al.: Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 2001; 56: 1278-1284
43 Minagawa, K et al.: Possible correlation between high levels of Il-18 in the cord blood of pre-term infants and neonatal development of periventricular leukomalacia and cerebral palsy. Cytokine 2002; 17: 164-170
44 Desmarquest, P et al.: Effect of hyperoxia on human macrophage cytokine response. Respir Med 1998; 92: 951-960
45 Barazzone, C and White, C: Mechanisms of cell injury and death in hyperoxia: role of cytokines and Bcl-2 family proteins. Am J Respir Cell Mol Bio 2000; 22: 517-519
46 Frank, L et al.: Possible mechanism for late gestational development of the antioxidant enzymes in the fetal rat lung. Biol Neonate 1996; 70: 116-127
47 Freeman, BA et al.: Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 1981; 256: 10986-10992
48 Li, N and Karin, M.: Is NF-kappa B the sensor of oxidative stress? FASEB J 1999; 13: 1137-1143
49 Baeuerle, PA et al.: Reactive oxygen intermediates as second messengers of a general pathogen response. Pathol Biol (Paris) 1996; 44: 29-35
50 Deaton, PR et al.: Hyperoxia stimulates interleukin-8 release from alveolar macrophages and U937 cells: attenuation by dexamethasone. Am J Physiol Lung Cell Mol Physiol 1994; 267: L187-L192
51 Rozycki, HJ et al.: Cytokines and oxygen radicals after hyperoxia in preterm and term alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2002; 282: L1222-L1228
52 Daemen, MA et al.: Ischemia/reperfusion-induced IFN-gamma up-regulation: involvement of IL-12 and IL-18. J Immunol 1999; 162: 5506-5510
53 Pierce, BT et al.: The effects of hypoxia and hyperoxia on fetal-placental vascular tone and inflammatory cytokine production. Am J Obstet Gynecol 2001; 185: 1068-1072
54 Dinarello, CA: Interleukin-18. Methods 1999; 19: 121-132
55 Lebel-Binay, S et al.: Interleukin-18: Biological properties and clinical implications. Eur Cytokine Netw 2000; 11: 15-26
56 Okamura, H et al.: Cloning of a new cytokine that induced IFN-γ production by T cells. Nature 1995; 378: 281-312
57 Okamura, H et al.: A novel cytokine that augment both innate and acquired immunity. Advance Immunol 1998; 70: 281-312
58 Nakanishi, K et al.: Interleukin-18 regulates both Th1 and Th2 responses. Ann Rev Immunol 2001; 19: 423-474
59 Tsutsui, H et al.: IL-18 accounts of both TNF-α and Fas ligand mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J Immunol 1997; 159: 3961-3967
60 Liu, XH et al.: Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage .. J Cereb Blood Flow Metab 1999; 19: 1099-1108
61 Wang, J and Lenardo, MJ: Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene definciencies. J Cell Sci 2000; 113: 753-757
62 Puren, AJ et al.: Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Invest 1998; 101: 711-721
63 Hedtjärn, M et al.: Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci. 2002; 22: 5910-5919
64 Ikeno, S et al.: Immature brain injury via peroxynitrite production induced by inducible nitric oxide synthase after hypoxia-ischemia in rats. J Obstet Gynaecol Res 2000 ;26: 227-234
65 Schneider, A et al.: NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999; 5: 554-559
66 Freshney, NW et al.: Interleukin-1 activates a novel protein cascade that results in the phosphorylation of hsp27. Cell 1994; 78: 1039-1049
67 Kracht, M et al.: Interleukin 1 alpha activates two forms of p54 alpha mitogen-activated protein kinase in rabbit liver. J Exp Med 1994; 180: 20017-2025
68 Bona, E et al.: Chemokine and inflammatory dell response to hypoxia-ischemia in immature rats. Pediatr Res 1999; 45: 500-509
69 Galasso, JM et al.: Monocyte chemoattractant protein-1 is a mediator of acute excitotoxic injury in neonatal rat brain. Neuroscience 2000; 101 : 737-744
70 Dao, T et al.: Interferon-gamma-inducing factor, a novel cytokine, enhances FAS ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol 1996; 173: 230-235
71 Hyodo, Y et al.: IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol 1999; 162: 1662-1668
72 Knoblach, SM and Faden, AI.: Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 1998; 153: 143-151
73 Bethea, JR et al.: Traumatic spinal cord injury induces nuclear factor-kB activation. J Neurosci. 1998; 18: 3251-3260
74 Bogdan ,C et al.: Contrasting mechanisms for suppression of macrophages cytokine release by transforming growth factor- β and interleukin-10. J Biol Chem 1992; 267: 23301-23308
75 Wang, P et al.: IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol 1994; 153: 811-816
76 Choi, DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1: 623-634
77 Bachis, A et al.: Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci 2001; 21: 3104-3112
78 Martin, DP et al.: Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988; 106: 829-844
79 Purves, D: Body and Brain: A Trophic Theory of Neural Connections (Havard Press, Cambridge, Massachusetts, 1988)
80 Cheng, Y et al.: Marked Age-dependent Neuroprotection by Brain-derived Neurotrophic Factor Against Neonatal Hypoxic-Ischemic Brain Injury. Ann Neurol 1997; 41: 521-529
81 Holtzmann, DM et al.: NGF protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 1996; 39: 114-122
82 Cheng, B et al.: Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2 + responses to AMPA and NMDA in hippocampal neurons. J Neurochem 1995; 65: 2525-2536
83 Yuan, J and Yankner, BA: Apoptosis in the nervous system. Nature 2000; 407(6805): 802-809
84 Yao, R and Cooper, GM: Regulation of the RAS signal pathway by GTPase-activating protein in PC12 cells. Oncogene 1995; 11: 1607-1614
85 Philpott, KL et al.: Activated phosphatidylinositol 3-kinase and AKT kinase promote survival of superior cervical neurons. J Cell Biol 1997; 139: 809-815
86 Datta, SR et al.: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-241
87 Du, K and Montminy, M: CREB is a regulatory target for the protein kinase AKT/PKB. J Biol Chem 1998 ;273: 32377-32379
88 Kane, LP et al.: Induction of NF-κB by the Akt/PKB kinase. Curr Biol 1999; 9: 601-604
89 Bonni, A et al.: Cell survival promoted by the RAS-MAPK signaling pathway by transcription-dependent an-independent mechanisms. Science 1999; 286: 1358-1362
90 Xia, Z et al.: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326-1331
91 Lee, R et al.: Regulation of cell survival by secreted proneurotrophins. Science 2001; 294: 1945-1948
92 Lee, FS et al.: The uniqueness of being a neurotrophin receptor. Curr Opin Neurobiol 2001 ;11: 281-286
93 Buckley, S et al.: ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2.AM J Physiol1999; L159-166
94 Dobbin, J et al.: The later growth of the brain and its vulnerability. Scientific Foundation of Pediatrics 1974: 565-577
95 Dobbin J, Sands J: Comparative aspects of the brain growth spurt. Early Hum.Dev. 1979; 3: 79-83
96 Ikonomidou, C et al.: Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J.Neurosci 1989; 9: 2809-2818
97 Bittigau, P et al.: Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 1999; 45: 724-735
98 Pohl, D et al.: N-methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing brain. Proc.Natl.Acad.Sci.USA 1999; 96: 2508-2513
99 Ikonomidou, C et al.: Blockade of NMDA receptors an apoptotic neurodegeneration in the developing brain. Science 1999; 283: 70-74
100 Ikonomidou C et al.: Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 2000; 287: 1056-1060
101 Vaux, DL et al.: Cell death in development. Cell 1999; 96: 245-254
102 Hengartner, MO: The biochemistry of apoptosis. Nature 2000; 407: 770-776
103 Burek, MJ and Oppenheim, RW: Programmed cell death in the developing nervous system. Brain Pathol 1996; 6: 427-446
104 Meier, P et al.: Apoptosis in development. Nature 2000; 407: 796-801
105 Rich, T et al.: Defying death after DNA damage. Nature 2000; 407: 777-783
106 Kerr, JFR et al.: Apoptosis: a basic biological phenomenon with wideranging implication in tissue kinetics. Br J Cancer 1972; 26: 239-257
107 Ishimaru, M et al.: Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 1999; 408: 461-476
108 Li, P at al.: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-489
109 Barinaga, M: Forcing a path to cell death. Science 1996; 273: 735-737
110 Wallach, D: Placing death under control. Nature 1997;388: 123-126
111 Nagat, S: Apoptosis by death factor. Cell 1998; 88: 355-365
112 Borovitskaya, AE et al.: Gamma-radiation-induced cell death in the fetal rat brain posseses molecular characteristics of apoptosis and is associated with specific messenger RNA elevation. Brain Res 1996; 35: 19-30
113 Mesner, P et al.: A timeable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. J Neurosci 1995; 15: 7357-7366
114 Maroto, R et al.: BCL-2 related protein expression in apoptosis: oxidative stress versus serum deprivation in PC12 cells. J.Neurochem.1997; 69: 514-523
115 Green, DR: Mitochondria and Apoptosis. Sience 1998; 281: 1309-1312
116 Eilers, A et al.: Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci 1998; 18: 1713-1724
117 Adams, JM et al.: The Bcl-2 Protein Family: Arbiters of Cell Survival. Science 1998; 281: 1322-1326
118 Thornberry, N et al.: Caspase –Enemies within. Science 1998; 281: 1312-1316
119 Chomczynski, P and Sacchi, N: Single-step method of RNA isolation by acid guanidinium-isothiocyanate-phenol-chloroform extraction. Anal Biocem 1987; 162: 156-159
120 Kaiser AD and Hogness, DS: The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol 1960; 2: 392-415
121 Lohmann, J et al.: REN display, a rapid and efficient method for nonradioactive differential display mRNA isolation. Biotechniques 1995; 18: 200-202
122 De Olmos, J et al.: An improved cupric-silver method for impregnation of axonal and terminal degeneration. Brain Res 1971; 33: 523-529
123 Cruz-Orive, LM et al.: Recent stereological methods for cell biology: a brief survey. Am J Physiol 1990; 258: L148-L156
124 Gavrieli, Y et al.: Identification of Programmed Cell Death in situ via specific labeling of nuclear DNA-Fragmentation. J Cell Biol 1992; 119: 493-501
125 Shi, SR et al.: Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 1997; 45: 327-343
126 Taylor, DL et al.: Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 1999; 9: 93-117
127 Yakovlev, AG and Faden, AI: Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 2001;24: 131-144
128 Cheema, ZF et al.: Fas/Apo [apoptosis]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J Neurosci 1999; 19: 1754-1770
129 Shimohama, S et al.: Differential expression of rat brain caspase family proteins during development and aging. Biochem Biophys Res Commun 2001; 289: 1063-1066
130 Jin, K et al.: Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab 2001; 21: 1411-1421
131 Garden, GA et al.: Caspase cascade in human immunodeficiency virus-associated neurodegeneration. J Neurosci 2002; 22: 4015-4024
132 Northington, FJ et al.: Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 2001; 21: 1931-1938
133 Jevtovic-Todorovic, V et al.: Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003; 23: 876-882
134 Bittigau, P et al.: Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci USA 2002; 99: 15089-15094
135 Gurd, JW et al.: Differential effects of hypoxia-ischemia on subunit expression and tyrosine phosphorylation at the NMDA receptor in 7- and 21-day-old rats. J Neurochem 2002; 82: 848-856
136 Mavelli, I et al.: Superoxide dismutase, glutathione peroxidase and catalane in developing rat brain. Biochem J 1982; 204: 535-540
137 Takikawa, M et al.: Temporospatial relationship between the expressions of superoxide dismutase and nitric oxide synthase in the developing human brain: immunohistochemical and immunoblotting analyses. Acta Neuropathol (Berl) 2001; 102: 572-580
138 Hoehn, T et al.: Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain .. Pediatr Res 2003; 54: 179-184
139 Mishra, OP et al.: Nitric oxide-mediated Ca2+ -influx in neuronal nuclei and cortical synaptosomes of normoxic and hyoxic newborn piglets. Neurosci Lett 2002; 318: 93-97
140 Edwards, M et al.: APE/Ref-1 responses to oxidative stress in aged rats. J Neurosci Res 1998; 54: 635-638
141 Taeusch, HW and Ballard, RA: Avery’s Diseases of the Newborn, 7th ed. Saunders, Philadelphia 1998
142 Teitel, D: Physiologic development of the cardiovascular system in the fetus. In Fetal and Neonatal Physiology (R. Polin and W. Fox, W., Eds.), pp. 609-619. Saunders, Philadelphia 1992
143 Penrice, J et al.: Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 1997; 40: 6-14
144 Robertson, NJ et al.: Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2000; 20: 1446-1456
145 Heumann, R: Neurotrophin signalling. Curr Opinion Neurobiol 1994; 4: 668-679
146 Okoye, G et al.: Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death form rhodopsin mutation or oxidative damage. J Neurosci 2003; 23: 4164-4172
147 Yamada, H et al.: Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. H. J Cell Physiol 1999; 179: 149-156
148 Lu, Y et al.: Activated Akt protects the lung from oxidant-induced injury and delays death of mice. J Exp Med 2001; 193: 545-549
149 Kornblum, HI et al.: Induction of brain derived neurotrophic factor mRNA by seizures in neonatal and juvenile rat brain. Brain Res Mol Brain Res 1997; 44: 219-228
150 Felderhoff-Mueser, U et al.: Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis 2002; 11: 231-245
151 Climent, E et al.: Ethanol exposure enhances cell death in the developing cerebral cortex: role of brain-derived neurotrophic factor and its signaling pathways. J Neurosci Res 2002; 68: 213-225
152 Han, BH and Holtzman, DM: BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via ERK pathway. J Neurosci 2000; 20: 5775-5781
153 Serpier, H et al.: Antagonistic effects of interferon-gamma and interleukin-4 on fibroblast cultures. J Invest Dermatol 1997; 109: 158-162
154 Bennett, BL et al.: Interleukin-4 suppression of tumor necrosis factor α-stimulated E-selectin gene transcription is mediated by STAT6 antagonism of NF-kB. J Biol Chem 1997; 272: 10212-10219
155 Venters, HD et al.: A new concept in neurodegeneration: TNF α is a silencer of survival signals. Trends Neurosci 2000; 23: 175-180
156 Allan, SM and Rothwell, NJ: Cytokines and acute neurodegeneration. Nat Rev Neurosci 2001; 2: 734-744
157 Botchkina, GI et al.: Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 1997; 3: 765-781
158 Knoblach, SM et al.: Early neuronal expression of tumor necrosis factor-α after experimental brain injury contributes to neurological impairment. J Neuroimmunol 1999; 95: 115-125
159 Barone, FC et al.: Tumor necrosis factor-α. A mediator of focal ischemic brain injury. Stroke 1997;28: 1233-1244
160 New, DR et al.: HIV-1 Tat induces neuronal death via tumor necrosis factor-α and activation of non-N-methyl-D-asparate receptors by a NFκB-independent mechanism. J Biol Chem 1998; 273: 17852-17858
161 Sullivan, PG et al.: Exacerbation of damage and altered NFκB activation in mice lacking tumor necrosis factor receptor after traumatic brain injury. J Neurosci 1999; 19: 6248-6256
162 Pomerantz, BJ et al.: Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc Natl Acad Sci USA 2001; 98: 2871-2876
163 McRae, A et al.: Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 1995; 84: 245-252
164 Yatsiv, I et al.: Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab 2002; 22: 971-978
165 Relton, JK and Rothwell, NJ: Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res Bull 1992; 29: 243-246
166 Loddick, SA and Rothwell, NJ: Neuroprotective effects of human recombinat interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 1996; 16: 932-940
167 Yakovlev, AG et al .: Activation of CPP32-like caspase contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 1997; 17: 7415-7424
168 Cheng, Y et al.: Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998; 101: 1992-1999
169 Hara, H et al.: Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 1997; 94: 2007-2012
170 Rabuffetti, M et al.: Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci 2000; 20: 4398-4404
171 Fink, KB et al.: Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience 1999; 94: 1213-1218
172 Schielke, GP et al.: Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 1998; 18: 180-185
173 Yrjanheikki, J et al.: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 1999; 96: 13496-13500
174 Aizawa, Y et el.: Cloning and expression of interleukin-18 binding protein. FEBS Lett 1999; 445: 338-342
175 Kim SH et al.: Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 2000; 97: 1190-1195
176 Novick, D et al.: Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 1999; 10: 127-136
177 Novick, D et al.: A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 2001; 14: 334-342
178 Reznikov, LL et al.: IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-[gamma]. Proc Natl Acad Sci USA 2000; 97: 2174-2179
179 Dinarello, CA and Fantuzzi, G: Interleukin-18 and host defense against infection. JID 2003; 187: 370-384
180 Strle, K et al.: Interleukin-10 in the brain. Crit Rev Immunol 2001;21: 427-449
181 Kelly, A et al.: The anti-inflammatory cytokine, interleukin (IL-)10, blocks the inhibitory effect of IL-1 beta on long term potentiation. A role for JNK. J Biol Chem 2001; 276: 45564-45572
182 Vitkovic, L et al.: Anti-inflammtory cytokines: expression and action in the brain. Neuroimmunomodulation 2001; 9: 295-312
183 Mattson, MP et al.: Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 1989; 9: 3728-3732
184 Schottelius, AJG et al.: Interleukin-10 signaling blocks inhibitor of kB kinase activity and nuclear factor kB DNA binding. J Biol Chem 1999; 45: 31868-31874
185 Du, Y et al.: Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci USA 1997; 94: 11657-11662
186 Tenneti, L and Lipton, SA: Involvement of activated caspase-3 like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 2000; 74: 134-142
187 Moran, J et al.: Caspase-3 expression by cerebellar granule neurons is regulated by calcium and cyclic AMP. J Neurochem 1999; 73: 568-577
188 Grilli, M et al.: Interleukin-10 modulates neuronal threshold of vulnerability to ischemic damage. Eur J Neurosci 2000; 12: 1-8
189 Bethea, JR et al.: Systemically administered interleukin-10 reduces tumor necrosis factor alpha produktion and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999; 16: 851-863
190 Di, Santo, E et al.: Systemic interleukin 10 administration inhibits brain tumor necrosis factor production in mice. Eur J Pharmacol 1997; 336: 197-202
© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme. | ||
DiML DTD Version 4.0 | Zertifizierter Dokumentenserver der Humboldt-Universität zu Berlin | HTML-Version erstellt am: 26.10.2005 |