Aus der Klinik für Neonatologie (Campus Mitte) 
der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

DISSERTATION

Verbesserung der medizinischen Versorgung und des Outcomes sehr kleiner und leichter Frühgeborener durch klinisches Benchmarking

Zur Erlangung des akademischen Grades 
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät der Charité – 
Universitätsmedizin Berlin

von

Carolin Bätzel
aus Waiblingen
Gutachter: 1. Prof. Dr. R. Wauer, Klinik für Neonatologie der Charité Berlin, Campus Mitte

2. Prof. Dr. R Schwarze, Klinik für Kinderheilkunde, Neonatologie und Intensivmedizin des Universitätsklinikum Carl-Gustav Carus an der TU Dresden

3. Prof. Dr. B. Urlesberger, Klinische Abteilung für Neonatologie der univ. Klinik für Kinder- und Jugenheilkunde in Graz

Datum der Promotion: 27. März 2006

Keywords: benchmarking, management of quality, guidelines, Vermont-Oxford-Neonatal-Netzwerk, very-low-birth-weight neonates, chronic and acute morbidity, respiratory distress syndrome, necrotising enterocolitis, bacterial infections, sepsis, respiratory interventions, feeding, management of infections, length of stay, thrombocytopenia, platelet count.

Abstract:

Abstract:
This is a benchmarking projekt between the "Berliner Klinik für Neonatologie der Charité Campus Mitte" and the "Abteilung für neonatologische Intensivmedizin der Universitätskinderklinik in Innsbruck on the basis of the Vermont-Oxford-Neonatal-Netzwerk for the years 1997 to 2001. After analysing the Outcome for each clinic, it was analysed the extern evidence through literary search in PubMed and the Cochrane Database of Systematic Reviews. Then we created a questionnaire about the clinical guidelines concerning the relevant outcome parameters. The respiratory distress syndrome, the necrotising enterocolitis and the bacterial infections were selected for the benchmarking. The analysis of the internal guidelines showed that there were differences between the two clinis in respiratory interventions, in feeding and the management of infections. The Diskussion showed that there is a need of further evidence-based research in many items.
Inhaltsverzeichnis

A  Einleitung ................................................................................................................................................. 1
A.1 Senkung der Langzeitmorbidität Frühgeborener - eine Hauptaufgabe der Neo-
natologie ..................................................................................................................................................... 1
A.2 Benchmarking - eine Methode zur Verbesserung der Prozessqualität ........................................... 3
  A.2.1 Qualitätsunterschiede als Problem in der medizinischen Versorgung ....................................... 3
  A.2.2 Grundprinzipien der Verbesserung medizinischer Qualität ......................................................... 3
  A.2.3 Methoden zur Verbesserung der Qualität in der medizinischen Versorgung .............................. 4
  A.2.4 Klinisches Benchmarking ............................................................................................................... 5
A.3 Qualitätsverbesserung und Reduktion chronischer Erkrankungen in der
  Neonatologie durch klinisches Benchmarking ......................................................................................... 7
  A.3.1 Datenerfassung in der Bundesrepublik Deutschland ....................................................................... 8
  A.3.2 Das Vermont-Oxford-Neonatal-Network (VONN) ...................................................................... 9
  A.3.3 Klinisches Benchmarking in Berlin und Innsbruck - detaillierte Beschreibung und Zielstellung der Arbeit ........................................................................................................................................ 10

B  Material und Methoden .......................................................................................................................... 12
B.1 Analyse des Outcome .......................................................................................................................... 12
  B.1.1 Datenerfassung ................................................................................................................................ 12
  B.1.2 Auswertung .................................................................................................................................... 15
  B.1.3 Definition von „Problem“- und „Exzellenz“-Parametern ................................................................. 16
B.2 Analyse von externer Evidenz ............................................................................................................. 17
B.3 Erfassung interner Handlungsrichtlinien ............................................................................................. 17
B.4 Statistik .................................................................................................................................................. 18

C  Ergebnisse I: Analyse des Outcome .................................................................................................... 20
C.1 Perinatale Parameter ........................................................................................................................... 20
  C.1.1 Patientenpopulation ....................................................................................................................... 20
  C.1.2 Perinatale Betreuung ..................................................................................................................... 22
C.2 Akute und chronische Morbidität ....................................................................................................... 25
  C.2.1 Pulmonale Morbidität ..................................................................................................................... 25
  C.2.2 Symptomatischer persistierender Ductus Arteriosus (PDA) ......................................................... 31
  C.2.3 Nekrotisierende Enterokolitis (NEC) ............................................................................................ 32
  C.2.4 Bakterielle Infektionen .................................................................................................................. 34
Abkürzungsverzeichnis

ANS: Atemnotsyndrom
APGAR-Index: Punkteschema für die Zustandsdiagnostik des Neugeborenen unmittelbar nach der Geburt: Atmung, Puls, Grundtonus, Aussehen und Reflexe
BGA: Blutgasanalyse
BPD: bronchopulmonale Dysplasie
CPAP: continuous positive airway pressure
EBM: evidenzbasierte Medizin
IQR: interquartile range, Interquartildistanz
IVH: intraventrikuläre Hämorrhagie
KI: Konfidenzintervall
MAD: mittlerer arterieller Druck
NEC: nekrotisierende Enterokolitis
Neo-CCM: Berliner Klinik für Neonatologie der Charité Campus Mitte
Neo-UKI: Innsbrucker Abteilung für Neonatologie der Universitätskinderklinik
OR: Odds Ratio
PBP: potentially-better-practice
p. c.: post conceptionem
PDA: persistierender Ductus Arteriosus
PVL: periventrikuläre Leukomalazie
ROP: Retinopathia praematorum – Neugeborenenretinopathie
RR: relatives Risiko
SD: Standardabweichung
SSA: Schwangerschaftsalter
VLBW: very low birth weight, (Neu- bzw. Frühgeborene mit einem Geburtsgewicht unter 1500 g
VONN: Vermont-Oxford-Neonatal-Network
ZVK: zentralvenöser Katheter
A Einleitung

A.1 Senkung der Langzeitmorbidität Frühgeborener - eine Hauptaufgabe der Neonatologie

Laut statistischem Bundesamt wurden 1999 etwa 50.000 Kinder in der Bundesrepublik Deutschland mit einem Geburtsgewicht unter 2500 g geboren. Da eine enge Korrelation zwischen der Schwangerschaftsdauer und der körperlichen Entwicklung des Feten beziehungsweise des Neugeborenen besteht, sind ungefähr zwei Drittel der Kinder mit einem Geburtsgewicht unter 2500 g auch Frühgeborene, das restliche Drittel sind reife, meist hypotrophe Neugeborene. Korrekterweise werden deshalb Neugeborene mit einem Geburtsgewicht unter 2500 g als untergewichtige Neugeborene bezeichnet. Je niedriger das Geburtsgewicht eines Kindes ist, desto höher ist das Risiko für Mortalität und Morbidität. Dies gilt besonders für Kinder mit einem sehr niedrigen Geburtsgewicht unter 1500 g.

Der Anteil der untergewichtigen Neugeborenen in der Gesamtpopulation stieg (bezogen auf Lebend- und Totgeborene) von 5,8 % (1990) auf 6,8 % (1999) in Deutschland an. Dabei umfassen die sehr untergewichtigen Neugeborenen (VLBW: very low birth weight, Neugeborene mit einem Geburtsgewicht kleiner als 1500 g) fast ausschließlich Frühgeborene mit einem Gestationsalter unter oder mit genau 32 Wochen. In Deutschland betrug die Rate sehr unreifer Frühgeborener (Gestationsalter unter 32 vollendeten Schwangerschaftswochen) in den 90er-Jahren des letzten Jahrhunderts zwischen 1,1 und 1,3 % (Statistisches Bundesamt), wobei laut Bartels die Zahl der Kinder mit einem Geburtsgewicht unter 1500 g zunimmt.

Bis in die achtziger Jahre war die Sterblichkeit der VLBW-Frühgeborenen ein Hauptproblem. In den letzten Jahren konnte die Sterblichkeit der VLBW-Frühgeborenen dagegen signifikant gesenkt werden, so liegt die Überlebensrate der Frühgeborenen mit einem Geburtsgewicht über 1000 g heute zwischen 94 % und 97 %, für ein Geburtsgewicht von 751 bis 1000 g bei 86 %, wogegen die Sterblichkeit der Neugeborenen mit einem Gewicht unter 751 g mit 46 % immer noch sehr hoch ist. Die Senkung der Mortalität ist hauptsächlich der Verbesserung der perinatalen und neonatalen Versorgung zu verdanken. Insbesondere in den neunziger Jahren wurden in beiden Bereichen Präventions- und Therapiestrategien entwickelt, die diese Entwicklung förderten. So führten zum Beispiel die Bildung von Perinatalzentren und die verbesserte Zusammenarbeit von Geburthilfe und Neonatologie auf der einen Seite und neue Therapiemöglichkeiten wie die pränatale Lungenreifeinduktion und die postnatale Surfactant-
therapie auf der anderen Seite zu einer signifikanten Senkung der Mortalität der VLBW-Frühgeborenen.\textsuperscript{22,57}

In Deutschland sank die neonatale Sterblichkeit in den Jahren 1990 bis 1997 um 33\% (Ostteil) bzw. 17\% (Westteil) und liegt jetzt etwa bei 5\%.\textsuperscript{39}

Daten aus den USA zeigen, dass trotz reduzierter Mortalität der VLBW die Inzidenz von akuten und chronischen Erkrankungen nicht gesenkt werden konnte. Die bronchopulmonale Dysplasie trat sogar tendenziell häufiger auf, wogegen die Inzidenz der nekrotisierenden Enterokolitis und intrakranieller Blutungen unverändert blieb.\textsuperscript{31} Die Tatsache, dass die Inzidenz chronischer Erkrankungen nicht gesunken ist, mag teilweise die gestiegene Überlebensrate der VLBWs, speziell der Babys unter 1000 g, reflektieren.\textsuperscript{31}

Auch in Kanada fanden sich ähnliche Ergebnisse: Bei Frühgeborenen mit einem Gestationsalter unter 25 Wochen fanden sich in der Studienpopulation eine hohe Inzidenz bronchopulmonaler Dysplasie (33\% - 51\%), intrakranieller Blutungen mindestens dritten Grades (0 - 16\%), nekrotisierender Enterokolitis (0 - 14\%), Neugeborenenretinopathie (27 - 55\%) und nosokomialer Infektionen (25 - 39\%).\textsuperscript{11}

Neugeborene mit einem extrem niedrigen Geburtsgewicht (unter 1000 g) zeigen eine hohe Morbidität und verbrauchen disproportional viel der neonatalen Kapazitäten, obwohl sie weniger als 1,5\% aller Geburten ausmachen.\textsuperscript{11,31,61} Die Entwicklung chronischer Erkrankungen Frühgeborener führt zu einem hohen materiellen und personellen Aufwand. Es finden sich durchschnittliche Liegezeiten bei den VLBW-Frühgeborenen von 43 bis 122 Tagen.\textsuperscript{47,61} Daten aus dem \textit{Vermont-Oxford-Neonatal-Network} zeigen, dass dies durchschnittliche Behandlungskosten von 49.457 Dollar pro Kind mit sich bringt.\textsuperscript{47} Langfristig kommt es zu erhöhten Folgekosten durch intensive Nachbetreuung und gehäufte stationäre Aufnahmen im weiteren Leben.

Somit zeigt sich, dass die akuten Erkrankungen und die Langzeitmorbidität, sowie die langen Liegezeiten der Frühgeborenen in der Neonatologie zentrale Probleme darstellen. Verbesserungen in diesem Bereich sind gefordert, können allerdings nur bedingt durch Einführung neuer Medikamente erreicht werden, so dass neue Wege zur Optimierung der Versorgung Frühgeborener erforderlich sind.
A.2 Benchmarking - eine Methode zur Verbesserung der Prozessqualität

A.2.1 Qualitätsunterschiede als Problem in der medizinischen Versorgung

Verschiedene Untersuchungen in Kanada, England und den USA zeigen, dass es deutliche Unterschiede in den medizinischen Interventionen und den sich daraus ergebenden klinischen Leistungen und Ergebnissen ansonsten vergleichbarer Zentren gibt.\textsuperscript{30,65} Diese Unterschiede in der medizinischen Praxis und den Behandlungserfolgen sind nicht nur geografisch zu finden, sondern auch innerhalb von Kliniken zwischen einzelnen Abteilungen. Entsprechende Variationen sind in beinahe jedem Bereich der medizinischen Praxis nachweisbar.\textsuperscript{8,21}

Unterschiedliche Untersuchungen zeigen, dass die Prozessqualität zwischen neonatologischen Abteilungen stark variiert und durch Qualitätsverbesserung die Inzidenz von chronischen Erkrankungen gesenkt werden kann.\textsuperscript{41,43}

Beispielsweise gibt es bei Präventionsstrategien der chronischen Lungenerkrankung Frühgeborener deutliche Unterschiede, deren Effektivität sich in der Länge des Aufenthalts im Krankenhaus oder der Gesamtdauer der Sauerstoffgabe widerspiegelt.\textsuperscript{53} Prozess- und Effektivitätsparameter, aber auch die Arbeitsweise auf den Stationen und die Führungspolitik einer Klinikleitung haben einen erheblichen Einfluss auf den Erfolg der Behandlung.\textsuperscript{40}

A.2.2 Grundprinzipien der Verbesserung medizinischer Qualität

Obwohl ein breites Spektrum an Möglichkeiten zur Verbesserung der medizinischen Qualität vorhanden ist, besteht eine große Lücke zwischen aktuellem Wissensstand und dem, was in der Praxis umgesetzt wird.\textsuperscript{29}

Um die Wirksamkeit und die Leistungsfähigkeit der medizinischen Versorgung zu verbessern, empfiehlt Roper einen vierstufigen Prozess.\textsuperscript{48}


4. In einem vierten und letzten Schritt sollen die gefundenen Ergebnisse veröffentlicht werden, um die Veränderung in der medizinischen Praxis zu fördern und umzusetzen. Die multidisziplinäre Zusammenarbeit, wie beispielsweise die verstärkte Zusammenarbeit im Team untereinander, zwischen verschiedenen Arbeitsgruppen einer Klinik oder den verschiedenen Kliniken untereinander, bringt eine messbare Verbesserung in der Qualität und eine Reduktion der Kosten der Neonatologie.

A.2.3 Methoden zur Verbesserung der Qualität in der medizinischen Versorgung

Zur Verbesserung der Qualität in der medizinischen Versorgung wurden in den letzten Jahren unterschiedliche Untersuchungen mit verschiedenen Methoden durchgeführt. Im Folgenden seien zwei wichtige Beispiele genannt:

1. Evidenzbasierte Medizin (EBM)


2. Rapid Cycle Improvement

Eine weitere Methode ist die Verbesserung der Qualität durch „rapid-cycles“. Zuerst wird das Ziel festgelegt, z. B. die Reduktion der Inzidenz des Atemnotsyndroms um 50 % bei Frühgeborenen mit einem Geburtsgewicht von 501 bis 1500 g. Im nächsten Schritt wird die Meßgröße definiert: die Inzidenz des Atemnotsyndroms. Anschließend wird der Lernzyklus erstellt: Welche Veränderungen sind erforderlich beziehungsweise nötig, um das Ergebnis zu

A.2.4 Klinisches Benchmarking


1. Planung

In der Plan-Phase wird zunächst ausfindig gemacht, welche Maße und welche Prozesse gemessen und verglichen werden sollen. In dieser Phase ist ein reger Austausch zwischen den
am Benchmarking teilnehmenden Krankenhäusern erwünscht. Aus jeder Benchmarking-Einheit sollten je ein oder zwei Personen zu regelmäßigen Besuchen und Hospitationen zusammenkommen.

2. Analyse

In der Analyse-Phase wird jede Einheit ihre Schlüsselprozesse und Maße identifizieren, die für sie relevanten Prozesse definieren, und ihre Kriterien für die Auswahl der Daten festlegen. Als letzten Schritt in dieser Phase werden die Daten gesammelt und analysiert. Um dies sinnvoll durchführen zu können, müssen die teilnehmenden Gruppen jeweils ihre Prozesse sehr genau und detailliert definieren und die Daten zum Vergleich sammeln.

3. Entdeckung (Aufdeckung von Defiziten und guten Leistungen)

In dieser Phase werden die Prozesse und Leistungen unter den Benchmarking-Teilnehmern verglichen. Nachdem die Daten zuvor gesammelt wurden, treffen sich die Repräsentanten jeder am Benchmarking teilnehmenden Klinik, um die Daten, Prozesse und Messungen zu vergleichen. Durch diesen Vergleich kann jedes Krankenhaus erkennen, wo seine spezifischen Leistungslücken liegen und kann gleichzeitig identifizieren, welches die besten Praktiken sind.

4. Ausführung

Diese Phase ist eine sehr entscheidende Phase für den Erfolg des Benchmarking. Jede medizinische Einheit muss bestimmte Ziele für Qualitätsverbesserung festsetzen, z. B. Reduktion der Hypothermie-Rate Neugeborener im Kreissaal auf unter 40 %. Nachdem das Ziel festgelegt wurde, kann ein Ausführungsplan erstellt werden. Dieser Plan sollte auf den Praktiken basieren, die als beste Praktiken zum gewünschten Ziel führen, so genannten „potentially better practices“ (PBP). Im oben genannten Fall waren dies z. B. die Einführung einer neuen chemischen Wärmematratze sowie die Schulung des Personals zur Thermoregulation des Neugeborenen und in der Anwendung dieser Matratze direkt auf der Entbindungsstation.35

5. Monitoring - Überwachung


Im Gegensatz zu dem Rapid Cycle Improvement liegen die Vorteile des Benchmarking in der Verbindung interner klinischer Expertisen mit dem externen Vergleich. Durch den zusätzlichen

Die Nachteile dieser Methode liegen in der großen Datenmenge, die bearbeitet und analysiert werden muss. Dies bringt einen höheren Zeitaufwand (als z. B. die *Rapid-Cycles*) mit sich und es verstreicht somit häufig viel Zeit, bis es schließlich zu Veränderungen kommen kann.

### A.3 Qualitätsverbesserung und Reduktion chronischer Erkrankungen in der Neonatologie durch klinisches Benchmarking


Überblicke (Reviews), Benchmarking-Besuche und Veränderungszyklen zurückgeführt.28 Auch auf dem Gebiet der intrakraniellen Blutungen bei Frühgeborenen ließ sich zeigen, dass die Zusammenarbeit mit Benchmarking-Gruppen zu einer Reduktion der intrakraniellen Blutungen führte. Die Teams analysierten ihre klinischen Praktiken, evaluierten diese anhand der aktuellen Forschungsliteratur und entwickelten 10 PBP-Leitlinien. Nach Einführung dieser PBPs konnte die Inzidenz der intrakraniellen Blutungen gesenkt und die Reliabilität der Interpretation von Schädelsonogrammen verbessert werden.10

A.3.1 Datenerfassung in der Bundesrepublik Deutschland

Beim heutigen Entwicklungsstand der neonatologischen Versorgung besitzt die stets auch reifeabhängige Morbidität und Letalität bestimmter Erkrankungsgruppen eine herausragende strategische Bedeutung für die Organisation der perinatologischen Versorgung. Gleichzeitig stellen diese Daten eine wichtige Voraussetzung dar, um die verfügbaren Ressourcen für Forschung und Entwicklung zielgerichtet und effektiv einzusetzen.

Im Kontrast zu diesem seit Jahren bestehendem Bedarf sind in Deutschland landesweit gültige und valide epidemiologische Daten zur Mortalität und Letalität bisher lediglich für bestimmte Bevölkerungsgruppen verfügbar. Es gibt in Deutschland keine umfassende flächendeckende Erhebung von neonatalen Erkrankungen und Fehlbildungen. In der Regel ist man immer noch auf Morbiditätsstatistiken größerer Einrichtungen angewiesen, die zur Kompensation von Schwankungen im Patientenaufkommen die Patienten über mehrere Jahre poolen.

Eine weitere Quelle sind die Perinatal- (seit 1989 in § 137 SGB V in der BRD gesetzlich verankert) und die Neonatalerhebungen der Bundesländer, die als Qualitätssicherungsmaßnahme (1988 Verankerung der Verpflichtung der Ärzte zur Qualitätssicherung in der Berufsordnung durch den Deutschen Ärztetag; Qualitätssicherung ist seit 1.1.1993 im Gesundheitsstrukturgesetz gesetzlich festgeschrieben) über die jeweiligen Landesärztekammern organisiert werden. Das Datenmaterial bezieht sich auf die Gesamtzahl aller Geburten in der Bundesrepublik. Leider ist es bisher landesweit nicht gelungen, die Perinatalerhebung mit der Neonatalerhebung (erfasst werden nur die bis zum 10. Lebenstag erkrankten und stationär aufgenommenen Neugeborenen) der Bundesländer zusammenzuführen. Letztere kann als größte deutsche neonatale Datensammlung angesehen werden.71 Die Daten der Neonatalerhebung sind jeodch, wegen der unterschiedlichen Bezugsgröße (Gestationsalter), nicht direkt mit den Daten des VONN (Geburtsgewicht) vergleichbar.

Seite 8
A.3.2 Das *Vermont-Oxford-Neonatal-Network* (VONN)


Die Daten werden im Rahmen verschiedener Programme ausgewertet und schon seit geraumer Zeit für Benchmarking-Vergleiche im amerikanischen Raum genutzt, während die Daten in der Bundesrepublik Deutschland noch selten verwendet werden.

Ziel der Datenerfassung ist die Qualitätssicherung. Erfasst werden 45 Eckdaten von der Pränatalzeit bis zur Entlassung, die zu unterschiedlichen Zeitpunkten erhoben werden.

Es erfolgt eine komplette Datenerhebung aller Frühgeborener unter 1500 g. Falls diese Kinder bereits im Kreissaal versterben, wird ein gesondertes Formblatt ausgefüllt (siehe im Anhang *delivery room death booklet*). Die Datenerhebung beginnt bei Aufnahme der Kinder auf der Station, am 28. Lebenstag erfolgt die Information an die Zentrale des *Vermont-Oxford-Neonatal-Network* mittels speziellem Aufnahmebogen (siehe Anhang). Dieser umfaßt neben den Perinataldaten wie Gewicht und APGAR-Index auch Daten zum Schwangerschaftsverlauf. Ein weiterer Datenbogen wird unmittelbar nach Entlassung ausgefüllt und verschickt. Außerdem erfolgt die Erfassung eines Patiententransfers oder einer Wiederaufnahme durch ein gesondertes Formblatt.


entsprechend der Ausstattung möglich. Die Angabe der Daten erfolgt in Bezug auf das Geburtsgewicht.

Im Rahmen des jährlichen Treffens der Mitglieder des VONN werden Projekte zum Benchmarking vorgestellt, ausgewertet und Probleme besprochen. Die Datenbank liefert den teilnehmenden Zentren einmalige und zuverlässige Daten zur Nutzung im Qualitätsmanagement, in der Prozessentwicklung und der internen Evaluation.

**A.3.3 Klinisches Benchmarking in Berlin und Innsbruck - detaillierte Beschreibung und Zielstellung der Arbeit**


1. Analyse des Outcome

Ziel des Vergleiches ist es zunächst, für jede Klinik „Exzellenz“- bzw. „Problem“-Parameter zu definieren, das heißt Bereiche, in der die jeweilige Klinik außerhalb der IQR des VONN liegt. Im nächsten Schritt soll der Vergleich beider Kliniken die jeweilige Stärke beziehungsweise Schwäche einer Klinik im Vergleich zu der anderen zeigen.

2. Analyse von Literatur und evidenzbasierten Richtlinien (externe Evidenz)

Basierend auf den „Problem“- beziehungsweise „Exzellenz“-Feldern wird die Literatur bezüglich Therapie und Präventionsstrategien analysiert. Von Interesse sind hier klinische Parameter und Interventionen, welche die Outcome-Parameter beeinflussen.

3. Erfassung interner Handlungsrichtlinien

Auf Basis der externen Evidenz wird ein Fragebogen entworfen, der die Handlungsrichtlinien der jeweiligen Klinik (während der analysierten Jahre) erfasst und untereinander vergleicht.
4. Ausblick

Die vorliegende Arbeit bietet die Grundlage, in weiteren Schritten gemeinsame Handlungsrichtlinien, basierend auf internen Therapierichtlinien und externer Evidenz, zu entwickeln. Diese Handlungsrichtlinien sollen durch eine verbesserte Qualität in der Betreuung Frühgeborener zu einer Senkung der Inzidenz chronischer Erkrankungen Frühgeborener, einer Verkürzung der Liegedauer und einer Senkung der Kosten führen.

B Material und Methoden

B.1 Analyse des Outcome

B.1.1 Datenerfassung

B.1.1.1 Patientendatenbögen des VONN

Vom VONN sind zwei Bögen zur Datenerfassung vorgegeben, Bogen 1 (*delivery room death booklet*) wird verwendet, wenn das VLBW-Frühgeborene innerhalb der ersten 12 Stunden ver stirbt und erfragt Patientenidentifikationsdaten und einige Interventionen im Kreissaal. Er stellt im Großen und Ganzen eine verkürzte Version des zweiten Bogens (*patient data booklet*) dar, welcher Daten zu folgenden Eckpunkten erfasst:

- Patientenidentifikationsdaten
- Status am 28. Lebenstag
- Entlassungsstatus
  1. Interventionen, die während des Aufenthaltes auf Station durchgeführt wurden
  2. Diagnosen
  3. Entlassung
- Verlegungen
- Wiederaufnahmen
- Gesamtliegedauer

Die erhobenen Daten werden vom VONN ausgewertet. Es werden für die Gesamtpopulation des VONN für die Gesamtgewichtsgruppe (501 bis 1500 g) sowie für die einzelnen Gewichtsgruppen (501 bis 750 g, 751 bis 1000 g, 1001 bis 1250 g und 1251 bis 1500 g) jeweils für die einzelnen Parameter der Durchschnitt und die Interquartildistanz (25. und 75. Perzentil) bestimmt. Jede Klinik erhält zusätzlich noch für die jeweiligen Parameter die Ergebnisse ihrer Klinik (Inzidenz in Prozent und Perzentilrang). Die Perzentilen und die Interquartildistanz werden für jedes Jahr und jede Klinik vom VONN in der jährlichen Analyse berechnet.
### B.1.1.2 Erfassung der Daten des *Vermont-Oxford-Neonatal-Networks*

Im Rahmen der vorliegenden Arbeit wurden die Daten des VONN für die Jahre 1997 bis 2001 für die Gesamtpopulation, die Neo-CCM und die Neo-UKI (erst seit 1998 Teilnehmer des VONN) in folgenden Bereichen erfasst (detaillierte Beschreibung der einzelnen Parametern siehe Tabelle 2):

- Charakteristik der Patientenpopulation
- Kreißsaalinterventionen
- respiratorisches *Outcome* und Interventionen
- sonstiges *Outcome* und Interventionen
- Entlassungsstatus
- Liegedauer
- Gewicht

Es wurde für die Gesamtpopulation (501 g bis 1500 g) und die einzelnen Gewichtsgruppen (501 bis 750 g, 751 bis 1000 g, 1001 bis 1250 g und 1251 bis 1500 g) jeweils pro Jahr für die in Tabelle 1 aufgezählten Parameter folgende Werte erhoben: der Median, das 25. und 75. Perzentil des VONN, sowie die Inzidenz und der Perzentilrang für die beiden Kliniken, Neo-UKI und Neo-CCM (Beispiel siehe Tabelle 1).

### Tabelle 1: Erfassung der Daten des *Vermont-Oxford-Neonatal-Networks* – Daten für das Beispiel Atemnotsyndrom (ANS) für das Jahr 1999 in der Gewichtsgruppe 501 bis 1500 g

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VONN</th>
<th>Neo-CCM</th>
<th>Neo-UKI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>25. Perzentil</td>
<td>75. Perzentil</td>
</tr>
<tr>
<td>ANS</td>
<td>69 %</td>
<td>61 %</td>
<td>79 %</td>
</tr>
</tbody>
</table>
Tabelle 2: Erfassung der Daten des VONN: detaillierte Beschreibung der einzelnen Parameter, welche erfasst wurden

<table>
<thead>
<tr>
<th>Charakteristik der Patientenpopulation</th>
<th>Kreißsaalinterventionen</th>
<th>Entlassungsstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Anzahl der VLBWs pro Gewichtsklasse</td>
<td>- Sauerstoffgabe</td>
<td>- Status und Aufenthaltsort</td>
</tr>
<tr>
<td>- Geburtsort (in- oder outborn)</td>
<td>- Maskenbeatmung</td>
<td>- Entlassungsstatus und Zielort</td>
</tr>
<tr>
<td>- Geschlecht</td>
<td>- Intubation</td>
<td>- Verlegungsstatus</td>
</tr>
<tr>
<td>- pränatale Versorgung</td>
<td>- Herzdrukmassage</td>
<td>- Verlegungsgrund</td>
</tr>
<tr>
<td>- Gabe von antenatalen Steroiden</td>
<td>- Adrenalingabe</td>
<td>- Tod</td>
</tr>
<tr>
<td>- Kaiserschnitte</td>
<td>- Surfactangabe</td>
<td>- Liegedauer bis Entlassung nach Hause</td>
</tr>
<tr>
<td>- small for gestational age VLBWs</td>
<td></td>
<td>- Liegedauer bis Verlegung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Liegedauer bis Versterben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>respiratorisches Outcome und Interventionen</th>
<th>sonstiges Outcome und Interventionen</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Atemnotsyndrom</td>
<td>- symptomaticer Ductus Arteriosus</td>
<td>- Geburtsgewicht</td>
</tr>
<tr>
<td>- Pneumothorax</td>
<td>- Ductus mit Indomethacingabe</td>
<td>- bis Entlassung</td>
</tr>
<tr>
<td>- verschiedene Beatmungsarten</td>
<td>- nekrotisierende Enterokolitis</td>
<td>- bis Verlegung in ein anderes Krankenhaus</td>
</tr>
<tr>
<td>- Surfactantgabe</td>
<td>- gastrointestinal Perforation</td>
<td>- bei Versterben</td>
</tr>
<tr>
<td>- bronchopulmonale Dysplasie</td>
<td>- bakterielle und fungale Infektionen</td>
<td></td>
</tr>
<tr>
<td>- Gabe von antenatalen Steroiden</td>
<td>- intraventrikuläre Hämorrhagie</td>
<td></td>
</tr>
<tr>
<td>- Entlassung nach Hause am Monitor</td>
<td>- zystische periventrikuläre Leukomalazie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Neugeborenenretinopathie</td>
<td></td>
</tr>
</tbody>
</table>
B.1.2 Auswertung

Tabelle 3: Parameter mit klinischer Relevanz, welche für die Neo-CCM und die Neo-UKI ausgewertet wurden

<table>
<thead>
<tr>
<th>perinatale Parameter</th>
<th>sonstige akute und chronische Morbidität</th>
<th>zusätzliche Auswertung in den vier Gewichtsgruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Patientenzahl der Gesamtgruppe und der Gewichtsuntergruppen</td>
<td>- symptomatischer persistierender Ductus Arteriosus</td>
<td>- Anzahl der Patienten mit dem Anteil männlicher VLBWs</td>
</tr>
<tr>
<td>- prozentualer Anteil männlicher Neugeborener</td>
<td>- nekrotisierende Enterokolitis</td>
<td>- prozentualer Anteil von Klinikgeburten</td>
</tr>
<tr>
<td>- Anteil der im Krankenhaus geborenen Kinder <em>(inborn)</em></td>
<td>- bakterielle Infektionen (Früh- und Spätsepsis)</td>
<td>- Gabe von antenatalen Steroiden</td>
</tr>
<tr>
<td>- erhaltene Schwangerenvorsorge</td>
<td>- Neugeborenenretinopathie</td>
<td>- Atemnotsyndrom</td>
</tr>
<tr>
<td>- Gabe von antenatalen Steroiden</td>
<td>- intraventrikuläre Hämorrhagie</td>
<td>- bronchopulmonale Dysplasie</td>
</tr>
<tr>
<td>- Kaiserschnitte</td>
<td>- periventrikuläre Leukomalazie</td>
<td>- persistierender Ductus Arteriosus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nekrotisierende Enterokolitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- bakterielle Früh- und Spätsepsis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- periventrikuläre Leukomalazie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mortalität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Liegedauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pulmonale Morbidität</th>
<th>Mortalität</th>
<th>Liegedauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Atemnotsyndrom</td>
<td>- neonatale Mortalität</td>
<td>- Liegedauer bis zu Entlassung nach Hause</td>
</tr>
<tr>
<td>- bronchopulmonale Dysplasie <em>(Sauerstoff am 28. Lebenstag)</em></td>
<td>- stationäre Mortalität</td>
<td></td>
</tr>
<tr>
<td>- bronchopulmonale Dysplasie <em>(Sauerstoff in der 36. SSW p. c.)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pneumothorax</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Im Rahmen der vorliegenden Arbeit wurden aus den erfassten Daten (Tabelle 1) entsprechend der klinischen Relevanz die in Tabelle 3 aufgezeigten Parameter ausgewählt und im einzelnen für die Neo-CCM und die Neo-UKI ausgewertet. Dabei erfolgte für einige Parameter zusätzlich noch eine Unterteilung in Gewichtsgruppen. Dargestellt wurden für die Parameter die Häufigkeiten pro Jahr und Gewichtsgruppe anhand von Tabellen beziehungsweise Schaubildern. Daraufhin wurde zunächst der Verlauf der Werte über die untersuchten Jahre für die Gesamtpopulation des VONN, die Neo-CCM und die Neo-UKI untersucht. Dabei wurde betrachtet, ob die beiden Kliniken innerhalb oder außerhalb der IQR des VONN lagen. Anschließend erfolgte ein Vergleich zwischen den Kliniken.

Der Median und die Interquartildistanz der Gesamtpopulation des VONN sind mit dem jeweiligen *Outcome* der beiden Kliniken Innsbruck und Berlin für die einzelnen Parameter in Diagrammen grafisch dargestellt. Wurde eine Analyse der einzelnen Gewichtsgruppen
vorgenommen, so bezieht sich der jeweilige Prozentwert in dieser Gewichtsgruppe auf den Anteil der VLBW-Frühgeborenen aus dieser Gruppe.

B.1.3 Definition von „Problem“- und „Exzellenz“-Parametern

Als „Problem“- und „Exzellenz“-Parameter wurden Ergebnisse definiert, welche außerhalb der Interquartildistanz des VONN lagen, das heißt die Perzentilränge waren entweder im „Problem“- oder „Exzellenz“-Bereich.


Bei dem Parameter Kaiserschnitt konnte aufgrund der unklaren Datenlage nicht entschieden werden, ob eine hohe Rate von Vorteil oder von Nachteil ist.

Es fanden sich für die Neo-CCM im Vergleich zum VONN folgende „Problem“-Parameter: die bakteriellen Infektionen (Frühsepsis) und die periventrikuläre Leukomalazie. Als „Exzellenz“-Parameter konnten folgende gefunden werden: Die Inborn-Rate (Kinder, welche im jeweiligen Krankenhaus geboren wurden, die Schwangerenvorsorge, die komplette Gabe von antenatalen Steroiden und das Atemnotsyndrom. Des Weiteren lag die Rate an Kaiserschnitten oberhalb der IQR, wobei offen ist, ob das als „Exzellenz“- oder „Problem“-Parameter zu beurteilen ist.

Die Innsbrucker Abteilung für Neonatologie zeigte ebenfalls Ergebnisse im „Exzellenz“-Bereich bei der Inborn-Rate, der Schwangerenvorsorge und der Gabe von antenatalen Steroiden. Auch hier lag die Rate an Kaiserschnitten oberhalb der IQR. Dagegen wurden als „Problem“-Parameter in Innsbruck folgende gefunden: das Atemnotsyndrom, der persistierende Ductus Arteriosus, die nekrotisierende Enterokolitis, bakterielle Infektionen und die periventrikuläre Leukomalazie.

Im darauf folgenden Schritt wurden die Neo-CCM und die Neo-UKI betreffend „Problem“- und „Exzellenz“-Parameter verglichen. Es ergaben sich relevante Unterschiede („Problem“-gegenüber „Exzellenz“-Parameter oder „Problem“-Parameter gegenüber einem Outcome im Bereich der IQR des VONN) zwischen den beiden Kliniken für die Bereiche Atemnotsyndrom und nekrotisierende Enterokolitis.
B.2 Analyse von externer Evidenz


In einem ersten Schritt wurde in PubMed unter „very low birth weight infants (VLBW)“ und „newborn“ nach klinischen Studien, Metaanalysen, praktischen Handlungsrichtlinien und randomisiert-kontrollierten Studien unter den folgenden Stichwörtern und Risikofaktoren (risk factors) gesucht:

- acute and chronic lung disease; chronic lung disease (CLD); respiratory distress syndrome (RDS); pulmonary function; neonatal ventilation.
- infections; bacterial infection; sepsis; late-onset and early-onset sepsis; nosocomial infection; infection management.
- nutrition; feeding practices; enteral and parenteral feeding; chronic diseases of the gastrointestinal tract; necrotising enterocolitis.

In einem zweiten Schritt mit denselben Stichwörtern nach relevanten Einflussgrößen auf die genannten Parameter in der Cochrane-Datenbank für systematische Reviews und das Cochrane-Zentral-Register für kontrollierte Studien gesucht.

B.3 Erfassung interner Handlungsrichtlinien

Anhand der gefundenen externen Evidenz wurde ein Fragebogen entworfen, welcher gezielt Handlungsstrategien, Handlungsrichtlinien und Prozessverläufe der interessierenden Outcome-Parameter erfragt. Dazu wurde die oben genannte Literatur auf Faktoren und Unterschiede im Management der Versorgung kleiner Frühgeborener untersucht. Es wurde speziell nach Faktoren gesucht, die durch Prozesse und bestimmte Handlungsrichtlinien einen Einfluss auf das Outcome in den definierten „Problem“- und „Exzellenz“-Parametern haben könnten.

Die gefundenen Einflussfaktoren ergaben die Grundlage für die im Fragebogen behandelten Punkte. Dabei wurde im Speziellen auf Handlungsrichtlinien mit den Themenkomplexen Blut und Blutgase, Nahrung und Ernährung, sowie Infektionen (Infektionsmanagement und Prophylaxe von Infektionen) eingegangen. Der Themenkomplex Blut und Blutgase beinhaltet Fragen aus den Bereichen Bluttransfusionen (Thrombozytenkonzentrate), Blutdruck, Blutgase und Blutgasüberwachung. Der Fragenteil Nahrung und Ernährung beinhaltet die Themenbereiche Mutter- und Spendermilch, Ernahrungsregime, Magensonde und Prophylaxe von
Krankheiten des Magen-Darm-Traktes. Der letzte Teil des Fragebogens beschäftigt sich mit Handlungsrichtlinien aus den Bereichen Blutkulturabnahmen, zentrale Zugänge und Blasenkatheter.


B.4 Statistik

Es erfolgte ein deskriptiver Vergleich der Häufigkeiten und des Perzentilranges ausgewählter Parameter für die Neo-CCM in der Datenbank des VONN für die Jahre 1997 bis 2001. Dabei wurde betrachtet, ob die Neo-CCM außerhalb oder innerhalb der IQR des VONN lag. Somit wurde für die Parameter die jeweilige Lage im „Exzellenz“-, IQR- oder „Problem“-Bereich definiert. Dasselbe Verfahren wurde für die Neo-UKI durchgeführt.

C Ergebnisse I: Analyse des Outcome

C.1 Perinatale Parameter

C.1.1 Patientenpopulation

C.1.1.1 Anzahl der Frühgeborenen und Verteilung der Gewichtsgruppen


In der Neo-CCM wurden von 1997 bis 2001 pro Jahr zwischen 68 und 75 Neugeborene mit einem Geburtsgewicht unter 1500 g in die Datenbank aufgenommen. Bezogen auf die einzelnen Gewichtsgruppen waren das pro Jahr im Durchschnitt 11 Frühgeborene mit einem Geburtsgewicht von 501 bis 750 g, 17 Frühgeborene mit 751 bis 1000 g und 19 Frühgeborene in der Gewichtsgruppe 1001 bis 1250 g. Am größten war die Gruppe der VLBW-Frühgeborenen mit einem Geburtsgewicht von 1251 bis 1500 g. In dieser Gewichtsgruppe wurden im Durchschnitt 23 Kinder pro Jahr geboren.

Im direkten Vergleich der beiden Kliniken findet sich kein signifikanter Unterschied in der Anzahl der Patienten der einzelnen Gewichtsgruppen (p = 0,344) und es zeigt sich, dass die beiden Neonatologien vergleichbare Patientenpopulationen haben [Tabelle 4].

C.1.1.2 Geschlechterverteilung

Die Neo-UKI nimmt seit 1998 an der Datenerfassung des VONN teil. In den ausgewerteten Jahren 1998 bis 2001 kamen dort pro Jahr durchschnittlich zwischen 49 und 74 VLBW-Frühgeborene auf die Welt. Im Durchschnitt waren dies 10 Frühgeborene in der Gewichtsgruppe 501 bis 750 g, 12 Frühgeborene in der Gruppe der 751 bis 1000 g, 18 zwischen 1001 bis 1250 g und 24 zwischen 1251 bis 1500 g.

Im direkten Vergleich der beiden Kliniken findet sich kein signifikanter Unterschied in der Anzahl der Patienten der einzelnen Gewichtsgruppen (p = 0,344) und es zeigt sich, dass die beiden Neonatologien vergleichbare Patientenpopulationen haben [Tabelle 4].
Gesamtpopulation, im Durchschnitt 51 % männliche Frühgeborene. Der Unterschied in der Geschlechterverteilung zwischen den beiden Kliniken ist jedoch statistisch nicht signifikant (p = 0,116).

Tabelle 4: Anzahl der Frühgeborenen pro Jahr und Gewichtsgruppe und prozentualer Anteil an männlichen Frühgeborenen in der Gesamtpopulation des VONN, in Berlin (CCM) und in Innsbruck (UKI) dargestellt für die untersuchten Jahre 1997 bis 2001. Der Unterschied zwischen den beiden Kliniken CCM und UKI ist in beiden Fällen nicht signifikant (Anzahl der Frühgeborenen p = 0,344; Anteil an männlichen Frühgeborenen p = 0,116).

Tabelle 5: Prozentualer Anteil der Mütter mit Schwangerenvorsorge in der Gesamtpopulation des VONN, in Berlin (Neo-CCM) und in Innsbruck (Neo-UKI) in den Jahren 1997 bis 2001. Der Unterschied zwischen den beiden Kliniken Neo-CCM und Neo-UKI ist nicht signifikant (p = 0,239).

<table>
<thead>
<tr>
<th>Gewichtsgruppe</th>
<th>Jahr</th>
<th>Absolute Anzahl</th>
<th>Anteil männlich [%]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VONN CCM UKI</td>
<td>VONN CCM UKI</td>
<td></td>
</tr>
<tr>
<td>501 - 1500 g</td>
<td>1997</td>
<td>19581 68 / 52</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>23533 75 / 51</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>26007 72 / 51</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>29177 68 / 52</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>30032 68 / 52</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>501 - 750 g</td>
<td>1997</td>
<td>3991 14 / 51</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>4634 8 / 49</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>5207 15 / 50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>5752 13 / 49</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>5868 7 / 51</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>751 - 1000 g</td>
<td>1997</td>
<td>4687 18 / 52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>5626 17 / 53</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>6231 19 / 52</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6947 17 / 52</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>6969 14 / 52</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>1001 - 1250 g</td>
<td>1997</td>
<td>5086 10 / 51</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>6043 27 / 51</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>6689 19 / 52</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>7474 20 / 52</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>7833 18 / 51</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>1251 - 1500 g</td>
<td>1997</td>
<td>5817 26 / 53</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>7210 23 / 51</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>7880 19 / 51</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>9004 18 / 53</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>9362 29 / 52</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>501 - 750 g</td>
<td>1997</td>
<td>3991 14 / 51</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>4634 8 / 49</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>5207 15 / 50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>5752 13 / 49</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>5868 7 / 51</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>751 - 1000 g</td>
<td>1997</td>
<td>4687 18 / 52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>5626 17 / 53</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>6231 19 / 52</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6947 17 / 52</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>6969 14 / 52</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>1001 - 1250 g</td>
<td>1997</td>
<td>5086 10 / 51</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>6043 27 / 51</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>6689 19 / 52</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>7474 20 / 52</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>7833 18 / 51</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>1251 - 1500 g</td>
<td>1997</td>
<td>5817 26 / 53</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>7210 23 / 51</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>7880 19 / 51</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>9004 18 / 53</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>9362 29 / 52</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>501 - 750 g</td>
<td>1997</td>
<td>3991 14 / 51</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>4634 8 / 49</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>5207 15 / 50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>5752 13 / 49</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>5868 7 / 51</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>751 - 1000 g</td>
<td>1997</td>
<td>4687 18 / 52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>5626 17 / 53</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>6231 19 / 52</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6947 17 / 52</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>6969 14 / 52</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>1001 - 1250 g</td>
<td>1997</td>
<td>5086 10 / 51</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>6043 27 / 51</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>6689 19 / 52</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>7474 20 / 52</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>7833 18 / 51</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>1251 - 1500 g</td>
<td>1997</td>
<td>5817 26 / 53</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>7210 23 / 51</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>7880 19 / 51</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>9004 18 / 53</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>9362 29 / 52</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

Seite 21
C.1.1.3 Inborn-Rate

Im VONN wurden von 1997 bis 2001 durchschnittlich 84 % der Frühgeborenen in der Klinik zur Welt gebracht. Bei der näheren Betrachtung der einzelnen Gewichtsgruppen finden sich durchgehend ähnliche Inborn-Raten für alle Klassen.

In Berlin wurden in den Jahren 1997 bis 2001 nahezu alle Frühgeborenen (ca. 98 %) in der Klinik geboren und in Innsbruck kamen mit 96 % ebenfalls deutlich mehr Frühgeborene im Krankenhaus zur Welt als in der Gesamtpopulation des VONN und somit ähnlich viele wie in Berlin. Beide Kliniken liegen hier im „Exzellenz“-Bereich. Es findet sich kein signifikanter Unterschied zwischen den Kliniken (p = 0,235).

C.1.2 Perinatale Betreuung

C.1.2.1 Schwangerenvorsorge

In der Gesamtpopulation des VONN erhielten im Median 95 % der Mütter von den Frühgeborenen unter 1500 g eine Schwangerenvorsorge (IQR: 92 - 98 %). Mütter von Frühgeborenen der oberen Gewichtsgruppe hatten häufiger eine Schwangerenvorsorge als Mütter ganz leichter VLBWs.

In der Neo-CCM wurden dagegen mit durchschnittlich 98 % nahezu alle Schwangeren ärztlich betreut. In den drei unteren Gewichtsgruppen zeigt sich eine nahezu 100prozentige Vorsorge. Die Vorsorgerate bei den Frühgeborenen mit einem Gewicht von 1251 bis 1500 g hingegen lag bei durchschnittlich 96 %.

In der Neo-UKI erhielten in den ersten beiden Jahren 93 bis 94 % eine Schwangerenvorsorge, während in den anderen Jahren in jeder Gewichtsgruppe 100 % durch eine Schwangerenvorsorge ärztlich betreut wurden.

Es zeigen sich für beide Kliniken sehr gute Ergebnisse („Exzellenz“-Parameter) im Vergleich zur Gesamtpopulation [Tabelle 5]. Die beiden Kliniken unterscheiden sich in der Schwangerenvorsorge nicht signifikant (p = 0,239).

C.1.2.2 Gabe von antenatalen Steroiden

Die Analyse der Gesamtpopulation des VONN zeigt im Vergleich der einzelnen Jahre eine relativ gleichmäßige Anwendung von antenatalen Steroiden. Eine vollständige pränatale Lungenreifeinduktion erfolgte im Median bei 45 bis 49 % der Mütter (25. Perzentil: 35 bis 39 %, 75. Perzentil: 54 bis 60 %), ungefähr 30 % erhielten keine Steroide (25. Perzentil: 21 bis 22 %, 75. Perzentil: 36 bis 41 %).


In der Neo-UKI entsprach die Häufigkeit der Lungenreifeinduktion 1998 dem Median des VONN. Dagegen bekamen in den folgenden Jahren 65 bis 81 % der werdenden Mütter bei drohender Frühgeburt einen kompletten Zyklus an antenatalen Steroiden, zwischen 9 und 13 % der Mütter bekamen keine Steroide [Abb. 1].

Die Lungenreifeinduktion ist für beide Kliniken als „Exzellenz“-Parameter zu beurteilen. Der Vergleich zwischen den beiden Kliniken zeigt keine signifikanten Unterschiede bezüglich kompletter (p = 0,092) oder partieller (p = 0,096). Allerdings fanden sich in der Neo-CCM signifikant mehr Frauen ohne Lungenreifeinduktion (p = 0,001).

C.1.2.3 Entbindungen per Kaiserschnitt

Im VONN werden im Median etwa 65 % (IQR: durchschnittlich 57 bis 69 %) der Frühgeborenen per Sectio cesarea zur Welt gebracht. In den letzten Jahren kam es zu einem geringfügigen Anstieg.

Die Neo-CCM liegt mit einer Sectio-Rate um 80 % meist über dem 90. Perzentil (mit Ausnahme des Jahres 1999).

In der Neo-UKI wurden in den Jahren 1998 bis 2001 zwischen 80 und 87 % der VLBWs per Kaiserschnitt geboren (94. bis 98. Perzentil).

Im direkten Vergleich der beiden Kliniken zeigt sich für beide eine hohe Rate (oberhalb des 90. Perzentils) an Kaiserschnitten [Abb. 2] und es findet sich kein signifikanter Unterschied (p = 0,117).
Abbildung 1: Gabe antenataler Steroide differenziert nach kompletter Gabe (3 mal innerhalb von 24 Stunden), partieller Gabe und nicht erfolgter Gabe. Gezeigt werden für die einzelnen Jahrgänge 1997 bis 2001 die Häufigkeiten in Prozent für die Gesamtpopulation des VONN, die Neo-CCM und die Neo-UKI. Dabei sind für das VONN der Median durch einen Querbalken und die IQR durch einen vertikalen Strich dargestellt, wobei die untere Begrenzung die Häufigkeiten zum 25. Perzentil und die obere Begrenzung die Häufigkeiten zum 75. Perzentil zeigt. Die Neo-CCM ist dargestellt durch einen Kreis und die Neo-UKI durch einen Stern. Für die komplette (p = 0,092) und partielle Gabe (p = 0,096) findet sich kein signifikanter Unterschied zwischen den beiden Kliniken Neo-UKI und Neo-CCM. Für Frauen ohne Lungenreifeinduktion zeigt sich dagegen ein signifikanter Unterschied zwischen den beiden Kliniken (p = 0,001).

C.2 Akute und chronische Morbidität

C.2.1 Pulmonale Morbidität

C.2.1.1 Atemnotsyndrom (ANS)

In der Gesamtpopulation des VONN lässt sich im Verlauf der untersuchten Jahre ein leichter Anstieg der Anzahl der Kinder mit einem ANS beobachten [Abb. 3]. Im Jahr 2001 entwickelten im Median 72 % (IQR: 63 bis 82 %) der Kinder ein ANS. Die Häufigkeit des ANS in den einzelnen Gewichtsgruppen stellt Abbildung 4 dar.


Während die Neo-CCM bezüglich der Inzidenz des ANS im „Exzellenz“-Bereich liegt und ihre Ergebnisse in den letzten Jahren noch weiter verbessern konnte, zeigt die Neo-UKI hier einen deutlichen „Problem“-Parameter auf. Es ergibt sich ein signifikanter Unterschied (p < 0,0001) zwischen den beiden Kliniken. Daher bietet sich das Atemnotsyndrom für ein Benchmarking-Projekt an.

C.2.1.2 Bronchopulmonale Dysplasie (BPD)


C.2.1.2.1 Sauerstofftherapie beziehungsweise Beatmung am 28. Lebenstag

In der Gesamtpopulation zeigt sich in den Jahren 1997 bis 2001 ein Anstieg von 48 auf 54 % der Frühgeborenen, die am 28. Lebenstag noch Sauerstoff benötigten [Abb. 5]. Dieser tendenzielle Anstieg lässt sich in allen Gewichtsgruppen beobachten. Bei den leichtesten Frühgeborenen (501 bis 751 g) stieg die BPD-Inzidenz von 88 auf 93 %, bei den 751 bis 1000 g schweren stieg sie von 67 auf 76 %, bei den 1001 bis 1251 g von 38 auf 43 % und bei den schweren Frühgeborenen (1251 bis 1500 g) von 17 auf 23 % [Abb. 6].


In drei von vier untersuchten Jahren lag die Neo-UKI mit einem Sauerstoffbedarf am 28. Lebenstag bei 42 bis 58 % ihrer Frühgeborenen im Bereich der IQR. Im Jahr 1999 hatte es mit 32 % eine sehr geringe Inzidenz (16. Perzentil) [Abb. 5]. Wie Abbildung 6 zeigt, findet sich bis auf wenige Ausreißer die Verteilung in den Gewichtsgruppen meist im Bereich der IQR.

Die beiden Kliniken zeigen nach dieser Definition bei der Betrachtung aller untersuchten Frühgeborenen keine signifikanten Unterschiede auf (p = 0,676) und liegen im Durchschnitt der Gesamtpopulation des VONN. Während in Berlin in der Gruppe der leichtesten VLBW-Frühgeborenen teilweise Ergebnisse unterhalb des 25. Perzentils erreicht werden, weist Innsbruck teilweise eine Inzidenz von 100 % auf. Aufgrund der recht ähnlichen Ergebnisse in der Gesamtklasse im Bereich der IQR würde sich daher ein Benchmarking nur für die Gruppe der leichtesten Frühgeborenen anbieten.
C.2.1.2.2 Sauerstofftherapie in der 36. Schwangerschaftswoche p. c.

Auch unter dieser Definition der BPD stieg in der Gesamtpopulation von 1997 bis 2001 die Häufigkeit der chronischen Lungenerkrankung von 29 auf 38 % der VLBW-Frühgeborenen [Abb. 5]. Dieser Anstieg zeigt sich auch bei der Aufschlüsselung in die einzelnen Gewichtsklassen in jeder Klasse [Abb. 7].


Im direkten Vergleich beider Kliniken zeigt sich ein signifikanter Unterschied (p = 0,015). Jedoch weisen beide Kliniken im Vergleich zur Gesamtpopulation des VONN eher eine niedrige Häufigkeit auf, wobei die Neo-CCM in der Klasse der leichtesten VLBWs bessere Ergebnisse erzielt als die Neo-UKI.

Abbildung 6: Häufigkeit der bronchopulmonalen Dysplasie definiert nach Sauerstofftherapie am 28. Lebenstag und geordnet nach einzelnen Gewichtsgruppen und Jahrgängen; Gesamtpopulation des VONN (Median und IQR), Neo-CCM und Neo-UKI. Detaillierte Legende siehe Abbildung 1.
Abbildung 7: Häufigkeit der bronchopulmonalen Dysplasie definiert nach Sauerstofftherapie in der 36. SSW p. c., geordnet nach Jahrgängen und einzelnen Gewichtsgruppen und dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1.

Abbildung 8: Pneumothoraxrate in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI in der Pneumothoraxrate ist nicht signifikant (p = 0,386).
C.2.1.3 Pneumothorax

In der Gesamtpopulation des VONN ist die Inzidenz des Pneumothorax mit 6 % (25. Perzentil bei 3 %, 75. Perzentil bei 8 %) über die Jahre relativ konstant.

Während die Neo-CCM 1997 mit 6 % noch genau im Median lag, zeigt sich bis 1999 eine Senkung der Inzidenz auf nur 1 %. Danach findet sich wieder ein leichter Anstieg, worauf im Jahr 2001 in Berlin 4 % der Frühgeborenen einen Pneumothorax erlitten [Abb. 8].

Die Neo-UKI zeigt in den Jahren 1998 bis 2000 Werte im Bereich zwischen 3 und 4 % (23. bis 37. Perzentil), während es auch hier im letzten Jahr der Untersuchung zu einem erheblichen Anstieg auf 11 % kam (88. Perzentil) [Abb. 8].

Beide Kliniken liegen im „Exzellenz“-Bereich und es findet sich kein signifikanter Unterschied (p = 0,386). Die Pneumothoraxrate bleibt durch die in beiden Kliniken ähnlich geringe Häufigkeit (Ausnahmejahr 2001) als Benchmarking-Ziel irrelevant.

C.2.2 Symptomatischer persistierender Ductus Arteriosus (PDA)

In der Gesamtpopulation des VONN ist die Inzidenz eines symptomatischen PDA über die untersuchten Jahre nahezu konstant, wobei in den letzten beiden Jahren ein leichter Anstieg zu verzeichnen ist [Abb. 9]. Im Median zeigt die Gesamtpopulation eine Inzidenz von 29 bis 33 % (25. Perzentil: 17 bis 22 %, 75. Perzentil: 39 bis 40 %). Abbildung 9 verdeutlicht, dass sich dieses Muster auch in der Analyse der einzelnen Gewichtsgruppen darstellt.

Die Werte der Neo-CCM in der Gesamtgruppe stellen im Vergleich zur Gesamtpopulation des VONN einen diskontinuierlichen Verlauf dar. Die Inzidenz bleibt aber im Bereich zwischen dem 25. und dem 75. Perzentil oder liegt in unmittelbarer Nähe. Bei der Analyse der Gewichtsgruppen liegt die Neo-CCM ebenfalls meist in der IQR, wobei es zu vereinzelten Ausreißern kommt [Abb. 9].


Während in Berlin der symptomatische PDA eine Inzidenz zeigt, die im durchschnittlichen Bereich der Gesamtpopulation liegt, findet sich für Innsbruck eine deutlich höhere Inzidenz des symptomatischen PDA („Problem“-Parameter). Der Unterschied zwischen den beiden Kliniken ist signifikant (p < 0,0001). Daher könnte der PDA als ein Benchmarking-Ziel von Interesse sein.
C.2.3 Nekrotisierende Enterokolitis (NEC)


Abbildung 10: Häufigkeit der nekrotisierenden Enterokolitis in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist knapp nicht signifikant (p = 0,054).

Abbildung 11: Häufigkeit der nekrotisierenden Enterokolitis geordnet nach Gewichtsgruppen und Jahrgängen in der Gesamtpopulation des VONN (Median und IQR), in der Neo-CCM und der Neo-UKI. Detaillierte Legende siehe Abbildung 1.
C.2.4 Bakterielle Infektionen


C.2.4.1 Frühsepsis

Die Infektionsrate innerhalb der ersten drei Lebenstage blieb in der Gesamtpopulation der Frühgeborenen unter 1500 g von 1997 bis 2001 über die Jahre hinweg konstant bei 2 % [Abb. 12]. Auch die Analyse der Gewichtsgruppen ergibt konstante Werte. Alle Gewichtsgruppen zeigen insgesamt eine sehr niedrige Inzidenz. Dabei eranken bei den leichteren VLBW-Frühgeborenen zwischen 3 und 4 % (IQR: durchschnittlich 0 bis 5 %) und bei den schwereren VLBW-Frühgeborenen nur 1 bis 2 % (IQR: 0 bis 2 %) [Abb. 14].


C.2.4.2 Spätsepsis

An einer bakteriellen Infektion nach mehr als drei Lebenstagen erkrankten in der Gesamtpopulation im Durchschnitt 11 % (IQR: 5 bis 14 %) der VLBW-Frühgeborenen [Abb. 12]. Auch hier zeigen sich über die untersuchten Jahre hinweg konstante Werte in den einzelnen Gewichtsgruppen. Während es bei den 501 bis 750 g schweren Frühgeborenen noch bei 21 bis 23 % zu einer Spätsepsis kommt (IQR: durchschnittlich 7 bis 32 %), sind es bei den schwersten VLBWs (1251 bis 1500 g) nur noch 4 % (IQR: 5 bis 14 %) [Abb. 15].


Der Vergleich beider Kliniken zeigt für die untersuchten Jahre einen signifikanten Unterschied (p = 0,003). Während Innsbruck zu Beginn jedoch noch eine stark erhöhte Häufigkeit einer späten Sepsis aufweist („Problem“-Parameter), tritt die Spätsepsis in den Kliniken in den letzten beiden Jahren der Untersuchung zwar ähnlich häufig auf. Die großen Schwankungen in Berlin und die starke Verbesserung der Innsbrucker Klinik könnten Ziel einer näheren Analyse sein.
Abbildung 12: Häufigkeit bakterieller Infektionen in den Jahren 1997 bis 2001 differenziert nach früher und später Sepsis, dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist für die Frühespsis nicht signifikant (p = 0,336), für die Spätsepsis zeigt sich ein signifikanter Unterschied (p = 0,003).

Abbildung 14: Häufigkeit früher bakterieller Infektionen (< 3. Lebenstag) geordnet nach Gewichtsgruppen und Jahrgängen, dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1.

Abbildung 15: Häufigkeit später bakterieller Infektionen (> 3. Lebenstag) geordnet nach Gewichtsgruppen und Jahrgängen, dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1.
C.2.5 Zentrales Nervensystem

C.2.5.1 Neugeborenenretinopathie (Retinopathy praematurorum – ROP)

Während das erste Stadium der ROP noch relativ häufig bei ca. 20 % (25. Perzentil: 9 bis 10 %, 75. Perzentil: 26 bis 28 %) der Frühgeborenen der Gesamtpopulation auftritt, ist die ROP höherer Stadien immer seltener und zeigt im vierten Stadium nur noch eine Inzidenz von höchstens 1 % [Abb. 16].

Die Neo-CCM weist ein zur Gesamtpopulation unterschiedliches Bild auf. Während eine ROP des ersten Stadiums sehr selten auftrat (0 bis 3 %), kamen eine ROP des zweiten und dritten Stadiums etwas häufiger vor. Letztere lagen mit Inzidenzen zwischen 0 und 12 % aber trotzdem meist unterhalb des 25. Perzentils [Abb. 16]. Dagegen stieg die Anzahl der Frühgeborenen, die an einer ROP im vierten Stadium erkrankten, von 1997 bis 2001 von 0 auf 4 % an und lag im Jahr 2001 auf dem 97. Perzentil.


Beide Kliniken weisen im ersten und dritten Stadium der Neugeborenenretinopathie eine Inzidenz auf, welche unterhalb oder im Bereich der IQR der Gesamtpopulation liegt. In beiden Kliniken scheint eher die ROP im vierten Stadium der „Problem“-Parameter zu sein. Es finden sich signifikante Unterschiede in den ersten drei Stadien der ROP (Stadium 1: p < 0,0001; Stadium 2: p = 0,022 und Stadium 3: p = 0,004). Für das vierte Stadium zeigt sich kein signifikanter Unterschied (p = 0,804). Angesichts der guten Ergebnisse („Exzellenz“- oder „IQR“- Bereich) in den ersten drei Stadien der ROP und der geringen Fallzahl im vierten Stadium erscheint der Sinn einer Benchmarking-aktivität hier jedoch fraglich.
Abbildung 16: Häufigkeit der Neugeborenenretinopathie in den Stadien 1 bis 4 in den Jahren 1997 bis 2001 dargestellt für Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detailliertes Legende siehe Abbildung 1. Die Unterschiede zwischen der Neo-CCM und der Neo-UKI in den Stadien 1 bis 3 sind signifikant (Stadium 1: \( p < 0,0001 \), Stadium 2: \( p = 0,022 \), Stadium 3: \( p = 0,004 \)). Der Unterschied im vierten Stadium ist nicht signifikant (\( p = 0,804 \)).

Abbildung 17: Häufigkeit der intraventrikulären Hämorrhagie in den Jahren 1997 bis 2001 differenziert nach Grad 1 bis 4 und dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI einer IVH ersten Grades ist signifikant (\( p < 0,0001 \)), der Unterschied einer IVH ersten bis dritten Grades ist nicht signifikant (Grad 2: \( p = 0,613 \), Grad 3: \( 0,449 \) und Grad 4: \( 0,617 \)).
C.2.5.2 Intraventrikuläre Hämorrhagie (IVH)

In den Jahren 1997 bis 2001 kam es in der Gesamtpopulation bei 11 bis 12 % der Frühgeborenen zu einer IVH ersten Grades (IQR = 6 bis 15 %). Zu einer IVH zweiten Grades kam es im Durchschnitt nur noch bei 6 % der Frühgeborenen unter 1500 g und zu einer IVH dritten und vierten Grades sogar nur noch bei durchschnittlich 4 % [Abb. 17].

Die Neo-CCM zeigt für die IVH ersten Grades in allen Jahren eine geringere Inzidenz als der Durchschnitt der Gesamtpopulation des VONN und liegt in vier von fünf untersuchten Jahren sogar unterhalb des 25. Perzentils. Wie Abbildung 17 darstellt, finden sich für die IVH zweiten bis vierten Grades meist Ergebnisse im Bereich der IQR.


Im Vergleich der beiden Kliniken zeigt sich ein deutlicher Unterschied in der Häufigkeit der IVH nur bei der IVH ersten Grades (p < 0,0001), bei welcher die Charité unterhalb der IQR liegt und die Innsbrucker Klinik eher oberhalb des 75. Perzentils. Wegen der geringen Fallzahl und den ähnlichen Ergebnissen im Bereich der IQR bei der IVH zweiten bis vierten Grades (Grad 2: p = 0,613; Grad 3: p = 0,449 und Grad 4: p = 0,617) bleibt die IVH als Benchmarking-Ziel eher irrelevant.

C.2.5.3 Periventrikuläre Leukomalazie (PVL)

In der Gesamtpopulation kam es im Durchschnitt bei 4 % der Frühgeborenen zu einer PVL (IQR: durchschnittlich 1 bis 5 %) [Abb. 18]. Die Analyse der einzelnen Gewichtsgruppen zeigt ein konstantes Bild, wobei in der Gewichtsgruppe der 501 bis 750 g schweren Frühgeborenen die Inzidenz der PVL bei 5 bis 6 % lag und in der Klasse der schwersten Kinder nur noch bei 2 % [Abb. 19].


Die nähere Betrachtung der einzelnen Gewichtsgruppen zeigt, dass die PVL in der Gruppe der leichtesten Kinder (501 bis 750 g) außer im Jahr 1999 nicht vorkam. Auch die nächste Gruppe (750 bis 1000 g) lag mit Werten zwischen dem Median und dem 75. Perzentil im Bereich der
IQR. Obwohl die PVL in manchen Jahren bei den 1001 bis 1250 g und 1251 bis 1500 g schweren Kindern überhaupt nicht vorkam, findet sich in den anderen Jahren dort eine erhöhte Inzidenz mit Plätzen oberhalb des 75. Perzentils [Abb. 19].


Beide Kliniken weisen zu Beginn der Untersuchung eine sehr hohe Inzidenz der periventrikulären Leukomalazie auf und liegen in drei der untersuchten Jahre im „Problem“-Bereich. In beiden Kliniken kommt es im letzten Jahr zu einer Senkung in die IQR. Es findet sich kein signifikanter Unterschied zwischen den Kliniken (p = 0,103). Insgesamt dürfte die kleine Fallzahl für ein Benchmarking eher ungeeignet ein.

Abbildung 18: Häufigkeit der periventrikulären Leukomalazie in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist nicht signifikant (p = 0,103).
Abbildung 19: Häufigkeit der periventrikulären Leukomalazie geordnet nach Gewichtsgruppen und Jahrgängen, dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1.
C.3 Mortalität

C.3.1 Neonatale Mortalität

In der Gesamtpopulation des VONN verstarben in den fünf Jahren der Untersuchung im Median jedes Jahr 12 % der VLBW-Kinder unter 1500 g innerhalb der ersten 28 Lebenstage (IQR: 8 bis 15 %) [Abb. 20]. Hier zeigt sich, dass diejenigen Frühgeborenen, die mit einem sehr geringen Geburtsgewicht (501 bis 750 g) zur Welt kommen, mit einer neonatalen Mortalität von durchschnittlich 36 % die größte Sterblichkeitsrate aufweisen. In den folgenden Gewichtsgruppen sinkt die Sterblichkeitsrate von 11 % bei den 751 bis 1000 g schweren Frühgeborenen bis zu nur noch 3 % in der Gruppe der schwersten VLBW-Frühgeborenen [Abb. 21].


Es lässt sich festhalten, dass sowohl die Neo-CCM als auch die Neo-UKI im Durchschnitt eine eher geringe bis mittlere neonatale Mortalität aufweisen. Während sich in den einzelnen Gewichtsgruppen Unterschiede finden, unterscheiden sich die beiden Kliniken im Durchschnitt in ihrer neonatalen Mortalität nicht signifikant (p = 0,111), womit die Mortalität für Benchmarking-Aktivitäten nicht geeignet zu sein scheint.

C.3.2 Stationäre Mortalität

Die stationäre Mortalität, das heißt ein Versterben der Frühgeborenen nach mehr als 28 Lebenstagen, entspricht überwiegend der neonatalen Sterblichkeit und ist in Abbildung 20 im Vergleich zu dieser dargestellt. Auch hier findet sich kein signifikanter Unterschied zwischen den beiden Kliniken (p = 0,232).
Abbildung 20: Häufigkeit neonataler und stationärer Mortalität im Vergleich in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI in der Mortalität ist nicht signifikant (neonatale Mortalität: p = 0,111, stationäre Mortalität: p = 0,232).

Abbildung 21: Häufigkeit neonataler Mortalität geordnet nach Gewichtsgruppen und Jahrgängen, dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1.
C.4 Liegedauer


In der Neo-UKI wurden in den untersuchten Jahren die VLBW-Frühgeborenen nach 65 bis 70 Tagen nach Hause entlassen (75. bis 88. Perzentil). In den einzelnen Gewichtsgruppen zeigen sich in fast allen Gewichtsgruppen Perzentilränge über dem 75. Perzentil [Tabelle 6].

Während in Berlin (Neo-CCM) eher die schwereren Frühgeborenen eine im Vergleich zur Gesamtpopulation längere Liegezeit aufweisen, scheint dies in Innsbruck (Neo-UKI) alle Gewichtsgruppen zu betreffen. Trotz der im Bereich der Standardabweichung liegenden Verweildauer der VLBW-Frühgeborenen in Innsbruck und Berlin kann aufgrund der insgesamt eher hohen Perzentilränge der beiden Kliniken (meist oberhalb des 50. Perzentils) die Liegedauer der Frühgeborenen in beiden Kliniken als „Problem“-Parameter gesehen werden. Da in beiden Kliniken längere Liegezeiten vorliegen und sich zwischen den beiden Kliniken kein signifikanter Unterschied zeigt (p > 0,05), bietet sich die Liegedauer allerdings als Benchmarking-Ziel nicht an.
Tabelle 6: Liegezeiten in Tagen; Gesamtpopulation des VONN (Median und Standardabweichung (SD) in Tagen), Neo-CCM und Neo-UKI jeweils mit der Durchschnittsliegezeit in Tagen und dem Perzentilrang (Perz.) in den Jahren 1997 bis 2001.

<table>
<thead>
<tr>
<th>Gewichtsgruppe</th>
<th>Jahr</th>
<th>VONN</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>501 - 1500 g</td>
<td>1997</td>
<td>61</td>
<td>31</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>61</td>
<td>31</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>61</td>
<td>31</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>61</td>
<td>31</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>61</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>501 - 750 g</td>
<td>1997</td>
<td>103</td>
<td>28</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>103</td>
<td>29</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>102</td>
<td>29</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>103</td>
<td>29</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>104</td>
<td>32</td>
<td>98</td>
</tr>
<tr>
<td>751 - 1000 g</td>
<td>1997</td>
<td>78</td>
<td>26</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>77</td>
<td>24</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>78</td>
<td>24</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>78</td>
<td>24</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>79</td>
<td>27</td>
<td>79</td>
</tr>
<tr>
<td>1001 - 1250 g</td>
<td>1997</td>
<td>56</td>
<td>21</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>55</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>55</td>
<td>21</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>56</td>
<td>21</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>56</td>
<td>22</td>
<td>63</td>
</tr>
<tr>
<td>1251 - 1500 g</td>
<td>1997</td>
<td>39</td>
<td>17</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>39</td>
<td>17</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>39</td>
<td>17</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>39</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>40</td>
<td>19</td>
<td>49</td>
</tr>
</tbody>
</table>
C.5 Bilanz: Auswertung des Outcome


Für das Benchmarking-Projekt wurden das Atemnotsyndrom, die nekrotisierende Enterokolitis und die bakteriellen Infektionen ausgewählt. Die ersten beiden Bereiche wurden aufgrund der in den beiden Kliniken unterschiedlichen Inzidenz aufgenommen („Problem“- versus „Exzellenz“- und „Problem“- versus „IQR“- Bereich), womit die Grundlage für ein Benchmarking-Projekt zwischen den beiden Kliniken gegeben ist.


Der persistierende Ductus Arteriosus wurde nicht in das Benchmarking-Projekt eingeschlossen, da sich bei der näheren Analyse herausstellte, dass sich die hohe Inzidenz in Innsbruck durch eine unterschiedliche Auffassung der Definition des symptomatischen Ductus erklären ließ. Während in Berlin nur die Frühgeborenen gezählt wurden, welche klinisch eine Symptomatik aufwiesen, wurden in Innsbruck zu dieser Zeit alle Frühgeborenen innerhalb der ersten 48 Stunden einer echokardiografischen Untersuchung unterzogen und dort festgestellte PDA mit angegeben.

Aufgrund der kleinen Fallzahl wurde auch die periventrikuläre Leukomalazie nicht mit in das Benchmarking aufgenommen.
Tabelle 7: Outcome der beiden neonatologischen Abteilungen CCM und UKI in den verschiedenen Bereichen (IQR = durchschnittliches Outcome im Bereich zwischen dem 25. und 75. Perzentil der Gesamtpopulation des VONN, E = „Exzellenz“-Parameter, P = Problem“-Parameter.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Neo-CCM</th>
<th>Neo-UKI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbornrate</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Schwangerenvorsorge</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>antenatale Steroide</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Kaiserschnitte</td>
<td>keine Aussage</td>
<td>keine Aussage</td>
</tr>
<tr>
<td>Atemnotsyndrom</td>
<td>E</td>
<td>P</td>
</tr>
<tr>
<td>bronchopulmonale Dysplasie (O2 am 28. Lebenstag)</td>
<td>IQR</td>
<td>IQR</td>
</tr>
<tr>
<td>bronchopulmonale Dysplasie (O2 in der 36. SSW)</td>
<td>IQR</td>
<td>IQR</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>IQR</td>
<td>IQR</td>
</tr>
<tr>
<td>persistierender Ductus Arteriosus</td>
<td>IQR</td>
<td>P</td>
</tr>
<tr>
<td>nekrotisierende Enterokolitis</td>
<td>IQR</td>
<td>P</td>
</tr>
<tr>
<td>bakterielle Infektionen (Frühsepsis)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>bakterielle Infektionen (Spätsepsis)</td>
<td>IQR</td>
<td>P</td>
</tr>
<tr>
<td>Neugeborenenretinopathie</td>
<td>IQR</td>
<td>IQR</td>
</tr>
<tr>
<td>intraventrikuläre Hämorrhagie</td>
<td>IQR</td>
<td>IQR</td>
</tr>
<tr>
<td>periventrikuläre Leukomalazie</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Mortalität</td>
<td>IQR</td>
<td>IQR</td>
</tr>
<tr>
<td>Liegedauer</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>
D Ergebnisse II: Erfassung der internen Handlungsabläufe bzw. –prozesse

D.1 Respiratorische Interventionen (VONN)

D.1.1 Sauerstoffsupplementation

D.1.1.1 Sauerstoffsupplementation im Kreißsaal

In Innsbruck (Neo-UKI) zeigt sich für die Sauerstoffgabe bei VLBW-Frühgeborenen im Kreißsaal eine steigende Tendenz (76. bis 92. Perzentil). Dagegen findet sich für Berlin (Neo-CCM) über die Jahre eine tendenzielle Verminderung der Sauerstoffsupplementation im Kreißsaal (59. bis 6. Perzentil). Abbildung 22 stellt den Unterschied (p < 0,0001) in der Handlungsweise der beiden Kliniken dar. Für die Häufigkeit des ANS ist ein ähnlicher Kurvenverlauf zu sehen [Abb. 3].

Abbildung 22: Häufigkeit der Sauerstoffsupplementation im Kreißsaal in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI in der Häufigkeit der Sauerstoffsupplementation im Kreißsaal ist signifikant (p < 0,0001).
D.1.1.2 Sauerstoffsupplementation auf Station


Abbildung 23: Häufigkeit der stationären Sauerstoffsupplementation in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist signifikant (p < 0,0001).

D.1.2 Beatmung

D.1.2.1 Beatmung im Kreißsaal

1.) Maskenbeatmung

Die beiden Kliniken zeigen bis auf einen Ausreißer im Jahr 1999 bei der Maskenbeatmung im Kreißsaal eine ähnliche Häufigkeit im Bereich oberhalb des 75. Perzentils (Neo-CCM: 84. bis 98. Perzentil; Neo-UKI: 86. bis 95. Perzentil). Obwohl der Unterschied signifikant ist (p = 0,001), zeigt sich bei der Maskenbeatmung für die beiden Kliniken eine ähnliche Tendenz [Abb. 24].
2.) Endotracheale Intubation

In beiden Kliniken wurde im Verlauf der untersuchten Jahre immer seltener im Kreißsaal intubiert [Abb. 25], wobei die Senkung in der Neo-UKI (44. bis 12. Perzentil) etwas stärker ausfiel als in der Neo-CCM (40. bis 19. Perzentil). Die beiden Kliniken zeigen somit ähnliche Ergebnisse (p = 0,965).

D.1.2.2 Beatmung auf Station

1.) Versorgung mit nasalem CPAP (continuous positive airway pressure)


2.) Maschinelle Beatmung

Während in der Neo-UKI die maschinelle Beatmung gesenkt wurde (45. bis 14. Perzentil), lag die Neo-CCM in den Jahren 1997 bis 2001 bereits zwischen dem 23. und 50. Perzentil [Abb. 27]. Es findet sich kein signifikanter Unterschied (p = 0,072).

3.) Hochfrequenzbeatmung

Zunächst wurde die Hochfrequenzbeatmung in der Neo-UKI noch relativ häufig verwendet (70. Perzentil), in den Folgejahren wurde jedoch immer seltener hochfrequent beatmet (Senkung auf 11. bis 17. Perzentil). Die Neo-CCM zeigt dagegen eine sehr geringe Verwendung der hochfrequenten Beatmung im ersten Jahr der Untersuchung (13. Perzentil) und setzte diese in den Folgejahren überhaupt nicht mehr ein. Es findet sich ein signifikanter Unterschied in den Handlungsweisen der beiden Kliniken (p < 0,0001), wobei sich die Handlungsweise der Neo-UKI im Verlauf in Richtung der Handlungsstrategie der Neo-CCM ändert [Abb. 28].
Abbildung 24: Häufigkeit der Beatmung im Kreißsaal mit Beatmungsmaske und -beutel in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist signifikant (p = 0,001).

Abbildung 25: Häufigkeit der Intubation im Kreißsaal in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist nicht signifikant (p = 0,965).
Abbildung 26: Häufigkeit der Versorgung mit nasalem CPAP in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist nicht signifikant (p = 0,169).

Abbildung 27: Häufigkeit der maschinellen Beatmung dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist nicht signifikant (p = 0,072).
Abbildung 28: Häufigkeit der Hochfrequenzbeatmung in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist signifikant (p < 0,0001).

Abbildung 29: Häufigkeit der Surfactantgabe (gesamt) in den Jahren 1997 bis 2001 dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist nicht signifikant (p = 0,175).
D.1.3 Surfactantgabe

1.) Surfactantgabe (insgesamt)

Wie Abbildung 29 zeigt, kam es in beiden Kliniken zu einer Senkung der Surfactantgabe, wobei die Neo-CCM (28. bis 7. Perzentil) stets weniger Frühgeborene mit Surfactant versorgte als die Neo-UKI (48. bis 17. Perzentil). Der Unterschied zwischen beiden Kliniken ist jedoch nicht signifikant (p = 0,175).

2.) Surfactantgabe direkt im Kreißsaal


3.) Mittlere Zeitdauer bis zur Surfactantgabe

Seit dem Jahr 1999 wird vom VONN auch die mittlere Zeitdauer bis zur ersten Surfactantgabe für VLBW-Frühgeborene, welche Surfactant erhielten, ermittelt. Die Zeitdauer für die einzelnen Gewichtsgruppen ist in Abbildung 31 dargestellt. Es fällt auf, dass, außer im Jahr 2000 in der Gewichtsgruppe der kleinsten Frühgeborenen, die Neo-UKI alle ihre Frühgeborenen im Mittel innerhalb von weniger als 50 Minuten mit Surfactant behandelt. Im Gegensatz dazu findet sich für die Neo-CCM in der Gruppe der leichtesten Frühgeborenen eine mittlere Zeit unter 40 Minuten, während in den anderen Gruppen der Neo-CCM im Mittel teilweise zwei bis vier Stunden bis zur ersten Surfactantgabe vergehen.
Abbildung 30: Häufigkeit der Surfactantgabe im Kreißsaal in den Jahren 2000 und 2001 geordnet nach Gewichtsgruppen und Jahren und dargestellt für die Gesamtpopulation des VONN (Median und IQR), die Neo-CCM und die Neo-UKI. Detaillierte Legende siehe Abbildung 1. Der Unterschied zwischen der Neo-CCM und der Neo-UKI ist signifikant (p = 0,0002).

Abbildung 31: Häufigkeit der mittleren Zeitdauer bis zur ersten Surfactantgabe in den Jahren 1999 bis 2001 geordnet nach Gewichtsgruppen und Jahre und dargestellt für die Gesamtpopulation des VONN (Median), die Neo-CCM und die Neo-UKI.
D.2 Interne Handlungsrichtlinien

Der jeweilige Oberarzt der beiden Abteilungen wurde bezüglich der alten Vorschriften in den Jahren 1997 bis 2001 befragt.

D.2.1 Blut und Blutgase

D.2.1.1 Transfusionsgrenzwert für Thrombozyten

Es gab sowohl in der Neo-UKI, als auch in der Neo-CCM für die Thrombozyten einen Transfusionsgrenzwert. Dieser lag in der Neo-UKI bei 50.000/μl und in der Neo-CCM bei 20.000/μl, sofern keine akuten Blutungszeichen vorlagen.

D.2.1.2 Blutdruck

1.) Blutdruckgrenzwerte bei Hypotension

In der Neo-CCM und der Neo-UKI wurde eine Hypotension bei einem Blutdruckgrenzwert behandelt, welcher in Abhängigkeit vom Gestationsalter (MAD: mittlerer arterieller Druck kleiner als das Schwangerschaftsalter in Wochen) bestimmt wurde.

2.) Methode der ersten Wahl bzw. Routine bei der Behandlung einer Hypotension


D.2.1.3 Blutgase und Blutgasüberwachung

1.) Häufigkeit und Zeitpunkt einer Blutgasanalyse (BGA)


2.) Art der BGA

Es gab keine Unterschiede zwischen der Neo-UKI und der Neo-CCM. In beiden Kliniken erfolgte die BGA überwiegend kapillär.

3.) Verwendung einer transcutanen Blutgasüberwachung

4.) Art der transcutanen Blutgasüberwachung

In der Neo-UKI und der Neo-CCM wurde jeweils eine Kombination von Transcapnoden und Transoxodaten zur transcutanen Blutgasüberwachung verwendet.

5.) Patientengut der transcutanen Blutgasüberwachung

Während in der Neo-UKI sowohl beatmete als auch mit einem CPAP versorgte Patienten transcutan überwacht wurden, waren es in der Neo-CCM nur beatmete Kinder.

6.) Methoden zur Detektion von Hypoxie und Hyperoxie

- Hypoxie:
  Sowohl in der Neo-UKI als auch in der Neo-CCM wurde zur Detektion der Hypoxie die Sauerstoffsättigung verwendet, jedoch unterschied sich der Grenzwert für die Hypoxie in den beiden Kliniken (Neo-UKI: 85 %; Neo-CCM: 88 %).

- Hyperoxie:
  Auch hier fanden sich unterschiedliche Grenzwerte für die Sauerstoffsättigung zwischen den beiden Kliniken (Neo-UKI: 92 %; Neo-CCM: 95 %).

D.2.2 Nahrung und Ernährung

D.2.2.1 Mutter- bzw. Spendermilch

1.) Ernährung mit Muttermilch

In beiden Kliniken wurde - soweit es möglich war - mit Muttermilch ernährt.

2.) Routinemäßige Pasteurisierung der Muttermilch

Während in der Neo-UKI in den Jahren 1997 bis 2001 die Muttermilch routinemäßig pasteurisiert wurde, war dies in der Neo-CCM nicht der Fall.

3.) Verwendung von Spendermilch

In beiden Kliniken wurde zum Zeitpunkt der Untersuchung Spendermilch verwendet.

D.2.2.2 Ernährungsregime

1.) Zeitpunkt des Beginns mit der Ernährung

Sowohl in der Neo-UKI als auch in der Neo-CCM wurde in allen vier Gewichtsgruppen am ersten Lebenstag mit der Ernährung begonnen.
2.) Häufigkeit der Mahlzeiten pro Tag

Die 501 bis 1000 g schweren Frühgeborenen wurden in Innsbruck sechs bis acht und die 1001 bis 1500 g schweren acht mal pro Tag ernährt. In Berlin wurde den leichten VLBW-Frühgeborenen (501 bis 750 g) dagegen zwölf mal pro Tag Nahrung zugeführt, während in den restlichen Gruppen acht mal pro Tag Nahrung gegeben wurde [Tabelle 8].

<table>
<thead>
<tr>
<th>Gewichtsgruppen</th>
<th>UKI</th>
<th>CCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>501 - 750 g</td>
<td>6 bis 8</td>
<td>12</td>
</tr>
<tr>
<td>751 - 1000 g</td>
<td>6 bis 8</td>
<td>8</td>
</tr>
<tr>
<td>1001 - 1250 g</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1251 - 1500 g</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

3.) Volumina zur routinemäßigen Steigerung der Nahrung während der ersten Lebenswoche

Die Steigerungsvolumina pro Mahlzeit unterschieden sich in der Neo-UKI und der Neo-CCM nicht wesentlich und sind in Tabelle 10 dargestellt.

4.) Art der Nahrungsgabe

In der Art der Nahrungsgabe unterschieden sich die beiden Kliniken nicht. Den VLBW-Frühgeborenen wurde die Nahrung jeweils als Bolus verabreicht.

5.) Temperatur der Nahrung

Sowohl in der Neo-UKI als auch in der Neo-CCM wurde in den Jahren 1997 bis 2001 die Nahrung mit einer Temperatur von 34°C verabreicht.

D.2.2.3 Magensonde und Prophylaxe im Magen-Darm-Trakt

1.) Durchschnittliche Liegedauer einer Magensonde

Während in Innsbruck eine Magensonde im Durchschnitt zwei Tage lag, waren es in Berlin vier bis sieben Tage.

2.) Prophylaktische Antimykotikagabe bei Lage einer Magensonde

In der Neo-UKI war es in den Jahren 1997 bis 2001 nicht üblich, bei Lage einer Magensonde prophylaktisch Antimykotika zu geben, während dies an der Neo-CCM durchgeführt wurde.
3.) Prophylaktische Antibiotikagabe bei Lage einer Magensonde

4.) Prophylaktische Antibiotikagabe zur Verhinderung einer NEC bei VLBW-Frühgeborenen
Es wurden weder in der Neo-UKI noch in der Neo-CCM von 1997 bis 2001 zur Prophylaxe der NEC Antibiotika verabreicht.

D.2.3 Infektionsmanagement

D.2.3.1 Blutkulturen

1.) Protokoll zur standardisierten Abnahme einer Blutkultur
Während in der Neo-UKI ein Protokoll zur standardisierten Abnahme einer Blutkultur existierte, war dies in der Neo-CCM in den Jahren 1997 bis 2001 nicht der Fall.

2.) Mindestmenge bei Abnahme von Blutkulturen
In der Neo-UKI wurde in den Jahren 1997 bis 2001 eine Mindestmenge von 0,5 ml bei der Entnahme einer Blutkultur in die Blutkulturflaschen gefüllt. In der Neo-CCM bestand zu dieser Zeit keine Regel für die Abnahme einer Mindestmenge.

3.) Anzahl der Blutkulturen bei Sepsisverdacht
Hier gab es keine Unterschiede zwischen Berlin und Innsbruck, in beiden Kliniken wurde eine Blutkultur bei Sepsisverdacht abgenommen.

4.) Abnahmeort bei liegendem Katheter
In beiden Kliniken wurden die Blutkulturen bei liegendem zentralvenösen Katheter von diesem abgenommen.

5.) Verwendung von sterilen Handschuhen bei Abnahme einer Kultur
D.2.3.2 Zentrale Zugänge und Blasenkatheter

1.) Verwendung von unterschiedlichen zentralen Zugängen bei VLBW-Frühgeborenen mit jeweiliger maximaler Liegedauer und Heparinprophylaxe


<table>
<thead>
<tr>
<th>Katheterart</th>
<th>Verwendung</th>
<th>max. Liegedauer [d]</th>
<th>Heparinprophylaxe [I.E./kg/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nabelvenen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neo-UKI</td>
<td>Ja</td>
<td>8</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Neo-CCM</td>
<td>Ja</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Nabelarterie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neo-UKI</td>
<td>Ja</td>
<td>10</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Neo-CCM</td>
<td>Ja</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>ZVK</td>
<td></td>
<td>keine Grenze</td>
<td>100</td>
</tr>
<tr>
<td>Neo-UKI</td>
<td>Ja</td>
<td>keine Grenze</td>
<td>100</td>
</tr>
<tr>
<td>Neo-CCM</td>
<td>Ja</td>
<td>keine Grenze</td>
<td>100</td>
</tr>
<tr>
<td>peripherer Katheter</td>
<td>Ya</td>
<td>keine Grenze</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Neo-UKI</td>
<td>Ja</td>
<td>keine Grenze</td>
<td>100</td>
</tr>
<tr>
<td>Neo-CCM</td>
<td>Ja</td>
<td>keine Grenze</td>
<td>50</td>
</tr>
</tbody>
</table>

- Maximale Liegedauer:


- Heparinprophylaxe:

Außer bei den zentralvenösen Zugängen, bei welchen beide Kliniken 100 I.E./kg/d Heparin applizierten, unterschieden sich die Neonatologien in ihrem Regime der Heparinprophylaxe deutlich. Die Neo-UKI applizierte mit 20 bis 30 I.E./kg/d weniger Heparin als die Neo-CCM, welche bei den Nabelkathetern 100 I.E./kg/d und bei peripheren Einschwemmkathetern 50 I.E./kg/d Heparin applizierte [Tabelle 10].
2.) Mikrobiologische Begutachtung einer ZVK-Spitze nach Entfernung des zentralvenösen Katheters


3.) Prophylaktische Gabe von Antibiotika bei liegendem ZVK

Eine prophylaktische Antibiotikagabe bei liegendem zentralvenösen Katheter wurde weder in Innsbruck noch in Berlin durchgeführt.

4.) Prophylaktische Gabe von Antibiotika bei liegendem Blasenkatheter


D.3 Bilanz: Erfassung der internen Handlungsrichtlinien


Im Bereich Nahrung und Ernährung konnten Unterschiede in der Handlungsweise bei der routinemäßigen Pasteurisierung der Muttermilch festgestellt werden. Weiterhin unterschied sich die Anzahl der Mahlzeiten pro Tag in der Gruppe der 501 bis 750 g schweren Kinder. Differenzen ergaben sich auch in der durchschnittlichen Liegedauer einer Magensonde und der prophylaktischen Antimykotikagabe bei liegender Magensonde.

Im Bereich Infektionen und Infektionsmanagement zeigten sich unterschiedliche Handlungsweisen bei der Abnahme von Blutkulturen (Existenz eines standardisierten Protokolls und Mindestmenge), bei den Liegezeiten von Nabelvenen- und Nabelarterienzugang sowie bei der Heparinprophylaxe bei peripherem Einschwemmkgatheter, Nabelvenen- und Nabelarterien-
zugang. Ein weiterer Unterschied ergab sich bei liegendem Blasenkatheter. Hier wurden in Berlin zur Prophylaxe Antibiotika verabreicht und in Innsbruck nicht.


<table>
<thead>
<tr>
<th>Respiratorische Interventionen und Handlungsrichtlinien</th>
<th>Neo-UKI</th>
<th>Neo-CCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂-Supplementation im Kreißsaal [% der behandelten Frühgeborenen]</td>
<td>98 – 100 %</td>
<td>79 – 96 %</td>
</tr>
<tr>
<td>O₂-Supplementation auf Station [% der behandelten Frühgeborenen]</td>
<td>92 – 98 %</td>
<td>78 – 91%</td>
</tr>
<tr>
<td>Detektion von Hypoxie [unterer Grenzwert der pulsoximetrischen Sauerstoffsättigung]</td>
<td>85 %</td>
<td>88 %</td>
</tr>
<tr>
<td>Detektion von Hyperoxie [unterer Grenzwert der pulsoximetrischen Sauerstoffsättigung]</td>
<td>92 %</td>
<td>95 %</td>
</tr>
</tbody>
</table>

| Nahrung und Ernährung | | |
|-----------------------|------------------|
| Routine mäßige Pasteurisierung | Ja | Nein |
| Anzahl der Mahlzeiten pro Tag (501 – 750 g Kinder) | 6 bis 8 | 12 |
| Liegedauer einer Magensonde | 2 Tage | 4 bis 7 Tage |
| Prophylaktische Antimykotikagabe bei Magensonde | Nein | Ja |

| Infektionsmanagement | | |
|----------------------|------------------|
| Standardisiertes Protokoll zur Blutkulturabnahme | Ja | Nein |
| Mindestmenge bei Blutkulturabnahme | Ja: 0,5 ml | Nein |
| maximale Liegedauer bei zentralen Zugängen: | | |
| Nabelvene | 8 Tage | 2 Tage |
| Nabelarterie | 10 Tage | 7 Tage |

| Heparinprophylaxe bei zentralen Zugängen: | | |
| Nabelvene | 20 – 30 I.E./kg/d | 100 I.E./kg/d |
| Nabelarterie | 20 – 30 I.E./kg/d | 100 I.E./kg/d |
| Peripherer Einschwemmkatheter | 20 – 30 I.E./kg/d | 50 I.E./kg/d |
| Antibiotikaprophylaxe bei liegendem Blasenkatheter | Nein | Ja |
| Thrombozyten-Grenzwert für Transfusionen | 50.000/μl | 20.000/μl |
E Diskussion


E.1 Respiratorische Morbidität

Die Inzidenz des Atemnotsyndroms unterscheidet sich zwischen den beiden untersuchten Kliniken deutlich. Während ungefähr 40 bis 50 % der Kinder in der Neo-CCM ein ANS aufwiesen, lag die Inzidenz in der Neo-UKI meist bei über 80 %. Während die Neo-UKI deutlich über dem Mittel des VONN (72 %) lag, entspricht die niedrige Inzidenz des ANS der Neo-CCM einem „Exzellenz“-Parameter [Abb. 3]. Um die klinische Relevanz dieser Unterschiede zu erfassen, werden mögliche Ursachen, resultierende Konsequenzen sowie die Definition des Atemnotsyndroms in der jeweiligen Klinik diskutiert.

E.1.1 Kritische Evaluation

Das VONN definiert das ANS als vorliegend, wenn der PaO₂ bei Raumluft kleiner als 50 mmHg ist und eine zentrale Zyanose besteht oder wenn das Kind eine zusätzliche Sauerstoff-supplementation benötigt, um den PaO₂ größer als 50 mmHg zu erreichen beziehungsweise zu halten. Zusätzlich muss ein Thoraxröntgenbild vorhanden sein, welches die Diagnose durch einen geringen Luftgehalt der Lunge und retikulogranuläre Veränderungen in der Lunge mit oder ohne einem positivem Luftbronchogramm bestätigt. Da das ANS hier sehr klar definiert wurde, müßte theoretisch davon ausgegangen werden, dass in beiden Kliniken nach dieser Definition die Daten identisch erfasst wurden, so dass die Unterschiede nicht auf einer unterschiedlichen Definition beruhen sollten. Ein Problem stellt die frühe Surfactantgabe im Kreißsaal dar, da häufig vor der Gabe kein Röntgenbild angefertigt wird und somit ein späteres Röntgenbild weniger aussagekräftig ist. Allerdings ist die Indikation zur Surfactantgabe ein Indiz für das Vorliegen eines ANS, so dass bei der heutigen Therapie-beziehungsweise Präventionsstrategie
die Diagnose eines ANS oft retrospektiv gestellt wird. Somit sind Unterschiede in der Diagnosestellung trotz klarer Definition des VONN zwischen den beiden Kliniken gut möglich.\textsuperscript{70}

**E.1.2 Betrachtung der Handlungsrichtlinien**

**E.1.2.1 Prä- und perinatale Versorgung der Frühgeborenen**

Ein ANS bei Frühgeborenen beruht auf einem Mangel des pulmonalen Surfactant. Ursächlich für den Surfactantmangel ist die Unreife der Frühgeborenen. Allerdings unterscheidet sich die Patientencharakteristik zwischen den beiden Kliniken nicht [Tabelle 4 und 5], so dass die Unterschiede in der ANS-Inzidenz nicht dadurch erklärbar wären. Des Weiteren finden sich die Unterschiede der Inzidenz des ANS zwischen beiden Kliniken auch innerhalb der jeweiligen Gewichtsgruppen [Abb. 4].

Zahlreiche klinische Studien konnten nachweisen, dass durch pränatale Lungenreifeinduktion die Inzidenz des ANS gesenkt werden kann. Entsprechend einer Metaanalyse reduziert die pränatale Steroidgabe das relative Risiko eines ANS um 8\% (Odds Ratio: 0.53; 95\% Kofindenzintervall 0.44 bis 0.63).\textsuperscript{16} Da im Rahmen der Erhebung des VONN auch die Angaben zur pränatalen Lungenreifeinduktion erfasst werden, konnten diese Angaben zwischen beiden Einrichtungen verglichen werden. Wie Abbildung 1 zeigt, fanden sich bezüglich der Häufigkeit der pränatalen Lungenreifeinduktion keine Unterschiede zwischen den Kliniken. Die pränatale Lungenreifeinduktion scheint daher nicht Ursache der unterschiedlichen Inzidenz des ANS zu sein.

Häufig führt auch die Geburt außerhalb eines Perinatalzentrums zu einer nicht optimalen Versorgung der Frühgeborenen, welche mit einer steigenden Inzidenz des Atemnotsyndroms einhergeht. Die Inborn-Rate lag in beiden Kliniken jedoch weit über dem Durchschnitt des VONN und zeigte keine relevanten Unterschiede zwischen den beiden Einrichtungen (Neo-UKI: 96\%, Neo-CCM: 98\%).

E.1.2.2 Erstversorgung der Frühgeborenen

Das Fehlen des pulmonalen Surfactant führt postnatal zu einer respiratorischen Insuffizienz, welche Sauerstoffsupplementation und mechanische Beatmung notwendig macht. Um die respiratorische Insuffizienz zu therapiere, kann das fehlende Surfactant durch exogenes Surfactant substituiert werden.

Vergleicht man die Häufigkeit der Sauerstoffapplikation beider Einrichtungen und des VONN, so ergibt sich, dass in Innsbruck prozentual mehr VLBW-Frühgeborene sowohl im Kreißsaal als auch später auf Station mit Sauerstoff versorgt wurden [Abb. 22 und 23]. Bezüglich Surfactantsubstitution zeigt sich für die Surfactantgabe direkt im Kreißsaal wie auch für die Surfactantgabe insgesamt, dass die Neo-UKI durchschnittlich mehr Kindern Surfactant gab als die Neo-CCM [Abb. 39 und Abb. 30,]. Weiterhin therapierte die Neo-UKI in den untersuchten Jahren in allen Gewichtsgruppen bei Notwendigkeit von Surfactantgabe innerhalb der ersten 50 Minuten, während in der Neo-CCM in manchen Fällen erst nach 2 bis 4 Stunden Surfactant gegeben wurde [Abb. 31]. Hier könnte eine mögliche Ursache für eine unterschiedliche Häufigkeit in der Diagnosestellung liegen. Da, wie bereits besprochen, bei Intubation und Surfactantgabe im Kreißsaal noch kein Röntgenbild vorliegt, stellt sich die Frage, ob eine eher „prophylaktische“ Surfactantgabe automatisch die Diagnose eines ANS nach zieht.

Verschiedene Metaanalysen haben gezeigt, dass eine frühe Surfactantgabe sinnvoll ist: Sie scheint bei ersten Anzeichen (innerhalb der ersten zwei Lebensstunden) eines ANS im Gegensatz zu einer verzögerten Gabe (bei voller Entwicklung eines ANS) ein verbessertes Outcome mit sich zu bringen (Pneumothorax: relatives Risiko (RR) 0.70, 95 % Konfidenz-intervall (KI) 0.59 bis 0.82; bronchopulmonale Dysplasie: RR 0.70, 95 % KI 0.55 bis 0.88; neonatale Mortalität RR 0.87, 95 % KI 0.77 bis 0.99). Stevens et al. überprüften die frühe Surfactantgabe zusammen mit kurzer maschineller Beatmung (unter 1 h), gefolgt von einer frühen Extubation im Vergleich zu einer späteren Surfactantgabe. Es zeigte sich, dass Kinder mit einem ANS bei einer frühen Surfactantgabe und nasalem CPAP weniger maschinelle Beatmung benötigten als Kinder mit nasalem CPAP und später Surfactantgabe. Des Weiteren scheint eine Surfactantprophylaxe bei VLBW-Frühgeborenen, welche ein hohes Risiko haben, ein ANS zu entwickeln, ein verbessertes Outcome im Vergleich zu einer selektiven Surfactantgabe bei bereits entwickeltem ANS zu haben (Pneumothorax: RR 0.62, 95 % KI 0.42 bis 0.89; BPD: RR 0.96, 95 % KI 0.82 bis 1.12; neonatale Mortalität: RR 0.61, 95 % KI 0.48 bis 0.77).

Zusammenfassend ist die frühe Gabe von Surfactant bei Frühgeborenen von Vorteil. Sollte sich daraus eine „höhere“ Inzidenz des ANS ergeben (wenn alle Kinder mit Surfactantgabe die
Diagnose ANS erhalten), so ist das an sich zunächst unproblematisch. Von Interesse ist, ob sich im weiteren Vorgehen beziehungsweise Outcome Unterschiede ergeben.

E.1.2.3 Weitere Versorgung der Frühgeborenen

Ein Vergleich der Beamtungsstrategien der beiden Kliniken zeigte, dass in der Neo-UKI (55 bis 86 %) im Kreißsaal durchschnittlich weniger Kinder eine Maskenbeatmung erhielten als in der Neo-CCM (76 bis 90 %) [Abb. 24], dagegen aber in beiden Kliniken ungefähr gleich viele VLBW-Frühergeborene im Kreißsaal intubiert wurden (Neo-UKI: 37 bis 57 %, Neo-CCM: 43 bis 54 %) [Abb. 25]. Die weitergehende Beatmung auf Station wurde in beiden Kliniken ebenfalls relativ ähnlich durchgeführt. Der CPAP wurde in Innsbruck bei durchschnittlich 76 % der Kinder verwendet, und damit etwas seltener als in der Neo-CCM (81 %) [Abb. 26]. Während in der Neo-UKI weiterhin etwas weniger maschinell beatmet wurde als in der Neo-CCM (Neo-UKI: 61 %, Neo-CCM: 68 %) [Abb. 27], wurde dort dagegen die Hochfrequenzbeatmung mehr als in der Neo-CCM genutzt (Neo-UKI: zu Beginn bei 29 % der Patienten, dann zwischen 5 und 8 %, Neo-CCM: nur ein Patient in der gesamten Zeit) [Abb. 28]. Insgesamt zeigt sich jedoch, dass für die Beamtungsstrategien der beiden Kliniken keine relevanten Unterschiede und keine Beziehung zur hohen Häufigkeit des ANS in Innsbruck gefunden werden können.


Während die Neo-UKI erst bei einer Sauerstoffättigung von 85 % von einer Hypoxie sprach, war dies in der Neo-CCM schon bei einer Sauerstoffättigung von 88 % der Fall. Bei der Hyperoxie setzte Innsbruck mit einer Sauerstoffättigung von 92 % einen strengere Grenzwert als Berlin mit einem Grenzwert von 95 %. Um diese Werte zu erreichen, wurde in der Neo-CCM wahrscheinlich mehr Sauerstoff substituiert als in der Neo-UKI. Da die Inzidenz der BPD jedoch in der Neo-CCM nicht höher lag, scheint dieser Unterschied nicht relevant zu sein. Offen ist jedoch, ob die niedrigeren O₂-Werte in der Neo-UKI mit einer Gefahr, z. B. einer hypoxischen Hirnschädigung, einhergehen. Die Datenlage in der Literatur bezüglich „optimaler“ Grenzwerte ist nicht schlüssig, jedoch sind entsprechende klinische Studien derzeit in der Planung.
beziehungsweise Durchführung. Die Daten aus dem vorliegenden Vergleich Innsbruck – Berlin erlauben keine Aussagen, welche Grenzwerte zu bevorzugen sind.

E.1.3 Bilanz: respiratorische Morbidität

Zu unterscheiden ist zwischen der Prophylaxe eines Atemnotsyndroms und seiner Therapie. Der wichtigste Faktor in der Prophylaxe des ANS stellt die antenatale Gabe von Steroiden dar. Die unmittelbare Surfactantgabe bei Anzeichen eines ANS ist die Therapie der Wahl.\textsuperscript{59} Da beide Kliniken zufriedenstellende Ergebnisse bei der Gabe von antenatalen Steroiden und der Inborn-Rate zeigen sowie keine relevanten Unterschiede in der Inzidenz der BPD aufweisen und Innsbruck jeweils eine sehr frühzeitige Surfactantgabe durchführte, bleibt die Frage offen, warum die Neo-UKI eine höhere Inzidenz des Atemnotsyndroms aufweist.


Es bleibt zu vermuten, dass für die Unterschiede zwischen den Häufigkeiten des ANS in Berlin und Innsbruck die Ursache in der Diagnosestellung zu suchen ist.

E.2 Gastrointestinale Probleme

Im Rahmen der vorliegenden Arbeit wurden spezielle gastrointestinale Probleme Frühgeborener wie die nekrotisierende Enterokolitis untersucht. Dabei zeigte sich, dass die Neo-CCM in den untersuchten Jahren eine Inzidenz im Bereich der Interquartilldistanz des VONN erreichte und mit einer Häufigkeit der NEC zwischen 3 und 8 \% durchschnittliche Werte zeigte. Die Neo-UKI dagegen weist in drei von vier untersuchten Jahren mit einem Auftreten der NEC bei 10 bis 12 \% der Frühgeborenen eine hohe Inzidenz (oberhalb des 80. Perzentils) und damit einen „Problem“-Parameter auf. Um die Ursachen der unterschiedlichen Häufigkeit der NEC zu
erfassen, ist zunächst die verwendete Definition kritisch zu hinterfragen. Außerdem sind mögliche Ursachen sowie resultierende Konsequenzen zur Vermeidung und Prophylaxe der NEC zu diskutieren.

**E.2.1 Kritische Evaluation**

Das VONN spricht von einer nekrotisierenden Enterokolitis, wenn einer oder mehrere der folgend genannten klinischen Faktoren zutreffen:

1. galliges Magenaspirtat oder galliges Erbrechen,
2. abdominelle Distension,
3. okkultes oder sichtbares Blut im Stuhl

und wenn zusätzlich ein oder mehrere radiologische Befunde vorliegen wie:

1. Pneumatosis intestinalis,
2. hepatobiliäre Luft,
3. Pneumoperitoneum.

Da diese Definition vom VONN klar vorgegeben wurde, sollten sich unterschiedliche Definitionen als Ursache für die unterschiedliche Inzidenz im Bereich der gastrointestinalen Probleme eher ausschließen lassen.

**E.2.2 Betrachtung der Handlungsrichtlinien**

**E.2.2.1 Ursache der NEC**

APGAR-Index und einer erhöhten Inzidenz der NEC zu. Dieser sollte in Zukunft eventuell als mögliche Ursache für Unterschiede mit einbezogen werden.

Das ANS scheint in manchen Fällen ein möglicher Risikofaktor für die nekrotisierende Enterokolitis zu sein. Somit muss die Frage gestellt werden, ob die erhöhte Inzidenz der NEC in Innsbruck eventuell Folge der erhöhten Inzidenz des ANS sein könnte. Dabei wäre zunächst zu prüfen, ob die Kinder mit ANS auch die Frühgeborenen waren, welche eine NEC hatten.

**E.2.2.2 Muttermilchpasteurisierung**


Pathophysiologisch ließe sich vermuten, dass durch die Pasteurisierung der Muttermilch nicht nur pathogene Bakterien und Viren (z. B. Cytomegalievirus) abgetötet werden, sondern auch Bakterien, die die physiologische Besiedlung der Neugeborenen-Darmflora fördern. Des Weiteren stellt sich die Frage, ob die Pasteurisierung einen nachteiligen Effekt auf die Übertragung von immunoprotektiven und bioaktiven Substanzen (z. B. Immunglobuline, Lysozym, Laktoferrin, Makrophagen, Lymphozyten, Neutrophile, IL-6, IL-10, TNF-α, Erythropoetin und viele weitere) hat, welche in der frischen Muttermilch enthalten sind. In einer Tierstudie mit Ratten hat sich gezeigt, dass dieser protektive Effekt der Brustmilch durch Einfrieren und Auftauen der Rattenmuttermilch nicht verloren ging, eine Pasteurisierung der Muttermilch wurde dort aber nicht untersucht.

In einer Metaanalyse von McGuire zeigt sich für die Ernährung mit Muttermilch im Vergleich zur Formula-Nahrung ein signifikant reduziertes relatives Risiko an einer NEC zu erkranken (RR 0.34; 95 % KI 0.12 bis 0.99). Dies würde ebenfalls dafür sprechen, dass in der Muttermilch wichtige Faktoren zur Prophylaxe der NEC vorhanden sind, welche durch Pasteurisieren verloren gehen können.

Die in der vorliegenden Studie gefundene Assoziation von NEC und Pasteurisierung der Muttermilch sollte in weiteren klinischen Studien untersucht werden. Auch im Hinblick auf die
Pasteurisierung der Muttermilch zur Prävention einer Infektion mit Cytomegalieviren sollte dieser Aspekt Beachtung finden.\textsuperscript{20}

**E.2.2.3 Ernährung (Häufigkeit und Menge)**

Eine weitere wichtige Rolle im Bereich Ernährung von VLBW-Frühgeborenen spielen Nahrungsbeginn, Nahrungshäufigkeit pro Tag und Steigerungsvolumina zum Nahrungsaufbau. In der Neo-UKI wurde in der Gewichtsgruppe 501 bis 750 g den VLBW-Frühgeborenen sechs bis acht mal pro Tag Nahrung gegeben, wogegen in den untersuchten Jahren die Kinder dieser Gruppe in der Neo-CCM 12 Mahlzeiten pro Tag erhielten. In den anderen Gruppen führten beide Kliniken acht mal pro Tag Nahrung zu [Tabelle 8].

Die Nahrungshäufigkeit und das jeweils gegebene Volumen nehmen Einfluss auf die Zeitdauer, bis ein Kind komplett oral ernährt werden kann. Ein frühzeitiger Nahrungsaufbau mit Steigerungsvolumina von 20 bis 30 ml/kg/d scheint im Gegensatz zu einem verzögerten Nahrungsaufbau oder einem Nahrungsaufbau mit großen Volumina ein geringeres Risiko für eine NEC zu haben.\textsuperscript{7} Beide Kliniken beginnen in allen Gewichtsgruppen am ersten Tag mit der Ernährung und zeigen die gleichen Steigerungsvolumina je nach Gewichtsgruppe von 5 bis 20 ml/kg/d [Tabelle 9]. Es unterscheidet sich also nur die Anzahl der Mahlzeiten pro Tag in der Gewichtsgruppe der 501 bis 750 g schweren Frühgeborenen.

In der aktuellen Literatur finden sich unterschiedliche Meinungen darüber, wie häufig pro Tag ernährt werden sollte:

Laut Ziegler \textit{et al.} sollte mit der Ernährung der VLBW-Frühgeborenen innerhalb der ersten 24 Stunden begonnen werden und dann alle sechs oder am besten alle drei Stunden (acht mal pro Tag) Nahrung in kleinen Volumina zugeführt werden (1 bis 2 ml/Nahrungseinheit).\textsuperscript{73}

Berseth \textit{et al.} zeigten für eine Gabe von kleinen Volumina während einer zweistündigen Infusion und einer folgenden zweistündigen Nahrungspause für ein Ernährungsregime mit sechs Nahrungseinheiten pro Tag eine geringere Inzidenz der NEC im Gegensatz zu einer höheren Inzidenz bei Nahrungsvolumen mit mehr als 100 ml/kg/d.\textsuperscript{7}

Salhotra \textit{et al.} wählten dagegen eine Ernährung mit intermittierender nasogastrischer Bolusgabe in Zwei-Stunden-Intervallen (12 mal pro Tag).\textsuperscript{50}

Zwei aktuelle Cochrane Reviews zeigen allerdings, dass im Bereich Nahrung und Ernährung die gefundenen Unterschiede der untersuchten Studien teilweise keine Signifikanz aufwiesen, die Patientenpopulationen zu klein waren oder sich keine Unterschiede in der Inzidenz der NEC zeigten und weitere Forschung in diesem Bereich benötigt wird.\textsuperscript{27,44}
Da die Neo-CCM eine geringere Inzidenz der NEC als die Neo-UKI aufweist, muss weiter untersucht werden, ob das Ernährungsregime der Neo-CCM mit einer Nahrungsgabe von 12 Einheiten pro Tag bei den kleinsten VLBW-Frühgeborenen zu einer Senkung der Inzidenz in Innsbruck führen könnte. Denn in dieser Gewichtsgruppe zeigt die Neo-UKI auch ihre höchste Inzidenz an nekrotisierender Enterokolitis [Abb. 11].

**E.2.2.4 Liegedauer bei liegender Magensonde**


Die Literatursuche erbrachte lediglich eine Arbeit, die sich unter anderem (allerdings nicht direkt im Zusammenhang mit der Inzidenz einer NEC) mit der Liegedauer von Magensonden beschäftigte: Moro et al. untersuchten Risikofaktoren für eine nosokomiale Infektion und fanden für eine Liegezeit einer Magensonde länger als fünf Tage kein erhöhtes Risiko, an einer Sepsis zu erkranken.36 Für einen direkten Zusammenhang der Inzidenz einer NEC mit der Liegedauer einer Magensonde existieren keine Arbeiten. Es bleibt die Frage offen, ob eine längere Liegedauer von vier bis sieben Tagen (Neo-CCM) im Vergleich zu 2 Tagen (Neo-UKI) zu einem besseren Ergebnis führen kann. In Anbetracht der Tatsache, dass inzwischen beide Kliniken teilweise mit neuen Langzeitsonden arbeiten, müsste jedoch eine neue Untersuchung erfolgen.

**E.2.2.5 Prophylaktische Antimykotikagabe bei liegender Magensonde**


Eine Arbeit von Kaufman aus dem Jahr 2001 untersuchte die Prophylaxe fungaler Infektionen durch Antimykotika bei VLBW-Frühgeborenen unter 1000 g.26 Risikofaktoren scheinen zentralvenöse Katheter und Endotrachealtuben zu sein. Das Risiko in Bezug auf Magensonden wurde

Eine Cochrane Review aus dem Jahr 2003 zeigt, dass eine prophylaktische Gabe von Fluconazol intravenös die Mortalität bei VLBW-Frühgeborenen senkt. Allerdings ist das 95 % Konfidenzintervall für den Effekt bezüglich der Mortalität weit (die „number needed to treat“ um einen Tod zu verhindern liegt zwischen 5 und 50).\(^{34}\) Es findet sich in der aktuellen Literatur wie beschrieben ein Hinweis, dass die Prophylaxe mit Antimykotika die Mortalität und Morbidität senkt. Zur Frage, ob eine Prophylaxe mit Antimykotika bei Lage einer Magensonde einen positiven Effekt auf die Inzidenz der NEC hat, sind bisher keine Daten vorhanden und es sind weitere Untersuchungen notwendig.

**E.2.3 Bilanz: gastrointestinale Probleme**


**E.3 Bakterielle Infektionen**

Infektionen bieten sich gut für ein Benchmarking an. Eine entsprechende Initiative zur Senkung der Infektionsrate besteht bereits im Rahmen des Neo-KISS (Surveillance System nosokomialer Infektionen für Frühgeborene auf Intensivstationen), an welchem beide Kliniken inzwischen teilnehmen. Die in diesem Kapitel diskutierten Punkte könnten daher in einer Analyse im Neo-KISS näher untersucht werden.

In der vorliegenden Arbeit wurden die bakteriellen Infektionen bei Frühgeborenen betrachtet, wobei im Speziellen die Frühsepsis und die Spätsepsis untersucht wurden. Die beiden Kliniken

**E.3.1 Kritische Evaluation**


Es könnte sein, dass in Fällen, wo koagulase negative Staphylokokken und ebenso ein anderer Erreger der Liste „*Bacterial Pathogen*“ gefunden wurden, diese manchmal versehentlich beide angegeben wurden, und somit die Inzidenz an Infektionen mit koagulase negativen Staphylo kokken im Vergleich zur Gesamtpopulation des VONN künstlich durch die Datenerfassung erhöht wurde. Dies lässt sich rückblickend jedoch für die untersuchten Jahre nicht mehr feststellen, könnte aber mitverantwortlich für die hohe Inzidenz an bakterieller Sepsis in Innsbruck und Berlin sein. Dieser Punkt sollte in Zukunft bedacht werden. Weiterhin ist zu

E.3.2 Betrachtung der Handlungsrichtlinien

E.3.2.1 Ursachen von bakteriellen Infektionen

Zunächst muss bei den bakteriellen Infektionen zwischen Früh- und Spätsepsis unterschieden werden, da diese jeweils durch unterschiedliche Erregerstämme verursacht werden.

1.) Frühsepsis

Da beide Kliniken eine erhöhte Inzidenz der frühen bakteriellen Sepsis aufweisen, ist eine Verbesserung in diesem Bereich gefordert. Ursache der Frühsepsis sind Infektionen, welche noch in utero (z. B. früher Blasensprung) oder während des Geburtsvorganges entstehen. Verantwortlich sind dabei von der Mutter auf das Kind übertragene Keime. Die Hauptkeime der Infektionen der ersten drei Lebenstage sind Streptokokken der Gruppe B und Escherichia coli.1,62,63

Während früher Infektionen mit Streptokokken B den Hauptteil der Erreger bei einer frühen Sepsis ausmachten, scheint sich dies in den letzten Jahren geändert zu haben. Stoll et al. fanden in randomisierten klinischen Studien eine deutliche Verringerung der Streptokokken B assoziierten Infektionen. Dagegen stieg die Inzidenz der early-onset Infektionen mit Escherichia coli Bakterien signifikant an (die Rate an B Streptokokken Infektionen sank von 5,9 pro 1000 Frühgeborenen auf 1,7 und stieg für Escherichia coli Infektionen von 3,2 auf 6,8 pro 1000 Frühgeborenen).63 Der Grund für diese Veränderung ist unbekannt, sie wird aber hauptsächlich seit Einführung der Antibiotikaprophylaxe während der Geburt bei Strep- tokokken B infizierten Müttern beobachtet. Eine Ampicillin-Prophylaxe scheint zu einer signifikanten Senkung der Inzidenz von Infektionen mit Streptokokken der Gruppe B (Senkung der Inzidenz von 2,76 Fälle auf 0,21 Fälle pro 1000 Lebendgeburten; p < 0.0001) zu führen, wobei diese Prophylaxe die Inzidenz der Infektionen durch Escherichia coli Bakterien nicht steigerte.1 Allerdings fand sich besonders für unreife Frühgeborene (76,5 %) im Vergleich zu term geborenen Kindern (56,5 %) eine hohe Inzidenz von ampicillin-resistenten Escherichia coli Infektionen, so dass die
Antibiotikaprophylaxe bei Risikomüttern mit drohender Frühgeburt eines VLBW-Kindes kritisch betrachtet werden sollte.1

Die Daten des VONN geben weder Auskunft über die Erregerart der early-onset Infektionen, noch darüber, ob eine Antibiotikaprophylaxe durchgeführt wurde. Daher sollte eine weiterführende Studie das Erregerspektrum der early-onset Sepsis in der jeweiligen Einrichtung detailliert untersuchen. Außerdem sollten die Gynäkologen der jeweiligen Klinik mit einbezogen und die derzeitige Handlungsweise bei Risikoentbindungen diskutiert werden.63

2.) Spätsepsis


E.3.2.2 Blutkulturabnahme


In der Literatur finden sich verschiedene Untersuchungen zur Verbesserung der Hygiene auf den Stationen und zur Senkung der Inzidenz von nosokomialen Infektionen durch Einführung von neuen Techniken anhand von standardisierten Protokollen.28;38 So scheint die Einführung eines neuen Protokolls zur Kombination von alkoholischer Händedesinfektion und Handschuhbenutzung eine Senkung der Inzidenz von late-onset Infektionen, eine signifikante Senkung von

Seite 76
Infektionen durch MRSA-Keime (Methicillin-restistente Staphylokokkus aureus Stämme) und eine Senkung der Inzidenz der nekrotisierenden Enterokolitis mit sich zu bringen.\textsuperscript{38}

Kilbride et al. konnten durch die Einführung von standardisierten Protokollen zur Handhygiene und dem Management von Zugängen anhand von „potentially-better-practices“ die Inzidenz von koagulase negativen Staphylokokken Bakteriämien senken.\textsuperscript{28}

Auch wenn in beiden Fällen vermutlich die jeweiligen Veränderungen in den Handlungsweisen hauptsächlich für die Senkung der Inzidenz verantwortlich sind, so werden diese durch die Einführung eines standardisierten Protokolls mit festgelegten Handlungsanweisungen festgesetzt und zur Durchführung gebracht. Somit liefern Protokolle einen wesentlichen Beitrag zur Verbesserung der Qualität. Aus diesem Grunde wurde in Berlin ein standardisiertes Protokoll zur Blutkulturabnahme inzwischen eingeführt. Die Wirkung auf die Inzidenz von bakteriellen Infektionen ist jedoch noch zu evaluieren.

Ein weiterer Parameter, welcher einen Einfluss auf die Inzidenz von bakteriellen Infektionen hat, ist die Menge, die bei einer Blutkulturabnahme entnommen wird. In der Neo-UKI wurde eine Mindestmenge von 0,5 ml abgenommen. In der Neo-CCM gab es keine festgelegte Mindestmenge während der untersuchten Jahre. Eine zu kleine Menge führt häufig zu einer hohen Rate an falsch negativen Blutkulturen, während die Abnahme eines Volumens von 2 ml bei sehr kleinen Frühgeborenen schon ca. 4 bis 5 % des gesamten Körpervolumens ausmacht.

Es muss also ein Kompromiss gefunden werden mit einer für die VLBW-Frühgeborenen verkraftbaren Menge, welche gleichzeitig auf der anderen Seite eine nicht zu hohe Rate an falsch negativen Ergebnissen mit sich bringt. So erscheint eine Abnahme von 1 ml als optimale Menge bei der Abnahme von Blutkulturen bei VLBW-Frühgeborenen.\textsuperscript{28}

Schelonka et al. zeigen, dass bei einer Bakteriämie mit sehr wenigen Kolonien pro Blutkultur, sogenannten „low-colony-count-bacteremia“, mit 1 bis 3 CFU/ml (colony forming units/ml) mindestens 1 ml Blut abgenommen werden sollte, da bei einer Menge kleiner oder gleich 0,5 ml 60 % der Kulturen falsch negativ ausfallen. Während die Wahrscheinlichkeit, in einer Blutkultur von 0,5 ml bei einer Dichte von 4 CFU/ml eine oder mehrere Organismen zu haben, bei 87 % liegt, ist dies bei einem Volumen von 1 ml bei 98 % der Fall.\textsuperscript{52}

Da inzwischen die Ärzte der Neo-CCM ebenfalls eine Mindestmenge von 0,5 bis 1 ml bei Blutkulturen abnehmen, würde sich ein neuer Vergleich anbieten. Es sollte untersucht werden, ob eine Mindestmenge von 1 ml bei Abnahme einer Blutkultur zu einer Verbesserung der Versorgung der VLBW-Frühgeborenen führen kann und einen Vorteil gegenüber einer geringeren Menge darstellt.
E.3.2.3 Liegedauer zentraler Zugänge


Zentrale Zugänge stellen für die VLBW-Frühgeborenen mit die größten Risiken für eine nosokomiale Infektion dar, dabei spielt die Liegedauer der jeweiligen Katheterart eine bedeutende Rolle. Auf der einen Seite erhöht sich bei einer langen Liegezeit die Gefahr einer nosokomialen Infektion durch eine Katheterbesiedlung, auf der anderen Seite stellt jede erneute Prozedur (Legen eines neuen Katheters) ebenfalls ein gewisses Risiko für nosokomiale Infektionen dar.


Um die Infektionen in beiden Kliniken zu minimieren, sollte die Assoziation der jeweiligen Katheterart und ihrer Liegezeiten mit einer folgenden nosokomialen Infektion genauer untersucht werden. Es könnte die Verkürzung der Liegezeiten von Nabelkathetern auf fünf Tage in Betracht gezogen werden. Weitere Möglichkeiten zur Senkung der Inzidenz nosokomialer Infektionen könnten die Nutzung von antibakteriell beschichteten Kathetern oder die antibiotische „lock“- oder „flush“-Technik (eine Heparin- und Vancomycinspülung für den Katheter, welche die Besiedlung des Katheters mit Bakterien verhindern soll) sein.
E.3.2.4 Heparinisierung

Bei liegendem Nabelkatheter wurden während der untersuchten Jahre zur Prophylaxe einer Thrombose in der Neo-UKI jeweils 20 bis 30 I.E./kg/d Heparin appliziert, während es in der Neo-CCM jeweils 100 I.E./kg/d waren. Bei zentralvenösen Zugängen wurden in beiden Kliniken 100 I.E./kg/d gegeben. Ein Unterschied zeigte sich bei den peripheren Einschwemmkkathetern, während in der Neo-UKI nur 20 bis 30 I.E./kg/d appliziert wurden, waren es in der Neo-CCM 50 I.E./kg/d [Tabelle 10].

Die Heparinisierung von zentralen Zugängen soll die Thrombosierung des Katheters verhindern und kann eventuell der Katheterbesiedlung mit nosokomialen Erregern vorbeugen. Eine mögliche Gefahr bei einer zu hohen Dosis an Heparin stellen Hämorrhagien besonders im zentralen Nervensystem dar.

Es fand sich eine Metaanalyse, welche die Ergebnisse von sechs Studien zusammenfasst. Durch eine Heparinisierung via Nabelarterienkatheter konnte eine Katheterokklusion verhindert und die Nutzungsdauer verlängert werden. Als minimale effektive Konzentration wurden dort 0,25 I.E. Heparin pro appliziertem Milliliter gefunden. Umgerechnet entspricht dies bei einem Flüssigkeitsbedarf eines VLBW-Frühgeborenen von 150 ml/kg/d circa 37,5 I.E./kg/d.

Eventuell könnte in Berlin eine geringere Menge an Heparin bei liegendem Nabelarterienkatheters appliziert werden. Da die Klinik aber keine erhöhte Inzidenz an intraventrikulärer Hämorrhagie aufweist, scheint die bisher gegebene Menge keine nachteiligen Effekte mit sich zu bringen. Die Neo-CCM erwägt allerdings zur Zeit eher eine Erhöhung der Heparinisierung bei Lage von venösen Kathetern, da sich eine zunehmender Thrombosierungsneigung bei liegenden venösen Kathetern gezeigt hat. Da die Datenlage für venöse Katheter unzureichend ist und keine Aussage dazu gemacht werden kann, bleibt dieser Punkt strittig.

Eventuell wäre ein Vergleich beider Kliniken bezüglich der Vor- und Nachteile (Hämorrhagien, Thrombosen) einer hohen beziehungsweise einer niedrigen Heparindosis interessant. Dabei sollten insbesondere die mit den zentralen Kathetern assoziierten Komplikationen untersucht werden.

E.3.2.5 Antibiotikaprophylaxe bei liegendem Blasenkatheter

Eine Eintrittspforte für nosokomiale Erreger stellt unter anderem der Blasenkatheter dar. Daher wurde untersucht, ob in den Kliniken eine Antibiotikaprophylaxe bei liegendem Blasenkatheter durchgeführt wurde. Während in der Neo-CCM nach Legen eines Blasenkatheters routinemäßig eine Antibiotikaprophylaxe begonnen wird, ist dies in der Neo-UKI nicht der Fall. Eine
Antibiotikaprophylaxe wirkt auf der einen Seite prophylaktisch gegen Infektionen, kann aber auf der anderen Seite auch die Resistenz von Keimen fördern.

Es existieren derzeit keine Daten zu einer Antibiotikaprophylaxe speziell bei Lage eines Blasenkatheters. Eine Metaanalyse über eine allgemeine Antibiotikaprophylaxe bei nosokomialen Infektionen zeigt eine Senkung der Inzidenz von nosokomialen Infektionen bei Frühgeborenen durch eine generelle, niedrigdosierte Vancomycingabe. Dabei scheint eine kontinuierliche Gabe per Infusor effektiver zu sein als eine intermittierende Gabe.\textsuperscript{15} Die vorhandene Evidenz reicht laut Craft et al. aber nicht aus, um die Frage, ob eine niedrigdosierte Vancomycingabe zur vermehrten Entstehung von resistenten koagulase negativen Staphylokokkenstämmen führt, zu klären. Es werden deshalb weitere Studien zur Effektivität der allgemeinen Antibiotikaprophylaxe und ihrer Gefahren bei den VLBW-Frühgeborenen gefordert.\textsuperscript{15} Kritische Stimmen empfehlen die prophylaktische Vancomycingabe dagegen nicht: wegen der Gefahr der Entwicklung resisterer Stämme sollte diese nur indiziert angewendet werden.\textsuperscript{64} Im Gegensatz zur oben genannten Metaanalyse nimmt die Neo-CCM (nur zur Prophylaxe) bei liegendem Blasenkatheter Cephalosporine und kein Vancomycin. Ob eine Antibiotikaprophylaxe speziell bei liegendem Blasenkatheter tatsächlich zu einer Senkung der Inzidenz nosokomialer Infektionen führt, sollte in einer weiteren Untersuchung in Innsbruck und Berlin geprüft werden.

E.3.2.6 Thrombozytentransfusionen


Die Thrombozytopenie gehört zu den häufigsten hämatologischen Problemen auf den neonatologischen Intensivpflegestationen. Trotz der großen Prävalenz sind viele Fragen zu den pathophysiologischen Grundlagen noch unbeantwortet und es fehlen evidenzbasierte Handlungsrichtlinien für die Therapie der Thrombozytopenie bei VLBW-Frühgeborenen.\textsuperscript{56} Verschiedene Arbeiten zeigen eine deutliche Korrelation von Thrombozytopenien mit einer Sepsis bei VLBW-Frühgeborenen. So weisen über 70 % der septischen VLBW-Frühgeborenen eine moderate bis schwere Thrombozytopenie auf.\textsuperscript{2} Guida et al. untersuchten den Zusammenhang von Thrombozytenzahl mit unterschiedlichen Infektionserreignern und fanden regelmäßig im Falle einer Sepsis eine deutliche Thrombozytopenie, wobei diese bei fungalen
Infektionen und Infektionen mit gram-negativen Keimen im Vergleich zu Infektionen mit gram-
positiven Keimen gravierender ausfiel (niedrigere Thrombozytengesamtzahl und längere Dauer
der Thrombozytopenie).\textsuperscript{19} Es konnte bisher keine klare Korrelation zwischen dem Grad einer
Thrombozytopenie und dem daraus resultierenden Blutungsrisiko gezeigt werden. Ebensowenig
wurden Transfusions-Studien bei Neugeborenen durchgeführt. Als Folge findet sich eine breite
Varianz in der Handhabung der Thrombozyten-Transfusionen zwischen den Neonatologien.\textsuperscript{56}

In einer retrospektiven Studie zeigte sich für einen Grenzwert von 30.000/\(\mu\)l (50.000/\(\mu\)l bei
vorangegangener IVH) kein erhöhtes Risiko für eine Hämorrhagie.\textsuperscript{37} Ein Grenzwert bei
30.000/\(\mu\)l könnte möglicherweise für klinisch stabile Neugeborenen-Intensivpatienten eine
sichere Praxis darstellen.\textsuperscript{37,56} In der aktuellen Literatur existieren keine weiteren Daten, welche
sich mit einem Grenzwert von Thrombozyten bei Thrombozytentransfusionen auseinander-
setzen.

Angesichts der geringen Inzidenz an IVH lässt sich vermuten, dass der Grenzwert von 20.000/\(\mu\)l
in der Neo-CCM kein erhöhtes Blutungsrisiko mit sich bringt und in Anbetracht der Risiken
einer Thrombozytentransfusion eine zurückhaltende Handlungsweise von Vorteil ist. Eventuell
könnte die Neo-UKI ihren Grenzwert zumindest auf 30.000/\(\mu\)l heruntersetzen. Um eine sichere
Aussage treffen zu können, sind jedoch weitere Untersuchungen notwendig.

E.3.3 Bilanz: Infektionsmanagement und Prophylaxe von Infektionen

Der Neo-CCM wäre die Einführung eines standardisierten Protokolls für die Abnahme von
Blutkulturen mit einer festgelegten Mindestmenge von 0,5, eher 1 ml, pro Kultur zu empfehlen.
Mittlerweile wird in Berlin mit einem entsprechenden Protokoll gearbeitet. Der Innsbrucker
Neonatologie kann empfohlen werden zu prüfen, ob eine Antibiotikaprophylaxe bei liegendem
Blasenkatheter zu einer Senkung der Inzidenz von Infektionen führen kann. Ebenfalls sollte der
Thrombozyten-Grenzwert für Bluttransfusionen überprüft und eventuell gesenkt werden.

E.4 Liegezeit

Ein indirekter \textit{Outcome}-Parameter ist die Dauer des initialen stationären Aufenthaltes der
Frühgeborenen. Diese Liegedauer wird sowohl durch akute aber insbesondere auch durch
chronische Erkrankungen und Komplikationen bestimmt. Die neonatologischen Kliniken
Innsbruck (65 bis 70 Tage) und Charité Campus Mitte (61 bis 74 Tage) weisen beide initiale
Liegezeiten für ihre Frühgeborenen auf, welche zwar im Bereich der Standardabweichung des
VONN (61 plus/minus 31 Tage) liegen, aber im Vergleich zum Durchschnitt doch deutlich

E.5 Methodenkritik


dass es sich nicht ohne weiteres auf die Bedingungen im deutschsprachigen bzw. europäischen Raum übertragen lässt. Derzeit wird vom VONN geprüft, inwieweit Erfassung und Auswertung für die Nutzung außerhalb Nordamerikas adaptiert werden können. Ein weiterer Nachteil des VONN ist, dass dort keine Daten erhoben werden, anhand derer Langzeitergebnisse (z. B. das respiratorische Outcome im Kindes- und Jugendalter) beurteilt werden können.

Im Weiteren ist die Datenerfassung und Auswertung des Fragebogens zur Erfassung der internen Handlungsrichtlinien zu diskutieren. Die Entwicklung des Fragebogens wurde im Wesentlichen durch das Studium von Literatur und externer Evidenz bestimmt. Es bleibt aber unklar, ob alle wichtigen Faktoren, welche die Inzidenz der jeweiligen chronischen Erkrankung beeinflussen, gefunden und berücksichtigt werden konnten.

Der Fragebogen wurde von den (während der untersuchten Jahre) stationsführenden Oberärzten der beiden Neonatologien in Innsbruck und Berlin im Hinblick auf die damaligen Handlungsrichtlinien beantwortet. Es lässt sich jedoch nicht ausschließen, dass die Umsetzung durch die behandelnden Stationsärzte von den Richtlinien abwich. Da es im Nachhinein nicht möglich ist, dies zu überprüfen, wird davon ausgegangen, dass die angegebenen Handlungswiesen für die Mehrheit der Ärzte galt.

Zu diskutieren ist noch, ob Innsbruck und Berlin geeignete Benchmarking-Partner und ob die beiden Kliniken in ihren Strukturen vergleichbar sind. Beide Neonatologien sind Universitätskliniken und zeigen eine ähnliche Frühgeborenenrate in den einzelnen Gewichtsgruppen. Obwohl die Neo-CCM ein Großstadtklinikum ist und die Neo-UKI das ganze Bundesland Tirol als Einzugsgebiet hat, haben beide eine Inborn-Rate von annähernd 100 % und lassen sich somit gut vergleichen.

Während im VONN die Neo-UKI als Typ B Intensivstation eingestuft ist, zählt die Neo-CCM als Typ C Intensivstation, da sie über eine zusätzlich angeschlossene Neugeborenen-Herzchirurgie verfügt. In den Auswertungen des VONN finden sich Unterschiede zwischen den einzelnen Typen. So steigt die Häufigkeit an Infektionen bei den Typ B Kliniken mit 19 % auf 22 % bei den Typ C Kliniken. Dasselbe Muster stellt sich auch für die BPD (Typ B: 26 %, Typ C: 31 %) und die Mortalität (Typ B: 13 %, Typ C: 15 %) dar. Ob dieser Unterschied für die hier gefundenen Differenzen und gemachten Untersuchungen klinisch relevant ist oder vernachlässigt werden kann, konnte hier nicht geklärt werden. Aber da die Kliniken in diesen drei Parametern ähnliche Ergebnisse aufweisen und sich gezeigt hat, dass die beiden Kliniken über ein ähnliches Profil verfügen, wurde davon ausgegangen, dass die Kliniken prinzipiell vergleichbar sind. Interessant wäre ein Vergleich, welcher die Daten der im VONN
teilnehmenden Typ B- und Typ C-Intensivstationen bezüglich der NEC- und ANS-Häufigkeit vergleicht.

Wie sich im Laufe der Auswertung allerdings herausstellte, fanden sich für die Neo-CCM hauptsächlich die bakteriellen Infektionen als „Problem“-Parameter, welche auch in der Neo-UKI ein „Problem“-Parameter sind. Somit stellt Innsbruck für Berlin keinen idealen Benchmarking-Partner dar. Berlin kann dagegen als geeigneter Benchmarking-Partner für Innsbruck angesehen werden, da die Neo-CCM in den beiden übrigen Innsbrucker „Problem“-Bereichen entweder einen „Exzellenz“-Parameter aufweist oder zumindest in der IQR liegt. Für Berlin sollte daher in der Zukunft nach weiteren Benchmarking-Partnern gesucht werden.

E.6 Bilanz: Diskussion


Zusammenfassend kann der Neo-CCM die Überprüfung folgender Punkte empfohlen werden:

- die Einführung eines standardisierten Protokolls zur Blutkulturabnahme (besteht inzwischen),
- die Festsetzung einer Mindestmenge von 0,5 bis 1 ml bei Abnahme von Blutkulturen (besteht inzwischen),
- die Evaluation einer Heparinprophylaxe bei liegenden zentralen Zugängen.

In der Innsbrucker Neonatologie sollten folgende Parameter überprüft werden:

- die Pasteurisierung der Muttermilch
- eine Nahrungsgabe von zwölf mal pro Tag bei den VLBW-Frühgeborenen mit einem Gewicht von 501 bis 750 g,
- eine Antimykotikaprophylaxe bei Lage einer Magensonde und
- der Thrombozyten-Grenzwert für Bluttransfusionen (eventuell ein Heruntersetzen auf 30.000/μl).
Nach Überprüfung der oben genannten Punkte und eventueller Änderung des Vorgehens sollte in beiden Neonatologien die klinische Effektivität anhand von Studien getestet werden.

E.7 Ausblick


1. Einleitung
In der Neonatologie stellt die Langzeitmorbidität und die damit verbundene lange Liegezeit der Frühgeborenen ein zentrales Problem dar. Eine erfolgreiche Methode, um die Qualität der medizinischen Versorgung zu verbessern, ist das klinische Benchmarking. In der vorliegenden Arbeit wird anhand der im Rahmen des Vermont-Oxford-Neonatal-Networks (VONN) erhobenen Daten an der Berliner Klinik für Neonatologie der Charité Campus Mitte (Neo-CCM) und der Abteilung für neonatologische Intensivmedizin der Universitätskinderklinik in Innsbruck (Neo-UKI) ein Benchmarking-Projekt für die Jahre 1997 bis 2001 durchgeführt.

2. Material und Methoden

3. Ergebnisse
Für die Neo-CCM fanden sich als „Problem“-Parameter die bakteriellen Infektionen (Frühsepsis) und die periventrikuläre Leukomalazie. Als „Exzellenz“-Parameter wurden die Inborn-Rate, die Schwangerenvorsorge, die komplette Gabe von antenatalen Steroiden und das Atemnotsyndrom ermittelt. Die Neo-UKI zeigte ebenfalls sehr gute Ergebnisse bezüglich der Inborn-Rate, der Schwangerenvorsorge und der Gabe von antenatalen Steroiden. In Innsbruck wurden das Atemnotsyndrom, der persistierende Ductus Arteriosus, die nekrotisierende Enterokolitis, die bakteriellen Infektionen und die periventrikuläre Leukomalazie als „Problem“-Parameter gefunden. In beiden Kliniken lag die Rate an Kaiserschnitten über der IQR.

Für das Benchmarking-Projekt wurden das Atemnotsyndrom, die nekrotisierende Enterokolitis und die bakteriellen Infektionen ausgewählt. Die Analyse der Handlungsstrategien durch den Fragebogen zeigte, dass in den folgenden drei Bereichen Unterschiede vorlagen: Respiratorische Interventionen und Handlungsrichtlinien, Nahrung und Ernährung sowie Infektionsmanagement.
Die respiratorischen Interventionen wiesen eine Differenz in der Sauerstoffsupplementation auf (Kreißsaal und Station), die internen Handlungsrichtlinien zeigten einen Unterschied im Grenzwert für Thrombozytentransfusionen. Weiterhin zeigten sich Unterschiede bei den Grenzwerten zur Detektion der Hypoxie und Hyperoxie.

Im Bereich Nahrung und Ernährung fanden sich unterschiedliche Handlungsweisen bei der routinemäßigen Pasteurisierung der Muttermilch, der Anzahl der Mahlzeiten pro Tag in der Gruppe der 501 bis 750 g schweren Kinder, der Liegedauer einer Magensonde und einer prophylaktischen Antimykotikagabe bei Lage einer Magensonde.

Im Infektionsmanagement zeigten sich Unterschiede in den Handlungsweisen bei der Abnahme von Blutkulturen (Existenz eines standardisierten Protokolls und Mindestmenge), bei Lage eines Blasenkatheters (Antibiotikaprophylaxe), bei den Liegezeiten von Nabelvenen- und Nabelarterienzugängen sowie bei der Heparinprophylaxe bei periphere Einschwemm-katheter, Nabelvenen- und Nabelarterienzugang.

4. Diskussion

Die Literatursuche gestaltete sich teilweise unergiebig und es zeigte sich, dass in vielen Bereichen noch Bedarf nach guter externer Evidenz und weiterer Forschung besteht. Daher sollten beide Kliniken das begonnene Benchmarking fortsetzen. Zukünftig sollten für Berlin zusätzliche Benchmarking-Partner gesucht werden.

Zusammenfassend kann der Neo-CCM die Überprüfung der Heparinprophylaxe bei Lage von arteriellen und venösen zentralen Zugängen (nötige Heparinmenge) empfohlen werden.

In der Innsbrucker Neonatologie sollten überprüft werden: die Pasteurisierung der Muttermilch, eine Nahrungsgabe von zwölf mal pro Tag bei den VLBW-Frühgeborenen mit einem Gewicht von 501 bis 750 g, eine Antimykotikaprophylaxe bei Lage einer Magensonde und der Grenzwert für Thrombozytentransfusionen (eventuell ein Heruntersetzen auf 30.000/μl).

5. Ausblick

Sollte sich nach Überprüfung und Einführung einer Prozessänderung eine Senkung der Häufigkeiten oben genannter Erkrankungen zeigen, könnten die Kliniken ihre Handlungsrichtlinien gemeinsam neu erstellen. Danach sollte eine erneute Evaluation erfolgen. Wünschenswert wäre eine deutschland- oder europaweite Datenerfassung ähnlich dem VONN.
G Anhang

G.1 Literaturverzeichnis


Seite 88


Seite 90


44. Premji S, Chessell L: Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1500 grams. The Cochrane Database of Systematic Reviews Issue 3:1-19, 2003


50. Salhotra A, Ramji S: Slow versus fast enteral advancements in very low birth weight infants: a randomized controlled trial. Indian Pediatrics 41:435-441, 2004


60. Stevens T, Blennow M: Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. The Cochrane Database of Systematic Reviews Issue 3:1-21, 2004


70. Wauer RR: Surfactanttherapie: Grundlagen, Diagnostik, Therapie 2004 Georg Thieme Verlag KG, 2004,


G.2 Lebenslauf

Persönliche Daten
Name : Carolin Bätzel
Geboren : in Waiblingen
Familienstand : ledig
Konfession : evangelisch

Schulausbildung
09/84 – 07/88 : Wilhelmschule Stuttgart-Untertürkheim
09/88 – 06/97 : Wirtemberg-Gymnasium Stuttgart-Untertürkheim
Abschluss : Abitur

Studium
10/97 – 03/98 : Wirtschaftsgeographie, Ludwigs-Maximilians-Universität München
04/98 – 09/98 : Sport und Mathematik für Lehramt an Grund- und Hauptschulen, PH Ludwigsburg
04/99 – 09/00 : Studium der Humanmedizin an der Eberhard-Karls-Universität Tübingen
10/00 – heute : Fortführung des Studiums der Humanmedizin an der Humboldt Universität zu Berlin

Prüfungen
29.08.2002 : Ablegung des ersten Abschnitts der ärztlichen Prüfung vor dem Landesprüfungsamt Berlin
22.04.2005 : Ablegung des zweiten Abschnitts der ärztlichen Prüfung vor dem Landesprüfungsamt Berlin

Promotion
seit 12/02 : Klinik für Neonatologie der Charité, Campus Mitte; Thema: Verbesserung der medizinischen Versorgung und des Outcomes sehr kleiner und leichter Frühgeborener durch klinisches Benchmarking

Pflegepraktikum
01/99 – 03/99 : Orthopädische Klinik Harlaching, München

Famulaturen
02/02 – 03/02 : Innere Medizin, Klinikum Garmisch-Partenkirchen
09/02 – 10/02 : Allgemeinmedizinische Praxis Dr. Schilpp, Stuttgart
02/03 – 03/03 : Pädiatrie und Neonatologie, Klinikum Berlin-Friedrichshain
02/04 – 03/04 : Innere Medizin, Kathmandu Model Hospital, Nepal

Praktisches Jahr
1. Tertial 04/05 – 08/05 : Gynäkologie, Spital Thun, Schweiz
2. Tertial 08/05 – 12/05 : Innere Medizin, St. Hedwig Krankenhaus, Berlin
3. Tertial 12/05 – 03/06 : Chirurgie, St. Hedwig Krankenhaus, Berlin
G.3 Danksagung

Ich danke Herrn Prof. Dr. Roland R. Wauer für die Überlassung des Themas, seinem Interesse am Fortgang dieser Arbeit und für seine konstruktiven Vorschläge zur Verbesserung der Arbeit, welche mir besonders in der Endphase eine große Hilfe und Motivation waren.


Mein besonderer Dank gilt Herrn Dr. Mario Rüdiger für seine großartige Betreuung. Mit Engagement, großer Hilfsbereitschaft und Geduld hat er sich jederzeit meiner fachlichen Probleme angenommen und mir über alle Phasen des Zweifels hinweggeholfen. Durch seinen Einsatz und seine stetige Bereitschaft zur Diskussion stand er mir trotz beruflicher Veränderung und örtlicher Entfernung besonders in der Endphase der Arbeit jederzeit aufmunternd mit seiner humorvollen Art zur Seite und trug so wesentlich zur Beendigung der Arbeit bei.


Ein dickes Danke schön

Carolin Bätzel
G.4 Eidesstattliche Erklärung


Berlin, den 28.10.2005

Carolin Bätzel
Liste: „Bacterial Pathogens“

1. Achromobacter species [including Achromobacter xylosoxidans (also known as Alcaligenes xylosoxidans) and others]
2. Acinetobacter species
3. Aeromonas species
4. Alcaligenes species [Alcaligenes xylosoxidans and others]
5. Bacteroides species
6. Burkholderia species [Burkholderia cepacia and others]
7. Campylobacter species [Campylobacter fetus, C. jejuni and others]
8. Chryseobacterium species
9. Citrobacter species [Citrobacter diversus, C. freundii, C. koseri and others]
10. Clostridium species
11. Enterobacter species [Enterobacter aerogenes, E. cloacae and others]
12. Enterococcus species [Enterococcus faecalis (also known as Streptococcus faecalis), E. faecium and other Enterococcus species]
13. Escherichia coli
14. Flavobacterium species
15. Haemophilus species [Haemophilus influenzae and others]
16. Klebsiella species [Klebsiella oxytoca, K. pneumoniae and others]
17. Listeria monocytogenes
18. Moxarella species [Moxarella catarrhalis (also known as Branhamella catarrhalis) and others]
19. Neisseria species [Neisseria meningitidis, N. gonorrhoeae and others]
20. Pasteurella species
21. Prevotella species
22. Proteus species [Proteus mirabilis, P. vulgaris and others]
23. Providencia species [Providencia rettgeri and others]
24. Pseudomonas species [Pseudomonas aeruginosa and others]
25. Salmonella species
26. Serratia species [Serratia liquefaciens, S. marcescens and others]
27. Staphylococcus coagulase positive [aureus]
28. Stenotrophomonas maltophilia
29. Streptococcus species [including Streptococcus Group A, Streptococcus Group B, Streptococcus Group D, Streptococcus pneumoniae and others]