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                                                                                                                       Zusammenfassung 

Zusammenfassung 

Neutrophile Granulocyten wirken als einer der ersten Abwehrmechanismen gegen invasive 

Mikroorganismen im angeborenen Immunsystem von Mammalia. Aktiviert durch 

inflammatorische Signale verlassen diese Granulocyten das vaskuläre System und migrieren 

durch das Gewebe zum Infektionsherd. Dort binden sie die Mikroorganismen, 

phagozytieren und eliminieren diese schließlich mit hoher Effizienz. Humane Neutrophile 

Elastase (NE) ist Bestandteil der neutrophilen Granula und spielt eine entscheidende Rolle 

im Abbau von Virulenzfaktoren enteroinvasiver Bakterien, einschließlich der Shigella 

Virulenzfaktoren IpaB (invasion antigen plasmid B) und IcsA (intracellular spread A). 

Der Grund für die spezifische Aktivität von NE gegenüber diesen Faktoren ist bisher nicht 

bekannt. Unsere Analyse impliziert, dass die Primärstruktur von IpaB keine Rolle für die 

Spezifität von NE spielt. Eine Reihe von IpaB Mutanten, welche Deletionen u.a. in der 

coiled-coil Region sowie der möglichen Transmembrandomänen enthielten, wurden von NE 

genauso abgebaut wie wildtyp IpaB. Des Weiteren scheint auch die Sekundär- und 

Tertiärstruktur des Substrats nicht ausschlaggebend für die Erkennung durch NE zu sein, da 

denaturiertes IpaB ebenfalls von NE abgebaut wurde. 

NE gehört zu der Familie der Chymotrypsin-ähnlichen Serinproteasen, die sich durch 

Sequenz- und Strukurähnlichkeit auszeichnen, jedoch sehr unterschiedliche biologische 

Funktionen aufweisen. Cathepsin G (CG) ist wie NE eine Chymotrypsin-ähnliche 

Serinprotease und ebenfalls in neutrophilen Granula lokalisiert. Allerdings zeigt CG keine 

Aktivität gegenüber Virulenzfaktoren von Shigella. Obwohl die Kristallstrukturen von CG 

und NE fast identisch sind, konnten einzelne oder mehrere Aminosäuren in der 

Substratbindungsspalte identifiziert werden, die zwischen den beiden Enzymen differieren. 

Dies legte die Vermutung nahe, dass die Spezifität von NE gegenüber Virulenzfaktoren in 

diesen Unterschieden codiert sein könnte. Daher wurden diese Aminosäuren durch die 

analogen CG Aminosäuren oder durch Alanin ersetzt. Der Vergleich der funktionellen 

Eigenschaften der NE Mutanten mit wildtyp NE zeigte, dass die Aminosäuren an den 

Positionen 98 und 216-224 entscheidend für die Substratspezifität von NE sind. Die NE 

Mutanten N98A, 216-218 und 216-224 waren nicht mehr in der Lage, die Virulenzfaktoren 

IcsA und IpaB sowie das NE Peptidsubstrat abzubauen. Stattdessen haben diese Mutanten 

die Fähigkeit erlangt, das CG Peptidsubstrat abzubauen. Zusammenfassend konnten wir 

Aminosäuren in NE identifizieren, die sowohl die Spezifität von NE für das Peptidsubstrat 

als auch für die Virulenzfaktoren von Shigella flexneri determinieren.  
Schlagworte: Neutrophile Elastase, Shigella flexneri, Spezifität, Virulenzfaktoren
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   Abstract 

Abstract 

Neutrophil granulocytes are one of the first lines of defense of the mammalian innate 

immune system against invading microorganisms. In response to inflammatory 

stimuli, neutrophils migrate from the blood stream to infected tissues where they bind, 

engulf and inactivate microorganisms efficiently. Human neutrophil elastase (NE), a 

neutrophil granule component, is a key host defense protein that rapidly destroys 

virulence factors of enteroinvasive pathogens including IpaB (invasion plasmid 

antigen B) and IcsA (intracellular spread A) from Shigella.  

The structural basis of the exquisite sensitivity of virulence proteins to NE is not 

known. Our analysis suggests that the primary structure of IpaB is not important for 

NE specificity. Using a series of IpaB mutants that contained deletions in the coiled-

coil region, as well as in the putative transmembrane domains of the hydrophobic 

region, we observed that the susceptibility of the IpaB mutants to NE was similar to 

that of the wildtype IpaB. Secondary or tertiary structures of the substrate are also 

unlikely to play a role in the recognition of virulence factors by NE since heat-

denatured and native IpaB were equally well targeted by NE.  

NE belongs to the family of chymotrypsin-like serine proteases with sequence and 

structural similarity but with very different biological functions. Cathepsin G (CG) is 

another abundant chymotrypsin-like serine protease in neutrophil granules. However, 

in contrast to NE, CG does not cleave virulence factors of Shigella. The 

crystallographic structures of NE and CG are very similar but we identified single or 

multiple residues in the substrate-binding cleft to differ in these two enzymes. We 

hypothesized that NE specificity for bacterial virulence factors resides within these 

structural differences. Therefore these specific residues in NE were replaced with the 

analogous amino acids of CG or with alanine. By comparing the functional properties 

of these NE mutants to wildtype NE we were able to show that the amino acids at 

position 98 and 216-224 are crucial for the substrate specificity of NE. The NE 

mutants N98A, 216-218 and 216-224 did not cleave the virulence factors IcsA and 

IpaB as well as the NE peptide substrate but cleaved the CG peptide substrate. In 

summary, we identified residues in NE that determine the specificity of NE for the 

peptide substrate and for the Shigella flexneri virulence factors. 

 
Keywords: neutrophil elastase, Shigella flexneri, specificity, virulence factors 

 2



Table of contents 

TABLE OF CONTENTS 

1 INTRODUCTION .............................................................................................. 1 

1.1 Shigella ............................................................................................................................. 1 
1.1.1 Epidemiology ............................................................................................................. 1 
1.1.2 Properties.................................................................................................................... 2 
1.1.3 Pathogenicity .............................................................................................................. 3 
1.1.4 Virulence Factors........................................................................................................ 4 

1.2 Innate immune host cells: neutrophils........................................................................... 6 
1.2.1 Neutrophil recruitment ............................................................................................... 6 
1.2.2 Bacterial recognition by neutrophils .......................................................................... 7 
1.2.3 Neutrophil killing mechanisms................................................................................... 7 

1.3 Interaction of neutrophils with Shigella ...................................................................... 10 

1.4 Serine Proteases: NE and CG....................................................................................... 11 
1.4.1 Serine Proteases........................................................................................................ 11 
1.4.2 Chymotrypsin-like serine proteases ......................................................................... 11 
1.4.3 Human neutrophil cathepsin G (CG) and neutrophil elastase (NE) ......................... 16 

1.5 Aim of study ................................................................................................................... 20 

2 MATERIALS AND METHODS ....................................................................... 21 

2.1 Bacteria – Escherichia coli ............................................................................................ 21 
2.1.1 Strains ....................................................................................................................... 21 
2.1.2 Growth conditions and media................................................................................... 21 
2.1.3 Protein expression .................................................................................................... 22 
2.1.4 Protein purification................................................................................................... 22 

2.2 Bacteria – Shigella flexneri ........................................................................................... 23 
2.2.1 Strains ....................................................................................................................... 23 
2.2.2 Growth conditions and media................................................................................... 23 
2.2.3 Cleavage of IpaB ...................................................................................................... 23 
2.2.4 Cleavage of IcsA and OmpA.................................................................................... 24 

2.3 Cells................................................................................................................................. 24 

2.3.1 Cell line .................................................................................................................... 24 
2.3.2 Growth conditions and media................................................................................... 24 
2.3.3 Transient transfection ............................................................................................... 25 
2.3.4 Stable transfection and single-cell dilution .............................................................. 25 
2.3.5 Cell lysis ................................................................................................................... 26 

2.4 Chemicals ....................................................................................................................... 26 

2.5 Enzymatic Assays .......................................................................................................... 26 

2.5.1 β-galactosidase activity ............................................................................................ 26 
2.5.2 Reagents to measure NE and CG activity ................................................................ 26 
2.5.3 NE and CG activity of cell lysates ........................................................................... 27 

  

 



Table of contents 

2.5.4 NE and CG kinetics / activity units .......................................................................... 28 

2.6 Molecular cloning techniques....................................................................................... 28 
2.6.1 Cloning of NE for expression in E. coli ................................................................... 29 
2.6.2 Cloning of NE for expression in RBL-1 cells .......................................................... 29 
2.6.3 Mutagenesis of ela2 (NE gene) ................................................................................ 29 

2.7 Protein analysis.............................................................................................................. 30 
2.7.1 Determination of protein concentrations .................................................................. 30 
2.7.3 TCA precipitation..................................................................................................... 30 
2.7.4 SDS polyacrylamide gel electrophoresis (SDS-PAGE) ........................................... 31 
2.7.5 Immunoblotting ........................................................................................................ 31 
2.7.6 Coomassie staining................................................................................................... 32 

2.8 Structure analysis .......................................................................................................... 33 

3 RESULTS ....................................................................................................... 34 

3.1 The Specificity of NE for virulence factors is not encoded in NE substrates........... 34 
3.1.1 A recognition motif for NE was not detected in the primary sequence of IpaB ...... 34 
3.1.2 The secondary and tertiary structures of the substrate do not affect the specificity of 
NE for virulence factors .................................................................................................... 36 

3.2 The Specificity of NE for virulence factors is encoded in NE.................................... 37 
3.2.1 Expression of recombinant wildtype NE in mammalian cells ................................. 37 
3.2.2 Kinetics of recombinant wildtype NE ...................................................................... 39 
3.2.3 Specificity of recombinant wildtype NE .................................................................. 40 
3.2.4 Design of NE mutants .............................................................................................. 44 
3.2.5 Analysis of NE mutants – Cleavage of peptide substrates ....................................... 46 
3.2.6 Analysis of NE mutants – Cleavage of Shigella virulence factors........................... 50 

4 DISCUSSION.................................................................................................. 56 

4.1 Do virulence factors contain a recognition motif for NE?......................................... 56 
4.1.1 A recognition motif for NE was not detected in the primary sequence of IpaB ...... 56 
4.1.2 The secondary and tertiary structures of the substrate do not affect the specificity of 
NE for virulence factors .................................................................................................... 58 

4.2 The specificity of NE for virulence factors is encoded in NE .................................... 59 
4.2.1 Recombinant expression of NE................................................................................ 59 

4.2.2 The specificity of NE for virulence factors is encoded in NE.................................. 60 

5 APPENDIX ..................................................................................................... 74 

5.1 Expression of recombinant wt NE in bacteria ............................................................ 74 

5.2 Analysis of single-cell derived cell lines of the different NE mutants....................... 76 

5.3 Sequence alignment of NE, CG, trypsin and chymotrypsin...................................... 79 

5.4 Amino acids – abbreviations and structural formula ................................................ 80 

  

 



Table of contents 

6 REFERENCES ............................................................................................... 82 

7 ABBREVIATIONS .......................................................................................... 91 

CURRICULUM VITAE ........................................................................................... 93 

PUBLICATIONS .................................................................................................... 94 

ACKNOWLEDGEMENTS...................................................................................... 95 

SELBSTÄNDIGKEITSERKLÄRUNG.................................................................... 96 

  

 



Introduction 

1 Introduction 

Humans are constantly exposed to myriads of microorganisms. Some are harmless 

transients, others become part of the commensal flora that we harbor for a lifetime. 

Numerically, we carry more microbial cells than we have cells of our own. We would not 

survive long without our constant "normal" microbial flora. Yet we are in a delicate balance 

with these microorganisms. If our innate immunity is compromised, the harmless 

microorganisms can quickly become serious or even fatal threats to our health. In addition, 

among the microorganisms that humans encounter each day are those whose survival 

depends on their ability to cause cellular damage to their host. This group of 

microorganisms is called pathogens. A pathogen must enter a host and multiply sufficiently 

to establish itself or to be transmitted to a new susceptible host. Pathogens damage their host 

by intoxication or compromising the integrity of the cells. In most cases the pathogen-

induced damage is not serious but a proportion of hosts will suffer from disease or even be 

killed. A common group of disease causing pathogens are enterovasive bacteria. One of 

them is Shigella. 

 

1.1 Shigella 

1.1.1 Epidemiology 

Shigellae are enteropathogenic bacteria that cause the diarrhea-disease dysentery. In the 

environment Shigella can be found in brackwater but their only natural hosts are primates. 

Humans take up Shigella from stools or soiled fingers of infected persons or from 

contaminated food and water. Shigellosis is characterized by mucous diarrhea, fever, nausea 

and stomach cramps. All Shigellae species are able to cause bacterial dysentery, in which 

the diarrhea is not only mucopurulent but also bloody (Sansonetti 1992). Shigella is 

extremely efficient in invading the hosts’ intestinal epithelium and causing disease: 10-100 

bacteria are sufficient to cause shigellosis (DuPont et al. 1989). Symptoms occur one to two 

days after exposure to the bacteria. The host response usually leads to the resolution of the 

infection within five to seven days. However, without proper medical treatment the diarrhea 

can be life threatening to some persons, especially young children and the elderly. This 

treatment involves rehydration as well as application of electrolytes and antibiotics. 
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Shigellosis occurs throughout the world with approximately 164.7 million cases per year. 

Among those cases 99% of them are found in areas of the world with only limited medical 

support and poor sanitation causing low hygienic standards. Each year 1.1 million people 

are estimated to die from Shigella infection (Kotloff et al. 1999). 61% of all fatalities 

attributable to shigellosis involve children less than 5 years of age as systemic complications 

of shigellosis occur frequently in children (CDC 2005; WHO 2005). These complications 

include acute renal failure, hemolytic-uremic syndrome, toxic megacolon and neurological 

sequelae (Goldfarb et al. 1982).   

The Shigella genus comprises four species: S. dysenterie, S. boydii, S. flexneri and S. sonnei. 

This order reflects the severity of symptoms (Mims C. 1998). S. sonnei is classically found 

in developed countries (Kotloff et al. 1999). But it seems to become more prevelant in 

Thailand (71%) as compared to previous years, a phenomenon probably linked to the 

current development of the country. S. flexneri is predominant in developing countries 

(60%) and it is the most frequently isolated species worldwide. S. dysenteriae type 1 (Sd1) 

is the only Shigella species causing epidemic dysentery. Epidemic outbreaks have occurred 

throughout the world but are often linked to confined populations, e.g. refugee camps. 

Approximately 5-15% of Sd1 cases are fatal since Sd1 is resistant to many antimicrobials. S. 

dysenteriae is also the only Shigella species producing the Shiga toxin. This toxin can 

translocate into eukaryotic target cells and inhibits protein synthesis (WHO 2005). 

 

1.1.2 Properties 

Shigella was first described 1897 by Shiga Kiyoshi in Japan. Shigellae are rod-shaped, non-

motile Gram-negative bacteria. They belong to the family of enterobacteriaceae and do not 

form spores. Shigella is closely related to Escherichia and is occasionally considered as one 

strain of the E. coli species. In fact, Shigella shares morphological features with E. coli but 

it can be easily distinguished biochemically. For example, the cell wall antigens, also known 

as O-antigens, of Shigella and E.coli are distinct. The O-antigen is the outer polysaccharide 

portion of the lipopolysaccharide (LPS) and consists of repeating sugar units. Furthermore 

Shigella is anaerogenic, meaning it does not produce gas from carbohydrates, and it cannot 

ferment lactose (School 1995; Levinson W. 2002).  

The disease causing properties of Shigella are encoded on a virulence plasmid. Strains cured 

of this plasmid are non-pathogenic (Sansonetti et al. 1982). If the Shigella virulence plasmid 
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is transferred into a non-pathogenic E. coli, the plasmid confers invasiveness and 

cytotoxicity in vitro (Sansonetti et al. 1983). 

 

1.1.3 Pathogenicity 

After passing the oesopharynx, stomach and small intestine Shigella invades the hosts’ large 

intestinal epithelium [figure 1.1 and (LaBrec 1964)]. Shigella traverses the epithelial barrier 

through specialized membranous epithelial cells, called M-cells (Wassef et al. 1989). M-

cells transport antigens, including enteric pathogens, across the epithelium. They are located 

in the epithelium covering the gut-associated lymphoid tissue (GALT) (Kraehenbuhl and 

Neutra 1992). M-cells are the only port of entry across the epithelium for Shigella, because 

Shigella cannot invade colonocytes through their apical membrane (Mounier et al. 1992). 

Following passage across M-cells, the microorganism interacts with two different host cells: 

epithelial cells and macrophages. Shigella invades the epithelial cells from the basolateral 

side. It escapes from the phagosome to the cytoplasm of the cells and replicates there. In 

order to move intra- and intercellularly, Shigella utilizes the cytoskeleton of the host cells 

(Makino et al. 1986). Once infected, the cells secrete the cytokine interleukin-8 (IL-8) to 

recruit neutrophils (also called polymorphonuclear leukocyte, PMNs) to the site of infection.  

The other host cells Shigella encounters are resident tissue macrophages. They are situated 

within lymphoid follicles beneath M-cells (Jarry et al. 1989; Soesatyo et al. 1990). Although 

the macrophages phagocytose Shigella, the bacteria can escape from the phagolysosome to 

the cytoplasm within minutes (Finlay and Falkow 1988; Maurelli and Sansonetti 1988). 

Unlike in the epithelial cells, Shigella rapidly induces macrophage apoptosis (Zychlinsky et 

al. 1992). In an apoptotic process, a cell synthesizes the molecules responsible for its own 

death (Arends and Wyllie 1991). Accordingly, macrophages infected with Shigella show the 

two cardinal signs of apoptosis: specific morphological changes and fragmentation of 

nuclear DNA into multimers of approximately 200 bp.  

Shigella escapes from the dying macrophage and infects further epithelial cells. The 

apoptotic macrophage releases the pro-inflammatory cytokines interleukin-1β and –18 (IL-

1β and IL-18) to recruit neutrophils to the site of infection. Although counterintuitive, the 

neutrophils first support the bacterial infection. They damage the colonic mucosa by 

breaking tight junctions to reach bacteria in the intestinal lumen. Thus they promote the 

entry for Shigella into the epithelium. But eventually neutrophils resolve the infection. 
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Neutrophils engulf Shigella but in contrast to macrophages they prevent the escape of 

Shigella from the phagolysosome and kill them. 
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Fig. 1.1: Shigella infection.  
Shigella invades the epithelium from the intestinal lumen through M-cells. After reaching 
the epithelium it invades epithelial cells and is phagocytosed by resident macrophages. 
Shigella escapes the phagosome of both cells but while Shigella replicates within epithelial 
cells it induces apoptosis in macrophages probably by activation of caspase-1 (Casp-1). 
The dying macrophages release the pro-inflammatory cytokines IL-1β and IL-18. Together 
with IL-8 secreted from the invaded epithelial cells, they signal for PMN 
(polymorphonuclear leukocyte or neutrophils). The recruited neutrophils eventually clear 
the infection. 
 
 

1.1.4 Virulence Factors 

The degree to which pathogenic bacteria are able to cause disease determines their 

virulence. Virulence depends on the resistance of the host and as well as on the invasiveness 

and toxicity of the bacteria. Bacterial components and proteins that mediate adhesion, 

invasion, toxicity, and evasion of host immune cells are termed virulence factors (Mayer-

Scholl et al. 2004). Shigella virulence factors are encoded on a 220 kb virulence plasmid 

which is essential for Shigella pathogenicity (Sansonetti et al. 1982). S. flexneri invasion 

genes are localized in a 31 kb region of the virulence plasmid (Maurelli et al. 1985). This 

region encodes the invasion plasmid antigens (ipa) operon, the membrane expression of ipas 

(mxi) and surface presentation of invasion plasmid antigens (spa) operons, as well as other, 
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independently expressed genes. By transposon insertion and deletion mutagenesis, ipaB, 

ipaC and ipaD genes were shown to be essential for invasion, vacuolar escape, induction of 

macrophage apoptosis and virulence in animal models (Sasakawa et al. 1988; High et al. 

1992; Menard et al. 1993). IpaB, C and D are secreted by a type III secretion apparatus 

encoded by the mxi and spa operons (Andrews et al. 1991; Allaoui et al. 1992; Allaoui et al. 

1993). The type III secretion apparatus is composed of at least 30 proteins and is conserved 

among enteropathogenic bacteria (Cornelis and Van Gijsegem 2000). IpaB and IpaC form a 

complex (Menard et al. 1994) that appears to be sufficient to invade epithelial cells (Menard 

et al. 1996). 

In addition to its role in invasion, several lines of evidence indicate that the Shigella 

virulence factor IpaB is both necessary and sufficient to induce apoptosis in macrophages. 

First, mutant strains of Shigella that are invasive but do not express IpaB are not cytotoxic 

(Zychlinsky et al. 1994). Second, microinjection of IpaB into the cytosol of macrophages 

efficiently triggers apoptosis (Chen et al. 1996). Third, IpaB was shown to bind caspase-1 

[also called IL-1β converting enzyme (ICE)] which plays an important role in Shigella 

induced apoptosis (Thirumalai et al. 1997; Hilbi et al. 1998). Caspase-1 is a proapoptotic 

and proinflammatory cysteine protease. When activated, it cleaves the pro-inflammatory 

cytokines IL-1β and IL-18 to their biologically active forms (Thornberry 1994; Dinarello 

1998). Together these data suggest a model where IpaB is secreted into the macrophage 

cytosol during infection. IpaB binds to and activates caspase-1, an event that simultaneously 

induces apoptosis and activates the pro-inflammatory cytokines IL-1β and IL-18.   

Another virulence factor encoded on the virulence plasmid is IcsA (intracellular spread, also 

called VirG). IcsA is essential for intra- and inter-cellular movement of Shigella (Bernardini 

et al. 1989). Disruption of IcsA leads to loss of bacteria induced intracellular actin assembly, 

loss of cell-to-cell spread, and markedly reduced virulence in humans and animal models 

(Makino et al. 1986; Bernardini et al. 1989; Lett et al. 1989; Sansonetti et al. 1991; Coster et 

al. 1999). It is localized to the outer membrane (120 kDa form) and is secreted through a 

type V system (90 kDa form). IcsA is asymmetrically distributed along the bacterial body 

(Goldberg et al. 1993). This is a prerequisite for the polar movement of Shigella in 

mammalian cells, including bacterial spreading between epithelial cells. The N-terminal part 

of the IcsA α domain induces the polymerization of actin by interaction with host proteins 

such as vinculin and neural Wiskott-Aldrich syndrome protein (N-WASP) (Egile et al. 

1999). The non-motile Shigella “hooks on” to these actin tails to move through and in 

between cells. 
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1.2 Innate immune host cells: neutrophils  

The interaction of Shigella with the host is usually limited to five to seven days. During this 

time, Shigella primarily challenges two host innate defense cells: macrophages and 

neutrophils. As described above, macrophages phagocytose Shigella but are not capable to 

retain the bacterium within their phagolysosome and kill it. In fact, macrophages with 

phagocytosed Shigella undergo apoptosis. To resolve the Shigella infection, neutrophils 

need to be recruited to the site of infection. The special neutrophil characteristics enable 

them to control the Shigella infection. 

Neutrophils are essential for innate host defense against invading microorganisms, such as 

bacteria and fungi. Neutrophils are the first cells recruited from the blood stream to sites of 

infection. They are the most abundant white blood cells (60%) but only have a short half-

life if not activated. They are terminally differentiated cells, incapable of cell division, and 

synthesize very low levels of RNA and protein. Neutrophils are generated from the 

pluripotent haematopoietic stem cells in the bone marrow and are characterized by multi-

lobed nuclei and abundant granules in the cytoplasm, which contain host-defense molecules 

(Mayer-Scholl et al. 2004).  

 

1.2.1 Neutrophil recruitment 

Neutrophils are an essential component of the acute inflammatory response and the 

resolution of microbial infection. Recruitment to inflamed or infected tissue occurs within 

minutes to hours. Molecules signaling for neutrophil infiltration are predominantly the 

aminoterminal formylated methionin bacterial peptide (fMLP), IL-8 and TNF-α from 

macrophages and epithelial cells, and C5a, C3a and C4a from the complement cascade 

(Burg and Pillinger 2001). Vasodilatation through TNF-α results in the reduced velocity of 

blood flow. Physiologically circulating neutrophils in the blood contact the endothelium and 

transiently interact with it, a phenomenon termed rolling. Molecules mediating this are 

leucocyte (L), platelet (P) and endothelial (E) selectins, which permit interaction between 

neutrophils, and neutrophils and endothelial cells (Janeway et al. 2001). After exposure of 

circulating neutrophils to chemoattractants (IL-8, fMLP, C5a, LTB4), members of the β2-

integrin family mediate the conversion of the rolling state to a state of tight stationary 

adhesion (Burg and Pillinger 2001). Neutrophils adhere to the endothelium and secretory 

vesicles of the neutrophils are mobilized. Neutrophils transmigrate either between or 

through endothelial cells. During migration through the tissue neutrophils cleave off or shed 
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their selectins and proteases are liberated from the different granule subsets degrading 

vascular basement membranes and the intercellular matrix (Faurschou and Borregaard 

2003).  

 

1.2.2 Bacterial recognition by neutrophils 

The concept of bacterial recognition is based on so-called pathogen associated molecular 

patterns (PAMPs), which are recognized by pattern recognition receptors (PRRs) (Gordon 

2002). PAMPs are microbial structures, which, upon interaction with elements of the host 

innate immune system, trigger the initiation of host protective responses accumulating in the 

clearance of the pathogen by phagocytic cells. PAMPs are ideal targets as they allow 

distinction between self and microbial non-self. They are found on all microorganisms, 

which allows a limited number of receptors to recognize PAMPs, and importantly they are 

essential for microbial survival, therefore no escape mutants can be generated 

(Mukhopadhyay et al. 2004).  

 

Neutrophils have the following pattern recognition receptors:  

• lectins, e.g. dectin-1, which detect bacterial carbohydrates;  

• scavenger receptors, e.g. MARCO, are structurally unrelated membrane molecules, 

which bind and internalize modified lipoproteins, lipopolysaccharides, and 

lipoteichoic acid;  

• complement receptors, e.g. CR1-4, which recognize complement proteins from the 

serum that have opsonized the microbes; 

• Fc receptors, which recognize IgG opsonized microorganisms;  

• Toll-like receptors (TLRs) - TLR 2 and 4 are expressed by neutrophils, they 

recognize lipoproteins and lipopolysaccharide respectively (Muzio et al. 2000); 

 

1.2.3 Neutrophil killing mechanisms 

Upon encountering bacteria, neutrophils engulf these microbes into a phagosome, which 

fuses with intracellular granules to form a phagolysosome (Lee et al. 2003). In the 

phagolysosome the bacteria are killed after exposure to enzymes, antimicrobial peptides and 

reactive oxygen species (ROS). The arsenal of cytotoxic agents has been traditionally 

 7

 



Introduction 

divided into either oxygen- independent or -dependent mechanisms (figure 1.2). Both of 

these systems probably collaborate in killing microbes (Roos and Winterbourn 2002).  

The oxygen-independent mechanisms encompass the contents of the three neutrophil 

granule subsets: the azurophil, specific and gelatinase granules, which contain characteristic 

proteases, antimicrobial proteins and peptides as well as enzymes (Borregaard and Cowland 

1997). 

 

Fig.1.2: Schematic presentation of the oxygen-dependent and oxygen-independent 
mechanisms during neutrophil phagocytosis of bacteria.  
The oxygen-independent mechanisms encompass the contents of the three neutrophil 
granule subsets: the azurophil, specific and gelatinase granules, which contain 
characteristic proteases, antimicrobial proteins and peptides, and enzymes. Lysozyme, for 
instance, disrupts anionic bacterial surfaces, rendering the bacteria more permeable, 
whereas NE degrades virulence factors. The oxygen-dependent mechanism relies on the 
NADPH oxidase complex that assembles at the phagosomal membrane and produces O2

−, 
which is rapidly converted to hydrogen peroxide. In turn, a constituent of the azurophilic 
granules, myeloperoxidase, generates hypochlorous acid (HOCl) from hydrogen peroxide. 
This presentation is taken from (Mayer-Scholl et al. 2004) 
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Antimicrobial proteins such as defensins, bactericidal/permeability-increasing protein (BPI) 

and the enzyme lysozyme, predominantly function by disrupting anionic bacterial surfaces, 

probably rendering the bacteria more permeable (Kagan et al. 1990). Proteases, such as 

neutrophil elastase (NE), degrade bacterial proteins, including virulence factors (Weinrauch 

et al. 2002). Other proteases e.g. cathepsin G (CG) have antimicrobial activity independent 

of their enzymatic activity (Shafer et al. 2002).  

The importance of the oxygen-independent mechanism in defense is evident in two very 

rare inherited diseases, the Chediak-Higashi syndrome (Introne et al. 1999) and Specific 

Granule Deficiency (Gombart and Koeffler 2002). Both disorders are characterized by 

recurrent infections and shortened life expectancy. In the Chediak-Higashi syndrome, 

neutrophils contain giant granules resulting from specific and azurophil granule fusion. 

Specific Granule Deficiency is characterized by the absence of specific granules and 

defensins. The severity of the symptoms in these diseases underlines the fundamental role of 

granule proteins in host defense. 

The second mechanism of neutrophil killing is oxygen-dependent (Roos et al. 2003). 

Phagocytosing neutrophils undergo an ‘oxidative burst’ during which the NADPH oxidase 

complex assembles at the phagosomal membrane and produces O2-, which is rapidly 

converted to hydrogen peroxide by the enzyme superoxide dismutase. In turn, a constituent 

of the azurophil granules, myeloperoxidase, generates hypochlorous acid (HOCl) from 

hydrogen peroxide. How the bacteria are actually killed is not known. Hydrogen peroxide is 

bactericidal only at high concentrations, therefore a variety of secondary oxidants have been 

proposed to account for the destructive capacity of the neutrophils (Hampton et al. 1998). 

The importance of ROS for antimicrobial activity is validated by the susceptibility to 

infections of patients suffering from chronic granulomatous disease, a condition where the 

NADPH oxidase complex is inactive (Dinauer et al. 2000).  

In the past, studies often focused on the effects of either the oxygen-dependent or oxygen-

independent mechanisms. However, a ROS function might also be to recruit K+ to the 

phagolysosome, allowing granule proteins to go from a highly organized intra-granule 

structure into solution (Reeves et al. 2002). The relative contribution of ROS to these two 

different mechanisms is very intriguing, yet it seems premature to draw conclusions as to 

whether ROS contribute directly to microbial killing or only serve as activators of granule 

proteins (Roos and Winterbourn 2002). Besides killing bacteria inside the phagolysosomes, 

neutrophils can also degranulate and release antimicrobial factors into the extracellular 

space (Faurschou and Borregaard 2003). The cells can also generate neutrophil extracellular 
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traps (NETs), which are composed of granule and nuclear constituents that kill bacteria 

extracellularly (Brinkmann et al. 2004). 

 

1.3 Interaction of neutrophils with Shigella  

Macrophages phagocytose Shigella, but Shigella escapes from the phagolysosome of 

macrophages within minutes. In contrast to that, Shigella is trapped within the 

phagolysosome of neutrophils and is eventually killed. Therefore neutrophils must possess 

mechanisms to prevent this escape. 

Shigella is alive within the phagocytic vacuole of neutrophils for up to one hour (Mandic-

Mulec et al. 1997). Thus it is important to retain the bacteria within the vacuole to allow the 

ROS-dependent and -independent killing mechanisms to exert their functions on the 

bacterium. One neutrophil protease, neutrophil elastase (NE), seems essential to keep 

Shigella in the vacuole. Neutrophils with pharmacologically inhibited or genetically inactive 

NE allow the escape of wildtype Shigella into the cytoplasm. In these neutrophils, Shigella 

survival rate was also increased (Weinrauch et al. 2002).  

How NE exactly contributes to the phagolysosomic retention of Shigella was shown in one 

study that assessed the ability of a human neutrophil granule extract (hNGE) to degrade 

different Shigella virulence factors (Weinrauch et al. 2002). This granule extract was 

enriched in granule proteases such as NE and CG. Sub-lethal concentrations of hNGE 

degraded type III secreted virulence proteins IpaA, IpaB and IpaC and the membrane-bound 

as well as the secreted form of IcsA. The same extract did not affect proteins important for 

Shigella homeostasis such as outer-membrane protein A (OmpA), maltose-binding protein 

(MBP) or recombinase A (recA), which are outer-membrane, periplasmic and cytosolic 

proteins, respectively. Using a series of chemical and physiological inhibitors, it was shown 

that NE was the protease responsible for the observed cleavage of virulence factors. Purified 

human NE also cleaved IpaB and IcsA but not OmpA at low concentrations (1,2 nM). It was 

however shown that OmpA from non-pathogenic E. coli was degraded by purified NE but 

only at concentrations that are 2000 times higher than required to cleave virulence factors 

(Belaaouaj et al. 2000). Purified NE also degrades virulence factors from other Gram-

negative pathogens such as Salmonella and Yersinia (Weinrauch et al. 2002). The apparent 

specificity of NE for virulence factors is further supported by the fact that NE does not 

target the type III secretion apparatus itself nor does it cleave secreted Shigella proteins not 

associated with virulence. Interestingly, cathepsin G (CG), another abundant granule 
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protease with a high degree of homology to NE, does not degrade Shigella virulence 

proteins.  

By specifically cleaving the Shigella virulence factors, NE possibly inhibits the interaction 

of Shigella with host proteins, thus preventing the escape of Shigella from the 

phagolysosome of neutrophils. 

 

1.4 Serine Proteases: NE and CG 

1.4.1 Serine Proteases 

Despite their opposing specificity towards Shigella virulence factors NE and CG are neutral 

serine proteases of the same subfamily. The super-family of serine proteases contains 

peptidases with very diverse functions such as digestion, degradation, blood clotting, 

cellular and humoral immunity, fibrinolysis, fertilization, embryonic development, protein 

processing and tissue remodelling (Rawlings and Barrett 1993). The common feature of 

serine proteases is the occurrence of a highly reactive serine residue in their catalytic center. 

Apart from that, serine proteases are very diverse and divided into evolutionary unrelated 

clans (Barrett and Rawlings 1995). The clans differ in their overall structure and the 

succession of the catalytic residues in their primary sequences (Krem and Di Cera 2001). 

Clan members are subdivided into families based on sequence homology (Rawlings and 

Barrett 1993; Barrett and Rawlings 1995). NE and CG are members of one subfamily of the 

chymotrypsin-like clan (Lesk and Fordham 1996). 

 

1.4.2 Chymotrypsin-like serine proteases 

Chymotrypsin-like serine proteases combine a large group of diverse proteases, including 

chymotrypsin, trypsin, NE, and CG. The common features among chymotrypsin-like serine 

proteases are the strictly conserved geometry in their catalytic triad and their overall 

structure. The identical fold is composed of two asymmetric β-barrel domains and a C-

terminal α-helix (figure 1.3). Enzyme-substrate interactions involve both β-barrel domains. 

Each barrel consists of six antiparallel β-sheets. In some family members, e.g. NE, the 

barrels are connected by an extra α-helix. The barrels form a cleft in which the catalytic 

triad and the substrate-binding sites are located (Perona and Craik 1997).  
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C-terminal α-helixC-terminal α-helix

 

Fig. 1.3: Structure of bovine chymotrypsin. 
Bovine chymotrypsin is composed of two β-barrel domains and a C-terminal α-helix. Its 
structure is a classical example of the common fold of chymotrypsin-like serine proteases. 
The catalytic triad and the substrate-binding sites are located within the cleft formed by the 
two β-barrel domains, which consist of six antiparallel ß-sheets each (flat arrows). The 
residues is shown as a cartoon. The respresentation was generated using PYMOL 
(DeLano 2002) and is based on the crystallization of chymotrypsin by (Pjura et al. 2000). 
 

Catalytic triads cleave a peptide bond between the carbonyl group of the N-terminal amino 

acid and the amide group of the C-terminal amino acid. Residues adjacent to the scissile 

bond are termed P1 and P1’ respectively (figure 1.4). The catalytic triad consists of serine, 

histidine and aspartate: Ser195, His57, and Asp102 according to the chymotrypsinogen 

numbering of (Hartley B.S. 1971). The serine side chain forms a hydrogen bond with the 

imidazole ring of histidine and this histidine shares a hydrogen with aspartate. The resulting 

geometric arrangement allows the three amino acids to act together in a nucleophilic attack 

and to cleave the peptide bond of the substrate (see also figure 1.6). The cleavage of the 

substrate is a coordinated multi-step process. Upon binding of the substrate, the histidine 

ring positions the serine side chain and polarizes the hydroxyl group of this side chain by 

transiently binding its hydrogen. The serine hydroxyl group is now more nucleophilic and 
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can attack the carbonyl group of the scissile bond. Aspartate supports the orientation of the 

histidine side chain and improves its proton acceptor qualities by electrostatic interactions.   

 

 

P1 P1’ COO-+H3N P1 P1’ COO-+H3N
 
 
 
 
 
Fig. 1.4: Nomenclature of substrate residues at the scissile bond. 
The scissile peptide bond is shown in red. The residues N-terminal of the bond are termed 
P1-Pn, whereas C-terminal residues are called P1’-Pn’ (Berg JM 2003) 
 

The nucleophilic attack leads to conformational change in the vicinity of the carbonyl 

carbon atom of the substrate. The previous trigonal planar structure changes to a tetrahedral 

one. This instable formation is stabilized by the amides of serine 195 and glycine 193. The 

resulting formation is called the oxyanion hole or oxyanion pocket. The peptide bond is 

cleaved and the carbonyl group of P1 is transiently attached to the serine side chain, 

whereas the amide group of P1’ is bound to the histidine imidazole ring. The histidine 

transfers the proton of the serine to the amide group of P1’ and the former C-terminal part of 

the substrate can dissociate from the enzyme. To release the N-terminal part of the substrate 

from the serine side chain, a water molecule is needed and the same steps are repeated as 

described before. The histidine polarizes the water molecule, which attacks the carbonyl 

group of P1. The carbonyl group binds the hydroxl group of the water and the P1-serine 

ester bond is cleaved. The N-terminal substrate dissociates, the histidine-serine hydrogen 

bond is reestablished and the enzyme is prepared for a new catalytic cycle (Berg JM 2003).  

 

Fig. 1.5: Representation of protease-substrate interactions. 
Multiple enzymatic binding sites/pockets (in blue) directly contact the P sites (in pink) of the 
substrate. The nomenclature of the S sites (Sn ..., S2, S1; S1’, S2’, ... Sn’) is concordant 
with the P sites [(Schechter and Berger 1968); see also figure 1.4]. The scissile bond is 
shown in red [adapted from (Berg JM 2003)]. 
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An important step for the proper function of the catalytic triad is the correct binding and 

positioning of the substrate. The substrate binding sites (S) of the enzyme play a key role in 

this process. These sites are composed of different amino acids and form structural pockets, 

which interact with the amino acid side chains of the substrate (figure 1.5). 

The S1 pocket is thought to have an important role in the substrate specificity of the 

individual chymotrypsin-like serine proteases (Steitz and Shulman 1982). In general, the S1 

pocket consists of three β-sheets from the C-terminal β-barrel domain [residues 189-193, 

214-216, and 226-228 chymotrypsinogen numbering (Hartley B.S. 1971)]. The serine at 

position 214 is highly conserved among the chymotrypsin-like serine proteases and 

contributes to the S1 binding (Perona and Craik 1995). It aids in creating a polar 

environment for the catalytic aspartate 102 (McGrath et al. 1992). In most of these 

proteases, including NE and CG, the β-sheets are connected by two surface loops and the 

disulfide bond Cys191-Cys220(Perona and Craik 1997). 

Fig. 1.6: Specificity pocket of trypsin.  
A schematic representation of trypsin interacting with a peptide substrate is shown. The 
catalytic residues (His57, Asp 102 and Ser195, yellow) and the enzyme residues that 
contact substrate residues are shown (blue). The positively charged arginine side chain at 
position P1 of the substrate is attracted by the negatively charged aspartate 189 located at 
the bottom of the S1 specificity pocket. This interaction as well as five enzyme-substrate 
hydrogen bonds at positions P1 and P3 and glycine 193 help to position the scissile 
peptide bond (red) for the nucleophilic attack by the polarized hydroxyl group of Ser 195 
(red arrow). The respresentation is adapted from (Perona and Craik 1997). 
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Besides common characteristics, specific residues differ in the S1 pocket of the individual 

proteases. It is assumed that these varying amino acid compositions account for the different 

substrate specificities (Krem et al. 1999). Trypsin, for example, prefers to cleave after an 

arginine or lysine at the P1 position of the substrate. This is because a negatively charged 

aspartate (Asp 189) is located at the bottom of the trypsin S1 pocket. The aspartate can 

interact with the long and positively charged side chains of arginine and lysine (figure 1.6). 

In contrast to that, chymotrypsin contains an uncharged serine at the bottom of its S1 

pocket. Thus, uncharged, aromatic side chains of phenylalanine, tyrosine and tryptophan fit 

into this hydrophobic pocket. The S1 pocket of CG, for example, shows similarity to the 

chymotrypsin pocket (Harper et al. 1984).  

Apart from the residue at the bottom of S1, other amino acids define the characteristics of 

the pocket through their side chains. In enzymes with trypsin or chymotrypsin specificities, 

amino acid 216 is a glycine (figure 1.7). Since the glycine side chain consists only of 

hydrogen, it allows large substrate side chains to the base of the pocket. On the contrary, in 

elastase-like enzymes the side chains of the amino acids at position 190 and 216 exclude 

large and bulky side chains to enter the S1 pocket (figure 1.7). This structural observation is 

in accordance with the preference of NE for valine as P1residue in peptide substrates 

(Harper et al. 1984), since valine only has a small alkyl side chain.  

 

Gly 216 Gly 216Gly 216 Gly 216

 
 
Fig. 1.7: Schematic model of S1 pockets from different chymotrypsin-like serine 
proteases. 
The S1 pocket of chymotrypsin allows large, hydrophobic side chains to enter the pocket 
completely, whereas trypsin prefers long, negatively side chains. Val190 and 216 confine 
the S1 pocket of elastase to small alkyl side chains [adapted from (Berg JM 2003)]. 

 

Yet, the model that substrate specificities are only determined by the S1 pockets is 

incomplete. Substitution of individual amino acids in the S1 site of trypsin with their 

counterparts in chymotrypsin fails to transfer chymotryptic specificity to the mutant enzyme 

(Graf et al. 1987; Hedstrom et al. 1992). Transfer of specificity requires the additional 

exchange of amino acids in at least two distal segments of the enzyme, none of which 
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directly contacts the substrate (Hedstrom et al. 1992). It is notable that studies on the 

different S1 sites of the chymotrypsin-like serine proteases have been carried out with 

peptide but not with full-length protein substrates. The recognition of these protein 

substrates likely involves other substrate-enzyme interactions outside of the binding pockets 

(Perona and Craik 1995).  

 

1.4.3 Human neutrophil cathepsin G (CG) and neutrophil elastase (NE) 

Human neutrophil cathepsin G (CG; EC 3.4.21.20) and human neutrophil elastase (NE; EC 

3.4.21.37) are major constituents of the antimicrobial proteins of neutrophils. At the sites of 

infection they are mainly released into the phagocytic vacuole and to a lesser extend to the 

extracellular space to exert their specific an unspecific functions. One of the specific 

functions of NE is the degradation of virulence factor of Shigella and other Gram-negative 

enteropathogenic bacteria. It is intriguing that CG does not cleave these effectors since the 

two proteins share many characteristics. 

As mentioned above, CG and NE belong to the same subfamily of chymotrypsin-like serine 

proteases. Thus they are homologous and their primary amino acid sequence is to 37% 

identical. The residues of the catalytic triad are the same positions (His57, Asp102 and Ser195) 

and their overall fold consists of two ß-barrels. In addition to that, NE and CG show a 

striking structural similarity beyond their overall fold (figure 1.8). When superimposed, the 

α-carbons of NE and CG only display a root mean square deviation (RMSD) of 0,9 Å. The 

RMSD describes the difference in localization of the α-atoms at similar positions in the 

structure. A RSMD of zero means that the structures are identical in conformation (Maiorov 

and Crippen 1994). However, the crystal structures show that the S1 sites of NE and CG are 

different (Bode et al. 1989; Navia et al. 1989; Hof et al. 1996). The S1 pocket of CG can 

harbor large and bulky side chains whereas only amino acids with small alkyl side chains fit 

into the S1 pocket of NE. Using peptide substrates, it was confirmed that CG and NE prefer 

different amino acids at the P1 position: phenylalanine and lysine for CG versus valine and 

leucine for NE (Harper et al. 1984; Tanaka et al. 1985). In general, NE hydrolyzes peptide 

substrates much faster than CG (Harper et al. 1984; Tanaka et al. 1985).  

Human NE and CG are processed and stored in the same manner. They are both synthesized 

as inactive zymogens in the premyeloid and myeloid stage of neutrophil and monocyte 

differentiation in the bone marrow (Campbell et al. 1989; Fouret et al. 1989). Protein 

synthesis seems restricted to the differentiating neutrophil, since no transcription, at least of 
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the NE gene (Fouret et al. 1989), is observed in neutrophils after they have left the bone 

marrow. Both enzymes are N-glycosylated. NE has two asparagine-linked carbohydrate 

chains (asparagine 95 and 144, chymotrypsin numbering), whereas CG has one potential 

glycosylation site [asparagine 60 (Salvesen et al. 1987; Sinha et al. 1987)]. The composition 

of the complex mannose oligosaccharides sugars can differ resulting in different NE and CG 

isoforms (Lindmark et al. 1990; Watorek et al. 1993; Kim and Kang 2000). How the 

glycosylated precursors are transferred to the maturing granule compartment is unclear, but 

obviously it is independent of the mannose-6-phophate receptor (Rijnboutt et al. 1991a; 

Rijnboutt et al. 1991b; Hasilik 1992; Glickman and Kornfeld 1993) which is often involved 

in targeting proteins to lysosomes (Kornfeld and Mellman 1989). 

In the developing granule, NE and CG are post-translationally processed to mature, active 

proteins. The N-terminal processing of the preproenzymes involves two cleavage steps: first 

a signal peptide, then the two-residue activation peptide is cleaved off (Salvesen and 

Enghild 1990; Brown et al. 1993; McGuire et al. 1993; Urata et al. 1993). Both mature 

proteins start with an isoleucine. This N-terminal processing seems essential for activity of 

the protein, since recombinant expression of full-length NE or mature NE starting with a 

methionine did not yield active proteins (Li and Horwitz 2001). In addition, the C-terminus 

of both enzymes is processed to its individual mature form (Salvesen and Enghild 1990; 

Gullberg et al. 1994). However, the carboxyl prodomains do not seem to be important for 

proper targeting and enzymatic activity (Gullberg et al. 1995). Finally, the 267 amino acid 

NE precursor is processed to its 218 amino acid mature form and the CG 255 amino acid 

precursor results in a 226 amino acid mature CG protein.  

The active proteins are predominantly stored in the azurophilic granules of neutrophils in 

fairly high concentrations [1-2 pg/cell, (Wiedow et al. 1996)]. NE and CG are very basic 

with a PI of > 9 and ~12, respectively, and through their arginine residues they are probably 

anchored to the negatively charged heparin and chondroitin sulfate proteoglycan matrix of 

the granule. Upon activation, neutrophils discharge their granule contents into the bacteria 

containing vacuole or to the extracellular space. A minimal proportion of the active proteins 

is also localized on the surface of unstimulated neutrophils (Owen et al. 1995). This surface 

expression is increased when the neutrophils are exposed to chemoattractants such as fMLP 

(Owen et al. 1995). The correct distribution of NE in the granules and on the surface seems 

important to prevent neutrophil deficiencies (neutropenia). Hereditary neutropenia is rare 

but predisposes people to infections. In cyclic neutropenia (CN) the neutrophil number in 

the blood oscillates from zero to normal (Morley et al. 1967; Lange 1983) whereas in severe 

 17

 



Introduction 

congenital neutropenia (SCN) the total neutrophil number is drastically reduced (Ancliff et 

al. 2001). All cases of CN and 75% of SCN cases are caused by mutations in the NE gene 

(Horwitz et al. 1999). These mutations are thought to interfere with the correct targeting of 

NE from the trans-golgi network to the granules and the plasma membrane (Horwitz et al. 

2004). 

 

His 57

Asp 102
Ser 195

His 57

Asp 102
Ser 195

 

Fig. 1.8: Superimposition of the NE and CG crystal structures. 
190 α-carbons of the crystal structures of NE (yellow) and CG (grey) were superimposed 
with a root mean square deviation (rmsd) of 0,9 Å. The catalytic triad consisting of histidine 
(position 57), aspartate (102) and serine (195) is shown in purple. The superimposition was 
achieved using the SWISS-PDB-VIEWER (Guex 1997). 
 

Despite its low activity towards peptide substrates, CG, like NE, unspecifically degrades 

extracellular matrix components such as proteoglycan, collagen, laminin, fibronectin and 

even elastin (Roughley 1977; Roughley and Barrett 1977; Baggiolini et al. 1979; Caughey 

1994). These proteolytic characteristics may be helpful for the neutrophil egress from the 
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bloodstream and their subsequent transmigration through tissue. But the role of NE and CG 

in these processes remains controversial (Shapiro 2002).  

At sites of inflammation, neutrophils degranulate and discharge NE and CG mainly into the 

phagocytic vacuole and to a lesser extent into the extracellular space (Faurschou and 

Borregaard 2003). When exposed to the extracellular environment, the enzymes are either 

membrane-bound, part of neutrophil extracellular traps (NETs) (Brinkmann et al. 2004), or 

freely released. To avoid digestion of healthy tissue NE and CG levels are tightly controlled 

by their physiological inhibitors, α1-antitrypsin and α1-antichymotrypsin, respectively 

(Beatty et al. 1980). These plasma-derived inhibitors belong to the family of serpins (serine 

protease inhibitors) and are highly abundant extracellular proteins (Shapiro 2002). They can 

inhibit free but not membrane-bound NE and CG (Owen et al. 1995). Hereditary deficiency 

in α-antitrypsin causes chronic destruction of alveolar walls and leads to pulmonary 

emphysema development (Gadek et al. 1981; Eriksson 1984). Deficiencies in α1-

antichymotrypsin predispose patients for lung diseases (Faber et al. 1993). In addition, NE 

is present in cystic fibrosis airways (Delacourt et al. 2002) and induces excess mucus 

production in chronic obstructive pulmonary disease (COPD) (Shapiro 2002).  

Apart from their degradative properties, NE and CG are thought to be important regulatory 

tools in inflammatory processes (Wiedow and Meyer-Hoffert 2005). For example, NE 

induces IL-8 expression via toll-like receptor 4 in vitro (Devaney et al. 2003) and CG 

activates PAR-4 (protease-activated receptor) to initiate thrombocyte aggregation 

(Sambrano et al. 2000). 

The importance of NE and CG in immunity is proven by various studies. Mice deficient in 

NE and / or CG are susceptible to fungal infections despite normal neutrophil development 

and recruitment (Tkalcevic et al. 2000). The same study indicates that NE and CG act as 

effectors in the endotoxic shock cascade downstream of TNFα. In accordance with the 

observed specificity of NE for virulence factors of Gram-negative bacteria, mice deficient in 

NE have impaired survival following infections with gram-negative pathogens. In contrast, 

mice deficient in CG are more susceptible to Gram-positive bacteria (Belaaouaj et al. 1998; 

Reeves et al. 2002). Interestingly, CG shows an antimicrobial activity that is independent of 

its enzymatic function (Bangalore et al. 1990). 
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1.5 Aim of study 

As described above, NE is a key component in the resolution of a Shigella infection by 

neutrophils. NE specifically targets Shigella virulence factors but not proteins that are not 

associated with virulence or that are important for bacterial homeostasis (Weinrauch et al. 

2002). Therefore, NE is likely to modify the interaction of Shigella with host cells, as seen 

in macrophages or epithelial cells upon Shigella uptake. Indeed, in neutrophils with 

pharmacologically inhibited or genetically inactive NE, Shigella can escape into the 

cytoplasm and its survival rate is increased (Weinrauch et al. 2002). The specificity of NE 

for virulence factors holds also for other Gram-negative pathogens such as Salmonella and 

Yersinia (Weinrauch et al. 2002). Furthermore, CG, another abundant granule protease, does 

not degrade Shigella virulence proteins, although it is homologous to NE and their crystal 

structures are almost identical. Therefore we raised the question why NE but not CG targets 

virulence factors and how NE distinguishes virulence factors from other bacterial proteins. 

The aim of this study was to understand how NE recognizes virulence factors. To this end, 

we first analyzed the substrate for a NE recognition motif in the primary or higher order 

structures. As example we used the Shigella virulence factor IpaB. Secondly, we addressed 

the question of the NE specificity by a functional analysis of NE mutants. These mutants 

were generated on the basis of a structural comparison of NE and CG and were tested for 

their ability to cleave the Shigella virulence factors IpaB and IcsA.  

 

  

 

 

 

 20

 



Materials and Methods 

2 Materials and Methods 

2.1 Bacteria – Escherichia coli 

2.1.1 Strains 

E. coli TOP 10: F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 lacX74 recA1 

araD139 (ara- leu)7697 galU galK rpsL (StrR ) endA1 nupG 

(Invitrogen, chemically competent) 

 

E.coli Rosetta™(DE3) pLys:  

F- ompT hsdS(rB
-mB

-) gal dcm  Tetr lacY1 (DE3) pLys SRARE (Camr)  

(Novagen, chemically competent) 

 

 

DE3 indicates that the E.coli Rosetta™(DE3) pLys strain is a lysogen of lambda DE3, and 

therefore carries a chromosomal copy of the T7 RNA polymerase gene. This gene is under 

control of the lacUV5 promoter, which is inducible by addition of IPTG.  

The DNA encoding for the recombinant protein was under control of the T7 promoter. To 

avoid basal expression of the polymerase and thus unspecific expression of the cDNA 

encoding for the recombinant protein, the bacteria contained the pLys plasmid. This plasmid 

encoded for T7 lysoszyme, a natural inhibitor of T7 RNA polymerase (Studier 1991; Zhang 

and Studier 1997). To enhance the expression of eukaryotic proteins, the bacteria 

additionally contained tRNAs for seven codons rarely used in E. coli and other prokaryotes 

(AGA, AGG, AUA, CUA, GGA, CCC, and CGG). The tRNA genes were also encoded on 

the pLys plasmid that additionally carried a chloramphenicol resistance marker. This 

plasmid was compatible with the plasmid pET-28(a)+ which was used to express NE. 

 

2.1.2 Growth conditions and media 

E.coli strains used for plasmid amplification were cultured according to standard procedures 

(Sambrook and Russell 2001) at 37°C in Luria-Bertani (LB) medium supplemented with 

either ampicillin (100 µg/ml) or kanamycin (50 µg/ml). E.coli Rosetta™(DE3) pLys used 

for protein expression was grown in LB medium supplemented with chloramphenicol (50 

µg/ml). If the bacteria carried the expression plasmid pET-28a(+), the media was 
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additionally supplemented with kanamycin (50 µg/ml). Subcultures were diluted 1:100 in 

LB medium without antibiotics. 

 

2.1.3 Protein expression  

E.coli Rosetta™(DE3) pLys were transformed with the empty expression plasmid (pET-

28a(+)) or with the plasmid carrying the respective cDNA encoding for histidine tagged 

mature NE (pET-28a(+)/NE mature). Transformation was carried out according to the 

manufactures protocol. Transformed bacteria were plated on LB agar plates supplemented 

with chloramphenicol (50 µg/ml) and kanamycin (50 µg/ml). Overnight cultures were 

grown in LB medium with kanamycin (50 µg/ml) and subcultured at a 1:100 dilution. 

Protein expression was induced by addition of IPTG (1mM) to the subculture at an OD600 of 

0,8 for 4h. To test for expression of the recombinant proteins, 1 ml aliquots of the 

subcultures were harvested and dissolved in Laemmli buffer (Laemmli 1970). The samples 

were separated via SDS-PAGE and analyzed by immunoblotting or Coomassie staining. 

 

2.1.4 Protein purification  

Protein purification was carried out at 4°C or on ice. 2 l subculture of E.coli Rosetta™(DE3) 

pLys carrying pET-28a(+)/NE mature were harvested. The pellet was dissolved in 20 ml 

lysis buffer (150 mM NaCl, 50 mMTris-Cl, pH 8,0, 5 mM DTT, 10 mm Imidazole, 0,2 % 

v/v triton 20 µg/g E.coli DNAse) using sonication (Sonoplus 2070, Bandelin Corp, 5x 

45sec, 40% power, level 5). After centrifugation (3 h, 22000 x g) the supernatant was 

applied to a nickel column (Ni-NTA Agarose, Qiagen) that had been equilibrated (10 mM 

imidazole, 150 mM NaCl, 25 mM sodium phosphate buffer, pH 8). The flowthrough was 

reapplied to the column. Following two washing steps (2 x 10 ml; 50 mM imidazole, 150 

mM NaCl, 25 mM sodium phosphate buffer, pH 8), the proteins were eluted using a high 

imidazole concentration (250 mM imidazole, 150 mM NaCl, 25 mM sodium phosphate 

buffer, pH 8). At every purification step aliquots were taken and analyzed by SDS-PAGE 

and subsequent immunoblotting or Coomassie staining. The fractions of the eluate 

containing the histidine tagged recombinant NE protein were combined and dialysed for 14 

h. The dialysis buffer was changed twice during that time (36 mM Na-acetate, 164 mM 

glacial acid, pH 4). The dialyzed eluate was subsequently lyophilized and dissolved in 500 

µl pNE storage buffer (20 mM Na Acetat/150 mM NaCl, pH 4,0).  
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2.2 Bacteria – Shigella flexneri 

2.2.1 Strains 

M90T:               wildtype strain of S.flexneri, serotype 5a  

M09T ∆ipaB + pUC19:                        (Guichon et al. 2001)  

M90T ∆ipaB pUC19/wt IpaB:                      (Guichon et al. 2001) 

M90T∆ipaB pUC19/∆ 8-10 aa IpaB:                    (Guichon et al. 2001) 

 

2.2.2 Growth conditions and media 

Shigella was grown on TSA plates (DifcoTM Tryptic Soy Agar, BD) including 0.01% Congo 

red. Shigella's ability to bind Congo red correlates with the presence of the virulence 

plasmid (Qadri et al. 1988). For overnight cultures, a single colony from a plate was grown 

in 5 ml TSB-medium (BactoTM Tryptic Soy Broth, BD) at 37°C shaking at 200 rpm. S. 

flexneri carrying the pUC19 plasmid was cultured in TSB medium supplemented with 100 

µg/ml ampillicin. Overnight cultures were subcultured 1:100 in TSB without antibiotics. An 

OD600 of 0.1 corresponds to a concentration of 4 x 107 bacteria/ml.  

 

2.2.3 Cleavage of IpaB 

Subcultures of M90T ∆ipaB pUC19/wt ipaB and M90T∆ipaB pUC19/∆ 8-10 aa ipaB were 

grown for 4-5 h at 37°C, shaking at 200 rpm. The bacteria were pelleted for 15 min at 4°C, 

17600 x g. The supernatant was filtered (0,22 µm pore size) on ice and mixed with sodium 

phosphate buffer (20 mM, ph 7,5). For the experiments shown in figure 3.2 and 3.7 the 

supernatant was used immediately. For all other IpaB cleavage experiments, supernatant of 

M90T ∆ipaB pUC19/wt ipaB was generated once and stored in 1 ml aliqots at –20°C. For 

the experiments aliquots were thawed and mixed with pNE or the individual cell lysates. To 

denature IpaB, thawed supernatant was heated for 10 min at 95°C and immediately cooled 

on ice prior to addition of pNE or the lysates. All cell lysates had been generated from 1x107 

cells. The lysates had been incubated with the inhibitor cocktail for 15 min at RT prior to 

addition to the supernatant except for the experiments shown in figure 3.2 and 3.7. pNE and 

cell lysates were added to supernatant and incubated as indicated in the individual figure 

legends. Proteins were TCA precipitated and dissolved in Laemmli buffer (Laemmli 1970). 
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1x108 bacterial equivalence were analyzed with SDS-PAGE at a polyacrylamide 

concentration of 12% and subsequent immunoblotting using an IpaB antibody.  

 

2.2.4 Cleavage of IcsA and OmpA 

M90T were grown overnight and subcultured for 2h. The concentration of the bacteria was 

determined at an OD of 600 nm wave-length. The bacteria were harvested for 10 min at 

4°C, 5500 x g and the supernatant was discarded. The M90T were dissolved in 1x PBS 

(Gibco) at concentration of 3x109/ml and kept on ice during this procedure. 3x108 bacteria 

in 100 µl PBS were mixed with 900 µl IcsA-cleavage buffer (4,5 g NaCl, 4 g nutrient broth 

(BD) in 500 ml; 20 mM sodium phosphate, pH 7,4) and incubated with pNE and the 

individual cell lysates. All cell lysates had been generated from 1x107 cells and the lysates 

had been incubated with the inhibitor cocktail for 15 min at RT prior to addition to the 

bacteria. pNE and lysates were added to the bacteria as indicated in the individual figure 

legends and incubated for 1h at 37°C, shaking at 180 rpm. The bacteria were centrifuged for 

5 min at 4°C, 12000 x g and dissolved in Laemmli buffer (Laemmli 1970). For IcsA 

detection, 7,5x107 bacterial equivalence were analyzed by a SDS-PAGE at a polyacrylamide 

concentration of 10% and subsequent immunoblotting using an IcsA antibody. For OmpA 

detection, 2x107 bacterial equivalence were analyzed by SDS-PAGE at a polyacrylamide 

concentration of 15% and subsequent immunoblotting using an OmpA antibody.  

 

2.3 Cells 

2.3.1 Cell line 

RBL-1        rat basophilic leukemia cells  

(DSMZ, #ACC 147) 

 

2.3.2 Growth conditions and media 

RBL-1 cells were cultured in RPMI media supplemented with 1% L-glutamine, 1% Na-

pyruvate and 10% FCS (complete media) at 37°C, 5% CO2. Stably transfected cell lines 

were cultured in complete media supplied with geneticin (0,5 mg/ml; Gibco). All cell 

culture equipment was sterile and purchased from Gibco unless stated otherwise. The RBL-

1 cells grow both non-adherent (3/4) and adherent (1/4). In order to split the cells, the 
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adherent fraction was incubated with trypsin (0,05% w/v in PBS) and collected with the 

non-adherent fraction by centrifugation. The concentration of the cells was determined 

using a Neubauer counting chamber (0,0025 mm2, Labor Optik). Cells were seeded at a 

concentration of 1x106/ml.  

 

2.3.3 Transient transfection  

A total of 1x106 RBL-1 cells were seeded in a 10 cm petridish in complete media and co-

transfected with either 4 µg pCS2+/NE and 1 µg pCS2+/βgal or with 4 µg pCS2+ and 1 µg 

pCS2+/βgal. In separate tubes, DNA and Lipofectamine 2000 (Invitrogen) were diluted in 

250 µl Opti-MEM1 buffer and mixed gently. After an incubation period of 5 min at RT both 

solutions were combined, mixed gently and incubated for another 20 min at RT before 

addition to the cells. The cells were cultured for 24 h in complete medium without geneticin. 

Then theywere harvested, washed in 1x PBS and dissolved in 150 µl 250 mM Tris-Cl, pH 

7,5. As a transfection control, 30 µl of the cells were analyzed for β-galactosidase activity. 

The remaining 120 µl were lysed according to the protocol described below. The complete 

lysate was tested for NE activity. 

 

2.3.4 Stable transfection and single-cell dilution 

RBL-1 cells were separately transfected with the empty expression vector (pcDNA3), the 

expression vector carrying the DNA encoding for the wildtype full-length NE protein 

(pcDNA3/NE), or with the expression vector carrying the DNA encoding for the different 

mutant full-length NE proteins (see table 2.1). 1x106 RBL-1 cells in a total volume of 2 ml 

were seeded in a single well of a 6-well plate and transfected as described above using 4 µg 

DNA. The following day, the media was exchanged and the cells were incubated in 

complete media for another 48h before addition of geneticin. Since the expression vector 

pcDNA3 carries a geneticin resistance marker, successfully transfected cells were viable in 

this media after an incubation period of 5 days. Geneticin resistant cells were separated from 

dead cells by Ficoll centrifugation (50 min at RT, 400 x g), and seeded into individual 96-

wells at a concentration of 0,5 cells/well to obtain one cell per well. The single-cell derived 

clones were expanded and NE enzymatic activity was tested from several of the different 

clones after growth to confluence as described below.  
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2.3.5 Cell lysis 

Cell lysates were generated according to a modified protocol described by (Li and Horwitz 

2001). Cells (1x105-8) were pelleted and washed in sterile 1x PBS (Gibco). The pellets were 

either stored at –80°C or resuspended in 120 µl of 250 mM Tris-Cl, pH 7,5. The 

concentration was adjusted to 100 mM Tris-Cl, pH 7,5, 1 M MgCl2, 0,1% Triton X-100 in a 

300 µl volume followed by one freeze-thaw cycle at –20°C overnight. The cell suspension 

was thawed on ice and DNA was fragmented by sonication (2 x 20 sec, position 3, 20 % 

power; Sonoplus 2070, Bandelin). Following this, the volume of the suspension was 

increased to 500 µl (700 mM NaCl, 60 mM Tris-Cl, pH 7.5, 600 mM MgCl2, 0,1% Triton 

X-100). In order to purify the lysate from cell debris, it was centrifuged at 16000 x g at 4 °C 

for 90 min. 450 µl supernatant was collected and adjusted to a final volume of 600 µl (100 

mM Tris-Cl, pH 7,5, 1 M NaCl, 500 mM MgCl2, 0,1% Triton X-100).  

 

2.4 Chemicals 

All chemicals were obtained from Sigma-Aldrich unless stated otherwise. 

 

2.5 Enzymatic Assays 

2.5.1 β-galactosidase activity 

Transiently transfected cells were assayed for β-galactosidase expression using the Galacto 

Light-Plus Kit from Applied Biosystems. 30 µl of each sample was mixed with 250 µl lysis 

buffer, centrifuged for 2 min at 4°C, 13000 x g. 20 µl of supernatant were analyzed for β-gal 

activity using a microtiterplate luminometer (BD Biosciences) according to the 

manufacturers’ protocol Every measurement was done in triplicates. 

 

2.5.2 Reagents to measure NE and CG activity 

pNE and pCG were both purified from human sputum (Elastin Products Company). NE 

activity was measured using the NE peptide substrate N-methoxy-succinyl-alanine-alanine-

proline-valine-pnitroanilide (MeO-Suc-AAPV-pNA, 20,3 mM in 1-methyl-2-
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pyrrolidinone). To specifically inhibit the NE protein, the inhibitor N-methoxy-succinyl-

alanine-alanine-proline-valine-chloromethyl ketone (NE-CMK, 100 mM in DMSO) was 

utilized. In order to measure CG activity, the CG peptide substrate N-succinyl-alanine-

alanine-proline-phenylalanine-p-nitroanilide (N-Suc-AAPF-pNA, 60,8 mM in 1-methyl-2-

pyrrolidinone) was used. The activity of CG was specifically inhibited by the peptide 

benzyloxycarbonyl-glycine-leucine-phenylalanine-chloromethyl ketone (Z-GLF-CMK, 10 

mM in DMSO). 

To block degradation of IpaB and IcsA by endogenous RBL-1 proteases, cell lysates were 

mixed with an individually prepared inhibitor cocktail (IC) and incubated for 15 min at RT. 

The IC was composed of bestatin, chymostatin, E-64, EDTA, leupeptin, pepstatin A, and 

TPCK at a concentration of 1mM each. The individual inhibitors were dissolved according 

to the manufacturers’ instructions and combined in DMSO. The concentration of the IC in 

the cell lysates corresponded to 50 µM, except for the experiment shown in figure 3.9 were 

20 µM was used 

 

2.5.3 NE and CG activity of cell lysates 

The NE and the CG peptide substrate consist of four specific amino acids coupled to a 

chromophore (nitroanilide) at the P1 position. Cleavage by NE or CG results in the release 

of the chromophore leading to an increase of the optical density (OD) when measured at 410 

nm wave-length. The complete lysate of transiently transfected cells or 1x105 and 1x108 cell 

equivalents of stably transfected cell lines (final volume of 600 µl) were mixed with 20 µl 

NE peptide substrate or with 20 µl CG peptide substrate. The mixtures were incubated for 

30 min at 37°C in the dark. The reaction was terminated by addition of 300 µl of 

PMSF/PBS [1mM PMSF in 1x PBS (Gibco)]. The OD was measured at 410 nm wave-

length using a photometer (Ultrospec 2100, Amersham). The lysate from cells transfected 

with the empty expression vector (vector lysate) was used for normalization. Lysate of cells 

expressing wildtype NE (wt) or vector lysate containing pNE was used as positive control 

for NE activity. pCG was added to vector lysate and served as positive control for CG 

activity.  

If NE and CG specific inhibitors were used, they were added to the lysates before adding the 

substrates and this mixture was incubated at room temperature for 15 min. The final 

concentrations of the purified enzymes or the cell lysates are indicated in the individual 

figure legends. 
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2.5.4 NE and CG kinetics / activity units 

The NE peptide substrate (10 µl/ml assay buffer: 500 mM NaCl, 200 mM Tris-HCl, pH 8) 

and the CG peptide substrate (70 µl/ml assay buffer: 100 mM Tris-HCl, ph 8,3) were 

dissolved in the individual assay buffers and protected from light. 750 µl of the respective 

substrate/assay buffer mixture were added to a plastic cuvette and normalized. PNE, pCG or 

cell lysates were subsequently added at a volume of 250 µl and the cleavage of the 

respective peptide substrate was monitored by measuring the OD at a wave-length of 410 

nm over 3 min every 30 sec. The NE and the CG peptide substrates consist of four specific 

amino acids coupled to a chromophore (nitroanilide) at the P1 position. Cleavage by NE or 

CG results in the release of the chromophore leading to an increase of the optical density 

(OD) when measured at 410 nm wave-length.  

The final concentrations of the purified enzymes or the cell lysates are indicated in the 

individual figure legends. If necessary, the volumes of the samples were increased to 250 µl 

with HBSS+/10mM HEPES buffer. Within each experiment the amount of HBSS+/10mM 

HEPES added was equal.  

If the kinetics of the individual samples were linear, the NE or CG activity units could be 

calculated by subtracting the OD410 measured after 90 sec from the one measured after 150 

sec. The resulting OD/min represented the unit of NE or CG activity.  

 

2.6 Molecular cloning techniques 

Standard molecular cloning techniques were performed according to (Sambrook and Russell 

2001). Plasmids and primers used in this study are listed in Table 3.1. The individual 

cloning strategies for expression of NE in E. coli and RBL-1 cells and the protocol for 

mutagenesis of ELA2 (NE gene) are described below. The sequences of all cloned NE 

fragments were confirmed by sequencing. All restriction enzymes used in this study were 

purchased from NEB Biolabs. Plasmids were amplified using chemically competent E. coli 

(TOP10, Invitrogen) according to manufacturers’ guidelines. Plasmid DNA was extracted 

from E. coli by the alkaline lysis procedure (Sambrook and Russell 2001), and further 

purified using the Qiagen plasmid kits. 
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2.6.1 Cloning of NE for expression in E. coli 

The DNA encoding for the human mature NE protein was amplified by PCR from the 

cDNA of NE (RZPD, #p998K167196). The PCR product was ligated into the expression 

vector pET-28a(+) using the restriction enzymes BspH I and Xho I, thereby joining the 3’-

end of the NE DNA to a 6x hisitidine tag encoded in the vector. The relevant restriction 

sites had been introduced in the PCR primers of the NE amplicon. Furthermore, the forward 

primer contained five basepair exchanges (table 3.1, in bold) that did not alter the amino 

acid composition of the protein but disrupted continuous “GC” stretches at the 5’-end of the 

wildtype NE DNA. These basepairs were selected based on the software program 

PROTEOXPERT from Roche [www.proteoexpert.com (Roche-Applied-Science)]. The PCR 

reaction was carried out in a 50 µl volume containing 2.5 U Pfu Turbo polymerase 

(Stratagene), 5 µl of the respective 10x polymerase buffer, 125 ng of each of the two 

primers and 0.25 mM of each dNTP. Template DNA was added in variable concentrations 

(by default 100 pg DNA). The amplification reaction was as following: 5’ 95°C, 30 cycles 

[1’ 95°C, 45’’ annealing at 60°C, 1’ elongation at 72°C], and 10’ final elongation at 72°C.  

 

2.6.2 Cloning of NE for expression in RBL-1 cells 

The DNA encoding for the human full-length NE protein was amplified by PCR from the 

cDNA of NE (RZPD, #p998K167196). The PCR product was ligated into the expression 

vector pCS2+ (Rupp et al. 1994; Turner and Weintraub 1994) using the restriction enzymes 

EcoR I and Xba I. The same restriction enzymes were used to subclone the NE fragment 

into the expression vector pcDNA3 for stable transfection of RBL-1 cells. The PCR reaction 

was identical to the one described above except that the annealing temperature was 

increased to 62°C.  

 

2.6.3 Mutagenesis of ELA2 (NE gene) 

Site-directed mutations in the DNA encoding for the human full-length NE protein were 

created using pcDNA3/NE as template. Mutations were introduced using the QuickChange 

site-directed mutagenesis kit (Stratagene) according to the manufacturer's protocol. This 

method uses complementary oligonucleotides encoding the desired mutation. The sense 

strand oligonucleotides used in the mutagenesis reactions are listed in table 3.1 and the 

introduced basepairs are highlighted in bold. All mutations were confirmed by sequencing. 

 29

 



Materials and Methods 

 

Table 3.1: Plasmids and Primers used in this study.  

Plasmids  Primers   Sourcea 
pCMV-Sport6/human NE 
cDNA 

 RZPD 

pET-28a(+)  Novagen  
pET-28a(+)/ NE mature  FWb: 5’ –cgtcggtcatgattgtaggtggtcgtcgtgcgcggccccacgc– 3’ 

RVc:  5’ -ccgctcgagttggatgatagagtcg– 3’ 
 

pCS2+  R. Rupp 
pCS2+/βgal  R. Rupp 
pCS2+/NE FWb: 5’ -gacttcaggaattcgccaccatgaccctcggccgccgactcg- 3’  

RVc:  5’ -gacttcagtctagatcagtgggtcctgctggccgggtccgg-3’ 
 

pcDNA3  Invitrogen 
pcDNA3/NE   
pcDNA.3/NE 35-41  5’ -gcccttcatggtgtccctgcagatccagagcccagcaggtcagagcag 

     atgcggcgccaccctgattgcgc- 3’ 
 

pcDNA.3/NE 58A-6l 5’ –cgtcatgtcggccgcgcactgctggggaagcaatataaatgtcgcggtg    
     cgggtggtcctgggagcc- 3’ 

 

pcDNA.3/NE N98A  5’ –cggctacgaccccgtagctttgctcaacgacatcg- 3’  
pcDNA.3/NE N98L  5’ –cggctacgaccccgtactgttgctcaacgacatcg- 3’  
pcDNA.3/NE F192A  5’ –gaggggccggcaggccggcgtctgtgccggggactccggcagccccttg   

      gtctgc- 3’ 
 

pcDNA.3/NE F192K  5’ –gaggggccggcaggccggcgtctgtaaaggggactccggcagccccttg  
      gtctgc- 3’ 

 

pcDNA.3/NE A213V 5’ –gctaatccacggaattgtgtccttcgtccggggag- 3’  
pcDNA.3/NE F215A 5’ –gctaatccacggaattgcctccgccgtccggggaggctgcgcctcag- 3’  
pcDNA.3/NE F215Y  5’ –cgtcatgtcggccgcgcactgctggggaagcaatataaatgtcgcggtg    

     cgggtggtcctgggagcc- 3’ 
 

pcDNA.3/NE 216-218  5’ –ctaatccacggaattgcctccttcggcaaaagctcctgcgcctcagggctc  
      taccccg- 3’ 

 

pcDNA.3/NE 216-224 5’ –ctaatccacggaattgcctccttcggaaagtcgtcaggggttcctcccga   
      tgcctttgccccggtg- 3’ 

 

aUnless indicated otherwise, plasmids were constructed during the course of this study. 
bFW = forward primer 
cRV  = reverse primer 
 

2.7 Protein analysis 

2.7.1 Determination of protein concentrations 

The total protein concentration of the cell lysates and of pNE as well as pCG was 

determined by Bradford analysis (Bradford 1976) using the BioRad protein assay reagent 

and bovine serum albumin (Promega) as protein standard. 

 

2.7.3 TCA precipitation 

10% trichloroacetic acid (TCA; Merck) was added to the bacterial supernatants and 

incubated on ice for 30 min. The samples were centrifuged at 15000 x g for 30 min and the 
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pellet dissolved in acetone to reduce TCA contamination. After a 10 min centrifugation step 

at 15000 x g the acetone was removed and the sample left to dry (Rehm 2002). The 

precipitated proteins were dissolved in Laemmli buffer (Laemmli 1970). 

 

2.7.4 SDS polyacrylamide gel electrophoresis (SDS-PAGE)  

Denaturing gel electrophoresis can resolve complex protein mixtures into hundreds of bands 

on a gel. In SDS polyacrylamide gel electrophoresis (SDS-PAGE) separations, migration of 

the proteins is determined not by intrinsic electric charge of polypeptides but by molecular 

weight. Sodium dodecyl sulphate (SDS) is an anionic detergent that denatures proteins by 

wrapping the hydrophobic tail around the polypeptide backbone and thus confers a net 

negative charge to the polypeptide in proportion to its length. Because molecular weight is 

essentially a linear function of the peptide chain length, the proteins separate by molecular 

weight (Rehm 2002). 

SDS-PAGE was always performed with the vertical Mini-PROTEAN® 3 system from 

BioRad. Samples were dissolved in Laemmli buffer (Laemmli 1970) and applied onto 

precast polyacrylamide gels (Biorad) with varying polyacrylamide concentrations. The NE 

samples from the bacterial expression of NE were run on 15% acrylamide SDS gels. The 

IpaB, IcsA and OmpA samples were run on 12, 15, and 10% acrylamide SDS gels 

respectively. The acrylamide gels were completely covered with running buffer (25 mM 

Tris, pH 8.6, 192 mM glycine and 0.1% SDS) and the proteins of the samples were 

separated for 1,5 h at 150 V. The separated proteins were either visualized by 

immunoblotting or by Coomassie staining.  

 

2.7.5 Immunoblotting 

Sufficiently separated proteins in an SDS-PAGE can be transferred via an electric current to 

a solid membrane for immunoblot analysis, also called Western Blot analysis. Transfer to 

nitrocellulose membranes (Amersham Pharmacia) was accomplished by blotting with the 

BIO-RAD Tank Transfer System for 1 hour at 100 V in transfer buffer (39 mM glycine, 48 

mM Tris, 0.037% SDS, 20% methanol). The membranes were blocked with 3% (w/v) 

bovine serum albumine (BSA) dissolved in PBS (Gibco) containing 0.1% (v/v) Tween for 1 

hour at RT or overnight at 4oC. The primary antibodies, dissolved in the blocking buffer 

supplemented with 0,02% (v/v) Na-azide, were incubated with the membranes for 1-2 h at 

RT. The primary antibody was washed off in PBS with 0,1% (v/v) Tween three times for 10 
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min. The membrane was then incubated with the appropriate secondary antibody, which 

was dissolved in the blocking buffer, for 30-60 min at RT. The secondary antibody was also 

washed off in PBS with 0,1% (v/v) Tween three times for 10 min. All secondary antibodies 

(Jackson Laboratories Inc) were horseradish-peroxide (HRP) conjugated and bands were 

visualized by the ECL Western blotting detection reagents (Amersham Pharmacia). 

Horseradish peroxidase catalyses the oxidation of luminol, which in its excited state emits 

light (chemiluminescence). Enhanced chemiluminescence is achieved by the addition of 

chemical enhancers such as phenols, which increases the light output approximately 1000 

fold. Primary and secondary antibodies used are listed in table 3.2.  

 

Table 3.2: Primary and secondary antibodies used in this study. 
 
Primary Antibodies Dilution Source 

anti-pentahistidine, 

monoclonal 

1:2000 Qiagen 

anti-IpaB; monoclonal 1:5000 P.J. Sansonetti 

anti-IcsA; polyclonal 

raised in goat 

1:1000 P.J. Sansonetti 

anti-OmpA; polyclonal 

raised in goat 

1:1000 K. S. Kim 

Secondary Antibodies   

anti-mouse 1:5000 Jackson Laboratories Inc 

anti-rabbit 1:5000 Jackson Laboratories Inc 

 

 

2.7.6 Coomassie staining 

After electrophoresis the acrylamide gels were incubated with the Coomassie Blue solution 

(0.1% w/v Coomassie Brilliant Blue R-250 [BioRad], 20% MeOH, 10% acetic acid) at RT 

between 2 and 16 h to visualize proteins. Gels were destained in 50% (v/v) MeOH with 10% 

(v/v) acetic acid until protein bands were clearly visible.  
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2.8 Structure analysis 

The structures of NE and CG were analyzed using PYMOL (DeLano 2002). Unless stated 

otherwise, the structures were presented as cartoons showing the backbones of the 

structures. Secondary structures like β-sheets and α-helices are depicted as flat arrows and 

helices respectively. Individual amino acids were highlighted and shown as sticks. The 

superimposition of the NE and CG structures was achieved using Swiss-PdbViewer (Guex 

1997). 190 α-carbonyl atoms of the proteins were superimposed with a root mean square 

deviation (RMSD) of 0,9 Å. In detail, the following segments were aligned: I16-Q34,  

R41-W59, S61, N65-H91, Q93-G151, D153-R164, G167-C168, Q180-G184, E187-K217  

S219-G220, and P225-M242. The nomcenclature and numbering is based on cathepsin G. 

The RMSD describes the difference in localization of the α-atoms at similar positions in the 

two proteins. Therefore the RMSD measures the similarity of the three dimensional 

structures. A RSMD of zero means that the structures are identical in conformation 

(Maiorov and Crippen 1994).  
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3 Results 

The substrate specificity of NE is poorly understood. Studies using synthetic peptides have 

shown that NE prefers valine at the P1 position in its substrates (Harper et al. 1984). 

However, this preference cannot explain why NE cleaves virulence factors but not other 

proteins of Shigella, because the number of valines in the proteins of both groups is 

comparable. Moreover, incubation of Shigella virulence factors with purified NE (pNE) 

resulted in discrete cleavage products. This suggests that the Shigella proteins were folded 

in the Shigella culture supernatants and that NE initially has access to only a few of the 

potential cleavage sites.  

To date, it remains unclear what NE recognizes in its substrates. To this end, we tested the 

following hypotheses: First, that the specificity is encoded either by the primary, secondary 

or tertiary structure of the substrate. Second, that a specific domain in NE determines its 

substrates specificity. 

 

3.1 The Specificity of NE for virulence factors is not encoded in NE        

substrates  

3.1.1 A recognition motif for NE was not detected in the primary sequence of IpaB 

To test the first hypothesis a series of Shigella IpaB mutants were tested for their 

susceptibility to NE cleavage (Guichon et al. 2001). These mutants contained individual 

deletions of 8-10 amino acids (aa) that spanned the coiled-coil region, as well as the putative 

transmembrane domains in the hydrophobic region of IpaB (figure 3.1). Coiled-coil motifs 

have been proposed as a common pattern for secreted virulence factors (Pallen et al. 1997; 

Miao et al. 1999) and present a possible recognition motif for NE. We reasoned that 

mutation in a particular NE recognition motif in IpaB should render the mutant protein 

resistant to NE cleavage.  

To avoid false-positive results based on mis- or unfolded mutant proteins, we exclusively 

tested functional IpaB mutants. Since Shigella cannot invade or induce cytotoxicity in cells 

without a functional IpaB protein, we only tested IpaB mutants that were able to 

complement an ipaB deletion Shigella strain in epithelial cell invasion and macrophage 

cytotoxicity when introduced on a plasmid (Guichon et al. 2001). Furthermore, these IpaB 
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mutants were likely to be folded correctly as shown by limited proteolysis (Guichon et al. 

2001).  
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Fig. 3.1: Schematic representation of IpaB mutants.  
Schematic presentation of the IpaB protein and the position of the mutations introduced 
(green rectangles). Adapted from (Guichon et al. 2001). 
 

Supernatants of S. flexneri ∆ipaB strains carrying the wt ipaB or the different mutant ipaB 

genes on a plasmid were collected and incubated with purified NE (pNE). IpaB is enriched 

in the supernatant because deletion of an ipa gene leads to a hypersecretory phenotype in 

Shigella. Although the cleavage patterns of the mutants were varying, none of the IpaB 

mutants was fully resistant to NE cleavage. Most mutants showed a similar cleavage pattern 

as the wildtype IpaB protein after treatment with pNE (figure 3.2). Interestingly, the IpaB 

mutant harboring the amino acid deletion ∆207-216, which is localized at the coiled-coil 

region, was even more susceptible to pNE cleavage than wildtype IpaB. 
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Fig. 3.2: The primary sequence of IpaB does not encode for NE specificity. 
Supernatants of strains secreting wildtype or mutant IpaB protein were treated with pNE at 
a concentration of 100 ng/ml (+). As negative control buffer without pNE was added to each 
supernatant and the samples were treated equally (-). After 1 h incubation time, samples 
were TCA precipitated and analyzed by SDS-PAGE and immunoblotting using anti-IpaB 
antibody.  
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Taken together, this indicated that no exclusive NE recognition motif was present in these 

areas. Although the IpaA, B, C and D belong to different protein families, it could have 

been possible that NE recognizes a certain consensus sequence in these virulence factors. 

Therefore NE derived proteolytic products of IpaA, B and C were independently analyzed 

by MALDI-TOF mass spectrometry. However, such a consensus sequence was not detected 

(data not shown). From these experiments we concluded that the specificity of NE does not 

seem to be encoded in the primary sequence of NE substrates. 

 

3.1.2 The secondary and tertiary structures of the substrate do not affect the specificity of 

NE for virulence factors  

Next, we wanted to test whether higher order structures of the substrate are important for 

recognition and cleavage by NE. To this end, Shigella supernatant containing wildtype IpaB 

was heat-denatured and the NE cleavage assay was repeated. We observed that pNE was 

able to cleave native as well as denatured IpaB under the same conditions (figure 3.3; lanes 

1, 2 and 6, 7). A previous study had shown that cathepsin G (CG) does not cleave Shigella 

virulence factors despite its high degree of homology to NE (Weinrauch et al. 2002). 

Therefore we simultaneously assessed if IpaB could be rendered susceptible to CG cleavage 

upon denaturation. However, purified CG (pCG) neither cleaved native nor denatured IpaB 

(figure 3.3; lanes 3,4 and 8, 9).  

These experiments indicated that secondary or tertiary structures of the substrates are not 

mandatory for NE cleavage.  

 
Fig. 3.3: NE but not CG degrades native and denatured IpaB. 
Supernatant of Shigella (M90T∆ipaB + pUC19/wt ipaB) was incubated with pNE and pCG 
at 100 ng/ml for 1h (lane 1-4) and 2h (lane 6-9). Aliquots of the same supernatant were 
heat-treated (95°C, 10 min, followed by fast cooling) prior to incubation with pNE or pCG 
for 1 h (lane 2, 4) and 2 h (lane 7, 9). As negative control, buffer was added to heat-treated 
supernatant for 2 h (lane 5). Samples were analyzed by SDS-PAGE and immunoblotting 
using an IpaB antibody. 
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3.2 The Specificity of NE for virulence factors is encoded in NE 

Since we were not able to detect a recognition motif for NE in the primary or higher order 

structures of the NE substrate IpaB, we addressed the question of NE specificity by a 

structural-functional analysis of NE. We reasoned that a recognition motif for virulence 

proteins existed in NE and that this motif could be mutated without comprising the catalytic 

activity of the protease. More specifically, we hypothesized that NE mutants could exist that 

were still active towards its peptide substrate but would no longer recognize and cleave 

virulence factors like IpaB.  

To this end, we selected single or multiple amino acids for mutation in NE that could 

present such a NE recognition motif. We based this selection on a structural comparison of 

NE and CG, because CG does not cleave virulence factors despite its high degree of 

homology to NE. We planned to compare these NE mutants to wildtype NE in their ability 

to degrade the NE peptide substrate and Shigella virulence proteins. For this purpose, we 

first had to establish an expression system that was able to yield active recombinant NE on a 

consistent basis. In a recent study, active recombinant NE was transiently expressed in 

eukaryotic rat basophilic leukemia cells (RBL-1 cells) (Li and Horwitz 2001). However, we 

planned to express and purify recombinant NE in large amounts. Therefore we tried to 

express NE in bacteria and other non-mammalian cell systems, but we were unable to obtain 

active NE (see appendix 5.1). Thus, we switched to the aforementioned mammalian cell line 

and were finally able to express recombinant and active NE.   

 

3.2.1 Expression of recombinant wildtype NE in mammalian cells 

As mentioned above, active recombinant NE had been transiently expressed in RBL-1 cells 

(Li and Horwitz 2001). The cells had been transfected with the cDNA encoding for the full-

length NE protein. Since N-terminally unprocessed NE is not active, these cells likely 

process the full-length NE to its mature form (Li and Horwitz 2001). Additionally, the RBL-

1 cells properly targeted the enzyme to granules for storage, which is comparable to 

neutrophils (Gullberg et al. 1994; Gullberg et al. 1995).  

We confirmed the transient expression of active recombinant NE using the aforementioned 

system (figure 3.4). The activity of NE was tested using a NE specific four amino acid 

peptide substrate coupled to a chromophore at the P1 position. Cleavage by NE results in 

the release of the chromophore leading to an increase in the optical density (OD) when 
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measured at 410 nm wave-length. NE activity was only observed in the lysate from cells 

expressing NE but not in the lysate of the negative control. 
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Fig. 3.4: Expression of active recombinant NE in transiently transfected cells. 
RBL-1 cells were transfected with an expression plasmid containing the cDNA encoding for 
the full-length NE protein (pCS2+/NE) or with an expression plasmid carrying the ß-
galactosidase gene of E.coli (pCS2+/ßgal) as negative control. 
(A) NE activity of cell lysates from cells transfected with pCS2+/NE or with pCS2+/ßgal. 
The NE peptide substrate was added to the lysates and incubated for 30 min. The OD was 
measured at 410 nm wave-length. Lysate of non-transfected cells was treated identically 
and was used for normalization. All lysates were equivalent to 8x106 cells. (B) ß-
galactosidase activity of the same cell lysates (1,4x104 cell equivalents). The ß-
galactosidase activity was measured according to the protocol described in chapter 2.5.1.  
 

The fact that NE could be obtained in an active form proved RBL-1 cells to be a suitable 

tool for NE expression. However, for the upcoming experiments it was necessary to have 

access to a constant reservoir of recombinant NE. Therefore a stable NE expressing cell line 

was generated. Since the expression vector used for the transient expression of NE did not 

carry an antibiotic resistance gene, the DNA encoding for the NE full-length protein was 

subcloned into a suitable expression vector (pcDNA3) and this construct was used to stably 

transfect RBL-1 cells.  

The transfected plasmid can randomly integrate into the genome of the host cell. This can 

result in varying expression levels of a plasmid-encoded gene depending on the chromatin 

context of the integration site. Therefore we tested the lysates of different single-cell derived 

cell lines carrying the NE gene for their ability to cleave the NE specific peptide substrate 

(figure 3.5). Of these clones, we selected the cell line derived from clone number four 

because its lysate exhibited the highest NE activity. The cells did not contain endogenous 

NE activity since lysate from cells transfected with the empty expression vector (vector 

lysate) did not cleave the peptide substrate. In contrast, addition of purified NE (pNE) to 

vector lysate lead to high activity confirming that NE is active under the experimental  
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conditions. Thus, we had established stable expression of active recombinant wildtype NE, 

which will be designated “wt” in the upcoming experiments.  
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Fig. 3.5: Expression of active recombinant wildtype NE in stably transfected RBL-1 
cells. 
NE activity of lysates from 17 single-cell derived cell lines expressing NE or carrying the 
empty expression vector. The NE peptide substrate was added to the lysates and the OD 
was measured at 410 nm wave-length following a 30 min incubation period. All samples, 
including vector lysate that had been incubated with the substrate, were normalized against 
a vector lysate that had been incubated with the buffer of the substrate. As positive control, 
1 µg pNE was added to vector lysate prior to addition of the substrate (V+pNE). All lysates 
were equivalent to 1x108 cells. Cell line number 4 is marked with an asterisk and was used 
for subsequent experiments. 

 

3.2.2 Kinetics of recombinant wildtype NE 

Since whole cell lysates were used to compare the activities of wildtype and mutant NE, it 

was possible that the recombinant NE, although active, showed altered reactivity in this 

lysate background. Therefore we compared the kinetics of recombinant NE in the lysate (wt 

lysate) to that of purified NE (pNE).  

The kinetics were tested using the same NE peptide substrate as in the previous 

experiments. By monitoring the OD at a wave-length of 410 nm every 30 sec over a 3 min 

time period, we assessed the time course of the cleavage of the substrate. The measurement 

started after addition of the lysate or pNE to the assay buffer containing the substrate.  

We showed that wt lysate, equivalent to 4,2 x 106 cells, cleaved the NE peptide substrate 

with linear kinetics. Additionally, its substrate turnover rate was comparable to pNE at an 

approximate concentration of 350 ng/ml (figure 3.6). In contrast, lysate from cells 
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transfected with the empty expression vector (V lysate) did not degrade the peptide 

substrate. These data showed that the reactivity of the recombinant NE was not altered in 

the cell lysate. 

pNE 750 ng/ml

pNE 300 ng/ml

pNE 150 ng/ml

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

O
D

 (4
10

 n
m

)

wt

V

0 30 60 90 120 150 180

time in sec

pNE 750 ng/ml

pNE 300 ng/ml

pNE 150 ng/ml

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

O
D

 (4
10

 n
m

)

wt

V

0 30 60 90 120 150 1800 30 60 90 120 150 180

time in sec

 

Fig. 3.6: Kinetics of recombinant wildtype NE. 
NE kinetics of wt and vector lysate (wt and V respectively) compared to pNE at different 
concentrations. All lysates were equivalent to 4,2 x 106 cells and pNE was tested at 
concentrations of 150, 300 and 700 ng/ml. Upon addition of the samples to the assay buffer 
containing the NE peptide substrate, the OD was recorded every 30 sec for 3 min at a 
wave-length of 410 nm.  
 

3.2.3 Specificity of recombinant wildtype NE  

After we had established that the reactivity of the recombinant NE towards the NE peptide 

substrate was comparable to that of purified NE (pNE), we wanted to test the ability of 

recombinant NE to cleave IpaB in Shigella supernatant. As we had shown earlier, pNE did 

cleave IpaB at low concentrations of 100 ng/ml (see figure 3.3).  

To compare the ability of recombinant and purified NE to cleave IpaB, we used identical 

concentrations of active protein. Since the amount of recombinant NE in the cell lysate 

could vary at each cell lysis, we used an indirect method to determine the amount of active 

protein. First, we measured the kinetics of pNE and wt lysate within a three minute time 

course experiment. Because the recombinant and the purified protein both showed linear 

kinetics, we were able to calculate NE activity units as increase in OD per minute (OD/min). 

We compared the NE activity units of wt lysate to that of pNE at a defined concentration. 

By doing so we were finally able to deduce the amount of wt lysate that corresponded to a 

given NE concentration.  
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In the presented experiment we determined a value of 0,12 NE units for pNE at a 

concentration of 500 ng/ml (figure 3.7a+b). This corresponded to 0,024 units for a 

concentration of 100 ng/ml pNE. In contrast, wt lysate at a concentration of 500 µg total 

protein per ml showed an activity of 0,02 NE units (figure 3.7a+b). Therefore, we used 

0,024 NE units of wt lysate and compared it to 100 ng/ml of pNE. Consequently, we added 

625 µg total lysate protein to each ml of Shigella supernatant to test cleavage of IpaB by the 

recombinant protein.  
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Fig. 3.7: Degradation of IpaB by lysates from RBL-1 cells.  
(A) NE kinetics of wt and vector lysate (wt and V respectively), of lysate from non-
transfected (nt) cells, and of pNE at a concentration of 500 ng/ml. The concentration of the 
lysates corresponded to 500 µg/ml total protein. Upon addition of the lysates or pNE to the 
assay buffer containing the NE peptide substrate, the OD was recorded every 30 sec for 3 
min at a wave-length of 410 nm. The data for pNE was plotted against the left y-axis 
whereas the data of the lysates were plotted against the right y-axis. (B) NE activity units 
(OD/min) of the lysates and pNE calculated as change in OD/min. The units are based on 
the kinetic data measured in (A). (C) Supernatant of Shigella secreting wildtype IpaB was 
incubated with wt, V and nt lysate at a concentration of 625 µg/ml total lysate protein and 
with pNE at a concentration of100 ng/ml for 2 h. As negative control buffer without pNE 
was added to supernatant. Samples were TCA precipitated and aliquots were analyzed by 
SDS-PAGE and immunoblotting using an anti-IpaB antibody.  
 

Unexpectedly, IpaB was not only cleaved by pNE and lysate expressing the recombinant 

NE but also by lysates of the negative controls (figure 3.7c). This indicated that the RBL-1 

cell line itself contained an IpaB degrading activity. RBL-1 cells are basophils and thus 
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granulocytes. Therefore they store many proteases such as tryptase, chymase or 

carboxypeptidase in their granules (Marone et al. 1997). Obviously these proteases were 

present in the cell lysates and degraded IpaB. To be able to measure the specificity of the 

recombinant NE in the cell lysate, we had to inhibit the endogenous RBL proteases without 

affecting the activity of the recombinant NE. 

It was not possible to use commercially available protease inhibitor cocktails because all of 

them contain general serine protease inhibitors like PMSF that also block NE. Therefore we 

designed an individual mixture of general and specific protease inhibitors. The general 

inhibitors blocked complete protease families except serine proteases, e.g. cystein- or 

metalloproteases, whereas the specific inhibitors suppressed, for example, chymotrypsin-

like but not elastase-like serine proteases (for composition of the IC see chapter 2.5.2). First, 

we tested if this inhibitor cocktail (IC) affected the NE activity of the recombinant or the 

purified NE. Therefore we measured their kinetics in the absence and in the presence of the 

IC at different concentrations. 
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Fig. 3.8: NE activity units of wt lysate and pNE in the presence or absence of the 
inhibitor cocktail (IC). 
NE activity units of buffer, wt and vector lysate (wt and V respectively), and of pNE (70 
ng/ml). The lysates were equivalent to 1,7 x 106 cells. The IC (20 µM and 50 µM) and the 
solvent of the IC were added to the lysates or pNE and incubated at RT for 15 min. The 
samples were added to the assay buffer containing the NE peptide substrate and the 
kinetics were measured by reading the OD at 410 nm wave-length every 30 sec over 3 
min. The calculated NE units are based on the kinetic data and represent the change in 
absorbance per minute. 
 

We observed that the inhibitor cocktail at both concentrations did not alter the NE activity 

of pNE (figure 3.8). However, the NE kinetics of the wt lysate were slightly decreased at an 

IC concentration of 50 µM but not at 20 µM. Therefore we tested whether the IC at a 

concentration of 20 µM was able to block the unspecific IpaB degradation by the 

endogenous cell proteases. To this end, we added the IC to the cell lysates prior to 
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incubation with the IpaB containing Shigella supernatant. Since we wanted to test the 

effects of the IC at maximal lysate concentrations, equal cell equivalents were added to the 

supernatant independent of the lysates’ activity units. 

In fact, the IC at a concentration of 20 µM almost completely blocked the degradation of 

IpaB by endogenous RBL-1 proteases (figure 3.9, lane 4), while it did not inhibit IpaB 

cleavage by pNE added to vector lysate (figure 3.9, lane 5), implying that the inhibitor 

cocktail did not interfere with the IpaB cleaving activity of pNE. In addition, wt lysate did 

also cleave IpaB in the presence of the inhibitor cocktail (figure 3.9, lane 6). This proved the 

specificity of the recombinant wildtype NE towards the virulence factor IpaB. 

Since endogenous RBL proteases were not completely inhibited by the IC at 20 µM, the 

concentration was increased to 50 µM in all subsequent experiments. At this concentration 

the inhibitor cocktail also did not interfere with the IpaB cleaving activity of purified or 

recombinant NE (see figure 3.16). 

1                2             3              4           5            61                2             3              4           5            6
 
Fig. 3.9: The inhibitor cocktail (IC) can block degradation of IpaB by endogenous 
proteases without inhibiting NE specificity. 
Supernatant of Shigella secreting wildtype IpaB was incubated with vector lysates in the 
presence or absence of the IC, and with wt lysate and vector lysate that contained pNE (20 
ng/1x106 cell equivalent) in the presence of the IC. As controls, supernatant was also 
incubated with buffer (B; lane 1) and pNE in buffer (100 ng/ml) (lane 2). All lysates were 
equivalent to 7x106 cells. The IC (20 µM) or the solvent of the IC were added to the 
samples and incubated at RT for 15 min prior to addition to the supernatant. The reaction 
mixtures were incubated for 2 h at 37°C. After protein precipitation, aliquots were analyzed 
by SDS-PAGE and subsequent immunoblotting using an anti-IpaB antibody.  
Buffer (lane 1), pNE in buffer with solvent of IC (100 ng/ml) (lane 2), vector lysate with 
solvent of IC (lane 3), vector lysate with IC (lane 4), vector lysate + 140 ng/ml pNE with IC 
(lane 5), and wt lysate with IC (lane 6). 
 

At this point, we had established the expression of active recombinant wildtype NE and 

were able to assess its specificity for the Shigella virulence factor IpaB. As a next step, we 

designed the NE mutants and expressed them in order to compare their activities and 

specificities to wildtype NE. 
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3.2.4 Design of NE mutants 

As mentioned earlier, the proteases NE and CG share many attributes and display a striking 

similarity in their crystal structures. When superimposed, the α-carbons of NE and CG only 

display a root mean square deviation (RMSD) of 0,9 Å (see chapter 1, figure 1.8). Since a 

RSMD value of zero means that structures are identical in conformation (Maiorov and 

Crippen 1994), it is apparent that the crystal structures of  NE and CG are extremely similar 

(Bode et al. 1986b; Hof et al. 1996). Yet, NE cleaves virulence factors whereas CG does 

not. Thus, there had to be subtle differences that determine the opposing specificities. 

Therefore we examined both structures using the programs PYMOL (DeLano 2002) and the 

SWISS-PDB VIEWER (Guex 1997). Indeed, we identified single amino acids or stretches 

of multiple amino acids that were significantly different in NE and CG (figure 3.11). These 

residues were mainly located in the substrate-binding cleft formed by the ß-barrel domains 

of the enzymes. Interestingly, most of these amino acids were part of the previously 

described NE binding pockets (figure 3.10) (Bode et al. 1986b; Bode et al. 1989).  
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Fig. 3.10 Schematic representation of the NE substrate binding pockets (SBP). 
Schematic representation of the NE substrate binding pockets (S6-S3’) that interact with the 
residues of a NE substrate or inhibitor (P6-P3’). The carbonyl group of the scissile bond 
forms hydrogen bonds with the residues of the oxyanion hole (Gly 193 and Ser 195). The 
residues composing the pockets are presented in the 3-letter code and their position within 
NE is indicated [according to chymotrypsinogen numbering (Hartley B.S. 1971)]. Some of 
these amino acids were mutated and tested in this study. They are highlighted in the colour 
corresponding to figure 3.11. Significant residues that had been suggested to influence the 
specificity of NE are shown in bold. This presentation is based on the crystallization of NE 
with the inhibitor TOM (Bode et al. 1986b) and adapted from (Bode et al. 1989) 
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Since CG does not cleave Shigella virulence factors, we assumed that replacement of the 

differing amino acids in NE with their structural CG counterparts might transfer the CG 

specificity onto the NE mutants. Consequently, NE harboring these mutations should not 

cleave the Shigella virulence factors any longer, but still be active towards the peptide 

substrate.  
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Fig. 3.11: NE mutants and localization within the NE structure. 
NE was mutated by single or multiple amino acid exchanges at seven different sites. (A) 
Front view of the NE structure (Wei et al. 1988) depicted as cartoon [PYMOL (DeLano 
2002)]. The residues that were mutated are shown as sticks and the different colors 
correspond to the different mutations indicated in (C). For orientation the C-terminus is 
marked (COOH). (B) Picture (A) rotated by 1800C. (C) Position of the NE residues in the 
sequence [numbering according to chymotrypsin (Hartley B.S. 1971)]. The residues that 
were exchanged or introduced are shown in the single letter code.  
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We exchanged four single amino acids and four amino acid stretches in NE with their 

structural CG counterparts. To test the influence of a non-polar and not charged residue at 

the positions 98, 192 and 215, we additionally exchanged these amino acids with an alanine. 

The mutations were introduced by site-directed mutagenesis in the NE gene encoded on the 

plasmid pcDNA.3/NE. The eleven NE mutants that were generated and their location within 

the NE structure are shown in figure 3.11.  

 

3.2.5 Analysis of NE mutants – Cleavage of peptide substrates 

RBL-1 cells were stably transfected with the 11 different pcDNA3/NE mutant constructs. 

As for the establishment of the cell line expressing recombinant wildtype NE (wt), a number 

of different single-cell derived cell lines for each mutant were tested for their NE activity 

(see appendix, chapter 5.2). Interestingly, we only observed NE activity in cell lines of 

seven NE mutants (35-41, N98L, F192A, F192K, A213V, F215A and F215Y). Among 

those only mutant F215A showed NE activity that was lower than the activity of wt NE. Of 

these seven mutants we selected the cell line whose lysate showed the highest NE activity 

per cell number for subsequent analysis.  
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Fig. 3.12: NE and CG activity of different cell lines expressing NE mutant N98A 
(A) NE activity of lysates from 20 single-cell derived cell lines expressing NE mutant N98A. 
The NE peptide substrate was added to the lysates and the OD was measured at 410 nm 
wave-length after a 30 min incubation period. As positive control wt lysate was used. (B) 
CG activity of lysates from 6 single-cell derived cell lines expressing NE mutant N98A. 
Activity was measured as in (A) but the CG instead of the NE peptide substrate was used. 
As positive control vector lysate containing 1 µg pCG (V+pCG) was used. Clone number, 
marked with an asterisk, was chosen for subsequent experiments. 
All samples were normalized against a vector lysate that had been incubated with the 
respective substrate. All lysates were equivalent to 1x105 cells and treated equally. 

 46

 



Results 

The remaining four mutants 58A-61, N98A, 216-218 and 216-224 did not exhibit NE 

activity, although more than 16 single-cell derived cell lines for each mutant were tested 

(N98A as representative mutant is shown in figure 3.12a). This indicated that the introduced 

amino acids had possibly changed the specificity of the mutants for the peptide substrate. 

Since the introduced residues were part of the CG protein, we assumed that they had 

introduced a CG-like activity into these NE mutants. Therefore we assessed the ability of 

several cell lines of these NE mutants to cleave the CG peptide substrate. The CG peptide is 

identical to the NE peptide substrate except for a N-terminal modification and the P1 amino 

acid, which is valine in NE and phenylalanine in CG. The CG activity and kinetics were 

measured in an identical experimental set-up as for NE. However, RBL-1 cells contained 

endogenous activity against the CG peptide substrate. Therefore it was important to 

normalize the samples against the equal amount of vector lysate that had been incubated 

with the CG peptide for the identical amount of time. We observed that lysates from cells 

expressing NE mutants 58A-61, N98A, 216-218 and 216-224 indeed did cleave the CG 

peptide substrate [see appendix, chapter 5.2; (N98A as representative mutant is shown in 

figure 3.12b)]. Again, we selected the cell line with the highest CG activity of each mutant 

for further experiments. 

To confirm the NE- or CG-like activities of lysates from the different mutants, we re-tested 

the cell lysates of all mutants for their ability to degrade the NE and the CG peptide 

substrate (figure 3.13). For this comparison we used the cell line of each mutant that had 

exhibited the highest activity towards the respective substrate. As expected, the lysates of 

mutants 58A-61, N98A, 216-218 and 216-224, which had cleaved the CG but not the NE 

substrate in the previous experiments, exclusively cleaved the CG peptide substrate. 

Thereby we reconfirmed the observed high activity of the lysate of mutant 216-218. In 

contrast, the lysates of the mutants 35-41, N98L, F192K, A213V and F215Y exclusively 

cleaved the NE peptide substrate. Interestingly, two mutants, F192A and F215A, cleaved 

both the NE and the CG substrate, albeit with different activities. Lysate from cells 

expressing NE F215A showed low activity towards both substrates. However, lysate from 

cells expressing NE F192A preferentially cleaved the NE peptide substrate. Taken together, 

five of the eleven mutants exclusively cleaved the NE peptide substrate, while four 

exclusively cleaved the CG peptide substrate. Two mutants cleaved both substrates.  
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Fig. 3.13: NE and CG activity of the different NE mutants. 
NE or CG activity of lysates from cells expressing the different NE mutants. The NE (black) 
and CG (grey) peptide substrates were individually added to the lysates. The OD was 
measured at 410 nm wave-length after a 30 min incubation period. The samples were 
normalized against vector lysate that had been incubated with the respective substrate. As 
positive controls, the activities of wt lysate or of vector lysate containing 1 µg pCG (V+pCG) 
were measured. All lysates were equivalent to 1x105 cells and treated equally. The data 
represent one of five independent experiments. 
 

We reasoned that specific inhibition of the activities of wt NE and of the different mutants 

would confirm that the observed substrate cleavage was caused by the recombinant proteins 

and not by the lysate. Therefore we assessed the abilities of the recombinant proteins to 

cleave the NE or CG peptide substrate in the presence or absence of specific NE and CG 

inhibitors. The inhibitors used in this study are both irreversible inhibitors. The NE inhibitor 

is identical to the peptide substrate except for the chromophore, which is replaced by a 

chloromethyl ketone (CMK) group. NE binds the inhibitor but its active triad cannot cleave 

the peptide bond of the P1 amino acid and the CMK group. Thus the enzyme inhibitor 

complex does not dissociate. The CG inhibitor acts in a similar way and is a three amino 

acid peptide with a benzyloxycarbonyl group at the N-terminus and a CMK group at the C-

terminus. Like NE, CG binds this inhibitor and is incapable of cleaving the peptide bond 

between the P1 amino acid phenylalanine and the CMK.  
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Fig. 3.14: NE activity of wt and NE-like mutants in the presence or absence of NE or 
CG inhibitors. 
NE activity of lysates from cells expressing wt, the NE mutants that exclusively cleaved the 
NE peptide substrate, or the two mutants that cleaved both substrates. The activity was 
measured in the absence and in the presence of (A) the NE inhibitor (NE-CMK, 200 µM 
(red)) or (B) the CG inhibitor (Z-GLF-CMK, 500 µM (yellow)). Inhibitor and lysates were 
incubated at RT for 15 min prior to addition of the NE peptide substrate. The OD was 
measured at 410 nm wave-length after a 30 min incubation period. Samples were 
normalized against vector lysate. All lysates were equivalent to 1x105 cells and treated 
equally. The data represent one of three independent experiments. 
 

We observed that the NE activity of lysates from cells expressing wt or the seven NE 

mutants that cleaved the NE peptide substrate (35-41, N98L, F192A, F192K, A213V, 

F215A and F215Y) was blocked by the NE but not by the CG specific inhibitor (figure 

3.14). The NE inhibitor completely suppressed the activity of the recombinant proteins 

independently of the different activity levels of the proteins. In contrast, the CG inhibitor 

did not affect the NE activities of these mutants and of wt NE, although it was used at a 

higher concentration than the NE inhibitor. This proved that the observed activity of wt and 

of the mutants was specific to the recombinant proteins.  

In a second experiment, we analyzed the CG activity of the NE mutants 58A-61, N98A, 

F192A, F215A, 216-218 and 216-224 in the presence of the NE or CG inhibitor (figure 

3.15). The CG activity of the lysates from cells expressing the mutants 58A-61 and F215A 

was blocked completely by the CG but not by the NE inhibitor. In contrast, the CG activity 

of the N98A, F192A and 216-224 lysates were affected by the CG inhibitor but not 

completely blocked. The NE inhibitor did only weakly interfere with the CG activity of 
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these mutants. Unexpectedly, the CG activity of the lysate from cells expressing the mutant 

216-218 was impaired to a stronger degree by the NE than by the CG inhibitor. However, 

since the CG activity of this lysate was extremely high, we could only observe an inhibitory 

effect when the lysate was diluted. 
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Fig. 3.15: CG activity of CG-like mutants in the presence or absence of NE or CG 
inhibitors. 
CG activity of lysates from cells expressing the NE mutants 58A-61, N98A, F192A, F215A, 
216-218 and 215-225. The activity was measured in the absence and in the presence of 
the CG inhibitor (Z-GLF-CMK, 1 mM (yellow)) or the NE inhibitor (NE-CMK, 1 mM (red)). 
Inhibitors and lysates were incubated at RT for 15 min before addition of the CG peptide 
substrate. The OD was measured at 410 nm wave-length after 30 min incubation period. 
Samples were normalized against vector lysate. As positive control, 1 µg pCG was added 
to vector lysate (V+pCG). Except for 216-218*, marked with an asterisk, all lysates were 
equivalent to 1x105 cells. The lysate of 216-218 was equivalent to 3,3x104 cells. All lysates 
were treated equally. The data represent one of three independent experiments. 
 

3.2.6 Analysis of NE mutants – Cleavage of Shigella virulence factors 

In the previous experiments, we had observed that most mutants exclusively cleaved either 

the NE or the CG peptide substrate. Only two mutants cleaved both substrates, although one 

of them, F192A, preferentially cleaved the NE peptide substrate. Next, we wanted to test the 

ability of these NE mutants to cleave Shigella virulence factors. We assumed that the 

mutants that cleaved the NE peptide substrate (NE-like mutants) would act as wt NE and 

cleave the virulent proteins. In contrast, the four mutants that exclusively cleaved the CG 

peptide substrate (CG-like mutants) should behave like CG and not cleave the virulence 

factors. First, we assessed the ability of the NE-like mutants to cleave IpaB in the presence 

of the inhibitor cocktail (IC). As positive controls, we used wt lysate and pNE that had been 

added to vector lysate. To add equal amounts of active protein to IpaB containing Shigella 
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supernatant, we determined the individual NE activity units of the recombinant and the 

purified proteins. However, we were unable to determine the kinetics of the lysates from  

cells expressing the mutants A213V and F215A within the three minute time course of the 

experiment (data not shown). This had not been expected because these mutants had cleaved 

the substrate after an incubation period of 30 minutes in an earlier experiment (figure 3.13). 

The mutants 35-41, N98L, F192A, F192K, and F215Y as well as wt NE and pNE did cleave 

the NE peptide substrate with linear kinetics and we could calculate the activity units per 1,6 

x106 cell equivalents (figure 3.16a). We next assessed the ability of the mutants to cleave 

IpaB. To test different concentrations of the recombinant proteins we used mutant and wt 

lysates corresponding to three different activity units (0,01, 0,025 and 0,05 NE units).  
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Fig. 3.16: NE mutants with NE activity cleave IpaB. 
All lysates were tested in the presence of the IC (50 µM). 
(A) NE activity units of lysates from cells expressing wt or the mutants 35-41, N98A, 
F192A, F192K, and F215Y. As second positive control next to wt, 1 µg pNE had been 
added to vector lysate (V+pNE; 100 ng/ 1x106 cell equivalents.). Vector lysate was used as 
negative control. All lysates were equivalent to 1,6 x106 cells and had been incubated with 
the IC (50 µM) at RT for 15 min before measurement. The NE kinetics were measured by 
reading the OD at 410 nm wave-length every 30 sec over 3 min. The calculated NE units 
represent the change in OD per minute.   
(B) Supernatant (1ml) of Shigella secreting wiltype IpaB was treated with the different 
lysates corresponding to 0,05, 0,025 and 0,01 NE units in the presence of the IC. As 
negative control, vector lysate was added to the supernatant. In each experiment the 
amount of vector lysate corresponded to the highest cell equivalence used for the other 
lysates. The reaction mixtures were incubated for 2 h at 37°C. After protein precipitation, 
aliquots were analyzed by SDS-PAGE and subsequent immunoblotting using an anti-IpaB 
antibody.  
 

We observed that all mutants cleaved IpaB in the presence of the IC even when low activity 

units were used (figure 3.16b). 0,01 NE units corresponded to a pNE concentration of 41 

ng/ml, which was even lower than the concentration of 100 ng/ml used in our initial IpaB 
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cleavage experiments (see figure 3.3). Interestingly, the IpaB cleavage pattern upon 

treatment with the lysate of F192K mutant implied that the activity of F192K towards IpaB 

was slightly reduced as compared to the other mutants. Taken together, these five mutants 

showed the same specificity towards IpaB like wt NE.  

We also wanted to test the ability of the other six mutants to cleave IpaB. Since we could 

not measure the NE kinetics of the CG-like mutants and of A213V and F215A, we had to 

determine the amount of lysate to test for IpaB cleavage in a different way. To this end, we 

assessed the kinetics of wt NE, calculated its activity units (figure 3.17a) and linked this 

data to the concentration of total protein in the respective lysate. Since we wanted to ensure 

that mutants with putatively low activity could potentially cleave IpaB, we tested high 

activity units in this experiment. 0,05 NE units of wt lysate corresponded to a concentration 

of 333 µg total protein. We used the same amount of total protein of the mutant lysates and 

vector lysate to test for IpaB cleavage. To prove that this method of determining the lysate is 

reliable, we used as positive controls the lysates of the NE mutants 35-41, N98L and F215Y 

that had cleaved IpaB in the previous experiment. Additionally, we used vector lysate 

containing pNE (V+pNE) that corresponded to 0,05 NE units as positive control for wt NE. 

We observed that the lysate from cells expressing the NE mutant A213V did cleave IpaB 

just as the positive control lysates (figure 3.17b). In contrast, F215A and the CG-like 

mutants 58A-61, N98A, and 216-224 did not cleave IpaB. Interestingly, incubation of IpaB 

with mutant 216-218 resulted in negligible IpaB degradation, which does not compare to the 

IpaB cleavage pattern observed upon treatment with wt or NE-like mutants.  

To confirm that the CG-like mutants and F215A were active although they did not cleave 

IpaB like wt NE, we tested the kinetics of these mutants at similar total protein 

concentration using the CG peptide substrate (figure 3.17c). It is obvious that the activities 

of 58A-61 and F215A were low, because their activity units were hardly higher than the 

activity units of vector lysate. However, N98A, 216-218 and 216-224 proved to be active 

since they showed a higher CG activity than the vector lysate. Again, the 216-218 lysate 

showed an extremely high CG activity that was higher than that of 5 µg/ml pCG.  

Taken together, F192A and the NE mutants that exclusively cleaved the NE peptide 

substrate cleaved IpaB like recombinant or purified wt NE. In contrast, NE mutants that 

exclusively recognized the CG peptide substrate did not, or in the case of 216-218 did only 

slightly target IpaB. F215A, which degraded both substrates with low activity, did also not 

cleave IpaB. 
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Fig. 3.17: IpaB is cleaved by NE-like but not by CG-like mutants. 
All lysates were tested in the presence of the IC (50 µM).  
(A) NE activity units of wt lysate, vector lysate containing pNE at a concentration of 175 
ng/200 µg total protein (V+pNE), and vector lysate (V). All lysates were equivalent to 200 
µg total protein. The NE kinetics were measured by reading the OD at 410 nm wave-length 
every 30 sec over 3 min. The calculated NE units represented the change in OD per 
minute. For wt lysate, 200 µg total protein corresponded to 0,03 NE units. 
(B) Supernatant of Shigella secreting wildtype IpaB was coincubated with the different 
lysates at a total protein concentration of 333 µg/ml. This concentration corresponded in 
the wt lysate to NE activity units of 0,05 (see A). As negative control, vector lysate and, as 
positive control, V+pNE corresponding to 0,05 NE units were added to the supernatant. 
The reaction mixtures were incubated for 2 h at 37°C. After protein precipitation, aliquots 
were analyzed by SDS-PAGE and subsequent immunoblotting using an anti-IpaB antibody.   
(C) CG activity units of vector lysate and of the lysates containing the mutants 58A-61, 
N98A, F215A, 216-218 and 216-224. All lysates were equivalent to 100 µg total protein. As 
positive control, the CG kinetics of pCG at a concentration of 5 µg/ml was measured in the 
presence (+IC, 50 µM) and absence of the IC (no IC). The CG kinetics were measured as 
in (A).  
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It has been shown that NE cleaves membrane-bound IcsA while it does not target membrane 

proteins that are important for Shigella homoeostasis, e.g. the outer membrane protein A 

(OmpA) (Weinrauch et al. 2002). Therefore, we tested the ability of wt and mutant NE to 

cleave IcsA and OmpA. We assumed that the wt NE and the NE-like mutants, including 

F192A, would target IcsA but not OmpA. This would prove that these recombinant proteins, 

just as pNE, only cleave virulence factors. To confirm that the IcsA cleavage was 

exclusively caused by the activity of the recombinant proteins, we tested the lysates of NE-

like mutants, including F192A, and wt NE also in the presence of the specific NE inhibitor.  

As in the previous experiment, we used identical total protein concentrations of the different 

lysates to test for IcsA and OmpA cleavage (figure 3.18a). However, in this experiment we 

used the total protein concentration of wt lysate corresponding to 0,01 NE units as reference 

because in a preliminary experiment we had observed that wt NE completely cleaved IcsA 

at 0,01 NE units. 

We incubated Shigella with the cell lysates and analyzed the bacterial lysates for cleavage 

of the membrane-bound IcsA and OmpA. As expected, the wt NE and the NE-like mutants 

35-41, N98L, F192A, F192K, A213V and F215Y cleaved IcsA but not OmpA (figure 

3.18c). In addition, they did not cleave IcsA in the presence of the specific NE inhibitor. 

This proved that the recombinant proteins specifically targeted IcsA. In contrast, the 

mutants N98A and 216-224 did not cleave IcsA, despite being active (figure 3.18b). 

Interestingly, mutant 216-218 partially degraded IcsA. We speculated that this partial 

degradation was due to the high activity of the mutant, since 216-218 exhibited a much 

higher activity per total protein than the other mutants (figure 3.18c). Therefore we tested 

the ability of the lysate of 216-218 to cleave IcsA at a lower total protein concentration. At 

this concentration the activity units were comparable to the CG activity of mutant 216-224. 

In this experimental set-up NE mutant 216-218 did not target IcsA (figure 3.18d). 

Furthermore, the NE mutants 58A-61 and F215A did not show any CG activity and did not 

degrade IcsA. 

In summary, we were able to compare the activities of recombinant wt and mutant NE 

towards synthetic and biological substrates. Like wt NE, the NE mutants 35-41, N98L, 

F192A, F192K, A213V and F215Y specifically cleaved the NE peptide substrate and the 

Shigella virulence factors IpaB and IcsA. In contrast, the NE mutants N98A, 216-218 and 

216-224 that no longer cleaved the NE but the CG peptide substrate had lost their specificity 

for these virulence factors.  
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Fig. 3.18: IcsA is cleaved by NE-like but not by CG-like mutants.  
All lysates were tested in the presence of the IC (50 µM).  
(A) NE activity units of wt lysate, vector lysate containing pNE at 75 ng/100 µg total protein 
(V+pNE), and vector lyste (V) in the absence or presence (+) of the NE inhibitor (NE-CMK, 
200 µM). All lysates were equivalent to 100 µg total protein. The NE kinetics were 
measured by reading the OD at 410 nm wave-length every 30 sec over 3 min. The 
calculated NE units represented the change in OD per minute. For wt lysate, 100 µg total 
protein corresponded to 0,013 NE units. 
(B) CG activity units of vector lysate and of the lysates containing the mutants 58A-61, 
N98A, F215A, 216-218 and 216-224. All lysates were equivalent to 100 µg total protein. As 
positive control, the CG kinetics of vector lysate containing 5 µg pCG was measured. The 
kinetics were measured as in (A).  
(C) Shigella (M90T, 3x108/ml) was incubated with the different lysates at a total protein 
concentration of 52 µg/ml. For the wt lysate this concentration corresponded to 0,01 NE 
activity units (as described in A). As negative control, vector lysate was used. V+pNE 
corresponding to 0,01 NE units served as positive control. Lysates of the NE-like mutants 
were also tested in the presence (+) of the NE inhibitor (NE-CMK, 200 µM). The reaction 
mixtures were incubated for 1 h at 37°C. After bacterial lysis, aliquots were analyzed by 
SDS-PAGE and subsequent immunoblotting using an anti-IcsA and OmpA antibody.   
(D) Shigella (M90T, 3x108/ml) was incubated with the 216-218 lysate at different 
concentrations of total protein. Undiluted lysate (1:1) corresponded to 52 µg/ml total 
protein. As negative controls, vector lysate (V) and wt lysate in the presence (+) of the NE 
inhibitor were used. As positive control, wt lysate in absence of the NE inhibitor was used.  
The experimental set-up is described in (C). 
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4 Discussion 

An important question in protein biology is how proteases recognize their substrates. The 

super-family of serine proteases, for example, contains peptidases with very diverse 

functions such as digestion, degradation, blood clotting, cellular and humoral immunity, 

fibrinolysis, fertilization, embryonic development, protein processing and tissue remodeling 

(Rawlings and Barrett 1993). Additionally, the individual proteases have diverse functions. 

For instance, NE cleaves extracellular matrix proteins but it also has an important role in 

host defense. In neutrophils, NE is the key component in preventing the phagolysosomal 

escape of Shigella. NE specifically cleaves the Shigella virulence factors but it does not 

target proteins important for bacterial homeostasis or secreted proteins that are not 

associated with virulence. Thus, NE likely inhibits the interaction of Shigella with 

neutrophil cytoplasmic proteins. However, it is not known how NE recognizes its substrates. 

Moreover, it has remained unclear why other members of the chymotrypsin family of serine 

proteases do not target these virulence factors, although they are homologous to NE and are 

also in contact with the bacterial effectors in vivo. For example, CG, like NE, is part of the 

azurophilic granules of neutrophils. These two proteases are structurally almost identical, 

yet CG does not cleave Shigella virulence factors. In the present study, we approached the 

question of the specificity of NE for virulence factors from different angles. We first 

analyzed the substrate for a NE recognition motif. Secondly, we tried to identify the 

residues within NE that are crucial for the substrate specificity by a structure-function 

analysis of NE.  

 

4.1 Do virulence factors contain a recognition motif for NE?  

4.1.1 A recognition motif for NE was not detected in the primary sequence of IpaB  

To test if NE recognizes a primary sequence motif in its substrate we analyzed twelve IpaB 

deletion mutants for their susceptibility to NE cleavage. These mutants were functional 

since they complemented a Shigella ipaB deletion strain in epithelial cell invasion and 

macrophage cytotoxicity when introduced on a plasmid (Guichon et al. 2001). We found 

that NE cleaved all these mutant proteins, albeit with slightly different patterns. For 

example, the IpaB mutant harboring a deletion of the amino acids 207-216 showed a 

cleavage pattern that suggests a higher susceptibility to NE compared to wildtype IpaB. In 
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contrast, an IpaB mutant harboring a deletion of the amino acids 217-226 seemed less 

susceptible to NE cleavage than wildtype IpaB. One explanation of these findings is that the 

relatively large amino acid deletions altered the folding of IpaB in a way that the 

accessibility of the NE cleavage sites was facilitated or reduced depending on the location 

of the deletion. However, this putative altered folding did not interfere with the function of 

the IpaB protein, since we restricted the analysis to testing functional IpaB mutants as 

mentioned above. By using only functional mutants we wanted to avoid scoring mis- or 

unfolded proteins. As a result, we were restricted to analyze a small part of the protein, 

covering only 21% of the 580 IpaB residues. It is therefore possible that a NE recognition 

motif in the primary amino acid sequence exists but was not identified using this approach. 

However, several reasons argue against the possibility of a primary sequence motif.  

First, NE cleaves not only IpaB but also other virulence proteins, such as the Ipa proteins. 

IpaA and IpaC, and IcsA. Although these proteins are important for host cell manipulation, 

they belong to different protein families and hence are not homologous. Additionally, mass 

spectrometric analysis of NE derived cleavage products of IpaB, A, and C did not reveal a 

consensus sequence. Another argument against a primary sequence motif in the NE 

substrates results from a sequence comparison of the synthetic NE peptide substrate with the 

virulence factors. This peptide was used to measure NE activity. It consists of four amino 

acids (valine at the P1 position followed by proline and two alanines) linked to a 

chromophore. It was shown that NE cleaves peptide substrates with high efficiency if the 

substrates carry valine at the P1 and proline at the P2 position (Zimmerman and Ashe 1977; 

Marossy et al. 1980; McRae et al. 1980; Harper et al. 1984). A valine-proline sequence tag 

within the virulence factor could therefore serve as a NE recognition motif. However, we 

were unable to find such a tag in IpaB. Nevertheless, it might be worth to scan IpaB and 

other virulence factors for the occurrence of a “side chain profile” resembling the residues 

of the peptide substrate. Finally, one could assume that the number of residues after which 

NE can cleave is reduced in Shigella proteins not targeted by NE compared to virulence 

factors. NE prefers to cleave after valine but also after leucine or alanine (Powers et al. 

1977; Nakajima et al. 1979; Marossy et al. 1980; Harper et al. 1984). However, the 

percentage of these residues does not significantly vary between the different protein 

groups. For example, alanine, valine and leucine constitute 17% of the primary sequence of 

IcsA, which is cleaved by NE, whereas they represent 26% in OmpA, which is not cleaved 

by NE.  
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4.1.2 The secondary and tertiary structures of the substrate do not affect the specificity of 

NE for virulence factors 

The presence of discrete cleavage products of IpaB upon NE treatment suggests that IpaB 

was folded in the Shigella culture supernatant and that NE only attacked some of the 

potential cleavage sites. The question is if NE specifically recognizes these cleavage sites or 

if virulence factors in contrast to non-virulence factors display some of their valines on the 

surface of the folded protein. To address the latter question one would need to compare 

multiple structures of each protein group and search for exposed amino acid stretches 

containing valine. However, only few virulence factors have been crystallized to date, which 

would make this a challenging approach. Therefore, we tested if the secondary or higher 

order structures of IpaB are a prerequisite for cleavage by NE. In fact, NE cleaved denatured 

IpaB with the same cleavage pattern as native IpaB. Denatured IpaB was slightly more 

susceptible to NE than native IpaB as the 62 kDa band of IpaB was degraded to a greater 

extent than in native IpaB. This result indicates that secondary structures like coiled-coils do 

not serve as recognition motif for NE. Such structures have been proposed as common 

features for virulence factors (Pallen et al. 1997). In addition, this also suggests that the 

cleavage of IpaB by NE does not require higher order structures beyond the secondary 

structure level. However, we cannot exclude the possibility that denatured IpaB refolded 

during the 1-2 h incubation time at 370C in the NE cleavage experiment.  

It is also possible that IpaB is generally not folded in the Shigella supernatant. Secreted 

effectors such as IpaB are released through a 2-3 nm wide pore within the needle-like 

structure of the type three secretion apparatus in Shigella (Blocker et al. 1999). Folded IpaB 

as globular protein likely possesses a diameter of approximately 6 nm, which suggests that 

IpaB passages the needle in an unfolded state. Since IpgC, the chaperone of IpaB, remains 

within the cytoplasm of Shigella, one could assume that IpaB stays unfolded in the 

supernatant.  

IpaB is thought to form an extracellular complex with IpaC after secretion across the 

bacterial membrane and to facilitate further effector delivery (Blocker et al. 1999; Hayward 

and Koronakis 1999). One could assume that the binding to IpaC is a prerequisite for 

folding of IpaB. Since we used supernatant from Shigella carrying ipaB on a high-copy 

plasmid, one could argue that overexpression of IpaB could outnumber the IpaC molecules 

leading to an accumulation of mis- or unfolded IpaB. However, it was shown that the 

amount of IpaB secreted by this Shigella strain is not significantly increased in comparison 
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to the wildtype strain (Guichon et al. 2001). Therefore it is rather unlikely that the IpaB 

analyzed in this study was different from IpaB secreted by a wildtype Shigella strain. 

Taken together, we were unable to detect a recognition motif for NE in the primary or 

higher order structures of the NE substrate IpaB. Since NE has to recognize and bind the 

virulence factors before cleavage, the role of the substrate in this interaction remains to be 

elucidated. One approach could be to N-terminally sequence NE derived cleavage products 

of IpaB and map these sequences to the primary structure of IpaB. Subsequent analysis of 

the biochemical character of the amino acids C- and N-terminal to the scissile bond could 

yield a common pattern, for example a stretch of hydrophobic residues. The sequences of 

Shigella virulence factors and other enterobacteriacae could then be examined for this 

pattern. 

 

4.2 The specificity of NE for virulence factors is encoded in NE 

Next, we addressed the question of localization of NE specificity by a functional analysis of 

wildtype and mutant NE. We hypothesized that a recognition motif for virulence proteins 

existed in NE and that it should be possible to mutate this motif without comprising the 

catalytic activity of the protease. More specifically, we speculated to identify a NE mutant 

that was still active towards its peptide substrate but would no longer recognize and cleave 

virulence factors like IpaB. For this purpose we expressed recombinant NE.  

 

4.2.1 Recombinant expression of NE  

In neutrophils, NE is synthesized as an inactive zymogen that requires the removal of amino 

acids at the N- and C-terminus for full activity. As a result, active mature NE starts with 

isoleucine instead of methionine. Since bacteria lack the proteases needed for the NE 

processing, we assumed that recombinant expression of the full-length protein in E. coli 

would not result in an active protein. Thus, we expressed recombinant mature NE that 

carried an additional methionine as first aminoterminal residue. However, this recombinant 

NE was not active, since it did not cleave the NE peptide substrate. Interestingly, it was 

mentioned that expression of the same mature NE in RBL-1 cells did also not result in an 

active protein (Li and Horwitz 2001). Since expression of the full-length protein in RBL-1 

cells does yield active NE [our results; (Li and Horwitz 2001)], it is likely that the 

methionine with its bulky aromatic side chain interferes with the proteolytic function of the 
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protein. But it is also possible that the N-terminal two-step processing of NE is necessary 

for correct post-translational modification or folding of the enzyme. Another reason why 

E.coli derived NE was not active could be the inability of prokaryotes to glycosylate 

proteins. NE carries two asparagine-linked side chains, which might be important for the 

activity of the enzyme (Sinha et al. 1987; Watorek et al. 1993). However, according to the 

structure of NE these sugar chains are located at the surface of the protein away from the 

active site (Bode et al. 1989). Thus it is rather unlikely that they are involved in substrate 

recognition or important for enzymatic activity. Furthermore, the RBL-1 cells target NE to 

granules just as neutrophils do (Gullberg et al. 1994). This may support folding of NE and is 

likely to prevent auto-degradation of the enzyme as it is less active in the low pH 

environment of the granules and when attached to a granular matrix (Avila and Convit 

1976). In summary, RBL-1 cells seem to provide optimal conditions to express a protease of 

the azurophilic granules of neutrophils.  

 

4.2.2 The specificity of NE for virulence factors is encoded in NE 

Since the analysis of the substrate could not answer why and how NE specifically 

recognizes virulence factors, we approached this question by mutational analysis of the NE 

protein. NE belongs to a large family of serine proteases with sequence and structural 

similarity but with very different biological functions. CG does not degrade Shigella 

virulence proteins, although it is as abundant in the azurophilic granules as NE and belongs 

to the same subfamily of chymotrypsin-like serine proteases. Additionally, CG and NE are 

not only homologous, but their crystal structures are almost identical. Yet, specific 

differences should explain why NE but not CG targets virulence factors. Substrate 

specificities among this group of serine proteases are considered to depend on amino acid 

variations in the substrate-binding cleft (Perona and Craik 1995). Therefore we analyzed the 

structure and amino acid composition of this cleft in NE and CG. We identified loci where 

single or multiple amino acids were strikingly different between the two enzymes. We 

assumed that replacement of these residues in NE by their structural CG counterparts or by 

the non-polar amino acid alanine would alter the NE specificity in a way that the NE 

mutants would not be able to target Shigella virulence proteins any more. All residues 

selected for mutation were either part of the NE substrate binding pockets or of surface 

loops containing residues of the different pockets. In general, these loops connect the walls 

of the pockets without necessarily contacting the substrate residues directly (Hedstrom et al. 
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1992). Since loop sequences are often unique in individual proteases, they have been 

suggested to play a role in determining substrate specificity (Hedstrom et al. 1992). The 

following chapters discuss the functional profiles of the generated NE mutants with regard 

to the location of the affected residues in the sequence and in the three-dimensional 

structure (see also chapter 3, figures 3.10 and 3.11 and for sequence alignment see 

appendix, table 5.1). 

 

NE mutants 35-41 and 58A-61 

The residue exchanges in the NE mutants LRGGHF 35-41 IQSPAGQSR and VANVNVR 

58A-61 WGSNINV affected the S1-3’ pockets and the corresponding surface loops [figure 

4.1 and (Bode et al. 1989)]. However, these two NE mutants displayed different phenotypes.  

 

 

Fig 4.1: Schematic representation of the NE residues 35-41 and 58A-61. 
The NE segments 35-41 (cyan) and 58A-61 (salmon) interact with the amino acids of 
substrate C-terminal to the scissile bond (P1’-P3’ in wheat). The catalytic residues 
aspartate, histidine and serine are shown in red. The residues discussed in the text are 
labeled using the three-letter code for amino acids. The picture was generated using Pymol 
and residues are depicted as sticks and cartoon (DeLano 2002). The representation is 
based on the crystallization of NE with the inhibitor TOM (Bode et al. 1986b). 
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In the NE mutant 35-41 the phenylalanine (F) at position 41 was exchanged by an arginine 

(R). Interestingly, this exchange did not affect the ability of the mutant to cleave the NE 

peptide substrate and Shigella virulence factor, although this residue had been suggested to 

influence specificity (Bode et al. 1989). According to the structure of NE bound to an 

inhibitor, the phenylalanine interacts with the P1’ and the P3’ residue of this substrate 

[figure 4.1 and (Bode et al. 1986b)]. In the mutant 35-41, arginine is at this position and its 

side chain is positively charged in contrast to the one of phenylalanine. However, arginine 

in the context of CG is flexible, which might allow some adaptation to bound substrate 

residues. This could explain why the mutant was still able to cleave the NE substrates (Hof 

et al. 1996). In the rat mast cell protease II (RMCPII), another chymotrypsin-like serine 

protease, the residue segment 34-41 has been proposed to be important for substrate 

specificity (Perona and Craik 1995; Perona and Craik 1997). Yet, this suggestion was based 

on structural modeling but not on a functional analysis. In this study, we functionally show 

that the substrate specificity of NE is not encoded within this loop interacting with the P1’-

P3’ residues. It is therefore tempting to argue that protease residues interacting with the Pn’ 

residues of the substrate are generally not important in determining NE specificity.  

However, the mutant NE 58A-61 switched to a CG-like specificity for the peptide substrate 

and the exchanged residues do interact with the Pn’ residues of the substrate [figure 4.1 and 

(Bode et al. 1986b; Bode et al. 1989)]. This indicates that a protease-substrate interaction C-

terminal of the scissile bond actually is important for substrate recognition. The NE mutant 

58A-61 had lost the specificity towards the NE but had acquired the specificity towards the 

CG peptide substrate. Additionally, the NE mutant 58A-61 did not target the Shigella 

virulence factors IpaB and IcsA. But since its CG activity was low, we cannot make any 

valid conclusions regarding the specificity towards Shigella virulence factors.  

The switch in specificity for the peptide substrate could have been caused by the exchange 

of valine at position 58D. This valine in NE is known to interact with the substrate residue 

P3’ [figure 4.1 and (Bode et al. 1989)]. However, the peptide substrate used in our assays is 

only composed of a chromophore C-terminal of the scissile bond and it is unclear if the NE 

valine contacts the chromophore. Therefore its role in NE specificity requires a more 

detailed analysis, for example, by generating a NE mutant that only lacks this valine.  

As mentioned above, the CG activity of this mutant towards the CG peptide substrate was 

low as its CG kinetics was almost indistinguishable from the kinetics of endogenous 

proteases. It is possible that the introduced amino acids only partially conferred CG 

specificity and that we would need to exchange an elongated stretch of residues in this locus 
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to obtain a mutant with higher CG activity. Another explanation for the low CG activity 

could be that residues 58A and 58B are part of a β-sheet in NE and in close proximity to 

histidine 57, which is part of the catalytic triad [figure 4.1 and (Wei et al. 1988)]. This β-

sheet might be disrupted by the exchange, which in turn could negatively influence the 

stability of the triad and thus the activity of the protein. Finally, the low CG activity might 

be caused by improper glycosylation. CG contains one potential N-glycosylation site 

(Watorek et al. 1993). This site is asparagine at position 60 and that is introduced into the 

mutant. It is possible that the mutant carries three asparagine-linked sugars, which interfere 

with the activity of protein.  

Taken together, we showed that the segment 35-41 in NE is not important for NE specificity 

whereas the segment 58A-61 partly contributes to the specificity of NE.  

 

NE mutants F192A, F192K and A213V 

Most residues that we found to be significantly different in NE and CG were part of the 

substrate specificity pocket S1. The residues of this pocket have been considered as prime 

determinants for the specificities of the different chymotrypsin-like serine proteases, 

because they are complementary to the preferred P1 residue (Steitz and Shulman 1982; Berg 

JM 2003). Multiple residues including phenylalanine at position 192 define the S1 pocket of 

NE (figure 4.2). According to (Bode et al. 1989) the backbone of this phenylalanine 

contributes to the formation of the entrance of the S1 pocket and it is one the residues 

constricting the pocket towards the bottom. Importantly, the phenylalanine has been 

suggested to influence NE specificity (Bode et al. 1989). We assumed that exchange of this 

residue by its CG counterpart or by alanine would affect the specificity of NE. Surprisingly, 

both mutants, F192A and F192K, did cleave the NE peptide substrate as well as the Shigella 

virulence factors IpaB and IcsA. It is intriguing that replacement of phenylalanine by lysine 

(K) did not impact NE specificity, since lysine, in contrast to phenylalanine, is highly 

positively charged and not aromatic. 

Interestingly, the NE mutant F192A was also able to cleave the CG peptide substrate, albeit 

with lower activity than the NE peptide substrate. The CG peptide substrate carries 

phenylalanine with its bulky and aromatic side chain at the P1 position. It is therefore 

possible that the introduction of alanine with its short side chain opened the entrance of the 

S1 pocket and thus allowed larger side chains to enter. Yet, it remains unclear how the 

introduced alanine elicited a CG activity. In summary, since the NE mutants F192A and 
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F192K retained NE specificity, the phenylalanine at position 192 does not seem to be a 

determinant for the specificity of NE, although it is part of the S1 pocket.  

 

 
Fig. 4.2: Schematic representation of the S1 pocket of NE. 
The residues phenylalanine at position 192 (lime) and alanine at position 213 (marine) form 
the entrance of the S1 pocket. The side chain of the substrates’ P1 residue valine (wheat) 
points towards the pocket. The side chains of valine at position 190 (grey) and 216 (green) 
restrict the accessibility to the bottom of the pocket. The catalytic residues aspartate, 
histidine and serine are shown in red. The remaining NE residues are shown as cartoon in 
grey without side chains or are not shown at all. The picture was generated using Pymol 
(DeLano 2002) and is based on the crystallization of NE with the valine chloromethyl 
ketone inhibitor (Wei et al. 1988). 
 

Alanine at position 213 in NE is another residue defining the S1 pocket (figure 4.2). It is 

thought to contribute to the constriction of the NE S1 pocket at its entrance and had been 

suggested to influence specificity of NE (Bode et al. 1986b; Bode et al. 1989). Interestingly, 

we found that exchange of the alanine by its CG counterpart valine did not influence the NE 

specificity. The NE mutant A213V specifically cleaved the NE peptide substrate as well as 

the Shigella virulence factors IpaB and IcsA. However, its NE activity was decreased in 

comparison to the NE activity of the mutants F192A and F192K. Since the isopropyl side 

chain of valine is larger than the methyl side chain of alanine, the presence of valine instead 

of alanine could have narrowed the entrance of the pocket and thus affected the NE activity 

of the mutant negatively. However, this amino acid exchange did not interfere with the 

specificity of the mutant for the biological substrates of NE. Interestingly, a topologically 
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close homolog of NE, the digestive chymotrypsin-like serine protease porcine pancreatic 

elastase (PPE), carries threonine at the position 213 and has been shown to preferably cleave 

after alanine (Powers et al. 1977; Zimmerman and Ashe 1977; Szabo et al. 1980). In 

contrast to valine, threonine is a polar residue but both side chains are branched in a similar 

way and thus present a similar steric restriction at the entrance of the S1 pocket. Therefore it 

is possible that the NE mutant A213V would also exhibit a higher activity towards an NE 

peptide substrate carrying an alanine instead of a valine at the P1 position. 

Taken together, we were not able to change the specificity of NE by mutating single 

residues in NE at positions 192 and 213, although they are part of the NE S1 pocket. These 

observations are in accordance with the finding of (Graf et al. 1987), who analyzed the 

specificities of trypsin and chymotrypsin, two other prominent members of the 

chymotrypsin-like serine proteases. They showed that the specificity of trypsin could not be 

converted into a chymotrypsin-like specificity through exchange of a single S1 residue.  

 

NE mutants F215Y and F215A  

Phenylalanine at position 215 in NE is part of the S2 pocket and its side chain runs parallel 

to the side chain of the residue in the P4 position of the inhibitor [figure 4.3 and (Bode et al. 

1989)]. This phenylalanine was either replaced by its CG counterpart tyrosine (Y) or by 

alanine (A). We found that the NE mutant F215Y specifically cleaved the NE peptide 

substrate and the Shigella virulence factors IpaB and IcsA. One explanation why the 

substitution of phenylalanine by tyrosine did not affect the character of NE is that the side 

chains of phenylalanine and tyrosine are identical except for a hydroxyl group at the 

aromatic ring of tyrosine. Therefore the steric and biochemical features of tyrosine resemble 

the ones of phenylalanine and maintain the bowl-shaped and rather hydrophobic character 

of the NE S2 pocket (Wei et al. 1988).  

In contrast to tyrosine, the introduction of an alanine at position 215 did influence the 

activity and partially the specificity of the mutant enzyme towards the peptide substrate. 

F215A cleaved the NE peptide substrate but only with low activity since we could not 

measure the NE kinetics of the mutant. Furthermore, it acquired the ability to cleave the CG 

peptide substrate but this CG activity was also low. It is likely that alanine, whose side chain 

only consists of a methyl group, interfered with the character of the NE S2 pocket. This 

could have lead to an incorrect positioning of the P2 residue proline, which maybe 

influenced positioning of the P1 residue of the substrate or the binding of the peptide 

substrate in general. As mentioned above, the side chains of phenylalanine at position 215 
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and of the P4 amino acid of the substrate are in close contact. Therefore it is possible that 

the introduction of alanine at position 215 negatively affects the putative interaction of these 

side chains. Since proline and alanine are at the P2 and P4 positions in the NE and the CG 

peptide substrate, this might explain why both activities of the mutant NE were low. 

However, it does not explain why the NE mutant F215A was also able to cleave the CG 

peptide substrate. It is possible that the phenylalanine influences the S1 pocket in the native 

and soluble NE protein and therefore its exchange by alanine with its short side chain 

enlarged the S1 pocket allowing cleavage after a bulky residue. Another explanation could 

be that phenylalanine at position 215 influences the correct formation or function of the NE 

surface loop spanning the amino acids 163 to 181, because its side chain is in close 

proximity to the residues 177 and 180. This surface loop seemed important for substrate 

binding of NE in preliminary experiments (data not shown) and had been suggested to be 

crucial for specificity of trypsin (Perona and Craik 1997).  

 

 
Fig. 4.3: Schematic representation of the S2 pocket of NE. 
The S2 pocket of NE is formed among other residues by phenylalanine at position 215 
(magenta), histidine (His 57) and leucine (Leu 99) (Bode et al. 1989). The residues of the 
substrate N-terminal to the scissile bond are shown in wheat (P1-P4). The side chain of 
phenylalanine at position 215 runs parallel to the substrate residue P4. Parts of the S1 
pocket (Val 190 and Val 216) are shown for better orientation. The catalytic residues 
histidine and serine are depicted in red. All residues are presented as sticks The picture 
was generated using Pymol (DeLano 2002) and is based on the crystallization of NE with 
the valine chloromethyl ketone inhibitor (Wei et al. 1988). 
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Taken together, the substitution of phenylalanine at position 215 in NE with its CG 

counterpart tyrosine did not influence the NE specificity. In contrast, the substitution of that 

residue with alanine reduced the NE activity of the mutant and simultaneously allowed the 

cleavage of the CG peptide substrate. Since the NE as well as the CG activity of the NE 

mutant F215A was too low to measure kinetics, we are unable to draw any conclusions with 

regard to the activity against virulence factors.  

 

NE mutants 216-218 and 216-224 

The NE mutants VRGG 216-218 GKSS and VRGGCASGLY 216-224 GKSSGVP affected 

several NE specificity pockets as well as a surface loop, which is constituted by the residues 

217-226 (figures 4.4 and 4.5). We could show that these two mutants lost the specificity for 

the NE peptide substrate but gained the ability to cleave the CG peptide substrate. 

Interestingly, the CG activity of the NE mutant 216-218 was approximately ten times higher 

than the CG activity of the NE mutant 216-224 per total protein concentration of the cell 

lysate. Since we did not purify the recombinant protein, it remains to be determined if this 

mutant actually presented a CG-like enzyme with a high substrate turnover rate or if the 

mutant protein was expressed to a higher level than NE mutant 216-224. Furthermore, NE 

mutant 216-224 did not target the Shigella virulence factors, whereas the NE mutant 216-

218 showed marginal IpaB and IcsA degradation. Because of this residual NE specific 

activity, it is tempting to argue that the complete NE segment of amino acids 216-224 is 

crucial for the NE specificity for virulence factors. The segment 219-224 constitutes almost 

the complete surface loop that was suggested to influence specificity of chymotrypsin-like 

serine proteases (Perona and Craik 1997). Additionally, the residues 223 and 224 were also 

proposed to influence NE specificity (Bode et al. 1989). However, the NE mutant 216-218 

did not cleave the Shigella virulence factors when its CG activity units were comparable to 

the ones of NE mutant 216-224. This strongly suggests that the four NE amino acids 216-

218 are sufficient to encode for the NE specificity. It nevertheless might be interesting to 

generate a NE mutant in which only the residue segment 219-224 is exchanged and test its 

ability to cleave virulence proteins. 

Assuming that the NE segment 216-218 does encode for the NE specificity, it is tempting to 

speculate that only one of the four residues determines this specificity. The two residues at 

position 217 and 218 in NE are glycines, which were replaced by two serines in the mutants. 

These residues possibly interact with the P5 position of the substrates [figure 4.4 and (Bode 

et al. 1989)]. In both peptide substrates this position is composed of a succinyl group but it 
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carries different modifications. The succinyl group in the CG peptide substrate contains a 

polar hydroxyl group whereas the methoxysuccinyl group in the NE peptide substrate 

harbors a non-polar methyl group at this position. It is possible that the introduced residues 

are able to interact with hydroxl- but not with methyl groups, which in turn influences 

specificity. Functional analysis of a NE mutant in which only the two glycines are replaced 

by serines should clarify the role of these residues in NE specificity. The residue 216B in 

NE is an arginine and its side chain points along the side chain of the P4 residue of the 

substrate [figure 4.4 and (Bode et al. 1986b; Bode et al. 1989)]. Since arginine was replaced 

by lysine that has similar biochemical features, it is rather unlikely that this exchange 

conferred the switch of specificity in the NE mutant 216-218. The most likely candidate for 

determining specificity is the residue at position 216. It had been speculated earlier that this 

residue might be important for specificity of trypsin (Perona and Craik 1997).  

In both NE mutants 216-218 and 216-224, valine at position 216 was substituted by its CG 

counterpart glycine. The side chains of both valine and glycine at this position reach into the 

S1 pockets of NE and CG, respectively. Thereby the residues define the size of the S1 

pockets (figure 4.2 and see also chapter 1, figure 1.7). The side chain of glycine, which only 

consists of hydrogen, is smaller than the one of valine, resulting in an enlarged S1 pocket. 

Thereby it allows the bulky and aromatic side chain of phenylalanine, which is the preferred 

P1 residue in CG peptide substrates, to enter to the base of the pocket. In contrast, NE does 

not cleave peptide substrates with phenylalanine at the P1 position (Harper et al. 1984), 

possibly because the valine sterically hinders the access of large side chains. In addition, the 

side chain of valine also contributes to the hydrophobic character of the NE S1 pocket by 

burying the acidic aspartate at position 226 (Navia et al. 1989). Therefore, the replacement 

of valine by glycine could not only affect the geometrical but also the biochemical character 

of the S1 pocket in the mutant. Interestingly, trypsin also contains a glycine at position 216. 

It cleaves peptide bonds after arginine or lysine, whose side chains are the longest among 

the twenty common amino acids. Replacement of this glycine with alanine resulted in an 

almost complete loss of trypsin activity when measured using peptide substrates (Hedstrom 

et al. 1992). Since the size of alanines’ side chain is in between the one of glycine and 

valine, it is possible that this trypsin mutant would be able to cleave the NE peptide 

substrate. Furthermore, it would be interesting to test if replacement of this glycine with 

valine would confer NE specificity to trypsin. However, it was stated that introduction of 

residues of the NE S1 site into trypsin failed to confer specificity towards elastase-specific 

substrates (Perona et al. 1995). Eventually, the generation and analysis of a NE mutant in 
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which only the valine at position 216 is replaced by glycine could prove if the specificity of 

NE for virulence factors is encoded in this residue. If this was the case, it would mean that 

the character of the S1 pocket determines substrate specificity. Consequently, it would 

indicate that in virulence factors, in contrast to non-virulence proteins, valines and other 

residues after which NE cleaves are more accessible than residues after which CG cleaves. 

 

Fig.4.4: Schematic representation of the NE segment 216-224. 
The residues 216-224 (green) are part of a surface loop and interact with the residues of 
the inhibitor N-terminal to the scissile bond (P1-P5 shown in wheat). In addition to Val 216 
parts of the S1 pocket (Val 190) are shown for better orientation. The catalytic residues 
aspartate, histidine and serine are depicted in red. All amino acids are presented as sticks. 
The representation was generated using Pymol (DeLano 2002) is based on the 
crystallization of NE with the valine chloromethyl ketone inhibitor (Wei et al. 1988) 
 
Taken together, we demonstrated that the residue segment 216-224 is crucial for the NE 

specificity for virulence factors. Additionally, by inserting the analogous CG residues we 

were able to introduce CG specificity for peptide substrates. Thereby we functionally 

proved the hypothesized importance of the surface loop 217-225 in substrate specificity 

among chymotrypsin-like serine proteases (Perona and Craik 1997).  
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NE mutant N98L and N98A 

Asparagine at position 98 in NE is part of a protruding loop segment that in CG comprises 

the residues 94-99 (Hof et al. 1996). This residue was replaced by its structural counterpart 

leucine or by alanine, resulting in the two NE mutants N98A and N98L. Interestingly, the 

substitution of asparagine by leucine did not influence the NE specificity for the peptide 

substrate or the Shigella virulence factors. Leucine carries a nonpolar side chain, whereas 

the side chain of asparagine is polar. However, both side chains are branched in a similar 

way, which might explain why the exchange did not influence the NE specificity of the 

mutant. In contrast, replacement of asparagine with alanine led to a complete change of 

specificity. The NE mutant N98A did not cleave the NE peptide substrate and Shigella 

virulence factors but cleaved the CG peptide substrate. As mentioned above, the asparagine 

is part of a surface loop, and this loop was proposed via structural computing to influence 

specificity of an enteropeptidase of the chymotrypsin-like family (Perona and Craik 1995). 

However, the asparagine was not suggested to influence specificity of NE. Furthermore, 

alanine is a nonpolar residue like leucine and the asparagine in NE does not directly contact 

the inhibitor (figure 4.5). It is therefore difficult to explain why the introduction of alanine 

had such a strong effect. Since the side chains of alanine and leucine differ in size, it is 

possible that the side chains’ steric character at this position is important for the interaction 

with the substrate N-terminal to the scissile bond and thus for the specificity of the enzyme. 

To understand the critical function of this NE residue at position 98 in substrate recognition, 

one would have to analyze the crystal structure of this mutant bound to IpaB. 

Taken together, we proved asparagine at position 98 to be a determinant of NE specificity. 

The replacement of this single amino acid with alanine introduced CG specificity to the 

mutant enzyme. This is in contrast to the hypothesis of (Krem et al. 1999). They postulate 

that the C-terminal part, starting at residue 189, encodes for the function of serine proteases. 

Additionally, it is not possible to confer chymotrypsin specificity into trypsin by 

replacement of a single residue. To achieve this transfer in specificity, one residue of the S1 

pocket and two adjacent surface loops have to be exchanged (Hedstrom et al. 1992). 
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Fig. 4.5: Schematic representation of NE. 
The residues 217-225 form a surface loop (green). The valine at position 216 (green) is 
shown with its side chain. The asparagine at position 98 (yellow) does not directly contact 
the inhibitor (P1-P5, wheat) and it is located on the surface of the protein. The catalytic 
residues aspartate, histidine and serine are shown in red. The remaining NE residues are 
shown as cartoon in grey. The two barrels of β-sheets (arrows) and a single α-helix are 
shown. The presentation was generated using Pymol (DeLano 2002) is based on the 
crystallization of NE with the valine chloromethyl ketone inhibitor (Wei et al. 1988). 
 

Conclusion 

In the present study we identified the residues at position 98 and 216-224 to be critical for 

NE specificity. Mutation in these residues to alanine or the analogous CG residues changed 

the specificity CG-like. Furthermore, the NE mutants N98A, 216-218 and 216-224, as CG, 

did not degrade Shigella virulence factors, although they were able to cleave the CG peptide 

substrate. This finding contributes to our understanding of how proteases recognize their 

substrates, since it shows that single residues apart from the catalytic center can determine 

the interaction of the full-length enzyme with its substrate. We assume that introduction of 

these NE residues into CG would confer NE specificity to the CG mutants. To further 

underline the biological importance of our results, it would be very interesting to perform in 

and ex vivo experiments. It was shown that NE null mice are more susceptible to Gram-

negative bacteria, whereas CG knockout mice are susceptible to infections with Gram-

positive bacteria (Tkalcevic et al. 2000; Reeves et al. 2002). Therefore, mice expressing 

mutant instead of wildtype NE should also be more susceptible to infections with Gram-

negative bacteria. Furthermore, isolated neutrophils from these mice should allow the 
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escape of Shigella from the phagolysosome to the cytoplasm, as it was observed in 

neutrophils from NE null mice (Weinrauch et al. 2002). Additionally, wildtype and 

transgenic mice expressing our identified NE mutants could be infected with various 

pathogens and this way the spectrum of NE specificity in vivo could be assessed. On the 

other hand, one could test if the three CG-like NE mutants do not only cleave the CG 

peptide substrate but are also able to target biological substrates of CG such as the human 

brahma protein (Biggs et al. 2001). 

Our results also present an important finding with regard to the evolution of proteases. The 

members of the large family of chymotrypsin-like serine proteases derived from a common 

ancestor and exist in pro- and eukaryotes. This parental enzyme is thought to possess a 

prototypical fold containing the catalytic machinery. However, the broad divergence in 

substrate specificity within this protease family is incompletely understood (Krem et al. 

1999). The variety in function is thought to have derived from mutation of residues that are 

not involved in the catalytic or structural function. Furthermore, it has been postulated that 

enzymes of this family that evolved early are less diverse and thus less stringent in their 

substrate P1 preference. In contrast, proteases that evolved late, such as NE and CG, are 

very stringent in their P1 substrate specificity leading to specific functions and thus 

individual ecological niches of the proteases (Perona and Craik 1997). We show that these 

niches can be switched by mutation of a single residue that is not involved in the 

architecture of the S1 pocket. The interaction of the immune system and pathogens is 

characterized by a constant battle of detection and elimination on the one and evasion on the 

other side. Pathogens usually have a short life span, which facilitates the appearance of new 

variants that can be selected to escape the host immune system. The fact, that the specificity 

of NE can be converted to that of CG by a single mutation, even though their sequence 

identity is only 37%, could indicate that evolution lead to specific chymotrypsin-like serine 

proteases but that the ability to exchange functions was retained in this group of proteases. 

Thereby, the chances are increased that a new pathogen with novel virulence factors will 

encounter a mutant protease that can recognize and degrade the pathogenic factors.   

In summary, this study has defined regions in NE distinct from the catalytic site that are 

important for recognition of virulence factors. In future studies, using crystal structures, X-

ray scattering and High-throughput screening for substrates that are recognized by the 

mutant protein or peptide, we can begin to analyze whether these regions are important for 

binding to specific substrates and if conformational changes as a result of binding are 

important for enzyme specificity. These studies offer a potentially valuable tool to expedite 
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biochemical studies and drug design. Since NE leads to aberrant lung epithelium destruction 

and mucous production in cystic fibrosis, for example (Bruce et al. 1985; Birrer et al. 1994; 

Schuster et al. 1995) the results of this study could be useful for the design of a novel and 

precise NE inhibitor. On the other hand, the determination of the NE residues that are 

crucial for recognition of virulence factors could present a template for the design of new 

types of antimicrobials that block a bacterial infection by masking bacterial virulence 

factors. 
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5 Appendix 

5.1 Expression of recombinant wt NE in bacteria 

To express and purify recombinant NE we initially used the E.coli Rosetta™(DE3)pLys 

strain. It is a derivative of the BL21 E. coli strain that is widely used for protein expression 

and is deficient in the Lon and OmpT proteases (Phillips et al. 1984; Studier et al. 1990). 

Furthermore, these commercially available bacteria carry the T7 RNA polymerase gene 

under the control of an IPTG inducible promoter. To avoid basal expression of the 

polymerase and thus unspecific expression of NE, the bacteria contained the pLys plasmid 

encoding for T7 lysoszyme, a natural inhibitor of T7 RNA polymerase (Studier 1991; Zhang 

and Studier 1997). To enhance the expression of eukaryotic proteins, these bacteria contain 

tRNAs for the translation of codons rarely used in E. coli but that are present in the NE 

gene. 

In neutrophils, NE is synthesized as an inactive zymogen that requires the removal of amino 

acids at the N- and C-terminus for full activity. As a result, active mature NE starts with 

isoleucine instead of methionine. Since bacteria lack the proteases needed for the NE 

processing, we assumed that recombinant expression of the full-length protein in E. coli 

would not result in an active protein. Therefore, we expressed recombinant mature NE that 

carried an additional methionine as first aminoterminal residue. In order to purify the 

recombinant protein we added a histidine tag to C-terminus of the protein.  

The cDNA encoding for human mature NE was ligated into the expression vector pET-

28(a)+ under the control of a T7 promoter. E.coli Rosetta™(DE3)pLys were transformed 

with the pET28(a)+/NE mature construct and expression of recombinant NE was induced by 

addition of IPTG for various times at 30 or 37°C. Bacterial lysates were tested for the 

presence of the recombinant protein by immunoblot analysis using an antibody against 

histidine. However, expression of recombinant NE was not detected (data not shown).  

A reason why the protein was not expressed could be based on the DNA composition of the 

NE gene. The 5’ sequence of this gene is very GC-rich (72%). The high GC content could 

lead to hairpin formation of the mRNA molecule or present an obstacle to the migration of 

the RNA-polymerase. In both cases protein translation would be prevented. Therefore five 

basepairs within the 5’-end of the DNA sequence encoding for the mature protein were 

silently exchanged to break GC stretches. The choice which basepairs should be mutated 
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was based on the PROTEOEXPERT program from Roche [www.proteoexpert.com (Roche-

Applied-Science)], which is able to suggest basepair exchanges without altering the amino 

acid composition.  
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Fig. 5.1: Mature NE expressed in bacteria is not active. 
(A) Expression of mature NE (C-terminal histidine tagged) after induction with IPTG for 4h 
at 37°C. Aliquots of bacterial lysates were analyzed by SDS-PAGE and subsequent 
Coomassie staining or immunoblotting using an anti-histidine antibody. In the Coomasie 
stained gel the expressed protein is marked with an asterisk. As negative control, E.coli 
were transformed with the empty expression vector and also treated with IPTG. 
Lanes M: histidine ladder, 2: Rosetta+pET-28+(a), 3 and 4: Rosetta+pET-28+(a)/NE 
mature C-His, 5: 1 µg pNE 
B. Purification of NE mature using a nickel column.  
Aliquots of each purification step were analyzed by SDS-PAGE and subsequent 
immunoblotting using an anti-histidine antibody. 
Lanes 1 and 2: flow through fractions, 3 and 4: washing fractions, 5 to 14: elution fractions, 
15: Rosetta+pET-28+(a)/NE mature under non-inducing conditions; 16) starting material - 
Rosetta+pET-28+(a)/NE mature under inducing conditions. 
C. Reconstituted recombinant NE mature analyzed by SDS-PAGE and subsequent 
Coomassie staining or immunoblotting using an anti-histidine antibody. 
Lanes M1: size ladder, M2: histidine ladder, 1 to 4: 10, 20, 50 and 75 µl of the reconstituted 
eluate. 
D. NE activity units of 250 µl reconstituted eluate and 500 ng/ml pNE. The eluate and pNE 
were added to the assay buffer containing the NE peptide substrate. The kinetics were 
measured by recording the OD at 410 nm wave-length every 30 sec over 3 min. The NE 
units represent the change in OD/min. 
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This altered DNA was ligated into pET28(a)+ leading to a C-terminal histidine tag. E.coli 

Rosetta™(DE3)pLys were transformed with this construct and expression was induced. We 

observed that the introduced basepair exchanges lead to an expression of mature NE (figure 

5.1a). In order to test the activity of the enzyme, we purified the recombinant NE using a 

nickel column (figure 5.1b). After dialysis, lyophilization and reconstitution of the eluted 

protein (figure 5.1c), its enzymatic activity was tested with the NE peptide substrate. 

However, we were unable to detect enzymatic activity of the recombinant mature NE 

protein when compared to that of purified NE (figure 5.1d). 

We concluded that expression of active recombinant NE was not possible in bacteria. In a 

next step, we tried to express mature NE in cell-free systems (Rapid Translation System 

E.coli from Roche Applied Science and TNT® Quick Coupled Transcription/Translation 

System from Promega) or in yeast. However, using these approaches we were also not able 

to detect expression of recombinant NE (data not shown).  

 

5.2 Analysis of single-cell derived cell lines of the different NE mutants  

As mentioned in chapter 3.2.5, RBL-1 cells were stably transfected with the eleven different 

pcDNA3/NE mutant constructs. As for recombinant wildtype NE, several single-cell 

derived cell lines of each mutant were tested for their NE activity. After retesting three cell 

lines with high NE activity, the cell line whose lysate showed the highest NE activity per 

cell number was selected for subsequent analysis (figure 5.2). Since no cell line of the four 

NE mutants 58A-61, N98A, 216-218 and 216-224 cleaved the NE peptide substrate, several 

of these single-cell derived cell lines were tested for their ability to cleave the CG peptide 

substrate (figure 5.3). Again, the cell line whose lysate showed the highest CG activity per 

cell number was selected for subsequent analysis. 
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Fig. 5.2: NE activity of different cell lines of the 11 NE mutants. 
NE activity of several single-cell derived cell lines of cells that carried the different 
pcDNA3/NE mutant constructs. Lysates were mixed with the NE peptide substrate and 
incubated for 30 min. The absorbance was read at 410 nm wave-length. The samples were 
normalized against a vector lysate that had been incubated with the substrate. As positive 
control, the substrate was added to wt lysate. All lysates were equivalent to 1x105 cells and 
were treated equally. The clones marked with an asterisk were chosen for further 
experiments. 
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Fig. 5.3: CG activity of NE mutants 58A-61, N98A, 216-218, and 216-224. 
(A) CG activity of several single-cell derived cell lines of cells individually transfected with 
pcDNA3/NE 58A-61, N98A, F215A or 216-224. Lysates were mixed with the CG peptide 
substrate and incubated for 30 min. The OD was read at 410 nm wave-length. The 
samples were normalized against a vector lysate that had been incubated with the 
substrate. As positive control, 1 µg pCG was added to vector lysate before the substrate 
(V+pCG). All lysates were equivalent to 1x105 and treated equally. The clones with the 
highest activity were chosen for further experiments. 
(B) CG kinetics of five single-cell derived cell lines of cells transfected with pcDNA3/NE 
216-218. Lysates of 2,5x105 cell equivalence/ml were assayed for cleavage of the CG 
peptide substrate over 3min. The absorbance at 410 nm was read every 30 sec. As 
negative control the kinetics of V lysate was measured. 2,5x105 cell equivalence/ml V 
lysate spiked with 1,25 µg pCG was used as positive control. The CG units resembled the 
change in absorbance/minute. 
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5.3 Sequence alignment of NE, CG, trypsin and chymotrypsin 

Table 5.1: Sequence alignment. 
 

NE             MTLGRRLACL FLACVLPALL LGGTALASEI VGGRRARPHA WPFMVSLQLR 
16 35 

CG             ----MQPLLL L----LAFLL PTGAEA-GEI IGGRESRPHS RPYMAYLQIQ 

Trypsin        ----MHPLLI LAFVGAAVAF PSDDD--DKI VGGYTCAENS VPYQVSLN-- 

Chymotrypsin   ---------- ---CGVPAIQ PVLSGL-SRI VNGEEAVPGS WPWQVSLQDK 

 

NE             ---GGHFCGA TLIAPNFVMS AAHCVANVNV RAVRVVL-GA HNLSRREPTR 
5741 61

CG             SPAGQSRCGG FLVREDFVLT AAHC----WG SNINVTL-GA HNIQRRENTQ 

Trypsin        --AGYHFCGG SLINDQWVVS AAHC----YQ YHIQVRL-GE YNIDVLEGGE 

Thymotrypsin   --TGFHFCGG SLINENWVVT AAHC----GV TTSDVVVAGE FDQGSSSEKI 

 

NE             QVFAVQRIFE NG-YDPVNLL NDIVILQLNG SATINANVQV AQLPAQGRRL 
98 102

CG             QHITARRAIR HPQYNQRTIQ NDIMLLQLSR RVRRNRNVNP VALPRAQEGL 

Trypsin        QFIDASKIIR HPKYSSWTLD NDILLIKLST PAVINARVST LLLPSACA-- 

Chymotrypsin   QKLKIAKVFK NSKYNSLTIN NDITLLKLST AASFSQTVSA VCLPSASDDF 

 

NE             GNGVQCLAMG
 

CG             RPGTLCTVAG

Trypsin        SAGTECLISG

Chymotrypsin   AAGTTCVTTG

 

NE             VCTLVRGRQA

CG             ICVGDRRERK

Trypsin        ICAGFLEGGK

Chymotrypsin   ICAG--ASGV

 

NE             FAPVAQFVNW

CG             FTRVSSFLPW

Trypsin        YTKVCNYVDW

Chymotrypsin   YARVTALVNW

 

The sequences of human NE 
trypsin (Le Huerou et al. 1990
using the software MUSCL
chymotrypsin numbering (Har
in red and the amino acids tha
(see chapter 3, figure 3.11. T
table was generated using CH

 

141

 WGL-LGRNRG IASVLQELNV TVVT------ ---SLCRRSN 

 WG--RVSMRR GTDTLREVQL RVQRDRQCLR IFGSYDPRRQ 

 WGNTLSSGVN YPDLLQCLVA PLLSHADCEA SYPGQITNNM 

 WGLTRYTNAN TPDRLQQASL PLLSNTNCKK YWGTKIKDAM 

 GVCFGDSGSP LVCNG----L IHGIASFVRG GCASGLYPDA 
192 195 213 216  224

 AAFKGDSGGP LLCNN----V AHGIVSY--- GKSSGVPPEV 

 DSCQGDSGGP VACNG----Q LQGIVSW-GY GCAQKGKPGV 

 SSCMGDSGGP LVCKKNGAWT LVGIVSW-GS STCSTSTPGV 

 IDSIIQRSED NPCPHPRDPD PASRTH 

 IRTTMRSF-- ------KLLD QMETPL 

 IQETIAANS- ---------- ------ 

 VQQTLAAN-- ---------- ------ 

(Sinha et al. 1987), human CG (Salvesen et al. 1987), bovine 
) and bovine chymotrypsin (Pjura et al. 2000) were aligned 
E (Edgar 2004). The numbering is according to the 

tley B.S. 1971). The residues of the catalytic triad are shown 
t were mutated in NE are highlighted in the respective colors 
he mature proteins start with isoleucine at position 16. The 
ROMA (Goodstadt and Pontig 2001). 
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5.4 Amino acids – abbreviations and structural formula 

Amino acids can be grouped according to the chemical character of the respective side chain 

into non-polar, uncharged polar, acidic or basic residues. Tables 5.2-5.5 show the members 

of each group. The full name of the amino acids as well as the one- and three-letter 

abbreviation code is shown. The side chains are highlighted. 

 

Table 5.2: Amino acids with non-polar side chains. 

Leucine
(Leu or L)

Alanine
(Ala or A)

Valine 
(Val or V)

Isoleucine
(Ile or I)

Phenylalanine
(Phe or P)

Proline
(Pro or P)

Tryptophan
(Trp or W)

Methionine
(Met or M)

Glycine
(Gly or G)

Cysteine
(Gly or G)

Leucine
(Leu or L)

Alanine
(Ala or A)

Valine 
(Val or V)

Isoleucine
(Ile or I)

Phenylalanine
(Phe or P)

Proline
(Pro or P)

Tryptophan
(Trp or W)

Methionine
(Met or M)

Glycine
(Gly or G)

Cysteine
(Gly or G)

Leucine
(Leu or L)
Leucine

(Leu or L)

Alanine
(Ala or A)

Alanine
(Ala or A)

Valine 
(Val or V)
Valine 

(Val or V)

Isoleucine
(Ile or I)

Isoleucine
(Ile or I)

Phenylalanine
(Phe or P)

Phenylalanine
(Phe or P)

Proline
(Pro or P)
Proline

(Pro or P)
Tryptophan

(Trp or W)
Tryptophan

(Trp or W)

Methionine
(Met or M)

Methionine
(Met or M)

Glycine
(Gly or G)
Glycine

(Gly or G)
Cysteine

(Gly or G)
Cysteine

(Gly or G)
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Table 5.3: Amino acids with uncharged -polar side chains. 

Asparagine
(Asn or N)

Glutamine
(Gln or Q)

Serine
(Ser or S)

Threonine
(Thr orT)

Tyrosine
(Tyr or Y)

Asparagine
(Asn or N)

Asparagine
(Asn or N)

Glutamine
(Gln or Q)
Glutamine
(Gln or Q)

Serine
(Ser or S)
Serine

(Ser or S)

Threonine
(Thr orT)

Threonine
(Thr orT)

Tyrosine
(Tyr or Y)

Tyrosine
(Tyr or Y)

 

Table 5.4: Amino acids with acidic side chains.  

Aspartic acid
(Asp or D)

Glutamic acid
(Glu or E)

Aspartic acid
(Asp or D)

Glutamic acid
(Glu or E)

Aspartic acid
(Asp or D)

Aspartic acid
(Asp or D)

Glutamic acid
(Glu or E)

Glutamic acid
(Glu or E)

 

Table 5.5: Amino acids with basic side chains.  

Lysine
(Lys or K)

Arginine
(Arg or R)

Histidine
(His or H)

Lysine
(Lys or K)
Lysine

(Lys or K)

Arginine
(Arg or R)
Arginine

(Arg or R)
Histidine
(His or H)
Histidine
(His or H)
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 Abbreviations 

7 Abbreviations 
 

The abbreviations for the individual amino acids are listed in chapter 5.4. 

 

aa   amino acid 

216-219  NE mutant VRGG216-219GKSS 

216-224  NE mutant VRGGGSLY216-224GKSSGVP 

35-41   NE mutant LRRGHF35-41IQSPAGQSR 

59-61   NE mutant VANVNVR59-61WGSNINV 

BPI   bactericidal permeability increasing protein 

CAMP   cationic antimicrobial peptides 

CG   cathepsin G 

DSMZ   Deutsche Sammlung für Mikroorganismen und Zellkulturen 

F192A   NE mutant F192A 

F192K   NE mutant F192K 

F215A   NE mutant F215A 

F215Y   NE mutant F215Y 

FCS   foetal calf serum 

fMLP   aminoterminal formylated methionin bacterial peptide 

HBSS   Hank’s balanced salt solution 

HEPES   N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) 

hNGE   human neutrophil granule extract 

IC   inhibitor cocktail 

IcsA   intracellular spreading A 

IL-8   interleukin 8 

Il-18   interleukin 18 

IL-1β   interleukin 1β 

IpaB   invasion plasmid antigen B 

LPS   lipopolysaccharides 

MALDI  matrix assisted laser desorption ionisation 

MeO   methoxy- 

min   minutes 

MS   mass spectrometry 

N98A   NE mutant -N98A 

N98L   NE mutant N98L 

NE   neutrophil elastase 
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 Abbreviations 

NE-CMK  NE inhibitor; MeO-Suc-AAPV-chloromethyl ketone 

NETs   neutrophil extracellular traps 

nm   nanometer 

nt   non-transfected 

OmpA   outer-membrane protein A 

PAMPs   pathogen associated molecular patterns 

PBS   phosphate-buffered saline  

pCG   commercially available purified human CG 

pI   isoelectric point 

PMA   phorbol 12-myristate 13-acetate PMA 

PMSF   phenylmethylsulphonylfluoride 

pNE   commercially available purified human NE 

PRRs   pathogen recognition receptors 

RMSD   root mean square standard deviation 

ROS   reactive oxygen species 

RPMI   Roswell Park Memorial Institute 

RT   room temperature 

RZPD   German Resource Center for Genome Research  

SDS   sodium dodecyl sulphate 

SDS-PAGE  SDS polyacrylamide gel electrophoresis 

sec   seconds 

Suc   succinyl- 

TCA   trichloroacetic acid 

TLR   toll like receptors 

TNF-α   tumor necrosis factor α 

TOF   time of fligt 

V213A   NE mutant V213A 

V   vector 

wt   recombinant wildtype NE 

Z-GLF-CMK  CG inhibitor; benzyloxycarbonyl –GLF-chloromethyl ketone
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