Literatur

[1]Woiciechowsky, C., Schoning, B., Lanksch, W. R., Volk, H. D., Docke, W. D. (1999): Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression, J Mol Med (77), 11, p. 769-80

[2]Volk, H. D.; Reinke, P.; Krausch, D.; Zuckermann, H.; Asadullah, K.; Muller, J. M.; Docke, W. D. und Kox, W. J. (1996): Monocyte deactivation--rationale for a new therapeutic strategy in sepsis, Intensive Care Med (22 Suppl 4), p. S474-81

[3]Strohmeyer, J. C.; Blume, C.; Meisel, C.; Doecke, W. D.; Hummel, M.; Hoeflich, C.; Thiele, K.; Unbehaun, A.; Hetzer, R. und Volk, H. D. (2003): Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients, Cytometry B Clin Cytom (53), 1, p. 54-62

[4]Le Gall, J. R.; Lemeshow, S. und Saulnier, F. (1993): A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study, Jama (270), 24, p. 2957-63

[5]Grienay, M.; Lukaszewicz, A. C.; Resche-Rigon, M.; Pirracchio, R.; Faivre, V.; Boval, B. und Payen, D. (2009): Monocytic HLA-DR expression in intensive care patients: Interest for prognosis and secondary infection prediction*, Crit Care Med

[6] C. Meisel, C. Höflich , H.D. Volk (2007): Pathophysologie und Immunmonoitoring der Sepsis, Zelluläre Diagnostik. Grundlagen, Methoden und klinische Anwendungen der Durchflusszytometrie. Basel, Karger, p. 785–797

[7]Lendemans, S.; Kreuzfelder, E.; Waydhas, C.; Schade, F. U. und Flohe, S. (2007): Differential immunostimulating effect of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF) and interferon gamma (IFNgamma) after severe trauma, Inflamm Res (56), 1, p. 38-44

[8]Docke, W. D.; Randow, F.; Syrbe, U.; Krausch, D.; Asadullah, K.; Reinke, P.; Volk, H. D. und Kox, W. (1997): Monocyte deactivation in septic patients: restoration by IFN-gamma treatment, Nat Med (3), 6, p. 678-81

[9]Meisel, C.; Schefold, J. C.; Pschowski, R.; Baumann, T.; Hetzger, K.; Gregor, J.; Weber-Carstens, S.; Hasper, D.; Keh, D.; Zuckermann, H.; Reinke, P. und Volk, H. D. (2009): Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial, Am J Respir Crit Care Med (180), 7, p. 640-8

[10]Charles Alderson Janeway, Paul Travers, Mark Walport, Mark Shlomchik (2005): Immuno Biology - the immune system in health and disease; 6th edition

[11]Ziegler, H. K. (2004): The role of gamma/delta T cells in immunity to infection and regulation of inflammation, Immunol Res (29), 1-3, p. 293-302

[12]Scotet, E.; Nedellec, S.; Devilder, M. C.; Allain, S. und Bonneville, M. (2008): Bridging innate and adaptive immunity through gammadelta T-dendritic cell crosstalk, Front Biosci (13), p. 6872-85

[13]Hirsh, M. I. und Junger, W. G. (2008): Roles of heat shock proteins and gamma delta T cells in inflammation, Am J Respir Cell Mol Biol (39), 5, 509-13

[14]Zhu, J. und Paul, W. E. (2008): CD4 T cells: fates, functions, and faults, Blood (112), 5, p. 1557-69

[15]Romagnani, S. (2008): Human Th17 cells, Arthritis Res Ther (10), 2, 206

[16]Vignali, D. A.; Collison, L. W. und Workman, C. J. (2008): How regulatory T cells work, Nat Rev Immunol (8), 7, p. 523-32

[17]Levings, M. K.; Gregori, S.; Tresoldi, E.; Cazzaniga, S.; Bonini, C. und Roncarolo, M. G. (2005): Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells, Blood (105), 3, p. 1162-9

[18]Ziegler-Heitbrock, H. W. (2000): Definition of human blood monocytes, J Leukoc Biol (67), 5, p. 603-6

[19]Wanidworanun, C. und Strober, W. (1993): Predominant role of tumor necrosis factor-alpha in human monocyte IL-10 synthesis, J Immunol (151), 12, p. 6853-61

[20]de Waal Malefyt, R.; Abrams, J.; Bennett, B.; Figdor, C. G. und de Vries, J. E. (1991): Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes, J Exp Med (174), 5, p. 1209-20

[21]Rock, K. L. und Shen, L. (2005): Cross-presentation: underlying mechanisms and role in immune surveillance, Immunol Rev (207), 166-83

[22] Conny Höflich, Hans-Dieter Volk Immunmodulation in der Sepsis

[23]Schneider, P. und Tschopp, J. (2000): Apoptosis induced by death receptors, Pharm Acta Helv (74), 2-3, p. 281-6

[24]Natoli, G.; Costanzo, A.; Guido, F.; Moretti, F. und Levrero, M. (1998): Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling, Biochem Pharmacol (56), 8, p. 915-20

[25]Kox, W. J.; Volk, T.; Kox, S. N. und Volk, H. D. (2000): Immunomodulatory therapies in sepsis, Intensive Care Med (26 Suppl 1), p. S124-8

[26]Tschoeke, S.K., Ertel, W (2007): Immunparalysis after multiple trauma, Injury, Int. J.Care injured (38), p. 1346-1357

[27]Volk, H. D. (2002): Immunodepression in the surgical patient and increased susceptibility to infection, Crit Care (6), 4, p. 279-81

[28] Menger, M. D. und Vollmar, B. (2004): Surgical trauma: hyperinflammation versus immunosuppression?, Langenbecks Arch Surg (389), 6, p. 475-84

[29] Asadullah, K.; Woiciechowsky, C.; Docke, W. D.; Egerer, K.; Kox, W. J.; Vogel, S.; Sterry, W. und Volk, H. D. (1995): Very low monocytic HLA-DR expression indicates high risk of infection--immunomonitoring for patients after neurosurgery and patients during high dose steroid therapy, Eur J Emerg Med (2), 4, p. 184-90

[30]Reinke, P. und Volk, H. D. (1992): Diagnostic and predictive value of an immune monitoring program for complications after kidney transplantation, Urol Int (49), 2, p. 69-75

[31]Docke, W. D.; Hoflich, C.; Davis, K. A.; Rottgers, K.; Meisel, C.; Kiefer, P.; Weber, S. U.; Hedwig-Geissing, M.; Kreuzfelder, E.; Tschentscher, P.; Nebe, T.; Engel, A.; Monneret, G.; Spittler, A.; Schmolke, K.; Reinke, P.; Volk, H. D. und Kunz, D. (2005): Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study, Clin Chem (51), 12, p. 2341-7

[32]Abe, R.; Hirasawa, H.; Oda, S.; Sadahiro, T.; Nakamura, M.; Watanabe, E.; Nakada, T. A.; Hatano, M. und Tokuhisa, T. (2008): Up-regulation of interleukin-10 mRNA expression in peripheral leukocytes predicts poor outcome and diminished human leukocyte antigen-DR expression on monocytes in septic patients, J Surg Res (147), 1, p. 1-8

[33]Fumeaux, T. und Pugin, J. (2002): Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock, Am J Respir Crit Care Med (166), 11, p. 1475-82

[34]Asadullah, K.; Sterry, W.; Stephanek, K.; Jasulaitis, D.; Leupold, M.; Audring, H.; Volk, H. D. und Docke, W. D. (1998): IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach, J Clin Invest (101), 4, p. 783-94

[35]Wolk, K.; Docke, W.; von Baehr, V.; Volk, H. und Sabat, R. (1999): Comparison of monocyte functions after LPS- or IL-10-induced reorientation: importance in clinical immunoparalysis, Pathobiology (67), 5-6, p. 253-6

[36]Fogel-Petrovic, M.; Long, J. A.; Misso, N. L.; Foster, P. S.; Bhoola, K. D. und Thompson, P. J. (2007): Physiological concentrations of transforming growth factor beta1 selectively inhibit human dendritic cell function, Int Immunopharmacol (7), 14, p. 1924-33

[37]Ayala, A.; Meldrum, D. R.; Perrin, M. M. und Chaudry, I. H. (1993): The release of transforming growth factor-beta following haemorrhage: its role as a mediator of host immunosuppression, Immunology (79), 3, p. 479-84

[38]Demeure, C. E.; Yang, L. P.; Desjardins, C.; Raynauld, P. und Delespesse, G. (1997): Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines, Eur J Immunol (27), 12, p. 3526-31

[39]Strassmann, G.; Patil-Koota, V.; Finkelman, F.; Fong, M. und Kambayashi, T. (1994): Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2, J Exp Med (180), 6, p. 2365-70

[40]Narumiya, S.; Sugimoto, Y. und Ushikubi, F. (1999): Prostanoid receptors: structures, properties, and functions, Physiol Rev (79), 4, p. 1193-226

[41]Koga, K.; Takaesu, G.; Yoshida, R.; Nakaya, M.; Kobayashi, T.; Kinjyo, I. und Yoshimura, A. (2009): Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein, Immunity (30), 3, p. 372-83

[42]Stafford, J. B. und Marnett, L. J. (2008): Prostaglandin E2 inhibits tumor necrosis factor-alpha RNA through PKA type I, Biochem Biophys Res Commun (366), 1, p. 104-9

[43]Coito, A. J.; Buelow, R.; Shen, X. D.; Amersi, F.; Moore, C.; Volk, H. D.; Busuttil, R. W. und Kupiec-Weglinski, J. W. (2002): Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury, Transplantation (74), 1, p. 96-102

[44]Ke, B.; Shen, X. D.; Buelow, R.; Melinek, J.; Amersi, F.; Gao, F.; Ritter, T.; Volk, H. D.; Busuttil, R. W. und Kupiec-Weglinski, J. W. (2002): Heme oxygenase-1 gene transfer prevents CD95/FasL-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway, Transplant Proc (34), 5, p. 1465-6

[45]Amersi, F.; Shen, X. D.; Anselmo, D.; Melinek, J.; Iyer, S.; Southard, D. J.; Katori, M.; Volk, H. D.; Busuttil, R. W.; Buelow, R. und Kupiec-Weglinski, J. W. (2002): Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway, Hepatology (35), 4, p. 815-23

[46]Poss, K. D. und Tonegawa, S. (1997): Heme oxygenase 1 is required for mammalian iron reutilization, Proc Natl Acad Sci U S A (94), 20, p. 10919-24

[47]Poss, K. D. und Tonegawa, S. (1997): Reduced stress defense in heme oxygenase 1-deficient cells, Proc Natl Acad Sci U S A (94), 20, p. 10925-30

[48]Listopad, J.; Asadullah, K.; Sievers, C.; Ritter, T.; Meisel, C.; Sabat, R. und Docke, W. D. (2007): Heme oxygenase-1 inhibits T cell-dependent skin inflammation and differentiation and function of antigen-presenting cells, Exp Dermatol (16), 8, p. 661-70

[49]Kawashima, A.; Oda, Y.; Yachie, A.; Koizumi, S. und Nakanishi, I. (2002): Heme oxygenase-1 deficiency: the first autopsy case, Hum Pathol (33), 1, p. 125-30

[50]Yachie, A.; Niida, Y.; Wada, T.; Igarashi, N.; Kaneda, H.; Toma, T.; Ohta, K.; Kasahara, Y. und Koizumi, S. (1999): Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency, J Clin Invest (103), 1, p. 129-35

[51]Tenhunen, R.; Marver, H. S. und Schmid, R. (1968): The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase, Proc Natl Acad Sci U S A (61), 2, 748-55

[52]Schacter, B. A. (1988): Heme catabolism by heme oxygenase: physiology, regulation, and mechanism of action, Semin Hematol (25), 4, p. 349-69

[53]McCoubrey, W. K., Jr.; Huang, T. J. und Maines, M. D. (1997): Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3, Eur J Biochem (247), 2, p. 725-32

[54]McCoubrey, W. K., Jr.; Ewing, J. F. und Maines, M. D. (1992): Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal, Arch Biochem Biophys (295), 1, p. 13-20

[55]Choi, A. M. und Alam, J. (1996): Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury, Am J Respir Cell Mol Biol (15), 1, p. 9-19

[56]Halliwell, B. (1978): Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?, FEBS Lett (92), 2, p. 321-6

[57]Vile, G. F. und Tyrrell, R. M. (1993): Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin, J Biol Chem (268), 20, p. 14678-81

[58]Nakagami, T.; Toyomura, K.; Kinoshita, T. und Morisawa, S. (1993): A beneficial role of bile pigments as an endogenous tissue protector: anti-complement effects of biliverdin and conjugated bilirubin, Biochim Biophys Acta (1158), 2, p. 189-93

[59]Haga, Y.; Tempero, M. A.; Kay, D. und Zetterman, R. K. (1996): Intracellular accumulation of unconjugated bilirubin inhibits phytohemagglutin-induced proliferation and interleukin-2 production of human lymphocytes, Dig Dis Sci (41), 7, p. 1468-74

[60]Haga, Y.; Tempero, M. A. und Zetterman, R. K. (1996): Unconjugated bilirubin inhibits in vitro major histocompatibility complex-unrestricted cytotoxicity of human lymphocytes, Biochim Biophys Acta (1316), 1, p. 29-34

[61]Dore, S.; Takahashi, M.; Ferris, C. D.; Zakhary, R.; Hester, L. D.; Guastella, D. und Snyder, S. H. (1999): Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury, Proc Natl Acad Sci U S A (96), 5, p. 2445-50

[62]Otterbein, L. E.; Bach, F. H.; Alam, J.; Soares, M.; Tao Lu, H.; Wysk, M.; Davis, R. J.; Flavell, R. A. und Choi, A. M. (2000): Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat Med (6), 4, p. 422-8

[63]Song, R.; Mahidhara, R. S.; Zhou, Z.; Hoffman, R. A.; Seol, D. W.; Flavell, R. A.; Billiar, T. R.; Otterbein, L. E. und Choi, A. M. (2004): Carbon monoxide inhibits T lymphocyte proliferation via caspase-dependent pathway, J Immunol (172), 2, p. 1220-6

[64]Sammut, I. A.; Foresti, R.; Clark, J. E.; Exon, D. J.; Vesely, M. J.; Sarathchandra, P.; Green, C. J. und Motterlini, R. (1998): Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1, Br J Pharmacol (125), 7, p. 1437-44

[65]Decker, K. und Keppler, D. (1974): Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death, Rev Physiol Biochem Pharmacol, 71, p. 77-106

[66]Lehmann, V.; Freudenberg, M. A. und Galanos, C. (1987): Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice, J Exp Med (165), 3, p. 657-63

[67]Sass, G.; Seyfried, S.; Parreira Soares, M.; Yamashita, K.; Kaczmarek, E.; Neuhuber, W. L. und Tiegs, G. (2004): Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-mediated liver injury, Hepatology (40), 5, p. 1128-35

[68]Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.; Shibahara, S. und Kappas, A. (1995): Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity, Proc Natl Acad Sci U S A (92), 15, p. 6798-802

[69]Martins, P. N.; Kessler, H.; Jurisch, A.; Reutzel-Selke, A.; Kramer, J.; Pascher, A.; Pratschke, J.; Neuhaus, P.; Volk, H. D. und Tullius, S. G. (2005): Induction of heme oxygenase-1 in the donor reduces graft immunogenicity, Transplant Proc (37), 1, p. 384-6

[70]Panahian, N.; Yoshiura, M. und Maines, M. D. (1999): Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice, J Neurochem (72), 3, p. 1187-203

[71]Chora, A. A.; Fontoura, P.; Cunha, A.; Pais, T. F.; Cardoso, S.; Ho, P. P.; Lee, L. Y.; Sobel, R. A.; Steinman, L. und Soares, M. P. (2007): Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation, J Clin Invest (117), 2, p. 438-47

[72]Wu, J.; Ma, J.; Fan, S. T.; Schlitt, H. J. und Tsui, T. Y. (2005): Bilirubin derived from heme degradation suppresses MHC class II expression in endothelial cells, Biochem Biophys Res Commun (338), 2, p. 890-6

[73] Sievers, Claudia (2005): Beeinflussung der Funktion von T-Lymphozyten und Antigenpräsentierenden Zellen durch die Hämoxygenase-1 (Diplomarbeit)

[74]Mitani, K.; Fujita, H.; Kappas, A. und Sassa, S. (1992): Heme oxygenase is a positive acute-phase reactant in human Hep3B hepatoma cells, Blood (79), 5, p. 1255-9

[75]Wagener, F. A.; Volk, H. D.; Willis, D.; Abraham, N. G.; Soares, M. P.; Adema, G. J. und Figdor, C. G. (2003): Different faces of the heme-heme oxygenase system in inflammation, Pharmacol Rev (55), 3, p. 551-71

[76]Kappas, A. und Drummond, G. S. (1986): Control of heme metabolism with synthetic metalloporphyrins, J Clin Invest (77), 2, p. 335-9

[77]Maines, M. D. (1981): Zinc . protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat, Biochim Biophys Acta (673), 3, p. 339-50

[78]Shan, Y.; Pepe, J.; Lu, T. H.; Elbirt, K. K.; Lambrecht, R. W. und Bonkovsky, H. L. (2000): Induction of the heme oxygenase-1 gene by metalloporphyrins, Arch Biochem Biophys (380), 2, p. 219-27

[79]Schaer, D. J.; Alayash, A. I. und Buehler, P. W. (2007): Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor, Antioxid Redox Signal (9), 7, p. 991-9

[80]Kristiansen, M.; Graversen, J. H.; Jacobsen, C.; Sonne, O.; Hoffman, H. J.; Law, S. K. und Moestrup, S. K. (2001): Identification of the haemoglobin scavenger receptor, Nature (409), 6817, p. 198-201

[81]Fabriek, B. O.; Dijkstra, C. D. und van den Berg, T. K. (2005): The macrophage scavenger receptor CD163, Immunobiology (210), 2-4, p. 153-60

[82]Schaer, D. J.; Schaer, C. A.; Schoedon, G.; Imhof, A. und Kurrer, M. O. (2006): Hemophagocytic macrophages constitute a major compartment of heme oxygenase expression in sepsis, Eur J Haematol (77), 5, p. 432-6

[83]Dennis, C. (2001): Haemoglobin scavenger; Molecular physiology, Nature (Vol 409)

[84]Backé, E., Schwarting, R., Gerdes, J., Ernst, M., Stein, H. (1991): Ber-MAC3: new monoclonal antibody that defines human monocyte/macrophage differentiation antigen, J. Clin. Pathol., 44, p. 936-945

[85]Sulahian, T. H.; Hogger, P.; Wahner, A. E.; Wardwell, K.; Goulding, N. J.; Sorg, C.; Droste, A.; Stehling, M.; Wallace, P. K.; Morganelli, P. M. und Guyre, P. M. (2000): Human monocytes express CD163, which is upregulated by IL-10 and identical to p155, Cytokine (12), 9, p. 1312-21

[86]Buechler, C.; Ritter, M.; Orso, E.; Langmann, T.; Klucken, J. und Schmitz, G. (2000): Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli, J Leukoc Biol (67), 1, p. 97-103

[87]Philippidis, P.; Mason, J. C.; Evans, B. J.; Nadra, I.; Taylor, K. M.; Haskard, D. O. und Landis, R. C. (2004): Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery, Circ Res (94), 1, p. 119-26

[88]Ting, J. P. und Trowsdale, J. (2002): Genetic control of MHC class II expression, Cell (109 Suppl), p. S21-33

[89]LeibundGut-Landmann, S.; Waldburger, J. M.; Krawczyk, M.; Otten, L. A.; Suter, T.; Fontana, A.; Acha-Orbea, H. und Reith, W. (2004): Mini-review: Specificity and expression of CIITA, the master regulator of MHC class II genes, Eur J Immunol (34), 6, p. 1513-25

[90]Wright, K. L. und Ting, J. P. (2006): Epigenetic regulation of MHC-II and CIITA genes, Trends Immunol (27), 9, p. 405-12

[91]Muhlethaler-Mottet, A.; Otten, L. A.; Steimle, V. und Mach, B. (1997): Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA, Embo J (16), 10, p. 2851-60

[92]Schroder, M.; Meisel, C.; Buhl, K.; Profanter, N.; Sievert, N.; Volk, H. D. und Grutz, G. (2003): Different modes of IL-10 and TGF-beta to inhibit cytokine-dependent IFN-gamma production: consequences for reversal of lipopolysaccharide desensitization, J Immunol (170), 10, p. 5260-7

[93]Volk, H.; Asadullah, K.; Gallagher, G.; Sabat, R. und Grutz, G. (2001): IL-10 and its homologs: important immune mediators and emerging immunotherapeutic targets, Trends Immunol (22), 8, p. 414-7

[94]Grutz, G. (2005): New insights into the molecular mechanism of interleukin-10-mediated immunosuppression, J Leukoc Biol (77), 1, p. 3-15

[95]Koppelman, B.; Neefjes, J. J.; de Vries, J. E. und de Waal Malefyt, R. (1997): Interleukin-10 down-regulates MHC class II alphabeta peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling, Immunity (7), 6, p. 861-71

[96]de Waal Malefyt, R.; Haanen, J.; Spits, H.; Roncarolo, M. G.; te Velde, A.; Figdor, C.; Johnson, K.; Kastelein, R.; Yssel, H. und de Vries, J. E. (1991): Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression, J Exp Med (174), 4, p. 915-24

[97] Plattner, H., Hentschel, J. (1997): Taschenlehrbuch Zellbiologie

[98]Sadoul, K.; Boyault, C.; Pabion, M. und Khochbin, S. (2008): Regulation of protein turnover by acetyltransferases and deacetylases, Biochimie (90), 2, p. 306-12

[99]Zika, E. und Ting, J. P. (2005): Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes, Curr Opin Immunol (17), 1, p. 58-64

[100]Zika, E.; Greer, S. F.; Zhu, X. S. und Ting, J. P. (2003): Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and major histocompatibility complex class II enhanceosome formation, Mol Cell Biol (23), 9, p. 3091-102

[101]Kong, X.; Fang, M.; Li, P.; Fang, F. und Xu, Y. (2009): HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells, J Mol Cell Cardiol (46), 3, p. 292-9

[102]Ivashkiv, L. B., Ayres, A. and Glimcher, L. H. (1994): Inhibition of IFN-gamma induction of class II MHC genes by cAMP and prostaglandins., Immunopharmacology (27:67)

[103]Li, G.; Harton, J. A.; Zhu, X. und Ting, J. P. (2001): Downregulation of CIITA function by protein kinase a (PKA)-mediated phosphorylation: mechanism of prostaglandin E, cyclic AMP, and PKA inhibition of class II major histocompatibility complex expression in monocytic lines, Mol Cell Biol (21), 14, p. 4626-35

[104]Sisk, T. J.; Nickerson, K.; Kwok, R. P. und Chang, C. H. (2003): Phosphorylation of class II transactivator regulates its interaction ability and transactivation function, Int Immunol (15), 10, p. 1195-205

[105]Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R. J. und Greenberg, M. E. (1995): Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science (270), 5240, p. 1326-31

[106]Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B. E.; Karandikar, M.; Berman, K. und Cobb, M. H. (2001): Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions, Endocr Rev (22), 2, p. 153-83

[107]Karin, M. (1998): Mitogen-activated protein kinase cascades as regulators of stress responses, Ann N Y Acad Sci (851), 139-46

[108]Ichijo, H. (1999): From receptors to stress-activated MAP kinases, Oncogene (18), 45, p. 6087-93

[109]Martins, I.; Deshayes, F.; Baton, F.; Forget, A.; Ciechomska, I.; Sylla, K.; Aoudjit, F.; Charron, D.; Al-Daccak, R. und Alcaide-Loridan, C. (2007): Pathologic expression of MHC class II is driven by mitogen-activated protein kinases, Eur J Immunol (37), 3, p. 788-97

[110]Whitmarsh, A. J. und Davis, R. J. (1996): Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways, J Mol Med (74), 10, p. 589-607

[111]Arrighi, J. F.; Rebsamen, M.; Rousset, F.; Kindler, V. und Hauser, C. (2001): A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers, J Immunol (166), 6, p. 3837-45

[112]Nakahara, T.; Uchi, H.; Urabe, K.; Chen, Q.; Furue, M. und Moroi, Y. (2004): Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells, Int Immunol (16), 12, p. 1701-9

[113]Chapman, H. A. (1998): Endosomal proteolysis and MHC class II function, Curr Opin Immunol (10), 1, p. 93-102

[114]Neefjes, J. (1999): CIIV, MIIC and other compartments for MHC class II loading, Eur J Immunol (29), 5, p. 1421-5

[115]Landsverk, O. J.; Bakke, O. und Gregers, T. F. (2009): MHC II and the endocytic pathway: regulation by invariant chain, Scand J Immunol (70), 3, p. 184-93

[116]Schroder, K., Herzog, P.J., Ravasi, T., Hume, D.A. (2004): Interferon-gamma: an overview of signals, mechanisms and functions, Journal of Leukocyte Biology (75), p. 163-189

[117]Reith, W., Leibundgut-Landmann, S., Waldburger, J.-M. (2005): Regulation Of MHC Class II Gene Expression By The Class II Transactivator, Nature reviews, immunology (5), p. 793-806

[118]Blaskovich, M. A.; Sun, J.; Cantor, A.; Turkson, J.; Jove, R. und Sebti, S. M. (2003): Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice, Cancer Res (63), 6, p. 1270-9

[119]Sukharev, S. I.; Klenchin, V. A.; Serov, S. M.; Chernomordik, L. V. und Chizmadzhev Yu, A. (1992): Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores, Biophys J (63), 5, p. 1320-7

[120] Mülhardt, C. (2004): Chaotrope Salze - Das gezähmte Durcheinander, Laborjournal - online

[121]Hall, T. M. (2002): Poly(A) tail synthesis and regulation: recent structural insights, Curr Opin Struct Biol (12), 1, p. 82-8

[122]Backé, E., Schwarting, R., Gerdes, J., Ernst, M., Stein, H. (1991): Ber-MAC3: new monoclonal antibody that defines human monocyte/macrophage differentiation antigen, J. Clin. Pathol. (44), p. 936-945

[123]Lee, T. S. und Chau, L. Y. (2002): Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice, Nat Med (8), 3, p. 240-6

[124]Madsen, M.; Moller, H. J.; Nielsen, M. J.; Jacobsen, C.; Graversen, J. H.; van den Berg, T. und Moestrup, S. K. (2004): Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region, J Biol Chem (279), 49, p. 51561-7

[125]Mashreghi, M. F.; Klemz, R.; Knosalla, I. S.; Gerstmayer, B.; Janssen, U.; Buelow, R.; Jozkowicz, A.; Dulak, J.; Volk, H. D. und Kotsch, K. (2008): Inhibition of dendritic cell maturation and function is independent of heme oxygenase 1 but requires the activation of STAT3, J Immunol (180), 12, p. 7919-30

[126]Williams, L.; Bradley, L.; Smith, A. und Foxwell, B. (2004): Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages, J Immunol (172), 1, p. 567-76

[127]Riley, J. K.; Takeda, K.; Akira, S. und Schreiber, R. D. (1999): Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action, J Biol Chem (274), 23, p. 16513-21

[128]Akira, S. (1997): IL-6-regulated transcription factors, Int J Biochem Cell Biol (29), 12, p. 1401-18

[129]Magner, W. J.; Kazim, A. L.; Stewart, C.; Romano, M. A.; Catalano, G.; Grande, C.; Keiser, N.; Santaniello, F. und Tomasi, T. B. (2000): Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors, J Immunol (165), 12, p. 7017-24

[130]Scheithauer, M. und Riechelmann, H. (2003): [Review part I: basic mechanisms of cutaneous woundhealing], Laryngorhinootologie (82), 1, 31-5

[131]Meisel, C.; Schwab, J. M.; Prass, K.; Meisel, A. und Dirnagl, U. (2005): Central nervous system injury-induced immune deficiency syndrome, Nat Rev Neurosci (6), 10, p. 775-86

[132]Dirnagl, U.; Klehmet, J.; Braun, J. S.; Harms, H.; Meisel, C.; Ziemssen, T.; Prass, K. und Meisel, A. (2007): Stroke-induced immunodepression: experimental evidence and clinical relevance, Stroke (38), 2 Suppl, p. 770-3

[133]Chauveau, C.; Remy, S.; Royer, P. J.; Hill, M.; Tanguy-Royer, S.; Hubert, F. X.; Tesson, L.; Brion, R.; Beriou, G.; Gregoire, M.; Josien, R.; Cuturi, M. C. und Anegon, I. (2005): Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression, Blood (106), 5, p. 1694-702

[134]Anderson, K. E. und Collins, S. (2006): Open-label study of hemin for acute porphyria: clinical practice implications, Am J Med (119), 9, p. 801 e19-24

[135]Pachot, A.; Monneret, G.; Brion, A.; Venet, F.; Bohe, J.; Bienvenu, J.; Mougin, B. und Lepape, A. (2005): Messenger RNA expression of major histocompatibility complex class II genes in whole blood from septic shock patients, Crit Care Med (33), 1, p. 31-8; discussion 236-7

[136]Carrasco-Marin, E.; Alvarez-Dominguez, C.; Lopez-Mato, P.; Martinez-Palencia, R. und Leyva-Cobian, F. (1996): Iron salts and iron-containing porphyrins block presentation of protein antigens by macrophages to MHC class II-restricted T cells, Cell Immunol (171), 2, p. 173-85

[137]Smith, A.; Alam, J.; Escriba, P. V. und Morgan, W. T. (1993): Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin, J Biol Chem (268), 10, p. 7365-71

[138]Schaer, C. A.; Schoedon, G.; Imhof, A.; Kurrer, M. O. und Schaer, D. J. (2006): Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin, Circ Res (99), 9, p. 943-50

[139]Ritter, M.; Buechler, C.; Kapinsky, M. und Schmitz, G. (2001): Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signaling on CKII and protein kinase C, Eur J Immunol (31), 4, p. 999-1009

[140]Mengozzi, M., and P. Ghezzi (1993): Cytokine down-regulation in endotoxin tolerance, Eur. Cytokine Network 4, p. 89

[141]Sanchez-Cantu, L., H. N. Rode, and N. V. christou (1989): Endotoxin tolerance is associated with reduced secretion of tumor necosis factor, Arch. Surg. (124), 1432

[142]Van den Heuvel, M. M.; Tensen, C. P.; van As, J. H.; Van den Berg, T. K.; Fluitsma, D. M.; Dijkstra, C. D.; Dopp, E. A.; Droste, A.; Van Gaalen, F. A.; Sorg, C.; Hogger, P. und Beelen, R. H. (1999): Regulation of CD 163 on human macrophages: cross-linking of CD163 induces signaling and activation, J Leukoc Biol (66), 5, p. 858-66

[143]van den Elsen, P. J.; Holling, T. M.; Kuipers, H. F. und van der Stoep, N. (2004): Transcriptional regulation of antigen presentation, Curr Opin Immunol (16), 1, p. 67-75

[144]Pai, R. K.; Askew, D.; Boom, W. H. und Harding, C. V. (2002): Regulation of class II MHC expression in APCs: roles of types I, III, and IV class II transactivator, J Immunol (169), 3, p. 1326-33

[145]Mense, S. M. und Zhang, L. (2006): Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases, Cell Res (16), 8, p. 681-92

[146]Sassa, S. und Nagai, T. (1996): The role of heme in gene expression, Int J Hematol (63), 3, p. 167-78

[147]Padmanaban, G.; Venkateswar, V. und Rangarajan, P. N. (1989): Haem as a multifunctional regulator, Trends Biochem Sci (14), 12, p. 492-6

[148]Wagener, F. A.; Eggert, A.; Boerman, O. C.; Oyen, W. J.; Verhofstad, A.; Abraham, N. G.; Adema, G.; van Kooyk, Y.; de Witte, T. und Figdor, C. G. (2001): Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase, Blood (98), 6, p. 1802-11

[149]Arruda, M. A.; Graca-Souza, A. V. und Barja-Fidalgo, C. (2005): Heme and innate immunity: new insights for an old molecule, Mem Inst Oswaldo Cruz (100), 7, p. 799-803

[150]Graca-Souza, A. V.; Arruda, M. A.; de Freitas, M. S.; Barja-Fidalgo, C. und Oliveira, P. L. (2002): Neutrophil activation by heme: implications for inflammatory processes, Blood (99), 11, p. 4160-5

[151]Decker, T. und Kovarik, P. (2000): Serine phosphorylation of STATs, Oncogene (19), 21, p. 2628-37

[152]Murray, P. J. (2007): The JAK-STAT signaling pathway: input and output integration, J Immunol (178), 5, p. 2623-9

[153]Jenuwein, T. und Allis, C. D. (2001): Translating the histone code, Science (293), 5532, p. 1074-80

[154]Beresford, G. W. und Boss, J. M. (2001): CIITA coordinates multiple histone acetylation modifications at the HLA-DRA promoter, Nat Immunol (2), 7, p. 652-7

[155]Kambayashi, T.; Wallin, R. P. und Ljunggren, H. G. (2001): cAMP-elevating agents suppress dendritic cell function, J Leukoc Biol (70), 6, p. 903-10

[156]Ivashkiv, L. B. und Glimcher, L. H. (1991): Repression of class II major histocompatibility complex genes by cyclic AMP is mediated by conserved promoter elements, J Exp Med (174), 6, p. 1583-92

[157]Chakrabarti, R. and Erickson, K. L (1996): Tyrosine kinase but not phospholipid/Ca2+ signaling pathway is involved in interferon-gamma stimulation of Ia expression in macrophages, J. Cell. Biochem (60), 235

[158]Basta, P. V., Moore, T. L., Yokota, S. and Ting, J. P.-Y. (1989): A ß-adrenergic agonist modulates DR gene transcription via enhanced cAMP levels in a glioblastoma multiforme line., J. Immunol (142:2895)

[159]Yao, Y.; Xu, Q.; Kwon, M. J.; Matta, R.; Liu, Y.; Hong, S. C. und Chang, C. H. (2006): ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages, J Immunol (177), 1, p. 70-6

[160]Angele, M. K. und Faist, E. (2002): Clinical review: immunodepression in the surgical patient and increased susceptibility to infection, Crit Care (6), 4, p. 298-305


© Die inhaltliche Zusammenstellung und Aufmachung dieser Publikation sowie die elektronische Verarbeitung sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung. Das gilt insbesondere für die Vervielfältigung, die Bearbeitung und Einspeicherung und Verarbeitung in elektronische Systeme.
DiML DTD Version 4.0Zertifizierter Dokumentenserver
der Humboldt-Universität zu Berlin
HTML-Version erstellt am:
29.10.2014