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Abstract

The overall aim of this thesis is to compute arithmetic volumes of Shimura varieties
of orthogonal type and natural heights of the special cycles on them. We develop a
general theory of integral models of toroidal compactifications of Shimura varieties
of Hodge type (and of its standard principal bundle) for the case of good reduction.
This enables us, using the theory of Borcherds products, and generalizing work
of Burgos, Bruinier and Kühn, to calculate the arithmetic volume of a Shimura
variety associated with a lattice LZ of discriminant D, up to log(p)-contributions
from primes p such that p2|4D. The heights of the special cycles are calculated in
the codimension 1 case up to log(p), p|2D, and with some additional restrictions in
the codimension > 1 case. The values obtained are special derivatives of certain L-
series. In the case of the special cycles they are equal to special derivatives of Fourier
coefficients of certain normalized Eisenstein series (in addition, up to contributions
from ∞) in accordance with conjectures of Bruinier-Kühn, Kudla, and others.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Berechnung der arithmetischen Volumina der Shimu-
ravarietäten vom orthogonalen Typ und der natürlichen Höhen der speziellen Zykel
auf diesen. Wir entwickeln, für den Fall guter Reduktion, eine allgemeine Theo-
rie ganzzahliger Modelle von toroidalen Kompaktifizierungen der Shimuravarietäten
vom Hodge Typ (sowie des Standardhauptfaserbündels darüber). Dies ermöglicht,
unter Verwendung der Theorie der Borcherdsprodukte, das arithmetische Volumi-
nen einer zu einem Gitter LZ der Diskriminante D assoziierten Shimuravarietät, bis
auf log(p) Beiträge zu Primzahlen p mit p2|4D, zu berechnen. Dies ist eine Verall-
gemeinerung einer Arbeit von Burgos, Bruinier und Kühn. Die Höhen der speziellen
Zykel werden im Falle von Kodimension 1 bis auf log(p)-Beiträge mit p|2D berech-
net, sowie unter leichten zusätzlichen Einschränkungen im Falle von Kodimension
> 1. The resultierenden Größen sind spezielle Ableitungswerte gewisser L-Reihen.
Im Falle der speziellen Zykel stimmen diese mit speziellen Ableitungswerten gewis-
ser normalisierter Eisensteinreihen überein (zusätzlich, bis auf Beiträge bei∞). Dies
bestätigt Vermutungen von Bruinier-Kühn, Kudla und anderen.
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Introduction

Summary

The overall aim of this thesis is to compute arithmetic volumes of Shimura varieties of
orthogonal type and natural heights of the special cycles on them. We develop a general
theory of integral models of toroidal compactifications of Shimura varieties of Hodge
type (and of its standard principal bundle) for the case of good reduction. This enables
us, using the theory of Borcherds products, and generalizing work of Burgos, Bruinier
and Kühn [15], to calculate the arithmetic volume of a Shimura variety associated with
a lattice LZ of discriminant D, up to log(p)-contributions from primes p such that
p2|4D. The heights of the special cycles are calculated in the codimension 1 case up
to log(p), p|2D, and with some additional restrictions in the codimension ≥ 1 case. The
values obtained are special derivatives of certain L-series. In the case of the special
cycles they are equal to special derivatives of Fourier coefficients of certain normalized
Eisenstein series (in addition, up to contributions from∞) in accordance with conjectures
of Bruinier-Kühn [13], Kudla [53–58], and others.
The work consists of three parts.
In the first part, we develop a general theory of canonical integral models of toroidal
compactifications of arbitrary mixed Shimura varieties of Hodge type. This relies heavily
on work of Faltings/Chai, Kisin/Vasiu, Milne and Pink. We are able to prove the truth
of the main statements of the theory conditionally on a missing technical result (3.3.2).
The constructed models are smooth Deligne-Mumford stacks (or even smooth projective
schemes, if the data satisfies the usual requirements). No moduli problem as in the
approach [72] is used because we are especially interested in non-P.E.L. cases, namely
Shimura varieties of orthogonal type. We emphasize that this is, by all means, restricted
to the case of good reduction. We also construct a canonical model of the standard
principal bundle on the toroidal compactification.
More precisely, for a p-integral mixed Shimura datum X = (PX,DX, hX), a certain
compact open K ⊆ PX(A(∞)) and an additional datum ∆ (for an explanation of this
notation see the detailed introduction to part III below), we get a model of the toroidal
compactification of the associated Shimura variety M(K∆X), a model of the ‘compact’
dual M∨(X), and a 1-morphism

Ξ : M(K∆X)→
[
M∨(X)/PX

]
to the quotient stack of the ‘compact’ dual by the group scheme PX.
A PX-equivariant locally free sheaf on the dual (sheaf on the right hand side) with a
PX(R)UX(C)-invariant Hermitian metric on the image of the Borel embedding gives a
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well defined Hermitian automorphic vector bundle on the model M(K∆X). Its metric may
be singular along the boundary divisor. This construction is functorial in morphisms of
Shimura data. It is also compatible with (formal) boundary morphisms. This yields, in
particular, an integral q-expansion principle for automorphic forms.
In the second part, we investigate the occurring L-series, in particular the Fourier
coefficients of the Eisenstein series associated with the Weil representation and their
recursive properties. An ‘interpolated orbit equation’ is derived.
In the third part, we compute arithmetic volumes (absolute heights) of the constructed
models for the case of orthogonal Shimura data O(L), associated with a quadratic lattice
L of signature (m − 2, 2), and the heights of the special cycles on them. The extended
Arakelov theory of Burgos, Kramer and Kühn is used [18, 19].

We begin with a brief, and certainly very incomplete, account on the (geometric) Siegel-
Weil theory and Kudla’s general (arithmetic) conjectures. Thereafter we will describe
the various parts in more detail.

Outline: Siegel-Weil theory
Consider two lattices LZ ∼= Zm,MZ ∼= Zn with integral and positive definite quadratic
forms QL, QM . It is a classical problem, to which already Gauss, Euler and in particular
Siegel devoted themselves, to determine the representation number, that is, the number
of elements in the set of isometric embeddings

I(MZ, LZ) = {α : MZ ↪→ LZ | α is an isometry}.

It includes (for n = 1) questions like: “In how many ways can an integer be represented
as a sum of m squares?”.
IfMZ ∼= Zn is a fixed lattice, QM is given by an element in Sym2(M∗Z) and the generating
series, the theta series of LZ,

Θn(LZ; τ) =
∑

Q∈Sym2(M∗Z )

# I(MQ
Z , LZ) exp(2πiQ · τ), (1)

(here τ is an element in Siegel’s upper half space Hg ⊂ (M⊗M)sC, the subset of elements
with positive definite imaginary part) is a Siegel modular form of weight m

2 for a certain
congruence subgroup of Sp′(MZ) (the symplectic or metaplectic group, according to the
parity of m). For example Θ1(< 1 >; τ) is just the classical theta function.
Under certain conditions on the dimensions, a certain weighted sum over all classes L(i)

Z
in the genus LẐ of these theta functions is an Eisenstein series (cf. 7.5 for details):

(0.1) Theorem (Siegel-Weil).∑
i

ciΘn(L(i)
Z ; τ) = En(Φ; τ, s0).
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The additional parameter s0 indicates that this Eisenstein series is in fact the (holomor-
phic) special value of a non-holomorphic Eisenstein series En(Φ; τ, s) at s = s0 := m−n+1

2 .
The Fourier coefficients of the series are given by a product formula

µ(LẐ,M
Q

Ẑ
; s, y) = µ∞(L,MQ; s, y)

∏
p

µp(LZp ,M
Q
Zp ; s). (2)

Here y is the imaginary part of τ . Its appearance indicates that this series is non-
holomorphic for general s. For almost all p, the µp’s have a very simple shape (see e.g.
8.2.1).

Φ is a certain section in an induced representation ISp′(M,R)
P (| det |sξ) (7.4), constructed

via the Weil representation (7.1), depending only very slightly on LẐ. In particular,
many different quadratic lattices (even genera) may yield the same Eisenstein series and
therefore the same weighted sum of representation numbers.
Essentially the Siegel-Weil formula (0.1) is valid, if and only if m > n + 1, but if m ≤
2n+ 2, the value of the Eisenstein series has to be defined via analytic continuation in s
and the theta function has sometimes to be complemented by indefinite coefficients. The
factors µp(LZp ,M

Q
Zp ; s0) are the p-adic volumes of the varieties I(MQ, L)(Zp), classically

called representation densities. They may be computed by knowing sufficiently many
representation numbers of the congruences modulo pn.
The mere fact that the representation numbers (in an average over classes) should be
given by a product over local volumes or densities can be explained easily in the adelic
language:
Assume m − n ≥ 3, for simplicity, for the rest of the discussion. On the adelic points
SO(LA) of the special orthogonal group of the lattice LZ, there is a canonical measure
µ. It is a product over local measures µν on the various SO(LQν ), constructed by any
algebraic volume form defined over Q [95]. The product µ is independent of the choice
of this form. The volume of SO(LQ)\ SO(LA), which turns out to be finite, is called the
Tamagawa number by Weil, and we have

(0.2) Theorem ([95]). For m ≥ 3

vol(SO(LQ)\ SO(LA)) = 2.

From this our fact already follows, as we will explain now (in a slightly broader context):
Let ϕ ∈ S(LA(∞) ⊗M∗A(∞)) be a Schwartz-Bruhat function (i.e. locally constant with
compact support). LetK =

∏
pKp be a compact open subgroup of SO(LA(∞)) which sta-

bilizes ϕ. For example K could be the stabilizer of the lattice LẐ and ϕ the characteristic
function of LẐ. Let K∞ be a maximal compact subgroup of SO(LR).
From (0.2) we may infer that the volume of the real analytic orbifold

[SO(LQ)\(SO(LA)/K∞K)] ,
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induced by the quotient of µ∞ and some measure on K∞, is:

2
∏
ν

vol−1
ν (Kν). (3)

We have a finite disjoint decomposition

I(M,L)(A(∞)) ∩ supp(ϕ) =
⋃
i

Kαi,

If this set is nonempty, we have by Hasse’s principle an α′ ∈ I(M,L)(Q) and hence
gi ∈ SO(LA(∞)) with giα′ = αi. There is a lattice L(i)

Z satisfying L(i)
Ẑ

= giLẐ. We denote
by α⊥i,Z the lattice im(α′)⊥ ∩ L(i). We have α⊥i,Z ⊗ Ẑ ∼= im(αi)⊥. Only the genus is well
defined, and all objects in this section depend only on it. To L we have the associated
symmetric space

D(L) = {maximal negative definite subspaces of LR} = SO(L)/K∞.

We have an embedding D(α⊥i )×SO((α⊥i )A(∞)) ↪→ D(L)×SO(LA(∞)), given by the natural
inclusion of D(α⊥i ) ↪→ D(L) and multiplication of the adelic part by g−1

i from the right.
We form the special cycle, a formal sum (with real coefficients):

Z(L,M,ϕ;K) :=
∑
i

ϕ(αi)
[
SO((α⊥i )Q)\D(L)× SO((α⊥i )A(∞))/(K ∩ SO((α⊥i )A(∞)))

]
,

which we consider, by means of the embeddings above, as a formal sum of real analytic
sub-orbifolds of [SO(LQ)\D(L)× (SO(LA(∞))/K)]. It does not depend on the choices
made above.
The canonical measures (6.2.3) on SO(L), SO(α⊥i ) and I(M,L) over any Qν are related
by an orbit equation, which we discuss in (6.4.3) — an equation of the shape:

‘volume of space’ =
∑
orbits

‘volume of group’
‘volume of stabilizer’ ,

similar to the corresponding formula for actions of finite groups on sets.
From this and (3) above

vol(Z(L,M,ϕ;K))
vol (SO(LQ)\D(L)× SO(LA(∞))/K) = vol(K∞)

vol(K ′∞)

∫
I(M,L)(A(∞))

ϕ(α)µ(α) (4)

follows immediately. K ′∞ is any maximal compact subgroup of any of the SO(α⊥i,R). We
define µ∞(L,M) to be the quantity vol(K∞)

vol(K′∞) (computed w.r.t. the canonical measures).
If L is definite, it is equal to:

vol(I(M,L)(R)) =
m∏

k=m−n+1
2 πk/2

Γ(k/2) .
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Observe that

[SO(LQ)\D(L)× (SO(LA(∞))/K)] =
⋃
j

[(SO(LQ) ∩Kgj )\D(L)] ,

with respect to a set {gj}j of representatives of SO(LQ)\ SO(LA(∞))/K, i.e. of the classes
of SO(L) with respect to the compact open group K. (If K is the stabilizer of a lattice
LẐ, this coincides with the classical notion of classes in the genus LẐ.) Similarly, we
have

Z(L,M,ϕ;K) =
∑
i,k

ϕ(αik)
[
(SO((α⊥i )Q) ∩Kgik)\D(α⊥i )

]
, (5)

where {gik}k is a set of representatives of the classes of SO((α⊥i )Q) w.r.t.
Kgi ∩ SO((α⊥i )A(∞)).
Let now K be the stabilizer of LẐ and ϕ the characteristic function. We have the
following easy

(0.3) Lemma. There is a bijection

{
class L(j)

Z in the genus LẐ,
SO(L(j)

Z )-orbit SO(L(j)
Z )α in I(M,L(j))(Z)

}
∼−→{

SO(LẐ)-orbit SO(LẐ)α in I(M,L)(Ẑ)
class in SO(α⊥Q)\ SO(α⊥A(∞))/K ∩ SO(α⊥A(∞))

}
.

We have, of course, a similar statement for any K.
We denote the cycle in this case by Z(LZ,MZ) and it is, according to the lemma and
(5), equal to:

Z(LZ,MZ) =
∑
j

∑
SO(L(j)

Z )α⊂I(M,L(j))(Z)

[
(SO(α⊥Z ) ∩ SO(L(j)

Z ))\D(L)
]
.

Now, if the form QL is positive definite, the quotient of volumes above has an interpre-
tation as a global representation number. For this observe that now just

vol(SO(LZ)\D(L)) = 1
# SO(LZ)

and similarly

vol((SO(α⊥Z ) ∩ SO(L(j)
Z ))\D(α⊥)) = 1

#(SO(α⊥Z ) ∩ SO(L(j)
Z ))

.
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Furthermore, we have by the set theoretical orbit equation,

# I(M,L(j))(Z)
# SO(L(j)

Z )
=

∑
SO(L(j)

Z )α∈I(M,L(j))(Z)

1
#(SO(α⊥Z ) ∩ SO(L(j)

Z ))
.

Hence we get

vol(Z(LZ,MZ))
vol(SO(LQ)\D(L)× SO(LA(∞))/K) =

∑
j

# I(L(j)
Z ,M)(Z)

# SO(L(j)
Z )∑

j
1

# SO(L(j)
Z )

,

which is precisely a weighted sum over the representation numbers. Combined with (4),
we get Siegel’s formula. Its mathematical content here is incorporated in (0.2), of course.
If the quadratic form on L is indefinite, say of signature (p, q), then these representa-
tion numbers do not make sense because there are always infinitely many isometries.
However, equation (4) tells us, what is the correct analogue in the indefinite case: the
quotient of volumes

vol(Z(L,M,ϕ;K))
vol ([SO(LQ)\D(L)× (SO(LA(∞))/K)]) .

For every cohomology theory H (in a very broad sense) one might in addition consider
the classes [Z(L,MQ, ϕ;K)]H of these cycles and define their generating theta series,
fixing M = MQ and varying the quadratic form QM ∈ Sym2(M∗):

ΘH
n (L,ϕ; τ) =

∑
Q∈Sym2(M∗)

[Z(L,MQ, ϕ;K)]H ∪ en−r(Q)
q exp(2πiQ · τ),

where eq is a certain Euler class. One is always likely to expect modularity of this
function and a relation to Eisenstein series.
Kudla and Millson [59–61] have shown (generalizing work of Hirzebruch and Zagier [45])
that the generating series

ΘB
n (L,ϕ; τ) =

∑
Q∈Sym2(M∗)

[Z(L,MQ, ϕ;K)]B ∪ en−r(Q)
q exp(2πiQ · τ),

with values in the Betti cohomology groups

H(p−n)q ([SO(LQ)\D(L)× (SO(LA(∞))/K)],C)

is a modular form itself and under certain conditions on m, n and the Witt rank of L,
its ‘arithmetic degree’ is the special value of an Eisenstein series:

〈ΘB
n (L,ϕ; τ), em−nq 〉 = voleq ([SO(LQ)\D(L)× (SO(LA(∞))/K)])En(Φ; τ, s0).

The latter equation follows essentially again from the Siegel-Weil formula (in its full
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generality) or the Tamagawa number result, respectively. If LQ is anisotropic, the locally
symmetric space is compact and the pairing on the left is the degree of the product in
cohomology (Poincaré duality pairing). If LQ is isotropic, the locally symmetric space
is non-compact but the expression still makes sense, because the natural forms defining
em−nq are integrable on the special cycles. For details see also [58].
The ΘH

n (L,ϕ; τ)’s are also always expected to satisfy a product relation like:

ΘH
n1(L,ϕ1; τ1) ∪ΘH

n2(L,ϕ2; τ2) = ΘH
n1+n2(L,ϕ1 ⊗ ϕ2;

(
τ1

τ2

)
). (6)

An important case: Special cycles on Shimura varieties
The above is particularly interesting if the signature is (m−2, 2). In this case, the locally
symmetric orbifold [SO(LQ)\D(L)× (SO(LA(∞))/K)] is, in fact, the complex analytic
orbifold associated with an algebraic Deligne-Mumford stack M(KO(L)), a Shimura
variety of orthogonal type. In particular, the Z(L,M,ϕ;K)’s may be considered as
algebraic cycles on M(KO(L)) and we may form

ΘCH
n (L,ϕ; τ) =

∑
Q∈Sym2(M∗)

[Z(L,M,ϕ;K)]CH ∪ c1(Ξ∗E)n−r(Q) exp(2πiQ · τ),

with values in CHn(M(K∆O(L))C) ⊗ C, where M(K∆O(L)) is a toroidal compactification
of M(KO(L)). Ξ∗E is a certain ample (automorphic) line bundle on M(K∆O(L)).
It is equipped with a Hermitian metric Ξ∗hE (singular along∞), whose associated Chern
form is (roughly) e2 above (see 10.4.1). The series is therefore a ‘lift’ of ΘB

n with respect
to the cycle class map.
The only known fact, however, in the direction of modularity in arbitrary dimensions is
the following theorem of Borcherds [5]:

(0.4) Theorem. ΘCH
1 (L,ϕ; τ) is a modular form of weight m

2 .

(In low dimensional cases more is known — see the section on Kudla’s program below)
The theta functions ΘB

n , in this case, do satisfy the relation (6) [54]. An analogue of this
for ΘCH

n is not known in general.

Kudla’s program: A ‘first derivative’ of Siegel-Weil
The overall aim of Kudla’s program is an arithmetic analogue of this. The algebraic
Chow group is replaced by an Arakelov Chow group, whose elements are classes of al-
gebraic cycles on integral models of the varieties in question, complemented by analytic
data, i.e. Green’s functions for the ‘generic fibre’ of these cycles. The presence of this
analytic data is, in a sense, due to the non-properness of spec(Z). Arakelov theory pro-
vides intersection products between these cycles, too, with analogous properties as in
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geometrical intersection theory. Many arithmetic questions translate into problems in
Arakelov geometry. For example the arithmetic complexity, called height, of a point on
a variety (the amount of information contained in its coordinates) may be expressed as
an intersection product, similar to the degree in algebraic geometry.
Each of the Shimura varieties in question has a smooth canonical integral model over
spec(Z[1/2D]), where D is the discriminant of the underlying quadratic lattice. There
exist toroidal compactifications of them, too. These will be constructed in part I in
the generality needed here (see the introduction to part I below). We may therefore
define arithmetic theta functions ΘĈH

n . Here natural Greens functions for the cycles
Z(L,M,ϕ;K) are provided by work of Kudla and Millson [59, 60] (cf. also section
7.6). Like all natural Greens functions on noncompact Shimura varieties, they have
singularities along the boundary. Burgos, Kramer and Kühn, in a huge joint project [18,
19] constructed extended Arakelov Chow groups ĈH

i
(M(K∆O(L))) suitable for dealing

with Greens functions with singularities of log-log-type. However, it seems that the
Greens functions of Kudla and Millson in general do not have this type of singularity.
We ignore this problem for the moment.
We define the arithmetic theta functions as:

ΘĈH
n (L,ϕ; τ) =

∑
Q∈Sym2(M∗)

Ẑ(L,MQ, ϕ;K, y) · (ĉ1 Ξ∗E)n−r(Q) exp(2πiQ · τ).

Here Ẑ(L,MQ, ϕ;K, y) is the corresponding arithmetic cycle (its Greens function de-
pends on y, the imaginary part of τ , as well). Ξ∗E is an integral Hermitian automorphic
line bundle on M(K∆O(L)) (see 10.4.1) coming from a canonically metrized integral bun-
dle on the compact dual. The construction of these bundles in general uses the theory
of the integral standard principal bundle constructed in part I (cf. the introduction to
part I below).
Kudla’s first conjecture is

(0.5) Conjecture. After possibly modifying the Ẑ’s at primes of bad reduction of them
and at ∞ (modification of the Greens functions — see above), ΘĈH

n is modular, and

〈ΘĈH
n (L,ϕ; τ), (ĉ1 Ξ∗(E))m−1−n〉 = E ′n(Φ; τ, s0),

where E is a suitably normalized version of the Eisenstein series En(Φ; τ, s) (here ′ means
derivative with respect to s.)

Observe, that we saw already that it was necessary to ‘normalize’ the special value of
the Eisenstein series by the volume vol(M(KO(L))). In this case, we have to ‘normalize’
by a function, whose value at s = s0 is the volume as above, but whose derivative at
s = s0 is the arithmetic volume v̂ol(M(KO(L))). We will explain this (and its Arakelov
theoretical meaning) in detail during the discussions of the results of part III.
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The occurrence of a special value of the first derivative of the Eisenstein series at the
same point is the main mystery of the whole subject and was already crucial in Gross
and Zagier’s work [33] on the Birch and Swinnerton-Dyer conjecture.
Kudla’s second conjecture asks for the relation (6):

(0.6) Conjecture.

ΘĈH
n1 (L,ϕ1; τ1) ·ΘĈH

n2 (L,ϕ2; τ2) = ΘĈH
n1+n2(L,ϕ1 ⊗ ϕ2;

(
τ1 0
0 τ2

)
).

Both conjectures together imply inner product formulæ involving special derivatives
of general L-series, which are vast generalizations of the formula of Gross and Zagier
[33]. This uses the doubling integral of Rallis and Piatetski-Shapiro (which is a kind of
Rankin-Selberg integral). For a systematic overview of this, we refer the reader to [58].

Known results in the direction of Kudla’s conjectures
For lattices of small dimensions the associated Shimura varieties are of P.E.L. type
and were already subject to a variety of classical work of Heegner, Hilbert, Hirzebruch,
Riemann, Shimura, Siegel, Zagier and many others. A few of them are listed in the
following table:

sign. Witt rk. classical name
I (0,2) 0 Heegner points
II (1,2) 0 Shimura curves
III (1,2) 1 Modular curve (moduli space of elliptic curves)
IV (2,2) 0
V (2,2) 1 Hilbert-Blumenthal varieties
VI (2,2) 2 product of modular curves
VII (3,2) 1 twisted Siegel modular threefolds
VIII (3,2) 2 Siegel modular threefold (moduli space of Abelian surfaces)

Modularity of ΘĈH
r is widely unknown, especially for higher dimensional varieties with

non-empty boundary, which requires the use of extended Arakelov theories like [18, 19].
Modularity was obtained so far only for the cases II and III above — for II, by work
of Kudla, Rapoport and Yang [68, 69] culminating in their recent book “Modular forms
and special cycles on Shimura curves” [70]. They obtained modularity of ΘĈH

1 and ΘĈH
2 ,

as well as their connections to the corresponding special derivatives of Eisenstein series
of genus 1, respectively 2 and of weight 3

2 . Also a formula like in (0.6) was established,
yielding inner product formulæ. This completed earlier work started by Kudla in the
90’s [53, 55, 56] and [66].
A non-singular, positive definite Fourier coefficient in the expression

〈ĉ1(Ξ∗E)m−1−n,ΘĈH
n 〉,
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which should be equal to the corresponding one of the Eisenstein series, is given by the
sum of the height (w.r.t. Ξ∗E) of the corresponding special cycle and the integral of the
chosen Greens function over M(K∆O(L))C. (If the cycle is smooth, e.g. consists itself of
Shimura varieties with good reduction, its height is equal to its ‘arithmetic volume’, i.e.
to the arithmetic degree of ĉ1(Ξ∗E)m−1−n pulled back to it.)
On the other hand, the corresponding Fourier coefficient of the Eisenstein series (cf. (2))
may be decomposed

µ(L,MQ, ϕ; y, s) = µ′∞(L,MQ, ϕ; y, s)µ(L,MQ, ϕ; s)

where µ′∞ is — in a certain sense — the non-holomorphic part of µ∞. If n = 1, it is
identically 1 for y →∞, and for arbitrary n always 1 for s = s0.
Assume for the moment that vol(Z(L,MQ, ϕ;K)) 6= 0, i.e. in particular m− 1− n > 0.
The integral over the Greens function (depending on a parameter y as well) should be
given by the ‘non-holomorphic’ part

vol(Z(L,MQ, ϕ;K))
d

d sµ
′
∞(L,MQ, ϕ; y, s)

µ′∞(L,MQ, ϕ; y, s)

∣∣∣∣∣
s=s0

of the derivative of the normalization and the height should be given by

vol(Z(L,MQ, ϕ;K))
[ d

d sµ(L,MQ, ϕ; s)
µ(L,MQ, ϕ; s) +

d
d sλ

−1(L; s)
λ−1(L; s)

]∣∣∣∣∣
s=s0

(recall that vol(Z(L,MQ, ϕ;K)) is the value of the ‘normalized’ Eisenstein series at s0).
If m− 1− n = 0, the full derivative is just equal to

4(−1)mλ−1(L; s0) d
d sµ(L,MQ, ϕ; y, s)

∣∣∣∣
s=s0

,

because µ(L,MQ, ϕ; y, s) vanishes at s0.
To obtain results (at least) about the equality of heights with the ‘non-holomorphic’
part of the special derivatives of Eisenstein series, there are in principle two approaches:

i. The first approach is by comparison of direct calculations of the finite intersection
numbers of the cycles Ẑ(L,M,ϕ;K, y) and of the special derivative of the Eisenstein
series, respectively. These lines have been followed predominantly in the above
mentioned work. In these cases, the equality of the ‘non-holomorphic part’ of
the special derivative with the integral of the corresponding Kudla-Millson Greens
functions has also been verified.
Evidence in higher dimensions had been provided so far only by work of Kudla and
Rapoport, [65] for Hilbert Blumenthal varieties (V), and [67] for Siegel modular
varieties (VII, VIII). These approaches rely heavily on explicit use of the underlying
moduli problem. In particular, the special cycles are defined algebraically via a
sub-moduli problem involving additional special endomorphisms.
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ii. The second approach, which is used in part III of this thesis (cf. the introduction
to part III below) is by an inductive method, generalized from Burgos, Bruinier
and Kühn [15], who investigated a special case of (V) above. However, for cycles
of codimension n > 1, it seems to be restricted to the case of indices QM , where
QM has ‘good shape’ at all primes p considered, at least such that M∗Zp/MZp is
at most cyclic (i.e. essentially the codimension one case). Otherwise it seems to
require at least as much knowledge about bad reduction as a direct computation
of finite intersection numbers in the first approach requires.

It has, however, the advantage of giving results in arbitrary dimension, even for
non-P.E.L. type Shimura varieties, and with boundary, too — cases, which seem
out of reach for the first method. It uses modular forms living on these Shimura
varieties, constructed by Borcherds [4] by purely analytic means, using ideas from
physics. They have a divisor consisting precisely of the codimension one cycles
Z(L,< q >,ϕ;K) and have integral Fourier coefficients. This approach involves a
computation of an integral of their norm, accomplished before by Kudla [57] and
by Bruinier and Kühn [13].

In part III, using the second approach, we compute the respective heights for all Shimura
varieties of orthogonal type and all cycles Z(L,M,ϕ;K) on them, but only up to con-
tributions (multiples of log(p)) from primes p, where the above requirement of ‘good
shape’ is violated1. In case n = 1 (codimension 1) the heights of the special cycles can
be computed for any M =< q >, q 6= 0 only up to contributions from bad reduction of
the surrounding Shimura variety.
In the ‘simplest’ case, which initiated the whole program, namely the case of the modular
curve, Yang [97] verified the modularity of ΘĈH

1 and the identity of 〈ΘĈH
1 , ĉ1(Ξ∗E)〉 with

the special derivative of an Eisenstein series, using Chow groups of an extended Arakelov
theory as in [18, 19] which, however, for the case needed here (arithmetic surfaces) had
already been constructed long before by Kühn [71] and by Bost [9], independently. It
should be mentioned that the equality of deg(ΘB

1 ) with the special value of the same
Eisenstein series in this case is more difficult because the modular curve is, in a sense, an
extremal case. One has to introduce also negative, non-holomorphic Fourier coefficients.
The positive ones here are given by the class numbers of binary quadratic forms (the
Z(LZ, < q >Z) consist of special points in this case, corresponding to them). This special
value of the Eisenstein series, which is accordingly also non-holomorphic, is Zagier’s
famous Eisenstein series [98] of weight 3

2 . The other conjectures have not been verified
so far in this special case, but Bruinier and Yang succeeded in obtaining the formula of
Gross and Zagier and generalizations directly, also using Borcherds products [14].
We will now describe the various parts in more detail:

1and up to contributions from p = 2, due to the still incomplete theory of good reduction of integral
models of Shimura varieties of non-P.E.L. type
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Part I

Even to formulate Kudla’s conjectures in higher dimensions, one needs, in some sense
canonical, integral models of Shimura varieties, which have to be compactified as well.
The (finite parts of the) arithmetic special cycles Ẑ on them are build from models of
this kind themselves. Furthermore the Hermitian line bundle Ξ∗(E , h), involved in the
definition of the arithmetic theta function and used to compute the ‘arithmetic degree’
of this function, has to be defined as some kind of ‘canonical integral model’ of an
automorphic line bundle. In addition, to be able to work with Borcherds products as
sections of them, one needs some kind of ‘q-expansion principle’ to examine integrality.
The best and broadest context for all of these considerations is a fully functorial theory
of canonical integral models of toroidal compactifications of mixed Shimura varieties, of
the standard principal bundle on them, and of their ‘compact’ dual.
Consider a p-integral mixed Shimura datum X, consisting of a group scheme PX over
Z(p), a generalized Hermitian symmetric space DX (a principal PX(R)UX(C)-space,
where UX is a certain subgroup of the unipotent radical of PX), and an equivariant
morphism hX : D → Hom(SC, PX,C), such that roughly (PX,Q,DX, hX) satisfies Pink’s
axioms for a mixed Shimura datum and PX is a group scheme of a certain type, which
we call type (P).
To understand, why analytic locally symmetric varieties (or orbifolds) of the form[

PX(Q)\DX × (PX(A(∞))/K)
]

should have canonical algebraic models defined over number fields (or even rings of
integers) at all, and where this structure is supposed to come from, one should bear in
mind the following philosophy (here described ‘localized at p’):
If some faithful representation (closed embedding) ρ : PX → GL(LZ(p)) is given (fixing
some polarization form), compatible with some weight filtrationWi ⊂ LQ, there is always
a finite set of tensors vi ∈ L⊗Z(p)

(5.1) such that the image of ρ (in the stabilizer of the
weight filtration in the similitude group of the polarization form) is precisely the stabilizer
of these tensors. The complex manifold DX can be seen as an open PX(R)UX(C)-orbit
in the parameter space of (polarized) mixed Hodge structures (w.r.t. the filtration Wi)
on LC, having the property that all vi lie in (L⊗)(0,0). Furthermore there is a category
(groupoid) of families of mixed Hodge structures on arbitrary local systems over a base
analytic space B. It is convenient to take local systems of Q-vector spaces and equip the
families with a K-level structure (for a compact open K ⊂ PX(A(∞))). This groupoid
is denoted by

[ B-KX-L-loc-mhs ].

In fact, they form a category fibered in groupoids, which is an analytic Deligne-Mumford
stack (orbifold) represented by the quotient[

PX(Q)\DX × (PX(A(∞))/K)
]
,
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the analytic mixed Shimura variety associated with X.
If the group PX and DX form a p-integral Shimura datum (2.2.2) one expects that over
any base scheme S over O (a reflex ring of X), there is a category (groupoid) of mixed
motives

[ S-X-L-mot ],

which should (very roughly) be seen as the category of those polarized mixed motivesM
of fixed weight filtration type with morphisms v′i : Z(0)→M⊗, which have the property
that, etale locally, there is a trivialization (respecting weight filtration and polarization)
of some realization (Het orHdR, say) with LmappingH(v′i) to vi for every i. This will be
made precise for certain Shimura data and certain associated standard representations
— corresponding to 1-motives — in chapter 4. It can be made precise for all ‘P.E.L.
situations’ (pure weight 1 and all vi are endomorphisms) and we refer to [52] or [72] for
this. For Hodge type Shimura data, also the truth of the Hodge conjecture would allow
to pose a moduli problem requiring existence of certain algebraic cycles.
Furthermore, one expects (functorial) maps

[ S-KX-L-mot ]→ [ San-KX-L-loc-mhs ], (7)

if S is of finite type over C, which are equivalences for S = spec(C). Here, on the left
hand side, we consider now motives up to Z(p)-isogeny with a K(p)-level structure (on
the etale realization in A(∞,p)-vector spaces), for convenience, too. (Assume that K is
admissible, i.e. of the form PX(Zp)×K(p), in particular, hyperspecial.)
[ S-KX-L-mot ] should be (represented by) an algebraic smooth Deligne-Mumford stack
M(KX) over spec(O), which would then be a model of the analytic Shimura variety
because of (7).
It is also important to look at the categories of motives, like above, equipped with
a trivialization of Het (with values in A(∞,p) vector spaces, say), HdR, and, in the
analytic setting, of HB — in each case respecting the PX-structure (given by the tensors,
polarization and weight filtration). These groupoids should be represented by

Mp(X) := lim←−K⊂PX(A(∞)) admissible M(KX), (8)

in the etale case,
P(K(1)X) (9)

in the de Rham case, which is a right PX-torsor on M(K(1)X), called standard principal
bundle, and

DX (10)

itself, in the Betti case, as mentioned above.
Analytic comparison isomorphisms should give embeddings DX ↪→ (Mp(X)C)an and
DX ↪→ (P(K(1)X)C)an. The image under ρ of an element in PX,C which translates the
intersection of the image of the map DX ↪→ (Mp(X)C)an with some fibre into an integral
point of that fibre is precisely a period matrix. The standard principal bundle therefore
is sometimes also called ‘period torsor’ because it encodes (or is supposed to encode)
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relations between periods.
The main point, which makes it possible to approach the theory of these models without
having an appropriate theory of mixed motives, is that all objects M(KX), P(KX),
DX, etc. should be independent of the representation ρ. Moreover, it is possible to
characterize models intrinsically, which we call canonical. These should always represent
the corresponding moduli problem, if an appropriate one in terms of motives can be
posed. This intrinsic characterization is as follows:

i. DX is seen as a certain conjugacy class of morphisms in Hom(SC, PX,C) (defined
over R modulo UX(C), a part of the unipotent radical). If a representation ρ is
chosen, composition with it yields morphisms SC → GL(LC), which are splittings
for the corresponding mixed Hodge structures. In particular, this determines al-
ready an intrinsic complex analytic structure (via Borel embedding) to the Shimura
variety.

ii. The characterization of the (projective limit of the) M(KX)E ’s (rational models)
is reduced, requiring functoriality in Shimura data, to the case where PX is a torus
and the analytic Shimura variety is 0 dimensional, accordingly. The characteriza-
tion in that case is in terms of class field theory and is motivated by the theory of
complex multiplication of Abelian varieties. This marvelous idea is due to Deligne
[22, 25] and was extended to the mixed case by Pink [83]. The characterization
of M(KX) (integral model) itself is as follows. One requires the limit Mp(X) to
satisfy an extension property very similar to the Neron property (in fact this is
the Neron property for the first step in an unipotent extension). This idea is due
to Milne [74, 75].

iii. The characterization of P(KX) can via functoriality, at least for a wide class of
(mixed) Shimura data, be reduced to the case of the symplectic Shimura data,
where a moduli problem in terms of 1-motives is available. It is now possible to
show well-definition directly. I do not know of a better characterization which
works in the integral case, too.

If a faithful representation ρ : PX ↪→ GL(LZ(p)) is given, the objects (8-10) yield an l-
adic sheaf (for every l 6= p), a vector bundle with connection, and a local system (in the
analytic case), respectively, on the Shimura variety. Whenever it is possible to precise
the moduli problem determined by this representation, these sheaves should be equal to
the corresponding realizations of the universal mixed motive.
However, it should be possible to reconstruct the filtration steps of the de Rham bundle
and tensor constructions of them, too. This is seen as follows: If a moduli problem exists
and P(KX) represents motives together with a trivialization of de Rham, the filtration of
de Rham yields a filtration on LS , compatible with the PX-structure (determined by the
tensors, polarization and weight filtration). Filtrations of this type on LS with varying
S are represented by a quasi-projective variety (projective, if X is pure) M∨(X), called
the ‘compact’ dual. It is defined over O and independent of ρ, too. Hence we get an
PX-equivariant morphism P(KX)→ M∨(X) — or, in more fancy terms — a morphism
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of Artin stacks
Ξ : M(KX)→ [M∨(X)/PX]. (11)

This allows to associate with every PX-bundle E on M∨(X) a bundle Ξ∗E on M(KX)
called an (integral) automorphic vector bundle. (In particular for the bundles in the
universal filtration associated with ρ.) The integral structure, however, is of course
not pinned down by considering Ξ∗E as an abstract sheaf. The analytic comparison
isomorphism, however, allows to compare this map with the Borel embedding

DX ↪→ M∨(X)(C).

Therefore, if EC|DX is equipped with a PX(R)UX(C)-invariant Hermitian metric h, we
may define Ξ∗(E , h) (by slight abuse of notation). It is an Hermitian arithmetic vector
bundle on M(KX).
For many purposes, in particular our ambitions for part III, this is not sufficient because
M(KX) is not proper. Desirable are toroidal compactifications M(K∆X), depending on
a rational polyhedral cone decomposition ∆ of the conical complex CX associated with
X. Furthermore, an extension P(K∆X) of P(KX), or equivalently of the morphism (11),
is needed to extend automorphic vector bundles. This would yield proper varieties
and Hermitian automorphic vector bundles Ξ∗(E , h) on them. It turns out that there
is only one meaningful way to extend P(KX), pinned down by the structure of an
Abelian unipotent extension as a torus torsor. In fact, this structure trivializes the
standard principal bundle along this unipotent fibre and since the compactification along
the unipotent fibre is defined by a torus embedding of the corresponding torus, the
trivialization defines a ‘trivial’ extension of the bundle. This pins down the extensions
in general, if one requires functoriality with respect to boundary maps (which are, in
the algebraic setting, maps between formal completions). This functoriality also yields
a ‘q-expansion principle’ for integral automorphic forms.
The so constructed extensions of automorphic vector bundles are the same as described
before by Mumford [79] (fully decomposed bundles) and Deligne (local systems).
The state of the art towards existence of these canonical models, outlined in the following
table, was the existence of many partial, nevertheless very deep, results:

theory of/over C number fields rings of integers
pure SV Baily, Borel [3] Shimura, Deligne [80], symplectic

[20, 21] [52], P.E.L.
[49], [91], general

mixed SV [74, 75] —
[83]

toroidal comp. Ash, Mumford, [83] Faltings, Chai [27], symplectic
Rapoport, Tai [2] [72], P.E.L.

—, general
std. princ. bundle [74, 75], pure —
(period torsor) Harris

[39–41], tor. comp.

We construct models of toroidal compactifications by a mixture of the approach of Pink
(rational mixed case) and Kisin/Vasiu (integral pure uncompactified case). For the
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uncompactified models we use the notion of canonicity by an extension property of
Milne/Moonen. First, we extend these notions and constructions to mixed Shimura
varieties. We develop a theory of p-integral mixed Shimura data by involving group
schemes over spec(Z(p)). This uses wide parts of [37]. There however predominantly
reductive group schemes are considered. We defined a notion ‘type (P)’ which includes
the group schemes needed for mixed Shimura data. It is a generalization of ‘type (R)’
and ‘type (RR)’ considered in [37]. (Maybe, for p 6= 2 there would have been an easier
approach because in that case there exists an exponential function for the occurring
unipotent groups). We extend all operations defined in [83] to p-integral Shimura data.
The main theorems about

• integral models of mixed Shimura varieties

• integral models of toroidal compactifications

• integral models of the ‘compact’ duals

• integral models of the standard principal bundle

are found in section (3.2). The proofs involve several steps. Roughly:
I. Construction of integral models of uncompactified Shimura varieties. First we describe
the ‘well-known’ construction of the integral mixed Shimura varieties associated with the
symplectic Shimura data (2.5) as moduli spaces of 1-motives (section 4). The section
contains also a definition of the standard principal bundle in this case and some material
about 1-motives, biextensions, etc. The construction for arbitrary Hodge type pure
Shimura data is done in [49] or [91]. We extend it (5.2) to the mixed case. Furthermore
we show an extension property for the constructed models. This was done in [76], [78]
for the pure case and the extension to the mixed case is done in (3.7). This shows, in
particular, that our models are uniquely determined, furthermore it yields functoriality
w.r.t. morphisms of p-integral mixed Shimura data.
II. Construction of integral models of (uncompactified) standard principal bundles. This
is done in (5.3.1) for the pure case and in (5.4.1) for the mixed case. The pure case
follows from a theorem of [49], see (5.1.4), and algebro-geometric arguments. The mixed
case is easy (linear algebra!) but involved and technical. In (5.6.1) we show that the
constructions do not depend on the chosen Hodge embedding.
III. Construction of integral models of the toroidal compactifications. This is done tech-
nically as in the uncompactified case by choosing a Hodge embedding and taking the
normalization of the Zariski closure in the compactified integral Shimura variety associ-
ated with a symplectic (mixed) Shimura datum. The latter is constructed in [27]. By
a formal argument, we deduce the formal isomorphism at the boundary with a mixed
Shimura variety of easier type by the corresponding isomorphisms in the rational cases
and in the integral ‘surrounding’ case. Here we have to use a technical assumption,
which remains unproven (3.3.2). The formal isomorphism yields, in particular, a ‘q-
expansion principle’ and smoothness. The standard principal bundle is constructed by
an easy formal argument using the existence on the rational (or complex) level. It yields
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in addition a ‘q-expansion principle’ for integral automorphic vector bundles. This is
quite explicit, giving exact information about the integrality of any special trivialization
described analytically to obtain a Fourier expansion (see 10.4.10 in part III for our main
application).
The method used requires to pass to sufficiently fine rational polyhedral cone decompo-
sitions, which, however, is sufficient for most applications.
IV. Extension of all maps induced by morphisms of Shimura data to the compactifica-
tions. This, again, is completely formal using the formal isomorphism with a mixed
Shimura variety compactified by means of a torus embedding. It yields also canonicity
of the compactifications.
Part I is restricted to the case p 6= 2 because the work of [49], as well as the extension
property as defined in [78] work only for p 6= 2. The constructions involving group
schemes, however, already include the case p = 2.

Part II

In sections (6.1-6.4) an (interpolated) non-Archimedean local orbit equation is developed.
This works for arbitrary discriminants, however is not directly applicable to Arakelov
geometry, unless the discriminant is square-free. It is, however, interesting in its own
right and may be used for computations. Along these lines, we obtain an easy proof of a
classical formula of Kitaoka on representation densities as well, which has the spirit of an
orbit equation, too. Everything follows formally from a good notion of canonical measure
on the isometry sets I(M,L)(Qν) and the compatibility with composition (6.2.8).
(6.5) compares to the definition of local zeta-function by Weil. It is also used in the
explicit computation of the ‘arithmetic volumes’ of the 0-dimensional Heegner points
using Kronecker’s limit formula (11.2), which are well-known.
(7.1-7.5) contains a systematic description of the Weil representation, the Siegel-Weil
formula, the definition and investigation of the Eisenstein series involved and related
matters. These sections are expository and contain at most sketches of proofs. (7.8)
contains a brief description of Borcherds lifts in the adelic language.
(7.7) investigates the non-Archimedean Whittaker integrals and relates them to the
quantities µp (defined via ‘adding hyperbolic planes’) occurring in the orbit equation.
(7.6) investigates the Archimedean Whittaker integral and (7.9) relates it to an easy (ad
hoc) Archimedean version of the orbit equation. This relies on Shimura’s [87] work on
this subject. Here a mysterious D(M)

1
2 s occurs, disturbing the (naive) orbit equation

(cf. also 11.2.12).
(7.10) derives the global orbit-equation, whose special value and derivative are compared
in part III to relations between heights, resp. arithmetic and geometric volumes of
orthogonal Shimura varieties.
In (8.2), the functions µp and λp are calculated explicitly and in (8.3) the expansion at 0
of its global product is given for some lattices, yielding values determined, respectively
conjectured in [13–15, 18, 19, 53–58, 65–71, 97], etc.
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For example a Siegel modular threefold (associated with a lattice described in 8.3) has
geometric volume

ζ(−1)ζ(−3)
∏
p|D

(p2 − 1)

and arithmetic volume

ζ(−1)ζ(−3)
∏
p|D

(p2 − 1)

·

−2ζ
′(−1)
ζ(−1) − 2ζ

′(−3)
ζ(−3) + 1

2
∑
p|D

p2 + 1
p2 − 1 log(p)− 17

6 + 2(γ + log(2π))


(or without 2(γ+ log(2π)), if a different normalization of the Hermitian metric involved
in the definition is chosen).
A 10-dimensional Shimura variety associated with a unimodular lattice has geometric
volume

1
4ζ(−1)ζ(−3)ζ2(−5)ζ(−7)ζ(−9)

and arithmetic volume2

1
4ζ(−1)ζ(−3)ζ2(−5)ζ(−7)ζ(−9)

·
(
−2ζ

′(−1)
ζ(−1) − 2ζ

′(−3)
ζ(−3) − 3ζ

′(−5)
ζ(−5) − 2ζ

′(−7)
ζ(−7) − 2ζ

′(−9)
ζ(−9) −

14717
1260 + 11

2 (γ + log(2π))
)

(or without 11
2 (γ + log(2π)), as before).

Part III
This part starts with the construction of integral Hermitian automorphic vector bundles,
using the theory of the integral standard principal bundle. This is predominantly con-
tained in (9.1). A definition of arithmetic volume for arbitrary Shimura varieties follows
(9.4). The arithmetic volume depends on the choice of a PX-invariant line bundle on
the integral model of the compact dual together with a PX(R)UX(C)-invariant metric
on the image of the Borel embedding.
The rest of the whole part focuses on the orthogonal case. Associated with a quadratic
unimodular lattice LZ(p) , there is a p-integral pure Shimura datum O(L) (10.2.1) whose
underlying (reductive) group scheme is the special orthogonal group SO of LZ(p) , as
well as S(L), whose underlying group scheme is the general spin group scheme GSpin.
The symmetric space DS is the set of (oriented) negative definite subspaces of LR, in
a natural way a Hermitian symmetric domain, and we have a natural map hS : DS →
Hom(S,GSpin(LR)). S(L) is of Hodge type. This allows to use the results of part I for
S(L) as well as for O(L) = S(L)/Gm.

2possibly up to a rational multiple of log(2)
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There is a natural PO-equivariant line bundle E on the compact dual, the zero quadric

M∨(O(L)) = {< v >∈ P(LZ(p)) | QL(v) = 0},

which is the restriction of the tautological bundle on P(LZ(p)). It carries a natural
Hermitian metric h when restricted to the image of the Borel embedding (10.4.1). The
geometric and arithmetic volumes, respectively, of the orthogonal Shimura varieties are
understood to be with respect to the Hermitian automorphic line bundles Ξ∗(E , h) for
the rest of the discussion.
On the associated Shimura variety M(KO) for a compact open subgroup K, with

M(KO)(C) = [SO(Q)\DO × (SO(A(∞))/K)],

we have the family of special cycles Z(L,M,ϕ;K), parametrized by a negative definite
spaceMQ and a K-invariant Schwartz function ϕ ∈ S((M∗⊗L)A(∞)) as explained above.
If K is admissible, i.e. of the form K(p)× SO(Zp), for Kp compact open in SO(LA(∞,p)),
and ϕ is K-invariant, the Z’s itself (or, more precisely, their Zariski closure in the model)
consist of images of canonical models of orthogonal Shimura varieties with good reduc-
tion. Furthermore, these cycles extend to the toroidal compactifications of part I, too.
In part II, we defined 2 functions, λp(LZp ; s) and µp(L,M,ϕ; s) of s ∈ C, such that

λp(LZp ; 0) = vol(SO′(LZp)),

µp(L,M,ϕ; 0) =
∫

IQp (M,L)
ϕ(x∗)µQ(x∗)

with respect to the canonical measures determined by the quadratic form (6.2.3). Here
SO′ stands for discriminant kernel. We defined also a similar factor for∞. The continua-
tion in s for µp is determined by its interpretation as p-Whittaker integral corresponding
to the Eisenstein series associated with the Weil representation of L. For λ it is chosen
in such a way that µ and λ satisfy the local orbit equation:

∑
SO′(LZp )− orbits in IZp

λp(LZp ; s)
λp(im(M)⊥; s) = µp(LZp ,MZp , κ; s)

and hence, in the product over all ν, a global orbit equation which holds at least for the
value at s = 0 and, up to multiples of certain specified log(p), for the derivative at s = 0.
Here µp(LZp ,MZp , κ; s) is as before, but with ϕ equal to the characteristic function of a
class κ ∈ (L∗Zp/LZp)⊗M∗Zp .
We prove in this work the following (see section 10.5):

(10.5.2) Main theorem. Let LZ be a lattice with quadratic form of discriminantD 6= 0
and signature (m − 2, 2). Let K be the discriminant kernel of LẐ. It is an admissible
compact open subgroup for all p - D. Let ∆ be a complete and smooth K-admissible
rational polyhedral cone decomposition and let M = M(K∆O(L)). Let E be as before.
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We have

(i) volE(M) = 4(−1)mλ−1(LZ; 0)
(ii) v̂olE(M) ≡ d

ds4(−1)mλ−1(LZ; s)|s=0 in R2D

The formula in (i) is well known, and is (more or less) equivalent to the fact that the
Tamagawa number of SO(LQ) is 2. We give two proofs of this, one using the Tamagawa
number directly, and the other using the Siegel-Weil formula and Kudla-Millson Greens
functions.
It is also possible to have an equality in R2N , where N is the product of primes p, such
that p2|D, when the model is taken to be any model, induced locally by an embedding
of LZ(p) into a unimodular lattice (10.5.9).
The actual relations with the Eisenstein series can be seen by taking the value and
derivative of the orbit equation at s = 0:

µ(LZ,MZ, κ; 0) volE(M(KO(L))) =
∑

SO′(L
Ẑ
)x⊂I(M,L)∩κ

volE(M(KxO(x⊥)))

(= vol(Z(LZ,MZ, κ)C))

is its value, i.e. µ(LZ,MZ, κ; 0) = deg(Z(LZ,MZ, κ)) (relative degree) and

µ′(LZ,MZ, κ; 0) vol(M(KO(L))) + deg(Z(LZ,MZ, κ))v̂ol(M(KO(L)))
=

∑
SO′(L

Ẑ
)x⊂I(M,L)∩κ

v̂ol(M(KxO(x⊥))) (= ht(Z(LZ,MZ, κ)) (12)

is its derivative, or in other form:

d
d s 4(−1)m

(
λ−1(LZ; s)µ(LZ,MZ, κ; s)

)∣∣∣
s=0

= ht(Z(LZ,MZ, κ)). (13)

(13) is true (under slight restrictions on dimension and or Witt rank of L) in R2DN ,
where N is the product of primes where MZ is not cyclic (main theorem 10.5.5). The
cyclicity restriction means that we are essentially reduced to the case dim(M) = 1.
For dim(M) = 1 the equation (12) will be interpreted in Arakelov theoretical terms and
proven directly. For this, the theory of Borcherds products (as in [15]) and a computation
of an integral of a Borcherds forms is used, done in [13], or [57] (see 11.6).
The truth of (12) (or equivalently 13) permits to prove main theorem (10.5.2) by induc-
tion. The induction basis (lattices of dimension 3 and Witt rank 1, 11.1.1) is provided
by Kühn’s thesis [71]. Heegner points are treated separately (11.2) — here also general
‘bad reduction’ can be examined purely analytically using Kronecker’s limit formula.
This is well known, of course, and already present e.g. in Gross’ and Zagier’s work [33]
and in Yang’s treatment [97].
(12) can be proven only in a certain average (11.6.2), due to obstructions in constructing
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Borcherds forms. We had to solve the following additional problems:

• The multiple of v̂ol(M(KO(L))) occurring in the average version of (12) should not
be 0. This corresponds to the task of constructing Borcherds products of non-zero
weights (11.3). Furthermore, all quantities v̂ol(M(KxO(x⊥))) have to be known
already by induction hypothesis. This is not so easy as in the geometric volume
case because the method of using Borcherds products works only if the Witt rank
of L is not zero (i.e. if M(KO(L)) has cusps). Therefore, we first calculate the
arithmetic volume of the surrounding variety, avoiding cycles without boundary
in the divisor of the constructed Borcherds product. Then we allow certain cycles
without boundary (in a controlled way) and reverse the argument to calculate the
arithmetic volume of those (11.3). This requires (Serre duality) arguments from
[5] (11.3.7), an investigation of the Galois action on modular forms for the Weil
representation, certain theorems on lacunarity of modular forms (11.5), etc.

• A q-expansion principle for orthogonal modular forms is established in (10.4) using
the formal boundary isomorphism of part I. Its applicability to Borcherds form is
shown in (10.4.12) by an adelization of its product formula. Here the main addi-
tional difficulty is not to establish integrality (this is literally seen from Borcherds’
product formula), but the fact that they are defined over Q. It is not convenient
to establish this in the classical context because it may require to take Borcherds
lifts for different classes in the genus of LZ into account.

• Certain boundary terms in the integrals over star products of the occurring Greens
functions (log of the Hermitian norm of sections) have to be shown to vanish
(11.6.3). This is especially hard for small dimensions. It would probably not be
needed by all means for these extremal cases, but allows to use (11.6.2) carelessly
as long as dim(L) ≥ 5 (any Witt rank) or dim(L) = 4 and the Witt rank is 1.
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Notation

Technical notation, S a base scheme
W(E) ‘additive group’-scheme for a coherent sheaf E on S, (1.1.1)

representing W(E)(S′) = (E ⊗OS
OS′ )(S′)

Ga = W(OS) the additive group scheme over S
D(L) = Hom(X,Gm) (1.2.1)
Gm = D(ZS) multiplicative group scheme over S

Gm(S′) = (OS′ )(S′)∗
Lie(G) Lie algebra functor for a S-group scheme G
S Deligne torus (2.1.3)
H0 (2.1.3)
w natural (weight) morphism Gm,R → S
A adeles of Q =

∏′
ν
Qν , restricted product over all places of Q

A(S) =
∏′
ν /∈S Qν , e.g. A(∞) or A(∞,p), where p is a prime

For group schemes G over Q, and S ⊂ S′,
we have natural embeddings G(A(S′)) ↪→ G(A(S)).
We have also ring homomorphisms Q ↪→ A(S) for all S,
and correspondingly G(Q) ↪→ G(A(S))
but incompatible with the embeddings above

[X/G] algebraic or analytic quotient stack
(P) a certain property of group schemes (1.8.1)
PAR scheme of parabolics of a reductive (or type (P)) group scheme (1.9.4)
QPAR scheme of quasi-parabolics of a group scheme of type (P) (1.9.9)
T YPE classifying scheme of types of quasi-parabolics (1.9.9)
FT YPE classifying scheme of types of cocharacters (1.9.9)
par, qpar (quasi-)parabolic associated with a cocharacter (1.9.9)
type, ftype type of a quasi-parabolic, resp. cocharacter (1.9.9)
CI(A) completion of a ring A with respect to the I-adic topology
CY (X) completion of a scheme X along a closed subscheme Y
X̂ dito
N(X), N(A), N(X ) normalization of a scheme, a ring, a formal scheme, etc. (5.8)
R′ R modulo rational multiples of log(N), N ∈ N (9.3.2)
RN R modulo rational multiples of log(p), p|N (9.3.2)
R(p) R modulo rational multiples of log(q), q 6= p (9.3.2)

Tensor algebra, L a coherent sheaf or module
T(L) tensor algebra
Symn(L) symmetric power
(L⊗ · · · ⊗ L)s symmetric elements of Tn(L)
Λn(L) exterior power = alternating elements of Tn(L)
C(L) Clifford algebra of L (10.1.1)
C+(L),C−(L) even and odd part of the Clifford algebra (10.1.1)
L⊗ =

⊕
i,j
L⊗i ⊗ (L∗)⊗j

Shimura data
p some prime, mostly fixed,

main theorems of part I are proven only for p 6= 2
X,Y,B p-integral mixed Shimura data consisting of (say) PX, DX, hX (2.2.2)
PX group scheme over Z(p) underlying X (2.2.2)
DX generalized symmetric space underlying X (2.2.2)
hX PX(R)UX(C)-equivariant morphism DX → Hom(SC, PX,C) (2.2.2)

underlying X
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WX unipotent radical of PX (2.2.9)
UX certain central subgroup scheme of UX (2.2.9)
VX WX/UX (2.2.9)
GX PX/WX, the reductive part of PX (2.2.9)
CX the conical complex of X (2.4.9)
α : X→ Y morphism of p-integral Shimura data (2.2.2)
ι : B =⇒ X boundary morphism — (2.2.2)

leads to a partial order between boundary components
The group PX acts by conjugation, preserving order

GSp(L) group scheme of symplectic similitudes (2.5)
Sp(L) symplectic group scheme (2.5)
PSp(L0, I) extension of GSp(L0) by W(I ⊗ L0), occurs as (2.5)

group scheme in the unipotent extension Hg [0, L0 ⊗ I].
USp(L0, I) extension of GSp(L0) by WSp(L0, I), occurs as (2.5)

group scheme in the unipotent extension Hg [(I ⊗ I)s, L0 ⊗ I].
WSp(L0, I) a central extension of W(I ⊗ L0) by W((I ⊗ I)s) (2.5)

GSpin(L) general spin group scheme (10.1.4)
Spin(L) spin group scheme (10.1.4)
SO(L) (special) orthogonal group scheme

Hg = Hg(LZ(p) ) Shimura datum of symplectic type (2.5)
PHg = GSp(LZ(p) ), the symplectic similitude group scheme of
a lattice LZ(p) of rank 2g with non-degenerate symplectic form,
DHg = conjugacy class of morphisms S→ GSp(LR), yielding
polarized Hodge structures of type (−1, 0), (0,−1) on LR

L space, mostly over Z(p), with non-deg. symplectic form (Part I)
or non-degenerate quadratic form QL (Part II/III)
— more generally — any representation of PX

I isotropic subspace of L
L0 subspace of L, inducing a splitting

L = I∗ ⊕ L⊕ I, with natural symplectic resp. orthogonal form
〈v, w〉 denotes the symplectic form on L

— or, in the orthogonal case — Q(v + w)−Q(v)−Q(w)
Q denotes the quadratic form on L (6.1.1)
γL, γQ denotes the associated symmetric morphism L→ L∗ (6.1.1)
d(LZ), d(LZp ), d(LQ) the discriminant (6.1.3)
< a1, . . . , an > the space Zn, Znp or Zn(p) (according to the context) with

quadratic form x 7→
∑

i
aix

2
i . It has discriminant

∏
i
2ai

M ⊥ L orthogonal direct sum of two quadratic spaces or lattices
X[U, V ] unipotent extension, where U, V are representations of PX (2.2.10)

with symplectic form V × V → U
(implicit in the notation), satisfying certain axioms,
we always have an iso X ∼= X/WX[UX(Z(p)), VX(Z(p))]

Hg0 [(I ⊗ I)s, I ⊗ L0] Shimura datum of general symplectic type (2.5)
I is any space over Z(p), L0 is the symplectic space
associated with Hg0 .
P is equipped with a standard rep’n on L := I ⊕ L0 ⊕ I∗

S(LZ(p) ) Shimura datum of spin type (10.2.1)
PS = GSpin(LZ(p) ), the general spin group scheme of a
lattice LZ(p) of rank m with non-degenerate quadratic form of
signature (m− 2+, 2−)
DS = Grass±(LR), set of oriented pos. def. subspaces of LR

O(LZ(p) ) = S(LZ(p) )/Gm Shimura datum of orthogonal type, (10.2.1)
PO = SO(LZ(p) ), the special orthogonal group scheme
DO = Grass±(LR), as above

∆ a (partial) rational polyhedral cone decomposition of CX (2.4.10)
K
∆X extended compactified p-int. mixed Shimura datum (p-ECMSD), (2.4.11)

consisting of a p-integral mixed Shimura datum X,



The arithmetic volume of Shimura varieties of orthogonal type xxxvii

a p-admissible compact open subgroup K ⊂ PX(A(∞)),
and a (partial) rational cone decomposition of CX

(α, ρ) : K′∆′Y→
K
∆X a morphism of p-ECMSD, (2.4.11)

consisting of a morphism α of p-integral mixed Shimura data
and ρ ∈ PX(A(∞,p)), satisfying some compatibility conditions

(ι, ρ) : K′∆′B =⇒ K
∆X boundary morphism (2.4.13)

µI,I′ certain cocharacter of an orthogonal group (10.2.13)
associated with dual isotropic lines I, I′

mixed Hodge Structures, B an analytic base
[ B-X-L-mhs ] category of B-families of mixed Hodge structures (2.3.4)

on a fixed vector space compatible with (PX, L)-structure
[ B-X-L-mhs’ ] category of B-families of mixed Hodge structures (2.3.1)

on a fixed vector space compatible with (PX, L)-structure
[ B-X-L-filt ] category of certain filtrations (2.3.2)

on a fixed vector space compatible with (PX, L)-structure
[ B-X-L-loc-mhs ] category of mixed Hodge structures on local systems on B, (2.3.5)

locally isomorphic to one in [ B-X-L-mhs’ ]
[ B-KX-L-loc-mhs ] dito, with K-level structure — (2.3.6)

represented by an analytic mixed Shimura variety
[ B-KX-L-triv-mhs ] dito, with K-level structure and analytic trivialization (4.5.2)

of the local system — represented by the analytic standard
principal bundle

1-motives, S a base scheme over Z(p),
X ∈ {Hg0 ,Hg0 [0, L0 ⊗ I],Hg0 [(I ⊗ I)s, L0 ⊗ I]}
K a p-admissible compact open subgroup of PX(A(∞))

[ S-1mot ] category of 1-motives over S (4.1.1)
[ S-KX-L-mot ] category of 1-motives with extra structure, (4.1.11)

yields a moduli problem defining the canonical model
M(KX).
For S = spec(C) it is equivalent to [ San-KX-L-loc-mhs ]

[ S-KX-L-triv-mot ] algebraic version of [ B-KX-L-triv-mhs ], defining a (4.5.1)
canonical model of the standard principal bundle P(KX)

Shimura varieties and
(Hermitian) automorphic vector bundles

EX the reflex field ⊂ C of X (3.1.1)
O a fixed reflex ring of X (3.1.1)

(d.v.r. of EX ass. with some prime above p)
M(K∆X) canonical model of the toroidal compactification of the (3.3.5)

associated Shimura variety,
a Deligne-Mumford stack (and a scheme, if K is neat) over OX

D boundary divisor on M(K∆X)
M∨(X) associated ‘compact’ dual, a right PX-scheme over OX (3.4.1)
P(K∆X) standard principal bundle, a right PX-torsor over M(K∆X) (3.5.2)

equipped with a morphism Π : P(K∆X)→ M∨(X)
Ξ morphism of (Artin) stacks M(K∆X)→ [M∨(X)/PX] (3.5.3)

encoding P(K∆X) and Π
E a PX-equivariant bundle on M∨(X); in part III, (9.1)

this is the canonical line bundle on M∨(On) ⊂ P1(LZ(p) ) (10.4.1)
Ξ∗E associated automorphic vector bundle on M(K∆X) (9.1)
hE a PX(R)UX(C)-invariant Hermitian metric hE (9.1)

defined on the image of the Borel embedding
in part III, this is the metric v, w 7→ − 1

2 e
−C〈v, w〉 (10.4.1)

E the pair (E, hE)
Ξ∗E associated Hermitian automorphic vector bundle on M(K∆X) (9.1)

with log-singular metric along D
Z(L,M,ϕ;K) special cycle on an orthogonal Shimura variety, M a quadratic (11.2)
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space over Q, ϕ ∈ S(M∗
A(∞) ⊗ LA(∞) ) and

K a compact open subgroup of SO(A(∞)) fixing ϕ
Z(LZ,MZ, κ) same as before, with ϕ equal to the (11.2)

characteristic function of κ ∈ (L∗Z/LZ)⊗M∗Z and K = SO′(L
Ẑ
)

Representation densities, Weil representation
Eisenstein series

λ(LZ; s) naturally defined complex analytic function (6.4.10)
encoding geometric and arithmetic volume
of an orthogonal Shimura variety
as special value and derivative at s = 0 (up to a factor 4)

µ(L,MQ
Z , ϕ; s) strongly related to the Fourier coefficient of the (6.4.10)

Eisenstein series associated with the Weil representation,
for L; here MZ is a lattice with quadratic
form Q ∈ Sym2(M∗Q) and ϕ ∈ S(A(∞)) is
any Schwartz-Bruhat function.

µ(LZ,MZ, κ; s) The same as before for ϕ equal to the
characteristic function of κ ∈ (L∗Z/LZ)⊗MZ

IR(s) (normalized) parabolically induced representation (7.1)
indSp(MR)

P (R) (| det |s)
E(Ψ; s) Eisenstein series (7.4)
EM∗′ (degenerate) part of the Eisenstein series associated with (7.4)

a sublattice M∗′ ⊂M∗
Eγ for γ ∈ (M∗ ⊗M∗)s, Fourier coefficient of the Eisenstein series (7.4)
Θ(ϕ; g) theta series (7.5.1)
Wν,Q,M∗′ (Φν ; gν) general Whittaker integral at ν (7.4.3)

where Φ = Φ(s) ∈ indSp′(M,R)
P (| det |sξ)

WQ,M∗′ (Φ; g)
∏
ν
(Wν,Q,M∗′ (Φν , gν))

ζp(LZp ; s) normalized local zeta function associated with a lattice LZp (6.5)
µ̃ψ canonical volume form w.r.t. a bilinear form ψ (6.2.3)
µψ canonical measure w.r.t. a bilinear form ψ (6.2.3)
I(M,L) variety of isometries from M to L (6.2.4)
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Mp(MR) metaplectic groups (7.1.8)
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according to the parity of the dimension of L
Weil(L∗Z/LZ) denotes the Weil representation restricted to (7.7.4)

C[L∗Z/LZ] ⊂ S(LA(∞) )
equipped with natural Q and Z-structures

WEIL(L∗Z/LZ) denotes the bundle of modular forms associated with (11.3.4)
the Weil representation Weil(L∗Z/LZ),
defined over Q
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1. Preliminaries on group schemes

In this chapter, we cite a number of statements on group schemes from [37] and extend
some results to certain non-reductive groups that we call of type (P) (1.8.1). They are
of a slightly more general nature than the groups of type (R) and (RR) considered in
[loc. cit.]. They will occur as group schemes underlying a p-integral mixed Shimura
datum. Furthermore we describe a couple of results, clarifying the relations between
(quasi-)parabolics, filtrations, P -structures, etc.

1.1. Group schemes of additive type

(1.1.1) Let S be a base scheme. For each coherent sheaf E on S, there is a group functor
W(E):

W(E)(S′) = (E ⊗OS OS′)(S
′),

where the right hand side is equipped with its additive group structure. It is repre-
sentable. W is additive, W(OS) = Ga, and there is a natural isomorphism Lie ◦W ∼= id.
If E is locally free, then W(E) is a smooth group scheme over S.
Forms G of Gn

a over S (i.e. for which there is a etale covering {Si → S} such that
GSi
∼= Gn

a are classified by the etale cohomology group

H1
et(S,GL(n))

because the automorphism functor of Gn
a is represented by GL(n).

The following is well known:

(1.1.2) Theorem (‘Hilbert 90’). Let S = spec(O), where O is a discrete valuation
ring or a field. Then

H1
et(S,GL(n)) = 1.

1.2. Group schemes of multiplicative type, Tori

(1.2.1) Let S be a base scheme. Let X be a group scheme over S. Consider the functor

D(X) = Hom(X,Gm).

If M is an ordinary Abelian group, denote by MS the constant group scheme as-
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sociated with M over S. D(MS) is representable. Any group scheme isomorphic to
some D(MS) is called a diagonalizable group. If G is of finite type over S, then it is
equivalent to be diagonalizable locally in the etale or fpqc topology. Groups with this
property are called of multiplicative type. They are called tori if they are locally
isomorphic to D(MS), where M is free. A sheaf for the etale topology, which is locally
isomorphic to a constant sheaf of . . . , we call an etale sheaf of . . . . For all etale sheaves
of finitely generated Abelian groups, D is fully faithful, exact and reflexive. Hence we
have an anti-equivalence:

{ etale sheaves of fin. gen. (free) Abelian groups} ↔ { groups of mult. type (tori) } .

(1.2.2) Remark ([37, X, 4.5; 5.16]). If S is normal, a torus, or equivalently an etale
sheaf of finitely generated free Abelian groups, is locally trivial for the etfg topology
(hence for the etf topology), and trivial if it is trivial over a dense open set.

(1.2.3) Theorem ([37, I, 4.7.3]). Let G = D(MS) be a diagonalizable group scheme
over S. There is an equivalence{

quasi-coherent sheaves on S
with linear G-action

}
↔ { quasi-coherent M -graduated sheaves } .

(1.2.4) A quasi-coherent sheaf E is M-graduated, if there is a decomposition

E =
⊕
m∈M

Em.

If E corresponds to a G-module as above, then G acts on Em via m considered as
Element in Hom(G,Gm).

(1.2.5) A linear G-action on E can be seen either as an usual action of G on W(E)
compatible with the action of the canonical ring scheme over S or - if G is affine - as a
morphism

E → E ⊗OS A(G),

where A(G) is the bigebra-sheaf corresponding to G, satisfying certain axioms expressing
action and linearity. For details, see [37, I, 4].

(1.2.6) Theorem ([37, XI, 4.2]). Let G be some smooth affine group scheme over S
and H a group scheme of multiplicative type over S. Then Hom(H,G) is representable
and smooth over S. The morphism

G×S Hom(H,G)→ Hom(H,G)×S Hom(H,G),
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expressing the action by conjugation, is smooth.

1.3. Semi-Abelian schemes

(1.3.1) Definition ([27, I, Def. 2.3]). Let S be a scheme. A semi-Abelian scheme
over S is a smooth commutative group scheme G → S with (geometrically) connected
fibers, such that each fibre Gs is an extension of an Abelian variety As by a torus

0 // Ts // Gs // As // 0.

(1.3.2) Theorem ([27, I, 2.10, 2.11]). The function rk(Ts) is upper semicontinuous
on S. It is locally constant, iff G is globally an extension

0 // T // G // A // 0

with T a torus, and A an Abelian variety.

There is a unique etale constructible sheaf X(G), such that for each geometric point s

X(G) ∼= X∗(Ts)

(+ a condition for behaviour under specializations)
G 7→ X(G) commutes with base change.
Assume that G is globally an extension. Then X(G) is the etale sheaf of lattices
Hom(T,Gm).

(1.3.3) Theorem. In this case, any extension as above can be given by a homomorphism

X → A∨,

where X is an etale sheaf with fibers isomorphic to Zr.

Proof. A∨ is isomorphic (as an etale sheaf) to Ext(A,Gm) and we have a map

X → Ext(A,Gm)

given locally by associating x ∈ X(U) the pushout Gx:

0 // T

x
��

// G

��

// A // 0

0 // Gm
// Gx // A // 0



6 Part I. Toroidal compactifications of mixed Shimura varieties

Conversely consider a etale covering {Ui}, such that X(Ui) is trivial. Take a basis eij of
X(Uij) and construct the corresponding extensions

0 // TUi
∼= Gn

m
// Gi = Gi,1 ×A · · · ×A Gi,n // AUi // 0,

then glue.

One has Hom(T,G) = HomS(X,Y ). for a torus T with character sheaf Y .

1.4. Maximal tori
(1.4.1) Definition ([37, XII, 1.3]). Let G be a group scheme over S, T a sub-group
scheme. T is called a maximal torus of G if T is a torus and for each s ∈ S, Ts is a
maximal torus of Gs.

(1.4.2) Definition ([37, XII, 1]). Let G be a smooth affine group scheme over S. For
each s ∈ S, we define the reductive rank ρr(s) as the dimension of a maximal torus
of Gs, the nilpotent rank ρr(s) as the dimension of the centralizer of a maximal torus
of Gs and the unipotent rank ρu(s) = ρn(s)− ρr(s) as the dimension of the unipotent
radical of the centralizer of a maximal torus of Gs.

(1.4.3) Theorem ([37, XII, 1.7]). Let G be a smooth affine group scheme over S.
The function ρr(s) is lower semicontinuous, ρu(s) and ρs(s) are upper semicontinuous.
They are locally constant, if and only if G possesses a maximal tori locally in the etale
topology. In that case ρu(s) and hence ρs(s) are also locally constant.
If there are two maximal tori T1 and T2 of G, they are conjugated locally in the etale
topology.

1.5. Root systems
Let G be a smooth group scheme over S with connected fibers and T a maximal torus
(1.4.1).
T acts via conjugation on G and the induced action on Lie(G) is linear in the sense of
(1.2.3). Hence the Lie algebra of each geometric fibre

Lie(Gs) = Lie(G)⊗OS Os

decomposes as
Lie(Gs) = Lie(Ts)⊕

⊕
r∈Ms

Lie(Gs)r,

where M = D(Ts).
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(1.5.1) Definition ([37, XIX, 3.2, 3.6]). We call r ∈ D(T )(S) a root of G with respect
to T , if rs occurs for each s as a nontrivial root in the decomposition as above, i.e. rs 6= 1
and Lie(Gs)rs 6= 0.
A subset R ⊂ M(S) is called a system of roots for G with respect to T if it consists
of roots as above and the following equivalent conditions are satisfied:

i. For each s, r 7→ rs is a bijection of R with the set of roots of Gs.

ii. For each s, the elements of {rs}r∈R are distinct and dim(Gs)− dim(Ts) = #R.

iii. Lie(G) = Lie(T )⊕
⊕
r∈R Lie(G)r.

A system of roots exists, for example, if G is reductive (1.6.5) and T is diagonalizable
(1.2.3). Then the Lie(G)r are locally free of rang 1, and −R = R.

(1.5.2) Definition ([37, XXI, 1]). A reduced root system is a quadruple

(M,M∗, R,R∗),

where M,M∗ are lattices in duality, R ⊂ M and R∗ ⊂ M∗ are finite subsets with a
bijection r 7→ r∗ subject to the following conditions

i. 〈r, r∗〉 = 2 ∀r ∈ R,

ii. sr(R) = R, sr∗(R∗) = R∗,

iii. if r, αr ∈ R, then α = ±1,

where sr(x) = x − 〈x, r〉x for x ∈ M∗, r ∈ R. A p-morphism (where p is a prime) of
reduced root systems

(M,M∗, R,R∗)→ (M ′, (M ′)∗, R′, (R′)∗)

is a group homomorphism α : M → M ′, such that there exists a function q : R →
{pn | n ∈ Z≥0} and a bijection u : R→ R′, with the properties:

i. α(r) = q(r)u(r),

ii. α∗(u(r)∗) = q(r)r∗.

A pinned root system is a quintuple (M,M∗, R,R∗, R0), where (M,M∗, R,R∗) is a
root system, and R0 ⊂ R is a system of simple roots (i.e. every other root is expressible
as a unique integral linear combination of roots from R0 with only positive or negative
coefficients). A p-morphism of pinned root systems has to respect the sets R0.
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1.6. Reductive group schemes

(1.6.1) Definition ([37, XIX, 2.7]). A group scheme G over S is called reductive
(resp. semi-simple, resp. unipotent), if it is affine and smooth over S, with con-
nected and reductive (resp. semi-simple, resp. unipotent) geometric fibers.

(1.6.2) Theorem ([37, XIX, 2.5]). Let G be a reductive group scheme over S. The
function ρr(s) (1.4.2) is continuous and hence maximal tori (1.4.1) exist.
Furthermore for each torus T ′ in G, there exists locally in the etale topology a maximal
torus T containing T ′.

(1.6.3) Definition. Let G be a reductive group scheme over S. We say (G,T,M,R) is
split, if T is a maximal torus of G, with isomorphism T ∼= D(MS), M being a lattice
and R ⊂M is a system of roots (1.5.1) with respect to T of G.

(1.6.4) Definition ([37, XXIII, 1.1]). A sextuple

(G,T,M,R,R0, {Xr}r∈R0)

is called an pinned reductive group, where (G,T,M,R) is a split reductive group
scheme over S, R0 ⊂ R a system of simple roots and for each r ∈ R0, Xr ∈ Lie(G)r a
nontrivial section.
A isogeny of pinned reductive groups

(G,T,M,R,R0, {Xr}r∈R0)→ (G′, T ′,M ′, R′, R′0, {X ′r}r∈R′0)

is a morphism of group schemes α : G → G′, which induces an isogeny T → T ′ and
which respects R0 and the Xr.

(1.6.5) Theorem ([37, XXIII]). If G is a reductive group scheme over S, then locally
in the etale topology there exist T,M,R,R0, {Xr}r∈R0, such that

(G,T,M,R,R0, {Xr}r∈R0)

is a pinned reductive group.

(1.6.6) Theorem ([37, XXII, XXIII]). There is an equivalence of categories (com-
patible with base change and direct products){

pinned reductive groups over S
with isogenies

}
→
{

pinned root systems
with (p-)morphisms

}
(G,T,M,R,R0, {Xr}r∈R0) 7→ (M,M∗, R,R∗, R0).
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Here p is the prime such that x 7→ xp is an endomorphism of Ga,S (if there is any).
Furthermore there exists a certain open dense subscheme (‘grosse cellule’) Ω of G. The
functor and Ω are characterized by:

i. For each r ∈ R there exists a closed embedding

expr : W(Lie(G)r)→ G

inducing via Lie the inclusion.

ii. For any ordering of R+ (system of positive roots determined by R0) the morphism
induced by the expr:∏

r∈R−
W(Lie(G)r)×S T ×S

∏
r∈R+

W(Lie(G)r)→ G

is an open immersion onto Ω.

iii. For each r ∈ R+ there is a unique duality 〈·, ·〉

Lie(G)r ⊗ Lie(G)−r → OS

and a r∗ ∈M∗ = Hom(Gm, T ) such that for each S′ → S and X ∈ Lie(GS′)r(S′),
Y ∈ Lie(GS′)−r(S′):

expr(X) exp−r(Y ) ∈ Ω(S′)⇔ 1 + 〈X,Y 〉 ∈ O∗S′

and in this case

expr(X) exp−r(Y ) = exp−r
(

Y

1 + 〈X,Y 〉

)
r∗(1 + 〈X,Y 〉) expr

(
X

1 + 〈X,Y 〉

)
.

iv. Explicitly for each r ∈ R+ and for each a ∈ OS and X ∈ Lie(G)r there is a unique
X−1 ∈ Lie(G)−r such that 〈X,X−1〉 = 1 Then:

r∗(a) = exp−r((a−1 − 1)X−1) expr(x) exp−r((a− 1)X−1) expr(−a−1x).

Thus R∗ ⊂M∗ and the map R→ R∗ are defined.

v. r ◦ r∗ = 2, (−r)∗ = −(r∗).

(1.6.7) Theorem ([6, 14.10 (1)]). Let G be a semi-simple algebraic group over S =
spec(k), k algebraically closed. Let H be a integral normal subgroup of G. Let H ′ =
Cent(H,G)0. Then

• H and H ′ are semi-simple, integral and normal,

• G = H ·H ′ and H ∩H ′ is contained in the finite group C(G), i.e. G is isogenous
to H ×H ′.
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(1.6.8) Theorem ([37, XXII, 6.2.4]). Let G be a reductive group scheme over S.
There is a semi-simple subgroup scheme Gder (the derived group) of G and a central
torus C (the radical) such that

Gder × C → G

is an isogeny.

(1.6.9) Theorem. Let S be normal integral and Q the generic point of S. Let G be a
reductive group scheme over S. If HQ ⊂ SQ is a geometrically integral normal subgroup
of GQ then its closure H is reductive.

Proof. Let s be any geometric point and Q a geometric point lying over Q. There is an
etale neighborhood S′ → S of s, such that G can be pinned: (G,T,M,R,R0, {Xr}r∈R0).
Then HQ′ can be pinned over Q′ as well. For, let T̃1 be maximal torus of HQ′ and T1
a maximal torus of GQ′ containing T̃1. T1 is conjugated over Q to T . Hence, since HQ′

is normal, TQ′ ∩HQ′ is also a maximal torus of HQ′ (being the conjugate of T̃1). Now
TQ′ ∩ HQ′ , being a subtorus of TQ′ is defined and split over S′ as well. The previous
theorems imply that there is an isogeny

HQ ×H
′
Q
→ GQ

and H ′
Q
is reductive and normal as well, hence can be pinned with respect to TQ.

The isogeny hence comes from some morphism of pinned root systems (1.6.6). This in
turn implies that there are semi-simple group schemes H̃, H ′ defined over S′ and an
isogeny

H̃ ×H ′ → GS′ ,

inducing the previous over Q′.
An isogeny is closed (it is faithfully flat and finite [SGA III, XXII, 4.2.10]), hence it
induces a closed embedding of H̃ and hence H̃ is isomorphic to H, hence in particular
Hs is connected and reductive.

1.7. P -structures

Let P be a group scheme over S. Let P act linearly on a locally free sheaf of OS-modules
L (1.2.3).

(1.7.1) Definition. Let E be a locally free sheaf of OS-modules. A (P,L)-structure
on E is a section of the etale quotient sheaf

α ∈ H0(Iso(E,L)/P, S).

The pre-image under the projection Iso(E,L)→ Iso(E,L)/P is a right P -torsor tor(α),
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which we call the associated right P -torsor.

(1.7.2) Remark. If E is a locally free sheaf over S′ for some scheme S′ → S, by abuse
of notation, we call a (P ×S S′, L⊗OS OS′)-structure on E simply a (P,L)-structure.

In the analytic context, we have the following variants of a P -structure:

(1.7.3) Definition. Let R ⊂ Q be a ring S = spec(R), P a group scheme over S. and
LR a vector space, with a linear action of P . Let B be an analytic manifold (or an
analytic Deligne-Mumford stack1).
Let E be a local system of R-modules on B. A (P (R), LR)-structure α on E is a section
of the quotient sheaf

α ∈ H0(Iso(E,LR)/P (R)B, B).

The preimage of α in Iso(E,LR) is a local system locally isomorphic to the constant
sheaf P (R)B. We call it also the associated right P (R)-torsor tor(α).
Let E be a holomorphic vector bundle on B. A P -structure α on E is a section of the
quotient sheaf

α ∈ H0(Iso(E,LOB )/POB , B).

Here POB is the sheaf of groups on B of analytic maps to P (C). We have also an analytic
associated right POB -torsor tor(α).

Clearly, a (P (R), LR)-structure α on a local system E induces a (P,LR)-structure α⊗R
OB on E ⊗R OB.

1.8. Group schemes of type (P )

(1.8.1) Definition. Let P be a group scheme of finite type over S. We call P of type
(P ), if the following conditions are satisfied:
There exists a closed unipotent normal subgroup scheme W (called unipotent radical).
For each point there is an etale neighborhood S′ → S and

i. a closed reductive subgroup scheme G of PS′ such that PS′ is isomorphic to the
semi-direct product of WS′ with GS′,

(Then P is smooth and affine over S and there exist maximal split tori locally in
the etale topology (1.4.3)),

ii. a split maximal torus T ∼= D(MS′) of GS′, where M is some lattice,

1Also called an analytic orbifold.
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iii. a system of roots R = RG∪̇RW ⊂M , where:

Lie(GS′) = Lie(T, S′)⊕
⊕
r∈RG

Lie(G,S′)r

Lie(WS′) =
⊕
r∈RW

Lie(WS′)r,

iv. closed embeddings
expr : W(Lie(WS′)r)→W

for all r ∈ RW , inducing via Lie the inclusion and satisfying for all S′′ → S′,
t ∈ T (S′′), X ∈ Lie(GS′′)r:

int(t) expr(X) = expr(r(t)X).

with the property that any two different r1 ∈ R, r2 ∈ RW are linearly independent.

This property is stable under base change.

(1.8.2) Remark. Notice that the Lie(GS′)r are allowed to be higher dimensional, the
notion ‘type (P )’ is therefore slightly more general than the notion ‘type (RR)’ consid-
ered in [37, XXII, 5.1]. The later cannot be used in our context because it is not stable
under restriction to certain normal subgroups.

(1.8.3) Lemma. If P is of type (P ), then R can be decomposed: R = R+∪̇ −R+ such
that RW ⊂ R+.

(1.8.4) Lemma. Let k be an algebraically closed field, and T = D(M) a torus acting
on Ga. There exists an element r ∈M , such that the action is given by

(α,X) 7→ r(α)X.

Proof. Each α ∈ T (k) has to act by an additive polynomial. An additive polynomial,
which induces an isomorphism is multiplication by a scalar.

(1.8.5) Lemma. Let k be an algebraically closed field. Let E be a finitely generated
k-vector space, and a k-torus T = D(M) operating by a non-zero r ∈ M on W(E). If
α : Ga →W(E) is a closed embedding which is T -stable, then it comes from a non-zero
element X ∈ E.

Proof. Since α is a closed embedding and T -stable, there is an induced action on Ga,
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which can only be the action via r (1.8.4). Take a basis of E and consider the resulting
projections of α, αi : Ga → Ga. The αi are given by polynomials, which are additive,
hence of the form ciY +

∑
j cijY

pj if p = char(k) > 0 or ciY if char(k) = 0. This is
compatible with the action of T only if all cij are 0. Hence the embedding comes from
X = (c1, . . . , cn), which cannot be 0.

(1.8.6) Theorem. The restriction∏
r∈RW

W(Lie(WS′)r)→W

is an isomorphism of schemes for any ordering.

Proof. Compare [37, XXII, 4.1]. Since both objects are flat and of finite type it suffices
to check this over each geometric fibre [36, I, 5.7].
This is stated in [89, 8.2.2] under additional assumptions. But we can argue analogously
in the more general case. We proceed by induction on #RW ,dimW . If there is only one
root, we have a closed embedding

ur : W(Lie(WS′)r)→W,

which on the level of Lie algebras is an isomorphism. Since both sides are connected
and reduced, it is an isomorphism. There is a T -invariant subgroup N isomorphic to
Ga in the center [89, 6.3.4]. Lie(N) is therefore contained in an Lie(W )r. Consider
the group W ′ = ZW (Tr)0, where Tr = ker(r)0. Lie(W ′) = Lie(W )r because the r’s
are linearly independent. By the previous W(Lie(W )r) ∼= W ′. Since N ⊂ ZW (Tr))0

(T has to act via r on N by 1.8.4), by lemma (1.8.5) N occurs as a linear subspace
of W(Lie(W )r). Therefore there is a closed embedding W(Lie(W )r/Lie(N)) → W/N .
Therefore the assumptions are true (this is verified as in the proof of [89, 8.2.2]) for the
group W ′′ = W/N and Lie(W )r replaced by Lie(W ′′)r = Lie(W )r/Lie(N) (if not 0). By
induction the statement is true for W ′′ and hence for W by the conclusion in the proof
of [89, 8.2.2].

Over fields of characteristic 0, the situation is much more easy:

(1.8.7) Theorem. Let k be a field of characteristic 0 and G an unipotent k-group.
There exists an isomorphism of varieties

exp : W(Lie(G))→ G,

with the property that the restriction to W of any commutative sub Lie algebra of Lie(G)
is a closed embedding of algebraic groups and Lie of it is the inclusion.
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(1.8.8) Lemma. Let W be a unipotent group scheme over S, acted on by a split torus
T = D(MS), satisfying property (iv) of the definition of type (P) (1.8.1). Let Xi ∈
Lie(W )ri , i = 1, 2 be given. The morphism

Ga ×Ga →W

u, v 7→ expr1(uX1) expr2(vX2)

factors through the closed subscheme∏
r=ir1+jr2,i,j≥0

W(Lie(W )r)

(which is independent of the ordering of the roots by (1.8.6)).

Proof. It suffices to show this locally on S so we may assume S affine. The morphism is
then given by a polynomial ∑

Xiju
ivj

with Xij ∈ Lie(W )(S). Letting the torus act by conjugation, we get

int(t)Xij = r1(t)ir2(t)jXij ,

i.e. Xij ∈ Lie(W )ir1+jr2 .

(1.8.9) Theorem. Let S be a reduced scheme. Let W be a unipotent group scheme
over S acted on by a split torus T = D(MS), satisfying property (iv) of the definition
of type (P) (1.8.1). If H is a smooth subgroup scheme of W , stable under T , then it is
closed and uniquely determined by Lie(H).

Proof. We will show that, over every geometric point s of S, Hs is directly spanned by

expr (W(Lie(Ws)r ∩ Lie(Hs))) .

This shows that H is uniquely determined by Lie(H) (because it is smooth over S). It
is closed because the restriction of the isomorphism∏

r∈RW

W(Lie(WS′)r)→W

to the product of the W(Lie(W )r∩Lie(H)) is a closed embedding. Its image inW has to
be equal to H because both are smooth over S. Note that Lie(W )r ∩Lie(H) ⊆ Lie(W )r
is saturated because H is smooth.
For the required result over the geometric point s, adapt the proof of [6, Prop. 14.4].
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(1.8.10) Theorem. If P is a group scheme of type (P ) over an affine scheme S, then

H1
et(S,W ) = 1.

Proof. Analogous to [37, XXVI, 2.2].

(1.8.11) Theorem. If P is a group scheme of type (P ) over an affine scheme S then
there is a closed subgroup scheme G of P , such that P = G oW . Any two such are
conjugated by an element in W (S). For any maximal torus T of P , there is a unique
such G containing T such that every closed reductive subgroup scheme of P , containing
T is contained in G.

Proof. Is deduced like in [37, XXVI, §1].

1.9. Filtrations and parabolic groups

Let S be a base scheme.

(1.9.1) Definition. Let L be a locally free sheaf on S. Consider an (increasing or
decreasing) filtration F • of L. It is called saturated, if grF (L) is again locally free. If 2
filtrations F • and G• are given, we call them bisaturated if the bigraded grF grG(L) =
grG grF (L) is locally free.
A morphism γ : L → M of sheaves is a morphism of filtered sheaves, if γ(F i(L)) ⊆
F i(M). It is called strict if the diagrams

F i(L) � � //

γ

��

F i+1(L)
γ

��
F i(M) � � // F i+1(M)

are Cartesian.

We have the following obvious

(1.9.2) Lemma. Let L be a locally free sheaf S, and a filtration F • of L be given. The
following are equivalent conditions:

i. F • is a saturated filtration.
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ii. There is a splitting for F •:

L =
⊕
i

Li F j =
⊕
i≥j

Li.

iii. There exists a linear action of Gm on L inducing a splitting.

Let G• be another filtration on L. The following are equivalent conditions:

i. F •, G• form a pair of bisaturated filtrations.

ii. There is a simultaneous splitting for F • and G•:

L =
⊕
i

Li,i
′

F j =
⊕
i≥j,i′

Li,i
′

Gj
′ =

⊕
i,i′≥j′

Li,i
′
.

iii. There exists a linear action of Gm ×Gm on L inducing a simultaneous splitting.

(1.9.3) Definition ([37, XV, 6.1]). Let P be a group scheme of finite type over S.
A parabolic subgroup scheme of P is a smooth subgroup scheme Q of G, such that for
each s ∈ S, Qs is a parabolic subgroup of Gs, (i.e. such that Gs/Qs is proper).

(1.9.4) Theorem ([37, XXII, 5.8.3-5.8.5]). Let G be a reductive group scheme over
S.

i. The functor S′ 7→ {parabolic subgroups of GS′} is representable by a smooth pro-
jective S-scheme PAR.

ii. There is an etale sheaf T YPE of finite sets over S and a morphism

type : PAR → T YPE ,

with the property Q and Q′ are locally conjugated in the etale topology, if and only
if type(Q) = type(Q′).

iii. If (G,T,M,R) is split

T YPE ∼=
{

W (R)-conjugacy classes of closed subsets of R
containing a set of positive roots

}
S

∼= { subsets of a set of simple roots R0 }S

iv. If P is any subgroup scheme, smooth and of finite type, the following conditions
are equivalent:
a) For each s ∈ S, Ps is a parabolic subgroup of Gs, i.e. Gs/Ps is proper.
b) The quotient sheaf G/P is representable by a smooth projective S-scheme.
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Under these conditions P = NormG(P ) (it is in particular closed) and the mor-
phism G/P → PAR, g 7→ int(g)P is an open and closed immersion onto a con-
nected component of PAR. It is hence the fibre above type(P ).

v. There is a surjective morphism

par : Hom(Gm, G)→ PAR,

characterized by the properties:
a) Let α : Gm,S′ → GS′ be some morphism. For each etale S′′ → S′, where there

is a splitting (GS′′ , T,M,R) such that αS′′ : Gm,S′′ → T ⊂ GS′′, we have

type(par)(α)) = W (R){r ∈ R | r ◦ α ≥ 0}.

b) For each α : Gm,S′ → GS′, α factors through par(α).

Proof. The assertions are stated in [loc. cit.], however some only for Borel subgroups.
See also [37, XXVI] for the case of parabolics.

(1.9.5) Remark. Over a geometric point, we have

par(α)(s) = {x ∈ G(s) | lim
a→0

α(a)xα(a)−1 exists}.

For the precise meaning of this compare [89, p.148].

(1.9.6) Theorem. Let P be a group scheme of type (P ) over S. Let G = P/W . The
parabolic subgroup schemes of P are in 1:1 correspondence with the parabolic subgroup
schemes of G. The functor of parabolic subgroups is representable by a smooth projective
scheme over S. The parabolic subgroups are of type (P ).

Proof. Every geometric fibre P ′s of a parabolic subgroup scheme P ′ of P has to contain
Ws so P ′ contains W and P ′/W has to be a parabolic subgroup of G. In turn if P ′ is a
parabolic subgroup of G, W o P ′ is a parabolic subgroup of P . The second statement
follows therefore from (1.9.4).
For the third statement assume first W = 1. Then a parabolic subgroup Q is of type
(R) [37, XXII, 5.2.1], which means that it is smooth of finite type and for each s ∈ S,
Ps contains a Cartan subgroup of Gs.
In this case, there is a closed2 subset R′ ⊂ R, such that

Lie(Q) = Lie(T )⊕
⊕
r∈R′

Lie(G)r.

2i.e. r, s ∈ R′, r + s ∈ R⇒ r + s ∈ R′
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In fact, it suffices to check this over a geometric point where it follows from [89, 8.4.3.
(iv)]. This means by definition that Q is of type (RC) [37, XXII, 5.11.1] Now the
assertions follow from [XXII, 5.11.3, 5.11.4]SGAIII. Here of course all Lie(G)r are 1-
dimensional.
In the general case Q is given by the product W oQ′. Let W ′ is the unipotent radical
of Q′. The multiplication

W ′ ×W → Q

is a closed embedding (because we had a semi-direct product). It hence induces a closed
smooth subscheme, which serves as unipotent radical of Q. (It is a subgroup scheme
becauseW ′ normalizesW ). The other statements are satisfied because they are satisfied
for Q′.

(1.9.7) Theorem. Let S be a reduced scheme, and let (P, T,M,R) be a split group of
type (P ) over S. If R′ ⊂ R is a closed subset, then there exists a unique smooth subgroup
scheme P ′ ⊂ P , containing T , such that

Lie(P ′) = Lie(T )⊕
⊕
r∈R′

Lie(P )r

P ′ is of type (P ) and closed in P . In particular, if P is reductive, then each parabolic is
of this form.

Proof. R′ ∩ RG is also closed in RG and hence there exists a unique subgroup scheme
P ′G of G with Lie(P ′G) = Lie(T )⊕

⊕
r∈R′ Lie(G)r [37, XXII, 5.3.5, 5.4.7]. It is closed in

G [37, XXII, 5.11.4].
Consider the product ∏

r∈R′∩RW

W(Lie(W )r).

It is closed embedded into G. Over each geometric point of S it is a subgroup scheme,
so it is a closed subgroup scheme P ′W because S is reduced. Furthermore it is the unique
T -stable smooth subgroup scheme of W with Lie algebra

⊕
r∈R′∩RW Lie(W )r.

Over each geometric point of S, P ′ = P ′W · P ′G is a subgroup scheme because R′ is
closed. Because S is reduced this implies that this is true over S. The product is a
closed embedding because P is a semi-direct product of W and G. It is of type (P ),
again because of [37, XXII, 5.11.3, 5.11.4] and the reasoning in the proof of the last
theorem.

(1.9.8) Definition. Let P be of type (P ). A closed smooth subgroup scheme Q of P
is called a quasi-parabolic group, if etale locally, say on S′ → S, there is a splitting
(P, T,M,R), Q is of the form given in theorem (1.9.7) for a R′ ⊂ R which contains a
set of positive roots (but not necessarily RW !).
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(1.9.9) Theorem. Let S be reduced and P be a group scheme over S of type (P ).

i. The functor S′ 7→ {quasi-parabolic subgroups of PS′} is representable by a smooth
quasi-projective S-scheme QPAR.

ii. There is an etale sheaf T YPE of finite sets over S and a surjective morphism

type : QPAR → T YPE ,

with the property Q and Q′ are locally conjugated in the etale topology, if and only
if type(Q) = type(Q′).

iii. If (P, T,M,R) is split (in the obvious sense for type (P ))

T YPE ∼= { W (RG)-orbits of closed subsets of R containing a set of positive roots }S .

iv. Let Q be a quasi-parabolic of P . The morphism P/Q → QPAR, g 7→ int(g)Q is
an open and closed immersion onto a connected component of QPAR. It is hence
the fibre above type(Q).

v. Hom(Gm, P ) is representable by a smooth affine scheme over S.

There is an etale sheaf FT YPE of (infinite) sets over S and a surjective morphism

ftype : Hom(Gm, P )→ FT YPE ,

with the property α and α′ are locally conjugated in the etale topology, if and only
if ftype(α) = ftype(α′).

vi. If (P, T,M,R) is split:

FT YPE ∼= { W (RG)-orbits in M∗ }S .

vii. There is a surjective morphism

qpar : Hom(Gm, P )→ QPAR,

characterized by the properties

a) Let α : Gm,S′ → GS′ be some cocharacter. For each etale S′′ → S′, where
there is a splitting (GS′′ , T,M,R) such that αS′′ : Gm,S′′ → T ⊂ GS′′, we have

type(qpar(α)) = W (RG){r ∈ R | r ◦ α ≥ 0}.

b) For each α : Gm,S′ → GS′, α factors through qpar(α).
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There is a commutative diagram

Hom(Gm, P ) qpar //

ftype
��

QPAR
type

��
FT YPE // T YPE

If (P, T,M,R) is split, the morphism on the bottom is induced by

M∗ 3 m 7→ {r ∈ R | 〈r,m〉 ≥ 0}.

Proof. (compare [37, XXII, 5.11.5]). The functor QPAR is an etale sheaf by definition
of quasi-parabolic.
The functors FT YPE , resp. T YPE , are the etale quotient-sheaves of Hom(Gm, S), resp.
QPAR, by the action of conjugation. It suffices hence to show representability of them
and of QPAR locally in the etale topology and we may hence assume, (P, T,M,R) split
over S. We will construct a morphism

QPAR → { W -orbits of closed subsets R′ ⊂ R containing a set of positive roots}S .

Let Q ∈ QPAR(S). There is by definition an etale cover Ui → S, splittings

(P, Ti,Mi, Ri)

such that QUi is a group like in theorem (1.9.7). Hence there is an associated closed
subset R′i ⊂ Ri. By refining the cover we may assume that Ti is conjugated to T on Ui.
Transporting R′i to R we get a well-defined W -orbit of closed subsets of R. Surjectivity
follows from theorem (1.9.7). Furthermore if the images of Q1, Q2 are the same, they are
conjugated locally in the etale topology because of the unique charactization of quasi-
parabolics by their Lie algebra. The fibre of ‘type’ over a point contains the group Q
constructed in (1.9.7) and is identified with P/Q. This shows (i)-(iv).
Representability of Hom(Gm, P ) is (1.2.6). Next we construct a morphism

Hom(Gm, P )→ { W -orbits in M∗ }S .

Let α ∈ Hom(Gm,S , PS) be given. There is an etale cover Ui → S, splittings

(P, Ti,Mi, Ri)

such that αUi factors through Ti. Hence we get an element mi ∈ M∗i . By refining the
cover we may assume that Ti is conjugated to T on Ui. Transporting mi to M∗ we
get a well-defined W -orbit in M∗ of R. The morphism is surjective. α1, α2 are locally
conjugated in the etale topology, if and only if their images are the same. This shows
(v), (vi).
(vii) follows because we can construct the morphism qpar etale locally.
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(1.9.10) Remark. Over a field, our quasi-parabolics are called preudo-parabolics by
Springer [89, 15.1.1]. However, we caution the reader against the wrong statement [loc.
cit., 15.1.2 (ii)].

(1.9.11) Theorem. Let S be reduced. For any morphism of group schemes α : P1 → P2
of type (P ) over S, we get an induced morphism α′ : QPAR1 → QPAR2. If α is a closed
embedding then α′ is an embedding. It is closed, if α induces a morphism W1 →W2. It
is open, if P1 is a quasi-parabolic of P2.

Proof. We construct the morphism again locally in the etale topology, and hence may
assume that there exist Q1 ∈ QPAR1 a morphism

α : Gm → P

such that Q1 = qpar(α). Define Q2 = α′(Q1) := qpar(γ ◦ α).
We know (1.9.9) that there are connected components of QPARi isomorphic to Pi/Qi
for i = 1, 2.
We have γ(Q) ⊆ Q′, and therefore an induced map α′ : QPAR1 → QPAR2. If γ is
a closed embedding, then Q = Q′ ∩ P , therefore the induced map on the quotients is
an embedding. Closedness in the required case follows directly from the case of PAR.
Openness can be checked on geometric fibers, where one checks that P ∈ QPAR2 −
QPAR1 is a closed condition.

(1.9.12) Definition. Let E be a locally free sheaf of OS-modules with (P,L)-structure
ρ. A filtration F on E is called compatible with the (P,L)-structure if etale locally
(say on U) there is an isomorphism β in the associated GU -torsor and a morphism
α : Gm → PU which splits the filtration (via the induced (by β) representation of PU on
EU ).

(1.9.13) Definition/Theorem. Let S be reduced. Let E be a locally free sheaf of
OS-modules with (P,L)-structure ρ and F • a filtration on E compatible with the (P,L)-
structure. Let an etale neighborhood U and β be given as in the definition. Then P acts
via β on EU and there exists a splitting α : Gm → PU of the filtration.

i. The stabilizer QU of the filtration F • of EU is the quasi-parabolic group qpar(α)
of theorem (1.9.9).

ii. Any two morphisms Gm,U → PU splitting the filtration are conjugated in QU locally
in the etale topology. Hence the image under ftype of these morphisms is well
defined. We call the corresponding section t′ ∈ FT YPE(S) the type of F •. Let t
be its image in T YPE(S).
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iii. F • defines a P -equivariant morphism

tor(ρ)→ QPAR×T YPE,type,t S.

Proof. We may restrict to an etale cover S, where E is free and β exists. Let F •
be a filtration, split by α : Gm → P . We may also assume that there is a splitting
(P, T,M,R) over S such that α factors through T . Let Q be the stabilizer of F •. It is
a closed subgroup scheme of P . Let X ∈ L(S). Take a basis {ei}i of Lie(P )r. The map

u 7→ expr(uei)X

is a morphism Ga → W(L) and hence given by a polynomial
∑
unXn for Xn ∈ L(S).

Letting α : Gm → P act on the image, we get

α(z)Xn = zn(r◦α)+iXn.

Therefore the image of expr fixes the filtration, if r ◦ α ≥ 0. Hence for the set of
roots satisfying r ◦ α ≥ 0 the group Q′ of theorem (1.9.7) fixes the filtration (because
it is fixed by the images of the various exp and T whose generated subgroup scheme
is dense). On the other hand, the Lie algebra Lie(QU ) acts on EU and stabilizes the
filtration. Therefore, since Q′ ⊂ Q, we have Lie(Q) = Lie(Q′). But Q is T -stable, hence
by theorem (1.9.7), Q = Q′.
The group Q is of type (P ) (1.9.7), hence maximal tori exist and are conjugated locally
in the etale topology. We may hence assume that there exists a split maximal torus
T = D(MS) of Q over which α factors. E is then decomposed as

E =
⊕
r∈M

Er.

Now we have
F i(E) =

⊕
r∈M,r◦α≤i

Er

and hence
α ◦ r = min

Er⊆F i(E)
i if Er 6= 0.

This determines α because the set {r | Lr 6= 0} contains a basis of MQ because the
representation is assumed to be faithful.
The morphism (iii) is constructed functorially as follows. Let β ∈ tor(ρ)(S) be an
isomorphism ES → LS . Via β, P acts on E as well. Define the image of β to be
Stab(F •, PS) which is a quasi-parabolic of type t be the foregoing. The morphism is
P -equivariant.

(1.9.14) Theorem. Let S be reduced. Let L be a locally free sheaf on S, P a group
scheme of type (P ) over S acting linearly and faithfully on L, i.e. induced by a closed
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embedding P ↪→ GL(L). Let t′ ∈ FT YPE(S) and t be its image in T YPE(S). The fibre
above t of type in QPAR is isomorphic to

S′ 7→ { filtrations F • on LS′ compatible with (PS′ , LS′) of type t′},

compatible with P -action.

Proof. We construct the isomorphism locally in the etale topology. Then there exist a
morphism α : Gm → P of some type t′. and a corresponding filtration F •. The set of all
filtrations of type t′ is then isomorphic to P/ Stab(F •) because filtrations of type t′ are
conjugated locally in the etale topology because their splittings are. But P/ Stab(F •)
is isomorphic to the fibre of type in QPAR canonically by (1.9.9, iv). Therefore these
isomorphisms glue.

(1.9.15) Example. Let E be a locally free sheaf on S of dimension n, P = GL(E).

T YPEP = { subsets of {1, . . . , n− 1} }S ,
FT YPEP = { sequences of non-negative integers {di}i∈Z with

∑
di = n }S .

Filtrations of type {di} are those saturated filtrations, where dim(griF ) = di. The map
type is given by associating with {di} the complement of the set partial sums

∑
i≤j di( 6=

n).
Let F i be a filtration of type t′ and Q the stabilizer-group. We have

T YPEQ = { subsets of typeP (Q)}S ,
FT YPEQ = { sequences of non-negative integers {di,j}i,j∈Z with

∑
j

di,j = di }S .

Filtration of type {di,j} are those filtrations G•, which together with F • are bisaturated
and such that dim(grjG griF ) = di,j.
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2. Preliminaries on mixed Shimura data
and varieties

In this chapter, we define p-integral mixed Shimura data. This is very much the same
definition as in Pink’s thesis [83], except that we use a stronger requirement on the
center (for psychological comfort) and more importantly, the group scheme P in [loc.
cit.] is replaced by a group scheme of type (P), defined over Z(p). All compact open
subgroups are then required to be of the form P (Zp) ×K(p), where K(p) is a compact
open subgroup of P (A(∞,p)). We call them admissible. We explain the connection to
mixed Hodge structures, recall all relevant definitions from [83], and extend the technical
results on mixed Shimura data to p-integral ones. In (2.4) boundary components are
investigated. In (2.5) we define the ‘symplectic (mixed) Shimura data’ whose associated
(mixed) Shimura varieties are moduli spaces of 1-motives. (This will be explained in
detail in chapter 4). We will restrict (essentially) to mixed Shimura data of Hodge type,
i.e. those which embed into the symplectic ones (2.6). In the end (2.7) we briefly explain
the interpretation of mixed Shimura varieties over C as parameter spaces of families (or
variations) of mixed Hodge structures.
We diverge from the custom to denote a (mixed) Shimura datum by (P,X), (G,X)
or (P,X, h). We use an abstract letter (e.g. X) for it and denote its constituents by
PX,DX, hX. This is because they always occur in fixed pairs (or triples) like for the
symplectic Shimura varieties Hg or the orthogonal resp. spin ones O(L) resp. S(L).
Furthermore often different, but related ones (boundary components, those associated
with strata, unipotent extensions, etc.) are used. We find it confusing and senseless
to invent special symbols for the respective symmetric domains in each case. This
convention also permits to denote unipotent extensions just by a symbolic construction:
X[U, V ].

2.1. Mixed Hodge structures

(2.1.1) Definition. Let B be an analytic Deligne-Mumford stack. We define the cate-
gory

[ B-mhs ]

of families of rational mixed Hodge structures above B as given by the following
data: A local system of Q-vector-spaces M above B.
An increasing weight filtration

0 = Wi(M) ⊂Wi+1(M) ⊂ · · · ⊂Wi+n(M) = M
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by local systems of Q-vector-spaces.
A decreasing Hodge filtration

0 = F j(M) ⊂ F j−1(M) ⊂ · · · ⊂ F j−m(M) = W ⊗Q OB

by holomorphic subsheaves such that for the induced Hodge filtration on grnW one has
point-wise

∀p+ q = n+ 1 MC ∼= F p(M)⊕ F q(M),

i.e. determines a usual pure Hodge structure.

(2.1.2) A pure Hodge structure (of weight n) is determined by M =
⊕
p+q=nH

p,q(M)
by setting

F p(M) =
⊕
p′≥p

Hp′,q(M),

Hp,q(M) = F p(M) ∩ F q(M) if p+ q = n.

For a mixed Hodge structure there is a unique decomposition M =
⊕
p+q=nH

p,q(M)
with

F p(M) =
⊕
p′≥p

Hp′,q(M),

Wn(MC) =
⊕

p+q≤n
Hp,q(M),

Hp,q(M) = Hq,p(M) mod
⊕

p′<p,q′<q

Hp′,q′(M).

This determines a morphism h : SC → GL(MC).

(2.1.3) Definition.

S := RC/R(Gm),
H0 := {(z, α) ∈ S×GL2,R | zz = det(α)}.

Let PX,Q be a connected linear algebraic group over Q. Let WX,Q be the unipotent
radical of PX,Q and

PX,Q
π // GX,Q = PX,Q/WX,Q

be the projection. Let ρ : PX,Q → GL(LQ) be a (faithful) representation on a Q-vector-
space LQ. A morphism h : SC → PX,C determines a bigrading of LC and hence a weight
and Hodge filtration on LQ, for every representation of PX,Q on LQ. To obtain the
bigrading, the character group of SC is identified with Z2 via p, q 7→ (z, z 7→ z−pz−q).
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(2.1.4) Definition. A morphism h : SC → PX,C is called admissible if

• π ◦ h is defined over R,

• π ◦ h ◦ w is a cocharacter of the center of PX,Q/WX,Q defined over Q.

• Under the weight filtration on Lie(PX,Q) defined by Ad ◦hX: W−1(Lie(PX,Q)) =
Lie(WX,Q).

(2.1.5) Theorem. A morphism h : S → GL(LR) is associated with a mixed Hodge
structure if and only if h factors through a subgroup PX,Q ⊂ GL(LQ), and the induced
morphism is admissible.

Proof. [83, prop. 1.5]

2.2. p-integral mixed Shimura data

(2.2.1) Lemma. Let T be a Q-torus. The following are equivalent conditions:

i. T (Q) is discrete in T (A(∞))

ii. T is an almost direct product of a Q-split torus with a torus T ′, such that T ′(R) is
compact.

Proof. [77, Theorem 5.26]

T ′ in the lemma can be described by T ′ =
⋂
χ∈Hom(T,Gm,Q) ker(χ).

(2.2.2) Definition. Let p be a prime.
A p-integral mixed Shimura datum (p-MSD) X consists of

i. a group scheme PX of type (P ) over S = spec(Z(p)).

ii. a homogeneous space DX under PX(R)UX(C) (UX being determined by PX, see
below)

iii. a PX(R)UX(C)-equivariant finite to one morphism hX : DX → Hom(SC, PX,C),
such that the image consists of admissible morphisms (2.1.4),

subject to the following condition: For (one, hence for all) hx, x ∈ DX,

i. AdP ◦hx induces on Lie(P ) a mixed Hodge structure of type

(−1, 1), (0, 0), (1,−1) (−1, 0), (0,−1) (−1,−1),
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ii. the weight filtration on Lie(PQ) is given by

Wi(Lie(PQ)) =


Lie(PQ) if i ≥ 0,
Lie(WQ) if i = −1,
Lie(UQ) if i = −2,
0 if i < −2,

where WQ is the unipotent radical of PQ and UQ is a central subgroup,

iii. int(π(hx(i))) induces a Cartan involution on Gad(R), where G = P/W ,

iv. Gad(R) possesses no nontrivial factors of compact type that are defined over Q,

v. the center Z of P satisfies the properties of lemma (2.2.1).

X is called pure, if WX = 1. A morphism of p-MSD X → Y is a pair of a homo-
morphism of group schemes PX → PY and a homomorphism DX → DY respecting the
maps h.
We call a morphism an embedding, if the morphism of group schemes is a closed
embedding, and the map DX → DY is injective.
If we have a p-MSD X, then an admissible compact open subgroup of PX(A(∞)) is a
group of the form K(p)PX(Zp), where K(p) is a compact open subgroup of PX(A(∞,p)).

see [83, 2.1] for the rational case.

(2.2.3) Remark. The property (v) in the definition is stated in [loc. cit.] in a weaker
form, namely it is required that the action on W is through a torus of type (2.2.1).
However one checks that the operations on Shimura data performed in [loc. cit.] (bound-
ary components, quotients, etc.) preserve this condition. Furthermore, an embedding
X ↪→ Y where Y satisfies condition (v) immediately implies X satisfy condition (v).
Therefore the Shimura data of Hodge type (2.6.1), predominantly considered here, sat-
isfy condition (v) anyway.

(2.2.4) Definition. A pair KX is called p-integral extended mixed Shimura data
(p-EMSD), where X is p-integral Shimura data, K is an admissible compact open
subgroup of PX(A(∞)).
A morphism of p-EMSD K′Y→ KX is a morphism of p-integral mixed Shimura data
γ : Y→ X and a ρ ∈ PX(A(∞,p)) such that γ(K ′)ρ ⊂ K,
If γ is an automorphism then we call the morphism a Hecke operator. If γ is an
embedding and γ(K1)ρ = K2 ∩ P1(A(∞)), and such that the map

[PY(Q)\DY × (PY(A(∞))/K ′)]→ [PX(Q)\DX × (PX(A(∞))/K)]

is a closed embedding (compare also 2.2.8), then we call the morphism an embedding.
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(2.2.5) Lemma. PX(Q)∩Stab(x, PX(R)UX(C))K is finite for every compact open sub-
group K ⊂ PX(A(∞)) and trivial for sufficiently small K.

Proof. This is a consequence of properties (iii) and (v) in definition (2.2.2).

(2.2.6) Definition. Let M be an integer. Let PX be a group scheme over Z[1/M ] of
type (P ), and DX such that they define rational mixed Shimura data X. For each p -M ,
PX ×Z[1/M ] Z(p) will then define p-integral mixed Shimura data which we equally denote
by X. Let LZ be a lattice, such that there is a faithful representation, i.e. a closed
embedding PX ↪→ GL(LZ[1/M ]).
For each integer N , we define the following compact open subgroup of PX(A(∞)):

K(N) := {g ∈ PX(A(∞)) | gVẐ = VẐ, g ≡ id mod N}.

If p - N then K(N) is admissible.

(2.2.7) Lemma. For each (admissible) compact open subgroup K ⊂ PX(A(∞)), there
is a γ ∈ PX(A(∞)) (resp. ∈ PX(A(∞,p))) such that

P γX ⊆ K(1).

Proof. Follows from [84, Prop. 1.12].

(2.2.8) Lemma. i. For each K1X1 and an embedding α : X1 ↪→ X2, there is an
admissible K2 ⊂ PX2(A(∞)) such that K1X1 ↪→ K2X2 is an embedding (2.2.4).

ii. If K1X1 ↪→ K2X2 is an embedding, and if K2 is neat, then for each K ′2 ⊂ K2, the
map K′2∩PX1 (A(∞))X1 ↪→ K′2X2 is an embedding.

iii. Let PX2 act linearly on a VZ(p) and choose a lattice VZ ⊂ VZ(p). There is an integer
N such that for all (M,p) = 1, N |M , K(M)1X1 ↪→ K(M)2X2 is an embedding.

Proof. (i) Without the attribute ‘admissible’, this is shown in [22, Prop. 1.15] (pure
case) or in [83, 3.8] (mixed case). Difficulties arise, when one weakens condition (v) of
definition (2.2.2). We do not know, whether there exists an admissible compact open
subgroup in that case with this property. With condition (v), we proceed as follows:
Like in [loc. cit.] one is reduced to show that

α : PX1(Q)\DX1 × PX1(A(∞))/K1 → lim←− K2⊃K1
admissible

PX2(Q)\DX2 × (PX2(A(∞))/K2)

is injective. Suppose that this map were not injective, i.e. there are (x, p), (x′, p′) and
sequences pi,Q ∈ PX2(Q), pi,K ∈ K2,i, i ∈ N where the K2,i are decreasing and

⋂
iK2,i =
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K1PX2(Zp):
(x, p) = (pi,Qx′, pi,Qp′pi,K).

Now, the pi,Q are in PX2(Q) ∩ Transp(x, x′)(R) · p′K2,1p
−1. Like in lemma (2.2.5) one

sees that this set is finite. Hence we have some sequence like above, where all pi,Q are
equal. But then also the pi,K are equal and hence lie in

⋂
iK2,i = K1PX2(Zp) Looking

at some l 6= p we see that (pi,Q)l ∈ PX1(Ql), and therefore pi,Q ∈ PX1(Q) and pi,K ∈ K1.
(ii) Suppose

(x, p) = (p2,Qx
′, p2,Qp

′p2,K).

Then there exist p1,Q ∈ PX1(Q), p1,K ∈ K1, such that

(x, p) = (p1,Qx
′, p1,Qp

′p1,K).

as well. Now p−1
1,Qp2,Q = p′(p1,Kp

−1
2,K)(p′)−1 and p−1

1,Qp2,Q stabilize x′.
Hence p′p1,Kp

−1
2,K(p′)−1 lie in a finite subgroup of p′K2(p′)−1∩PX2(Q), so they are equal

(because K2 is neat, hence p′K2(p′)−1).
(iii) For N ′ ≥ 3, p - N ′, K(N ′)2 is neat and admissible. There is by (i) an admissible
compact open subgroup K2 ⊂ K(M ′)2 such that

K(M)1X1 ↪→ K2X2

is an embedding. Now there is a K(N) ⊂ K2, p - N because the K(N) with p - N are
cofinal for admissible compact open subgroups. By (ii), (iii) is satisfied with respect to
this N .

(2.2.9) Theorem. Let X be p-MSD.
There are smooth closed subgroup schemes of PX: WX (the unipotent radical) and UX =
W(W−2(Lie(PX))). There is a smooth group scheme VX = W(gr−1(Lie(PX)) and an
exact sequence

0 // UX // WX // VX // 0.

There is a closed reductive subgroup scheme GX, such that PX = WX o GX. Any two
such subgroup schemes are conjugated by an element in WX(Z(p)).
For a morphism of p-MSD α : X→ Y, we have a diagram

0 // UX //

��

WX //

��

VX //

��

0

0 // UY // WY // VY // 0.

If α is an embedding, the vertical maps are closed embeddings and the outer ones are given
by saturated inclusions (i.e. inducing an inclusion mod p as well) of the corresponding
modules over Z(p). Furthermore, there are closed reductive subgroup schemes GX and
UY of PX and PY, respectively, such that PX = WX oGX, PY = WY oGY, and such
that GX is mapped to GY.
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Proof. (cf. [83, 2.15] for the rational case). By (1.8.6) we have (etale locally: S′ → S)
an isomorphism ∏

r∈RW

W(Lie(WS′)r)→WS′

(for any ordering) induced by the expr and multiplication in W . Hence we can define a
closed subschemes of W by

U :=
∏

r,r◦w=−2
W(Lie(WS′)r)→WS′ .

Its generic fibre is the Abelian unipotent subgroup UQ of WQ [83, 2.15]. Hence the map
is a morphism of group schemes. Now consider the map∏

r,r◦w=−1
W(Lie(WS′)r)→ (W/U)S′ .

Now, since both sides are flat and of finite type over S, the map is an isomorphism,
if it is an isomorphism on geometric fibers. The latter follows like in the proof of
(1.8.6). Since again the generic fibre is the Abelian unipotent group VQ [83, 2.15], it is
an isomorphism of group schemes. Since the filtration Wi(Lie(WS′)) is already defined
over S, one concludes the first statement of the theorem by etale descent, using (1.1.2).
The existence and conjugacy of G’s is stated in (1.8.11).
Now suppose we are given a morphism of p-MSD α : X → Y. It induces a map from
DX to DY. Let x ∈ DX be given and x′ ∈ DY be its image. We have wx = wx′ ◦ α and
wx, resp. wx′ are defined over S because they are central (follows from 1.6.8). Therefore
Lie(α) is strict with respect to the weight filtrations on Lie(PX), resp. Lie(PY).
The diagram exists over Q: We have already α(WX,Q) ⊆ WY,Q because we are in char-
acteristic 0 and the groups are reduced and connected. For the same reason α(UX,Q) ⊆
UY,Q, hence α induces also a map VX,Q → VY,Q. We now get automatically morphisms
for the their closures WX → WY, UX → UY, hence an induced morphism VX → VY as
well.
The maps VX,Q → VY,Q, UX,Q → UY,Q are given by linear maps, hence this is au-
tomatically true for their extensions to S. If we have a closed embedding, the re-
striction to the closed subgroups WX and UX has to be a closed embedding as well.
The morphism VX → VY is a closed embedding, too, because Lie of it has to be
gr2(Lie(PX)) ↪→ gr2(Lie(PY)) and it is a saturated inclusion because we have the Carte-
sian diagram

W−2(Lie(PX)) � � //
� _

��

W−1(Lie(PX))� _

��
W−2(Lie(PY)) � � // W−1(Lie(PY))

of saturated inclusions.

(2.2.10) Definition/Theorem. Let X be p-MSD. We have the following converse to
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(2.2.9):
Given two Z(p)-modules V and U acted on by PX with non-degenerate invariant sym-
plectic form Ψ : V × V → U (i.e. inducing an isomorphism V ' V ∗) This defines a
group scheme W0 sitting in an exact sequence:

0 // U0 // W0 // V0 // 0,

where U0 := W(U) and V0 := W(V ). By the action of PX we may form a semi-direct
product PX′ := W0 o PX. Assume that every subquotient of Lie(W0,R) is of type

{(−1, 0), (0,−1)} or {(−1,−1)}.

Define DX′ as

{(x, k) ∈ DX ×Hom(SC, P ′C) | hx = φ ◦ k;π′ ◦ k : SC → (P ′/U ′)C is defined over R}.

X′ is p-MSD, called a unipotent extension of X, denoted by X[U, V ].
DX′ → DX it a torsor under W0(R)(W0 ∩ UX′)(C).
We have X[U, V ]/W0 ' X.

Proof. See [83, 2.16] for the rational case. That PX′ is of type (P ) follows from the
construction.

Theorem (2.2.9) may be reformulated as follows. Every p-MSD satisfies

X ' (X/WX)[Lie(UX),Lie(VX)],

the symplectic form and action of GX being determined by X.

2.3. Mixed Hodge structures continued

Let X be a mixed Shimura datum.

(2.3.1) Definition. Let B be an analytic Deligne-Mumford stack, ρ : PX,Q ↪→ GL(LQ)
be a faithful representation of PX,Q. We define

[ B-X-L-mhs’ ]

as the set of families of rational mixed Hodge structures (2.1.1) on (LQ)B such that
point-wise the associated morphism h factors via ρ and is of the form hx, x ∈ DX.

(2.3.2) Definition. For ux, x ∈ DX consider t′ = ftype(ux) ∈ FT YPE(C). It is
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independent of the chosen x ∈ DX. We define

[ B-X-L-filt ]

as the set of filtrations on LQ ⊗Q OB of type t′.

(2.3.3) Theorem.
B 7→ [ B-X-L-mhs ]

is isomorphic to h(DX), where the complex structure is given by the morphism (Borel
embedding)

[ B-X-L-mhs’ ]→ [ B-X-L-filt ].

It is an open embedding and an isomorphism, if GX,Q is a torus.

(2.3.4) Definition. We define also a

B 7→ [ B-X-L-mhs ]

as above but additionally with a morphism B → DX, giving back via h the morphism
determined by the previous theorem.

It is (tautologically) represented by DX equipped with the complex structure determined
by the covering hX.

(2.3.5) Definition. The groupoid

[ B-X-L-loc-mhs ]

is the category of families (over B) of rational mixed Hodge structuresM,W•(M), F •(M)
(2.1.1), where M is equipped with a (PX(Q), LQ)-structure α, such that locally where
there is an isomorphism β in the associated PX(Q)-torsor (1.7.1), the pullback of the
family of mixed Hodge structures via β is in

[ B-X-L-mhs ]

(2.3.4).
Morphisms are isomorphisms of local systems, respecting (PX(Q), LQ)-structures and the
family of mixed Hodge structures.

(2.3.6) Definition. The groupoid

[ B-KX-L-loc-mhs ]
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is the category of data as above, where in addition we have a K-level-structure, i.e. a
section ξ of the quotient sheaf

Iso(LA(∞) ,M ⊗Q A(∞))/K.

Morphisms are isomorphisms as above, respecting K-level-structures.

(2.3.7) Theorem.
B 7→ [ B-X-L-filt ]

is isomorphic to (PX,C/QC)an, where Q = qpar(ux) is the stabilizer of a Hodge filtration
associated with some hx, x ∈ DX. (PX,C/QC)an is the analytic manifold associated with
the fibre of type over type(Q).

Proof. This will be proven in the algebraic context in (3.2.2). The proof in the analytic
case is analogous.

2.4. Boundary components

(2.4.1) Definition. Let X be (rational) mixed Shimura data. For GX,Q := PX,Q/WX,Q
every Q-parabolic subgroup of PX,Q is the inverse image of a Q-parabolic subgroup of
GadX,Q. Let GadX,Q = G1,Q × · · ·Gr,Q be the decomposition into Q-simple factors. Choose
Q-parabolic subgroup Qi,Q ⊆ Gi,Q for every i and let QQ be the inverse image of Q1,Q ×
· · ·Qr,Q in PX,Q. We call QQ an admissible Q-parabolic subgroup of PX,Q, if every Qi,Q
is either equal to Gi,Q or a maximal proper Q-parabolic subgroup of Gi,Q.

(2.4.2) Lemma. If X is p-integral mixed Shimura data, and QQ a parabolic subgroup
of PX,Q, then there is a parabolic subgroup scheme Q of PX (1.9.3), such that QQ =
Q×S spec(Q).

Proof. According to (1.9.6) the functor of parabolic subgroups for PX is representable
by a projective scheme PAR over S. Hence PAR(Z(p)) = PAR(Q).

(2.4.3) Let S be a maximal R-split torus of GR. Let R be the root system of S (acting
on Lie(Gad)). The irreducible components of R are of type (C) or (BC) [23, Corollaire
3.1.7]. In every irreducible component, the set of long roots [loc. cit.] {α1, . . . , αg}
forms an ordered set of mutually orthogonal roots. A maximal proper R-parabolic of
the corresponding R-simple factor is determined by a homomorphism λ : Gm,R ↪→ S,
where

〈λ, αi〉 =
{

2 i ≤ s,
0 i > s.
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The parabolic is defined over Q, iff the corresponding cocharacter can be defined over
Q. It is a defining cocharacter for the parabolic QQ in the sense of (1.9.4), i.e. we have
QQ = par(λ).

(2.4.4) Theorem. Let QQ be a Q-parabolic subgroup of PX,Q. Let π′ be the projection
PX → PX/UX. The following are equivalent:

i. QQ is admissible

ii. For every x ∈ DX there is a unique homomorphism

ωx : H0,C → PX,C

such that

a) π′ ◦ ωx : H0,C is already defined over R,

b) hx = ωx ◦ h0,

c) ωx◦h∞◦w : Gm → QC is of the form µ·λ, where λ is the morphism constructed
in (2.4.3), µ = hx ◦w and Lie(QC) is the direct sum of all nonnegative weight
spaces in Lie(PX,C) under AdP ◦ωx ◦ h∞ ◦ w.

iii. There exists an x ∈ DX and a homomorphism ωx such that the three conditions in
ii. are satisfied.

Proof. [83, Prop. 4.6]. There, it is claimed that λ in (c) has to be of the form described
in [loc. cit., 4.1]. This has to be corrected as above. Furthermore the morphism λ1 in
the proof of [loc. cit., 4.6], defined in [2, Theorem 2, p.205], is the morphism Gm → H1,

α 7→ (1,
(
α

α−1

)
). λ is only conjugated within its corresponding Borel of H1 to h∞◦w

of [loc. cit., 4.2]. Hence both cocharacters ωx ◦ h∞ ◦ w and ωx ◦ λ1, when projected to
Gad, define the projection of QC. The second, however, is defined over Q. There is a
lift of λ1, i.e. λ as in 2.4.3, to Gder because it extends to a morphism of SL2 (which is
algebraically simply connected).

If PX is reductive. Q corresponds to a boundary component in the sense of [2, III, p.
220, no. 2]. The morphism ωx ◦ h∞ is independent of the choice h0.

(2.4.5) Definition/Theorem. Assume that X is p-MSD. Choose an admissible QQ as
above. We will define mixed Shimura data B as follows:
Let PB,Q be the smallest normal Q-subgroup of Q, such that ωx ◦ h∞ factorizes through
it.
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Consider the map

DX → π0(DX)×Hom(SC, PB,C) (1)
x 7→ [x], ωx ◦ h∞

Choose a PB(R)UB(C)-orbit DB containing an ([x], ωx ◦ h∞) in the above image. The
image is contained in the union of finitely many such. Each DB is a finite covering of the
corresponding PB(R)UB(C)-orbit h(DB) in Hom(SC, PB,C). Let DB=⇒X be the inverse
image1 of DB by the map (1).
The closure PB of PB,Q in PX is of type (P ) and hence B is p-integral mixed Shimura
data and called a boundary component of B. It is called proper, if Q is a proper
parabolic, otherwise improper.
A boundary map B =⇒ X consists of a closed embedding PB ↪→ PX, whose image is
one of the groups defined above, and an PB(R)UB(C)-equivariant isomorphism of DB
with the spaces above.

For eachQ there are finitely many choices of DB’s, and accordingly, finitely many rational
boundary components.

Proof. According to (2.4.2) there is a parabolic subgroup scheme Q of PX, whose generic
fibre is QQ. It is closed by (1.9.4). Let WX oGX a decomposition of PX into reductive
(resp. normal unipotent) closed subgroup schemes, which exists by (1.8.11). Q is of
the form WX o Q′, for a parabolic Q′ of GX, and of type (P ) by (1.9.6). GB,Q ∩ Q′Q
is normal in GX,Q, hence its closure GB is reductive (1.6.9). The unipotent radical of
PB,Q is WB,Q = PB,Q ∩WQ,Q = exp(W−1(Lie(WQ,Q))) [83, proof of lemma 4.8, p. 77],
W−1(Lie(WQ,Q)) is the union of the Lie(WQ)r such that r ◦ w = −1. There exist closed
embeddings expr : W(Lie(WQ))r → WQ, by definition of type (P ). Since the product
over all closed embeddings expr, r ∈ RWQ

is an isomorphism onto WQ (in any order —
1.8.6), the product map ∏

r∈RWQ ,r◦w=−1
W(Lie(WQ)r)→WQ

is a closed embedding. The generic fibre of this embedded subschemeWB is the subgroup
WB,Q, hence WB which must be the closure of WB,Q is a subgroup scheme. Since PB,Q
is the semi-direct product of PB,Q ∩ Q′Q and PB,Q ∩WX,Q = exp(W−1(Lie(QQ))) [loc.
cit.], the semi-direct product WB oGB is the closure of PB,Q. Claim: It is of type (P ).
It remains to show on the one hand that we can ‘group together’ the closed embeddings
expr for roots that become the same root r′ for PB,Q. But for them we have already a
closed embedding ∏

r,r 7→r′
W(Lie(WB)r)→WB.

1in [83], this is called X+
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The generic fibre of the embedded subscheme is a commutative group [loc. cit.], so the
morphism has to be a morphism of group schemes. On the other hand, we have to show
that there is a decomposition RPB,Q = RWB,Q∪̇RGB,Q , and pairs of roots in RPB,Q×RWB,Q

are pairwise linearly independent, but it suffices to check this over C, where we have some
morphism hx : S → T ⊂ PB,Q and h∗x(ri) ∈ {(−1, 0), (0,−1), (−2,−2)} for r ∈ RWB,Q

and h∗x(ri) ∈ {(−1, 1), (0, 0), (1,−1)} for r ∈ RGB,Q . Hence the two set are disjoint and
two different ri can only be linearly dependent if they are both in RGB,Q .

(2.4.6) Definition. There is a functorial map, called projection on the imaginary
part,

im : DX → UX(R)(−1) x 7→ ux,

where ux is the unique element, such that int(u−1
x ) ◦ hx is defined over R.

cf. [83, 4.14].

(2.4.7) Theorem. If B is a p-integral boundary component of X, and α : X→ X′ is a
morphism, there is a unique p-integral boundary component B′ of X′ and a corresponding
map α̃ : B→ B′. If α is an embedding, α̃ either.

Proof. [83, 4.16]

(2.4.8) Theorem. i. Let DB=⇒X be as in definition (2.4.5). Let D0
X be a connected

component of DB=⇒X and D0
B be corresponding component of DB. Then

a) The map DB=⇒X → DB is an open embedding.

b) The image of D0
X in D0

B is the inverse image of an open complex cone C :=
C(D0

X, PB) ∈ UB(R)(−1) under the map im |D0
B

c) The cone is an orbit in UB(R)(−1) under translation by UX(R)(−1) and
conjugation by Q(R)◦.

It is also invariant under translation by (UB ∩WX)(R)(−1).

d) Modulo (UB ∩WX)(R)(−1) the cone C is a non-degenerate homogeneous self
adjoint cone (in the sense of [2, II, p. 57, §1.1]).

ii. Consider a morphism of Shimura data ι : X → X′. For each rational boundary
component B of X there is a unique boundary component B′ of X′ and a morphism
ι̃ : B→ B′ such that

DB=⇒X
ι //

� _

��

DB′=⇒X′� _

��
DB

ι̃ // DB′
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commutes.

iii. Each boundary component B′ of B is naturally a boundary component of X. This
defines a partial order on the set of boundary components of X.

Proof. [83, 4.15, 4.16]

(2.4.9) Definition. Let B1 be a rational boundary component of X and D0
X be a con-

nected component of DB1=⇒X. Let C∗(D0
X, PB1) ⊂ UB1(R)(−1) denote the union of the

cones C(D0
X, PB2) for all rational boundary components B2 such that B1 =⇒ B2 =⇒ X.

It is a convex cone. The following quotient

CX :=
∐

(D0
X,PB1 )

C∗(D0
X, PB1)/ ∼

by the equivalence relation generated by the graph of all embeddings C∗(D0
X, PB2) ↪→

C∗(D0
X, PB1) for B1 =⇒ B2 =⇒ X. It is called the conical complex associated with

X.

cf. [83, 4.24].
Consider the set

CX × PX(A(∞)).

PX(Q) acts on this from the left by conjugation of boundary components [83, 4.23] and
on PX(A(∞)) by left multiplication. PX(A(∞)) acts via multiplication on the right on
the second factor. These actions are denoted by p· and ·p respectively. Furthermore
PX(A(∞)) acts on the second factor through left multiplication. This action is denoted
by pf ·.
Let a set ∆ of subsets of CX × PX(A(∞)) be given, such that every σ ∈ ∆ is contained
in some C(D0

X, PB) × ρ. We denote by ∆(D0
X, PB, ρ) the subset of σ ∈ ∆, such that

σ ⊂ C(D0
X, PB)× ρ.

(2.4.10) Definition. ∆ is called (finite) K-admissible (partial) rational polyhe-
dral cone decomposition for X, if

i. For each D0
X,B and ρ, ∆(D0

X, PB, ρ) is a (partial) rational polyhedral cone decom-
position of the closure of C(D0

X, PB) × ρ. We understand a cone as open in
its closure2.

ii. ∆ is invariant under right multiplication by K and under left multiplication by
PX(Q) (with finite quotient PX(Q)\∆/K).

2Hence our cones correspond to the interiors of cones in [83]
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iii. For each B the set
⋃
ρ∈PX(A(∞)) ∆(D0

X, PB, ρ) is invariant under left multiplication
by PB(A(∞)).

It is called complete, if in (i) ∆(D0
X, PB, ρ) is a complete rational polyhedral cone de-

composition.
It is called projective, if on each ∆(D0

X, PB, ρ) there exists a polarization function ([2,
IV, §2.1], cf. [27, IV, 2.4]).

The condition (iii) is called the arithmeticity condition. Without it, the compactification
exists over C but may not descend to the reflex field or a reflex ring.
Let K be an (admissible) compact open subgroup of PX(A(∞)). For some fixed D0

X, B
and ρ, we let ΓU ⊂ UB be the image of

({z ∈ Z(PX(Q)) | z|DX = id}UB(Q)) ∩ ρK).

We call ∆ smooth with respect to K, if for all D0
X, B and ρ, as above, ∆(D0, PB, ρ) is

smooth with respect to the lattice ΓU .

(2.4.11) Definition. A triple K∆X is called p-integral extended compactified mixed
Shimura data (p-ECMSD), where everything is as in definition (2.2.4), but ∆ is in
addition a K-admissible (partial) rational polyhedral cone decomposition.
Morphisms of p-ECMSD have to satisfy the property that for each σ1 ∈ ∆1 there is
a σ2 ∈ ∆2 with γ(σ1)ρ ⊂ σ2.
Let K∆X be p-ECMSD, and [α, ρ] : K′Y → KX be a morphism of p-EMSD, such that α
is a closed embedding.
Set [α, ρ]∗∆ to be the set of all cones {(u, ρ′) | (α(u), α(ρ′)ρ) ∈ σ} for all σ ∈ ∆. This
is a K ′-admissible rational partial cone decomposition for Y. It is finite, resp. complete,
resp. projective if ∆ is finite, resp. complete, resp. projective.
This association is functorial. If [α, ρ] was an embedding (this includes a condition on
K,K ′, see 2.2.4), we call K′∆′Y→ K

∆X an embedding.

cf. [83, 6.5] for the special case of an automorphism of X or a Hecke operator.
Be aware that, in general, smoothness is not inherited by [α, ρ]∗∆.

(2.4.12) Theorem. Let X be p-MSD. Let K be an admissible compact open.

i. K-admissible (complete) rational polyhedral cone decompositions for X exist.

ii. If ∆ is a K-admissible rational polyhedral cone decomposition for X, there is a
smooth and projective refinement ∆′. Any refinement of ∆′ will be projective again.

iii. If ∆i, i = 1, 2 are 2 rational polyhedral cone decompositions for X, there is a
common refinement ∆ (supported on the intersection of their supports).
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iv. If α : X→ X′ is an embedding and ρ ∈ PX′(A(∞,p)) is given, there is K ′ such that
we have an embedding [α, ρ] : KX → K′X′, a K ′-admissible rational polyhedral
smooth and projective cone decomposition ∆′ for X′, with the property that ∆ :=
[α, ρ]∗∆′ is smooth and projective. For every smooth refinement of ∆̃ of ∆, there
is a smooth refinement ∆̃′ of ∆′ with ∆̃ := [α, ρ]∗∆̃′.

Proof. (i)-(iii) is shown in [83], proofs can also be found in [48], [2] (cf. also [27, p. 97]
for the case X = Hg). We give a sketch of a proof of (iii): K ′ can be chosen small
enough, such that [α, ρ] induces an embedding

PX(Q)\CX × PX(A(∞))/K → PX′(Q)\CX′ × PX′(A(∞))/K ′.

Locally the map looks like an embedding UB,R ⊂ UB′,R, for compatible boundary com-
ponents B =⇒ X and B′ =⇒ X′, and we may cut all cones of some smooth projective
K ′-admissible rational polyhedral cone decomposition ∆ with these linear subspaces.
This creates a new K ′-admissible rational polyhedral cone decomposition ∆′ containing
the remaining pieces, as well as the cutted ones, supported on CX. ∆′ will not be smooth,
of course, but there will be a smooth refinement ∆′′. Because ∆′′ is a refinement of ∆′,
∆′′′ := [α, ρ]∗∆′′ will also be smooth. By induction on the codimension of CX in CX′ ,
we see that any (smooth) refinement of ∆′′′ can be extended to a (smooth) refinement
of ∆′′, by cutting out appropriate simplices.

(2.4.13) Definition. Let K∆X be p-ECMSD, and ι : B =⇒ X a boundary map. For any
ρ ∈ PX(A(∞)), we define K ′ := PB(A(∞)) ∩ ρK, write

(ι, ρ) : K′∆′B =⇒ K
∆X

and call this a boundary component of (or boundary morphism to) the p-ECMSD K
∆X.

∆′ is defined as ([ι, ρ]∗∆)|B, where restriction is characterized by

∆|B1(D0
B1 , PB2 , ρ1) = ∆(D0

X, PB2 , ρ1)

for all ρ1 ∈ PB1(A(∞)), every boundary map B2 =⇒ B1 and every pair of connected
components D0

X and D0
B1

such that D0
X ↪→ D0

B1
↪→ DB2. ∆′ in general inherits neither

completeness nor finiteness. It is K ′-admissible.
We call two boundary components

(ι′, ρ′) : K′∆′B′ =⇒ K
∆X

and
(ι′′, ρ′′) : K′′∆′′B′′ =⇒ K

∆X

equivalent, if (the images of) B′ and B′′ are conjugated via α ∈ PX(Q) and

αρ′ ∈ StabQ(Q)(DB)PB(A(∞))ρ′′K.
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(Here Q is the parabolic defining B.) In an equivalence class, we may assume ρ ∈
PX(A(∞,p)).

cf. [83, 6.5].

(2.4.14) Definition. Let K∆X be p-ECMSD. Define ∆0 as the set of all σ ∈ ∆, such that
σ ⊂ C(D0

X, PB)× PX(A(∞)) for some improper rational boundary component B =⇒ X.
We say that ∆ is concentrated in the unipotent fibre, if ∆ = ∆◦.

2.5. The symplectic mixed Shimura data
(2.5.1) Let S be a scheme. Let L be a locally free sheaf on S with non-degenerate
alternating form 〈v, w〉 = Ψ(v, w), i.e. satisfying 〈v, v〉 = 0 and such that the induced
homomorphism L→ L∗ is an isomorphism.
Let us assume first that L is nonzero. Define the following group functors

Sp(L)(S′) := {γ ∈ GL(L⊗OS′) | 〈γv, γv〉 = 〈v, v〉},
GSp(L)(S′) := {γ ∈ GL(L⊗OS′) | 〈γv, γv〉 = λ(γ)〈v, v〉 for a λ(γ) ∈ H0(S′,O∗S′)}.

They are representable, reductive and called the symplectic group, resp. the group
of symplectic similitudes of L. λ defines a homomorphism GSp(L)→ Gm,S .
There is an exact sequence

0 // Sp(L) // GSp(L) λ // Gm
// 0.

Let ρ denote the standard representation of GSp(L) on L.
The Lie algebra of Sp(L) is identified with

Lie(Sp(L)) = (L⊗ L)s

in the way that X = v ⊗ w acts as

v 7→ XΨz := 〈v, z〉w.

We define p-integral pure Shimura data Hg associated with L (it depends, up to isomor-
phism, only on the rank 2g of L) by PHg := GSp(L) and by DHg to be the conjugacy
class of morphisms h : S → GSp(LR), such that they give pure Hodge structures of
type (−1, 0), (0,−1) on LC and which are polarized, i.e. such that the form 〈·, h(i)·〉 is
symmetric and (positive or negative) definite.
If L is the zero sheaf on S we simply define Sp(L) := 1 and GSp(L) := Gm,S . And
we let DH0 be the 2 point set of isomorphisms Z → Z(1) with the nontrivial action of
Gm(R). This defines a (p-integral) Shimura datum H0. Let us understand the morphism
λ : GSp(0)→ Gm be the identity.
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(2.5.2) Let L0 be a locally free sheaf on S as before (possibly 0).
Let I be another locally free sheaf on S (also possibly 0) with actions of GSp(L0) given
by λ acting by scalars. Let I∗ be the dual with trivial action of GSp(L0). We define the
semi-direct product

PSp(L0, I) := W(L0 ⊗ I) o GSp(L0).

It is of type (P ).
It acts on L := L0 ⊕ I∗ as follows: The action of GSp is given by the standard repre-
sentation on L0 and trivial action on I∗, X = v′ ⊗ u′ ∈ L0 ⊗ I acts considered as Lie
algebra via

X(v, u∗) = ((u∗u)v′, 0).

W(L0 ⊗ I) acts then via the exponential exp(X)(v, u∗) = (v, u∗) + X(v, u∗). In this
case this works even over spec(Z). This is compatible with the structure of semi-direct
product.
The action fixes a weight filtration

Wi(L0 ⊕ I∗) :=


0 i ≤ −2
L0 i = −1
L0 ⊕ I∗ i ≥ 0.

We have the unipotent extension Hg0 [0, I⊗L0] of the p-integral pure Shimura data Hg0 .
Its underlying P is PSp(L0, I). Its underlying D (if g 6= 0 may be identified with the
conjugacy class of morphisms h : S → PSp(L0,R, IR), such that they give mixed Hodge
structures of type (−1, 0), (0,−1), (0, 0) with respect to the weight filtration W , such
that on W−1 they are polarized.
(Of course PSp(0, I) = GSp(0) and PSp(L0, 0) = GSp(L0)).

(2.5.3) Let I, L0 be as before (possibly 0).
Consider the following extension of Abelian unipotent groups

0 // W((I ⊗ I)s) // WSp // W(L0 ⊗ I) // 0

defined (if 2 is invertible in S) by the following group law (on W((I ⊗ I)s ⊕ L0 ⊗ I)):

(u1u2, vu3)(u′1u′2, v′u′3) = (u1u2 + u′1u
′
2+1

2〈v,v
′〉(u3u′3 + u′3u3), vu3 + v′u′3).

There is an action of GSp(L0) on WSp given by λ acting on (I ⊗ I)s by scalars and
standard representation tensored with the trivial one on L0 ⊗ I.
We define the semi-direct product

USp(L0, I) := WSpoGSp(L0).

It is again of type (P ).
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Denote I := I ⊕ I∗. Choose on L0 ⊕ I the symplectic form

〈v1, u1, u
∗
1; v2, u2, u

∗
2〉 := 〈v1, v2〉+ u∗2u1 − u∗1u2.

We define an action of USp(L0, I) on L := L0 ⊕ I as follows: The action of GSp(L0) is
given by the standard representation on L0, trivial representation on I∗ and λ acting by
scalars on I. X = v′ ⊗ u′ ∈ L0 ⊗ I) acts as Lie algebra via

X(v, u, u∗) = ((u∗u′)v′, 〈v′, v〉u′, 0)

and X = u1 ⊗ u2 ∈ I ⊗ I acts by

X(v, u, u∗) = (0, (u∗u1)u2, 0)

and W(· · · ) acts via the exponential exp(X)(v, u∗) = (v, u∗) + X(v, u∗) + 1
2X

2(v, u∗).
This is compatible with the group structure given above3.
If 2 is not invertible in S we assume that there is an isomorphism L0 ∼= L00 ⊕ L∗00, such
that the alternating form is given by the standard one. In this case we let the groups
W(L00 ⊗ I), W(L∗00 ⊗ I) and W((I ⊗ I)s) acts as above via exponential (it terminates
after the second step). One checks that

W((I ⊗ I)s)×W(L00 ⊗ I)×W(L∗00 ⊗ I)→ GSp(L)

is a closed embedding onto a subgroup scheme. Explicitly the group law is given by

(X1, X2, X3)(X ′1, X ′2, X ′3) = (X1 +X ′1+〈X3,X′2〉 − 〈X′2,X3〉, X2 +X ′2, X3 +X ′3).

(here 〈X ′2, X3〉 = −(〈X3, X
′
2〉)s, hence the expression is symmetric). If dim(I) = 1 and

2 = 0 in S, then this group is commutative.
This is in any case compatible with the structure of semi-direct product. The action
fixes a weight filtration

Wi(L) :=


0 i ≤ −3
I i = −2
L0 ⊕ I i = −1
L i ≥ 0

We have the unipotent extension Hg0 [(I⊗I)s, I⊗L0] of the p-integral pure Shimura data
Hg0 . Its underlying P is USp(L0, I). Its underlying D (if g 6= 0 may be identified with

3The commutator of all elements except two from L0 ⊗ I is zero, there it is

[u1v1, u2v2] = 〈v1, v2〉(u1u2 + u2u1)

From
exp(A) exp(B) ≡ exp(A+B + 1

2 [A,B]) mod deg 2

follows that the given representation is compatible with the foregoing definition of multiplication in
WSp.
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the conjugacy class of morphisms h : S→ USp(L0,R, IR), such that they give (polarized)
mixed Hodge structures on LR of type (−1,−1), (−1, 0), (0,−1), (0, 0) with respect to
the weight filtration above.
The action of USp(L0, I) on L = L0 ⊕ I defined above induces a closed embedding

USp(L0, I) ↪→ GSp(L).

The image is precisely the subgroup scheme fixing the weight filtration and I∗ = gr0(L0⊕
I) point-wise.
For any saturated submodule U ′ ⊆ (I ⊗ I)s we may define in addition the p-integral
mixed Shimura data

Hg0 [(I ⊗ I)s, I ⊗ L0]/W(U ′).

Note that any of the p-integral mixed Shimura data in this section is of this form, which
we call Shimura data of symplectic type.

(2.5.4) Theorem. For each 0 ≤ g0 ≤ g, isotropic I ⊂ L of dimension g − g0, and
choice of splitting L ∼= L0⊕I (where I = I∗⊕I, as usual, with natural symplectic form),
there is a boundary morphism

Hg0 [(I ⊗ I)s, I ⊗ L0] =⇒ Hg.

These exhaust the (equivalence classes of) p-integral boundary components of Hg.

The boundary map, however, depends on the choice of a splitting L = L0 ⊕ I ⊕ I∗.

Proof. If g = 0 there is nothing to show, otherwise every boundary component (i.e. every
proper maximal parabolic subgroup Q) is the stabilizer of a proper isotropic subspace
I ⊂ L. This is seen as follows:
It suffices to see this for the symplectic group (because there is a 1:1 correspondence).
Choose a decomposition L = L+⊕L∗+ and a basis v1, . . . , vg of L+ such that a maximal
torus of P , which is split, acts diagonally with respect to this basis. The torus is then a
Gg
m acting by vi 7→ λivi and v∗i 7→ λ−1

i v∗i . A set of roots is given by

ri,i : λ2
i < vi ⊗ vi > # = g

ri,j : λiλj < vi ⊗ vj + vj ⊗ vi > i < j # = g(g − 1)/2
rji : λiλ

−1
j < vi ⊗ v∗j + v∗j ⊗ vi > i < j # = g(g − 1)/2

−ri,i : λ−2
i < v∗i ⊗ v∗i > # = g

−ri,j : (λiλj)−1 < v∗i ⊗ v∗j + v∗j ⊗ v∗i > i < j # = g(g − 1)/2
−rji : λ−1

i λj < v∗i ⊗ vj + vj ⊗ v∗i > i < j # = g(g − 1)/2

These are 2g2 roots in total. A set of simple roots is given e.g. by ri+1
i , i = 1, . . . , g − 1

and rg,g. This set induces the decomposition into negative and positive roots as in the
table.
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A maximal parabolic proper subgroup scheme P , up to conjugation (etale locally) is
given by a maximal proper subset of this (see 1.9.4) set of simple roots. An associated
filtration is given by

0 ⊂ I ⊂ L,

where I = L+, if rg,g is the missing root, and

0 ⊂ I ⊂ I⊥ ⊂ L

for I =< v1, . . . , vi >, if ri+1
i is the missing root.

The unipotent radical of P in this case shifts the filtration by at least 1 and it is given
by the group extension

0 // W((I ⊗ I)s) // WSp // W(I⊥/I ⊗ I) // 0,

as above. G := P/W acts faithfully on grW (L) and is an almost direct product

G = GL(I) ·GSp(I⊥/I)

(only a µ2,S is contained in both groups). Here GSp(I⊥/I) acts on I by λ and trivial
on I∗ (this choice is arbitrary at this point, otherwise one gets a different decomposition
as almost direct product). This is also true for the case I = L+ with our convention
GSp(0) = Gm.
Here GL(I) acts on I∗ by the representation contragredient to the standard one. Any
splitting L = L0 ⊕ I ⊕ I∗ defines a subgroup of P of this kind. Choose such.
Let B be the boundary component associated with I. The subgroup π−1(GSp(I⊥/I))
is normal and it is the smallest such that (over R) all morphisms ωx ◦ h∞ for x ∈ DB
factor through it. Hence PB ' USp(L0, I).
The group GSp(L0) acts transitively on π0(DHg) = DH0 . However, if I 6= L+, there are
2 orbits in

π0(DHg)×Hom(SC, PB,C)

containing ([x], ωx ◦ h∞) for an x ∈ DHg . DB in this case is the DHg0 [(I⊗I)s,I⊗L0] ⊂
Hom(SC, PB,C) constructed above.
In the case I = L+, there is only one orbit in

π0(DHg)×Hom(SC, PB,C)

because Gm(R) acts (by conjugation) trivial on the second factor.
h(DB) ⊂ Hom(SC, PB,C) in this case is isomorphic to (I ⊗ I)sC (via choice of a base
point I∗ ∈ M∨(B)(R) and the image of DHg consists of those elements whose imaginary
part is definite. This defines an isomorphism of π0(DHg) with the set of isomorphisms
α : Z→ Z(1), i.e. with DH0 . (Note that the sign of definiteness does not depend on the
choice of I ′ nor I, but only on 〈·, ·〉). Other viewpoint: α(1) is such that 〈·;h(α(1))·〉 is
positive definite.
Hence DB ∼= DHg0 [(I⊗I)s,I⊗L0] as constructed above.
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(2.5.5) Corollary. Every boundary component of (p-integral) mixed Shimura data of
symplectic type is again of symplectic type.

Proof. Follows from the foregoing by the hereditary nature of boundary components.

(2.5.6) We have quotient maps of mixed Shimura data:

Hg0 [(I ⊗ I)s, I ⊗ L0]→ Hg0 [0, I ⊗ L0]→ Hg0 .

The first gives an isomorphism

Hg0 [(I ⊗ I)s, I ⊗ L0]/U ' Hg0 [0, I ⊗ L0]

(where U = W((I ⊗ I)s)), and the second gives an isomorphism

Hg0 [0, I ⊗ L0]/W ' Hg0 ,

(where W = V = W(I ⊗ L0)).

(2.5.7) Lemma. Let S be a scheme and M a locally free sheaf on S.

i. A (GSp(L), L)-structure on M is a non-degenerate symplectic form on M (i.e.
inducing M ∼= M∗) up to multiplication by H0(S,O∗S)

ii. A (PSp(L0, I), L)-structure on M is a saturated filtration

W0 = M ⊃W−1 ⊃W−2 = 0

with non-degenerate symplectic form on W−1 up to multiplication by H0(S,O∗S)
and an isomorphism α : W/W−1 ∼= I∗.

iii. A (USp(L0, I), L)-structure on M is a non-degenerate symplectic form on M up
to multiplication by H0(S,O∗S), a saturated filtration

W0 = M ⊃W−1 ⊃W−2 ⊃W−3 = 0

such that W−2 is isotropic and W−1 = (W−2)⊥, and an isomorphism α : W/W−1 ∼=
I∗.

Proof. i. is easy.
ii. Obviously L = L0 ⊕ I∗ carriers such a structure. Conversely let a module M with
filtration and structure as above be given. Then there is an isomorphism extending α:
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µ : M → L0 ⊕ I∗, such that µ maps (W−1) onto L0 and is a symplectic similitude. The
isomorphisms of such a structure (transported via µ) are given by PSp(L0, I) acting on
L.
iii. Obviously L = L0 ⊕ I carriers such a structure. Conversely let a symplectic module
M with filtration be given. One finds a symplectic similitude µ : M → L, extending α,
such that µ maps (W−1) onto L0⊕I. W−2 has to be mapped automatically to I and the
isomorphism is determined by µ. The isomorphisms of such a structure (transported via
µ) are given by USp(L0, I) acting on L.

Similar statements are true for a (GSp(L)(R), LR) (resp. . . . ) structure on a local system.

(2.5.8) Assume, we have an embedding as in (2.2.9), i.e. a group scheme PX = WX o
GX of type (P ), a closed embedding PX ↪→ USp(L0,Z(p) , IZ(p)) which induces a closed
embedding G ↪→ GSp(L0,Z(p)) and a diagram

0 // W(U) = UX //
� _

��

WX //
� _

��

VX = W(V ) //
� _

��

0

0 // W((I ⊗ I)sZ(p)
) // WSp // W((I ⊗ L0)Z(p)) // 0

(2)

The subgroup scheme GX is mapped to a conjugate of GSp by an element of WSp(Z(p)).
In our application we may conjugate the whole embedding by this element and hence
assume that GX is embedded into GSp(L0) (1.8.11). We consider the group scheme
WSp as closed subscheme of GSp(L) ⊆ GL(L), where L = L0 ⊕ I, as usual.
Claim: Under these circumstances the image of WX is uniquely determined by the
sublattices U ⊂ (I ⊗ I)s and V ⊂ L0 ⊗ I. Indeed, it suffices to check this over C: Let
hx, x ∈ DX be a morphism factorizing through GX(R). Now WX(C) is generated by the
following 3 groups:
1. F 0(WX(C)) := Stab(h,WX(C)). We call its projection, which is isomorphic to it,
F 0(VX(C)).
2. the complex conjugate F 0(WX(C)).
3. UX(C).
However F 0(WX(C)) ⊂ F 0(WSp(C)), hence it is uniquely determined
(as lift of F 0(VX(C))).
In other words, the exponentials of VC considered as subset of (L0 ⊗ I)C = (I ⊗ L0 ⊕
L0 ⊗ I)sC lie in WX(C).
We will construct a diagram of group schemes over Z(p) of the form:

0 // W(Ũ) = ŨX� _

��

// W̃X� _

��

// VX ⊕ VX = W(V ⊕ V )� _

��

// 0

0 // W((I ⊗ I)Z(p)) // W̃Sp // W((I ⊗ L0)Z(p))⊕W((L0 ⊗ I)Z(p)) // 0

(3)
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where again the outer inclusions are given by saturated inclusions of the corresponding
modules. W̃Sp is constructed as a group scheme over spec(Z) such that its Z-points — if
there is a Hodge structure on L0 — give an extension with corresponds via (4.2.3) to the
I ⊗ I-Poincaré biextension (see also 4.2.6). It can be constructed as a subgroup scheme
of GL(L) by exponentials as well, if I⊗L0, L0⊗ I and I⊗ I are considered as subsets of
L⊗ L identified with End(L) = Lie(GL(L)) via contraction with the symplectic forms.
However, these exponentials are not symplectomorphisms (of course neither symplectic
similitudes), i.e. W̃Sp * GSp(L). There exists an automorphism s of GL(L) which is
given by contraction with the symplectic form followed by inversion, i.e. Sp(L) = GL(L)s

and we have WSp = W̃Sp
s
.

W̃Sp can be given also explicitly (even over spec(Z)) by the group law on

(X1, X2, X3)(X ′1, X ′2, X ′3) = (X1 +X ′1+〈X3,X′2〉, X2 +X ′2, X3 +X ′3)

on
W(I ⊗ I)×W(I ⊗ L0)×W(L0 ⊗ I).

Be careful: In this description the embedding of WSp and the description of s are more
complicated, i.e. not via diagonal embedding, resp. switching factors! — see also (4.2.4))

Consider the subvectorspace ŨQ ⊆ (I ⊗ I)Q generated by 〈VQ, VQ〉 and UQ and define
Ũ = ŨQ ∩ (I ⊗ I)Z(p) . Define W̃X as the subgroup scheme of W̃Sp, directly generated
by W(V ) ⊂ W(I ⊗ L0), W(V ) ⊂ W(L0 ⊗ I), and W(Ũ). This group fits obviously in a
diagram as (3).

We claim: WX = (W̃X)s. First, W̃X is stable under s because s acts on the genera-
tors. All maps in the diagram are compatible with s. Now we have obviously for the
projections VX = (VX × VX)s.

Furthermore we claim W(U) = W(Ũ)s. For this, it suffices to show that UQ is the set
of elements of the form v + s(v), v ∈ ŨQ. Now UQ is point-wise stable under s, so it is
generated by elements of this form (over Q!). But on the other hand, every element of
the form v + s(v), v ∈ ŨQ lies in UQ because the commutator of (any lift of) 2 elements
v1, v2 ∈ V is 〈v1, v2〉 − 〈v2, v1〉 = 〈v1, v2〉 + s(〈v1, v2〉) and lies in U . Since everything is
saturated we are done.

Hence, (W̃X)s is a subgroup scheme of WSp, fitting in the same diagram (2) as above.
However over C, it contains F 0(WX(C)) (and hence F 0(WX(C))) because F 0(WSp(C))
is the exponential of F 0(W(L0 ⊗ I)(C)) embedded diagonally, so F 0(WX(C)) is the
exponential of F 0(VC) (embedded diagonally), which is contained in W̃X by construction.
Therefore (W̃X)s = WX.
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2.6. Mixed Shimura data of Hodge type

(2.6.1) Definition. Let X be p-integral mixed Shimura data (p-MSD). We call it of
Hodge type, if there is an embedding into the p-integral mixed Shimura datum (2.5)

X ↪→ Hg0 [(I ⊗ I)s, L0 ⊗ I]/W(U ′),

for Z(p) lattices L0 and I, where L0 is either 0 or carries a primitive symplectic form
and a saturated sublattice U ′ ⊂ (I ⊗ I)s.
(this includes in particular the cases Hg, Hg0 [0, L0 ⊗ I] and embeddings into them).
In this case, we call also all KX and K

∆X of Hodge type.

(2.6.2) Remark. In [83, 2.26] it is shown that in any case for the rational Shimura
data, there is a embedding

X′ ↪→ X/W ×
∏
i

Hg0,i [(Ii ⊗ Ii)s, Ii ⊗ L0,i],

for some Q-vector spaces Ii, L0,i, where the L0,i are either zero or carry non degenerate
symplectic forms, and where X/W is pure Shimura data (the pure quotient of X).
Here X′ may be an extension of X.
It is therefore probable that it is possible to adapt our construction of compactified
mixed Shimura varieties, such that one needs merely to assume X/W be of Hodge type.
Maybe in this case it is necessary to strengthen the notion ‘type (P )’ slightly to ensure
the existence of the above embedding over spec(Z(p)).

(2.6.3) Theorem. Let X be p-integral mixed Shimura data, and B a boundary compo-
nent of X. If X is of Hodge type then B is either.

Proof. (2.5.4) and (2.4.7).

2.7. Properties of mixed Shimura varieties over C

(2.7.1) Definition/Theorem. Let KX be rational EMSD.

B 7→ [ B-KX-LQ-loc-mhs ]

(2.3.5) is represented by4 the quotient stack

[PX(Q)\DX × (PX(A(∞))/K)].

4All our groupoids (with parameter B, resp. S) are actually fibers over B, resp. S of a category
fibered in groupoids with obvious pullbacks. For better readability, we do not mention this structure
explicitly.
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It is a smooth analytic Deligne-Mumford stack and called the analytic mixed Shimura
variety associated with X.
It is obviously independent of the chosen representation LQ.

(2.7.2) Remark. The previous therem would not be true, if we had not insisted in
property (2.2.2, v) because then (2.2.5) would not be true.

(2.7.3) Let (γ, ρ) : K1X1 → K2X2 be a morphism of EMSD. There is an induced map

[PX1(Q)\DX1 × (PX1(A(∞))/K1)]→ [PX2(Q)\DX1 × (PX2(A(∞))/K2)],

given by

[x, ξ] 7→ [γ(x), γ(ξ) · ρ].

These maps are compatible with composition.

Let LQ be a representation of PX,Q. LetMQ be the associated universal local system over
[PX1(Q)\DX1 × (PX1(A(∞))/K1)] with (PX,Q, LQ)-structure α. We have the associated
right PX(Q)B-torsor tor(α) and the analytic right PX,OB -torsor tor(α⊗Q OB).

(2.7.4) Definition/Theorem. tor(α) is canonically isomorphic to

DX × (PX(A(∞))/K)

and is called the standard local system
(PX(Q) acts on the right by [x, ρ]q = [q−1x, q−1ρ]).
The right POB -torsor tor(α⊗Q OB) is canonically isomorphic to

[PX(Q)\DX × PX(C)× (PX(A(∞))/K)]

and is called the analytic standard principal bundle. (PX(C) acts on the right via
[x, p, ρ]g = [x, pg, ρ])
Obviously both are again independent of the chosen representation LQ.

(2.7.5) There is a PX(C)-equivariant map

ΠC : tor(α⊗Q OB)→ (QC\PX,C)an ⊆ (QPARC)an,

which is given on the level of double quotients by

[PX(Q)\DX × PX(C)× (P (A(∞))/K)]→ (QPARC)an

[x, p, ξ] 7→ qpar(ux)p.
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Here Q is any parabolic of the form qpar(ux) for some x ∈ DX.
If a representation ρ : PX → GL(L) is given, qpar(ux) corresponds to (i.e. fixes, see
1.9.14) the Hodge filtration determined by the Hodge structure determined by hx for
x ∈ DX.

(2.7.6) The analytic standard principal bundle, together with the map ΠC determine a
morphism of (analytic) Artin stacks:

ΞC : [PX(Q)\DX × (P (A(∞))/K)]→ [M∨(X)C/PX,C].

Here M∨(X)C is QC\PX,C and will later be called the (analytic) compact dual associated
with X (cf. 3.5.2). The stack on the right hand side is isomorphic to [·/QC]

(2.7.7) Lemma. The standard principal bundle is trivial along the U -fibre.

Proof. Let X′ be X/UX. The fibre of M(K′X) above a point [x, ρ] ∈ [PX′(Q)\DX′ ×
(PX′(A(∞))/(K/U))] is given by

UX(Q)\UX(C)x× UX(A(∞))ρ/(K ∩ U(A(∞)))

for some K.
The standard principal bundle over this fibre is equal to

UX(Q)\UX(C)x× PX(C)× UX(A(∞))ρ/(K ∩ U(A(∞))).

We have a trivialization, mapping a point of the form [ux, ρ] to [u, ux, ρ]. This allows
(one may do this in families, i.e. varying with [x, ρ] ∈ M(KX′)) to extend the standard
principal bundle to the partial compactification along the U -fibre (cf. 3.5.1).
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3. Integral models (good reduction)

3.1. Reflex rings

(3.1.1) Definition/Theorem. Let X be p-integral mixed Shimura data. With x ∈ DX
there is associated hx : SC → PX,C, hence a morphism ux : Gm,C → PX,C via composition
with the inclusion of the first factor into SC ∼= Gm,C ×Gm,C. The conjugacy class M of
these morphisms is defined over a number field EX, called the reflex field, unramified
over p. Let ℘ be a prime above p in EX and O the corresponding d.v.r. We call O a
reflex ring of X. The closure M in Hom(Gm,O, PX,O) maps surjectively onto spec(O).

Proof. Let S = spec(Z(p)). First of all, there is a splitting (PX, T,M,R) (1.6.3) over
some etale surjective extension S′ → S. Over C, T is conjugated to a torus which
contains ux. Hence we may assume w.l.o.g. that ux factors via TC. This implies that
ux is defined over S′. Hence the conjugacy class M is defined over a field E, which is
contained in the function field of S′ which is a number field, unramified at p. The fibre
above ℘ of M is non-empty because over S′, it contains the section ux : S′ →M .

(3.1.2) Remark. Observe that the reflex field or the reflex rings are given as subrings
of C, not only as abstract rings.

(3.1.3) Lemma. The reflex field of the symplectic mixed Shimura data (2.5) is Q.

3.2. Integral models of mixed Shimura varieties

(3.2.1) We begin by describing the functorial theory of integral models of mixed Shimura
varieties in the case of good reduction. The following theorem is essentially due to Kisin
or Vasiu in the pure case.

(3.2.2) Main theorem. Let p 6= 2 be a prime.
There is a unique (up to unique isomorphism) map associating to each p-EMSD KX
of Hodge type and reflex ring O ⊂ C a smooth Deligne-Mumford stack M(KX) over
S = spec(O) with an isomorphism of analytic Deligne-Mumford stacks

[PX(Q)\DX × (PX(A(∞))/K)] ∼=
(
M(KX)×S spec(C)

)an
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(2.7.1), satisfying the following properties

i. For each morphism of p-EMSD [γ, ρ] : K1X1 → K2X2 there is an associated mor-
phism

M(γ, ρ) : M(K1X1)→ M(K2X2)×S2 S1.

Here Si = spec(Oi), where Oi are reflex rings of Xi such that O2 ⊂ O1. Over C
these maps are given by (2.7.3).
If γ is an embedding, M(γ, ρ) is a normalization map followed by a closed embed-
ding. If γ is a Hecke operator, then M(γ, ρ) is etale and finite. The maps are
compatible with composition.

ii. (rational canonicity) For a pure Shimura datum Y, where PY is a torus, the com-
position of the reciprocity isomorphism (normalized as in [83, 11.3])

Gal(E|E)ab ∼= π0(TE(Q)\TE(A)),

(where TE = resEQ(Gm)) with π0 of the reflex norm [83, 11.4]

π0(TE(Q)\TE(A))→ π0(PY(Q)\PY(A))

defines by means of the natural action of π0(PY(Q)\PY(A)) on M(KY)(C) the
rational model M(KY)E.

iii. (integral canonicity) The projective limit

Mp(X) := lim←−K M(KX),

where the limit is taken over all admissible compact open subgroups, satisfies the
following property:
For each test scheme (3.7.1) T over S and a given morphism

αE : T ×S Q→ Mp(X)×S Q,

there exists a uniquely determined morphism

α : T → Mp(X)

such that αE = α×S Q.

iv. M(K∆X) is a quasi-projective scheme, if K is neat.

Proof. By [83, 11.18] the assertion of the theorem is true, over the reflex fields. To
extend it to reflex rings, we proceed in three steps:
STEP 1: Construction for the symplectic Shimura data (2.5). By (4.3.3), we have a
M(KX) for each of the symplectic Shimura data. It is a model of the one considered
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in [83, 11.18] because our moduli problem, restricted to the generic fibre, is the same
moduli problem used in [loc. cit.].
They satisfy (i) for every Hecke operator, and (iii) by (3.7.9) because every M(KX) is
smooth.
For construction of the model associated with quotients Hg0 [(I ⊗ I)s, L0 ⊗ I]/W(U ′)
we observe that the models of M(KHg0 [(I ⊗ I)s, L0 ⊗ I]) are torsors for the split torus
with cocharacter group, (in general non canonically) isomorphic to (I ⊗ I)s ∩ K over
M(KHg0). We hence may factor out by the action of the split subtorus with cocharacter
group U ′ ∩K to get a smooth model M(KHg0 [(I ⊗ I)s, L0 ⊗ I]/W(U ′)).
STEP 2: Construction for arbitrary Hodge type p-EMSD KX (2.6.1). We choose an
embedding KX ↪→ K′Hg0 [(I ⊗ I)s, L0 ⊗ I]/W(U ′) in a datum of symplectic type. This
exists because of (2.2.8), and define M(KX) as the normalization of the Zariski clo-
sure in M(K′Hg0 [(I ⊗ I)s, L0 ⊗ I]/W(U ′)). Hecke operators automatically extend to
this family (the extension property is inherited: 3.7.8, ii, iii) and satisfy the properties
of (3.6.1). Hence to show smoothness, it suffices to show this for a family of com-
pact open subgroups like in (3.6.1, iii). We may take, according to (2.2.8, iii), the
family KU (M2)KV (M)KG(N), which is however conjugated (already by an element
in PX(A(∞,p))) to KW (1)KG(N) (see proof of 4.3.2). In (5.2.1) it is shown that the
normalization of the closure is smooth. The projective limit satisfies (iii) by (3.7.8).
STEP 3: All models constructed in STEP 1 and 2 are smooth and in the limit satisfy
(iii), hence from the existence of the morphisms in (i) over the reflex fields, we deduce
their extendibility to the reflex rings. In particular these models are uniquely determined
(up to a unique isomorphism).

(3.2.3) Conjecture. The previous therem is true for arbitrary p (including p = 2) and
for arbitrary mixed Shimura data.

For p = 2, it may be necessary to change the notion of ‘integral canonicity’ as formulated
above, cf. [78, 3.4].

3.3. Toroidal compactifications

(3.3.1) Unfortunately, so far, we are not able to derive all desired main properties of
integral models of toroidal compatifications of mixed Shimura varieties from work of
Kisin, Vasiu, Faltings and Chai, Pink and others. We need to assume the truth of a
conjecture stated below that will assure that the Zariski closure of the rational canonical
model in the toroidal compactifications of [27] will intersect the boundary divisor (of
the latter) properly also in the special fibre (the conjecture is even slightly weaker). For
most (pure) Shimura varieties of Hodge type that are (analytically) compact, this has
been shown in [92]. For Shimura varieties of P.E.L. type, it follows from [72].
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(3.3.2) Conjecture. Let X be pure p-integral Shimura data. Let any embedding K∆X ↪→
K′
∆′X′ in a datum of symplectic type X′ = Hg0 [(I⊗ I)s, L0⊗ I]/W(U ′) be given, such that
∆ and ∆′ are smooth projective, and K, K ′ are neat.
Consider the toroidal compactification M(K′∆′X′) over spec(Z(p)), constructed in [27]1,
and let D be its boundary divisor. Let S = spec(O) for a reflex ring O ⊂ E(X) of X
with maximal ideal ℘|(p). LetM′ be the Zariski closure of (the rational canonical model
of) PX(Q)\DX × (PX(A(∞))/K) in M(K′∆′X′)S.
No connected component of N(M′) ∩DS lies entirely in the fibre above ℘.

(3.3.3) The toroidal compactifications will have a stratification, which consists of mixed
Shimura varieties itself. For this, we have to set up some notation (cf. [83, 7.3ff]). Let
(ρ, ι) : K′

∆′B =⇒ K
∆X be a boundary component. For each cone σ ∈ ∆′ with σ ⊂

C(D0
X, PB)× ρ′ for some ρ′ in the equivalence class of ρ, we define a p-ECMSD K[σ]

∆[σ]
B[σ]

as follows:
B[σ] is defined by

PB[σ] := PB/ < σ >,

DB[σ] := PB[σ](R)UB[σ](C)− orbit generated by (D0
X/ < σ > (C))× {σPX(A(∞))}

in (D0
X/ < σ > (C))× {[σ]/PX(A(∞))} for σ ∈ [σ] ∩∆(D0

X, PB, 1).

K[σ] is the image of K ′ under the projection PB → PB[σ] . ∆[σ] is defined by

∆[σ](D0
B[σ]

, PB[σ] , ρ) := {τ mod < σ > | τ ∈ ∆(D0
X, PB, ρ) such that σ is a face of τ}.

It is K ′[σ]-admissible.
Furthermore, we define

Γ := (StabQ(Q)(DB) ∩ (PB(A(∞))(ρK)))/PB(Q),

where Q is the parabolic describing B.
Σ(ι, ρ) is defined to be the set of equivalence classes of the action of Γ (defined above)
on those [σ] ∈ PB(Q)\(∆′)0/PB(A(∞)), which satisfy σ ∈ C(D0

X, PB)× ρ′ for some D0
X.

(3.3.4) Consider an Abelian unipotent extension

X[U, 0]→ X.

Recall from (2.2.9): Any morphism Y→ Y/UY is of this form. It is a torsor under the
group object

X/WX[U, 0]→ X/WX

1An explicit comparison of our language to the one used in [27] will be provided in forthcoming work
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(cf. also [83, 6.6-6.8]).
The corresponding map of Shimura varieties (assume all K’s in the sequel to be neat):

M(K(X/WX)[U, 0])→ M(K/UX/WX)

is a split torus with character group (in general non canonically) isomorphic to UQ ∩K.
If ∆ is a K-admissible polyhedral cone decomposition for X[U, 0], concentrated in the
fibre U , we can define an associated torus embedding. Recall: The rational polyhedral
cone decomposition is determined by its restriction to any (UR)(−1)×ρ = C(D0, PX)×ρ
by the arithmeticity condition (2.4.10, iii). Therefore this determines a torus embedding
(see [27, IV, §2] for the integral case):

M(KX/WX[U, 0]) ↪→ M(K∆X/WX[U, 0]),

and a corresponding toroidal embedding of the torsor:

M(K′X[U, 0]) ↪→ M(K′∆ X[U, 0]).

(here K = K ′/W ).

(3.3.5) Main theorem. Let p 6= 2 be a prime.
There is at most a unique (up to unique isomorphism) map associating to each p-ECMSD
K
∆X of Hodge type and reflex ring O ⊂ C a Deligne-Mumford stack M(K∆X) over S =
spec(O) with open dense embedding

M(KX) ↪→ M(K∆X),

satisfying the properties:

i. For each morphism of p-ECMSD [γ, ρ] : K1
∆1

X1 → K2
∆2

X2 there is an associated
morphism

M(γ, ρ) : M(K1
∆1

X1)→ M(K2
∆2

X2)×S2 S1,

extending the map in (3.2.2, i.).

Here Si = spec(Oi), where Oi are reflex rings of Xi such that O2 ⊂ O1. If [γ, ρ] is
an embedding, M(γ, ρ) is a normalization map followed by a closed embedding.

ii. If ∆ = ∆0 (i.e. ∆ is concentrated in the unipotent fibre), M(K∆X) is the toroidal
embedding described in (3.3.4).

iii. M(K∆X) possesses a stratification into mixed Shimura varieties (stacks)∐
[(ι,ρ):K′∆′B=⇒K

∆X]
[σ]∈Σ(ι,ρ)

[StabΓ([σ])\M(K[σ]B[σ])].



58 Part I. Toroidal compactifications of mixed Shimura varieties

Here [(ι, ρ) : K′∆′B =⇒ K
∆X] in the first line means equivalence classes of boundary

components of K∆X (2.4.13).

iv. For each boundary map (2.4.13)

(ι, ρ) : K′∆′B =⇒ K
∆X,

and σ ∈ ∆′ such that σ ⊂ C(D0
X, PB)×ρ′ for some D0

X and ρ′, there is a boundary
isomorphism

M(ι, ρ) :
[
StabΓ([σ])\M̂(K′∆′B)

]
→ M̂(K∆X)

of the formal completions along the boundary stratum[
StabΓ([σ])\M(K[σ]

∆[σ]
B[σ])

]
.

The complexification of M(ι, ρ) converges in a neighborhood of the boundary stra-
tum and is in the interior, via the identification with the complex analytic mixed
Shimura varieties given by a quotient of the map

DB=⇒X × (PB(A(∞))/K ′)→ DB=⇒X × (PX(A(∞))/K)

induced by the closed embedding PB ↪→ PX, where we considered DB=⇒X ⊆ DX as
a subset of DB via the analytic boundary map (2.4.4).
The stratification is compatible with the morphisms in (i), i.e. they induce mor-
phisms of the strata of the type considered in (i) again.

If main conjecture (3.3.2) is assumed, the compactifications exist at least for those p-
ECMSD K

∆X with sufficiently small smooth and projective ∆.
We have then in addition: M(K∆X) is smooth. M(K∆X) is proper, if ∆ is complete. If K
is, in addition, neat then M(K∆X) is a projective scheme.

(3.3.6) Remark. The stratification in (iii) is indexed by pairs of an equivalence class
of boundary components [(ι, ρ) : K′∆′B =⇒ K

∆X] and a class [σ] ∈ Σ(ι, ρ). The set of these
pairs is just isomorphic to the set of double cosets PX(Q)\∆/K. The bijection is as
follows. Each σ ∈ ∆ is supported on a C(D0

X, PB)× ρ. B and ρ determine a boundary
component (ι, ρ) : K′∆′B =⇒ K

∆X and the class of the image of σ under restriction to ∆′
lies in Σ(ι, ρ).
The stratum M(K[σ]B[σ]) is contained in the closure of the stratum M(K[τ ]B[τ ]), if and
only if (up to a change of representatives in PX(Q)\∆/K) τ is a face of σ.

Proof of theorem 3.3.5. By [83, 12.4] the assertion of the theorem is true over the reflex
fields. To extend it to reflex rings, we proceed again in several steps:
STEP 0: We first show that it is sufficient to consider the case in which K is neat. This
is not so easy as in the uncompactified case, where we have (3.6.1). Let K be arbitrary
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admissible. Suppose that a K-admissible ∆ is given. Take K ′ C K a neat normal
subgroup. The problem is that (as we formulated the theory) M(K∆X) cannot be defined
as the stack quotient of M(K′∆ X) by K ′\K. This would lead to additional (unipotent)
stabilizer groups along the boundary strata. Hence we have to define the stack by
a mixture of forming a quotient and glueing. Consider the finite set of (equivalence
classes of) boundary components (ιi, ρi) : Ki

∆i
Bi =⇒ K

∆X, i ∈ I. We may present the
uncompactified M(KX) in a very redundant way by the following groupoid object:

∐
i,j∈I M(K′X)×S (K ′\K)S

s

��
d

��∐
i∈I M(K′X),

where s is given by the projection and d is given by the action of K ′\K on the right,
mapping however something indexed by (i, j) to the i-th copy (s) and to j-th copy (d), re-
spectively. The composition is given (functorially) by (x, g; i, j)(x′, g′; k, l) = (x, gg′; i, l),
as long as x′ = xg and j = k (trivial generalization of the usual groupoid induced by a
group action).

Now the groupsKi = (ρUBi(A(∞))∩K)K ′ are neat again, because the UBi are unipotent.
Denote Ui := Ki/K

′. Now we let Ui operate (on the left) on the i-th factor in the bottom
(via g−1 acting from the right) and on each (i, j)-th factor on the top by via g−1 acting
from the right on M(K′X) and multiplication by g from the left on (K ′\K)S . We let Uj
operate on the (i, j)-th factor on the top, too, by multiplication by g from the right on
(K ′\K). We form the quotient

∐
i,j∈I Ui\M(K′X)×S (K ′\K)S/Uj

s

��
d

��∐
i∈I M(KiX).

Note that all groups act freely and the composition map is invariant. We compactify

∐
i,j∈I,k∈K/Kj M(Ki(PX(Q)∆iK′)∩(PX(Q)∆jK′k−1)X)

s

��
d

��∐
i∈I M(KiPX(Q)∆iK′

X),

where we identified Ui\M(K′X)×S (K ′\K)S/Uj with
∐
k∈K/Kj M(KiX) in a non canon-

ical way. (PX(Q)∆iK
′) ∩ (PX(Q)∆jK

′k−1) = PX(Q)∆kK
′ does not depend on this

choice. Here k is the (equivalence class of) the biggest boundary component, such that (a
representative in the equivalence classes of) (ιi, ρi) and (ιj , ρjk−1), respectively, are both
itself boundary components of (ιk, ρk). The composition map and projections extend by
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functoriality (i of the theorem). We define M(K∆X) as the Deligne-Mumford stack de-
scribed by this groupoid of schemes. It is equipped with a morphism M(K′∆ X)→ M(K∆X)
which is not etale at the boundary. The stack hence is proper, if ∆ was complete. It
satisfies the other properties stated in the theorem. Note: It would not have been strictly
necessary to consider all boundary components in the above procedure. Minimal ones
are sufficient.
STEP 1: From now on, we may assume that all occurringK’s are neat. (ii) pins down the
compactification ‘along the unipotent fibre’. These satisfy all functorialities as required
in (i) as long as only ∆’s are involved which are concentrated in the unipotent fibre.
This is literally shown as in [83, 6.7] (use only the case of neat groups!)
STEP 2: By [27, IV, Theorem 6.7] and [27, VI, Theorem 1.13] compactifications M(K∆X)
exist for all symplectic Shimura data X = Hg0 [(I ⊗ I)s, L0⊗ I]/W(U ′), a cofinal system
of K’s and all smooth ∆. They satisfy properties (iii)-(iv) and are smooth Deligne-
Mumford stacks. They are smooth projective schemes, if the K’s are neat and ∆ is
projective [27, V, §5]. To apply the results of [27], it may already be necessary to pass
to a refinement of ∆, which is compatible with the maps (2.5.6)2.
STEP 3: Construction of arbitrary toroidal compactifications. We choose an embedding
K
∆X ↪→ K′

∆′X′ in a datum of symplectic type X′ = Hg0 [(I ⊗ I)s, L0 ⊗ I]/W(U ′). This
exists because of (2.2.8). We may also refine ∆, such that it and ∆′ are smooth projective
(2.4.12). Define M(K∆X) as the normalization of the Zariski closure in M(K′∆′X′)S , where
S = spec(O) for the chosen reflex ring of X.
Let (ι, ρ) : K1

∆1
B =⇒ K

∆X a boundary component. There is a boundary component
(ι′, ρ′) : K

′
1

∆′1
B′ =⇒ K

∆X′ such that we have a commutative diagram:

K1
∆1

B +3
� _

��

K
∆X

� _

��
K′1
∆′1

B′ +3 K′
∆′X′.

Let σ be as in (iv) of the theorem. Denote M := M(K′∆′X′)S , M̃ := M(K
′
1

∆′1
B′)S , M ′ :=

M(K∆X)E , M̃ ′ := M(K1
∆1

B)E . Let C and C ′ be the respective rational (closed) boundary
strata associated with [σ] and C, C′ be their closures. Then (iv), for (closed) codimension
1 boundary strata, is true by lemma (5.10.2), using main conjecture (3.3.2) which we
have to assume at this point.
The fibre above ℘ hence is smooth by induction on the dimension of the reductive
part. We have also that the Zariski closure of C ′ in the normalization ofM′ is already
normal. Reason: This is true in M̃′ because the latter is by construction (etale) locally
a product of C′ with a (torus-embedding) compactification of Gn

m (which is normal).

2An explicit comparison of our language to the one used in [27] will be provided in forthcoming work.
In [27] the compactification is literally worked out only if X = Hg0 [0, L0 ⊗ I], however the ‘second
unipotent step’ is much easier
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Hence normalization ofM′ also normalizes C.
The stratification is obtained by induction on the dimension (the union of all C, obtained
by the above procedure, contains all other strata by 3.3.2).
For each of the induction steps, we may have to refine the original ∆, but only for each
equivalence class of boundary components, so a finite number of times in each induction
step.
It remains to see that (iv) holds for codimension ≥ 1 strata as well. For this, we may
assume that ∆ is fine enough, such that each σ ∈ ∆, dim σ > 1 has the property that
there exists a 1 dimensional face τ , such that σ, τ ⊂ C(D0, PB)× ρ. Then the statement
is obvious because it holds for [τ ] and we may just complete again both mixed Shimura
varieties at the boundary stratum corresponding to [σ].
STEP 4: We have to show that all maps of p-ECMSD induce maps between toroidal
compactifications (i). We proceed again by induction on the dimension of the reductive
part using (iv) and (5.11.1). Note that maps extend along the unipotent fibre by STEP
1. The existence of these extensions shows, in particular, uniqueness of our models.

(3.3.7) Remark. By the methods of [22, 25] one can construct models also for a (pure)
Shimura datum X for which there is Y is of Hodge type and an isomorphism (PX)ab ∼=
(PY)ab. We have to assume furthermore that the morphisms PX → (PX)ab, resp. PY →
(PY)ab are smooth.
The main theorems (3.2.2) and (3.3.5) of this section also hold true for Shimura data of
this kind (cf. [78, 3.23] for the uncompactified case)3.

(3.3.8) Theorem. Let K∆X be irreducible p-ECMSD. If ∆ is smooth, then the comple-
ment D of the open stratum M(KX) in M(K∆X) — the union of all lower dimensional
strata in (3.2.2, v) — is a smooth divisor with normal crossings on M(K∆X).

Proof. Via the formal isomorphisms (3.3.5, iv) this follows from the corresponding prop-
erty of torus embeddings [27, , IV, §2].

3.4. Integral duals

Let p be a prime and X be p-integral mixed Shimura data. Let O be a reflex ring of it
at p and S = spec(O).
The closure M of the conjugacy class of the morphisms ux, x ∈ X is defined over O by
definition (3.1.1). It corresponds to a section t′ ∈ FT YPE(S).
The image ofM via qpar is a fibre of the morphism ‘type’ above a section t : S → T YPE .
We define M∨(X) to be this fibre. We understand here the action of P on QPAR by

3This argument lacks details. It will be stated more precisely in forthcoming work. See also M. Kisin,
Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), 967-1012 for
the uncompactified case
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conjugation on the right (contrary to 1.9.9). The action fixes the morphism ‘type’, hence
we have an induced action on M∨(X). For this we have

(3.4.1) Main theorem. M∨(X) is a smooth connected quasi-projective right PX-homo-
geneous scheme over S called the dual of X (depending only on PX and h(DX)) with
the following properties:

i. If X is pure, M∨(X) is projective.

ii. Let L be a free Z(p)-module of finite dimension, acted on faithfully by PX. M∨(X)
represents

S′ 7→ { filtrations {F •} on LS′ compatible with (PX,S′ , LS′) of type t′ },

compatible with PX-action (defined on L as v · g := g−1v).

iii. For each map of p-integral mixed Shimura data γ : X → Y let O′ be a reflex ring
of the second data such that O′ ⊂ O, and S′ = spec(O′). There is a morphism

M∨(γ) : M∨(X)→ M∨(Y)×S′ S.

It is a closed embedding, if γ is an embedding. These maps are homogeneous and
compatible with composition.

iv. For each p-integral boundary map ι : B =⇒ X, there is a PB-equivariant open
embedding

M∨(ι) : M∨(B) ↪→ M∨(X).

v. There is an PX(R)WX(C)-equivariant open embedding (Borel embedding)

h(DX) ↪→ (M∨(X)C)an.

It is an isomorphism, if GX (the reductive part of PX) is a torus. These embeddings
are compatible with the embeddings in (iv) resp. (2.4.4, ii. (a))4. Furthermore they
are compatible with morphisms of Shimura data.

Proof. (i) follows from (1.9.4, (i)), since PX is reductive in this case and hence parabolics
and quasi-parabolics are the same.
(ii) is (1.9.14).
(iii) is (1.9.11).
(iv) (1.9.11). It is open because the image has to be dominant (it suffices that this is
true over C and this follows from (v)).
(v) is well known.

4going in different directions!
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(3.4.2) Remark. For a boundary component B =⇒ X, there is also an embedding

M∨(B/WB) ↪→ M∨(X)

into (in general not onto) the complement of the image of M∨(B). The image of the
composition with the Borel embedding h(DB/WB) ↪→ M∨(B/WB)(C) is the boundary
component of h(DX) associated with Q (the parabolic associated with B) in the sense
of [2].

3.5. Integral standard principal bundle

(3.5.1) Consider the situation of (3.3.4) again — an arbitrary Abelian unipotent exten-
sion

X[U, 0]→ X,

a torsor under the group object

X/WX[U, 0]→ X/WX.

The corresponding map of Shimura varieties (assume all K’s in the sequel to be neat):

M(K′(X/WX)[U, 0])→ M(K′/UX/WX)

is a split torus with character group (in general non canonically) isomorphic to UQ ∩K.
Assume that a functorial theory of models of the standard principal bundle exists (as
described in theorem 3.5.2 below) on uncompactified mixed Shimura varieties. We
have then automatically a compatible action of the torus T := M(K(X/WX)[U, 0]) on
P(K′X[U, 0]) as well. Hence the standard principal bundle may, etale locally (say, on
S → M(K′/UX/WX)) be trivialized T -invariantly.
Let ∆ be a K-admissible polyhedral cone decomposition for X[U, 0], concentrated in the
fibre U . There is a unique extension of P(KX[U, 0]) to the torus embedding M(K∆X[U, 0])
by means of extending any T -invariant trivialization described above. We denote it by
P(K∆X[U, 0]).
These extensions are compatible with all maps between p-ECMSD, which involve only
rational polyhedral cone decompositions along the unipotent fibre.
From the functoriality also follows that Π is constant on these trivializations. Its image
is a single S-valued point of the compact dual. Therefore the map Π also extends (cf.
also 2.7.7).

(3.5.2) Main theorem. There is a unique (up to unique isomorphism) map associating
with every p-ECMSD K

∆X of Hodge type and reflex ring O (such that M(K∆X) exists
with the properties of 3.3.5) a right PX-torsor P(K∆X)→ M(K∆X) and a PX-equivariant
morphism

Π : P(K∆X)→ M∨(X)
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and an PX(C)-equivariant isomorphism

(P(KX)×S spec(C))an ∼= PX(Q)\PX(C)× DX × (PX(A(∞))/K)

see (2.7.4), such that ΠC is the one given in (2.7.4), with the following properties:

i. For each morphism of p-ECMSD [γ, ρ] : K1
∆1

X1 → K2
∆2

X2 there is an induced PX1-
equivariant morphism

P(γ, ρ) : P(K1
∆1

X1)→ P(K2
∆2

X2)×S2 S1.

Here Si = spec(Oi), where Oi are reflex rings of Xi such that O2 ⊂ O1.
The diagram

M(K1
∆1

X1)

M(γ,ρ)
��

P(K1
∆1

X1)oo //

P(γ,ρ)
��

M∨(X1)

M∨(γ)
��

M(K2
∆2

X2)×S2 S1 P(K2
∆2

X2)×S2 S1oo // M∨(X2)×S2 S1

is commutative. The 1st vertical map is the map (3.2.2, iv), the 3rd is (3.4.1, ii).
P(γ, ρ)C is equal to the obvious map on double quotients (2.7.4).

ii. Let (ι, ρ) : K′∆′B =⇒ K
∆X be a boundary map and σ ∈ ∆′ such that σ ∈ C(D0

X, PB),
as in (3.3.3).
There is a PX-equivariant map P(ι, ρ) fitting into the commutative diagram

̂[
StabΓ([σ])\M(K′∆′B)

]
∼ M(ι,ρ)

��

̂[
StabΓ([σ])\P(K′∆′B)

]oo //

P(ι,ρ)
��

M∨(B),� _

M∨(ι)
��

M̂(K∆X) P̂(K∆X)oo // M∨(X)

where the formal completions are taken along[
StabΓ([σ])\M(

K′[σ]
∆′[σ]

B[σ])
]

respectively along their pre-images in the standard principal bundles.
The complexification of P(ι, ρ) converges in a neighborhood of the boundary stra-
tum and is in the interior, via the identification with the complex analytic mixed
Shimura varieties, given by a quotient of the map

DB=⇒X × PB(C)× (PB(A(∞))/K ′)→ DB=⇒X × PX(C)× (PX(A(∞))/K)

induced by the closed embedding PB ↪→ PX, where we considered DB=⇒X ⊆ DX as
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a subset of DB via the analytic boundary map (2.4.4).

iii. (canonicity) For X = Hg0 [(I ⊗ I)s, L0 ⊗ I] (and ∆ = 0), P(KX) represents

[ KX-L-triv-1mot ]

defined in (4.5.2), in such a way that the map Π is identified with the map Π given
there.

iv. If ∆ is concentrated in the unipotent fibre, P(K∆X) is the extension defined in
(3.5.1).

Proof. The truth of this theorem for the rational models follows from [39–41] (cf. also
[42, §3]).
STEP 0: Again, it suffices to consider the case K neat. This is shown by the same
procedure as in STEP 0 of the proof of (3.3.5).
STEP 1: The construction in the uncompactified pure and mixed case is done in (5.3.1)
and (5.4.1) respectively, using a Hodge embedding.
STEP 2: Functoriality (i) and independence of the Hodge embedding is shown in (5.6.1).
The maps to the compact dual are extended in (5.5) to the integral models.
STEP 3: For the extension to the whole compactification (neat case) we proceed as
follows.
We choose an embedding K

∆X ↪→ K′
∆′X′ in a datum of symplectic type X′ = Hg0 [(I ⊗

I)s, L0 ⊗ I]/W(U ′). This exists because of (2.2.8). We may also refine ∆, such that it
and ∆′ are smooth projective (2.4.12). By assumption M(K∆X) exists.
Consider the corresponding morphism of models

M(K∆X)→ M(K′∆′X′)×Z(p) O.

It is a normalization followed by a closed embedding. Consider the pullback of the de
Rham bundle H on M(K′∆′X′) to M(K∆X). The de Rham bundle is the unique extension
to M(K′∆′X′) of the de Rham realization (4.1.5) of the universal 1-motive over M(K′X′),
with the property that the Gauss-Manin connection has logarithmic singularities along
D (cf. [27]).
Choose an open cover {Ui} of M(K∆X) trivializing H by PX′-equivariant isomorphisms
with LZ(p) . We have to give a PX-structure extending the one given on the generic
fibre (by the rational theory). The required structure can be given by morphisms Ui →
PX′/PX. We know that they extend to the complement of the boundary divisor (STEP
1). It also extends to the compactification along the unipotent fibre, by means of a
trivialization using the torsor property as in (3.5.1). Now consider any stratum C in
the stratification (3.3.5, iii) which does not belong to the unipotent fibre (in particular
is not dense). We have a corresponding formal isomorphism (3.3.5, iv):

M̂(K1
∆1

B) ' M̂(K∆X),
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where the completion is taken along the closure of C and K1
∆1

B =⇒ K
∆X is the corre-

sponding boundary component.
By induction on the dimension of GX, we may assume that there exists a PB-structure
on the pullback of H to the left, extending the one given over C. We hence have a
morphism

Ûi → PX′/PB → PX′/PX,

extending the one given over C, for every irreducible component of the boundary divisor.
By (5.11.1) we get the required PX structure. (ii) holds by construction and (5.5) for
maximal boundary components.
STEP 4: The maps required in (i), especially yielding uniqueness, extend like in the
proof of (3.3.5).

We have the following translation of theorem (3.5.2) into the language of (Artin) stacks:

(3.5.3) Theorem. There is a unique (up to unique isomorphism) map associating with
every p-ECMSD K

∆X of Hodge type and reflex ring O (such that M(K∆X) exists with the
properties of 3.3.5) a 1-morphism

Ξ(K∆X) : M(K∆X)→
[
M∨(X)/PX

]
,

and a 2-isomorphism

Ξ(KX)×spec(O) spec(C)→ ΞC(KX),

where ΞC(KX) is the complex analytic morphism described in (2.7.4), satisfying:

i. For each morphism of p-ECMSD [γ, ρ] : K1
∆1

X1 → K2
∆2

X2 there is a 2-isomorphism
[γ, ρ]Ξ fitting into the diagram

M(K1
∆1

X1)
Ξ(K1

∆1
X1)

//

M(γ,ρ)

�� ��++

[
M∨(X1)/PX1

]
M∨(γ)

��
M(K2

∆2
X2)×S2 S1

Ξ(K2
∆2

X2)
//
[
M∨(X2)/PX2

]
×S2 S1

[γ,ρ]Ξ

CK
��������

��������

These 2-isomorphisms are compatible with composition. Here Si = spec(Oi),
where Oi are reflex rings of Xi such that O2 ⊂ O1.
[γ, ρ]Ξ,C is the obvious 2-morphism over C.

ii. Let [ι, ρ] : K′∆′B =⇒ K
∆X be a boundary map and σ ∈ ∆′ such that σ ∈ C(D0

X, PB),
as in (3.3.3).
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There is a 2-isomorphism [ι, ρ]Ξ fitting into the diagram

̂[
StabΓ([σ])\M(K′∆′B)

] Ξ(K′∆′B)
//

M(ι,ρ)

�� ��
--

[
M∨(B)/PB

]
M∨(ι)

��

M̂(K∆X) Ξ(K∆X)
//
[
M∨(X)/PX

]
[ι,ρ]Ξ

CK
��������

��������

where the formal completion is taken along[
StabΓ([σ])\M(

K′[σ]
∆′[σ]

B[σ])
]
.

[ι, ρ]Ξ,C is the obvious 2-morphism over C.

iii. (canonicity) For X = Hg0 [(I ⊗ I)s, L0 ⊗ I] (and ∆ = 0), Ξ(KX) is given as
described in (4.5.2).

iv. For ∆ concentrated in the unipotent fibre, Ξ is given by via the extension described
in (3.5.1).

(3.5.4) Conjecture. The previous theorems are true for arbitrary p (including p = 2)
and for arbitrary mixed Shimura data.

Maybe for this to be true, it is necessary to find a better condition of canonicity.

3.6. Generalities on models and the adelic action
(3.6.1) Theorem. Let X be p-integral mixed Shimura data and O a reflex ring.
It is equivalent to give

i. a scheme Mp(X) over spec(O) with a continuous right PX(A(∞,p))-action,

ii. for each admissible compact open subgroup K a Deligne-Mumford stack

M(KX)

over spec(O) and maps JL,K(x) for any admissible K,L such that xKx−1 ⊂ L
with the properties
a) JM,L(y)JL,K(x) = JM,K(yx),
b) JK,K(x) = id if x ∈ K,
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c) If K EL, JK,K defines an action of K\L on M(KX) and JK,L(1) defines the
quotient [M(KX)/(K\L)] ∼= M(LX).

iii. for some admissible maximal compact open subgroup K0 and some cofinal system
K of neat and admissible normal subgroups K ⊂ K0 and for each K ∈ K a scheme

M(KX)

over spec(O) and maps JL,K(x) for each K,L ∈ K such that xKx−1 ⊂ L with the
properties in (ii) above.

Proof. (i) ⇔ (ii) is indicated in [Deligne5], (iii) ⇒ (i) is proven the same way (using
conjugacy of maximal compact open subgroups), and (ii) ⇒ (iii) is trivial.

3.7. The extension property

(3.7.1) Definition. Let O be a discrete valuation ring with fraction field F . Let a test
scheme S over O be as in [78, Def. 3.5], i.e. S has a cover by open affines spec(A),
such that there exist rings O ⊆ O′ ⊆ A0 ⊆ A, where

• O ⊆ O′ is a faithfully flat and unramified extension of d.v.r. with O′/(π) separable
over O/(π).

• A0 is a smooth O′-algebra.

• A0 ⊆ A1 ⊆ · · · ⊆ A is a countable union of etale extensions.

As is explained in [loc. cit.], this has to be seen only as a working definition. The
arguments below work, for example, only for p 6= 2. Note that the projective limit
Mp(X) of smooth models of Shimura varieties M(KX) over all admissible K is a test
scheme itself.

(3.7.2) Theorem. Let S be a test scheme over O. For every closed subscheme Z ↪→ S,
disjoint from SF and of codimension at least 2 in S, every Abelian scheme or 1-motive
over U = S \ Z extends to an Abelian scheme over S.

Proof. [78, 3.6] for the case of Abelian schemes. A semi-Abelian scheme extends to
by S [27, V, 6.7], which we may apply for this class of test schemes [78, 3.6 ff.]. The
Abelian part extends to an Abelian scheme, hence the semi-Abelian extension is globally
an extension. The morphism Y → A extends as well because it gives a semi-Abelian
scheme extending A∨. The rest can, as in the proof of (3.7.6), be reduced to the case of
a morphism U → Gm, i.e. a unit in OU . It extends because S is normal.
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(3.7.3) Theorem. Let S be a normal scheme, and U ↪→ S be a dense open subscheme.
If Mi, i = 1, 2 are 1-motives over S, every homomorphism φ : M1|U → M2|U extends
uniquely to a homomorphism φ̃ : M1 →M2.

Proof. [76, Prop. 2.12] for the case of Abelian schemes. Morphisms between etale sheaves
of free Z-modules Xi, resp. Y i clearly extend uniquely.

In particular an extension of A over U is unique, if it exists.

(3.7.4) Theorem. Let S be a Dedekind scheme (e.g. the spectrum of a d.v.r.) with
function field K. Let A be an Abelian scheme over S, then it is the Neron model of AK ,
which means: for any smooth S-scheme Y we have

HomK(YK , XK) = HomS(Y,X).

Proof. [8, Definition 1.2/1] and [8, Proposition 1.2/8]

(3.7.5) Theorem. Let R be a discrete valuation ring, with field of fractions K. Let AK
be an Abelian scheme over spec(K), with Neron model A over spec(R). The following
is equivalent

i. A is an Abelian scheme

ii. The inertia subgroup of Gal(Ks|K) operates trivially on Het
1 (A,Zl), where l is

invertible in R/m.

Proof. [8, 7.4, Theorem 5]

(3.7.6) Theorem. Let S be a test scheme over Z(p), with generic point η, and l 6= p a
prime. Let U ↪→ S be a dense open subscheme, Y = S − U and A an Abelian scheme
(resp. 1-motive) on U . If the monodromy representation π1(U, η) → Aut(Het

1 (Aη,Zl))
factors through π1(Y, η), then A extends to an Abelian scheme (resp. 1-motive) on S.

Proof. [76, Prop. 2.13] for the case of an Abelian scheme: Because of (3.7.3), there
is a largest open subscheme U of S such that A extends to U . Suppose U 6= S, and
let y ∈ S \ U . If Oy has dimension 1, then it is a discrete valuation ring. Its field of
fractions is the function field k of S and of characteristic zero, since S is a test scheme
over Z(p). The assumption means that the action of Gal(k, k) factors through the inertia
group at y. Then for the case of Abelian schemes (3.7.5) implies that A extends to Oy.
Hence A extends to an open neighborhood of y, contradicting the choice of y. So Oy has
dimension ≥ 2 and hence S \ U has codimension ≥ 2. (3.7.2) now implies S = U .



70 Part I. Toroidal compactifications of mixed Shimura varieties

A semi-Abelian scheme can be given by a morphism α∨ : X → A∨. It suffices to assume
that S is of the form spec(B), as in the definition of test scheme. So B is the union of
etale rings over B0, which are of finite type and smooth over O′. A is defined on some
spec(Bj), since the moduli space of Abelian schemes is of finite type. Hence α : X → A∨

is also defined over some spec(Bi)U , since A over Bj and Bj itself are of finite type. Now
spec(Bi)U is smooth so the morphism α to A over k extends to a morphism spec(Bi)→ A
over Oy by the Neron property. The conclusion is the same.
A one-motive is given in addition by a morphism α : Y → G. Take etale locally a basis
of X,Y . This restricts to the case where G is an extension of A by Gm and we have
to extend a point ξ ∈ G. The projection π(ξ) of ξ onto A extends to some point in G
because a Gm-torsor (fibre over π(ξ)) over Oy is trivial. Subtracting this point we are
reduced to the case, where we have a k-point ξ ∈ Gm. We must show that it extends to
a point over Oy. The given information translates to the fact that the action of Gal(k, k)
for each l, (l, p) = 1 on the sequence

0 // µn // Het(M,Z/nZ) // Z/nZ // 0

factors through the inertia group I at y. Here recall that

Het(M,Z/nZ) = {(y, g) ∈ (Z×Gm) | yp = ng}/{(ny, yp) | y ∈ Z}

the inclusion on the left is given by (0, ζ) for ζ ∈ µn and the projection by (y, g) 7→ (y
mod n). This means that we can choose a I-invariant lift for the above sequence, hence
I operates trivial on the pre-image on ξ under [n] : Gm → Gm mod Zξ. This implies
that y extends to an Oy-point because this means that the extension generated by the
pre-image is unramified, hence the additive valuation of y has to be divisible by l for all
(l, p) = 1, so it has to be 0.

(3.7.7) Definition. Let O be a discrete valuation ring, faithfully flat and unramified
over Z(p) with fraction field F , and let X an O-scheme. It has the extension property,
if for every test scheme T above O, every morpism TF → XF extends uniquely to a
morphism T → X.

(3.7.8) Lemma. i. If a model X over O of a scheme XF over F has the exten-
sion property and is itself a test scheme, then this model is unique (up to unique
isomorphism).

ii. If X over O has the extension property, then for any subscheme Y ⊂ X, Y has
the extension property.

iii. If X over O has the extension property and if XF is normal, then its normalization
X̃ has the extension property.

iv. Let X → S and Y → S two morphisms of O-schemes, if X,Y and S have the
extension property, then X ×S Y has the extension property.
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v. Let O ⊆ O′ be a faithfully flat and unramified extension of d.v.r.. If T is a test-
scheme over O, then T ×spec(O) spec(O′) is a test scheme over O′. If T is a test
scheme over O′, then considered as a scheme over O it is a test scheme as well.

vi. Let O ⊆ O′ be as before. If X on O has the extension property, then X ×spec(O)
spec(O′) has the extension property.

Proof. We show property (iii), compare [78, 3.19]: Let S be a test scheme. If SF →
X̃F = XF is a morphism, then it extends to a morphism S → X. The projection
S = S ×X X̃ → S has to be an isomorphism since over F it is one, it has to be finite,
since X → X is finite and S is normal.

(3.7.9) Theorem. For X = Hg0 [(I ⊗ I)s, L0 ⊗ I],

Mp(X) := lim←−K admissible c. o. M(KX)

considered over spec(Z(p)) has the extension property.

Proof. (compare [76, 2.10] for the case of Abelian schemes, i.e. X = Hg.) Consider a
test scheme T over spec(Z(p)). and a morphism φ : TQ → Mp(X). By the functorial
description, this corresponds to the following data (up to Z(p)-isomorphism): an 1-motive
MQ over TQ, a Z(p)-polarization, a trivialization Y → (UZ) and a section of the etale
sheaf (on TQ)

s ∈ ISO(Het(MQ,A(∞,p)), LA(∞,p)).

i.e. Het(MQ,A(∞,p)) is constant, in particular, π1(TQ, η), where η is the generic point
of TQ acts trivial on Het(MQ,Zl). Therefore MQ extents to M on T by (3.7.6). The
polarization extends uniquely by (3.7.3) and [27, p. 6, 1.10b] (for the Abelian part being
really a polarization). The level structure extends as well uniquely, since Het(M,A(∞,p))
has to be constant as well. Also the trivialization of Y extends. Therefore, we get a
unique extension

φ̃ : T → Mp(X).
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4. One motives

4.1. Definition and realizations

We recall the definition of 1-motives and their most important covariant ‘realizations’,
see e.g. [24] or [16] for proofs and details.

(4.1.1) Definition. Let S be a scheme. A 1-motive M = [ Y α // G ] over S is a
complex, where

i. G is a semi-Abelian scheme with constant rank,

ii. Y is an etale sheaf of lattices (of constant rank),

iii. α : Y → G is a homomorphism.

We consider Y as being in degree 0 and G as being in degree 1.
Each 1-motive has a filtration where

Wi =


M i ≥ 0,
[ 0 // G ] i = −1,
[ 0 // T ] i = −2,
0 i < −2.

This defines a category
[ S-1mot ]

with morphisms being morphisms of complexes.
A morphism of 1-motives

Y 1

a

��

α1 // G1

b
��

Y 2
α2 // G2

is called an isogeny, if for every geometric point s, as is surjective with finite kernel
and bs : Zr ↪→ Zr is injective with finite cokernel. It is called an p-isogeny, if for every s
the respective kernel and cokernel are of rank prime to p. If S is connected, these ranks
are constant and their product is called the degree of the isogeny.
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(4.1.2) Definition. We define a torsion 1-motive as a finite etale group scheme E
over S with a filtration

0 = W−3 ⊂W−2 ⊂W−1 ⊂W0 = E

morphisms being strict morphisms.
For an isogeny

ψ : [ Y 1
α1 // G1 ]→ [ Y 2

α2 // G2 ]

of degree N , suppose that N is invertible in S. We define the torsion 1-motive ker(ψ)
as the cohomology of the double complex

Y 1

ψY
��

α1 // G1

ψG
��

Y 2
α2 // G2

(there is only one non-trivial cohomology group). It has a filtration coming from the
vertical filtration, which defines the subgroup scheme

W−1(ker(ψ)) := ker(ψG).

It has a further filtration
W−2(ker(ψ)) := ker(ψG|T ).

(4.1.3) Definition. Let M = (G, Y , α) be given. We define the dual motive as M∨ =
(G′, X, α′), where X is the etale sheaf X(G) as above, G′ is the extension

0 // T ′ // G′ // A∨ // 0

0 // Hom(Y ,Gm) // Ext(M/W−2M,Gm) // Ext(A,Gm) // 0

(it is determined by α : Y → A = (A∨)∨), α′ is given by the following construction:
Locally each x ∈ X gives a pushout Mx,

0 // T

x

��

// M

��

// M/W−2M // 0

0 // Gm
// Gx // M/W−2M // 0,

and therefore an element of Ext(M/W−2M,Gm).
A polarization of 1-motives is a morphism ψ : M → M∨, inducing a polarization
gr−1M → (gr−1M)∨ = gr−1(M∨) and such that D(gr0 ψ) = gr−2 ψ.
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(4.1.4) There is a symmetric description of the above construction: A 1-motive M =
(G, Y , α) is equivalent to the following data (A,A∨, X, Y , α, α∨, ν), where

i. A and A∨ are an Abelian scheme, resp. its dual,

ii. X and Y are 2 etale sheaves with fibres isomorphic to Zr, Zq,

iii. Y
α // A and X

α∨ // A∨ are 2 morphism, and

iv.
ν : (α, α∨)∗P ∼= (Gm)Y×X

is a trivialization of the pullback of the universal (Poincaré) biextension on A×A∨.

A morphism of a 1-motives

ψ : (A1, A
∨
1 , X1, Y 1, α1, α

∨
1 , ν1)→ (A2, A

∨
2 , X2, Y 2, α2, α

∨
2 , ν2)

is, in this description, given by morphisms

ψA : A1 → A2 (1)
ψY : Y 1 → Y 2 (2)
ψX : X2 → X1 (3)

compatible in the sense that

Y 1

ψY
��

α1 // A1

ψA
��

Y 2
α2 // A2

X1
α1 // A∨1

X2

ψX

OO

α2 // A∨2

ψ∨A

OO

commute and via the isomorphism (1, ψ∨A)∗P1 ∼= (ψA, 1)∗P2 on A1 ×A∨2 one has

ν1(x1, ψX(y2)) = ν2(ψY (x1), y2).

The assignment is as follows: α∨ is the map X → A∨ that describes G, and ν is given
via the following construction: The extension of α from a map to A to a map to G can
be interpreted as a trivialization of the pullback of the extension G via α

0 // T // G′

��

// Y

α

��

// 0

0 // T // G // A // 0

This is the same as giving a trivialization of the universal extension P on A×A∨ pulled
back via (α, α∨) to Y ×X.
The dual of a 1-motive (A,A∨, X, Y , α, α∨, ν) is then the 1-motive (A∨, A, Y ,X, α∨, α, ν).
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(4.1.5) Definition/Theorem (Covariant realizations). Let S be a connected
scheme (or a Deligne-Mumford stack). To each 1-motive M = [ Y α // G ] over S we
associate, . . .

i. if S is a DM-stack of finite type over C, the Betti realization HB(M), a local
system on San defined by the following commutative diagram with exact lines

0 // H1(G,Z) // Lie(G) // G // 0

0 // H1(G,Z) // HB(M)

OO

// Y //

OO

0

Set

Wi(H(M)) =


HB(M) i ≥ 0,
ker(β) = H1(G,Z) i = −1,
H1(T,Z) = ker(H1(G,Z)→ H1(A,Z)) i = −2,
0 i < −2.

There are isomorphisms

gri(HB(M)) =


Y i = 0,
H1(A,Z) i = −1,
H1(T,Z) = X∗(1) i = −2.

The Betti realization is a covariant functor. It extends to Z(p)-morphisms which
give morphisms between (HB(M)⊗Z Z(p))’s.

ii. if l is invertible in S, an etale sheaf of free Z/lnZ-modules, the etale realization

Het(M,Z/lnZ) = ker([ln])
= {(y, g) ∈ Y ×G | α(y) = lng}/{(lny, α(y)) | y ∈ Y }

with filtration

Wi(Het(M,Z/lnZ)) =


Het(M,Z/lnZ) i ≥ 0,
{(0, g) | ng = 0} = Het

1 (G,Z/lnZ) i = −1,
{(0, t) | nt = 0, t ∈ T} = Het

1 (T,Z/lnZ) i = −2,
0 i < −2.

It is determined by a representation of πet1 (S, s) on a fibre Het(Ms,Z/lnZ) (because
S is connected), where s is some geometric point in S.
We may form the projective limit

Het(Ms,Zl) := lim←−nH
et(Ms,Z/lnZ).
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It is a continuous representation of πet1 (S, s) where Het(Ms,Zl) carries the profi-
nite topology. It is topologically isomorphic to some Znl equipped with the l-adic
topology.
The limes is constructed for the maps induced by [li] (they are strict):

Het(M,Z/ln+iZ)→ Het(M,Z/lnZ)
(x, g) 7→ (x, lig)

which are compatible with the filtration and induce a similar and saturated filtration
on the limit.
For a p-isogeny ψ and if S is a scheme over spec(Z(p)), we have

ker(ψ) ∼= coker(Het(ψ))

for the induced map Het(ψ) : Het(M1, Ẑ(p)) ↪→ Het(M2, Ẑ(p)).
If S is a smooth DM-stack over C there is the comparison isomorphism

ρet,B : Het(M,Zp)→ HB(M)⊗Z Zp,

where here Het(M,Zp) is considered as local system on San as well. This isomor-
phism respects the weight filtration.
The etale realization is a covariant functor. It extends to Z(p)-morphisms which
give morphisms between (Het(M,Zl)⊗Zl Ql)’s.

iii. if S is arbitrary, the de Rham realization (cf. [24, 10.1.7])

HdR(M),

which is a locally free sheaf on S, with a flat connection

∇ : HdR(M)→ HdR(M)⊗ ΩS| spec(Z),

weight filtration W•(HdR) and Hodge filtration F •(HdR) such that they are bisat-
urated, and for each S of finite type over C the requirements of a family of mixed
Hodge structures are fulfilled.
HdR(M) is defined to be Lie(G′), where G′ is the group underlying the universal
vector group extension of M [loc. cit.]. One has F 0(HdR(M)) = ker(Lie(G′) →
Lie(G)) ∼= (Ext1(M,Ga))∗.
Furthermore:

gri(HdR(M)) =


Y ⊗OS i = 0,
HdR

1 (A) i = −1,
Lie(T ) i = −2,

where OS, resp. Lie(T ) are equipped with trivial Hodgestructure of type (0, 0) and
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(−1,−1), respectively, and the induced Hodge structure on HdR
1 (A) is the usual

one.

If S is a smooth Deligne-Mumford stack over C, there is the comparison isomor-
phism [loc. cit.]

ρdR,B : HdR(M)⊗OS OSan → HB(M)⊗Z OSan ,

compatible with weight filtration and such that sections of HB(M) are precisely
those which are flat for the Gauss-Manin connection on the left.

The de Rham realization is a covariant functor. If S is a scheme over spec(Z(p)),
it extends to Z(p)-morphisms.

(4.1.6) Theorem. One has

HB(M∨) = HB(M)∗(1)
HdR(M∨) = HdR(M)∗(1)
Het(M∨) = Het(M)∗(1)

where each is compatible with weight filtrations, and the second with Hodge-filtration.
Everything is compatible with comparison isomorphisms.
A polarisation induces symplectic forms

HB(M)×HB(M)→ ZB(1)
HdR(M)×HdR(M)→ ZdR(1)
Het(M)×Het(M)→ Zet(1)

W−2(· · · ) is an isotropic (primitive) sublattice and W−1(· · · ) = W−2(· · · )⊥ for each ob-
ject · · · above. Furthermore, the only nontrivial filtration step F 0(HdR(M)) is isotropic.
In the case of a Zp-polarization everything hold when tensored with Z(p).

(4.1.7) Theorem. Let M1,M2 be two 1-motives over an algebraically closed field.
Hom(M1,M2) is a free Z module of finite rank. The map

Hom(M1,M2)⊗Z Zl ↪→ Hom(Het(M1,Zl), Het(M2,Zl))

is injective.

(4.1.8) Theorem. Let N ∈ Z be an integer invertible in S, M a 1-motive over S and
let E ⊂ ker([N ]) be a subscheme with induced filtration (i.e. E → ker([N ]) is strict).
Then there is an isogeny ψ : M →M ′ with ker(ψ) = E.
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(4.1.9) Definition. A Z(p)-morphism of 1-motives is given by a Z(p)-morphism ψA :
A1 → A2 and by

ψX : X1 ⊗ Z(p) → X2 ⊗ Z(p)

ψY : Y 2 ⊗ Z(p) → Y 1 ⊗ Z(p)

such that there exists an n ∈ N, p - n, such that nψ is an ordinary morphism and
satisfies the compatibility requirements above. Observe, that it may be also the case
that ψA, ψX , ψY are already given by ordinary morphisms but satisfy for example the
compatibility with the ν’s only after multiplication with some n. Denote the group of
Z(p)-morphisms of 1-motives by Homp(M1,M2). These groups define a category of 1-
motives ‘up to p-isogeny’. Every p-isogeny becomes an isomorphism here because for
them the morphisms ψX , ψY above are isomorphisms.
This has an equivalent description (like in the case of Abelian varieties): Z(p)-morphisms
of 1-motives are given by pairs [n, α], where n ∈ Z \ 0, p - n and α is an ordinary
morphism, subject to the equivalence relation

[n, α] ∼ [m,β] ⇔ mα = nβ.

The map

Hom(M1,M2)→ Homp(M1,M2)
α 7→ [1, α]

is injective. This description is equivalent to the description above.

(4.1.10) Definition. Let all l - p be invertible in S.
A p-polarization of a 1-motive M over S is a Z(p)-morphism

ψ : M →M∨,

such that ψA is a p-polarization A→ A∨ and such that ψX = ψY .
In the second, symmetric description this means that there is

i. a p-polarization ψ1 : A→ A∨ (remember that it is automatically symmetric ψ∨1 =
ψ1 via the canonical identification (A∨)∨ = A).

ii. an isomorphism ψ2 : X ⊗ Z(p) → Y ⊗ Z(p) such that there is an n ∈ N, p - n such
that nψ1 and nψ2 are morphisms, nψ1α = nα∨ψ2 and ν is symmetric via nψ2, i.e.
ν(x1, nψ2(x2)) = ν(nψ2(x1), x2) on (1, nψ1)∗P = (nψ1, 1)∗P∨ on A×A.

(4.1.11) Definition. Let S be a base scheme, with morphism S → spec(Z(p)). Let
LZ(p) 6= 0 be a lattice of dimension 2g with non-degenerate (perfect) symplectic form.
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We define the following groupoid (adelic case):

[ S-KHg-L-mot ],

where K ⊂ GSp(VA(∞)) is an admissible compact open subgroup, as the category of the
following data

i. An Abelian scheme A of dimension g with p-polarization

ψ : A→ A∨.

ii. A K(p)-level structure

ξ ∈ Iso(GSp(LZ(p) ),LZ(p) )(LA(∞,p) , Het
1 (A,A(∞,p)))/K(p),

where the isomorphisms have to be compatible with the (GSp(LA(∞,p)), LA(∞,p))-
structure (see below) on both parameters.
This means, more precisely, that ξ can be given as a class mod K(p) of isomor-
phisms

ξsK
(p) : (L⊕ I)A(∞,p) → Het(Ms,A(∞,p))

(respecting the (GSp(VA(∞,p)), LA(∞,p))-structure) for some geometric point s in
each connected component, and such that the class is invariant under the action of
the etale fundamental group πet1 (S, s).
The (GSp(LA(∞,p)), LA(∞,p))-structure is given as follows: The p-polarization in-
duces an isomorphism

Het
1 (A,A(∞,p))→ Het

1 (A,A(∞,p))∗(1).

Choosing some isomorphism Zet(p)(1) ∼= A(∞,p), we get an alternating form on
Het

1 (A,A(∞,p)) up to a scalar (i.e. a GSp-structure, see 2.5.7).

Isomorphisms are Z(p)-morphisms, compatible with polarization (up to scalar) and level
structures.

(4.1.12) Definition. Let S be a base scheme, with morphism S → spec(Z(p)). Let
L0,Z(p) 6= 0 be a lattice of dimension 2g0 with non-degenerate (perfect) symplectic form.
Let IZ(p) 6= 0 be a lattice. We define the following groupoid (adelic case):

[ S-KHg0 [0, I ⊗ L0]-L-mot ],

where L = L0⊕ I∗ and K ⊂ PSp(LA(∞)) is an admissible compact open subgroup, as the
category of the following data

i. A 1-motive M = (A,A∨, 0, Y , 0, α∨, 0) over S, where A is of dimension g0.
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ii. A p-polarization
ψ1 : A→ A∨.

iii. An isomorphism ρ : (I∗Z(p)
)S ∼= Y ⊗ Z(p).

iv. A K(p)-level structure (as above)

ξ ∈ Iso(PSp(L0,Z(p) ,IZ(p) ),LZ(p) )(LA(∞,p) , Het(M,A(∞,p)))/K(p),

where the isomorphisms on the right have to be compatible with the PSp(L)-struc-
ture (see below) on both parameters. (note: in particular ψX has to be the identity
for every isomorphism!)
The (PSp(L0,A(∞,p) , IA(∞,p)), LA(∞,p))-structure is given as follows: The p-polariza-
tion induces an isomorphism

W−1(Het(M,A(∞,p)))→W−1(Het(M,A(∞,p)))∗(1).

Choosing some isomorphism Zet(p)(1) ∼= A(∞,p), we get an alternating form on

W−1(Het(M,A(∞,p))) up to a scalar. Furthermore, we have (via ρ) an isomorphism

gr0(Het(M,A(∞,p))) = Y ⊗Z A(∞,p) = I∗A(∞,p)

(i.e. a PSp-structure, see 2.5.7).

Isomorphisms are Z(p)-morphisms of the 1-motives, compatible with polarization (on A,
up to a scalar), ρ’s and level structure.

(4.1.13) Definition. Let S be a base scheme, with morphism S → spec(Z(p)). Let
L0,Z(p) a lattice of dimension 2g0, possible 0, otherwise with non-degenerate perfect sym-
plectic form. Let IZ(p) 6= 0 be a lattice. We define the following groupoid (adelic case):

[ S-KHg0 [(I ⊗ I)s, L0 ⊗ I]-L-mot ],

where L = I∗⊕L0⊕ I and K ⊂ PSp(LA(∞)) is an admissible compact open subgroup, as
the category of the following data

i. A 1-motive M = (A,A∨, X, Y , α, α∨, ν) over S, with dim(A) = g0.

ii. A p-polarization of some degree d ∈ Z(p)
∗

ψ1 : A→ A∨

and an isomorphism
ψ2 : X ⊗ Z(p) → Y ⊗ Z(p)

of the same degree d, such that they give a p-polarization of M .
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iii. An isomorphism ρ : (I∗Z(p)
)S ∼= Y ⊗ Z(p).

iv. A K(p)-level structure (as above)

ξ ∈ Iso(USp(L0,Z(p) ,IZ(p) ),LZ(p) )(LA(∞,p) , Het(M,A(∞,p)))/K(p),

where the isomorphisms in the etale sheaf on the right have to be compatible with
the (USp(L0,Z(p) , IZ(p)), LZ(p))-structure (see below) on both parameters.
The (USp(L0,A(∞,p) , IA(∞,p)), LA(∞,p))-structure is given as follows: The p-polariza-
tion induces an isomorphism

Het(M,A(∞,p))→ Het(M,A(∞,p))∗(1).

Choosing some isomorphism Zet(p)(1) ∼= A(∞,p), we get an alternating form on

Het(M,A(∞,p)) up to a scalar. The weight filtration satisfies W−2 totally isotropic
and W−1 = (W−2)⊥. Furthermore, we have (via ρ) an isomorphism

gr0(Het(M,A(∞,p))) = Y ⊗Z A(∞,p) = I∗A(∞,p)

(i.e. a USp-structure, see 2.5.7).

Isomorphisms are Z(p)-morphisms of 1-motives, compatible with polarization up to scalar,
ρ’s and level structures.

(4.1.14) Definition. Let S be a base scheme, with morphism S → spec(Z(p)). We
define a variant of the foregoing category for the case L0,Z(p) = 0. Let UZ(p) be a lattice of
dimension k (it could be (I⊗I)s). Consider X = H0[UZ(p) , 0], with PX = W(UZ(p))oGm.
PX acts on LZ(p) = Z(p)⊕U∗Z(p)

as follows: Gm acts as scalar multiplication on Z(p) and
W(UZ(p)) acts via u(x, u∗) = (x + u∗u, u∗). We define the following groupoid (adelic
case):

[ S-KH0[UZ(p) , 0]-L-mot ],

where K ⊂ PSp(LA(∞)) is an admissible compact open subgroup, as the category of the
following data

i. A 1-motive of the form M = [ Y // Gm ].

ii. An isomorphism ρ : (U∗Z(p)
)S ∼= Y ⊗ Z(p).

iii. A K(p)-level structure (as above)

ξ ∈ Iso(PX,LZ(p) )(LA(∞,p) , Het(M,A(∞,p)))/K(p),

where the isomorphisms in the etale sheaf on the right have to be compatible with
the obvious (PX, LZ(p))-structure on both parameters.
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Isomorphisms are Z(p)-morphisms of 1-motives, which are the identity on Gm, compatible
with ρ’s and level structure.

(4.1.15) Remark. For UZ(p) = (I ⊗ I)sZ(p)
6= 0, there are easy functorial equivalences:

[ S-KH0[UZ(p) , 0]-Z(p) ⊕ U∗Z(p)
-mot ]→ [ S-KH0[(I ⊗ I)sZ(p)

, 0]-I∗ ⊕ I-mot ].

In the case UZ(p) = 0, we have isomorphisms

[ S-K(N)H0-Z(p)-mot ]→ Hom(S, µN,S)

given by the level structure. We will examine these examples further in (5.7).

We have the following ‘integral’ variant of the foregoing groupoids: We will describe this
only for the case (4.1.13) because the others are degenerating analogous cases of this
construction.

(4.1.16) Definition. Let S be a base scheme. Let L0,Z be a with non-degenerate (per-
fect) symplectic form of dimension 2g. Let IZ be another lattice. We define the following
groupoids for N ∈ N.

•
[ S-NHg0 [(IZ ⊗ IZ)s, L0,Z ⊗ IZ]-LZ-mot ]

as the category of the following data
i. A 1-motive M = (A,A∨, X, Y , α, α∨, ν) over S, where dim(A) = g.
ii. A principal polarization

ψ1 : A→ A∨

and an isomorphism
ψ2 : X → Y

such that they induce a polarization of M .
iii. An isomorphism ρ : (I∗Z)S ∼= Y .
iv. A level-N -structure

ξ ∈ Iso(USp(L0,Z/NZ,IZ/NZ),LZ/NZ)(LZ/NZ, H
et(M,Z/NZ)).

This means that the isomorphisms have to be compatible with the
(USp(L0,Z/NZ, IZ/NZ), LZ/NZ)-structure (see the adelic case) on both parame-
ters.

Isomorphisms are morphisms of the 1-motives, compatible with polarization and
level structures. (Note: In particular ψY is determined by the ρ’s and ψX by them
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and the polarization.)

(4.1.17) Remark. Without the isomorphism ρ : I∗Z → Y , we had to take another
group, which is an almost semi-direct product of USp(L0, I) and GL(I). It is precisely
the maximal parabolic subgroup of GSp(L), fixing the weight filtration. It does however
not define a valid mixed Shimura datum and it is only the subgroup USp, which is
associated with boundary components of GSp (see 2.5.4).

(4.1.18) Definition. Let X be one of the symplectic mixed Shimura data above group
schemes above, with natural representation of PX on LZ(p). Furthermore, for each ρ ∈
PX(A(∞,p)), and admissible compact open subgroups K1,K2, such that Kρ

1 ⊆ K2 we have
a map

[ S-K1X-L-mot ]→ [ S-K2X-L-mot ]

by multiplication of the level structure by ρ from the right. These maps satisfy the axioms
of (3.6.1).

(4.1.19) Theorem. Let S be a scheme over spec(Z(p)). For each of the p-integral mixed
symplectic Shimura data as above, we have equivalences

[ S-NX-LZ-mot ]→ [ S-K(N)X-L-mot ].

Proof. We will prove this for the case Hg0 [(IZ ⊗ IZ)s, L0,Z ⊗ IZ], where IZ 6= 0, L0,Z 6= 0
— the other cases are degenerate special cases of this construction. We may assume that
S is connected.
We first describe the functor. Let

[A,X, Y , α, α∨, ν, ψ, ρ, ξ]

be an object of [ S-NX-LZ-mot ]. Choose a geometric point s. ξ can be considered as
an isomorphism

ξ : LZ/NZ → Het(Ms,Z/NZ)

invariant under the action of πet1 (S, s) (i.e. Het(M,Z/NZ) has to be constant).
Choose some isomorphism

δ : Het(Ms, Ẑ(p))→ LẐ(p)

compatible with USp-structures. Composing the reduction mod N with ξ, we get an
element of USp(L0,Z/NZ, IZ/NZ). Since USp is a smooth group scheme over Z, by Hensel’s
lemma we get a lift to USp(LẐ(p)). Taking composition again with the inverse of the
chosen isomorphism we get a

ξ′ : LẐ(p) → Het(Ms, Ẑ(p)),
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reducing mod N to ξ. It is well-defined mod K(N) and the class is, by construction,
invariant under πet1 (S, s).
This functor is faithful. It is full because a p-morphism of 1-motives, which induces an
isomorphism Het(Ms, Ẑ(p)) ∼= Het(Ms, Ẑ(p)), must be a morphism. This follows from
(4.1.7).
Let on the other hand [A,X, Y , α, α∨, ν, ψ, ρ, ξ′] be an object of [ S-K(N)X-L-mot ].
Choose a geometric point s.
If ξ′ is represented by an isomorphism

LẐ(p) → Het(Ms, Ẑ(p))

then the object is in the image of the functor because of the following:

i. ξ′ can be given as a lift of a ξ as above.

ii. There is a principal polarization in the class of ψ. For, there is a d ∈ A(∞,p), such
that ψ induces an isomorphism

Het(Ms, Ẑ(p))→ dHet(M∨s , Ẑ(p))

because ξ′ is a morphism of USp-structures, hence a symplectic similitude. Hence
we get a principal polarization by changing ψ by +d or −d, which w.l.o.g. lies in
Z∗(p). Only one sign leads to a polarization.

iii. ν itself has to satisfy the compatibility condition.

iv. ρ maps I∗Z to Y .

If ξ′ is not represented by an isomorphism as above, we have to show that there exists
an isogenous object with this property.
Composing with a p-isogeny ∈ Z(p) \ {0}, we may assume that there is an c, p - c, and a
diagram

0 // Het(Ms, Ẑ(p)) � � ξ
−1

// LẐ(p)� _

��

// K� _

��

// 0

0 // Het(Ms, Ẑ(p))
[c] // Het(Ms, Ẑ(p)) // ker([c]) // 0

Furthermore, the operation of πet1 (S, s) induces one on Ks, hence there is a finite etale
group scheme K ⊂ ker([c]) with fibre Ks and we have (4.1.8) an isogeny ψ : M → M ′

with ker(ψ) = K, hence a diagram

0 // Het(Ms, Ẑ(p)) � � ξ
−1

// LẐ(p) // K // 0

0 // Het(Ms, Ẑ(p))
ψ // Het(M ′s, Ẑ(p))

(ξ′)−1

OO

// K // 0
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There is an ρ′ because ξ is a morphism of USp-structures and hence ΨY has to be an
isomorphism of Z-lattices! Therefore we get an isogenous object with the property that
ξ′ is an isomorphism

LẐ(p) → Het(Ms, Ẑ(p)).

(4.1.20) Remark. In particular, transporting Hecke operators via these equivalences,
we get a action of them on ordinary 1-motives with level-N -structures. For a more
explicit description of this action see [83, 10.11]. There dim I = 1.

(4.1.21) Remark. We will need later an integral description of the groupoid

[ S-KW (1)oKG(N)Hg0 [(I ⊗ I)s, L0 ⊗ I]-L-mot ],

too. It is given as in (4.1.19), but with level structure

ξ : L0,Z/NZ → Het(gr−1M,Z/NZ)

only.

4.2. Biextensions

(4.2.1) Definition ([38, VII, 3]). Let G1, G2, C be commutative groups. A biexten-
sion of G1 ×G2 by C is a set B with a free C operation and an invariant map

π : B → G1 ×G2,

which identifies G1 × G2 with the quotient B/C, together with 2 partial multiplication
maps

+1 : B ×G2 B → B +2 : B ×G1 B → B

such that +i defines the law of a (relative) Abelian group on B → Gi′
1, and operation

resp. π induce an exact sequence of groups over Gi′:

0 // CGi′
// B // G1 ×G2 // 0

and
(x+1 y) +2 (u+1 v) = (x+2 u) +1 (y +2 v)

for all elements, where this is defined.
For the category of schemes or sheaves on schemes, we define a biextension to be a
biextension object in the respective category.

1where 1′ = 2 and 2′ = 1.
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Denote by Biext0(G1, G2, H) the group of isomorphisms of the trivial biextension and by
Biext1(G1, G2, H) the group of isomorphism classes of biextensions of G1 and G2 by C.
(There is a unique group law on isomorphism classes of biextensions, such that for the
associated extension of groups over Gi, i = 1, 2 it gives back the usual group law).

(4.2.2) Theorem ([38, VII, 3]). If G1, G2 and C are sheaves of Abelian groups on
some scheme S, there are canonical isomorphisms

Biext1(G1, G2, H) = Ext1(G1
L
⊗G2, H)

= Ext1(G1, RHom(G2, C)) = Ext1(G2, RHom(G1, C))

and hence an exact sequence

0 // Ext1(G1,Hom(G2, C)) // Biext1(G1, G2, C) //

Hom(G1,Ext1(G2, C)) // Ext2(G1,Hom(G2, C)) // Ext2(G1, RHom(G2, C)).

We are mainly interested in the case where Gi = Ai are Abelian schemes and C is a
torus. In the case, Hom(A2, C) = 0 and we get an isomorphism

Biext1(A1, A2, C) ∼= Hom(A1,Ext1(A2, C))

and Ext1(A2, C) is isomorphic to A∨2 ⊗Hom(Gm, C).
By the theorem of the square a birigidified C-torsor over A1×A2 is already a biextension.

(4.2.3) Theorem. If S = spec(C), and C = DS(M) is a torus we have a bijection{
(usual) group ext. E of H1(A1 ×A2,Z) by M(1), with compatible sections

si : H1(Ai,Z)→ E and s : F 0(H1(A1 ×A2,C))→ E(C)

}
∼= Biext1(A1, A2, C)

(here E(C) is the induced extension of H1(A1 ×A2,C) by M(1)C = MC).

Proof. The bijection is given analytically by:

(E, s) 7→ E\E(C)/F 0(E),

where F 0(E) is the image of the section s. Here, on the right hand side the group
operations +1 and +2 are both induced by the group structure on E by x +1 y =
xs1(p1(x))−1y, if p1(x) = p1(y) and similarly for +2.
The right hand side is algebraic because

Ext1(Aan2 , Can) = Ext(A2, C)
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and
Hom(Aan, Ban) = Hom(A,B)

for all Abelian varieties. The inverse is gives as follows. The map A1 → A∨2 ⊗ M
describing the extension is given by a bilinear form

ψ : H1(A1,Z)×H1(A2,Z)→M(1).

Since it is induced by a morphism of Hodge structures the form is trivial on

F 0(H1(A1,Z))× F 0(H1(A2,Z)).

It defines the group structure

(u′, v′1, v′2)(u, v1, v2)→ (u′ + u− ψ(v1, v
′
2), v′1 + v1, v

′
2 + v2)

on E = M(1)⊕H1(A1,Z)⊕H1(A2,Z). One checks that these constructions are inverse
to each other (up to isomorphism).

(4.2.4) Remark. If A := A1 = A2 and we have a polarization ψ : A→ A∨, it describes
an alternating form

ψ : H1(A,Z)×H1(A,Z)→ Z(1)

and the associated biextension is the universal Poincaré biextension. In this case, a more
symmetric description of E(C) is convenient, transforming the previous description via
the map

(u, v1, v2) 7→ (u+ 1
2ψ(v1, v2), v1, v2).

Then the morphism of symmetry becomes just exchanging the rightmost factors, but
the lattice E(Z) is moved. In the original description s acts by (u, v1, v2) 7→ (u +
ψ(v1, v2), v2, v1) preserving the lattice.
Consider the (obvious) extension

ψ : I ⊗H1(A,Z)×H1(A,Z)⊗ I → (I ⊗ I)(1),

which is not alternating anymore, but satisfies (ψ(v, w) = −ψ(w, v)s). The associated
biextension is an I-Poincaré biextension described in (4.2.6). The map

(u, v1, v2) 7→ (u+ 1
2ψ(v1, v2), v1, v2)

is defined as well, and the morphism of symmetry becomes exchanging the rightmost
factors and s on the leftmost one. In the original description s acts by (u, v1, v2) 7→
((u+ ψ(v1, v2))s, v2, v1), preserving the lattice.

(4.2.5) Theorem. Let S be a normal scheme, and U ↪→ S be a dense open subscheme.
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If Bi, i = 1, 2 are biextensions of Abelian schemes by tori over S, every homomorphism
φ : B1|U → B2|U extends uniquely to a homomorphism φ̃ : B1 → B2.

Proof. It suffices to show the extendibility of the induced map on the Abelian schemes
resp. the torus . The map on Abelian schemes extends uniquely by (3.7.3) and the
map on tori is given by a homomorphism of etale sheaves of lattices, hence extends as
well.

(4.2.6) Some tautologies about biextensions and 1-motives:
Let A be an Abelian scheme. There is the universal (Poincaré) biextension of A × A∨
by Gm.

Gm
// P // A×A∨

given by the canonical isomorphism A→ (A∨)∨.
If ψ : A→ A∨ is a polarization, then we get via pullback along id×ψ a biextension

Gm
// Pψ // A×A .

The symmetry morphism s : A × A → A × A lifts to Pψ (because ψ is a symmetric
morphism) and the invariants under s are a rigidified Gm-torsor, which is the same as
the pullback of the biextension (considered as rigidified Gm-torsor) along the diagonal:

Gm
// (Pψ)s // A

(over geometric points we have L⊗2
s
∼= (Pψ)ss, where Ls is the ample line bundle associ-

ated with the polarization).
Let I be a lattice (or an etale sheaf of lattices). We get also a biextension

I ⊗Gm
// Pψ,I // I ⊗A×A

given by the morphism ψ ⊗ id : I ⊗A→ I ⊗A, a biextension

I ⊗Gm ⊗ I // Pψ,I⊗I // I ⊗A×A⊗ I

given by the morphism I ⊗ A → I ⊗ I ⊗ A ⊗ I∗ (contraction). The morphism s :
I ⊗A×A⊗ I exchanging the factors extends again to Pψ,I⊗I , and the invariants are a
rigidified (I ⊗ I)s ⊗Gm-torsor:

Gm ⊗ (I ⊗ I)s // Pψ,(I⊗I)s // I ⊗A.

A section m in the biextension Pψ,I⊗I(S) determines a 1-motive over S as follows: It is
the same as giving a morphism I∗ → Pψ,I whose projection to I ⊗ A is constant. The
fibre over the image is a semi-Abelian scheme 0 // I ⊗Gm

// G // A // 0
(by +2). The restriction I∗ → G is a homomorphism, hence a 1-motive. It is symmetric
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(w.r.t ψ, I → (I∗)∗) if and only if m was invariant under s.
Giving m is as well the same as giving a morphism I × I → P such that the projections
I → A and I → A∨ are homomorphisms (this is the second symmetric description).

4.3. Representability
(4.3.1) Remember the quotient maps Hg0 [(I ⊗ I)s, L0 ⊗ I] → Hg0 [0, L0 ⊗ I] → Hg0

(2.5.6). (Assume L0 6= 0.) They are compatible via the standard representations with
the quotient maps L0 ⊗ I → L0 ⊕ I∗ → L0. If a compact open subgroup is such that
π(K ′) ⊂ K, then there are forgetful maps

[ K′Hg0 [(I ⊗ I)s, L0 ⊗ I]-L0 ⊕ I-mot ]→ [ KHg0 [0, L0 ⊗ I]-L0 ⊕ I∗-mot ]

and
[ K′Hg0 [0, L0 ⊗ I]-L0 ⊕ I∗-mot ]→ [ KHg0-L0-mot ],

respectively.

(4.3.2) Theorem. These maps are representable and smooth and the fibers are projec-
tive schemes, resp. quasi-projective schemes.

Proof. Since these morphisms are compatible with the operation of PX(A(∞)) we may
restrict to the case of the groups KU (M2)KV (M)KG(N) (they form a confinal system
of normal subgroups of K(1)). These in turn are conjugated to KW (1)KG(N) by w(M),
where w is the weight morphism, acting by 1 on I∗, by M−1 on L0 and by M−2 on I.
Hence we are restricted to the integral versions of the category described in (4.1.21).
Let [A,ψ, ξ] be an object of [ S-NHg0-L0-mot ] . Fibers of the first morphism consist
of a morphism α : Y → A, an isomorphism ρ : Y ∼= U∗Z. This is represented by

A⊗Z IZ,

which is projective.
In the second case, the fibre consists of the following. The polarization determines X,
α∨, so it remains the variability of a symmetric trivialization of the pullback of the
Poincaré biextension along α × α∨, or equivalently (considering α as a point in A ⊗ IZ
and α∨ as a point in A∨⊗IZ) of a point (=trivialization of one fibre) in Pψ,(I⊗I)s (4.2.6).
It is a Gm ⊗ (IZ ⊗ IZ)s-torsor above A⊗ IZ.
Fixing (A,Ψ), there are no further automorphisms because everything is fixed by ρ.
Hence the second fibre is represented by the fibre of P(I⊗I)s → A ⊗ IZ over α. It is a
quasi-projective scheme.

(4.3.3) Theorem (Mumford, Artin, Deligne). For each of the p-integral mixed
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Shimura data of symplectic type and each K, an admissible compact open subgroup

[ KX-L-mot ]→ spec(Z(p))

is representable and a smooth Deligne-Mumford stack of finite type. It is a quasi-
projective scheme, if K is neat.

Proof. It suffices to restrict to the fundamental system of normal subgroups K(N) ⊂
K(1), p - N . For X = Hg we have an equivalence

[ S-K(N)Hg-L-mot ]→ [ S-NHg-LZ-mot ]

and representability of [ S-NHg-LZ-mot ] over spec(Z[1/N ]) is well-known, and follows
for example from [80], where symplectic level structures (instead of similitudes) are used.
(If g = 0, we saw this in 4.1.15.) For the other groups, the statement follows from (4.3.2).
The last statement follows because, if K is neat, the objects in [ S-KX-L-mot ] have
no nontrivial automorphisms for any S.

The maps of (4.1.18) yield etale and finite maps of Deligne-Mumford stacks.

4.4. Comparison with mixed Hodge structures

The notation is justified by the following

(4.4.1) Theorem (Riemann, Deligne). Let S be a smooth DM-stack of finite type
over C. Then there are functors

[ S-KX-L-mot ]→ [ San-KX-L-mhs ]

for X = Hg0, Hg0 [0, L0 ⊗ I] and Hg0 [(I ⊗ I)s, L0 ⊗ I], respectively and the standard
representation spaces L of the various PX which for S = spec(C) are equivalences of
categories. The functors are compatible with the forgetful functors (4.3.1), respectively
the maps induced by the maps of Shimura data (2.5.6). They are compatible with the
PX(A(∞))-action and functors associated with K ′ ⊆ K, too.

Proof. We will show this only for the case X = Hg0 [(I ⊗ I)s, L0 ⊗ I] — the others are
(degenerate) special cases of this construction.
The functors are defined via the comparison isomorphisms. Let M = (A,A∨, X, Y , ν)
be a 1-motive together with a polarization Ψ, an isomorphism ρ : (I∗Z) ∼= Y and
level structure, i.e. an object of [ S-KX-L-mot ]. We have HB(M,Q), HdR(M)
and Het(M,A(∞)). All equipped with symplectic pairing (determined up to scalar)
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weight filtration, isomorphism gr0(Het) ∼= I∗A(∞) , resp. gr0(HdR) ∼= I∗Z ⊗ OS , resp.
gr0(HB) = (IZ)∗San . induced by ρ. This determines a USp-structure on them.
The functor associates to this the local system HB(M,Q), equipped with the USp-
structure described above, the mixed Hodge structure transported to HB(M,Q) ⊗
OanS by means of ρB,dR and K-level structure transported to HB(M,Q) ⊗Q A(∞) by
means of ρB,et. Since the Hodge-filtration is isotropic and point-wise polarized on
gr−1HB(M,R) and by construction the weight filtration is the filtration determined
by the USp-structure, the associated morphism lies in DX. I.e. we get an object of

[ San-KX-L-mhs ].

In the case S = spec(C), we construct an object as above out of a vector space LQ with
USp-structure (as local system) with mixed Hodge structure on LC of type (−1,−1),
(0,−1), (−1, 0), (0, 0) and K-level structure as follows: Choose any lattice LZ ⊂ LQ.
Form the quotient

G = W−1L(Z)\W−1(LC)/F 0(L−1VC).

It is a semi-Abelian variety over C because the complex torus quotient is polarized.
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Now look at the exact diagram:

0

��
I∗

0 // W−1(LZ) //

��

LZ //

��

gr0(LZ)

��

// 0

0 // W−1(LC)/F 0(W−1LC) //

��

LC/F
0(LC)

��

// grW0 (LC)/F 0(grW0 (LC)) = 0 // 0

G

��

// G̃

��

// 0

0 0

By the snake lemma, we get a map

α : I∗Z → G,

hence a 1-motive M = [ I∗Z
α // G ]. This 1-motive has a polarization induced by the

map L→ L∗ given by the symplectic form.

One checks that the two functors are inverse to each other (up to isomorphism).

(4.4.2) Remark. If the map α above is sufficiently general — more precisely: if F 0 ∩
F 0 = 0 — G̃, which is according to the diagram above either the quotient G/α(I∗Z)
or LZ\LC/F

0(LC) is an Abelian variety. Its Hodge structure emerges from the mixed
Hodge structure of M by simply forgetting the weight filtration. The moduli points of
the two are related by the boundary map (2.4.5).

(4.4.3) Remark. Let a Hodge structure of type DHg0
on L0 be given and let A be the

corresponding Abelian variety. The above equivalence induces an isomorphism

WSp(L0, I)(Z)\WSp(L0, I)(C)/F 0(W ) ∼= P(I⊗I)s

(here F 0(W ) is the stabilizer of the (trivial) filtration F 0(L0,C)⊕I∗C). The left hand side
a fibre of the analytic map of Shimura varieties

PX\DX × PX(A(∞))/K(1)→ PHg0
\DHg0

× PHg0
(A(∞))/K(1),
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which is, according to (2.7.1), a moduli space for the categories (fibre)

[ S-K(1)X-L-mhs ]

and P(I⊗I)s is the Gm⊗ (I ⊗ I)s-torsor described in (4.2.6) which is according to (4.3.2)
a moduli space for the categories (fibre) [ S-K(1)X-L-mot ].
The isomorphism may also be described this way: In (2.5.8) we defined the group
W̃Sp(L0, I). Its Z-points are a group extension

0 // I ⊗ I // WSp(L0, I) // L0 ⊗ I ⊕ I ⊗ L0 // 0

with sections s1 : L0⊗I → W̃Sp(L0, I), and s2 : I⊗L0 → W̃Sp(L0, I). We have also the
stabilizer F 0 of the filtration F 0(L0,C)⊕ I∗C in WSp(L0, I)(C). By the procedure (4.2.3)
this defines an analytical biextension of A⊗ I, I ⊗A by Gm ⊗ (I ⊗ I) (the isomorphism
I ∼= I(1) being determined by the connected component of DHg determined by F 0). It
has an operation of s which is the involution transpose w.r.t. the symplectic form on
L followed by inversion. The biextension is canonically isomorphic to PU⊗U . and this
isomorphism is compatible with s. The reduction of this isomorphism to the invariants
under s gives another description of the isomorphism above. The horizontal fibers of the
biextensions (analytically or algebraically) at a moduli point are related to the 1-motive
described by the moduli point, by M 7→ (idI∗)∗(M ⊗ IZ) (cf. also 5.4.1).

4.5. Standard principal bundle
(4.5.1) Definition. Let S be a scheme over spec(Z(p)), and X one of the symplectic
p-integral mixed Shimura data. Define the following groupoid:

[ S-KX-L-triv-mot ],

where K ⊂ PX(A(∞)) is an admissible compact open subgroup, as the category of the
following data: An object (M, · · · ) of [ S-KX-L-mot ] together with a trivialization
(i.e. an isomorphism of locally free sheaves with (PX, L)-structures)

HdR(M)→ L⊗Z(p) OS .

The morphisms are isomorphisms of [ S-KX-L-mot ], respecting these trivializations.
Note, that a p-(iso-)morphism induces an (iso-)morphism on de Rham realization because
S is a scheme over spec(Z(p)).

(4.5.2) Theorem. Let X be one of the symplectic p-integral mixed Shimura data.

S 7→ [ S-KX-L-triv-mot ]

is representable by the associated torsor of the (PX, L)-structure on HdR(M), where M
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is a universal 1-motive over [ S-KX-L-mot ].
If S is a smooth Deligne-Mumford stack over C, ρB,dR induces a functor

[ S-KX-L-triv-mot ] ∼= [ San-KX-L-triv-mhs ],

i.e. to the analytic standard principal bundle (2.7.4). For S = spec(C) this is an
equivalence.
The Hodge filtration on HdR(M) induces a PX-equivariant morphism

Π : [ KX-L-triv-mot ]→ M∨(X),

which is compatible with the morphism ΠC already defined (2.7.5).

Proof. The first statement follows directly from the definition. Let Y be

[ KX-L-triv-mot ]

and let X be
[ KX-L-mot ].

X is a smooth Deligne-Mumford stack over spec(Z(p)), by (4.3.3). The second statement
follows from (4.4.1), and the third follows from (1.9.13), once we have shown that the
Hodge filtration on HdR(M) is compatible with the (PX, LX)-structure, but this is true
over XC and we get a morphism

ΠC : YC → M∨(X).

Now there is a closed embedding M∨(X) ↪→ QPARQ (1.9.11), where Q is the parabolic
of GL(L) fixing the weight filtration. Π extends to a morphism (1.9.15):

Π : Y → QPARQ

because the weight and Hodge filtration are a bisaturated pair. Hence we get an induced

Π : Y →M∨(X).
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5. Constructions for mixed Shimura
varieties of Hodge type

5.1. Hodge tensors

Let G be a reductive group of spec(Z(p)) and L a lattice with non-degenerate primitive
symplectic form. Suppose we are given a closed embedding G ↪→ GSp, for example,
coming from a Hodge embedding X ↪→ Hg.
Denote

L⊗ :=
⊕

i−j=2n
L⊗i ⊗ (L∗)⊗j ⊗ Z(p)(n)

and similarly for any kind of object, for which this makes sense. (If we are just considering
lattices, put Z(p)(n) = Z(p)).
G operates also linearly on L⊗ (with weight action of GSp on Z(p)(n)).

(5.1.1) Theorem. There is a finite family {si} ⊂ L⊗, such that

G = Stab({si},GSp(L)).

Proof. Analogous to [26, Prop. 3.1] (cf. also [49]).

(5.1.2) Definition. Let A be an Abelian variety over a number field F and let

(sdR, set) ∈ F 0(HdR
1 (A)⊗)×Het

1 (A,Zp)⊗

be given.
Let σ : F ↪→ C be an embedding. It determines an Abelian variety Aσ = A ×spec(F ),σ
spec(C) over spec(C), and hence elements

sσdR ∈ F 0(HdR
1 (Aσ)⊗),

sσet ∈ Het
1 (Aσ,Zp)⊗.

We call (sdR, set) a Hodge tensor with respect to σ, if there is an sB,σ ∈ HB
1 (Aσ,Z(p))⊗

such that ρB,dR(sB,σ) = sσdR and ρB,et(sB,σ) = sσet.
We call (sdR, set) an absolute Hodge tensor if this is true for all embeddings.
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(5.1.3) Theorem. With the notation in the previous definition

(sdR, set) Hodge (for one embedding) ⇔ (sdR, set) absolute Hodge.

Proof. This is [26, Main Theorem 2.11], cf. also [26, p. 29/30]. Note that if set ∈
Het

1 (Aσ,Zp) ⊂ Het
1 (Aσ,A(∞)) then all sB,σ have to be integral a priori.

(5.1.4) Theorem. Let O be d.v.r with fraction field F a number field, m|(p) and let
A be an Abelian scheme over O, There is a ring B ⊃ Ô faithfully flat over Ô and an
isomorphism

γ : H1
et(AF ,Zp)⊗Zp B → H1

dR(A|O)⊗O B

with the property that, if (sdR, set)i ∈ F 0(H1
dR(AF )⊗) × H1

et(AF ,Zp)⊗ is a family of
absolute Hodge cycles on A defining a connected reductive subgroup of GSp(H1

et(AF ,Zp))
(in particular with integral set) then

γ(si,et ⊗ 1) = si,dR ⊗ 1 ∀i.

In particular si,dR is defined over O.

Proof. Follows from the proposition and corollary [49, 4.2]1.

5.2. Smoothness
(5.2.1) Theorem. Let X be p-MSD of Hodge type. If N, p - N is big, there is an
embedding

K∩PX(A(∞))X ↪→ KHg0 [(I ⊗ I)s, L0 ⊗ I],

for K = KWSp(1)KGSp(N). Furthermore the normalization of the closure of

PX(Q)\DX × PX(A(∞))/K ∩ PX(A(∞))

in M(KHg0 [(I ⊗ I)s, L0 ⊗ I]) is smooth.

Proof. If X is pure, we have I = 0, and the theorem is shown in [49].
Now suppose WX 6= 1. Let X ↪→ KHg0 [(I ⊗ I)s, L0 ⊗ I] be an embedding of p-integral
mixed Shimura data, which exists by the Hodge type property, and let F be the reflex
field of X and O be a reflex ring.
Choose a lattice LZ ⊆ LZ(p) with compatible splitting LZ = L0,Z⊕ IZ⊕ I∗Z . It suffices to
do the construction for any conjugate of the above embedding. We may hence assume

1The reduction to the mentioned reference lacks details. It will be stated more precisely in forthcoming
work. See also M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc.
23 (2010), 967-1012
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that there is a reductive subgroup scheme GX ⊂ PX which factors through GSp(L0)
under the above embedding. We will use the smooth model M(K(N)X/WX) already
constructed (pure case). Consider the Cartesian diagram of O-schemes

E

��

// M(K(N)Hg0 [(I ⊗ I)s, L0 ⊗ I])O

��
A

��

// M(K(N)Hg0 [0, L0 ⊗ I])O

��
M(K(N)X/WX) // M(K(N)Hg0)O,

where the lower horizontal arrow is a normalization followed by an embedding.

Now consider the diagram of (2.5.8). Looking at elements fixing LZ we get a diagram of
ordinary groups:

0 // ŨP� _

��

// W̃P� _

��

// VP ⊕ VP� _

��

// 0

0 // (I ⊗ I)Z // W̃Sp // (I ⊗ L0)Z ⊕ (L0 ⊗ I)Z // 0

where the outer arrows are saturated inclusions of lattices.

The sequences above define (together with their families of Hodge structures on (L0⊗I)C
resp. VP,C) analytically biextensions on (M(K(N)X/WX)C)an by the procedure (4.2.3).

They are in fact algebraic (as all analytic biextensions are) and extend to our integral
models M(K(N)X/WX) because they can be described by maps between Abelian varieties
and the Abelian varieties do extend: The Abelian scheme associated with the family of
Hodge structures on L0 ⊗ I is A in the diagram above. The Abelian scheme associated
with VP is the closure of the rational model [83] M(K(N)X/U)E in A. It is automatically
an Abelian subscheme. The first biextension therefore is also defined over the model
M(K(N)X/W ). The inclusion map of biextensions, as well as the involution s, extend to
M(K(N)X/WX) as well because everything is normal (analog 3.7.3).

The second biextension is, by construction the pullback of PI⊗I to M(K(N)X/WX)
(4.2.6). Its invariants under s is the pullback of P(I⊗I)s i.e. E in the diagram above.

We now define M(K(N)X) as the invariants under s in the first biextension. That this
yields a model of

PX(Q)\DX × (PX(A(∞))/K(N))

follows from the fact that WX = (W̃X)s (2.5.8).
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5.3. Construction of the standard principal bundle, pure case

Let X be p-integral pure Shimura data of Hodge type. Let X ↪→ Hg be an embedding
and let E be the reflex field of X and O be a reflex ring.
Consider a compact open subgroup K(N) ⊂ GSp(LA(∞)) (formed w.r.t. the stan-
dard representation on L), p - N , N sufficiently large. (We denote its inverse image
in PX(A(∞)) by the same symbol because no confusion will result.) Actually the level
structure does not play any role whatsoever in the construction of the standard principal
bundle, as it should be.

(5.3.1) Theorem. In the following situation

? //

��

P(K(N)Hg)O

��
M(K(N)X) // M(K(N)Hg)O

there is a unique model of the analytic standard principal bundle over M(K(N)X), fitting
into the diagram, such that the morphism to P(K(N)Hg)O gives over C the obvious one
on double quotients.

Proof. In the diagram, the horizontal arrow in the bottom line is a closed embedding,
followed by a normalization. P(K(N)Hg) is the associated right torsor for the (GSp, L)-
structure on HdR

1 (A0), where A0 is the universal Abelian scheme over M(K(N)H). We
have the pullback A toM(K(N)X) of A0. And the pullback of P(K(N)Hg) is the associated
right torsor for the (GSp, L)-structure on HdR

1 (A).
Now we have an analytic GX-structure, i.e. locally, say on U , isomorphisms:

HB
1 (Aan|U ,Z(p)) ∼= (LZ(p))U

such that their GX(Z(p))-orbit is equal on overlaps. The pullback of the tensors si ∈ L⊗
defining the group scheme GX are therefore well defined tensors

si,B ∈ HB
1 (Aan,Z(p))⊗.

Via the comparison isomorphisms we get tensors

si,dR ∈ F 0(HdR
1 (Aan)⊗)

si,et ∈ Het
1 (Aan,Zp)⊗ = Het

1 (AC,Zp)⊗,

which are absolutely Hodge (5.1.3) on points defined over number fields. One shows (e.g.
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[75, III, §4]) that they are algebraic and actually

si,dR ∈ HdR
1 (AE)⊗,

where E is the reflex field of X.

Consider some X =
⊕
i

⊕
(n,m,k)∈Ii L

⊗n ⊗ (L∗)⊗m ⊗ Z(p)(k) (finite sums!), such that si
lives in

⊕
(n,m,k)∈Ii L

⊗n⊗ (L∗)⊗m⊗Z(p)(k). The group scheme GSp over spec(Z(p)) acts
on W(X). The sum of the si, considered as a single morphism,

spec(Z(p))→W(X)

define an embedding
GSp /GX →W(X),

where the left hand side is a smooth quasi-projective variety. Denote by Y the image of
the above embedding.

Now take etale locally U → M(K(N)X) an isomorphism in the (GSp, L)-structure:

γU : HdR
1 (AU )→ L⊗OU .

The tensors si,dR can (via this identification) be seen as a single map

UE →W(X)×spec(O) spec(E). (1)

We claim that this map is the base change of a map U →W(X) and that the image lies
in Y .

It follows that, modulo a refinement of the etale cover, the si,dR (considered as a map
into W(X)) lift to a morphism

U → GSp .

Changing γU by this automorphism of L⊗OU , we get an isomorphism γ′U mapping si,dR
to si for all i, hence the former lie in HdR

1 (AU ). The γ′U hence define a GX-structure on
HdR

1 (A), which is over Aan the G⊗O-structure on HdR
1 (Aan) defined via the comparison

ρB,dR. The associated torsor for this GX-structure on HdR
1 (A) therefore defines a model

P(KX) of
GX(Q)\DX ×GX(C)× (GX(A(∞))/K(N)).

However, we are left to show that (1) comes from a map U →W(X) and that the image
lies in Y . For this is suffices to show (5.11.2) that for each point s ∈ U , lying in the
special fibre, there is a d.v.r. O′, with embedding spec(O′) → U and special point s
such that the map extends to O′. However, it suffices to show this over a faithfully flat
extension of O′. Hence it follows from (5.1.4).
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5.4. Construction of the standard principal bundle, mixed case

Let X ↪→ Hg0 [(I ⊗ I)s, L0 ⊗ I] be an embedding of p-integral mixed Shimura data, and
let E be the reflex field of X and O be a reflex ring.
Consider a compact open subgroup K(N) ⊂ USp(L0,A(∞) , IA(∞)), p - N , N sufficiently
large. (We denote its inverse image in PX(A(∞)), quotients mod variousW ’s, etc. by the
same symbol because no confusion will result — all groups are of the type K(N) w.r.t.
some standard representation as defined in 2.5.) We may conjugate the above embedding
and may hence assume w.l.o.g. that GX for a splitting as in (2.2.9, cf. also 2.5.8) factors
through GSp(L). Actually the level structure does not play any role whatsoever in the
construction of the standard principal bundle, as it should be.

(5.4.1) Theorem. In the following situation

? //

��

P(K(N)Hg0 [(I ⊗ I)s, L0 ⊗ I])O

��
M(K(N)X) // M(K(N)Hg0 [(I ⊗ I)s, L0 ⊗ I])O

there is a unique model of the analytic standard principal bundle over M(K(N)Hg0 [(I ⊗
I)s, L0 ⊗ I])O, fitting into the diagram, such that the morphism to P(K(N)Hg)O gives
over C the obvious one on double quotients.

Proof. Here the horizontal arrow in the bottom line is a closed embedding, followed
by a normalization. P(K(N)Hg0 [(I ⊗ I)s, L0 ⊗ I]) is, by definition, the associated right
torsor for the (USp, L)-structure on HdR(M0), where M0 is the universal 1-motive over
M(K(N)Hg0 [(I ⊗ I)s, L0⊗ I]). We have the pullback M to M(K(N)X) of M0,O. And the
pullback of P(K(N)Hg0 [(I ⊗ I)s, L0 ⊗ I])O is equally the associated right torsor for the
(USp, L)-structure on HdR(M).
Over C, in the analytic category, we have inside it the right PX,C-torsor which is asso-
ciated with the analytic PX-structure on HdR(MC

an) transported via ρB,dR. We have
to show that it is algebraic, defined over E, and its closure is a right PX-torsor. We
have already constructed a GX-structure on grW−1(HdR(M)), which over C gives the one
coming from this analytic PX-structure.
Now consider the diagram of (2.5.8). Looking at elements fixing LZ we get a diagram of
ordinary groups:

0 // ŨP� _

��

// W̃P� _

��

// VP ⊕ VP� _

��

// 0

0 // (I ⊗ I)Z // W̃Sp // (I ⊗ L0)Z ⊕ (L0 ⊗ I)Z // 0,

(2)
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where the outer arrows are saturated inclusions of lattices.
We recall from the proof of (5.2): The bottom line with the induced Hodge structure
on ((L0 ⊗ I)C)M(K(N)X/WX) defines a biextension of A := gr−1M , which is algebraic
and defined over M(K(N)X/WX). It is the pullback of PI⊗I (4.2.6) to M(K(N)X/WX).
Its invariants under s is the already constructed model M(K(N)X/WX ×Hg0

Hg0 [(I ⊗
I)s, L0 ⊗ I]).
The upper line defines a biextension, too, which extends to M(K(N)X/WX) such that
its invariants under s are M(K(N)X). Hence for each morphism α : S → M(K(N)X) we
get a 1-motive Mα over S, which is the horizontal fibre at α of PI⊗I together with the
section α.
It is related to the 1-motive α∗M parametrized by α via:

Mα = (idI∗)∗(α∗M ⊗ IZ)

(tensor α∗M with IZ and ‘pullback’2 via idI∗ : Z→ IZ ⊗ I∗Z).
We now have a sub-1-motive M ′α of Mα which is the horizontal fibre at α of the biex-
tension associated to the first line. We know that HdR(α∗M) carries a (USp(L0, I), L)-
structure and we have

HdR(Mα) = (HdR(α∗M)⊗Z IZ)idI∗ ,

where (· · · )idI∗ means restriction to those elements whose projection to gr0 lies inOS idI∗ .
Note that an isomorphism gr0(α∗M) ∼= I∗ ⊗Z(p) OS is part of the (USp(L0, I), L)-
structure.
Consider the embedding

HdR(M ′α) ↪→ HdR(Mα).

We have

HdR(M ′α)/W−1(HdR(M ′α)) = HdR(Mα)/W−1H
dR(Mα) = OS idI∗ .

We may take a lift eI∗ of idI∗ to F 0(HdR(M ′α)). Since

F 0(HdR(Mα)) = (F 0(HdR(α∗M))⊗Z IZ)id

and F 0(HdR(α∗M)) is isotropic, eI∗ , considered as map I∗ ⊗Z(p) OS → HdR(α∗M) has
isotropic image. Since modW−1 it is the identity, we get a unique splitting HdR(α∗M) ∼=
L⊗Z(p) OS = (I∗⊕L0⊕ I)⊗Z(p) OS (within the USp-structure) such that eI∗ composed
with it, is just the inclusion of I∗ ⊗Z(p) OS .
The PX,S-orbit of this splitting is a PX-structure, for which it is not clear so far, that it
is uniquely determined, i.e. independent of the choice of the lift eI∗ .
Doing this construction for the universal 1-motive M over S = M(K(N)PX), we get

2For each 1-motive M = [ Y α // G ] and morphism γ : Y ′ → Y there is the ‘pullback’: γ∗M =

[ Y ′
α◦γ // G ]
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a PX-structure on HdR(M). If we can show that for each C-valued point of S, this
PX-structure induces the PX,C-structure determined via ρB,dR by the canonical PX(Z)-
structure on HB((MC)an) over the mixed Shimura variety over C, then we have found
the required model P(K(N)X) of the analytic standard principal bundle.
So take S = spec(C) and any point α : spec(C)→ M(K(N)X) and show that any lift eI∗ ,
as above, defines the PX,C-structure determined by ρB,dR. We may identify HdR(α∗M),
resp. HB(α∗M) with LC, resp. LZ. This induces an identification of HdR(Mα) with

< idI∗ >C ⊕(L0 ⊗ I)C ⊕ (I ⊗ I)C (3)

The Hodge structure on HdR(M) is given by F 0(HdR)(M) = g(I∗C⊕F 0(L0,C)), where g
is some element of WX(C). Mα is therefore determined by the Hodge structure

F 0(HdR)(Mα) = g(idI∗ ⊕F 0(L0,C)⊗Z IZ),

where the action of WSp(C), on the space (3) is determined by the action of the Lie
algebra of W̃Sp given as follows: an element (i1⊗i2) ∈ I⊗I acts as (α id, l0⊗i3, i4⊗i5) 7→
(0, 0, αi1⊗ i2) and an element (i1⊗ l0,1) acts as (α id, l0,2⊗ i2, i3⊗ i4) 7→ (0, αi1⊗ l0,1, 0)
and an element (l0,1 ⊗ i1) acts as (α id, l0,2 ⊗ i2, i3 ⊗ i4) 7→ (0, 0, 〈l0,1, l0,2〉i1 ⊗ i2).
The identification may be chosen in such a way thatHdR(M ′α) is given by the submodules
< idI∗ > ⊕VP,C⊕ ŨP,C, similarly for HB(M ′α). This is read off from diagram (2) and the
construction of biextensions (4.2.3). In particular this identification lies in the analytic
PX-structure.
Now, take any element eI∗ ∈ F 0(HdR)(M ′α) congruent to idI∗ mod W−1H

dR(M ′α) as in
the construction above, We have to show that there exists h ∈WP (C) such that heI∗ =
idI∗ . but there is such h ∈WUSp(C) because eI∗ determines another splitting HdR ∼= LC
compatible with weight filtration and symplectic structure because it had isotropic image
(see above). Now look at eI∗ − idI∗ = (vP , uP ) in W−1H

dR(M ′α) = VP ⊕ ŨP . Changing
eI∗ w.l.o.g by an element ofWP (C), whose projection is vP , we may assume that vP = 0.
However, since h ∈WSp(C), we read off from the induced action on (3), described above
that vP =projection of h to (I ⊗ L0)C in the defining sequence for WSp(C). Then, for
the modified h, we have h ∈ (I ⊗ I)sC ⊂ WSp(C), i.e. h = uP . Now uP lies also in ŨP
hence in UP ⊂WP .

5.5. Maps to the compact dual

(5.5.1) Lemma. Assume we have an embedding of Shimura data X ↪→ Y and a dia-
gram

P(KX)

��

// P(K′Y)

��
M(KX) // M(K′Y)

compatible with the obvious maps on double quotients over C.
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Assume that the map to the compact dual (given analytically) extends to a morphism
P(K′Y) → M∨(Y) of models. Then the PX,C-equivariant map P(KX)C → M∨(X)C
(given analytically) extends in a compatible way to a morphism

P(KX)→ M∨(X).

Proof. There is a closed embedding (3.2.2)

M∨(X)→ M∨(Y).

The composition P(KX)→ P(K′Y)→ M∨(Y) has the property that P(KX)C is mapped
to M∨(X)C. Since the above embedding is closed, we get automatically that the com-
position factors through M∨(X) and is PX-equivariant.

5.6. Independence of the Hodge embedding
(5.6.1) Theorem. The constructions of (5.3.1) and (5.4.1) are independent of the
chosen Hodge embedding. More generally, for any morphism X → Hg[(I ⊗ I)s, I ⊗ L0]
of p-MSD (not necessarily an embedding) the analytic morphism on standard principal
bundles is induced by a morphism of models P(K′X)→ P(KHg[(I ⊗ I)s, I ⊗L0]), where
the left model is constructed by means of any (other) Hodge embedding.

Proof. Let ιi : X→ Hgi [(Ii⊗Ii)s, Ii⊗L0,i], i = 1, 2 be two morphisms of integral Shimura
data, where ι1 an embedding. Denote g = g1 + g2, I = I1 ⊕ I2 and L0 = L0,1 ⊕ L0,2.
There is an embedding

Hg1 [(I1 ⊗ I1)s, I1 ⊗ L0,1]×H0 Hg2 [(I2 ⊗ I2)s, I2 ⊗ L0,2] ↪→ Hg[(I ⊗ I)s, I ⊗ L0],

given, via the modular description, by direct sum of 1-motives, and the ιi induce an
embedding

X ↪→ Hg1 [(I1 ⊗ I1)s, I1 ⊗ L0,1]×H0 Hg2 [(I2 ⊗ I2)s, I2 ⊗ L0,2]

(the maps λ ◦ ιi : X→ H0 have to be the same because of weight reasons).
Let L1, L2, L = L1 ⊕ L2 denote the standard representations.
Choose admissible compact open subgroups. Let Mi, resp. M be the 1-motives over
M(KX), pullback of the universal ones (base changed to spec(O)) along the various
morphisms.
By construction M = M1 ⊕M2, hence HdR(M) = HdR(M1)⊕HdR(M2).
We have 3 torsors T, T1, T2 of isomorphisms LS → HdR(MS), Li,S → HdR(Mi,S) defined
over O (chosen reflex ring of X). They are torsors for the groups PX, PX and ι2(PX).
(The last one may be a quotient of PX.)
Let S vary over an etale cover of M(KX) which trivializes all torsors. The isomorphisms
HdR(MS)→ LS in the first right torsor have to respect the decomposition, because this
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is true over C. Therefore restriction constitutes a morphism of right torsors. We get an
isomorphism (because this is true over C) of right torsors T → T1 and a quotient map
T → T2, whence a quotient map T1 → T2. In fact, this has to be an isomorphism by the
same reason, if ι2 was an embedding as well.

5.7. Simple boundary points

If a rational boundary component K′∆′B of a Shimura datum K
∆X has the property that

M(
K′[σ]
∆′[σ]

B[σ]), the corresponding boundary stratum (cf. 3.2.2) for a top-dimensional σ,

i.e. M(K′∆′B/UB) consists (over C) only of a bunch of points, PB/UB necessarily has to
be a torus T . We will consider in this section the simplest case T = Gm, and will also
consider only special DB and hB. These boundary components occur as smallest ones in
the case of symplectic Shimura data, as well as for the case of orthogonal Shimura data.
See (10.4) for the main application of this section.

(5.7.1) Let PX be a group scheme over spec(Z(p)) with an isomorphism

α0 : U oGm → P,

where Gm operates via its natural action on U = W(M) for a Z(p)-lattice M .
Let DX := DH0 × D0, where D0 ⊂ Hom(S, PC) is the MC o R∗-conjugacy class of
morphisms containing h0 : z 7→ α0(0, zz). Hence for any splitting (even only defined over
R), D0 will contain the so constructed morphism. There is a non-canonical isomorphism
D0 ∼= MC.
In this section, we will describe explicitly the canonical integral models associated with
the data KX for a compact open subgroup K = KU oK(m), where KU = MẐ, corre-
sponding to some Z-Lattice MZ in MZ(p) and K(m) = {a ∈ Ẑ∗ | a ≡ 1 mod m}. It is
admissible, iff p - m.
This is an explicit description of the unipotent extension H0[M, 0] and we have an
obvious morphism

X→ H0.

According to (4.1.15), M(K(m)H0) ∼= spec(Z(p)[ζm]), where ζm is an (abstract) m-th root
of unity.

(5.7.2) Theorem. Consider the morphism

KX→ K(m)H0.

The corresponding morphism of mixed Shimura varieties is (Gm ⊗MZ)M(K(m)H0) over
M(K(m)H0), and the isomorphism
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{(C∗ ⊗MZ)ζm,C} → PX(Q)\DH0 × X0 × PX(A(∞))/K,

is given as follows:
Choose a representative [α, ρ] ∈ Q∗\DH0 × A(∞)∗/K(m), with ρ ∈ K(1). α and ρK(m)
are therefore determined (simultaneously) up to ±1. Let ζ := exp(α(ρ/N)) be the corre-
sponding root of unity ∈ C (we consider α as isomorphism Z→ Z(1), as usual). We map
z ∈ C∗ ⊗MZ in the fibre over ζ to [α, α−1(log(z)), 0, ρ] ∈ P (Q)\DH0 ×MC ×MA(∞) o
A(∞)∗/K.

This is a well defined class, and these maps together yield an isomorphism as required.

Proof. Follows directly from the description (4.1.14) of

[ S-KH0[MZ(p) , 0]-Z(p) ⊕M∗Z(p)
-mot ].

(Because of (4.1.15) this stack defines the canonical model, too.) An element is w.l.o.g.

represented by (cf. proof of 4.1.19) a motive of the form [ (M∗Z)S
β // Gm ], where

MZ = KU ∩MQ.

(5.7.3) According to (3.3.4), the toroidal compactification (which is, in any case, a
‘partial’ one) of the above mixed Shimura variety is given by the torus embedding con-
structed from the torus Gm⊗MZ over M(K(m)H0). It amounts to the same as a rational
polyhedral cone decomposition on UX(R) = MR. It is smooth (with respect to K), if
every σ ⊂MR is generated by part of a basis of MZ, where MZ = KU ∩MQ.
Therefore for any σ, the completion at the corresponding boundary point is given by

spf(Z(p)[ζm]Jσ∨ ∩ L∗ZK).

Choose an integral section v of M∨(X). We have a map l : DX → P (C) given via the
splitting determined by v as

D◦ × DH0 →MC oC∗

(βv, α) 7→ βα(1).

(Recall: α(1) = ±2πi, periods of the Tate motive).
It sits in a commutative diagram

PX(C)

β 7→βv
��

DX

l
66mmmmmmmmmmmmmm Borel◦h // M∨(X)(C)

The reason why considering this is that l trivializes P(KX) integrally:
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(5.7.4) Theorem. The standard principal bundle P(KX) is trivial. An integral trivial-
izing section is given for example (over C) as:

s : PX(Q)\DX × PX(A(∞))/K → P1(Q)\PX(C)× DX × PX(A(∞))/K
[x, p] 7→ [l(x)−1, x, p] for p ∈ KUK(1)!

It is extended to any M(K∆X) by means of this trivialization. The composition with the
map Π to the compact dual is projection to v (considered as scheme ∼= spec(Z(p))).

Proof. This follows from the explicit description of

[ S-KH0[MZ(p) , 0]-Z(p) ⊕M∗Z(p)
-mot ],

too. An element is w.l.o.g. represented by a motive of the form [ (M∗Z)S
β // Gm ], where

MZ = KU∩MQ. The trivializing section is defined by the splitting HdR ∼= OS(d z
z )∗⊕M∗S

(isomorphic to (Z(p)⊕M∗)S canonically), with respect to which F 0(HdR) = OS(d z
z )∗ =

Lie(Gm). If S = spec(C) the lattice HB included via ρB,dR is given by

{(log(β(m)),m) | m ∈MZ}+ (Z(1), 0).

Comparing this with the analytic description of the standard principal bundle, we get
the result.

Let E be an equivariant vector bundle on M∨(X). It is trivialized UX = W(M)-
equivariantly by choosing a basis B of the lattice Ev.
By (9.1.2), we know that H0(M(KX)C,Ξ∗(E)) is canonically identified with the set of
PX(Q)-invariant sections DX × PX(A(∞))/K → E , where here, E is pulled back along
Borel ◦ h.
We want to describe analytically the integral trivialization of Ξ∗(E) given by pullback
along

M(KX) s
↪→ P(KX) Π→ M∨(X),

observing that the image is just v and the fibre above v was trivialized by B.

(5.7.5) Lemma. The trivialization is given analytically by the sections

si : DX × PX(A(∞))/K → E
x, [p] 7→ l(x)vi for p ∈ KUK(1),

where B = {vi} and the vi are considered as points in the fibre over v. (Extend it to
other p by PX(Q)-invariance).
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Proof. Consider the diagram (everything split via v):

MC × DH0 × PX(A(∞))/K

ι
��

PX(Q)\MC × DH0 × PX(A(∞))/K

s //
PX(Q)\PX(C)×MC × DH0︸ ︷︷ ︸

DX

×PX(A(∞))/Koo Π // MC

where the maps are given as follows:

ι : [Z,α, p] 7→ [1, Z, α, p] = [l(Z,α)−1, Z, α, p] ◦ l(Z,α)
s : [Z,α, p] 7→ [l(Z,α)−1, Z, α, p]

Π : [g, Z, α, p] 7→ gZ

(here ◦ denotes the group operation on the standard principal bundle). From this, the
statement follows.

5.8. Normalization of formal schemes

Let X be a noetherian formal scheme. Locally it is of the form spf(A), where A is a
topological ring, with an ideal of definition I. A is a noetherian ring, hence its normal-
ization N(A) is finitely generated as a A-module. The induced topology (for which it is
hence complete) is the same as its IN(A)-adic topology.
Let S be a multiplicative subset of A. We may form the ring A{S−1}, which is the
completion of A[S−1] by the ideal S−1I. It is flat over A. It satisfies a similar universal
property like localization for usual rings.
For example, the ring Ospf(A)(Ds) for the fundamental open set Ds is just A{s−1}. Local
rings Ospf(A),p for a point p corresponding to an open ideal J are not of the form A{S−1}
but its completion w.r.t. Ospf(A),pI is of that form for S = A − J . The corresponding
inclusion is faithfully flat. See e.g. [34, 1, 7.6].

(5.8.1) Theorem. Let A be a completion of an excellent ring.
We have

N(A){s−1} = N(A{s−1}),
N(Ap) = N(A)p,

N(CIAp(Ap)) = CIN(A)p(N(A)p),
N(CmpAp(Ap)) = CmpN(A)p(N(A)p).

Here N denotes normalization and CI(A) denotes completion of A with respect to the
I-adic topology.
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Proof. First of all, we have a map

N(A){s−1} → N(A{s−1})

by the universal property of N(A){s−1}.
Both sides are finitely generated modules over A{s−1} since A and A{s−1} are noethe-
rian. Kernel and cokernel of the map have the property that there are non-zero if and
only if there is a point p ∈ spf(A{s−1}) for which they are non-zero over the respective
local ring. Hence it suffices to show that over any local ring the above morphism is an
isomorphism because these rings are flat over A{s−1}.
Hence we have to show that the map

N(A)p → N(A{s−1})p

is an isomorphism. It suffices to do this after completion w.r.t. mp because this is
faithfully flat over the local ring [34, 1, 7.3.4]. We get the map

Cmp(N(A))→ Cmp(N(A{s−1})).

There is another map
Cmp(N(A{s−1}))→ N(Cmp(A))

obtained by the universal property of completion. The composition of these maps is,
however, an isomorphism by [35, 2, 7.8.3] because A is the completion of an excellent
ring.
For all other cases one argues in a similar fashion.

In particular the ringed spaces spf(N(A)) can be glued canonically to a formal scheme,
which we call the normalization N(X ) of X . A formal scheme is called normal, if it is
equal to its normalization.

(5.8.2) Theorem. Let X be an integral excellent scheme and Y a closed subscheme.
Form the formal completion X := CY (X).

i. We have
Cι−1Y (N(X)) = N(CY (X)),

where ι is the morphism N(X)→ X.

ii. Let X be normal (satisfied e.g. if X is normal) and U be an open subset of X .

OX (U) is an integral domain, if and only if U is connected.

iii. Let X be normal and p be any point of X .

OX ,p and its completions w.r.t. IY and mp are integral domains.
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Proof. The first statement is proven as in the previous theorem, using the local complete
case.
That the completion of A = OX (U) at some prime ideal mp is integral follows from
normality. Since the maps from the any stalk OX ,p into it are injective, we get integrality
of the local rings.
It remains to show that A is integral, too. It suffices to show that the map of A to any
localization is injective. Let f be an element. Let supp(f) be set of points on which f
does not vanish in the stalk OX ,p. It is closed, as for any sheaf. We have to show that
also V := U − supp(f), i.e. the set of points, where f does vanish in OX ,p is closed as
well. We will show that it is closed under specialization. Let p be a point of V and
p′ any specialization. We know that OX ,p is a noetherian integral domain and OX ,p′ is
build from it by a process of localization and completion. Hence the map

OX ,p → OX ,p′

is injective. Hence f does not vanish in OX ,p′ as well. If U , in turn, is not connected,
lifting of the existing nontrivial idempotents in O(U)/IY (U) yields zero divisors.

In other words for integral normal excellent domains, lifting of idempotents is the only
source for zero divisors in any completion.

5.9. Abstract ‘q-expansion’
Let R be an excellent normal integral domain and I an ideal, such that spf(CI(R)) is
connected (or equivalently, such that R/

√
I has no nontrivial idempotents).

Let s be a prime element of R, neither a zero divisor nor a unit of R/I. Let M be a
projective R-module.

(5.9.1) Lemma. The diagram

M
� � //

� _

��

M [s−1]� _

��
CI(M) � � // CI(M){s−1} = CI[s−1](M [s−1])

is Cartesian.

Proof. We show it for the caseM = R, the general case is completely analogous because
M is assumed to be projective.
The top horizontal map is injective because R is integral. The vertical maps are injective
by Krull’s theorem. Next, the ring CI(R) is an integral domain by (5.8.2). Hence the
bottom horizontal arrow is injective. Therefore also the map CI(M)[s−1]→ CI(M){s−1}



112 Part I. Toroidal compactifications of mixed Shimura varieties

is injective, and we are left to show that for arbitrary n, the left square in the following
diagram with exact lines is Cartesian.

0 // R //
� _

��

1
snR

·sn //
� _

��

R/snR

��

// 0

0 // R̂ // 1̂
snR

// R̂/snR // 0

where in the bottom line we mean the I-adic completions of the respective f. g. R-
modules. By a diagram chase, the square is Cartesian if and only if the right vertical
map is injective. (The rows are exact because exactness of the completion functor (on
f. g. modules). This is, however, not used in the sequel.) The right vertical map is
injective, if 0 ∈ R/snR is closed w.r.t. the I-adic topology. Its closure is (by an extension
of Krull’s theorem [10, Chap. III, §3, 2., Prop. 5]) the set of x ∈ R/snR for which there
exists an m ∈ I, such that (1−m)x = 0 holds true. Therefore the above map is injective,
if no m ∈ I and x ∈ R exist, such that sn|(1 −m)x and sn - x. Since s is prime, this
is the case, if no m ∈ I exists, such that s|1 −m. Since by assumption s is not a unit
modulo I, this is indeed impossible.

5.10. Formal Zariski closure

LetM, M̃, C be integral schemes (M and M̃ normal), of finite type over S = spec(R),
where R is an excellent discrete valuation ring and q = spec(Q) is the generic point,
where Q is the quotient field of R. Give two closed embeddings C ↪→ M and C ↪→ M̃
such that the images are divisors.
and let M =M×S q, M̃ = M̃ ×S q, C = C ×S q. Suppose, we are given closed reduced
subschemes M ′ ⊂ M and M̃ ′ ⊂ M̃ . Assume that they are all smooth. Denote their
closures, byM′, M̃′. Denote C′ = C ×MM′.
We assume that the following condition is satisfied:

(5.10.1) π0(C ×M N(M′)) ' π0(C ′).

This is for example satisfied, if every irreducible component of C′ contained in the special
fibre (which is hence also an irreducible component of the special fibre ofM′) has at least
one point, lying on the image of a section spec(R′) →M′ for some (possibly ramified)
extension R′ of R, such that its generic point is contained in C.

(5.10.2) Lemma. If there is an isomorphism

CC(M)→ CC(M̃),
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inducing an isomorphism
CC′(M ′)→ CC′(M̃ ′)

with the property that C ′ := C ×M M ′ = C ×
M̃
M̃ ′ is reduced then this induces an

isomorphism
CC′(M′)→ CC′(M̃′)

and similarly for the normalizations.

It follows also that
C ×M N(M′) ' C ×M̃ N(M̃′).

Proof. The question is local on M, resp. M̃, hence we may assume that everything is
affine and denote coordinate rings of theM ’s with A’s and of the C’s by B’s. We denote
the ideals of the C’s by I’s. We choose the covering such that on an open set in the
cover the generic fibre, C and C ′ are connected. Because of assumption (5.10.1) we may
assume also, that C ×M N(M′) is connected.

The above situation induces a cube:

CI(A) ∼ //
lL

zzuuuuuuuuuu

����

CĨ(Ã)

����

lL

zzuuuuuuuuu

CI(A) ∼ //

����

C
Ĩ
(Ã)

����

CI′(A′)
lL

zzuuuuuuuuuu

? // CĨ′(Ã
′)

lL

zzuuuuuuuuu

CI′(A′)
∼ // C

Ĩ′
(Ã′)

If we can justify the injectivity and surjectivity properties of the maps in the cube, the
required map can be constructed by a ‘diagram chase’ in the cube. From the construction
follows that it is an isomorphism.

The maps going from back to front are injective, if the corresponding ring in the back
has no zero-divisors. For the rings on the top, this follows from (5.8.2) because C, hence
C, is connected here. For the normalization of the rings at the bottom, this follows
from (5.8.2) because according to assumption (5.10.1) also C ×M N(M′) is connected.
Since the map from a ring into its normalization is injective by construction, the rings
in bottom back are integral domains as well.

The vertical maps are surjective because they are if there is an n such that, for example,
∀x ∈ I ′ there exists an y ∈ I such that y ∼= xn mod J , where J is the ideal of M ′, i.e. if
I ′ ⊂

√
I + J . But we have even I ′ = I + J by definition.
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Once established, the formal isomorphism yields in particular

C ×M N(M′) ' C ×M̃ N(M̃′)

becauseM is normal and C ′ is reduced.

5.11. Extension of morphisms
(5.11.1) Lemma. Let M be an integral scheme of finite type smooth over spec(R),
where R is an excellent d.v.r. with maximal ideal m and quotient field Q. Assume
that the special fibre ofM is irreducible (by Zariski’s connectedness theorem this follows
automatically, ifM is projective over R).
Let C be an integral closed subscheme ofM such that Cm (special fibre) is integral as well.
Let there be a Q-morphism α : MQ → N into any scheme of finite type over spec(R).
Assume that α extends toM−C and to CC(M). Then α extends toM.

Proof. This follows immediately from (5.9.1) for s being a uniformizer of R. s is prime
because of the assumption that the special fibre be irreducible. (If it is empty the
statement is either).

(5.11.2) Lemma. Let M be an integral normal scheme of finite type over spec(R),
where R is a d.v.r. with quotient field Q. Let M :=MQ and α : M → N be a morphism
to any affine scheme of finite type over spec(R), If every point in the special fibre ofM
lies on a section spec(R′)→M for a finite extension R′ of R, such that the induced map
spec(Q′)→ N extends to spec(R′), then α extends toM.

Proof. Since N is affine and of finite type, this boils down to extending regular functions.
Whether the latter extend can be checked in the way described becauseM is normal.
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6. Quadratic forms and representation
densities

6.1. Quadratic forms and symmetric bilinear forms
Mainly to fix notation, we begin by recalling the definition of quadratic form and sym-
metric bilinear form and their relation.
Let S be a base scheme.

(6.1.1) Definition. Let LS be a locally free sheaf on S.
A quadratic form on LS is a function

QL : LS → OS ,

satisfying

i. QL(αv) = α2v locally for all sections v ∈ LS and α ∈ OS,

ii. the form 〈v, w〉Q := QL(v + w)−QL(v)−QL(w) is bilinear.

If 2 is invertible in S, it is possible to reconstruct QL from 〈·, ·〉Q by

v 7→ 1
2〈v, v〉Q.

We will sometimes denote the associated morphism LS → L∗S by γQL or γL.
If R is a ring and qi ∈ R, we denote by < q1, . . . , qn > the space Rn with quadratic form

x 7→
n∑
i=1

qix
2
i .

(6.1.2) Lemma.

Sym2(L∗) = {quadratic forms on L} = ((L⊗ L)s)∗
Sym2(L)∗ = {symm. bilinear forms on L} = (L∗ ⊗ L∗)s
Sym2(L) = {quadratic forms on L∗} = ((L∗ ⊗ L∗)s)∗

Sym2(L∗)∗ = {symm. bilinear forms on L∗} = (L⊗ L)s,

here (· · · )s denotes symmetric elements, i. e. invariants under the automorphism switch-
ing factors.
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Proof. A tensor f ⊗ g ∈ Sym2(L∗R) is identified with the quadratic form v 7→ f(v)g(v).
Similarly a tensor f ⊗ g ∈ L∗ ⊗ L∗ is identified with the bilinear form v, w 7→ f(v)g(w),
and the properties of symmetry correspond. Furthermore there is a non-degenerate
bilinear map

Sym2(L∗R)× (LR ⊗ LR)s → R,

induced by the contraction (f⊗g), (x⊗y) 7→ f(x)g(y). Similarly for the other cases.

There is a natural symmetrization map

Sym2(L∗) −→ Sym2(L)∗ (1)
f1 ⊗ f2 7→ {v1 ⊗ v2 7→ f1(v1)f2(v2) + f1(v2)f2(v1)}

(and similarly Sym2(L) −→ Sym2(L∗)∗). which is an isomorphism, if 2 is invertible
in S. If LR is free with basis {ei}, a basis eij = e∗i ⊗ e∗j of Sym2(L∗R) is mapped to
{2e∗ii}i ∪ {e∗ij}i<j . The association QL 7→ 〈·, ·〉Q in (6.1.1, ii.) just corresponds to the
symmetrization map (1).

(6.1.3) Definition. We denote the determinant of the matrix (〈ei, ej〉Q)ij by

d(e1, . . . , en)

and call it the discriminant of L with respect to {ei}.
For R = Z or Zp, we also write d(LZ) or d(LZp) for the discriminants using any basis.
In the second case, it is determined only up to (Z∗p)2. In particular their valuations | · |∞
and | · |p, respectively, are well defined.

(6.1.4) Remark. In contrast to the considerations above, we have a canonical isomor-
phism

ΛiL∗ ∼−→ (ΛiL)∗.

6.2. Canonical measures
(6.2.1) In the following, we will work predominantly with the following natural (up to
a choice of i ∈ C) characters on R = · · · :

R: χ∞(x) := e2πix.

Qp: χp(x) := e−2πi[x], where [x] =
∑
i<0 xip

−i is the principal part.
It has level (or conductor) 1.

AS : χ =
∏
ν 6∈S χν .

The corresponding self-dual additive Haar measures are the Lebesque measure on R, the
standard measures on Qp, giving Zp the volume 1, and their product, respectively.
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(6.2.2) Let R be one of the rings of (6.2.1). Let X be an algebraic variety over R and µ̃
an algebraic volume form on X. As is explained in [95] (cf. also [84, §3.5]), this defines
a well-defined measure µ on X(R), which depends on the choice of χ (resp. the additive
Haar measure). For the special case of a lattice L of dimension r, and µ̃ ∈ ΛrL∗, there
is µ̃∗ ∈ ΛrL satisfying µ̃∗µ̃ = 1. In this case, the measures µ and µ∗ are dual to each
other with respect to the bicharacter v, v∗ 7→ χ(v∗v), i.e. for

FΨ(w∗) =
∫
L

Ψ(w)χ(w∗w)µ(w) Ψ ∈ S(L)

FΨ(w) =
∫
L∗

Ψ(w∗)χ(w∗w)µ∗(w∗) Ψ ∈ S(L∗)

(where S(· · · ) denotes space of Schwartz-Bruhat functions), we have FFΨ(w∗) = Ψ(−w∗).

(6.2.3) Definition. Let L be an R-lattice with non-degenerate quadratic form QL. Then
there is a canonical (translation invariant) measure µL with µ∗L = µL under the iden-
tification γQ : L ∼−→ L∗. Let e1, . . . , em be a basis of L, e∗1, . . . , e∗m the dual basis and
µ̃ = e∗1 ∧ · · · ∧ e∗m. Let A be the matrix of 〈, 〉Q in this basis. The measure µL is then
given by

µL = |A|1/2µ,

where |A| is the modulus of the determinant. We call it the canonical measure on L
with respect to QL.
Let M be another R-lattice, equipped with a non-degenerate quadratic form QM .
Choose a basis f1, . . . , fn ofM , too, and denote µ̃ :=

∧
i,j e
∗
i⊗f∗j ∈

∧nm L∗⊗M∗. We call
µL,M = |A|n/2|B|m/2µ the canonical measure on L⊗M , where A are B the matrices
of the associated bilinear forms, m = dim(L) and n = dim(M).
{ei ⊗ ej}i≤j is a basis of Sym2(L). We denote the corresponding dual basis by {(ei ⊗
ej)∗}i≤j. Let µ̃ =

∧
i<j(ei⊗ej)∗ ∈

∧m(m+1)
2 Sym2(L)∗. In this case we call µL = |A|

m+1
2 µ

the canonical measure on Sym2(L).
Let µ̃ =

∧
i(ei ⊗ ei)∗ ∧

∧
i<j(ei ⊗ ej + ej ⊗ ei)∗. In this case, we call µL = |A|

m+1
2 µ the

canonical measure on (L⊗ L)s.
Similarly, we get a canonical measure µL = |A|

m−1
2 µ on Λ2L.

According to these definitions, the measures µL on Sym2(L) and µL on (L∗ ⊗ L∗)s =
Sym2(L)∗ are dual. However, the symmetrization map (1) Sym2(L∗) ∼−→ Sym2(L)∗
sends the canonical measure µL of the left hand side to the |2|−m-multiple of µL on the
right hand side.
Let LQ,MQ be vector spaces of dimensions m resp. n with quadratic forms QL and QM ,
respectively. Assume QL non-degenerate.
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(6.2.4) Definition. For each Q-algebra R define the set

I(M,L)R = {α : MR → LR | α is an isometry}.

(If lattices LZ and MZ are chosen, this makes sense for each Z-algebra.)
I(M,L) is an affine algebraic variety over Q.
If QM is degenerate, define in addition

I1(M,L)R = {α : MR → LR | α is an injective isometry }.

(6.2.5) Assume m ≥ n ≥ 0. We identify M∗ ⊗ L with Hom(M,L) in what follows.
There is a fibration

I(MQ, L) � � // M∗ ⊗ L
α 7→α!QL // Sym2(M∗), (2)

where I(MQ, L) is the pre-image of Q = QM and α!QL denotes pullback of QL to M via
α. As soon as we choose (translation invariant) measures µ1,2 onM∗⊗L and Sym2(M∗)
respectively, this defines a measure µ1

µ2
on the fibers, restricted to the submersive set

(M∗R ⊗ LR)reg of the map α 7→ α!QL. This set coincides with the locus of maps with
maximal rank n. This means in particular that the following integral formula holds true
for these measures:∫

Sym2(M∗R)
µ2(Q)

∫
I(MQ,L)(R)

µ1
µ2

(α)ϕ(α) =
∫
M∗R⊗LR

µ1(α)ϕ(α), (3)

where ϕ is continuous with compact support on (M∗R ⊗ LR)reg.

(6.2.6) Lemma. For m ≥ 2n + 1 and R local, ϕ ∈ S(M∗R ⊗ LR) (space of Schwartz-
Bruhat functions) is integrable with respect to the measure µ1

µ2
, too.

Proof. [94, §34]

In the case m ≥ 2n + 1, the integrals
∫

I(MQ,L) ϕ(α)µ1
µ2

(α) may be computed by Fourier
analysis (cf. 7.2.3).
If QM is non-degenerate, the canonical measures onM∗R⊗LR and Sym2(M∗R), introduced
in the last section, in particular define a canonical measure on the fibre I(M,L)R (which
is the fibre above Q = QM ) by means of this fibration.
For R = Qν and n = m = 1, I(M,L)R consists of 2 points, each of which has volume 1.

(6.2.7) Let R be a Qp or R. Let L, M and N be R-vector spaces with non-degenerate
quadratic forms QL, QM , QN respectively.
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Consider the composition map:

I(N,M)× I(M,L)→ I(N,L).

Fixing an α in I(N,M), we may identify the fibre of the resulting map

I(M,L)→ I(N,L) (4)
δ 7→ δ ◦ α

over β ∈ I(N,L) with I(im(α)⊥, im(β)⊥).

(6.2.8) Theorem. The resulting fibration is compatible with the canonical measures. If
dim(M) = dim(N) this means that the map (4) preserves volume.

Proof. Let QM be the chosen form onM . By assumption, α!QM is the chosen form QN .
We decompose M in M1 = α(N) and M2 = M⊥1 (orthogonal with respect to QM ).
Decompose Sym2(M∗) with respect to QM :

Sym2(M∗) = Sym2(M∗1 )⊕ (M∗1 ⊗M∗2 )⊕ Sym2(M∗2 ),

where Sym2(M∗1 ) = Sym2(N∗) via α.
We get a commutative diagram of fibrations:

I(α(N)⊥γ , β(N)⊥) � � //
� _

��

M∗2 ⊗ L
δ 7→

(
δ!QL
〈β, δ〉L

)
//

� _

incl.+β◦pr1
��

Sym2(M∗2 )⊕ (M∗1 ⊗M∗2 )� _

��

� _

incl.+β!QL
��

I(Mγ , L) � � //

◦α
��

M∗ ⊗ L

◦α
����

δ 7→δ!QL // Sym2(M∗)

α!
����

I(Nα!γ , L) � � // N∗ ⊗ L
δ 7→δ!QL // Sym2(N∗)

where β varies in N∗ ⊗ L such that β!QL varies in a neighborhood of QN and γ varies
in Sym2(M∗) such that β!QL = α!γ. I(Mγ , L) is the fibre of the map δ 7→ δ!QL in the
middle row over γ and I(Nα!γ , L) is the fibre of the map δ 7→ δ!QL in the bottom row
above α!γ. I(α(N)⊥γ , β(N)⊥) in the top-left corner is the fibre of the composition with
α above β.
In the diagram, the vertical middle and rightmost fibrations come from (splitting) exact
sequences of vector spaces.
The dotted map is defined by commutativity of the diagram. First observe that the
(underlying) vertical exact sequences of vector spaces are exact with respect to canon-
ical measures on the various spaces associated with QM , QL and α!QM = QN and the
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restrictions of QM to M1,M2 respectively. The induced measure on I(α(M)⊥γ , β(N)⊥)
hence is described by the topmost horizontal fibration as well.
Decompose M∗2 ⊗L = M∗2 ⊗ (β(N)⊕β(N)⊥). The map δ 7→ 〈β, δ〉QL is an isomorphism
(M∗2 ⊗ β(N)) ∼= (M∗1 ⊗M∗2 ) and 0 on the other factor. This isomorphism preserves the
canonical volume, if β!QL = QN .
Letting γ vary only in Sym2(M∗2 ) fixing the other projections to 0 in M∗1 ⊗M∗2 and to
QN in Sym(M∗1 ) (i.e. having also β!QL = QN ), we get an equivalent topmost horizontal
fibration:

I(α(N)⊥γ , β(N)⊥) � � // M∗2 ⊗ β(N)⊥
δ 7→δ!QL // Sym2(M∗2 )

and the dotted map is equal to the canonical inclusion into α(N)⊥∗ ⊗ β(N)⊥, noting
α(N)⊥∗ = M∗2 . The induced measure on I(α(N)⊥γ , β(N)⊥), however, is by definition
the canonical measure.

(6.2.9) Lemma. For positive definite spaces MR, LR, we get

vol(I(M,L)R) =
m∏

k=m−n+1
2 πk/2

Γ(k/2) .

Proof. By (6.2.8), we are reduced to the case n = 1. We choose bases on M and L and
get the following canonical measures:

L = Rm QL : 1
2
txAx |A|

1
2 dx

M = R QM : 1
2
txBx |B|

1
2 dx

M∗ = Rm QM∗ : 1
2
txB−1x |B|−

1
2 dx

Sym2(M∗) = R |B|−
n+1

2 dx

Therefore, using the integral formula (3):

|B|−1 vol = d
d r

∫
1
2
txAx≤r

|B|−
m
2 |A|

1
2dx

∣∣∣∣∣
r= 1

2B

= d
d r |B|

−m2
(2πr)

m
2

Γ(m2 + 1)

∣∣∣∣∣
r= 1

2B

vol = 2 π
m
2

Γ(m2 ) .

We especially get a canonical and also invariant measure on every SO(LR), coming (up
to a real factor) from an algebraic volume form. On the other hand, algebraic invariant



6. Quadratic forms and representation densities 123

volume forms on SO(L) are canonically identified with Λ
m(m−1)

2 Lie(SO(L))∗. Hence
every invariant measure on SO(LR) is given by a translational invariant measure on
Lie(SO(L))∗. We have the following

(6.2.10) Lemma. The associated element in Λ
m(m−1)

2 Lie(SO(LR)) is the canonical vol-
ume form (6.2.3) on Λ2LR under the natural identification Lie(SO(LR))) ∼= Λ2LR given
by contraction with the bilinear form associated with QL.

(6.2.11) Lemma. Let MQ, LQ be vector spaces of dimensions n, m respectively, where
n ≤ m − 1, with quadratic forms QM and QL. If m ≥ n + 3, the product of the
canonical measures on I(MQν , LQν ) converges absolutely (in the sense of [95]) and yields
the canonical measure on I(MA, LA).
In the case n = m, the product of the canonical measures on SO(LQν ) converges ab-
solutely and yields the the canonical measure on SO(LA) provided m ≥ 3. It is the
Tamagawa measure.

Proof. Follows directly from the explicit volume formulæ (8.2.1) and standard facts
about absolute convergence of the occurring infinite products. One just obtains the
Tamagawa number in the second case because of the ‘product formula’ |x|A = 1 for x ∈
Q∗ for the adelic modulus, because the discriminant factors cancel in the product.

6.3. Relation with classical representation densities

(6.3.1) Consider again the case R = Qp and let ϕ ∈ S(M∗Qp ⊗ LQp) be a Schwartz
function, i.e. locally constant with compact support. Choose lattices LZp and MZp and
bases {fi} of MZp and {ei} of LZp , respectively.
Assume the conditions of (6.2.6). The integral of ϕ over I(M,L)Qp may be computed
explicitly as follows:

lim
l→∞

∫
α∗QL−QM∈℘l Sym2(M∗Zp ) dα ϕ(α)

vol(℘l Sym2(M∗Zp))

= lim
l→∞

vol(℘lLZp ⊗M∗Zp)
vol(℘l Sym2(M∗Zp))

∑
{δi}⊂℘−rLZp/℘

lLZp
QL(δi)≡QM (fi),〈δi,δj〉L≡〈fi,fj〉M mod pl

ϕ(
∑
i

f∗i ⊗ δi)

= D(MZp , LZp) lim
l→∞

pl(n(n+1)/2−mn)∑ · · · =: D(MZp , LZp)βp(LZp ,MZp , ϕ)

for sufficiently large r (ϕ has compact support). Here, the limit eventually becomes sta-
tionary. We denote βp(LZp ,MZp , ϕ) also simply by βp(LZp ,MZp) if ϕ is the characteristic
function of M∗Zp ⊗ LZp .
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Here we denoted

D(MZp , LZp) := |d(e1, . . . , em)|n/2p |d(f1, . . . , fn)|(n−m+1)/2
p .

A characteristic special case is given as follows: Choose a class κ ∈ (L∗Zp/LZp) ⊗M∗Zp
Consider the characteristic function ϕ of κ. Let {fi} be a basis of MZp We get:

βp(LZp ,MZp , ϕ) = lim
l→∞

p−nl(m−n+1)/2

#
{
xi ∈ L∗Zp/℘

lLZp |
xi≡κfi mod LZp ,

QL(xi)≡QM (fi),〈xi,xj〉L≡〈fi,fj〉M mod pl

}
We will write as well βp(LZp ,MZp , κ) for this.
The quantities βp occurring in this section are historically called representation den-
sities, cf. [50].

(6.3.2) We now use the compatibility of canonical measures with the composition fi-
bration (6.2.8) to derive relations among representation densities. As a warming up, we
will derive an inductive formula of Kitaoka’s from it.
Consider the situation of (6.2.7) for R = Qp. Consider NQp via α ∈ N∗Qp ⊗ MQp as
subspace of MQp . Choose lattices NZp ⊂ MZp such that MZp = NZp ⊕ N⊥Zp . Choose a
third lattice LZp as well. Assume that QN ∈ Sym2(N∗Zp), . . . for these lattices. Integrate
the characteristic function of

(M∗Zp ⊗ LZp) ∩ I(M,L)(Qp)

with respect to the canonical volume on I(M,L)(Qp).
The intersections with the fibers of the map I(M,L)(Qp)→ I(N,L)(Qp) can be identified
with those isometries in I(N⊥, β(N)⊥)(Qp) which map N⊥Zp to β(NZp)⊥.
The volume of these sets is constant, for conjugated β(NQp)∩LZp , hence let Ki be repre-
sentatives of these conjugacy classes and collect the fibres over those β with β(NZp) ∼= Ki.
Denote the corresponding density by βp(LZp , NZp ;Ki).
This yields the formula

dp(MZp)
n−m+1

2 dp(LZp)
n
2 βp(LZp ,MZp)

=
∑
i

dp(NZp)
k−m+1

2 dp(LZp)
k
2 βp(LZp , NZp ;Ki)

· dp(N⊥Zp)
n−m+1

2 dp(K⊥i )
n−k

2 βp(K⊥i , N⊥Zp)

and after a reordering of discriminant factors:
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(6.3.3) Corollary.

βp(LZp ,MZp) =
∑
i

(
dp(K⊥i )

dp(NZp)dp(LZp)

)n−k
2

β(LZp , NZp ;Ki)β(K⊥i , N⊥Zp).

This is the aforementioned formula due to Kitaoka [50, Theorem 5.6.2]1. However, we
will need a variant of this formula, which is in a sense the orbit equation of the operation
of the orthogonal group SO(M) on the vector space M .
(There is also a version including a κ ∈ (L∗Zp/LZp)⊗M∗Zp , if above we instead integrate
over the characteristic function of κ.)

6.4. The non-Archimedian orbit equation

(6.4.1) Let LQp , MQp be vector spaces over Qp with non-degenerate quadratic forms
QL, QM respectively.
Consider again an α ∈ I(MQp , LQp) and the resulting map:

I(LQp , LQp)→ I(MQp , LQp)
δ 7→ δ ◦ α

The fibre of this map over β ∈ I(MQp , LQp) can again be identified with

I(α(L)⊥Qp , β(L)⊥Qp).

In particular the fibre over α is an orthogonal group again. We denote by SO(LQp),
respectively SO(α(LQp)⊥) the corresponding special orthogonal groups.
Choose lattices LZp ,MZp such that QL ∈ Sym2(LZp). Let κ be a class in (L∗Zp/LZp) ⊗
M∗Zp .
Consider the discriminant kernel SO′(LZp) ⊆ SO(LQp) of LZp , i.e. the kernel of the
induced homomorphism SO(LZp) → Aut(L∗Zp/LZp). It is a compact open subgroup.
Choose representatives αi of the orbits of SO′(LZp) in I(MQp , LQp) ∩ κ. The fibres
over SO′(LZp)αi all can be identified with SO′(αi(MQp)⊥ ∩ LZp). This follows from the
following lemma:

(6.4.2) Lemma. Let X ⊂ L∗Zp be a subset and Stab(X) ⊂ SO′(LZp) the point-wise
stabilizer. Assume that XQp is non-degenerate. Then we have

Stab(X) = SO′(X⊥Zp),

where X⊥Zp = {v ∈ LZp | 〈v, w〉 = 0 ∀w ∈ X}.

1Observe: #(N∗Zp
/NZp ) = dp(NZp )−1
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Proof. Let β ∈ SO′(LZp), i. e. βv − v ∈ LZp for all v ∈ L∗Zp . If we have βw = w for
all w ∈ X, one can consider β via restriction as an element of SO(X⊥Zp). If moreover
w⊥ ∈ (X⊥Zp)

∗, we find a v ∈ L∗Zp satisfying v = w+w⊥ with some w ∈< X >Qp (X⊥Zp is a
primitive sublattice). This yields βw⊥−w⊥ = βv−v ∈ LZp . Hence Stab(X) ⊆ SO′(X⊥Zp).
On the other hand, let β ∈ SO′(X⊥Zp). It can be extended uniquely to an element
β ∈ SO(LQp), fixing < X >Qp point-wise. We claim that this extension lies in fact in
SO(LZp). For, let v ∈ LZp be given and write v = w⊥ +w. Then we have w⊥ ∈ (X⊥Zp)

∗.
hence βv − v = βw⊥ − w⊥ ∈ LZp .
Now suppose v ∈ L∗Zp . Then we have still w⊥ ∈ (X⊥Zp)

∗ because 〈v, w⊥′〉 = 〈w⊥, w⊥′〉 ∈
Zp for all w⊥′ ∈ X⊥Zp . Hence βv − v ∈ LZp as well, which means β ∈ SO′(LZp)

(6.4.3) It follows that

vol(SO′(αi(M)⊥Zp)|d(LZp)|n/2|d(MZp)|(n−m+1)/2βp(LZp ,MZp , κ;αi) = vol(SO′(LZp)),

where in βp(LZp ,MZp , κ;αi) only representations are counted, which lie in the orbit of
αi.
Summed up over all orbits, we get

vol(SO′(LZp))−1|d(LZp)|n/2|d(MZp)|(n−m+1)/2βp(LZp ,MZp , κ) =
∑
i

vol(SO′(αi(M)⊥Zp)
−1

(5)

(6.4.4) Let HZp = Z2
p be a hyperbolic plane, ϕ ∈ S(LQp ⊗M∗Qp) and form

ϕ(s) := ϕ⊗ χHs
Zp⊗M

∗
Zp
∈ S((LQp ⊕Hs

Qp)⊗M
∗
Qp).

We are interested in the function

s 7→ βp(L⊕Hs,MZp , ϕ
(s)),

for s ∈ Z≥0 (see 7.5.1). The so constructed ‘continuation’ of βp(LZp ,MZp , κ) we will also
denote by βp(LZp ,MZp , κ; s). This construction is motivated by the natural continuation
of Fourier coefficients of Eisenstein series, see (7.7.5).

We begin with an investigation of βp(LZp ,MZp , κ; s) in the case n = 1:

(6.4.5) Lemma. We have the following relation to representation numbers:

βp(LZp , < q >, κ; s) = #Ωκ,q(w)pw(1−m−s) + (1− p−s)
w−1∑
j=0

#Ωκ,q(j)pj(1−m−s) (6)
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Here Ωκ,q(j) = {v ∈ LZ/pjZ | QM (v + κ) ≡ q (pj)} and w is a sufficiently big integer.
(Explicitely: w ≥ 1 + 2νp(2q ord(κ)) — the formula then does not depend on w.)
This can be written as follows (<s > 1):

∑
l

#Ωκ,q(l)
pl(m−1+s) =

βp(LZp , < q >, κ; s)
1− p−s . (7)

(6.4.6) Remark. We will not use the formula (6) in an essential way, except for the
computation of the zeta function of a 2-dimensional lattice. It is, however, interesting to
see that continuation in s by means of adding hyperbolic planes (forced by the connec-
tion to Whittaker integrals) recovers the exact number of representations modulo prime
powers (in the case n = 1). In addition the formula allows comparison with results of
[13].

Proof. Formula (6) is obviously true for s = 0. Under the substitution L  L⊕H the
left hand side becomes βp(LZp , < q >, κ; s+1) and the right hand side becomes the same
expression for s+ 1, if we use the relation:

#Ωκ,q(L⊕H, r) =
r−1∑
ν=0

p(r−ν)m(pr − pr−1)#Ωκ,q(L, ν) + #Ωκ,q(L, r)pr. (8)

Proof of the relation: An explicit calculation shows:

#Ωn(H, l) =
{

(νp(n) + 1)(pl − pl−1) νp(n) < l,

l(pl − pl−1) + pl νp(n) ≥ l.
(9)

Hence:

#Ωκ,q(L+H, l)
=

∑
n∈Z/plZ

#Ωκ,q−n(L, l)#Ωn(H, l)

=
l∑

ν=0
#Ωpν (H, l)

∑
n∈Z/plZ
νp(n)=ν

#Ωκ,q−n(L, l)

=
l∑

ν=0
#Ωpν (H, l)

 ∑
n∈Z/plZ
νp(n)≥ν

#Ωκ,q−n(L, l)−
∑

n∈Z/plZ
νp(n)≥ν+1

#Ωκ,q−n(L, l)


=

l∑
ν=0

#Ωpν (H, l)
(
p(l−ν)m#Ωκ,q(L, ν)− p(l−ν−1)m#Ωκ,q(L, ν + 1)

)
.
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From this the relation (8) follows. (7) is obtained by letting w →∞ since (6) does not
depend on w.

(6.4.7) Now assume p 6= 2 and that p−1QL is not integral.
Diagonalize QL, i.e. LZp = Zmp ,

QL(x) =
∑
i

εip
lix2

i ,

where εi ∈ Z∗p and li ∈ Z≥0, l1 ≤ · · · ≤ lm. According to the assumption, we have l1 = 0.
This is possible by (6.4.15). Denote:

L(k, 1) := {1 ≤ i ≤ m | li − k < 0 is odd}
l(k, 1) := #L(k, 1)

d(k) := k + 1
2
∑
li<k

(li − k)

v(k) :=
(−1
p

)b l(k,1)
2 c ∏

i∈L(k,1)

(
εi
p

)

(6.4.8) Theorem. With this notation, we have

βp(LZp , < αpa >,LZp ; s) = 1 +R(αpa; p−s),

where α ∈ Z∗p, a ∈ Z≥0 and

R(αpa;X) =(1− p−1)
∑

0<k≤a
l(k,1) is even

v(k)pd(k)Xk

+ v(a+ 1)pd(a+1)Xa+1 ·

−
1
p if l(a+ 1, 1) is even,(
α
p

)
1√
p if l(a+ 1, 1) is odd.

We have:
βp(LZp , < 0 >,LZp ; s) = 1 +R(0; p−s),

where
R(0;X) = (1− p−1)

∑
k>0

l(k,1) is even

v(k)pd(k)Xk.

Proof. [96, Theorem 3.1]
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(6.4.9) Because it is a polynomial in p−s, we see in particular that there is a natural
‘continuation’ of βp(LZp , < q >, κ; s) to arbitrary s ∈ C if n = 1.
We will now construct a ‘continuation’ of the volume of the orthogonal group, or, more
precisely, of its discriminant kernel such that the above orbit equation remains true as
an identity of functions in s.
Let LZp ,MZp be lattices with non-degenerate quadratic forms QL ∈ Sym2(L∗Zp). Let κ
be an element in (L∗Zp/LZp)⊗M∗Zp .
As a first step, we have

vol(SO′(LZp ⊕Hs
Zp))

−1|d(LZp)|
n
2 |d(M)|−s+

n−m+1
2 βp(LZp ,MZp , κ; s)

=
∑
i

vol(SO′(αi(MZp)⊥)−1

where the αi are representatives of the SO′(LZp)-orbits in I(M,L)(Qp)∩κ. The stability
of these orbits for arbitrary s in this formula will be shown (at least for p 6= 2) in
lemma (6.4.20) below. This occurs at least if L splits n hyperbolic planes, in particular
for s ≥ n for any lattice. We call these orbits stable.

(6.4.10) Definition. We introduce the following notation:

λp(LZp ; s) :=
vol(SO′(LZp ⊕Hs

Zp))∏s
i=1(1− p−2i) ,

µp(LZp ,MZp , κ; s) := vol(I(M,L⊕Hs
Zp)(Qp) ∩ κ⊕Hs

Zp ⊗M
∗
Zp)

= |d(LZp)|
n
2 |d(MZp)|−s+

1+n−m
2 βp(LZp ,MZp , κ; s),

cf. (6.3). Here all volumes are understood to be calculated w.r.t. the canonical measures
(6.2.3).

We have the following fundamental orbit equation:

(6.4.11) Theorem. Let p 6= 2. For s sufficiently big (explicitly, if n = 1: s ≥ 1, in
general, or s ≥ 0, if L splits an hyperbolic plane), we have

λp(LZp ; s)−1 · µp(LZp ,MZp , κ; s) =
∑
i

λp(αi(MZp)⊥; s)−1,

where the sum is taken over stable orbits.

(6.4.12) Remark. In (8.2.1) we will establish that λp(LZp ; s) is a polynomial in p−s for
s ≥ 1 (in general) hence the orbits equation makes sense as an identity of polynomials
and so for all s ∈ C.
Observe:

∏s
i=1(1− p−2i) = (1 + p−s) vol(SO(Hs)) for s ∈ N (cf. 8.2.1).
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We emphasize that this naive equation can be related (in this form) to Arakelov ge-
ometry only if there is only one orbit. For computational reasons, and to understand
the properties of the representation densities/volumes, it is interesting in its own right,
however. See (11.2.12) for a discussion of its failure.
In (8.2.1) the occurring functions will be calculated explicitly in a lot of cases. We now
will turn anyway to the problem of stability of orbits, for which we need some lemmas
(some are stated for Z(p) instead of Zp for later need):

(6.4.13) Lemma. Let MZp an unimodular sublattice of LZp. Then we have

LZp = MZp ⊥M⊥Zp .

Proof. Follows from [50, Prop. 5.2.2].

(6.4.14) Lemma. If LZp is unimodular, we have

LZp ' Hr
Zp ⊥ L

0
Zp ,

with L0
Zp anisotropic. Here HZp is an hyperbolic plane.

Proof. [50, Theorem 5.2.2]

(6.4.15) Lemma. If p 6= 2, there is a basis e1, . . . , em of LZ(p), with respect to which
the QL is given by

QL : x 7→
∑
i

εip
νix2

i ,

where εi ∈ Z(p)
∗, νi ∈ Z≥0 and ν1 ≤ · · · ≤ νm.

Proof. This works for any discrete valuation ring in which |2| = 1. It exists a vector v of
maximal length in LZ(p) since |QL(·)| is certainly bounded and the valuation is discrete.
We claim that |〈v, w〉| ≤ |〈v, v〉| for every w ∈ LZ(p) . For, if this is not the case, we would
have

|〈v + w,w + w〉| ≤ max(|〈v, v〉|, |2〈v, w〉|, |〈w,w〉|)

and equality, if one of the terms is strictly bigger than the other two. We have |〈w,w〉| ≤
|〈v, v〉|. Hence, if |〈v, w〉| would be strictly bigger than |〈v, v〉|, |〈v+w,w+w〉| would be
strictly bigger than |〈v, v〉|, too, a contradiction. Therefore the projectors

w 7→ 〈v, w〉
〈v, v〉

v w 7→ w − 〈v, w〉
〈v, v〉

v

are defined and yield LZ(p) =< QL(v) >⊥ L′Z(p)
. The statement follows by induction.
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(6.4.16) Lemma. Let p 6= 2. Assume L∗Zp/LZp is cyclic. Then

SO(LZp)/ SO′(LZp) =
{

1 if ν = 0 or m = 1,
Z/2Z otherwise,

where pν = |D(LZp)|−1 is the order of L∗Zp/LZp.

Proof. In the representation given by (6.4.15) νm is equal to ν and all other νi vanish.
Hence v := p−νem is a generator of L∗Zp/LZp and Q(v) = εmp

−ν . Let v′ be its image
under an arbitrary isometry. v′ has a representation

v′ =
∑
i<m

αiei + p−ναmem αi ∈ Zp

and
Q(v′) =

∑
i<m

εiα
2
i + εmp

−να2
m = εmp

−ν .

From this it follows
α2
m ≡ 1 mod pν ,

hence (p 6= 2)
α ≡ ±1 mod pν .

The occurring sign defines a character of the orthogonal group. An element is in its
kernel, precisely if it is in the discriminant kernel. Moreover, if m > 1 there are elements
in SO, which yield sign −1, for example composition of reflection along em and any
ei, i < m.

(6.4.17) Lemma. Assume p 6= 2 and let

LZp = MZp ⊥M ′Zp = NZp ⊥ N ′Zp ,

with β : MZp
∼= NZp. Then we have

M ′Zp
∼= N ′Zp .

In particular, there exists an isometry α ∈ SO(LZp) with α(MZp) = NZp. If MZp is
unimodular, we may choose α ∈ SO′(LZp). If M ′Zp has a vector of unit length, we may
assume in addition, that α|MZp = β.

Proof. The first part of the assertion is shown in [50, Corollary 5.3.1]. It remains to see
that we may choose the isometry in the discriminant kernel, if MZp is unimodular: For
this we proceed by induction on the dimension on MZp . If MZp is one dimensional, let v
be a generating vector of unit length and v′ its image under β. One of the vectors v+ v′
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or v− v′ has unit length, call it w. The reflection along w lies obviously in O′(LZp) and
interchanges < v > and < v′ >. By composition with the reflection along v′, we may
assume, that it lies in SO′(LZp).
Assume now dim(MZp) > 1. Let v be a vector of unit length in MZp and v′ its image.
We have

LZp =< v >⊥ v⊥ =< v′ >⊥ v′⊥,

(Lemma 6.4.13) and

v⊥LZp = v⊥MZp ⊥M ′Zp v′
⊥LZp = v′

⊥NZp ⊥ N ′Zp ,

and we have an isometry (case above) in the discriminant kernel, which maps < v >
to < v′ >, and hence v⊥ to v′⊥. v⊥MZp and v′⊥NZp are now isomorphic (again by the
case above) hence (induction hypothesis), there is an isometry in SO′(v′⊥) mapping the
image of v⊥MZp to v′⊥NZp . It lifts to SO′(LZp). Composition with the first isometry
gives the induction step. The proof shows, that we may arrange α|MZp = β if there is a
reflection in SO′(M ′Zp).

(6.4.18) Lemma. Let LZp (dim(L) ≥ 3) be a unimodular lattice, p 6= 2, and q ∈
Zp \ {0}.
Then SO(LZp) acts transitively on {α ∈ I(< q >,LZp) | im(α) is saturated}. In partic-
ular, it acts transitively on I(< q >,LZp) with |q|p = 1

p .

Proof. Take any v with QL(v) = q. Diagonalize the form Lemma (6.4.15) and take the
reflection v′ of v at any basis vector ei with the property that vi ∈ Z∗p (this must exist,
since otherwise the vector would not be primitive). We have p - 〈v, v′〉. Therefore the
form on Zpv⊕Zpv′ is unimodular, hence Zpv⊕Zpv′ is primitive and a direct summand by
Lemma (6.4.13). It is necessarily a hyperbolic plane, since modulo p it represents zero.
We have shown that any primitive vector in I(< q >,L) lies in a hyperbolic plane. Now
use Lemma (6.4.17) and the fact, that O(HZp) (not SO!) acts transitively on primitive
vectors of length q on HZp .

We see that for p 6= 2, j > 0, and an unimodular lattice LZ(p) , there are precisely b
j
2c+1

orbits of vectors of length pj , indexed according to their ‘saturatedness’.

(6.4.19) Lemma. Consider LZp ⊕ H2 = LZp ⊕ Z4
p (i.e. a space with quadratic form

Q(xL, x0, . . . , x3) = QL(xL) + x0x1 + x2x3). Let w = (wL, w0, . . . , w3) ∈ LZp ⊕H2 be a
vector with Q(w) 6= 0. It follows

< w >⊥≡ H ⊥ Λ.

Proof. We may assume w.l.o.g. that νp(w0) is minimal among the νp(wi). < w >⊥ is
described by the equation 〈wL, xL〉+w0x1+w1x0+w2x3+w3x2 = 0. The map (x2, x3) 7→
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(0L, 0,−w2x3+w3x2
w0

, x2, x3) therefore is an isometric embedding of an hyperbolic plane
into < w >⊥. The assertion now follows from (6.4.13).

We are now able to prove stability of orbits:
Let κ ∈ (L∗Zp/LZp) ⊗ M∗Zp and {αi} be a set of representatives of the orbits under
SO′(LZp) acting on I(M,L)(Qp) ∩ κ.

(6.4.20) Lemma. Assume MZp has dimension n, p 6= 2 and LZp splits n hyperbolic
planes.
Then {αi} is a set of representatives of the SO′(LZp⊕Hs

Zp)-orbits in I(M,L ⊥ Hs)(Qp)∩
κ⊕ (Hs

Zp ⊗M
∗
Zp) for all s.

Proof. We begin by showing that, if αi = gαj for some g ∈ SO′(LZp ⊕ Hs
Zp), then we

have αi = g′αj for some g′ ∈ SO′(LZp) as well. We have

αi(MZp)⊥ = Hs
Zp ⊥ αi(MZp)⊥LZp .

Since the form is integral in LZp , we have according to Lemma (6.4.14):

αi(MZp)⊥ = g(Hs
Zp) ⊥ ΛZp

(because Hs
Zp ⊥ αj(MZp).) Hence (Lemma 6.4.14 - here p 6= 2 is used), there is an

isometry αi(MZp)⊥, which maps g(Hs
Zp) to Hs

Zp and lies in SO′(αi(MZp)⊥). Hence its
lifts to an isometry in SO′(LZp ⊕ Hs

Zp), which fixes MZp point-wise (Lemma 6.4.2).
Composition with g yields the required g′.
Secondly, let an isometry α : MZp → LZp ⊥ Hs

Zp be given. We have to show that it is
mapped by an element in SO′(LZp ⊕Hs

Zp) to any of the αi. It clearly suffices (induction
on s) to consider the case s = 1.
We proceed by induction on n and first prove the case n = 1: By Lemma (6.4.19)
αi(MZp)⊥ (⊥ with respect to LZp⊕HZp) splits an hyperbolic plane because by assumption
LZp splits already one. Then apply Lemma (6.4.14). We get

α(MZp)⊥ = ΛZp ⊥ Λ′Zp ,

with ΛZp
∼= HZp .

In addition, we have (again Lemma 6.4.14)

LZp ⊕HZp = ΛZp ⊥ Λ⊥Zp ,

hence (Lemma 6.4.17) Λ⊥Zp ∼= LZp and the image of α of course lies in Λ⊥Qp because
ΛQp ⊥ α(MQp). Now there is an isometry g, which maps Λ⊥Zp to LZp and ΛZp to HZp
(even in SO′(LZp ⊕HZp) - Lemma (6.4.17)). The image of g ◦α then lies in LQp and the
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element of SO′(LZp), which maps g◦α to any αi, lifts to an isometry g′ ∈ SO′(LZp⊕HZp).
Hence α is conjugated to αi under SO′(LZp ⊕HZp).
We now assume, that the statement has been proven for M up to dimension n− 1. We
choose some splittingM = N⊕N⊥ with dim(N) = n−1 and accordingly decomposition
κ = κN + κN⊥ . Let α : MZp → LZp ⊥ Hs

Zp be given. Induction hypothesis shows, that
w.l.o.g. α(N) ⊂ LQp . Since LZp splits an unrequired hyperbolic plane, we may even
assume, that α(N)⊥∩LZp splits a hyperbolic plane, too. Hence we may apply the n = 1
case to α(N)⊥ ⊕Hs

Zp and M⊥ and observe that the constructed isometries in this step
all lift by Lemma (6.4.2).

6.5. Connection with the local zeta function

Let LZp be a lattice with non-degenerate quadratic form QL ∈ Sym2(L∗Zp), as before. In
the case n = 1 (i.e. MZp =< q >), we will give a connection of the above representation
densities with the local zeta function of LZp . We recover the classical zeta function [95,
4.3] for q = 0. Assume that QL is integral and primitive (i.e. p−1QL not integral) on
LZp .

(6.5.1) Theorem. Let s ∈ Z≥0, q ∈ Zp arbitrary, κ ∈ L∗Zp/LZp and m ≥ 2.∫
κ
|QL(v)− q|s d v = ps + β(LZp , < q >, κ; s+ 1) 1− ps

1− p−s−1 ,

where d v is the translation invariant measure with vol(LZp) = 1.

Proof. Observe that∫
κ
|QL(v)− q|s d v =

∞∑
i=0

(
volκ ∩ {|QL −Q| ≤

1
pi
} − volκ ∩ {|QL −Q| ≤

1
pi+1 }

) 1
pis

= 1 +
∞∑
i=1

volκ ∩ {|QL −Q| ≤
1
pi
}(1− ps) 1

pis

= 1 +
∞∑
i=1

#Ωκ,q(i)
pi(s+n) (1− ps)

= 1− (1− ps) +
∞∑
i=0

#Ωκ,q(i)
pi(s+n) (1− ps).

The formula now follows using identity (7).

It is convenient to write

β(LZp , 0; s) = 1 + (1− p−1)δ(p−s),
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where δ is a polynomial, which is, according to Yang’s formula (6.4.8), given by:

δ(X) =
∑
k>1

l(k,1)≡0 (2)

ν(k)pd(k)Xk

(with the local notation from 6.4.8). Here δ(0) = 0.

Therefore:

E := vol{x ∈ LZp |QL(v) ∈ Z∗p} = lim
s→∞

∫
LZp

|QL(v)|s d v

= lim
X→0

(1− 1 + (1− p−1)δ(p−1X)
1− p−1X

)

= (1− p−1)(1− δ′(0)p−1).

with

δ′(0) =
{
ν(1)pd(1) l(1, 1) ≡ 0 (2),
0 l(1, 1) ≡ 1 (2).

(6.5.2) Definition. We define the normalized local zeta function associated with
L by

ζp(LZp , s) := 1
E

∫
LZp

|QL(v)|s−1 d v.

For two dimensional lattices, this coincides for example with the usual zeta function
of the associated order in the associated quadratic field ( d v

E|QL| is the multiplicatively
invariant measure for which (O ⊗ Zp)∗ has volume 1).

(6.5.3) Here, we explicitly compute the zeta function for an arbitrary two dimensional
lattice. This will be used to compute the arithmetic volume of Shimura varieties associ-
ated with 2-dimensional lattices in (8.1), including also information from bad primes.

Let LZp , p 6= 2 be a quadratic lattice, w.l.o.g. of the form (x1)2 + εpl(x2)2. The
zeta function of a 2 dimensional lattices depends only on the discrimiant, because it is
invariant under SL2(Zp) and under multiplication of the form by a scalar.

With the notation of Yang (6.4.8), we have:
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L(k; 1) =

l even l odd
{} 0 < k ≤ l even {}
{1} 0 < k ≤ l odd {1}
{} l < k even {2}
{1, 2} l < k odd {1}

d(k) =
{1

2k k ≤ l,
1
2 l l < k,

ν(k) =
{

(−εp )k l < k, l even,
1 k ≤ l or l odd .

Assume first l = 0, then (as expected):

δ(X) =
∑
k>1

(−ε
p

)kXk =
(−εp )X

1− (−εp )X
,

ζp(LZp , s) = (1− p−1)(1 + (1− (pX)−1)δ(X))
(1−X)E = 1

(1−X)(1− (−εp )X)
.

For l odd, the above yields:

δ(X) =
l−1
2∑

k′=1
pk
′
X2k′ = (pX)2 1− (pX2)

l−1
2

1− (pX)2 ,

ζp(LZp , s) = 1− (pX2)
l+1
2 −X +X(pX2)

l−1
2

(1−X)(1− pX2) .

For l ≥ 2, even, it yields:

δ(X) =
∞∑
k=l

(−ε
p

)kp
1
2 lXk +

l
2−1∑
k′=1

pk
′
X2k′

= p
1
2 lX l 1

1− (−εp )X
+ pX2 1− (pX2)

l
2−1

1− pX2 ,

ζp(LZp , s) = p
l
2X l − p

l
2−1X l−1

(1−X)(1− (−εp )X)
+ 1− (pX2)

l
2 −X +X(pX2)

l
2−1

(1−X)(1− pX2) .
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7. The Weil representation

7.1. General definition

(7.1.1) The Weil representation [93] can be defined for any Abelian locally compact
group G. We will restrict here to the case of a finite free module M over R equal to a
Qp,R,A or A(∞) respectively.
Let M be an R-vector space. M = M ⊕M∗ becomes a symplectic vector space in a
canonical way by

〈
(
w1
w∗1

)
,

(
w2
w∗2

)
〉 7→ w∗1(w2)− w∗2(w1).

Associated with M there is a Heisenberg group:

H = R×M ×M∗,

defined by the group law

(r1, x1, x
∗
1)(r2, x2, x

∗
2) = (r1 + r2 + x∗1x2, x1 + x2, x

∗
1 + x∗2).

Choose any non-trivial additive character χ on R. We get an action of H on S(M∗) by

gϕ : x∗ 7→ χ(r1 + x∗x1)ϕ(x∗ + x∗1)

for g = (r1, x1, x
∗
1).

This is essentially (up to topological issues) the unique irreducible representation of H,
where R acts through χ.
The unicity yields a projective representation of the automorphism group of H. This
group is (in these cases) the symplectic group:

Sp(M) = {σ =
(
α β
γ δ

)
| ∗σσ = 1},

with α ∈ End(M), β ∈ M ⊗ M , γ ∈ M∗ ⊗ M∗ and δ ∈ End(M∗). Here ∗σ is the
transpose with respect to the symplectic form:

∗σ =
(

tδ −tγ
−tβ tα

)
.
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It acts by (
α β
γ δ

)
(r,m,m∗) = (f(m,m∗) + r, αm+ βm∗, γm+ δm∗),

with

f(m,m∗) = 1
2(〈γm+ δm∗, αm+ βm∗〉 − 〈m∗,m〉). (1)

This projective representation can of course be considered as an honest representation
of an extension

0 // C∗ // S̃p // Sp // 0.

It is called the Weil representation.

(7.1.2) The Weil representation can be described explicitly. We will do this first for the
following subgroups of Sp(M):
Denote:

gl(α) :=
(
α 0
0 tα−1

)
(2)

u(B) :=
(

1 β
0 1

)
(3)

d(γ) :=
(

0 −tγ−1

γ 0

)
(4)

for α ∈ Aut(M), B ∈ Sym2(M) and β ∈ Hom(M∗,M) is the bilinear form on M∗

associated with B (or the associated morphism) and γ ∈ Iso(M,M∗).
We denote the image of gl and u by Gl and U respectively, and their product by P ,
which is a maximal parabolic of Sp(M).

(7.1.3) For each decomposition M∗ = M∗′ ⊕M∗′′ there is an embedding

ι : Sp(M′) ↪→ Sp(M).

Let γ0 : M ′ →M∗′ be a symmetric isomorphism.
Let ΩM∗′ = UGlι(d(γ0)UM′). Every element in ΩM∗′ possesses a unique representation
in this way. The set ΩM∗′ does not depend on the choice of complement M∗′′ and on
γ0, and consists precisely of those elements, for which im(tγ0) = M∗′.
We have the following decomposition:

Sp(M) =
⋃

M∗′⊂M∗
ΩM∗′ (5)
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(7.1.4) The groups defined in (7.1.2) have lifts to S̃p given by the following action on
S(M∗R)

r(gl(α))ϕ :x∗ 7→ |α|
1
2ϕ(tαx∗)

r(u(B))ϕ :x∗ 7→ χ(B(x∗))ϕ(x∗)

r(d(γ))ϕ :x∗ 7→ |γ|−
1
2

∫
M
ϕ(tγx)χ(−〈x∗, x〉) dx

for α ∈ GL(M∗), β ∈M ⊗M (m = dimL).
Here dx is any measure on M∗ and |γ| are the comparison factor between the image
under γ of the chosen measure on M and the dual of the chosen measure. Observe, that
the third formula does not depend on this choice.
As every element in the ‘maximal’ set ΩM∗ in the decomposition (5) has a unique ex-
pression of the form u(B1)d(γ)u(B2), r therefore extends to a lift defined on ΩM∗ . it is
described by the formula

r(
(
α β
γ δ

)
)ϕ : x∗ 7→ |γ|−

1
2

∫
M
ϕ(tαx∗ + tγx)χ(f(x, x∗)) dx,

where f is defined in (1). Remember, the condition for an element of being in ΩM∗ was
just γ being an isomorphism.

(7.1.5) With respect to the decomposition M∗ = M∗′ ⊕M∗′′ and dual decomposition
M = M ′ ⊕ M ′′ (see 7.1.3), we have lifts of the corresponding subgroups of Sp(M′)
operating as:

r′(ι(gl(α)))ϕ :x∗ 7→ |α|1/2ϕ(tαx∗)
r′(ι(u(B)))ϕ :x∗ 7→ χ(B((x∗)′))ϕ(x∗)

r′(ι(d(γ)))ϕ :x∗ 7→ |γ|−1/2
∫
M ′
ϕ(tγx′ + (x∗)′′)χ(−〈x∗, x′〉) dx′

for α ∈ GL(M ′), β ∈ (M ′ ⊗ M ′)s, where (x∗)′, resp. (x∗)′′ are the projections with
respect to the chosen decomposition.

(7.1.6) On the ‘maximal’ set ΩM∗ in the decomposition (5) above, the deviance for r
from being part of a group homomorphism is measured by a character Υ : W (R)→ C∗,
where W (R) is the Witt group1. It is determined as follows: Let B be a quadratic form
on M∗ and β : M → M∗ is the symmetric morphism associated with B. We have [93,
Théorème 2]:

Ff∗χ◦B(x) = Υ(B)|β|−
1
2Ff (x∗)χ(B(−β−1x)),

1If R is a field, W (R) is the set of isomorphism classes of quadratic forms over R modulo splitting
hyperbolic planes under the operation of ⊥. If R = A(S), we understand by W (R) the product over
the local Witt groups over all places not in S.
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for any f ∈ S(R).
If R is a local field, it can be calculated by the formula [93, Proposition 4]

Υ(< 1, a, b, ab >) = (a|b),

where (a|b) is the Hilbert symbol. It follows(Υ(< a >)
Υ(< 1 >)

)2
= (a| − 1)

and

(7.1.7) Lemma.
Υ(Q) = Υ(< 1 >)m−1Υ(< D̃ >)ε(Q),

where ε(Q) is the Hasse invariant. Here D̃ is the discriminant of Q if m is even and 2
times the discriminant if m is odd (some authors define the discriminant like this).

Proof. Easy induction on dimL, using that Υ is a character of the Witt group.

It determines the deviance as follows. Let

s′′ = ss′

be an equation, where

s =
(
α β
γ δ

)
, s′ =

(
α′ β′

γ′ δ′

)
, s′′ =

(
α′′ β′′

γ′′ δ′′

)

are elements in ΩM∗ .
Let Q be the quadratic form associated with the symmetric morphism γ−1γ′′(γ′)−1. We
have then [93, Théorème 3]:

Υ(Q)r(s′′) = r(s)r(s′) (6)

(7.1.8) This allows to construct a modified lifting r′, see also [93, §43], determined by
the formulas:

r′(gl(α)) := Υ(< 1 >)
Υ(< det(α) >)r(gl(α))

r′(u(B)) := r(u(B))

r′(d(γ)) := Υ(< 1 >)m−1Υ(< det(1
2γ) >)r(d(γ))
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(7.1.9) Lemma. This defines a twofold covering Mp(M) of Sp(M), called the meta-
plectic group.

Proof. It suffices to see (compare [93, §43]) that the deviation in equation (6) becomes
just a sign ±1, which follows from the formulæ for Υ given above.

7.2. A dual reductive pair

(7.2.1) Let L be a quadratic space over R of dimension m. There is an injection

Sp(M)× SO(L) ↪→ Mp((M ⊗ L∗)⊕ (M∗ ⊗ L)),

if m is even and an injection

Mp(M)× SO(L) ↪→ Mp((M ⊗ L∗)⊕ (M∗ ⊗ L)),

if m is odd. The image is called a dual reductive pair. We are interested in the
restriction of the Weil representation.

The injection is a lift of the morphism mapping an element
(
α β
γ δ

)
of Sp(M) to(

α⊗ id β ⊗ γL
γ ⊗ γ−1

L δ ⊗ id

)
, where γL is the morphism L → L∗ associated with QL. An el-

ement λ ∈ SO(L) acts as λ, resp. tλ−1 on L resp. L∗. Via the Weil representation it
acts by

λϕ : x∗ 7→ ϕ(λ−1x∗).

An element σ =
(
α β
γ δ

)
∈ ΩM∗ has a lift r′′(σ), which may differ from the pullback of

r′ by a sign. It determines the metaplactic group again, if m is odd, and extends to a
homomorphism of Sp(M) if m is even. The correcting factor of the action of d(γ) we
will denote by Υ̃(γ). For n = 1 it is just given by Υ̃(γ) = Υ(γ ⊗QL).
The Weil representation on the restriction (of r) may be described as follows:

r(gl(α))ϕ :x∗ 7→ |α|
m
2 ϕ(tαx∗)

r(u(B))ϕ :x∗ 7→ χ((x∗)!QL · β)ϕ(x∗)

r(d(γ))ϕ :x∗ 7→ |γ|−
m
2

∫
M⊗L∗

ϕ(tγx)χ(−〈x∗, x〉) dx

Here we choose a measure on dx which is the tensor product of the canonical (with
respect to QL) on L∗R with some measure dx′ on MR. |γ| in the third formula is
computed with respect to the latter and its dual on MR and M∗R respectively.
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It is convenient to introduce the following notation:

Sp′ =
{

Sp n even,
Mp n odd.

(7.2.2) The following theorem is well known and central for the connection between
Eisenstein series (or Whittaker integrals) and volumes. It is analogous to the connection
between Gauss sums and representation numbers over finite fields. Analogously it can
be used to compute volumes (cf. 6.4.8).

(7.2.3) Theorem ([94, Proposition 6]). Let R be local and m ≥ 2n + 1. Let ϕ ∈
S(M∗ ⊗ L). The function

Ψ(Q) =
∫

I(MQ,L)
ϕ(α)µ1

µ2
(α) Q ∈ Sym2(M∗)

has Fourier transform

Ψ′(β) =
∫
M∗⊗L

ϕ(x∗)χ((x∗)!QL · β)µ1(x∗) = Υ̃(γ0)−1|γ0|1/2(d(γ0)u(β)ϕ)(0),

β ∈ (M ⊗M)s, with respect to a measure µ2 on Sym2(M∗) (in the second formula γ0 is
an arbitrary isomorphism M → M∗). |γ0| is computed via µ1. Here µ1, µ2 and µ1

µ2
are

connected via the fibration (6.2.5).

7.3. The Weil representation and automorphic forms

(7.3.1) For R = A, the factor ΥA(Q) is the product over all local Υν(Q)s. It is 1 if Q is
a rational form. (This is a generalization of the law of quadratic reciprocity). Therefore
the formulas (7.2.1) for r′′ determine a canonical homomorphism Sp(LQ)→ Mp(LA).
We have embeddings Mp(Qν) ↪→ Mp(A).
An automorphic form for the metaplectic group is a function on on Sp(MQ)\Mp(MA),
fulfilling the same properties than for Sp, in particular, it is right invariant under a
compact open subgroup of Mp(MA(∞)) and finite under a maximal compact subgroup
of Mp(MR). We denote the corresponding space by A(Sp(MQ)\Mp(MA)).
For sufficiently small K ⊂ Sp(MẐ) there is a lift K ↪→ Mp(A(∞)). The automorphic
functions invariant under K are functions on

X = Sp(MQ)\Mp(MA)/K.

By strong approximation we have

Mp(MA) = Sp(MQ) Mp(MR)K
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and therefore
X = Γ\Mp(MR),

where Γ is the lift of K ∩ Sp(MQ) to Mp(M)R.

(7.3.2) A classical Siegel modular form f of (half-integral) weight k on (M ⊗ M)s
corresponds to an automorphic form which is given by

F :
(
α β
γ δ

)
× 1f 7→ det(γγ−1

0 i+ δ)kf((αγ−1
0 i+ β)(γγ−1

0 i+ δ)−1),

depending on the ‘base point’ iγ−1
0 , transforming by χk : u′ 7→ det(u)k, where u′ is an

element of K∞ (determined by γ0, see 7.6.3 below) mapping down to u ∈ U(M∗). If k
is half-integral, the sign of det(u)k is determined by the pre-image u′ which in turn is

just the corresponding component in an Iwasawa decomposition of
(
α β
γ δ

)
in Mp(R).

In the other direction, an automorphic form F transforming by χk underK∞ corresponds
to the classical Siegel modular form

f : τ 7→ det(=(τ)γ0)
k
2F (gτ × 1f ),

where gτ = r(gl((=(τ)γ0)
1
2 )u(γ−1

0 =(τ)−1<(τ))) (r = canonical lift to Sp′).

7.4. The Φ-operator and Eisenstein series

(7.4.1) For each ν (including ∞) choose a maximal compact subgroup K ′ν of Sp′(Qν).
We have an Iwasawa decomposition:

Sp′(M,Qν) = P ′K ′ν .

where P ′ is the pre-image of P = UGl.
Let ξ′ denote a character of P ′(A), which is trivial on U(A) and on P (Q), but nontrivial
on the metaplectic kernel (if m is odd). If m is even, ξ comes from a character ξ of
A∗/Q∗ lifted to Gl via gl(α) 7→ ξ(det(α)).
Let IR(s, ξ′R) the (normalized) parabolically induced representation

IR(s, ξ′R) := ISp′(M,R)
P ′ (|det |sξ′),

which is the space of smooth KR-finite functions Ψ, satisfying

Ψ(pg) = ξ′R(p)|det(α(p))|s+(n+1)/2Ψ(g)

(remember n = dimM).
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In the space IR(s, ξR), we find the following orthogonal system of functions

Ψl,R(pk, s) = ξ′R(p)|α(p)|s+(n+1)/2χl(k),

where χl(k) is the character detl of K∞ ∼= U ′m. If Sp′ = Mp, l has to be half-integral,
and the definition then does not depend on the decomposition pk, which is unique only
up to the metaplectic kernel. It is a (Hilbert-space) basis if n = 1.
Choose a global lattice MZ and let Kp be the stabilizer of MZp . The Kp are maximal
compact. Thus, for almost all p, in IQp(s, ξp) we find the vector

Ψ0,p(pk, s) = ξ′p(p)|α(p)|s+(n+1)/2 sign(k),

where sign(k) = ±1 according to whether k lies in the canonical lift of Sp(MZp) (7.7.1)
or not.
With this defined, we have

IA(s, ξ) =
⊗
ν

′
IQν (s, ξν),

where
⊗
ν
′ is the restricted tensor product with respect to the vectors Ψ0,p. Note that if

n is odd, this gives a representation of Mp(A), since the kernel of Mp(MQν )→ Sp(MQν )
acts in the same way.
In particular, for any R as above, the Weil representation defines the following Sp′(MR)-
equivariant operator:

Φ : S(M∗ ⊗ L)→ I(s0 = m−n−1
2 , ξ)

ϕ 7→ {g 7→ (gϕ)(0)}

Here ξ is the character (up to sign, if m is odd) α 7→ Υ̃(γ0α)/Υ̃(γ0) for some γ0.

(7.4.2) Let Ψ(s0) ∈ I(s0, ξ) be given (s0 = m−n−1
2 ). Such a function can be extended

uniquely to a ‘section’ parameterized by s ∈ C, with the property that the restriction
to K is independent of s. Using the Iwasawa composition we see that it is given by the
formula

Ψ(u(β)gl(α)k, s) = |α|s−s0Ψ(gl(α)k, s0).

To any such ‘section’, there is an associated Eisenstein series. This association is a
Sp′(A)-equivariant map

E : IA(s, ξ)→ A(Sp(MQ)\ Sp′(MA))

Ψ(s) 7→
∑

γ∈P (Q)\Sp(MQ)
Ψ(s)(γg),

where A is the space of automorphic functions. This series converges absolutely if
<(s) > n+1

2 and possesses a meromorphic continuation in s to all of C. Note, that ξ is
trivial on Sp(MQ).
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The Eisenstein series decomposes according to the ‘Bruhat’ decomposition (5) as follows:

E(Ψ, s) =
∑

M∗′⊂M∗
EM∗′(Ψ, s),

with
EM∗′(Ψ, g, s) =

∑
β∈(M ′⊗M ′)sQ

Ψ(s)(ι(d(γ0)u(β))g).

At s = s0, with m > 2n+ 2 (this assures convergence), we get:

EM∗′(Ψ, g, s0) =
∑

β∈(M ′⊗M ′)sQ

(ι(d(γ0)u(β))gϕ) (0).

Using (7.2.3) and Poisson summation this yields:

EM∗′(Ψ, g, s0) =
∑

Q∈Sym2(M∗′)Q

∫
IA(M ′Q,L)

(gϕ) (x∗) dx∗.

Here we interpret gϕ by composition with the embedding M∗′ ⊗ L ↪→ M∗ ⊗ L as a
function on (M∗′ ⊗ L)A. The chosen decomposition does not play any role here (and
EM∗′ is a priori independent of it). dx∗ is the Tamagawa measure.

This ‘is’ essentially the Fourier expansion of the Eisenstein series. To see this, we cal-
culate its Fourier coefficient with index Q ∈ Sym(M∗)) explicitly (all measures are
Tamagawa measures):

EQ(Ψ, g, s0) =
∫

(M⊗M)s\(M⊗M)sA

∑
M∗′⊂M∗

EM∗′(Ψ, u(β)g, s0)χ(βQ) dβ

=
∑

M∗′⊂M∗

∫
(M⊗M)s\(M⊗M)sA

EM ′(Ψ, u(β)g, s0)χ(βQ) dβ

=
∑

M∗′⊂M∗

∫
(M ′⊗M ′)s\(M ′⊗M ′)sA

∑
β∈(M ′⊗M ′)s

Ψ
(
ι(d(γ0)u(β))u(β)g

)
χ(βQ) dβ

=
∑

M∗′⊂M∗

∫
(M ′⊗M ′)sA

(ι(d(γ0))u(β)gϕ) (0)χ(βQ) dβ

=
∑

{M∗′⊂M∗ | Q∈Sym2(M∗′)}

∫
IA(M ′Q,L)

(gϕ)(x) dx

(observe Υ̃Aγ0 = 1). In the second step, we divided the integral in an integral over
(classes in) (M ′ ⊗M ′)sA, (M ′ ⊗M ′′)A and (M ′′ ⊗M ′′)sA. Then use

EM∗′(Ψ, u(β1)u(β2)u(β3)g, s0) = EM∗′(Ψ, u(β1)g, s0)
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for this decomposition and finally (e.g.)∫
(M ′′⊗M ′′)s\(M ′′⊗M ′′)sA

χ(β3, Q) dβ3

is 0 if Q has any nonzero projection to Sym2(M∗′′) and is 1 otherwise. In the last step,
we used (7.2.3).
It is therefore convenient to make the following

(7.4.3) Definition. The Whittaker integral is defined as

Wν,Q,M∗′(Ψν , gν) :=
∫

(M ′⊗M ′)sQν
Ψν(d(γ0)u(β)gν)χ(βQ)µγ0(βν),

where we now chose the canonical measure µγ0 with respect to some fixed γ0 on M and
hence M ′ for convenience.

Hence we have

EQ(Ψ, g; s) =
∑

{M∗′⊂M∗ | Q∈Sym2(M∗′)}

∏
ν

Wν,Q,M∗′(Ψν(s), gν)

and again by (7.2.3):

Wν,Q,M∗′(Φν(ϕν ; s0), g) = Υ̃ν(γ0)
∫

IQν (M ′Q,L)
(gϕν)(x∗ν)µQL,γ0(x∗ν),

where µQL,γ0 is the measure on IQν (M ′Q, L) induced by the canonical ones on Sym2(M∗)
and M∗ ⊗ L with respect to γ0 and QL via (6.2.5).

(7.4.4) Lemma. The Whittaker integrals (non-degenerate case) satisfy the following
general transformation laws:

i. WQ,ν(Ψν(s), u(β′)g) = χ(−β′Q)WQ,ν(Ψν(s), g)

ii. WQ,ν(Ψν(s), gl(α)g) = |α|−s+
n+1

2 Wα!Q,ν(Ψν(s), g)

Proof. (i) Substitute β′′ = β + β′ in the definition of Whittaker integral. (ii) Substitute
β′′ = α−1βtα−1 and use d(γ0)u(β)gl(α) = gl(γ−1

0
tα−1γ0)d(γ0)u(α−1βtα−1).
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7.5. Theta series and the Siegel-Weil formula

(7.5.1) Assume m > 2n + 2 again. To any given ϕ ∈ S(M∗ ⊗ L)A one may define an
associated theta function

Θ(ϕ; g) =
∑

x∗∈M∗Q⊗LQ

(gϕ)(x∗).

This association is a SO(LA)×Mp(MA)-equivariant map2

S(M∗ ⊗ L)A → A(SO(LQ)\ SO(LA)× Sp(MQ)\ Sp′(MA)).

The theta function decomposes as follows:

Θ(ϕ; g) =
∑

Q∈Sym2(M∗)

ΘQ(ϕ, g)

ΘQ(ϕ; g) =
∑

x∗∈IQ(MQ,L)
(gϕ)(x∗) =

∑
{M∗′⊂M∗ | Q∈Sym2(M∗′)}

Θ1
Q,M ′(ϕ, g)

Θ1
Q,M∗′(ϕ; g) =

∑
x∗∈I1Q(M ′,L)

(gϕ)(x∗)

Because I1
Q(M ′, L) consists of one orbit under SO(LQ), we get∫

SO(LQ)\ SO(LA)
Θ1
Q(ϕ; gh) dh = τ(Stab(α))

∫
IA(M ′Q,L)

(gϕ)(x∗) dx∗,

where τ(· · · ) denotes the Tamagawa number and dh, resp. dx∗ are the Tamagawa
measures.
In [94], Weil proves the Siegel-Weil formula:

(7.5.2) Theorem.

E(Φ(ϕ); g) = τ(SO(LQ))
∫

SO(LQ)\ SO(LA)
Θ(ϕ, gh) dh.

This can be extended in various ways beyond the range m > 2n+ 2 (cf. e.g. [64]).
According to the above, comparing Fourier coefficients, one obtains in particular

τ(SO(α⊥)) = τ(SO(L))

for any α ∈ IQ(MQ, L) for Q non-degenerate, which may be used to prove Weil’s theorem
that τ(SO(L)) = 2 for all orthogonal groups with dim(L) ≥ 3.

2 equivariance under Sp(MQ) is essentially Poisson summation for M∗Q ⊗ LQ
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7.6. The Weil representation over R

(7.6.1) Much about the Weil representation over R can be found in [7] or [73].
Choose a root i of −1, any real parameter h ∈ R and the character x 7→ exp(2πixh) of R.
We may identify the Lie algebra Lie(H) with R⊕M ⊕M∗ acting as follows

[r]f(x∗) = r
h

2πif(x∗)

[m∗]f(x∗) = h

2πi∂m
∗f(x∗)

[m]f(x∗) = 〈x∗,m〉f(x∗)

This defines also [x] for x ∈MR, with the Heisenberg commutation relation

[[x1], [x2]] = [〈x1, x2〉] = h

2πi〈x1, x2〉.

Lie(Sp) may be identified with (M⊗M)s operating via contraction with the symplectic
form. Here an element x1 ⊗ x2 in M operates by

1
2[x1][x2]

on S(R). This can be seen from the commutation rule[1
2[x1][x2], [x]

]
= 1

2([〈x1, x〉][x2] + [〈x2, x〉][x1]).

Embed Lie(Sp) in End(M).
(
α β
γ δ

)
lies in Lie(Sp) if and only if δ = −tα and γ and β

are symmetric. It is identified with the symmetric element α+ β − γ − δ of (M⊗M)s.

(7.6.2) We have the simple formula

Υ(Q) = exp(2πip−q8 ),

where (p, q) is the signature of Q.

(7.6.3) Let γ0 be a symmetric and positive definite form on M . It defines an isomor-
phism:

M∗C →M

w1 + iw2 7→ w1 − tγ−1
0 w2 = w1 − γ−1

0 w2
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and a corresponding map

k : End(M∗C)→ End(MR)

α1 + iα2 7→
(
γ−1

0 α1γ0 −γ−1
0 α2

α2γ0 α1

)
.

This identifies the unitary group of the hermitian form given by γ0 on MC with the
stabilizer of d(γ0) in Sp(M), which is a maximal compact subgroup.

(7.6.4) Let K∞ be the stabilizer of d(γ0) for some symmetric and positive definite
γ0 ∈M ⊗M as above (image of End(M∗C)).
Let Lie(Sp(MR)) = p+ ⊕ Lie(K∞) ⊕ p− the decomposition induced by the complex
structure on DH(M). These spaces are generated by the following elements:

Lie(K∞) = {
(
γ0α1γ

−1
0 −γ0α2

β−1
0 α2 α1

)
} (7)

p+ = {
(
γ0αγ

−1
0 −iγ0α

−iαγ−1
0 −α

)
} (8)

p− = {
(
γ0αγ

−1
0 iγ0α

iαγ−1
0 −α

)
}} (9)

where α and α2 are symmetric with respect to γ0 and α1 is skew-symmetric with respect
to γ0.

Proof. These are the eigen-spaces for ad(
(

0 −γ−1
0

γ0 0

)
) of eigenvalue (−2i, 0, 2i) respec-

tively.

An element iα2 ∈ Lie(U) with α2 symmetric with respect to γ0 acts on S(M∗) by the
‘Hamiltonian’:

[γ0α2] + [α2γ
−1
0 ].

(7.6.5) Assume that we are given a positive definite space LR as well and are in the
situation of (7.2.1).
There is one natural special element in S(M∗R ⊗ LR), which corresponds to the ‘lowest
energy level’ with respect to the Hamiltonian k(i), the Gaussian:

ϕ∞ := e−2π((x∗)!QL)·γ−1
0 .

We have
u(α)ϕ∞ = tr(α)

2 ϕ∞,
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where α = α1 + α2i, where α1 is skew-symmetric and α2 is symmetric with respect to
γ0. (hence tr(α) = i trα2)
Integrated, we get

exp(u(α))ϕ∞ = det(exp(α))
1
2ϕ∞.

Since the unitary group is generated by such exponentials, this determines the action.
From the commutation relation

[
(

0 −γ−1
0

γ0 0

)
, p] = −2ip,

for any p ∈ p− and the fact, that ϕ∞ is of lowest possible energy, we get p−ϕ∞ = 0.
From this, it follows that the associated theta series is holomorphic (see 7.5).

(7.6.6) Recall the Φ-Operator from (7.4.2). From the discussion in (7.6.5) follows

Φ(ϕ∞) = Ψm
2

(·, m−n−1
2 ).

If QL has signature (m−2, 2) to each negative definite subspace N , we can consider the
element αN ∈ End(M) operating as -1 on N and as +1 on the orthogonal complement
(note: tr(N) = m− 4). We form the Gaussian

ϕ0
∞(N) := e−2π(x∗)!QL·(αNγ−1

0 ),

which is now in the Schwartz space. We have obviously by the above:

H(γ0)ϕ0
∞(N) = tr(N−1)

2 iϕ0
∞(N) = (m2 − 2)iϕ0

∞(N).

Hence:
Φ(ϕ0

∞(N)) = Ψm
2 −2(·, m−n−1

2 )

in this case.
ϕ0
∞ may be considered as element in (S(M∗⊗L)R⊗C(DO))SO(LR) with the notation DO

of (10.2.1).
In addition we have

(7.6.7) Theorem. There exist forms

ϕ̃KM := ∇ϕ0
∞

in (S(M∗⊗L)R⊗En,n(DO))SO(LR), where ∇ is a Howe operator [59], having the following
properties

i. kϕKM = χm/2(k)ϕKM for k ∈ K∞.

ii. dϕKM (x∗) = 0.
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iii. There is a current ξ ∈ (S(M∗ ⊗ L)R ⊗Dn−1,n−1)SO(LR) with

d dc ξ(x∗) + exp(−2π(x∗)!QL · γ−1
0 )δDx∗ = [ϕKM (x∗)].

Here δDx∗ is the current of integration along Dx∗ = {N ∈ DO(L) | 〈x∗(M), N〉 =
0}.

iv. ϕKM (0) = c1(Ξ∗E)n (10.4.1).

Proof. [59, 60]. See also [54].

Now define ϕ+
∞(x∗) by

ϕ+
∞(x∗) c1(Ξ∗E)m−2−n = ϕKM (x∗) c1(Ξ∗E)m−2.

From properties i. and iv. of (7.6.7) follows immediately:

Φ(ϕ+
∞(N)) = Ψm/2(·, m−n−1

2 ) ∀N ∈ DO(L).

(7.6.8) Theorem. Assume m > 2n+ 2 and Q non-degenerate. Let ϕ = ϕ+
∞ ⊗ϕf for a

ϕf ∈ S(LA(∞)). Then we have for Q ∈ Sym2(M):∫
SO(LQ)\SO(LA)

ΘQ(ϕ(N))(g) d g =

τ(SO(LQ)) exp(−2πQ · γ−1
0 )

∫
Z(L,MQ,ϕf ;K) c1(Ξ∗E)m−2−n∫

[SO(LQ)\SO(LA)/K∞K] c1(Ξ∗E)m−2 ,

with K such that ϕ ∈ S((M∗ ⊗ L)A(∞))K . Here Z(L,MQ, ϕf ;K) is the special cycle
associated with Q and ϕf , defined in (10.3) in part III.

Proof. We give a formal sketch only, compare e.g. [57, 4.17, 4.20, 4.21] for details about
convergence.
Decompose IA(∞)(Mγ , L) ∩ supp(ϕf ) =

⋃
iKxi as in (10.3.2) with xi ∈ M∗Q ⊗ LQ, xi =

gix0.

∫
SO(LQ)\ SO(LA)

ΘQ(ϕ(N))(g) d g

=
∫

SO(LQ)\ SO(LA)

∑
x∗∈I(MQ,L)Q

(ϕ+
∞(g−1

∞ x∗, N)ϕf (g−1
f x)) d g
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=
∑

gf∈SO(LQ)\ SO(LA(∞) )/K

∑
i

ϕf (g−1
f x∗i ) vol(K)·

·
∫

SO(LQ)∩Kgf \SO(R)

∑
x∗∈I(MQ,L)Q∩Kgf x∗i

ϕ+
∞(g−1

∞ x∗i , N) d g∞

=
∑

gf∈SO(LQ)\ SO(LA(∞) )/K

∑
i

ϕf (g−1
f x∗i ) vol(K)·

·
∫

SO(LQ)∩Kgf \DO

∑
x∗∈I(MQ,L)Q∩Kgf x∗i

ϕ+
∞(x∗i , g∞N) d g′∞

= vol(K)Λ
∑

gf∈SO(LQ)\ SO(LA(∞) )/K

∑
i

ϕf (g−1
f x∗i )·

·
∫

SO(LQ)∩Kgf \DO

∑
x∈I(MQ,L)Q∩Kgf x∗i

ϕ+
∞(x∗i , g∞N) c1(Ξ∗E)m−2.

By property (iii) of (7.6.7), the integral is equal to:

exp(−2πQL · γ−1
0 )

∑
x∗∈(SO(LQ)∩Kgf )\ I(MQ,L)Q∩Kgf x∗i

∫
SO(LQ)∩Kgf \Dx

c1(Ξ∗E)m−2−n,

hence the result. Observe the relation:

τ(SO(LQ)) = vol(K)Λ
∫

SO(LQ)\SO(LA)/K∞K
c1(Ξ∗E)m−2,

where the volume vol(K) is computed with respect to the finite part of the chosen
Tamagawa measure and Λ is the comparison factor between the infinite part d g∞ of the
Tamagawa measure and c1(Ξ∗E)m−2 product with the measure on K∞ ⊂ SO(R), the
stabilizer of N , giving it volume 1.

(7.6.9) Combining (7.6.8) with the Siegel-Weil formula (7.5.2), we get the Fourier coef-
ficient of the classical holomorphic Eisenstein series:

det(=(τ)γ0)
m
2 EQ(Φ(ϕ), gτgf ) = exp(2πiτ ·Q)

∫
Z(MQ,gfϕf ,K) c1(Ξ∗E)m−2−n∫
SO(LQ)\SO(LA)/K c1(Ξ∗E)m−2

for gτ as in (7.3.2). The whole expression does not depend on γ0 anymore. It can be
used to inductively compute the geometric volumes of the Shimura varieties

SO(LQ)\SO(LA)/K.

Another calculation by direct derivation from the Tamagawa number, which in turn
confirms the formula above, is given in (10.5.2).
Here Φ(ϕ) depends only slightly on L. One may find a positive definite space L′ and a
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ϕ′ϕ∞ ⊗ ϕf ∈ S(L′A(∞)), where ϕ∞ is the Gaussian, such that Φ(ϕ) = Φ(ϕ′). The series
above then is the usual theta function associated with that space and ϕ′f . Kudla denotes
such spaces ‘matching’.

(7.6.10) We would like to understand the whole Whittaker integral WQ,∞,M (Ψ(s), 1) of
the Eisenstein series as a function of s. Assume, that Q is non-degenerate on M .

(7.6.11) Definition. We define the following functions

Γn(s) = π
n(n−1)

4

n−1∏
k=0

Γ(s− k

2 ). (10)

This is standard notation for the higher dimensional gamma function (compare [87]).
Define in addition:

Γn,m(s) = 2n π
n
2 (s+m)

Γn(1
2(s+m))

. (11)

Another, more meaningful form of expression (11) is

m∏
k=m−n+1

2 π
1
2 (s+k)

Γ(1
2(s+ k))

.

The Iwasawa decomposition of the argument of Ψ∞,l in the Whittaker integral can be
expressed as (using the notation of 7.6.3)

d(γ0)u(β) = u(∆2β)gl(∆)k(γ0∆β + iγ0∆γ−1
0 ),

where ∆ = (
√

1 + (βγ0)2)−1. It satisfies t∆ = γ0∆γ−1
0 .

Hence we get:

WQ,∞(Ψ∞(s), 1) =
∫

(M⊗M)sR
|∆|s+

n+1
2 χl(γ0∆β + it∆)χ(Q · β)µγ0(β)

and after choosing an orthonormal basis for γ0:

WQ,∞(Ψ∞(s), 1) =
∫

(Rn⊗Rn)s
det(X + i)−a det(X − i)−be−2πi tr( 1

2Xγ) dX,

where γ is the bilinear form associated with Q (expressed in the chosen basis in the
above formula).
with a = 1

2(s+ n+1
2 +l) and b = 1

2(s+ n+1
2 −l). Here det(X+i)−a = e−a(n2 πi+log(det(1−iX)))

and det(X − i)−b = e−b(−
n
2 πi+log(det(1+iX))), where log is the main branch of logarithm.

dX is the measure defined in (6.2.3) for the standard basis, without the determinant
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factor. It is the same as used in [87].

Shimura denotes this function in analogy to the one dimensional case a confluent hy-
pergeometric function. Furthermore [87, 1.29, 3.1K, 3.3], if Q is positive definite, the
RHS equals

e−π tr γ+iπ n2 (b−a)πna+nb2n det(γ)a+b−n+1
2 Γn(a)−1Γn(b)−1ζ(2πγ; a, b),

where
ζ(Z; a, b) =

∫
X>0

e− trZX det(X + 1)a−
n+1

2 det(X)b−
n+1

2 dX.

(7.6.12) In the 1 dimensional case, this gives

ζ(Z, a, b) = Γ(b)U(b, a+ b, Z),

where U(k, l, Z) is a solution of the classical hypergeometric differential equation

Zf ′′(Z) + (l − Z)f ′(Z)− kf(Z) = 0,

see [1, §13]. We have: U(b, a+ b, Z) = Z−b(1 +O(|Z|−1)) [loc. cit.].

Therefore the ‘value at ∞’ for l = m
2 is computed as (this will later allow to use the

computation of [57]):

lim
α→∞

|α|−
m
2 e2πα2QWQ,∞(Ψ∞(s), gl(α))

= lim
α→∞

|α|−s+1−m2 eπα
2γWα!Q,∞(Ψ∞(s), 1)

= lim
α→∞

|α|−s+1−m2 e−iπ
m
4 πs+12|α2γ|sΓ1(a)−1Γ1(b)−1ζ(2πα2γ, a, b)

= e−iπ
m
4 πs+12|γ|

1
2 (s−1+m

2 )Γ1(1
2(s+ 1 + m

2 ))−1(2π)−
1
2 (s+1−m2 )

= Υ̃∞(γ0)Γ1,m(s− s0)|γ|
1
2 (s+s0)2−

1
2 (s−s0),

where s0 = m
2 − 1, cf. also [13, Prop. 3.1] — there we have κBK = m

2 and sBK =
1
2(s+ 1− m

2 ).

(7.6.13) In the higher dimensional case, but for s = m−n−1
2 and l = m

2 , we have a = 1
2m
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and b = 0 (holomorphic Eisenstein series) and we get for m > 2n:

det(α)−
m
2 eπ tr(tαγα)WQ,∞(Ψ∞(s), gl(α)) =

det(α)−
m
2 eπ tr(tαγα) det(α)

m
2

∫
(Rn⊗Rn)s

det(X + αtαi)−
1
2me−πi tr(Xγ) dX

= eπ tr(tαγα)e−iπ
nm
4 (2π)

1
2nm

∫
(Rn⊗Rn)s

det(2πiX + 2παtα)−
1
2meπi tr(Xγ) dX

=
{
e−iπ

nm
4 Γn,m(0) det(γ)

m−n−1
2 γ > 0,

0 otherwise,

using [87, p. 174, (1.23)].
In particular, given a positive definite form QL on LR, we have:

WQ,∞(Ψ∞(s), 1) = e−2πQtγ−1
0 Υ̃−1(γ0)Γn,m(0)|γ|

m−n−1
2 .

This is expected from (7.2.3), since we have by (6.2.9):∫
I(MQ,L)R

ϕ∞(α)µQL,γ0(α) = |γ|
m−n−1

2 e−2πQ·γ−1
0 Γn,m(0),

where ϕ∞ is the Gaussian (7.6.5). Observe, that the integrand is constant and equal to
e−2πQtγ−1

0 . Here |γ| is computed by means of the canonical measure µγ0 .

7.7. The Weil representation over p-adic fields
(7.7.1) For R = Qp, the factor Υ(Q) is 1 if there exists a unimodular lattice in LQp . In
particular it is 1 for hyperbolic planes.
Otherwise, it can be computed by the classical theory of quadratic Gauss sums. For
example for p 6= 2, we have

Υ(paz2) = 1
√
p

∑
x∈Z/pZ

exp(2πiax2) =


(
a
p

)
p ≡ 1 (4),

i
(
a
p

)
p ≡ 3 (4).

In particular, if p 6= 2 and Q has a unimodular lattice LZp , r′′ determines a canonical
lift Sp(MZp)→ Sp′(MQp) as well, see also [93, §20].

(7.7.2) Choose lattices LZp and MZp . Assume QL ∈ Sym2(L∗Zp). Consider the charac-
teristic functions χκ of the cosets κ ∈ (L∗Zp/LZp) ⊗M∗Zp . This defines an embedding of
C[(L∗Zp/LZp)⊗M∗Zp ] into S((M∗ ⊗ L)A(∞)).

(7.7.3) Lemma. Sp′(MZp) and SO(MZp) induce an action on C[(L∗Zp/LZp) ⊗M∗Zp ].
Here Sp′(MZp) is the pre-image of Sp(MZp) in Sp′(MQp).
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In the induced action K(pn) ⊂ Sp(MZp), lifted by the canonical lift (7.7.1), and SO′(LZp)
(discriminant kernel) act trivial on C[(L∗Zp/LZp)⊗M∗Zp ]. Here −n is the minimal valu-
ation of Q on L∗Zp.

(7.7.4) If a global lattice LZ ⊂ LQ is given, with QL ∈ Sym2(L∗Z), we get an action of
Sp′(MẐ) ⊂ Sp′(MA(∞)) on C[(L∗Z/LZ) ⊗M∗Zp ] and therefore also an action of Sp′(MZ).
if m is odd, this group itself is a non-trival double cover of Sp(MZ). It can equivalently
be defined as the pre-image of Sp(MZ) in Sp′(MR).

IfM = Q, it is generated by 2 elements S and T , satisfying Z = S2 = (ST )3 and (Z4 = 1

or Z2 = 1 according to whether m is odd or even), mapping down to
(

0 −1
1 0

)
and(

1 1
0 1

)
, respectively in Sp2(MZ), and operating (via the lift r′′ — cf. 7.2.1) explicitly

as:

Tχκ = exp(2πiQL(κ))χκ,

Sχκ = Υ∞(QL)−1
√
D

∑
δ∈L∗Z/LZ

exp(−2πi〈δ, κ〉χδ).

Note that the occurring correction factor Υ̃f (1) = Υf (QL) is the product over the
local Υp(QL)’s which is, however, the same as Υ∞(QL)−1 and we have Υ∞(QL) =
exp(2πi(p− q)), if the signature of Q is (p, q).

We will denote the image of C[L∗Z/LZ] in S(LA(∞)) sometimes as Weil(L∗Z/LZ) and
understand it as a representation of either Sp′2(Z), Sp′2(Ẑ) or a suitable Sp′2(Z/NZ). We
will also remember its canonical Z-structure coming from Z[L∗Z/LZ].

(7.7.5) Define L(r) := L⊕Hr as in section (6.4). The Weil representation on S(L(r) ⊗
M∗) is the tensor product of the respective Weil representation on S(L ⊗ M∗) and
S(H(r) ⊗M∗). We defined ϕ(r) by tensoring ϕ with the characteristic function χ(r) of
Hr

Zp ⊗M
∗
Zp (depends on the choice of MZp). We have

(wHr(u(B)gl(α)k)χ(r))(0) = |α|r,

where k ∈ K and K is the maximal compact open subgroup associated with the lattice
MZp .

Assume, that γ0 and MZp are chosen such that γ0 induces an isomorphism MZp →M∗Zp .

The considerations above show that the following holds true:
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(7.7.6) Theorem. Let Q ∈ Sym2(M∗) be non-degenerate and r ∈ Z≥0.

WQ,p(Φp(ϕp; s), g) = Υ̃−1
p (γ0)

∫
IQp (MQ,L⊕Hr)

(gϕ(r))(x∗)µ
γ0,Q

(r)
L

(x∗), s = s0 + r

= Υ̃−1
p (γ0)|γ|spµp(L,M

Q
Zp , gϕ; s− s0).

Furthermore the left hand side is a polynomial in p−s and therefore determined by the
above values. Here |γ| is computed with respect to the measure µγ0 on M .

Proof. Only the assertion, that the left hand side is a polynomial in p−s remains un-
proven. This follows from the arguments given in [85, p. 101].

7.8. Borcherds lifts

(7.8.1) Consider a one-dimensional spaceMR = R. We canonically identifyM∗⊗L = L.
Recall from (7.1) the definition of the function ϕ0

∞ ∈ S(LR)⊗ C(DO). It satisfies

ϕ0
∞(hx, hN) = ϕ0

∞(x,N) ∀h ∈ SO(LR).

For any ϕf ∈ S(LA(∞)) define the theta function

Θ(g′, N, h;ϕf ) =
∑

v∈L(Q)

∑
ω(g′)(ϕ∞(·, N)⊗ ω(h)ϕ)(x)

as a function of g′ ∈ Sp′(MA), N ∈ DO, h ∈ SO(LA(∞)). Here ω is the Weil representation
(7.1) defined by the lift r′′ (7.2.1).
We have (7.5) for any γ ∈ SO(LQ) and γ′ ∈ Sp′(MQ),

Θ(γ′g′, γN, γh;ϕf ) = Θ(g′, N, h;ϕf )

and for g′1 ∈ Sp′(MA(∞)) and h1 ∈ SO(LA(∞)) we have

Θ(g′g′1, N, hh1;ϕf ) = Θ(g′, N, h;ω(g′1)ω(h1)ϕf ).

By these invariance properties, we may consider Θ as a function

Sp′(MQ)\Sp′(MA(∞))×M(KO(L))C →
(
S(LA(∞))K

)∗
.

In (7.6) we saw that
ω(k′∞)ϕ0

∞(·, N) = χl(k′∞)ϕ0
∞(·, N)

for l = n
2 − 1.

It follows that
Θ(g′k′∞k′, N, h) = χl(k′∞)(tω(k′))−1Θ(g′, N, h)
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for all k′∞ ∈ K ′∞ and k′ ∈ K ′.
Now consider a automorphic function

F : Sp(MQ)\ Sp′(MA(∞))→ S(LA(∞)),

satisfying
F (g′k′∞k′) = χ−l(k′∞)ω(k′)−1F (g′)

and invariant under some compact open subgroup K ⊂ SO(A(∞)). We have seen that
this corresponds to a usual modular form of weight −l.
Define the Borcherds lift of F as

Φ(N,h;F ) =
∫ •
G′Q\G

′
A

Θ(g′, N, h;F (g′)) d g′,

where • denotes Borcherds regularization [4], described in [54, p. 302ff] in the adelic
language. d g′ is the Tamagawa measure.
Note, that this formation does not depend on K.
By definition, we have

Φ(N,hρ;F ) = Φ(N,h; (ω(ρ))−1F ). (12)

It compares to the language of Borcherds as follows: IfK ⊂ SO(A(∞)) is the discriminant
kernel with respect to a lattice LZ, we may consider Θ as valued in C[(L∗Z/LZ)]∗ and F ,
valued in C[(L∗Z/LZ)], relates to a usual modular form (if l is odd, of half integer weight)
by

yl/2F (g′τ ) = f(τ) τ = x+ iy ∈ H.

(7.8.2) Lemma. We have

Φ(ι(N), 1;F ) = Φclassic(ι, LZ, N, f)

for N ∈ Grass−(LR) and according to ι : Grass−(LR) ↪→ DO. ι is a parameter in
Borcherds theory (cf. [4, p. 46]).

Proof. In (7.7.4) we saw that the Weil representation composed with the inclusion
Sp′2(Z) → Sp′2(Ẑ) acts on the subspace C[L∗Z/LZ] ⊂ S(LA(∞)) by the same formulas
used in [4].

We call f , resp. F , nearly holomorphic, if F is holomorphic on H and has a pole along
the cusp ∞. Let

F (·, τ) =
∑
γ∈Q∗

c(γ, ·) exp(2πiγτ)

be the Fourier expansion of F . Assume that all c(γ, ·) are integer valued on L∗/L. In this
case the Borcherds lift Φ(N, 1;F ) has nice properties, and is a meromorphic modular
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form on the analytic Shimura variety

(M(KO(L))C)an = [SO(LQ)\DO × (SO(LA(∞))/K)] .

7.9. The Archimedean orbit equation

(7.9.1) Definition. We define factors at ∞ analogously to λp and µp (6.4.10).

λ∞(L; s) := Γm−1,m(s),
µ∞(L,M ; s) := Γn,m(s),

where, as usual, n = dim(M) and m = dim(L).

With this notation, we have also a (rather trivial) Archimedean analogue of the orbit
equation (with only one orbit):

(7.9.2) Theorem. If QM is positive definite, we have

µ∞(LZ,MZ, κ; s) · λ∞(LZ; s)−1 = λ∞(α(L)⊥; s)−1.

Here α is any real embedding MR → LR, with α!QL = QM . The above depends only on
the respective dimensions and is formulated in dependence of L and M only in order to
have the same shape than the non-Archimedean orbit equation (6.4.11).

Furthermore in the positive definite case, we have, analogously to the non-Archimendian
case:

vol(I(M,L)R) = Γn,m(0) n ≥ m

and in particular
vol(SO(MR)) = Γm−1,m(0)

(for the canonical volumes 6.2.3).

7.10. The global orbit equation

(7.10.1) Let LZ be a lattice of dimensionm with QL ∈ Sym2(L∗Z) of signature (m−2, 2).

For 1-dimensional M ∼= Z, (n = 1), we have Q ∈ Q describing the quadratic form
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x 7→ Qx2 with associated ‘symmetric morphism’ γ = 2Q. Take γ0 = 1. We get:

lim
α→∞

|α|−
m
2 e2πα2QEQ(Ψ∞,m2 Φ(χκ); gl(α), s)

= lim
α→∞

|α|−
m
2 e2πα2QWQ,∞(Ψ∞,m2 (s), gl(α))

∏
p

WQ,p(Φp(χκ; s), 1)

= |γ|s∞|2γ|
1
2 (s−s0)
∞ µ∞(LZp , < Q >, κ; s− s0)

∏
p

|γ|spµp(LZp , < Q >, κ; s− s0).

see (7.7.5) and (7.6.12).
This is the quantity, which will be related to Arakelov geometry in Part III, using the
result of [57], see (10.4.12) and (11.6).
We therefore define

µ(LZ,MZ, κ; s) =
∏
ν

µν(LZ,MZ, κ; s)

and
µ̃(LZ,MZ, κ; s) = |2d(MZ)|−

1
2 s∞ µ(LZ,MZ, κ; s).

With this definition we have in the 1-dimensional case:

lim
α→∞

|α|−
m
2 e2πα2QEQ(Ψ∞Φ(χκ); gl(α), s− s0) = µ̃(LZp , < Q >, κ; s). (13)

For n > 1 we do not now, if the global µ̃ occurs as a limit in this fashion as well.

(7.10.2) We would like to have a global orbit equation. Let D be the discriminant of
L. We define

λp(L; s) := vol(SO′(LZp)),

with respect to the canonical volume for p2|4D. Otherwise λp has been defined in (6.4.10)
and is a polynomial in p−s (8.2.1). Define now

λ(LZ; s) :=
∏
ν

λν(LZ; s)

and
λ̃(L; s) := |D|

1
2 s∞ λ(LZ; s),

where D is the discriminant of LZ. Sometimes we will use also λ̃p(. . . ) for |D|
− 1

2 s
p λp(. . . ),

and similarly µ̃p(. . . ) := |2d(MZ)|
1
2 s
p µp(. . . ).

(7.10.3) Lemma. If LZ is of signature (m− 2, 2). Let MZ be a positive definite lattice.
Take a κ ∈ (L∗

Ẑ
/LẐ)⊗M∗

Ẑ
. Assume m− n ≥ 1 and I(M,L)(A(∞)) ∩ κ 6= ∅.

µ(LZ,MZ, κ; s), λ(LZ; s) have meromorphic continuations to the entire complex plane
and are holomorphic and nonzero in a neighborhood of s = 0. Similarly for µ̃, λ̃. They
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depend only on the genera of LZ,MZ.

Proof. This follows directly from (8.2.1) and using standard facts about the occurring
quadratic L-series.

In particular, for the meromorphic continuation of the Eisenstein series (13) above re-
mains true also in exceptional cases.
We get for κ ∈ (L∗

Ẑ
/LẐ)⊗M∗

Ẑ
at least:

(7.10.4) Theorem. Assume m ≥ 3, m− n ≥ 1. Let D be the discriminant of LZ and
D′ be the D-primary part of the discriminant of MZ.

λ̃−1(LZ; 0)µ̃(LZ,MZ, κ; 0) =
∑

αSO′(L
Ẑ
)⊂I(M,L)(A(∞))∩κ

λ̃−1(α⊥; 0)

and

d
d s

(
λ̃−1(LZ; s)µ̃(LZ,MZ, κ; s)

)∣∣∣
s=0
≡

∑
αSO′(L

Ẑ
)⊂I(M,L)(A(∞))∩κ

d
d s λ̃

−1(α⊥; s)
∣∣∣
s=0

in R(p) (9.3.2) for all p such that p - 2D and p2 - D′.

Proof. Follows directly from the definitions, the local orbit equations (6.4.11) and (7.9.2)
as well as (by induction) from the fact that for p - D and q square-free at p there is only
1 orbit (6.4.18) in I(< q >,L)(Zp) and α⊥ has discriminant p at p.

We will need also a global version of Kitaoka’s formula (6.3.3):

(7.10.5) Theorem. Assume m ≥ 3, m− n ≥ 1. Let D be the discriminant of LZ and
MZ = M ′Z ⊥ M ′′Z. Let D′ be the D-primary part of the discriminant of M ′Z (not MZ !).
Let κ ∈ (L∗Z/LZ)⊗M∗Z with a corresponding decomposition κ = κ′ ⊕ κ′′. We have

λ̃−1(LZ; 0)µ̃(LZ,MZ, κ; 0) =
∑

αSO′(L
Ẑ
)⊂I(M ′,L)(A(∞))∩κ′

κ′′∩α⊥
A(∞)⊗(M ′′

A(∞) )∗ 6=∅

λ̃−1(α⊥Z ; 0)µ̃(α⊥Z ,MẐ, κ
′′; 0)
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and

d
d s

(
λ̃−1(LZ; s)µ̃(LZ,MZ, κ; s)

)∣∣∣
s=0

=
∑

αSO′(L
Ẑ
)⊂I(M ′,L)(A(∞))∩κ′

κ′′∩α⊥
A(∞)⊗(M ′′

A(∞) )∗ 6=∅

d
d s

(
λ̃−1(α⊥Z ; s)µ̃(α⊥Z ,M ′′, κ′′; s)

)∣∣∣
s=0

in R2DD′. Here κ′′ ∈ L∗
Ẑ
/LẐ is considered as an element of (α⊥

Ẑ
)∗/α⊥

Ẑ
⊗ (M ′′

Ẑ
)∗ via

κ′′ 7→ κ′′ ∩ α⊥A(∞) ⊗ (M ′′A(∞))∗.

Proof. Let first s ∈ Z≥0. For all p - 2DD′, there is only one orbit (generated for s = 0
by α, say) in I(M ′, L⊕Hs)(Zp). Hence we have, using (a variant of) Kitaoka’s formula
(6.3.3):

λ−1
p (LZp ; s)µ̃p(LZp ,MZp , LZp ; s) = λ−1

p (α⊥; s)µ̃p(α⊥Zp ,M
′′
Zp , κ

′′; s).

For all other p, we have the equation

λ−1
p (LZp ; 0)µp(LZp ,MZp , κ; 0) =

∑
αSO′(LZp )⊂I(M ′,L)(Qp)∩κ′

κ′′∩α⊥Qp⊗(M ′′Qp )∗ 6=∅

λ−1
p (α⊥Zp ; 0)µp(α⊥Zp ,M

′′, κ′′; 0).

and since the quantities µ̃p are polynomials in p−s in this case (cf. 7.7.5), the assertion
is true.
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8. Explicit calculations

8.1. Kronecker limit formula

Let

E(τ, s) =
∑

g∈P (Q)\GL2(Q)
Ψ(ggτ )(s) = 1

2
∑

g∈Γ∞\ SL2(Z)
=(g ◦ τ)s = 1

2
∑

(m,n)∈Z
gcd(n,m)=1

ys

|mτ + n|2s

be the standard Eisenstein series of weight 0. Here Ψ =
∏
ν Ψν , the Ψνs are the standard

sections:
Ψν(gl(α)u(β)k) = |α|2sν .

They satisfy, however, a different normalization than in (7.4)! Let Z(s) = ζ(s)Γ(1
2s)π

− 1
2 s

be the normalized Riemann zeta function, satisfying Z(s) = Z(1 − s). The Eisenstein
series (in this normalization) satisfies the functional equation [17, Theorem 1.6.1]:

Z(2s)E(τ, s) = Z(2− 2s)E(τ, 1− s).

In part III we will need the Kronecker limit formula for the computation of the
arithmetic volume of Heegner points:

(8.1.1) Theorem.

E(τ, s) =1 + 1
12 log(|∆(τ)|2=(τ)12)s+ O(s2)

Z(2s)E(τ, s) =− 1
2s + 1

2(γ − log(2π)− log(2))− 1
24 log(|∆(τ)|2=(τ)12)

+O(s)

Z(2s)E(τ, s) = 1
2(s− 1) + 1

2(γ − log(2π)− log(2))− 1
24 log(|∆(τ)|2=(τ)12)

+O(s− 1)
Z(2s)
Z(s) E(τ, s) =1

2 +
(1

4(γ − log(2π)− log(2))− 1
24 log(|∆(τ)|2=(τ)12)

)
(s− 1)

+O((s− 1)2)
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Proof. [71, Prop. 1.8.3] states:

log(|∆(τ)|2=(τ)12) = −4π lim
s→1

(E(τ, s)− Z(2s− 2)
Z(2s) ).

Application of the functional equation yields:

log(|∆(τ)|2=(τ)12) = −4π lim
s→0

Z(2s)
Z(2− 2s)(E(τ, s)− 1).

In addition we have:
Z(2− 2s)
Z(2s) = 3

π
(s− 1)−1 +O(1),

hence E(τ, 0) = 1 and
log(|∆(τ)|2=(τ)12) = 12E′(τ, 0).

This proves the first version of the formula.
We have:

Z(2s) = − 1
2s + 1

2(γ − log(2π)− log(2)) +O(s)

and hence the second and third version (they are equivalent according to the functional
equation). Last:

Z(s) = 1
s− 1 + 1

2(γ − log(2π)− log(2)) +O(s− 1)

and hence

Z(s)−1 = (s− 1)− 1
2(γ − log(2π)− log(2))(s− 1)2 +O((s− 1)3).

8.2. Explicit calculation of µ and λ

In this section, we will compute the functions µ and λ (6.4.10) explicitly in special cases.
The expression for λ is quite general and can in principle be used to compute it for all
lattices.

(8.2.1) Theorem. Assume p 6= 2.

i. Let s ∈ N. vol(SO(Hs)) = (1− p−s) ·
∏s−1
i=1 (1− p−2i).

ii. Let s ∈ Z≥0. λ(LZp ⊥ H; s) = (1− p−2s−2) · λ(LZp ; s+ 1).

iii. Let s ∈ Z≥0. Let LZp =< ε1, . . . , εk >⊥ L′Zp, where εi ∈ Z∗p and p−1QL is integral
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on L′Zp. Assume k > 1. Let ε := (−1)
k
2
∏k
i=1 εi, if k is even. Then we have

λ(LZp ; s)
λ(LZp ; 0) = |D|sp

b k−1
2 c∏
i=1

1− p−2i−2s

1− p−2i


1 k ≡ 1 (2),
1−( ε

p
)p−

k
2−s

1−( ε
p

)p−
k
2

k ≡ 0 (2).

In particular λ(LZp ; s) is a (quite simple) polynomial in p−s.

iv. Let s ∈ Z≥0. For a unimodular lattice of discriminant 2mε and ε′ ∈ Zp∗ we have:

µ(LZp , < ε′ >; s) =

(1− ( (−1)
m
2 ε

p )p−
m
2 −s) m ≡ 0 (2),

(1 + ( (−1)
m−1

2 εε′

p )p−
m−1

2 −s) m ≡ 1 (2).

v. Let s ∈ Z≥0. For a unimodular lattice of discriminant 2mε we have:

λ(LZp ; s) =
bm−1

2 c∏
i=1

(1− p−2i−2s)

(1− ( (−1)
m
2 ε

p )p−
m
2 −s) m ≡ 0 (2),

1 m ≡ 1 (2).

vi. Let s ∈ Z≥0. For a lattice with L∗Zp/LZp cyclic of order pν 6= 1 and dimension
m ≥ 2, we may assume L = Zmp , QL(x) =

∑m−1
j=1 εjx

2
j + pνεmx

2
m. Denote ε =

(−1)
m−1

2
∏m−1
j=1 εj if m is odd. We have

λ(LZp ; s) = |pν |s+
m−1

2
p

bm2 c−1∏
i=1

(1− p−2i−2s)
{

1 m ≡ 0 (2),
1− ( εp)p−

m−1
2 −s m ≡ 1 (2).

Proof. i. According to Kitaoka’s formula (cf. Theorem 6.3.3), we have

vol(SO(Hs)) = βp(Hs, 1)βp(Hs−1 ⊥< −1 >,−1) vol(SO(Hs−1)).

Theorem (6.4.8) yields βp(Hs, 1) = 1 − p−s and βp(Hs−1+ < −1 >, 1) = 1 + p−s+1.
Furthermore, we have vol(SO(H)) = βp(H, 1) = 1− p−1.
ii. follows immediately from the definition of λ and i.
iii. Let LZp be a lattice, and S =< α1, α2 > a unimodular plane (e.g. a hyperbolic one).
Using the (elementary) orbit equation (6.4.3) and Theorem (6.3.3), we get

vol(SO′(LZp ⊥ S)) = |D|
1
2βp(LZp ⊥ S, α2)|D|

1
2βp(LZp ⊥< α1 >,α1)

· vol(SO′(LZp)). (1)

Hence, we have to apply Theorem (6.4.8) to forms of the shape

L′Zp =< ε1, . . . , εk′ , p
νk′+1εk′+1, . . . , p

νmεm > .



166 Part II. Quadratic L-functions, representation densities

We get

βp(L′Zp , ε
′; s) = 1 + v(1)pd(1)p−s

{
−p−1 l(1, 1) ≡ 0 (2),
(−ε′p )p−

1
2 l(1, 1) ≡ 1 (2).

We have

l(1, 1) = k′

d(1) = 1− 1
2k
′

v(1) = (−1
p

)b
k′
2 c

k′∏
i=1

(εi
p

)

Hence

βp(L′Zp , ε
′; s) =


1− ( (−1)

k′
2
∏k′

i=1 εi
p )p−

k′
2 −s k′ ≡ 0 (2),

1 + ( (−1)
k′−1

2
∏k′

i=1 εiε
′

p )p−
k′−1

2 −s k′ ≡ 1 (2).

Applying this to L′Zp = LZp ⊥ S and L′Zp ⊥< α >, we get the result for k odd. For k
even write LZp = L′Zp ⊥< α >, use

vol(SO′(L′Zp)) = |D|
1
2βp(L′Zp , α) · vol(SO′(LZp)) (2)

twice and the k odd part. Recall (Lemma 6.4.17) that vectors of length α ∈ Z∗p form one
orbit under SO′, as long as the lattice in question splits a unimodular plane, otherwise
there are 2 orbits of equal volume.
iv. This is Siegel’s formula, a special case of Theorem (6.4.8).
v. Follows from iv. and the orbit equation, Theorem (6.4.11).
vi. Follows from iii. and the following calculation for m ≥ 2 (which follows easily from
equations (1) and (2) and the fact vol(SO′(< x >)) = 1)). Observe, that there are 2
orbits (of equal volume) of vectors of length β in a lattice < αpν , β >.

λ(LZp ; 0) = |pν |
m−1

2

bm2 c−1∏
i=1

(1− p−2i)

1 m ≡ 0 (2),
1−

(
ε
p

)
p−

m−1
2 m ≡ 1 (2).

Here ε = (−1)
m−1

2
∏m−1
i=1 εi.

Without proof, we give here come calculations in the case p = 2.

(8.2.2) Theorem.

i. Let s ∈ N. vol(SO(Hs)) = (1− 2−s) ·
∏s−1
i=1 (1− 2−2i).

ii. Let s ∈ Z≥0. λ(LZ2 ⊥ H; s) = (1− 2−2s−2) · λ(LZ2 ; s+ 1).
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iii. Let s ∈ Z≥0. For a unimodular lattice of even dimension of discriminant ε we
have:

λ(LZ2 ; s) =
bm−1

2 c∏
i=1

(1− 2−2i−2s)(1− (ε2)2−
m
2 −s).

Here ( ε2) = (−1)
ε2−1

8 is the Kronecker symbol.

iv. Let s ∈ Z≥0. For a lattice LZ2 of the form L′ ⊥< ε′ >, where L′Z2
is unimodular

of discriminant ε, and ε, ε′ ∈ Z∗2, we have:

λ(LZ2 ; s) = |2|s+
m−1

2
2

bm−1
2 c∏
i=1

(1− 2−2i−2s).

v. Let LZ2 be a lattice of the form < ε1, ε2 >, εi ∈ Z∗2. We have

λ(LZ2 ; 0) = 1
2 .

8.3. Examples

(8.3.1) Recall the definitions of λ(LZ; s) and its modification λ̃(LZ; s) from (7.10.4).
They will be related (for square-free discriminants) to arithmetic and geometric volumes
of Shimura varieties of orthogonal type in the Main Theorems (10.5.2), (10.5.7) and
(10.5.9) of part III.

We compute them for a couple of lattices using the explicit computation (8.2.1), (8.2.2)
and bring them to a form involving derivatives of L-series at negative integers as it is
common in the literature. See for example [15, 71] and [57, §5–6] for similar calculations.
The summand−m−1

2 C, where C = γ+log(2π), in the logarithmic derivative of λ̃−1(LZ; s)
can be avoided by just erasing e−C from the definition of hE in (10.4.1). In turn the nice
connection with λ and especially µ (coefficient of the Eisenstein series) becomes slightly
more complicated.

We will use the following functional equations for quadratic L-series:
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(8.3.2) Theorem ([81, Kap. VII]).

L(s, χD) = ( π
D

)s−
1
2

Γ(1
2 −

1
2s)

Γ(1
2s)

L(1− s, χD) D > 0, D square free,

L(s, χD) = ( π
D

)s−
1
2

Γ(1− 1
2s)

Γ(1
2s+ 1

2)
L(1− s, χD) D < 0, D square free,

ζ(s) =
πs−

1
2 Γ(1

2 −
1
2s)

Γ(1
2s)

ζ(1− s).

(8.3.3) Example (Heegner points). Let LZ be a two dimensional negative definite
lattice with square-free discriminant D > 0 (in particular 2 - D and −D is automatically
fundamental). We get, using (8.2.1, v, vi), (8.2.2, iii) and (7.9.1):

λ−1(LZ; s) =Γ−1
1,2(s)

∏
p

|D|−
1
2−s

p
1

1− (−Dp )p−s−1

=1
2

Γ(1
2s+ 1)
π

1
2 s+1

L(χ−D, s+ 1)|D|
1
2 +s
∞

=1
2

Γ(1
2 −

s
2)

π
1
2−

s
2

L(χ−D,−s)

=1
2L(χ−D, 0)

+ 1
2L(χ−D, 0) ·

(
−L

′(χ−D, 0)
L(χ−D, 0) + 1

2C + 1
2 log(2)

)
s

+O(s2)

and hence:

λ̃−1(LZ; s) =L(χ−D, 0)

+ L(χ−D, 0) ·
(
−L

′(χ−D, 0)
L(χ−D, 0) + 1

2C −
1
2 log(D) + 1

2 log(2)
)
s

+O(s2)

(8.3.4) Example (modular curves). Let LZ be a three dimensional lattice with form
x1x2 − εx2

3, ε square free, 2 - ε. The discriminant D is 2ε. We get, using (8.2.1, v, vi),
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(8.2.2, iv) and (7.9.1):

λ−1(LZ; s) =Γ−1
2,3(s)

∏
p-D

1
1− p−2−2s |D|

1+s
∞

∏
p|ε

1
1− p−s−1

=1
4

Γ(1
2s+ 1)Γ(1

2s+ 3
2)

πs+
5
2

ζ(2s+ 2)|D|1+s
∞

∏
p|ε

(1 + p−s−1)

=1
4

Γ(1
2s+ 1)Γ(1

2s+ 3
2)Γ(−s− 1

2)
Γ(s+ 1)π−s+1 ζ(−1− 2s)|D|1+s

∞
∏
p|ε

(1 + p−s−1)

=− 1
2ζ(−1)

∏
p|ε

(p+ 1)

− 1
2ζ(−1)

∏
p|ε

(p+ 1)

−2ζ
′(−1)
ζ(−1) +

∑
p|ε

p log(p)
p+ 1 − 1 + C + log(2)

 s
+O(s2)

and hence:

λ̃−1(LZ; s) =− 1
2ζ(−1)

∏
p|ε

(p+ 1)− 1
2ζ(−1)

∏
p|ε

(p+ 1)·

·

−2ζ
′(−1)
ζ(−1) + 1

2
∑
p|ε

p− 1
p+ 1 log(p)− 1 + C + 1

2 log(2)

 s
+O(s2)

(8.3.5) Example (Shimura curves). Let LZ be a three dimensional lattice again with
discriminant D = 2ε, 2 - ε, ε square-free, and assume that the form is anisotropic at all
p|ε. We get, using (8.2.1, v, vi), (8.2.2, iv) and (7.9.1):

λ−1(LZ; s) =1
4

Γ(1
2s+ 1)Γ(1

2s+ 3
2)Γ(−s− 1

2)
Γ(s+ 1)π−s+1 ζ(−1− 2s)|D|1+s

∞
∏
p|ε

(1− p−s−1)

=− 1
2ζ(−1)

∏
p|D

(p− 1)

+−1
2ζ(−1)

∏
p|D

(p− 1)

−2ζ
′(−1)
ζ(−1) +

∑
p|ε

p log(p)
p− 1 − 1 + C + log(2)

 s
+O(s2)
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and hence:

λ̃−1(LZ; s) =− 1
2ζ(−1)

∏
p|ε

(p− 1) +−1
2ζ(−1)

∏
p|ε

(p− 1)·

·

−2ζ
′(−1)
ζ(−1) + 1

2
∑
p|ε

p+ 1
p− 1 log(p)− 1 + C + 1

2 log(2)

 s
+O(s2)

(8.3.6) Example (Hilbert modular surfaces). Let LZ a four dimensional lattice,
being an orthogonal direct sum of a two dimensional indefinite of discriminant D < 0,
square free (for simplicity) and a hyperbolic plane. We get, using (8.2.1, v, vi), (8.2.2,
iii) and (7.9.1):

λ−1(LZ; s) =Γ−1
3,4(s)

∏
p

|D|−
3
2−s

p
1

1− p−2−2s
1

1− (−Dp )p−s−2

=1
8

Γ(1
2s+ 1)Γ(1

2s+ 3
2)Γ(1

2s+ 2)
π

3
2 s+

9
2

ζ(2s+ 2)L(χ−D, s+ 2)|D|
3
2 +s
∞

=1
8

Γ(1
2s+ 3

2)Γ(1
2s+ 2)Γ(−s− 1

2)Γ(−1
2s−

1
2)

Γ(s+ 1)π−
3
2 s+

3
2

ζ(−1− 2s)L(χ−D,−1− s)

=1
4ζ(−1)L(χ−D,−1)

+ 1
4ζ(−1)L(χ−D,−1)

(
−2ζ

′(−1)
ζ(−1) −

L′(χ−D,−1)
L(χ−D,−1) −

3
2 + 3

2C + 1
2 log(2)

)
s

+O(s2)

and hence:

λ̃−1(LZ; s) =1
4ζ(−1)L(χ−D,−1) + 1

4ζ(−1)L(χ−D,−1)·

· 1
4

(
−2ζ

′(−1)
ζ(−1) −

L′(χ−D,−1)
L(χ−D,−1) −

3
2 −

1
2 log(D) + 3

2C + 1
2 log(2)

)
s

+O(s2)

(8.3.7) Example (Siegel threefolds). Let LZ be a five dimensional lattice, which
is the orthogonal sum of the negative of a three dimensional as in example (8.3.5) and
a hyperbolic plane. Let D = 2ε > 0 be the discriminant of LZ We get, using (8.2.1, v,
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vi), (8.2.2, iv) and (7.9.1):

λ−1(LZ; s) =Γ−1
4,5(s)

∏
p

1
(1− p−2−2s)(1− p−2−4s) |D|

2+s
∞

∏
p|ε

(1− p−s−2)

= 1
16

(Γ(1
2s+ 1)Γ(1

2s+ 3
2)Γ(1

2s+ 2)Γ(1
2s+ 5

2)
π2s+7 ·

· ζ(2s+ 2)ζ(2s+ 4)22+s∏
p|ε

(ps+2 − 1)

= 1
16

Γ(1
2s+ 1) · · ·Γ(1

2s+ 5
2)Γ(−s− 1

2)Γ(−3
2 − s)

Γ(s+ 1)Γ(s+ 2)π−2s+2 ·

· ζ(−1− 2s)ζ(−3− 2s)22+s∏
p|ε

(ps+2 − 1)

=− 1
4ζ(−1)ζ(−3)

∏
p|ε

(p2 − 1)− 1
4ζ(−1)ζ(−3)

∏
p|ε

(p2 − 1)·

·

−2ζ
′(−1)
ζ(−1) − 2ζ

′(−3)
ζ(−3) +

∑
p|ε

p2 log(p)
p2 − 1 − 17

6 + 2C + log(2)

 s
+O(s2)

and hence:

λ̃−1(LZ; s) =− 1
4ζ(−1)ζ(−3)

∏
p|ε

(p2 − 1)− 1
4ζ(−1)ζ(−3)

∏
p|D

(p2 − 1)·

·

−2ζ
′(−1)
ζ(−1) − 2ζ

′(−3)
ζ(−3) + 1

2
∑
p|D

p2 + 1
p2 − 1 log(p)− 17

6 + 2C + 1
2 log(2)

 s
+O(s2)

(8.3.8) Example (A 10dimensional Shimura variety). Especially simple is the
situation for a Shimura variety of orthogonal type associated with an unimodular lattice
(this has good reduction everywhere, except possibly p = 2). Let for example LZ be the
orthogonal direct sum of a positive definite E8-lattice and 2 hyperbolic planes. We get,
using (8.2.1, v), (8.2.2, iii) and (7.9.1):

λ−1(LZ; s) = 1
16ζ(−1)ζ(−3)ζ2(−5)ζ(−7)ζ(−9) + 1

16ζ(−1)ζ(−3)ζ2(−5)ζ(−7)ζ(−9)·

·
(
−2ζ

′(−1)
ζ(−1) − 2ζ

′(−3)
ζ(−3) − 3ζ

′(−5)
ζ(−5) − 2ζ

′(−7)
ζ(−7) − 2ζ

′(−9)
ζ(−9) −

14717
1260 + 11

2 C
)
s+O(s2)

(and here this coincides with λ̃−1).
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9. Hermitian automorphic vector bundles

In the first section of this chapter, we will define (integral) automorphic vector bundles,
using the theory of part I, especially the theory of the (integral) standard principal
bundle (3.5.3). We will define Hermitian metrics on their complexification, giving rise to
Arakelov vector bundles. In particular we will later (10.4.1) define a canonical Hermitian
line bundle Ξ∗E on the canonical model of a Shimura variety of orthogonal type and on
their compactifications. Then we will compute the ‘arithmetic volumes’ of these Shimura
varieties with respect to the first arithmetic Chern class of this bundle (10.5.2). The
natural Hermitian metrics are, however, singular along the boundary of the toroidal
compactifications. More precisely, they have singularities of log-type, giving rise to
singularities of log-log-type for the corresponding Greens functions. Burgos, Kramer
and Kühn [18, 19] constructed an extended Arakelov theory, which is able to deal with
these more general objects. It is a general theory of cohomological arithmetic Chow rings,
which takes an auxiliary complex of differential forms (with singularities of a prescribed
type) as a parameter. The properties of these Chow rings very much depend on the
properties of the complex used. In their papers [loc. cit.], they develop a theory of pre-
log-log-forms as well as a theory of log-log-forms. While the first allows more general
Greens functions and metrics, the second has a nicer behavior and the properties of
the corresponding arithmetic Chow rings are closer to those of the classical arithmetic
Chow rings as defined, for instance, in [88]. The arithmetic volumes computed with
either theory agree [18, p. 624]. Since we will work only with Arakelov cycles that are
intersections of the first Chern class of an Hermitian automorphic line bundle, we use
here the theory of log-log-forms as developed in [18]. It will be presented in the next
section. In the third section of this chapter, we recall the definition and properties of the
theory of the corresponding arithmetic Chow rings. In the last section, we will define
finally the arithmetic and geometric volume of arbitrary Shimura varieties.

9.1. Hermitian automorphic vector bundles

(9.1.1) Let K
∆X be p-ECMSD (2.4.11) with smooth and complete ∆, E be the reflex

field and O a reflex ring of it. For each σ ∈ Gal(Ẽ|Q), where Ẽ is the Galois hull
of E, there is a (p-integral) Shimura datum Xσ with the same group scheme PX and
DX but different hX, with reflex field Eσ and (conveniently) ring Oσ, and the property
M(K∆Xσ) ∼= M(K∆X)σ. The complex structure induced on DX may vary!
The compact duals M∨(Xσ) can all be identified with geometric components of the
scheme QPAR (1.9.4) associated with PX (cf. 3.4.1). The union

⋃
σ M∨(Xσ) is a

subscheme of QPAR defined over Z(p) and we may glue all these constructions for all
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reflex rings O ⊂ E (corresponding to primes ℘|(p) of E). Denote the result by M∨(X).
Similarly

⋃
σ M(K∆Xσ) descends to a scheme (we assumed K to be neat) defined over

Z(p), and the similarly glued object we denote by M(K∆X). For a morphism of p-ECMSD
(α, g) : K∆X→ K′

∆′Y, we have a morphism

M(α, g) : M(K∆X)→ M(K′∆′Y)

and similarly for M∨. We denote by DX the union of copies of DX for each σ.
Let E a locally free sheaf on [

M∨(X)/PX
]

(i.e. a PX-equivariant sheaf on M∨(X)) and hE be a PX(R)UX(C)-invariant Hermitian
metric on EC|h(DX) (where h(DX) is embedded into M∨(X)(C) via the Borel embedding
— 3.4.1).
Recall from (3.5.3) the 1-morphism (here extended to M(K∆X))

Ξ : M(K∆X)→
[
M∨(X)/PX

]
.

Let D be the boundary divisor (3.3.8). It is a divisor with normal crossings.

(9.1.2) We will define a Hermitian metric Ξ∗hE on (Ξ∗E)C, singular along DC, as fol-
lows1: We do this for each Xσ separately, so let X be one of them. By definition
Ξ∗EC(U), for any open U ⊂ M(K∆X)(C), is given by the P (Q)-invariant sections of the
pullback of EC to the standard principal bundle P(K∆X) via the compatibility isomor-
phism of Ξ over C with ΞC (3.5.3). Now consider the diagram of analytic manifolds (we
assumed K to be neat):

PX(Q)\DX × (PX(A(∞))/K) DX × (PX(A(∞))/K)� _

��

oo p // h(DX)� _

��
PX(Q)\DX × (PX(A(∞))/K) PX(Q)\DX × PX(C)× (PX(A(∞))/K)oo // M∨(X)(C)

Let U ∼= M(KX)(C) be the complement of DC. The diagram shows that Ξ∗EC|U is
canonically identified with the PX(Q)-invariant sections of the pullback p∗(EC|h(DX)) to
the standard local system DX × PX(A(∞))/K. But this pullback carries the pullback
of the Hermitian metric hE . For the induced PX(Q)-action on p∗(EC|h(DX)) compatible
with the usual action on the standard local system, hE is invariant as well and descends
to a smooth Hermitian metric on U .

(9.1.3) Theorem. Let K∆X be pure p-ECSD, let (E , hE) as in (9.1.1) and assume that
the unipotent radical of a stabilizer group under the action of PX(C) on M∨(X)(C) acts

1This is a slight abuse of notation, since the construction seems to depend on the particular presentation
of the target stack as a quotient of M∨
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trivially on E.
The vector bundles Ξ∗EC are the unique extensions to M(K∆X) of these bundles on M(KX)
such that the metric Ξ∗hE is good along the boundary divisor D∞ in the sense of [79].

Proof. cf. e.g. [42, §3.8]2.

See also (9.2.9).

(9.1.4) Definition. Let (E , hE) be as in (9.1.1). The locally free sheaf Ξ∗E, together
with the singular (along DC) Hermitian metric Ξ∗hE is called the Hermitian auto-
morphic vector bundle associated to (E , hE) on M(K∆X).

Observe that this refines the notation in [18, Definition 6.1]. There merely a rational
automorphic bundle with an arbitrary integral model is considered, the canonical integral
structure (which relies on a chosen integral model of the input bundle) is not taken into
account. We will later see (9.2.9) that these metrics have log-singularities in the sense
of [18, Section 2] along the exceptional divisor, if we assume a pure Shimura datum and
the automorphic vector bundle to be ‘fully decomposed’.

(9.1.5) Remark. It follows directly from the construction of metrics in (9.1.2) that for
a morphism of p-ECMSD

(α, ρ) : K1
∆1

X1 → K2
∆2

X2

and given (E , hE), with E a locally free sheaf on
[
M∨(X1)/PX

]
and hE a PX(R)UX(C)-

invariant Hermitian metric on EC|h(DX), we have an isomorphism

M(α, ρ)∗(Ξ∗E ,Ξ∗hE) ∼= (Ξ∗M∨(α)∗E ,Ξ∗M∨(α)∗hE).

Explanation: In (3.5.2, i.) the vertical maps are extensions to the models of the obvious
(analytic) maps on double quotients.
Similarly, in the case of a boundary component

(ι, ρ) : K1
∆1

B =⇒ K
∆X,

if hE is the restriction of a PB(R)UX(C)-invariant metric hE,1 on DB to DB=⇒X ⊂ DB,
we have on the formal completion

M(ι, ρ)∗(Ξ∗E ,Ξ∗hE) ∼= (Ξ∗E|M∨(B),Ξ∗hE,1)

taking into account that the formal isomorphism converges over C. However, in general,
the metrics hE do not come from hE,1’s as above (they are not even defined everywhere

2The reduction to the mentioned reference lacks details. It will be stated more precisely in forthcoming
work
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on DB), but of course an Ξ∗hE is always defined in a neighborhood of DC on M(K1
∆1

B)(C)
and the above statement makes sense.

9.2. The complexes of log-log-forms

(9.2.1) We set up the notation from [18, Section 2.1]:
Let X be a complex algebraic manifold of dimension d and let D a divisor with normal
crossings on X. Set U := X \D and denote the embedding by i : U ↪→ X.
Let V be an open coordinate subset of X with coordinates z1, . . . , zn. Denote ri = |zi|.
We will say that V is adapted to D if the divisor D ∩ V on V is given by the equation
z1 · · · zk = 0. Assume that V is small, i.e. such that log | log(ri)| > 1 on V .

(9.2.2) Definition ([18, Def. 2.2]). Let V be a coordinate neighborhood adapted to
D. For every integer K ≥ 0, we say that a smooth complex function f on V \ D has
logarithmic growth along D of order K, if there exists an integer NK , such that
for every pair of multi-indices α, β ∈ Zd≥0 with α+β ≤ K, the following inequality holds
true:

∂|α|

∂zα
∂|β|

∂zβ
f(z1, . . . , zd) ≺

∣∣∣∏k
i=1 log(1/ri)

∣∣∣NK
|zα≤kzβ≤k |

.

We say that f has logarithmic growth of infinite order along D, if it has logarithmic
growth along D of order K for all K ≥ 0. The sheaf of differential forms on X, with
logarithmic growth of infinite order along D, denoted by E∗X〈D〉 is the subalgebra of
i∗E∗U generated, in each coordinate neighborhood adapted to D, by the functions with
logarithmic growth of infinite order along D and the differentials

d zi
zi
,
d zi
zi
, i = 1, . . . , k

d zi,d zi, i = k + 1, . . . , d.

Its elements are also called simply log-forms along D.

(9.2.3) Definition ([18, Def 2.17, 2.22]). Let V be a coordinate neighborhood adapted
to D. For every integer K ≥ 0, we say that a smooth complex function f on V \D has
log-log growth along D of order K, if there exists an integer NK , such that for every
pair of multi-indices α, β ∈ Zd≥0 with α+ β ≤ K, the following inequality holds true:

∂|α|

∂zα
∂|β|

∂zβ
f(z1, . . . , zd) ≺

∣∣∣∏k
i=1 log(log(1/ri))

∣∣∣NK
|zα≤kzβ≤k |

.

We say that d has log-log growth of infinite order along D, if it has log-log growth
along D of order K for all K ≥ 0. The sheaf of differential forms on X, with log-
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log growth of infinite order along D, denoted by E∗X〈〈D〉〉gth is the subalgebra of i∗E∗U
generated, in each coordinate neighborhood adapted to D, by the functions with log-log
growth of infinite order along D and the differentials

d zi
log(ri)zi

,
d zi

log(ri)zi
, i = 1, . . . , k

d zi, d zi, i = k + 1, . . . , d.

Its elements are also called simply log-log-growth-forms along D.
The sheaf of log-log-forms along D, E∗X〈〈D〉〉 is defined as the sheaf of forms ω with
the property that ω, ∂ω, ∂ω and ∂∂ω are log-log growth forms along D (this is, in this
case, not implied by the requirement for ω itself). Its elements are also called simply
log-log-forms along D.

(9.2.4) Definition ([18, Def. 4.29]). Let E be a rank n vector bundle on X, let E0
be the restriction to U . A smooth metric on E0 is said to be log-singular along D, if
for every x ∈ D, there exists a trivializing open coordinate neighborhood V adapted to D
and a holomorphic frame ξ = {e1, . . . , en} such that, writing h(ξ)i,j = h(ei, ej), we have

i. The functions h(ξ)ij, det{h(ξ)}−1 are log.

ii. The differential forms ∂h(ξ) · h(ξ)−1)ij are log-log.

(9.2.5) Theorem ([18, Prop. 4.31]). Let E and F be vector bundles on X, and let
E0 and F0 their restrictions to U . Let hE and hF be smooth Hermitian metrics on E0
and F0. Write E = (E, hE) and F = (F, hF ).

i. The Hermitian vector bundle E ⊥ F is log-singular along D, if and only if E and
F are log-singular along D.

ii. If E and F are log-singular along D, then E ⊗ F , ΛnE, SnE, E∗, Hom(E,F ),
with induced metrics (see [18] or [88]), are log-singular along D.

Let U be a Zariski open subset of X. There is a compactification π : U ↪→ U of U , such
that for Y = U \ π(U),

π(D), Y and π(D) ∪ Y

are divisors with normal crossings on U .

(9.2.6) Definition ([18, Def. 3.9]). Define the complex of sheaves E∗l,ll on X by

E∗l,ll(U ′) = lim
→

Γ(U ′, E∗
U ′
〈BU ′〉〈〈D〉〉),

where the limes is taken over all normal crossing compactifications (U ′, BU ′) of U
′. Here

E∗
U ′
〈BU ′〉〈〈D〉〉 is the sheaf of forms, which are log along BU ′ and log-log along D.
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For each U ⊆ X the complex E∗l,ll(U) is a Dolbeault-algebra with respect to wedge
product.

(9.2.7) Definition ([18, Def. 3.10]). For any Zariski open subset U ⊂ X we put:

D∗l,ll,X,D(U, p) = (D∗l,ll,X,D(U, p), dD) = (D∗(El,ll(U,D ∩ U), p)σ,dD),

where D∗(El,ll(U,D ∩ U), p) is the Deligne algebra associated with the Dolbeault algebra
E∗l,ll(U,D ∩ U) and σ is the antilinear involution ω 7→ F∞(ω) [19, Definition 7.18].
The complex D∗l,ll,X,D is called the Dlog-complex of log-log forms.

Let U ⊂ X be a Zariski open subset and Y = X \ U . Write

Ĥn
D∗
l,ll
,Y (X, p) = Ĥn(D∗l,ll,X,D(X, p),D∗l,ll,X,D(U, p)),

where Ĥn(·, ·) means truncated relative cohomology ([19, Def. 2.55]). Similarly for the
non-truncated version:

Hn
D∗
l,ll
,Y (X, p) = Hn(D∗l,ll,X,D(X, p),D∗l,ll,X,D(U, p)).

A class g ∈ Ĥn(D∗l,ll, Y ) hence is the class of a pair g = (ω, g̃), where

ω ∈ Z(Dnl,ll,X,D(X, p))

is a cocycle and
g̃ ∈ D∗l,ll,X,D(U, p)/ im dD

is such that dD g̃ = ω. Explicitly we have:

Z(Dnl,ll,X,D(X, p)) = {ω ∈ Ep,pl,ll (X,D) ∩ E2p
l,ll,R(X,D, p) | dω = 0},

D∗l,ll,X,D(U, p)
im dD

=
{g ∈ Ep−1,p−1

l,ll (U,D ∩ U) ∩ E2p−2
l,ll,R (U,U ∩D, p− 1)}

im ∂ + im ∂
.

There are morphisms

ω : Ĥn
D∗
l,ll
,Y (X, p)→ Z(Dnl,ll,X,D(X, p)),

given by g = (g̃, ω) 7→ ω and

ω : Ĥn
D∗
l,ll
,Y (X, p)→ Hn

D∗
l,ll
,Y (X, p),

given by sending g = (g̃, ω) to its class in the cohomology groups.

(9.2.8) Definition ([19, Def. 3.18-3.20]). Let y be a p-codimensional algebraic cycle
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on X with supp y ⊂ Y . A weak log-log Green object for y (with support in Y ) is an
element gy ∈ Ĥ2p

Dl,ll,Y (X, p) such that

cl(gy) = cl(y) ∈ H2p
Dl,ll,Y (X, p),

where cl(y) is given by the image of the class of y in the real Deligne-Beilinson cohomol-
ogy transported by the natural morphism H2p

D,Y (X,R(p))→ H2p
Dl,ll,Y (X, p). If Y = supp y

then gy is called a log-log Green object for y.

(9.2.9) Theorem. Let K∆X be pure p-ECSD, let (E , hE) as in (9.1.1). and assume that
the unipotent radical of a stabilizer group under the action of PX(C) on M∨(X)(C) acts
trivially on E.
The Hermitian metric Ξ∗hE on the automorphic vector bundle Ξ∗E is log-singular along
the boundary D∞ of M(K∆X)(C) in the sense of (9.2.4).

Proof. The assumption means that Ξ∗E is fully decomposed (see e.g. [79] or [18, sec-
tion 6.1]). Recall (9.1.3) that the canonical extension of Ξ∗E defined via the canonical
extension of the standard principal bundle coincide with the unique extensions of [79,
Theorem 3.1]. Hence the statement is proven in [18, Theorem 6.3].

9.3. Cohomological arithmetic Chow groups

(9.3.1) Let R be a ring isomorphic to a subring of C. There is a anti-linear involution

F∞ :
⊕

σ:R↪→C
C→

⊕
σ:R↪→C

C

given by F∞(v)σ = vσ.
For a scheme X over spec(R) we denote by

X∞ =
∐

σ:R↪→C
Xσ(C).

If X is regular and flat and quasi-projective over spec(R) with a divisor D, such that
D∞ ⊂ X∞ is a divisor with normal crossings, then

(X ,D∗l,ll,X∞,D∞)

is a Dlog-arithmetic variety over spec(R) in the sense of [19, Def. 4.4].
Like in [19, Section 4] these induce arithmetic Chow groups:

ĈH
∗
(X ,D∗l,ll) := Ẑp(X ,Dl,ll)/R̂at

p
(X ,Dl,ll),
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where

Ẑp(X ,Dl,ll) = {(y, gy) ∈ Zp(X )⊕ Ĥ2p
Dl,ll,Zp(X , p) | cl(gy) = cl(y∞)},

Here Ĥ2p
Dl,ll,Zp(X , p) := limY ∈Zp Ĥ

2p
Dl,ll,Y (X∞, p)F∞ , the limit being taken over the set

Zp of all cycles on X∞ of codimension ≥ p ordered by inclusion. R̂at
p
(X ,Dl,ll) is the

subgroup of Ẑp(X ,Dl,ll) generated by rational cycles [loc. cit.].

(9.3.2) Let R′ be R modulo rational multiples of finitely many log(N), N ∈ N. Define
R(p) as R modulo rational multiples of log(q), q 6= p prime. Define RN as R modulo
rational multiples of log(q), q|N . Obviously RN injects into the fibre product of all R(p)

p - N over R′.
There is an obvious map ĈH

1
(spec(Z(p)))Q → R(p) and in the sequel we will always

consider the image in R(p) of elements in ĈH
1
(spec(Z(p)))Q.

(9.3.3) Any morphism f : X1 → X2 such that f−1(D2) ⊆ D1 induces a morphism
between these Dlog-arithmetic varieties, compare [18, section 3.4], and it induces a
pullback morphism [18, section 5.4., iv, v]:

f∗ : ĈH
∗
(X2,D∗l,ll,X2,∞,D2,∞)→ ĈH

∗
(X1,D∗l,ll,X1,∞,D1,∞)

which is a ring homomorphism after tensoring with Q, and which is compatible with the
formation of Chern classes

(9.3.4) If X is projective over spec(R), there is a direct image morphism of groups
[18, section 5.4, ii]:

π∗ : ĈH
d+1

(X ,D∗l,ll,X∞,D∞)→ ĈH
1
(spec(R)),

where d is the relative dimension of X .

(9.3.5) Furthermore, there is a degree map d̂eg : ĈH
1
(spec(R)) → RN for some N

(see 9.3.2). Explicitly the composition d̂eg ◦ π∗, which will be used for the definition of
arithmetic volume, is given by: ∑

P∈Zd+1(X )

nPP, g

 7→ ∑
P∈Zd+1(X )

nP log(#k(P )) + 1
(2πi)d

∫
X∞

g

(similarly to the case of classical Arakelov theory).
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(9.3.6) There is an intersection pairing:

ĈH
p
(X ,D∗l,ll)⊗ ĈH

q
(X ,D∗l,ll)→ ĈH

p+q
(X ,D∗l,ll)Q,

which turns ⊕
p≥0

ĈH
p
(X ,D∗l,ll)Q

into a commutative ring [18, section 5.4, i].
If (y, gy) and (z, gz) are such that y∞ and z∞ intersect properly, the product is given by

(y, gy) · (z, gz) = ([y · z], gy ∗ gz).

Here [y · z] ∈ Zp+q(X ) is already determined only up to finite rational equivalence,
however, [y · z]∞ is just the usual intersection cycle of y∞ and z∞. See [19, Theorem
4.19] for details.

(9.3.7) Let U = X∞ \D∞. Let ZqU (X ) the group of codimension q cycles y on X such
that y∞ intersects D∞ properly. There is a height pairing

(·|·) : ĈH
p
(X ,Dl,ll)⊗ ZpU (X )→ ĈH

p+q−d
(spec(R),Dl,ll)Q,

defined in [19, Definition 7.54].
Let R now be finite over Z(p). If we are given any log-log Green object gy = (g̃y, ωy) for
y and are in the case p+ q = d+ 1, the (degree of the) height may be computed by the
formula:

d̂eg(α|y) = d̂eg ◦ π∗(α · [y, gy])−
1

(2πi)p−1

∫
X∞

g̃yω(α)

in R(p) and does not depend on the choice of gy (it suffices even a pre-log-log Green
object, but we don’t need this here).
In case that y is the image of a morphism ι : Y → X with ι(DY) ⊂ DX over spec(R), we
get by the projection formula (follows from the abstract [19, Prop. 4.37])

(α|y) = πY ∗ι
∗α.

(9.3.8) Definition ([18, Definiton 5.4]). We define the ring K̂0(X ,Dl,ll) as the group
generated by pairs (E, η), where E is a vector bundle with log-singular Hermitian metric
on X and

η ∈
⊕
p

D2p−1
l,ll (X, p)/dDD2p−2

l,ll (X, p)

subject to the relations

(S, η) + (Q, η′) = (E, η + η′ + c̃h)
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for each sequence
0 // S // E // Q // 0,

where c̃h is the Bott-Chern secondary characteristic class of the sequence.
Multiplication in the ring is given by

(E, η)⊗ (E′, η′) = (E ⊗ E′, (ch(E + dDη) • η′ + η • ch(E′)).

(9.3.9) Theorem ([18, Theorem 5.5, i., v.]). The arithmetic Chern character is a
ring homomorphism:

ĉh : K̂0(X,Dl,ll)→
⊕
p

ĈH
p
(X,Dl,ll)Q.

9.4. Geometric and arithmetic volume of Shimura varieties

(9.4.1) Assume first in this section that all occurring K’s are neat, see (9.4.6) for the
general case. For a pure Shimura variety (version over Z(p) as in 9.1.1) M(K∆X) with
complete and smooth ∆, the exceptional divisor D has normal crossings (3.3.8) and
we define ĈH(M(K∆X)) as ĈH

p
(M(K∆X),Dl,ll), where Dl,ll is the complex of forms with

log-log-singularities along DC (9.2.7). The underlying arithmetical ring is Z(p) with its
embedding into C. We assume that M(K∆X) exists — this requires that ∆ is sufficiently
fine and that conjecture (3.3.2) is true (cf. 3.3.5).

(9.4.2) Definition. Let K∆X be p-ECMSD with complete and smooth ∆, and E = (E , hE)
be an invertible sheaf E on

[
M∨(X)/PX

]
and hE a PX(R)UX(C)-invariant Hermitian

metric on EC|h(DX), respectively.
The geometric volume

volE(M(K∆X))

is defined as the volume of M(K∆X)(C) with respect to the volume form (c1(Ξ∗EC))d.
The arithmetic volume at p

v̂olE,p(M(K∆X))

is defined as
1

deg(Ẽ : Q)
π∗(ĉ1(Ξ∗E ,Ξ∗hE)d)

in ĈH
1
(spec(Z(p))) = R(p), where π : M(K∆X)→ spec(Z(p)) is the structural morphism

If PX is a group scheme of type (P ) over spec(Z[1/N ]), and K is admissible for all p - N ,
then we define the global arithmetic volume

v̂olE(M(K∆X))
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in RN as the value determined by the arithmetic volumes at p (compare 9.3.2, see also
9.4.7).
If (α, ρ) : K′∆′YQ ↪→ K

∆XQ is an embedding of rational Shimura data, we define the height
at p:

htE,p(M(K′∆′Y)) = 1
deg(Ẽ : Q)

(M(α, ρ)(M(K′∆′Y))
Zar
|(ĉ1(Ξ∗E ,Ξ∗hE))d−q),

where (·|·) is the height pairing (9.3.7), q is the codimension, and M(α, ρ) is the Z(p)-
morphism (9.1.1). Similarly for the (global) height.

(9.4.3) Question. We mention that there is a proportionality principle [79] in the
geometric case. This means that all polynomials of degree dim(M(K∆X)C) in the Chern
classes of an automorphic vector bundle (Ξ∗E)C, considered as a number, are proportional
to the same expression in the Chern classes of the original bundle E, computed on M∨(X).
Is there an analogue in the arithmetic case? — cf. also [51].

(9.4.4) Remark. If (α, ρ) was in fact an embedding of p-integral data: K′
∆′Y ↪→ K

∆X,
we have, by the projection formula (cf. 9.3.7) and (9.1.5):

htE,p(M(K′∆′Y)) = v̂olM∨(α,ρ)∗E(M(K′∆′Y)).

(9.4.5) Lemma. The geometric and arithmetic volumes do not depend on the rational
polyhedral cone decomposition ∆, i.e. not on the chosen toroidal compactification.

Proof. For each pair ∆i, i = 1, 2, there is a common refinement ∆, cf. (2.4.12), and we
have two projections (3.2.2):

M(K∆X)

yysssssssss

%%KKKKKKKKK

M(K∆1
X) M(K∆2

X)

Furthermore this diagram is compatible with formation of Ξ∗E ,Ξ∗hE by (9.1.5). Its
Chern forms are therefore transported into each other by pullback along the arrows in
the diagram. Since the forms are integrable on every M(K∆X) (see [79], cf. also 9.1.3),
the geometric volume agrees.
Now, there is pullback map

p∗ : ĈH
∗
(M(K∆i

X))Q → ĈH
∗
(M(K∆X))Q

as well, which is a ring homomorphism and compatible with Chern classes (9.3.3).
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Therefore the assertion for the arithmetic volume boils down to the fact that for a class
x = (z, g) ∈ ĈH

n+1
(K∆X), where z is a zero-cycle in the fibre above p and g is a top-

degree Green element, we have d̂eg(π∗p∗(x)) = d̂eg(π∗x), where the π are the respective
structural morphisms. This is true, since we may assume w.l.o.g. that z is supported
outside of D and the push-forward of g which is computed by an integral. These integrals
are equal by the same reason as above.

(9.4.6) Remark. If K is not neat, M is only a Deligne-Mumford stack. Instead of
extending the theory of [18, 19] to stacks like e.g. in [29], we define the arithmetic
volume in this case as follows: We take some neat admissible K ′ ⊂ K and define

v̂olE,p(M(K∆X)) := 1
[K : K ′] v̂olE,p(M(K′∆ X))

as value in R(p). Similarly for the global arithmetic volume in RN , assuming that both K
and K ′ are admissible for all p - N . It follows from (9.1.5), (9.3.3) and (9.3.5) that this
is independent of the choice of K ′. In particular, if K is neat — or using any reasonable
extension of the theory of [18, 19] to stacks — this definition agrees with the previous
one.
In this sense the geometric and arithmetic volume do not depend essentially on K, as
they are both multiplied by the index, if K is changed. For the arithmetic case this is of
course only true for admissible K and the more primes are considered the less admissible
groups there are.

(9.4.7) Remark. From the construction process in part I of this work, since we defined
the models as the normalization of a Zariski closure in a variety defined over some
Z[1/N ], it follows that there is even a model of M(K∆X) defined over some Z[1/N ],
yielding the models coming from the canonical over the various reflex rings O, such that
the arithmetic volume of this model is the value determined above. This justifies a priori
that our value lies in RN . Otherwise we will not care about this (global) model.
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10. Shimura varieties of orthogonal type

10.1. The spin groups

Let S be a scheme, L a locally free sheaf and QL : L→ OS be a quadratic form (6.1.1).

(10.1.1) Definition. We call the Clifford algebra C(L) of L an algebra with the
following universal property

Homalg(C(L), A) = {f : HomOS (L,A) | f2 = e ◦QL}

for any algebra A over S with unit e : OS → A.

(10.1.2) Lemma. The Clifford algebra of L exists, and is obtained from the tensor al-
gebra T(L) by factoring out the relation v2−QL(v). Since the relations are homogeneous
if the degree is considered mod 2, a 2-grading

C(L) = C(L)+ ⊕ C(L)−

survives. It is locally free of finite dimension.

From v2 = QL(v) one derives vw + wv = 〈v, w〉Q.

(10.1.3) Definition. We define the main involution on C(L) by

(v1 · · · vn)′ = (−vn) · · · (−v1).

(10.1.4) Definition/Theorem. There are group schemes Spin(L) and GSpin(L) over
S, characterized by the following functors of points:

Spin(L)(R) = {g ∈ C(L)+
R | gg

′ = 1, gLg−1 = L}

GSpin(L)(R) = {g ∈ C(L)+
R | gg

′ = λ(g), gLg−1 = L}

where λ(g) ∈ O∗S′(R) and R is any ring with morphism spec(R)→ S.
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(10.1.5) They sit in an exact diagram of group schemes

1 // µ2 //
� _

��

Spin(L) //
� _

��

SO(L) // 1

1 // Gm
//

2
����

GSpin(L)

λ
����

// SO(L) // 1

Gm Gm

(1)

We let SO(L) act on L by its natural operation and GSpin(L) by gv 7→ gvg′. Note that
these actions are not compatible with the projection GSpin(L)→ SO(L).
From now on, we assume that S = spec(Z(p)), p 6= 2. Actually most of the statements
in part III should be true for p = 2, but since the theory of part I and also several pieces
of part II are not available yet for p = 2, we have not rigorously checked this.

(10.1.6) Remark. The middle row remains exact on sections over any discrete valu-
ation ring or field (1.1.2). Here µ2 (resp. Gm) are not equal to the center of Spin(L)
(resp. GSpin(L)). This is only true for n even. For n odd, the center of Spin(LQ) is of
the form Z/2× Z/2 or Z/4 (over fields of char 0), according to parity of n/2.

(10.1.7) Theorem. GSpin, Spin and SO are reductive, if 〈·, ·〉Q induces an isomor-
phism L∗ → L.

Proof. The definition is compatible with base change and over an algebraically closed
field k the statement is well-known.
Hence GSpin, Spin and SO are reductive group schemes over S (cf. 1.6.1).

There exists an orthogonal basis {vi} of L (6.4.15), such that all QL(vi) are units. We
have the basis

vi1 · · · vij , i1 < · · · < ij , j even

of C+(L) and the basis
vi1 · · · vij , i1 < · · · < ij , j odd

of C−(L). The trace of any basis element (acting by left multiplication on C+(L) or
C−(L)) except 1 is 0. The trace of 1 is 2m−1 in any case.

(10.1.8) Lemma. For an element δ ∈ C+(L)∗ with δ′ = −δ, the form

〈x, y〉δ 7→ tr(xδy′)

on C+(L) is symplectic, non-degenerate and Spin(Q)-invariant (respectively GSpin(Q)-
invariant up to scalar given by λ), where these groups act by left multiplication.



10. Shimura varieties of orthogonal type 189

Proof. The form is invariant because tr(AB) = tr(BA). Since δ is invertible, non-
degeneracy is equivalent to that of tr(xy′) which is given by an invertible diagonal matrix
with respect to the basis chosen above. The form is symplectic because tr is invariant
under ′ and δ′ = −δ.

10.2. Hermitian symmetric domains of orthogonal type

In this section we will describe the Shimura data of orthogonal type, in particular, their
associated Hermitian symmetric domains.

(10.2.1) Suppose again, LZ(p) is a lattice with non-degenerate, unimodular quadratic
form. Suppose that LR has signature (m− 2, 2), m ≥ 3. A polarized Hodge structure of
type (−2, 0), (−1,−1), (0,−2) on LC with dim(L−2,0) = 1 is determined by an isotropic
subspace L−2,0, satisfying 〈z, z〉 < 0 for nonzero z ∈ L−2,0. Then the other spaces in the
Hodge decomposition are determined by L0,−2 = L−2,0 and L−1,−1 = (L−2,0 + L0,−2)⊥.
We define DS(L) = DO(L) to be the set of these Hodge structures. It is identified with

{< z >∈ P(LC) | 〈z, z〉 = 0, 〈z, z〉 < 0}.

Hence it is equipped with a natural complex structure.
DS has 2 connected components. There is a 2:1 map

DS(L) → Grass−(LR)
< z > 7→ D<z> := (< z, z >)Gal(C|R)

onto the Grassmannian Grass− of negative definite subspaces of LR. It has a section
determined by a choice of C-orientation1 on any of the subspaces D. The images of
these sections are the 2 connected components of DS. It will be convenient to fix an
orientation on some (hence on all) of the negative definite subspaces D. This identifies
π0(DS(L)) with DH0 = Hom(Z,Z(1)) and induces a morphism of p-MSD

S(L)→ H0.

The space D<z> has an orthonormal (with respect to QL) basis given by

x1 = z + z√
−〈z, z〉

, (2)

x2 = ± z − z√
〈z, z〉

. (3)

Let PS(L) := GSpin(LZ(p)) act on LZ(p) via g · v = gvg′.

1i.e. the choice of a linear isomorphism D ∼= C
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(10.2.2) Lemma. S(L) is p-integral pure Shimura data.
In the case that LZ(p) is as above, with LR of signature (0, 2), GSpin does not operate
at all on DS, if the latter is defined as above (i.e. consisting of 2 points). In this case
we get 2 different p-integral Shimura data S(L)±. If L′ is a saturated sublattice of L of
signature (m− n− 2, 2), 0 ≤ n ≤ m− 2, it induces an embedding of p-integral Shimura
data

S(L′) ↪→ S(L).

There is an embedding
S(L) ↪→ H(C+(L), 〈·, ·〉δ)

and accordingly S(L) is of Hodge type.

Proof. To each < z >∈ DS(L) the associated morphism h factors through GSpin(LR). It
is explicitly given by

S→ C+(L,R)

w = a+ bi 7→ a+ bi
zz − zz
〈z, z〉

= a+ bx1x2

for any choice of i ∈ C (note: x2 depends on the choice of i ∈ C as well).
It even defines a field isomorphism C ∼= C+(D<z>,R). It operates on L−2,0 by w2, on
L0,−2 by w2 and on L−1,−1 by ww. The second statement is true because the inclusion
C+(L′) ⊂ C+(L) induces a closed embedding GSpin(L′) ↪→ GSpin(L) and any morphism
h of the first datum defines a morphism h for the second datum of the same type.
For the property of Hodge type, fix a positive definite Z(p)-sublattice D0 which is a
direct summand (exists because the form is assumed to be unimodular — 6.4.15) and an
orthonormal basis x1, x2 (hence an induced orientation of D0,R). Consider the element
δ := x1x2. It satisfies the requirements of lemma (10.1.8).
Let < z > be a point in DS(L). P−1,0

z := zz
〈z,z〉 resp. its complex conjugate, satisfy P−1,0

z +
P 0,−1
z = id, (P i,jz )2 = P i,jz , and on P i,jz C+(LC) the morphism h operates as w−iw−j .

Furthermore, for z chosen, such that Dz = D0, the form 〈·, x1x2·〉δ = 〈·, h(i)·〉δ =
tr(xδy′δ′) = − tr(xδy′δ) is symmetric and definite. (Here i ∈ C it the root of −1
determined by the orientation x1 ∧ x2 of D0 = Dz, see (2)). The substitution x 7→ gx,
y 7→ gy for any g in the spin group changes x1x2 in g(x1)g(x2) but does not affect the
properties of symmetry and definiteness. The sign of definiteness, however, is reflected
by the chosen orientation of D0.
Hence the map < z >7→ P−1,0

z C+(LC) may be seen as a map DS(L) → DH(C+(L),〈·,·〉δ).
Together with the closed embedding

GSpin(L) ↪→ GSp(C+(L), 〈·, ·〉δ),

it induces an embedding S(L) ↪→ H(C+(L), 〈·, ·〉δ).
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(10.2.3) Theorem. If dim(L) ≥ 3, the reflex field of S(L) is Q. The compact dual is
the zero quadric, i.e.

M∨(S(L))(R) = {< z >∈ P(LR) | 〈z, z〉 = 0}

for any ring R over Z(p).

If dim(L) = 2, the reflex field of S(L)+, resp. S(L)− is the imaginary quadratic field (in
C) associated with the (negative) definite binary quadratic form L. The compact dual is
a point given by the isotropic vector corresponding to the filtration in DS(L)+, respectively
DS(L)−.

Proof. There is a negative definite subspace D defined over Z(p) (6.4.15). Over an
imaginary quadratic field F , unramified at p, there is a morphism

µ : Gm ↪→ GSpin(L),

acting with exponent 2 on one isotropic vector z, with exponent 0 on z and with exponent
1 on the orthogonal complement. Over C it yields the associated morphism uh (3.1.1),
where h is one of the 2 morphisms corresponding to D. The morphism uh is also of the
form uh′ and hence conjugated to uh if n ≥ 3. The conjugacy class of these morphisms
is therefore defined over Q. If n = 2, GSpin(L) is a torus and hence the reflex field is
F . Furthermore, the morphism u defines the filtration 0 ⊂< z >⊂< z >⊥⊂ L which is
completely determined by < z >.

(10.2.4) Remark. The Hodge embedding from (10.2.2) induces a map (3.4.1)

M∨(S(L)) ↪→ M∨(H(C+(L), 〈·, ·〉δ)).

Here M∨(S(L)) is the space of isotropic lines in L and M∨(H(C+(L), 〈·, ·〉δ)) is the space
of Lagrangian subspaces of C+(L) with respect to the form 〈·, ·〉δ. One can read of from
the proof of (10.2.2) that this map is given (for any R) by sending a < z > in LR, with
z assumed to be primitive to the subspace zwC+(LR), where w is a primitive vector
with 〈z, w〉 = 1 (this subspace actually does not depend on w). One also immediately
sees that this is compatible with the Borel embedding because w = z

〈z,z〉 leads to the
projector considered in the proof of (10.2.2).

(10.2.5) Lemma. Let LQ be a vector space with non-degenerate quadratic form. Let
K be a compact open subgroup of SO(LA(∞)). There is a compact open subgroup K ′ ⊂
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GSpin(LA(∞)) and a surjection

GSpin(LQ)\(DS(L) ×GSpin(LA(∞))/K ′)

����
SO(LQ)\(DO(L) × SO(LA(∞))/K).

If LZ(p) is a lattice in LQ such that the induced form in non-degenerate (i.e. induces
an isomorphism LZ(p) → L∗Z(p)

and if K ′ is admissible, K can be chosen admissible.
The induced morphism GSpin(LZ(p))(Z(p)) → SO(LZ(p))(Z(p)) is surjective in this case
as well.

Proof. First, some subgroup K ′ with p(K ′) ⊂ K exists. From (10.1.5) and Hilbert 90
we see that we have a surjection GSpin(LQp)→ SO(LQp). Since the application

GSpin(LZp)→ SO(LZp)

is surjective for almost all p (the group are defined by smooth group schemes), we
get a surjection GSpin(LA(∞)) → SO(LA(∞)). The last statements follow because we
have a map of reductive group schemes GSpin(LZ(p)) → SO(LZ(p)). It is surjective by
(1.1.2).

(10.2.6) Remark. The Shimura datum O(L) = S(L)/Gm itself is not of Hodge type
but satisfies the requirement of (3.3.7)2, hence we have also integral models M(KO(L))
with all the good properties required. We will work predominantly with those.

(10.2.7) Lemma. Let K be an admissible compact open subgroup of SO(LA(∞)) and
∆ a K-admissible rational polyhedral cone decomposition. The (geometric) connected
components of M(K∆O)Q and M(K∆O)Fp are in bijection and defined over spec(Z(p)[ζN ]),
where ζN , p - N is an N -th root of unity.

Proof. This follows directly from (3.2.2, 3.3.5) using the previous (10.2.5) and [77, The-
orem 5.17].

(10.2.8) Lemma. Let LZ be a lattice with quadratic form of discriminant D 6= 0. Let
K be a compact open subgroup of SO(LA(∞)) and pick a set of representatives

gi ∈ SO(Q)\ SO(A(∞))/K.

2(3.3.7) lacks details. This will be remedied in forthcoming work
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For each gi there is the lattice L(i)
Z characterized by L(i)

Zp = giLZp. We have[
SO(Q)\DO × (SO(A(∞))/K)

]
=
⋃
i

[Γi\DO] ,

where Γi is the subgroup of SO(LiZ) defined by SO(Q) ∩ giKg−1
i .

If K is the discriminant kernel, each Γi is the discriminant kernel of the respective L(i).

Proof. [46, 1.10] or [77].

(10.2.9) Remark. The embedding of (3.4.1, v) is just the restriction to those < z >
satisfying 〈z, z〉 < 0. Note that although M∨(S(L)) is defined over Z(p), there are cases
where M∨(S(L))(Z(p)) is empty (Witt rank 0). These cannot occur if n ≥ 5 by Meier’s
theorem.

The rest of this section is devoted to an investigation of all boundary components (2.4.5)
of O(L), or S(L), respectively.
According to (2.4.4) we have to classify admissible parabolic subgroups of SO(L) or
GSpin(L) (this amounts to the same). We may also restrict ourselves to SO(LQ) because
of the projectivity of PAR (1.9.4).
We first examine all parabolics of SO(LC). We identify the Lie algebra of SO(L) with
Λ2L acting by (v ∧ v′)w = 〈v′, w〉v − 〈v, w〉v′.
We will examine the cases m = 4, 6, 8, . . . and m = 3, 5, 7, . . . separately.

(10.2.10) Let m = 2g ≥ 4 be even. Choose a decomposition LC = L0⊕L∗0 where L0, L
∗
0

are maximal isotropic with bilinear form given by 〈v1 + v∗1, v2 + v∗2〉 = v∗2v1 + v∗1v2, and a
basis v1, . . . , vg of L0. Denote the dual basis by v∗1, . . . , v∗g . There is a maximal torus, a
Gg
m acting by vi 7→ λivi and v∗i 7→ λ−1

i v∗i . A set of roots together with their root spaces
in Lie(SO(L)) = Λ2L is given by

ri,j : λiλj < vi ∧ vj > i < j # = g(g − 1)/2
rji : λiλ

−1
j < vi ∧ v∗j > i < j # = g(g − 1)/2

−ri,j : (λiλj)−1 < v∗i ∧ v∗j > i < j # = g(g − 1)/2
−rji : λ−1

i λj < v∗i ∧ vj > i < j # = g(g − 1)/2

These are 2g(g − 1) roots in total. A set of simple roots ∆0 is given e.g. by ri+1
i , i =

1, . . . , g − 1 and rg−1,g. This set induces the decomposition into negative and positive
roots as in the table. A parabolic subgroup is, up to conjugation, given by a subset of
this set of simple roots (1.9.4).
The roots rg−1,g and rgg−1 play a special role. Let L0 be the isotropic space generated by
v1, · · · , vg as above and L1 be the isotropic space generated by v1, · · · , vg−1, v

∗
g . These

two do not lie in the same orbit under SO(LC) or GSpin(LC).
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Associated filtrations for the occurring subsets fall into 4 classes according to which of
the roots rg−1,g and rgg−1 lie in the corresponding subsets:

{parabolics of type S ⊆ ∆0
with rg−1,g ∈ S, rgg−1 ∈ S

}
∼=
{
filtrations 0 ( I1 ( · · · ( Ii of isotropic subspaces,

with dim Ii ≤ g − 2

}
{parabolics of type S ⊂ ∆0
with rg−1,g ∈ S, rgg−1 6∈ S

}
∼=
{
filtrations 0 ( I1 ( · · · ( Ii of isotropic subspaces,

with Ii ∼ L0, dim Ii−1 ≤ g − 2

}
{parabolics of type S ⊂ ∆0
with rg−1,g 6∈ S, rgg−1 ∈ S

}
∼=
{
filtrations 0 ( I1 ( · · · ( Ii of isotropic subspaces,

with Ii ∼ L1, dim Ii−1 ≤ g − 2

}
{parabolics of type S ⊂ ∆0
with rg−1,g 6∈ S, rgg−1 6∈ S

}
∼=
{
filtrations 0 ( I1 ( · · · ( Ii of isotropic subspaces,

with dim Ii = g − 1

}
Here in the curled brackets, we mean everything up to conjugation or action respectively.
This exceptional behavior in even dimensions, which is also reflected in the branching of
the Dynkin diagram, is due to the fact that an isotropic subspace I of dimension g − 1
already determines 2 isotropic subspaces of dimension g, namely the pre-images of the
2 isotropic lines in the 2-dimensional quadratic space I⊥/I.
A parabolic is defined over Q, if and only if the associated filtration

0 ⊆ I ⊆ I⊥ ⊆ L,

is defined over Q. Hence we read off that for signature (m− 2, 2), maximal Q-parabolics
are given by isotropic subspaces if n ≥ 6 and SO is simple in this case, hence admissible
parabolics (2.4.4) are maximal parabolics. If m = 4, we have either only isotropic lines
defined over Q, in which case the maximal Q-parabolics correspond to these lines, or
there exists a isotropic plane, in which case SO(LQ) is split and isomorphic to PGL(2)×
PGL(2), so each proper parabolic is admissible and again admissible parabolics are given
by maximal isotropic subspaces up to conjugation. We have only one element in each of
the 4 sets above. The first (point-)set do not correspond to a proper parabolic. However,
we have two kinds (horizontal and vertical, if you wish) of boundary components of
dimension 1.

(10.2.11) Let now m = 2g + 1 ≥ 3 be odd. Choose a decomposition LC = L0 ⊕ L∗0 ⊥<
v0 > where L0, L∗0 are maximal isotropic, 〈v0, v0〉 = 1, and a basis v1, . . . , vg of L0.
Denote the dual basis by v∗1, . . . , v

∗
g . There is then a maximal torus, a Gg

m acting by
λ · vi = λivi and λ · v∗i = λ−1

i v∗i .
A set of roots together with their root spaces in Lie(SO(L)) = Λ2L is given by

ri : λi < vi ∧ v0 > # = g
ri,j : λiλj < vi ∧ vj > i < j # = g(g − 1)/2
rji : λiλ

−1
j < vi ∧ v∗j > i < j # = g(g − 1)/2

−ri : (λi)−1 < v∗i ∧ v0 > # = g
−ri,j : (λiλj)−1 < v∗i ∧ v∗j > i < j # = g(g − 1)/2
−rji : λ−1

i λj < v∗i ∧ vj > i < j # = g(g − 1)/2
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These are 2g2 roots in total. A set of simple roots is given e.g. by ri+1
i , i = 1, . . . , g − 1

and rg. This set induces the decomposition into negative and positive roots as in the
table. It is now easier to see that in any case:

{ parabolics } ∼= {filtrations 0 ( I1 ( · · · ( Ii of isotropic subspaces } .

Since SO is simple in these cases, proper admissible parabolics are Q-maximal and
correspond to single nonzero isotropic subspaces over Q.

Now let Q be any proper admissible parabolic. We have seen that Q corresponds to a
filtration

0 ⊂ I ⊆ I⊥ ⊂ L,

whose stabilizer it is. We will now determine the boundary components in the sense of
(2.4.5) associated with them:

(10.2.12) Case: I 1 dimensional (boundary point).
Choose a 1-dimensional lattice I ′ ∼= I∗. This is possible because the discriminant is a
unit at p.
We have the group

GSpin(I ′ ⊕ I) = {αzz′ + βz′z} ⊂ GSpin(L).

Here z, z′ are generators of I, I ′ respectively. We get a Levi decomposition

Q = W(I ⊗ I⊥/I) oG.

We interpreted the set DS(L) as the set of Hodge structures of weight 2 on LR with L−2,0
isotropic. h(DB) can be interpreted as an orbit in the set of mixed Hodge structures
with respect to the weight filtration

Wi(L) =


0 i <= −5
I i = −4,−3
I⊥ i = −2,−1
L i ≥ 0

This follows from (2.4.4) because a splitting cocharacter for this splitting is given by the
λ of (2.4.3) times the original weight (λ 7→ (λ−2, . . . , λ−2) for DS). The real torus is for
n ≥ 5 given by S = {λ1, λ2, 1, · · · 1, λ1, λ2, 1, · · · , 1|λ1λ

1 = λ2λ
2 = 1}, where we assumed

that v1, v
∗
1, resp. v2, v

∗
2 are spanning the 2 real hyperbolic planes. The long roots (2.4.3)

are in this case: r2
1 and r12.

The associated λ hence is the given by

λ 7→ (λ2, λ0, . . . , λ0;λ−2, λ0, . . . , λ0)
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because it is the only morphism satisfying:

〈λ, r12〉 = 2 〈λ, r2
1〉 = 2.

The conditions on an isotropic line F 0 ⊂ LC to yield a mixed Hodge structure are,
W−2 ⊂ (F 0 + F 0)⊥ +W−3, F0 6= F0. The induced Hodge structures on grW (L) have to
be trivial.
Choose F 0 = I ′ with the notations above.
Therefore, by weight-reasons, a morphism hx, composed with the projection above has
to be

w 7→ (ww)−1, 1, (ww)−1 ∈ Gm ×Gm ×GSpin(L0).

The semi-direct product of this image (∼= Gm) with the unipotent radical is hence iso-
morphic to the smallest normal subgroup over which the morphisms factor. It is

PB = W(I ⊗ I⊥/I) oGm,

where α ∈ Gm is mapped to αzz′+z′z ∈ GSpin(L). It operates, however, via the natural
action of Gm on W(I ⊗ I⊥/I). Its intersection with Gm ⊂ GSpin(L) is trivial, hence it
is isomorphic to the corresponding boundary component of SO(L). α here goes to the
element z 7→ αz, z′ 7→ α−1z′.

(10.2.13) Definition. We will denote the corresponding morphism Gm → SO by µI,I′.

Recall the chosen representations for SO and GSpin (10.1.4).
Consider

π0(DS)×Hom(SC, PB,C).

Any Gm, pre-image of the group determined above, acts by the obvious nontrivial oper-
ation on the set π0(DS). π0(DS) can be identified (after choice of a common orientation
of the negative definite subspaces) with the set of isomorphisms Z ∼= Z(1) (choice of root
of −1).
Hence the PB(R)UB(C)-orbits contained in the image are canonically isomorphic to

DH0[I⊗I⊥/I,0],

and we get an isomorphism:
B ∼= H0[I ⊗ I⊥/I, 0],

cf. (2.2.10) for the definition.
Suppose I is spanned by the vector z, and consider the mixed Hodge structure deter-
mined by F 0 = H−2,0 =< z′ >. Assume 〈z, z′〉 6= 0.
Consider the isomorphism L0 ∼= I ⊗ I⊥/I, k 7→ z ⊗ k, where L0 is the orthogonal
complement of z and z′. Letting it act on z′, we get an isomorphism DB ∼= π0(DO) ×
L0(C). Explicitly a vector in k ∈ L0(C) on the right hand side corresponds to the mixed



10. Shimura varieties of orthogonal type 197

Hodge structure determined by

F 0 =< z′ + 〈z, z′〉k −
(
〈k, z′〉+ 1

2〈z, z
′〉〈k, k〉

)
z > .

To any isotropic line < z > there corresponds precisely 1 boundary component, and an
embedding

DO ↪→ DB.

The compact dual of M∨(S(L)) is given by the zero quadric and the ‘compact’ dual
M∨(B) is the (scheme-theoretic) complement of < z >⊥.
It is (non canonically) isomorphic to W(I⊗I⊥/I), depending on the choice of a primitive
vector z′ with 〈z, z′〉 = 1 (this exists because the discriminant is a unit at p).
Let K ⊆ SO(LA(∞)) be the discriminant kernel of a lattice LZ, Consider K1 := K ∩
PB(A(∞)).

(10.2.14) Claim: K1 ∩ UB(A(∞)) = L0,Ẑ :=< z >Ẑ ⊗ < z >⊥
Ẑ
/ < z >Ẑ.

Proof. First of all K1 is a product of K1,l’s because K is. For an element (z ⊗ v) o g ∈
IQl ⊗ I⊥Ql/IQl to be in the discriminant kernel, we need to have: 〈z, x〉v − 〈v, x〉z ∈ LZl
for all x ∈ L∗Zl , hence v ∈ I

⊥
Zl/IZl (We have < z >⊥ ∩L∗Zl = (LZl/ < z >)∗. Now test for

all x ∈< z >⊥ ∩L∗Zl .

(10.2.15) If z′ ∈ LZ(p) is any primitive isotropic vector not perpendicular to z, K1 will
then definitely contain a group KẐ oK(N) ⊂ UB(A(∞)) oA(∞)∗, where the splitting is
chosen according to < z′ >, as explained above. Of course, N will depend on the choice
of z′. Furthermore K1 itself may not be of this form.

(10.2.16) Case: I 2 dimensional (boundary curve). If I⊥ 6= I, there is a surjective
morphism

P → GL(I)×GSpin(I⊥/I),

with kernel the unipotent radical. The unipotent radical consists of the exponential of
elements in I ∧ I⊥. We have an exact sequence (in the Lie algebra)

0 // Λ2(I) // I ∧ I⊥ // I ⊗ (I⊥/I) // 0

where Λ2(I) are the elements shifting the filtration by 2 and a corresponding central
extension

0 // UB := W(Λ2(I)) // WB // VB := W(I ⊗ (I⊥/I)) // 0

We interpreted the set DO as the set of Hodge structures of weight 2 on L, such that
L−2,0 is isotropic. h(DB) can be interpreted as the set of mixed Hodge structures with
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respect to the weight filtration

Wi(L) =


0 i <= −4
I i = −3
I⊥ i = −2
L i ≥ −1.

The associated λ hence is given by

λ 7→ (λ1, λ1, λ0, . . . , λ0;λ−1, λ−1, λ0, . . . , λ0)

because its the only morphism of correct weight, satisfying

〈λ, r12〉 = 0 〈λ, r2
1〉 = 2.

The conditions on an isotropic line F 0 ⊂ LC to yield a mixed Hodge structure are, if
dimW−2 = 2: F 0 ∩W−2 = 0, W−2 ⊂ (F 0 +F 0)⊥+W−3, F0 6= F0. The Hodge structure
on gr−1(L) = gr−3(L)∗(2) can be arbitrary. Choose an I∗ which is the dual of I with
respect to the bilinear form. This determines L = L0 ⊥ I ⊕ I∗ and a splitting

GL(I)×GSpin(L′)→ Q,

as well as an embedding
DH(I) ↪→ DB.

The composition of any ωx ◦ h∞ with the projection above, has to look like

z 7→ (h′(z), zz),

(for some h′ ∈ h(DH(I))) for weight reasons. The corresponding smallest normal sub-
group, such that all morphisms h factor through it, is hence isomorphic to GL2. We see
that the group PB has to be isomorphic to the group WB oGL2, WB as above. Further
investigation as in the case dim I = 1 shows that in this case

B ∼= H(I)[Λ2(I), I ⊗ (I⊥/I)]

(2.2.10).

We may summarize the discussion of this section:

(10.2.17) Theorem. There is (similar to 2.5.4) a bijection

{ isotropic subspaces IQ of LQ } ∼= { boundary components B of S(L) or O(L)}.

Let IQ be an isotropic subspace, I = IZ(p) the corresponding saturated sublattice and B
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the corresponding boundary component.
We have

B ∼=
{

H0[I ⊗ (I⊥/I), 0] if dim(I) = 1,
H1(I)[Λ2I, I ⊗ (I⊥/I)] if dim(I) = 2,

,

where in the first case Gm acts on I⊗I⊥/I by scalars and GL(I) in the second case acts
trivial on I⊥/I (see the definition of unipotent extension (2.2.10)).
The isomorphisms depend on a common choice of orientation on the maximal negative
definite subspaces of LR.

10.3. Special cycles

Let LZ(p) be a lattice with non-degenerate unimodular quadratic form, i.e. inducing an
isomorphism LZ(p) → L∗Z(p)

, and L′Z(p)
be a saturated sublattice with non-degenerate

unimodular form, of signature (m− 2, 2) and (m− 2−n, 2), respectively, where 0 < n ≤
m− 2.
Recall the embedding (10.2.2, here used mod Gm):

ι : O(L′) ↪→ O(L),

in the case m− n > 2 and the 2 embeddings

ι± : O(L′)± ↪→ O(L),

in the case m− n = 2.
Let an admissible compact open subgroup K be given. For each g ∈ SO(LA(∞,p)) we get
a conjugated embedding:

(ι, g) : K′gO(L′) ↪→ KO(L)

for K ′g = K ∩ ι(K)g.
In addition, we may find smooth, complete and projective ∆, and ∆′g for each g (2.4.12)
such that models exist (3.3.5) and we have, in the end, embeddings of p-ECMSD:

(ι, g) : K
′
g

∆′g
O(L′) ↪→ K

∆O(L)

(resp. with ±).
Let MZ(p) be another lattice with non-degenerate quadratic form and recall from (6.2.4)
the set

I(M,L)R = {α : MR → LR | α is an isometry}.

We have I(M,L)Q 6= ∅ ⇔ I(M,L)A(∞) 6= ∅ by Hasse’s principle. We assume that these
sets are nonempty throughout. We may then find even an x ∈ I(M,L)Z(p) .
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For a K-invariant admissible3 Schwartz function ϕ ∈ S((M∗ ⊗ L)A(∞))

I(M,L)A(∞) ∩ supp(ϕ) =
∐
j

Kg−1
j x

with finitely many gj ∈ SO(LA(∞,p)). We assume that ∆ has been refined such that ∆′gj
exists, with the properties claimed above for all j.

(10.3.1) Definition. We define the p-integral special cycle associated with MZ(p) and
ϕ on M(K∆O(L)) as

Z(L,M,ϕ;K) :=
∑
j

ϕ(g−1
j x) im(M(ι, gj))

(m− n > 2) resp.

Z(L,M,ϕ;K) :=
∑
j,±

ϕ(g−1
j x) im(M(ι±, gj))

(m− n = 2).
(x⊥ is of course saturated, non-degenerate and unimodular).

This is a finite sum and independent of the choice of the gi. The formation is compatible
with Hecke operators (2.4.11) in the obvious sense. Observe also that in the casem−n =
2,
∑
± im(M(ι±, gj)) = im(M(ι, gj)) for the morphism

M(ι, gj) : M(K′O(L′))→ M(K′∆ O(L))

of (9.1.1).
If MQ is only a Q-vector space with non-degenerate quadratic form and ϕ any Schwartz
function, we write

I(M,L)A(∞) ∩ supp(ϕ) =
∐
j

Kg−1
j x

for any x ∈ I(M,L)Q, assumed again to exist. We define

(10.3.2) Definition. We define the rational special cycle associated with MQ and ϕ
on M(K∆O(L)) as (assume m− 2 > 2)

Z(L,M,ϕ;K) :=
∑
j

ϕ(g−1
j x)im(M(ι, gj))

Zar
.

Here ι is associated with the embedding x⊥ ↪→ LQ and M(ι, gj) is only a morphism of
3by this we mean that ϕ is the product of a Schwartz function ϕ ∈ S((M∗ ⊗ L)A(∞,p) ) with the
characteristic function of (M∗ ⊗ L)Zp
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rational Shimura varieties. It is defined similarly for m− 2 = 2, too.

From the construction of models by Zariski closure (3.3.5) follows that this definition
coincides with the previous one, if there exists a lattice MZ(p) , such that the restriction
of the quadratic form is non-degenerate and ϕ is admissible.

10.4. Orthogonal modular forms

Let L be a lattice over Z(p) with non-degenerate unimodular quadratic form of signature
(m − 2, 2), i.e. such that it induces an isomorphism L → L∗. SO(L) is then reductive
over Z(p).
Denote O = O(L) the corresponding p-integral orthogonal Shimura datum (resp. one
of them, if m = 2, 10.2.1).

(10.4.1) Definition. Let E be the restriction of the canonical line bundle on P(L) to the
zero-quadric M∨(O). It carries a SO(L) action. EC|h(DO) carries a natural Hermitian
metric, too, which we normalize as follows:

hE : v, w 7→ −1
2e
−C〈v, w〉,

where C = γ + log(2π) and γ = −Γ′(1) is Euler’s constant.
Denote E = (E , hE).

We are going to deal with the Hermitian automorphic line bundles (9.1) Ξ∗(E) on the
various M(K∆O) in this section.

(10.4.2) Remark. The normalization factor e−C is dictated by (10.4.12) and (11.2).
In contrast, the explicit formulæ for the arithmetic volumes in terms of derivatives of
L-series at negative integers (8.3) would look more appealing if we omitted it.

(10.4.3) Lemma. With respect to the Hodge embedding

S(L) ↪→ H(C+(L), 〈, 〉δ),

the pullback of the canonical bundle ΛgL via the ‘dual’ embedding

M∨(S(L))→ M∨(H(C+(L), 〈, 〉δ))

is, up to a bundle coming from a character P → Gm, and up to a negative tensor-power,
the bundle E above.
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Proof. Recall that the induced map on compact duals (10.2.4) is given by < z >7→
zwC+(L), where z is assumed to be primitive in LZ(p) and w is any primitive vector
with 〈w, z〉 = 1. The fibre of L at the image of < z > is given by the space zwC+(L)
and the fibre of E is given by < z >. By an explicit determination of the action of the
stabilizer group in both cases the result follows.

(10.4.4) Corollary. The pullback of the bundle of Siegel modular forms Ξ∗(ΛgL)⊗n
of some weight n is equal to some negative power of the bundle of orthogonal modular
forms Ξ∗E⊗n′. In particular (Ξ∗E)−1 is ample on every M(KS(L)) and M(KO(L)) and
a suitable power has no base points on M(K∆O(L)).

Proof. Follows from (10.4.3) and (9.1.5). The bundle of Siegel modular forms Ξ∗(ΛgL)⊗n
is ample [27]4. The ampleness of Ξ∗E follows from the fact that the Hodge embedding
induces an embedding (up to a normzlization) of the corresponding Shimura varieties
(3.2.2) for suitable levels and the fact that all M(KS(L)) and M(KO(L)) are related
by finite etale maps that pullback the Ξ∗E ’s into each other. The assertion on base
points is true, because a suitable power of Ξ∗(ΛgL) defines a morphism to the minimal
compactification on every M(K′∆′Hg) [27, Theorem 2.3, (1)].

We will compare the measure given by the volume form c1(Ξ∗E)m−2, the highest power
of the Chern form of the canonical Hermitian line bundle defined above with the quotient
µ of the canonical volume form (6.2.3) on SO(LR) by the one giving K∞ = stabilizer of
some positive definite subspace N in LR, the volume 1.

(10.4.5) Lemma.
2λ−1
∞ (L; 0)µ = (−c1(Ξ∗E ,Ξ∗h))m−2.

Proof. We will ignore henceforth all signs of volume forms, whenever they have no in-
fluence because we know that the 2 volume forms are positive and invariant. Choose
an orthogonal basis of LR with 〈ei, ei〉 = −1, i = 1, 2 and 〈ei, ei〉 = 1, i > 2. Set
z = 1

2(e3 − e2), z′ = 1
2(e3 + e2). We have 〈z, z〉 = 0 and 〈z, z′〉 = 1

2 . Choose a base point
< Ξ >∈ DO ⊂ P1(LC), Ξ = ie1 + e2. It induces an isomorphism SO(LR)/K∞ ∼= DO.
The tangent space at Ξ in DO ⊂ M∨(O(L))(C) is canonically identified with

Hom(< Ξ >C, < Ξ >⊥C / < Ξ >).

The induced map

Lie(SO(LR))→ Hom(< Ξ >C, < Ξ >⊥C / < Ξ >C)

4An explicit comparison of our language to the one used in [27] will be provided in forthcoming work
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is given by
Λ 7→ {Ξ 7→ ΛΞ mod < Ξ >C}.

On Lie(SO(LR)) we have the basis:

Lij = {ei ∧ ej},

whose associated volume form is the canonical µ (6.2.10). The basis elements L12, Lij ,
i, j ≥ 3 are mapped to 0. Its associated volume form is the canonical (6.2.3) on K∞
(6.2.10). The induced volume form on DO hence is:

m∧
i=3

L̃∗1i ∧
m∧
i=3

L̃∗2i ∈
2(m−2)∧

Hom(< Ξ >C, < Ξ >⊥C / < Ξ >C)∗,

where L̃1i = {Ξ 7→ iei} and L̃2i = {Ξ 7→ ei} (wedge product over R!).
Now let K =< e1, e4, . . . em >C=< z, z′ >⊥C . We calculate

4∂∂ log Y 2 =
∑
i,j∈I

∂2

∂yi∂yj
log(Y 2) d zi ∧ d zj

=
∑
i,j∈I
−4δiδjyiyj

Y 4 d zi ∧ d zj +
∑
i

2δi
Y 2 d zi ∧ d zi

where K 3 Z = X + iY , I = {1, 4, . . . ,m} and δ1 = −1 and δi = 1 otherwise.
At the point ie1 this yields:

(d dc log Y 2)m−2 =
( 1

2π

)m−2
(m− 2)! dx1 ∧ d y1 ∧ · · · ∧ dxm ∧ d ym

(observe d dc = − 1
2πi∂∂ and d zi ∧ d zi = 2idxi ∧ d yi).

Under the parametrization

KC → M∨(O(L))(C)
Z 7→ Z + z′ − 〈Z,Z〉z

ie1 is mapped to Ξ. The tangent map T at this point is

Z 7→ {Ξ 7→ Z − 2i〈Z, e1〉z mod < Ξ >C}

and we have: T (e1) = L̃23, T (ie1) = −L̃13 and T (ei) = L̃1i, T (iei) = L̃2i for i ≥ 4.
This yields the volume form

(m− 2)!
( 1

2π

)m−2 m∧
i=3

L̃∗1i ∧
m∧
i=3

L̃∗2i ∈
2(m−2)∧

Hom(< Ξ >C, < Ξ >⊥C / < Ξ >C)∗.

Now observe that K∞ = SO(N) × SO(N⊥) because K∞ is not allowed to change the
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orientation of N (the C-oriented negative definite plane corresponding to < Ξ >). Hence
the volume of K∞ is 2π · 12

∏m−2
j=1 2 πj/2

Γ(j/2) (6.2.9). This gives the factor 2
∏m
j=2

1
2

Γ( j2 )

π
j
2

which

is 2λ−1
∞ (L; 0).

(10.4.6) Remark. This will be used in the proof of (10.5.2, i) to give an alternative
calculation of the geometric volume of these Shimura varieties using the Tamagawa
number directly and avoiding the use of Kudla-Millson Greens functions (7.6.9).

(10.4.7) In (10.2.17) we proved that isotropic lines I ⊂ L are in 1:1 correspondence
with the set of boundary components of O(L) of the form considered in (5.7). Let I be
an isotropic line and B be the corresponding boundary component. So UB is isomorphic
to W(U), with U := I ⊗ (I⊥/I)). For every choice of a line I∗ which is dual to I with
respect to the integral bilinear form, we get a decomposition L = (I ⊕ I∗) ⊥ L0, and a
splitting

PB = UB oGm,

where Gm acts via the morphism µz,z′ of (10.2.13) acting via the natural representation
of SO (10.1.4) by λ · z = λz for z ∈ I and λ · z′ = λ−1z′, for z′ ∈ I ′. Whenever I∗ has
been chosen, we write the corresponding element of PB(Z(p)) as (Z, λ), where Z ∈ UZ(p) ,
λ ∈ Z∗(p).
We have DB = DH0 ×D◦, for D◦ ' UC non canonically (D◦ can be identified canonically
with the set of isotropic complex lines, not perpendicular to IC).
Abbreviate O = O(L).
Let K be an admissible compact open subgroup and Let ∆ be a K-admissible complete
rational polyhedral cone decomposition for O(L) and let (ι, ρ) : K1

∆1
B =⇒ K

∆O be a
boundary map (2.4.11).
We have a corresponding boundary map (3.3.5):

M(ι, ρ) : M̂(K1
∆1

B)→ M̂(K∆O),

where the completion is taken with respect to a boundary stratum corresponding to a
rational polyhedral cone σ ∈ ∆1, σ ⊂ KR(−1). Over C the map converges, and on
the complement of the boundary, the image of DO in DB is contained in the region of
convergence and there it is just given by the map

PB(Q)\DO × PB(A(∞))/K1 → SO(LQ)\DO × SO(LA(∞))/K
[x, p] 7→ [x, pρ].

Consider a rational function f on M(K∆O). There will be a σ ∈ ∆1, σ ⊂ UR(−1) of
maximal dimension, such that on each connected component α ∈ DH0 of DB × ρ ⊆
DB × PB, there is a Fourier expansion of f defined on the set UR + x + α(σ), for some



10. Shimura varieties of orthogonal type 205

x ∈ σ5:
f : Z 7→

∑
k∈U∗Q(1)

FC(f, α, I, I ′, ρ, k, σ) exp(kZ) Z ∈ UC,

with bounded denominators (all k will actually lie in (K1 ∩ UB(Q))∗(1)).
K1 will contain a group of the form KU ×K(N) (cf. the end of 10.2.12). The pullback

of the corresponding formal function to ̂M(KU×K(N)
∆1

B) via projection followed by the
boundary map will be just ∑

k∈U∗Q

FC(f, α, I, I ′, ρβ, α(k), σ)[k]

in the fibre over some ζN = exp(α(β/N)) for β ∈ K(1). Recall from (5.7.3) that

̂M(KU×K(N)
∆1

B) = spf(Z(p)[ζN ]Jσ∨ ∩ U∗ZK).

Observe furthermore that changing the boundary map from ρ to ρβ or permuting the
fibers of M(KUK(N)B) over M(K(N)H0) by the operation of β is equivalent.

(10.4.8) Recall from (9.1.2) the definition of automorphic vector bundle. Corresponding
to E , hE above, we have a line bundle Ξ∗(E) with Hermitian metric Ξ∗(hE), singular along
the boundary, on any M(K∆O). Its complex sections on M(KO)(C) are identified with
SO(LQ)-invariant functions

DO × SO(A(∞))/K → E

(compatible with the Borel embedding in, respectively projection to M∨(O)).
We may pullback E , hE by the ‘dual’ boundary map M∨(ι) and consider the automorphic
vector bundle Ξ∗1 M∨(ι)∗(E , hE) on any M(K1

∆1
B). By the commutative diagram

̂Γ\M(K1
∆1

B)

∼
��

s ,,
̂Γ\P(K1

∆1
B)oo Π //

��

M∨(B)� _

��

M̂(K∆O) P̂(K∆O)oo Π // M∨(O),

we get a canonical identification of Ξ∗1 M∨(ι)∗(E , hE) with M(ι, ρ)∗Ξ∗(E , hE) (cf. also
9.1.5). If a (meromorphic) section f of Ξ∗(E) on M(K∆O) is given, we may pullback the
corresponding formal section to M̂(K1

∆1
B). The corresponding series over C will converge

5Reason: We can pullback f to a rational function on M(K∆′O) for refinements ∆′ of ∆ defined by subdi-
viding a cone and making ∆ K-invariant again. This corresponds to blowing up of the corresponding
boundary point. After finitely many steps no pole of f around some boundary point corresponding
to a shiver of the cone will be not on the boundary divisor.
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in a set of the form UR + x + α(σ), σ ∈ ∆1 maximal dimensional (assuming ∆ is
appropriately chosen, see above) and compare to fC just by restricting functions along
the analytic boundary map:

DO × PB(A(∞))/K1

��

// E

DO × PO(A(∞))/K

77ppppppppppppp

where, as usual, in the first line, we imagine DO as an open subset of DB.
By abuse of notation, we will denote Ξ∗1 M∨(ι)∗(E) just by Ξ∗1(E).
Recall from (5.7) that there is section

l : DB = DH0 × D◦ → PB(C) = UC oC∗

(splitting, as usual, determined by I∗) given by

(α,ZI ′) 7→ (Z,α(1)).

Now choose a primitive vector z′ ∈ I ′ and consider the section

DB × PB(A(∞))/K1 → E
(α,Z < I ′ >), [p] 7→ l(α,ZI ′) ◦ z′ = α(1)−1(exp(Z)z′) for p ∈ KUK(1).

Recall that for Z = z ∧ k, exp(Z)z′ = z′ + 〈z, z′〉k − (〈k, z′〉+ 〈z, z′〉QL(k))z.
Extend it to a PB(Q)-equivariant section over all of DB × PB(A(∞))/K1. The quotient
mod PB(Q) constitutes an integral trivializing section sz′ of Ξ∗1(E) over M(K1B), extend-
ing to a trivializing section over M(K1

∆1
B) (5.7), see also the analytic description of Ξ∗1

(9.1.2). Similarly, we get trivializing sections s⊗lz′ for any Ξ∗(E)⊗l.
Starting with a (meromorphic) section f of Ξ∗(E)⊗l on M(K∆X) and trivializing the
pullback via the boundary map by means of s⊗lz′ , we get Fourier coefficients

FC(f, α, I, z′, ρ, k, σ) “ := FC( f
s⊗lz′

, α, I, I ′, ρ, k, σ)”.

Observe that they now depend on the special z′ ∈ I ′. However: FC(f, α,< z >
, λz′, ρ, k, σ) = λlFC(f, α,< z >, z′, ρ, k, σ).
The corresponding formal function f

s⊗l
z′

on the canonical model M(KKK(N)
∆1

B) for some
KU oK(N) ⊂ K1 is then given by∑

λ∈U∗Q

FC(f, α, I, z′, ρβ, α(λ), σ)[λ]

in the fibre over some ζN = exp(α(β/N)) for β ∈ K(1).
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Note that the Fourier expansions considered in [4] and [11] of modular forms (of weight
l) differ by (±2πi)l, the sign being determined by ι.

(10.4.9) Assume for the rest of this section that m ≥ 4, and that, if m = 4, the Witt
rank of LQ (which can be 0, 1 or 2) is one. This is because we want the Koecher principle
to hold, i.e. the boundary in the Baily-Borel compactification should be of codimension
≥ 2. Furthermore, we want to prove and use a q-expansion principle, i.e. there should
be at least a non-empty boundary.
Choose a common orientation of the negative definite subspaces of LR. Recall DH0

∼=
π0(DO) (isomorphism determined by this orientation — 10.2.1). Choose representatives
gi ∈ SO(A(∞)), αi ∈ DH0 of the classes

[αi, gi] ∈ SO(Q)\DH0 × SO(A(∞))/K ′.

Denote by ιi the embedding Grass−(LR) in DO with ‘image αi’. Let L(i)
Z ⊂ LQ be the

corresponding lattices, i.e. determined by L(i)
Ẑ

= giLẐ.
Call a function: Grass−(LR) → E ⊂ LC an ι-holomorphic orthogonal modular form
with respect to Γ(i), if it is Γ(i)-invariant, and if it is holomorphic when considered
via the embedding ι : Grass−(LR) ↪→ DO. If the function is ι-meromorphic, call it a
ι-meromorphic orthogonal modular form.
We have an isomorphism⋃

i

Γ(i)\Grass−(LR)→ SO(LQ)\DO × SO(A(∞))/K = M(KO(L))(C) (4)

given by ν 7→ [ιi(ν), gi] and where Γ(i) = SO(LQ) ∩ (SO(LR)+K).
We know (10.2.7) that these geometric connected components and their closures in any
M(K∆O(L)) are defined over R = Z(p)[ζM,C] considered as a subring of C for someM ∈ N.
A section f ∈ H0(M(KS(L))C,Ξ∗E) pulled back via the isomorphism (4), yield orthog-
onal ιi-modular forms f (i) with respect to Γ(i) on every connected component and vice
versa, by the Koecher principle (we excluded the cases where it does not hold). The
same holds true for meromorphic sections, resp. collections of ιi-modular forms.
We also have

H0(M(KS(L))C,Ξ∗E) = H0(M(K∆S(L))C,Ξ∗E)

for any ∆, and again the same for meromorphic sections.

(10.4.10) Theorem (q-expansion principle for orthogonal modular forms).
Let I, z′,K be as before. There is an M such that for R := Z(p)[ζN,C] ⊂ C,M |N ,
we have (for any ∆) an isomorphism

H0(M(K∆O)R,Ξ∗E) ={
f ∈ H0(M(KO)C,Ξ∗E)

∣∣∣∀i ∀λ ∈ U∗Q, FC(f, αi, I, z′, gi, α(λ)) ∈ R
}
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and similarly6

H0(M(K∆O)R,Ξ∗Ehorz) ={
f ∈ H0(M(KO)C,Ξ∗Emerom.)

∣∣∣ ∀i ∃σ⊂UR(−1) open r.p. cone,
∀λ∈U∗Q, FC(f,αi,I,z′,α(λ),σ)∈R

}
Moreover, we have

FC(f τ , α, I, z′, ρ, α(λ), σ) = FC(f, α, I, z′, ρµI,I′(kτ ), α(λ), σ)τ ∀τ ∈ Gal(Q(ζN )|Q),

hence f is (in both cases) defined over Z(p) instead of R, if it satisfies

FC(f, α, I, z′, ρ, α(λ), σ) = FC(f, α, I, z′, ρµI,I′(kτ ), α(λ), σ)τ ∀τ ∈ Gal(Q(ζN )|Q).

Here kτ is the image of τ under the natural isomorphism Gal(Q(ζN )|Q) ' K(1)/K(N).

Proof. We may show the theorem for a particular ∆. A posteriori, it will then be true
for any ∆ (for the first statement, this involves the Koecher principle).
Assume, by choosing M appropriately, that R contains the ring of definition of every
connected component of M(KO) (10.2.7).
Let f be a complex section of the bundle Ξ∗(E)⊗l over M(K∆O). By the abstract q-
expansion principle (5.9.1) a section of a locally free sheaf is defined over M(K∆O)R if on
any connected component (over R), there is a point p, defined over R, such that after
passing to the completion at p, the corresponding formal series is defined over R. Now,
by assumption on any connected component described by αi, gi, there is a boundary
point corresponding to I and an open (= maximal dimensional) r.p.c. cone σ ⊂ KR(−1)
such that there exists a Fourier expansion with respect to it, with values in R. Choosing
∆ such that it contains these cones or is a refinement of one containing them, we see
that there is a boundary point, around which f has only poles along the boundary. By
the boundary isomorphism M(ι, gi) (3.3.5), it suffices to show that the pullback of f to
Ξ∗1(E) over ̂Sh(K1

∆1
B) is defined over R. By the consideration in (10.4.8) above, the formal

function f/sz′ on some ̂M(KKK(N ′)
∆1

B) for KKK(N ′) ⊂ K1 (splitting via I ′) is given by(
f

s

)
ζN′,C

=
∑

v∈K(−1)∗
FC(f, αi, I, z′, giµI,I′(k), α(λ), σ)[λ].

Here, [α, k] ∈ Q∗\DH0 ×A(∞)∗/K(N ′) describes ζN ′ . (It suffices of course to look at the
fibre over the ζM ′ corresponding to [αi, 1]). We may assume that for all i, M divides the
occurring N ′’s here.
Then, since by assumption these coefficients lie in R, f/sz′ is defined over R and hence
f itself. The first statements follows because we investigated at least 1 boundary point
on each connected component.
Furthermore the Galois operation on a formal function (with possible poles along the

6horz. means that we inverted all functions, which have no component of the fibre above p in its divisor.
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boundary)
f ∈ Ô

M(KUK(N′)
∆ O)

⊗R =
⊕
ζN′,C

RJU∗Z ∩ α(σ∨)K[U∗Z],

f =
∑
λ∈U∗Z

fζN′ ,λ[λ]

is given by
(f τ )ζN′,C,v = f τ

ζτ
−1
N′,C,v

.

And hence, a formal function is in Ô
M(KUK(M)

∆1
B)
, if and only if,

fζN′,C,v = f τ
ζτ
−1
N′,C,v

.

If we are given a section f of Ξ∗(E)R and we know this for all boundary components,
and ρ, we may infer that f a section of Ξ∗(E) defined over spec(Z(p)).

(10.4.11) Recall from (7.8.1) the definition of the Borcherds lift Φ(ν, h;F ) associated
with an automorphic form

F : Sp(MQ)\ Sp′(MA(∞))→ S(LA(∞))

for the Weil representation, corresponding to a weakly holomorphic classical modular
form.
Let p 6= 2 be a prime7.
Assume that F has Fourier coefficients of the form c(q) = χLZp ⊗c

p(q), cp(q) as in (7.8.1)
with values in S(LA(∞,p)). F then is invariant under an (w.l.o.g.) admissible compact
open subgroup K ⊆ SO(A(∞)), with Fourier coefficients c(q) ∈ S(LA(∞)), q ∈ Q.
For this to exist, it is necessary that p does not divide a minimal discriminant of LQ.
Let R be a huge8 ring of roots of unity Z(p)[ζN,C] ⊂ C, p - N .

Using the q-expansion principle proven in this section (10.4.10), we will show the follow-
ing strengthening of the main results [4, Theorem 13.3] and [57, Theorem 2.12] (resp.
[13, Theorem 4.11]):

(10.4.12) Theorem. Up to multiplication of F by a large constant ∈ Z, we have

i. For any ∆, there is a section

Ψ(F ) ∈ H0(M(K∆O)R, (Ξ∗E)⊗c0(0)/2
horz. )

7 6= 2 in order to be able to apply results of part I
8containing the ring given by the last theorem (q-expansion principle) but maybe bigger. Its size will
become clear from the proof.
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such that on M(KO)(C), we have

Φ(ν, h;F ) = −2 log h(Ψ(ν, h;F )).

There is a locally constant, invertible function Λ on M(K∆O)R such that

ΛΨ(F ) ∈ H0(M(K∆O), (Ξ∗E)⊗c0(0)/2
horz. )

(i.e. ΛΨ(F ) is defined over Z(p)).

ii.
div(Ψ(ν, h, F )2) =

∑
q<0

Z(LZ, < −q >, c(q);K) + Ξ

(cf. 10.3.1), where Ξ has support only within the support of the exceptional divisor.

iii.

−
∫

M(KO)C
log h(ΛΨ(ν, h;F ))c1(Ξ∗E ,Ξ∗h)n

≡
∑
q<0

volE(M(KO)) · d
d sµ̃(L,< −q >Z, c(q); s)

∣∣∣∣
s=0

in R(p).

iv. A Fourier expansion of Ψ(F )9:∑
λ∈U∗Q

FC(Ψ(F ), α, I, z′, 1, α(λ), σ)[λ]

is up to a constant of absolute value

C−
c(0,0)

2
∏

δ∈IA(∞)
χ(〈δ,z′〉)6=1

(1− χ(〈δ, z′〉))
c(δ,0)

2 d〈z′δ,〉 (5)

given by:

[ρ(I, σ, F )]
∏

λ∈U∗Q∩σ∨

∏
δ∈IA(∞)

(1− χ(〈z′, δ〉)[λ])c(t(Cλ)z′◦z′+δ,Qz′ (Cλ)) d〈z′,δ〉 (6)

here d · · · is any invariant measure on A(∞) which has the property that all sets
{〈z′, δ〉 | δ ∈ IA(∞) , F (x + δ, ·) = f(·)} for all x, f have volumes in Z≥0. The
products (in fact multiplicative integrals) over A(∞) then have the obvious meaning.
χ is the corresponding character (such that d δ is self-dual with respect to it) and C
is the conductor, i.e. the volume of Ẑ with respect to it. t(λ)z′ is the isomorphism

9This suffices to know every Fourier expansion of Ψ(F ) by property (12) above.
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U∗ → U induced by the quadratic form

Qz′(z1 ∧ k) = 〈z1, z
′〉2Q(k) = Q((z1 ∧ k) ◦ z′).

The Weyl vector ∈ U∗ is characterized by

8πρ(< z >, σ, F )ν =
√
Qz′(ν)Ψ(< ν >,FU,z

′) for ν ∈ σ ⊂ UR,

where FU,z′ is defined as:

FU,z
′(w, g′) := C−1

∫
δ∈IA(∞)

F (w ◦ z′ + δ, g′) d〈z′, δ〉

(any invariant measure).

Proof. First observe that F is a finite linear combination of functions valued in C[LZ/L
∗
Z]

for various lattices LZ of LZ(p) . Hence, we may assume that F is of this kind, observing
that all properties are stable under taking finite linear combinations, resp. change of K.
Hence w.l.o.g. F corresponds (as above) to an f considered in [4].
Recall the normalization of the Hermitian metric h (10.4.1). Consider a boundary com-
ponent associated with some I and z′. Ψ

s may be seen as a function on L0,C. We have

hE(Ψ) = |Ψ
s
|2hE(s),

and
hE(s) = ((2π)−1e−γ〈=(Z),=(Z)〉(2π)2)

c0(0)
2 .

Hence we get

log hE(Ψ) = log |Ψ
s
|2 + c0(0)

2 (log(〈=(Z),=(Z)〉) + log(2π)− γ)

and (i) follows from [4, Theorem 13.3], (iii) is essentially [57, Theorem 2.12 (ii)], using
(7.10.1) and (7.6.12). See [13, Theorem 4.11] for an independent proof (use 6.4.5 for the
comparison). Observe that the function Ψ differs from the one in [57] or [4] by (2πi)

c0(0)
2 .

However, important here is only the overall constant relating an F with given integral
Fourier coefficients to a Greens function which is to be integrated. This constant has
been adjusted, such that (i) and (iii) hold. See also (11.2), where the same constant also
appears (almost) naturally.
That some multiple of F exists, such that all coefficients are integral and even is due to
the classical q-expansion principle. Further multiplication with the order of the character
of SO(Q) occurring in [4], we get a section of the complex bundle.
Before proving (iv), we need some lemmas stating well-definition and invariance proper-
ties of the expressions (6) and (5).
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(10.4.13) Lemma. The expressions (6) and (5) do not depend on the choice of measure,
provided it has the property stated above.

Proof. Rewrite the first integral as

∏
δ∈IA(∞)

(1− χ(〈z′, δ〉)[C−1λ])
c(δ,0)

2 d〈z′,δ〉

(1− [C−1λ])
c(0,0)

2

∣∣∣∣∣∣∣
λ=0

.

Now consider the product∏
δ∈(z′)−1(CẐ)+a

(1− χ(〈z′, δ〉)[λC−1])d〈z′,δ〉 = (1− χ(〈z′, a〉)[C−1λ]).

The above multiplicative integrals split into a product of these integrals by hypothesis on
the measure (substitute λ 7→ C−1λ in the second product). Now changing the measure
to N d δ, we get the expression∏

δ∈(z′)−1(CẐ)

(1− χ(N−1〈z′, a〉)χ(N−1〈z′, δ〉)[(NC)−1λ])dN−1〈z′,δ〉

=
∏

i∈Z/NZ
(1− χ(N−1〈z′, a〉)ζi[(NC)−1λ])

=(1− χ(〈z′, a〉)[C−1λ])

here ζ is some primitive N -th root of unity in C. This shows invariance of the products.
We have to check what happens to

1

(1− [λC−1])
c(0,0)

2

.

It changes to 1

(1−[λ(NC)−1])
c(0,0)

2
hence gets multiplied by

(1 + [λ(CN)−1] + [2λ(CN)−1] + · · ·+ [(N − 1)λ(CN)−1])
c(0,0)

2 ,

which for λ = 0 is equal to N
c(0,0)

2 . C−
c(0,0)

2 gets (NC)−
c(0,0)

2 . Therefore the whole
expression is invariant as well.

(10.4.14) Lemma. This expression multiplied with the trivialization is invariant under
z′ 7→ βz′ for β ∈ Q>0

Proof. If we multiply z′ by a factor β ∈ Q>0, the trivialization gets multiplied by βl,
where l = c(0, 0)/2 is the weight of the modular form. On the other hand changing z′ in



10. Shimura varieties of orthogonal type 213

the various 〈z′, δ〉 has the same effect as scaling the measure, hence (by the last lemma)
as multiplying C by β. The expression λ ◦ z′ gets divided by β (note that it depends on
z′ in several ways), Q(λ) gets divided by β2. Hence we get the same expression.
Furthermore the expression claimed for the Weyl vector does not depend on the choices:
Scaling z′ to βz′ changes the w◦z′ to βw◦z′. FU (w, z′) changes to β−1FU (βw, g′). Recall
the definition of the Weyl vector above. Here, since the argument of the quadratic form
on UQ and the argument in KA(∞) of FU are both scaled by β, Ψ(. . . ) is only scaled by
β−1 coming from scaling FU , hence invariance of the Weyl vector. σ is invariant under
scaling.

(10.4.15) Lemma. If the Fourier expansion of a section

f ∈ H0(M(KO)C,Ξ∗(E)merom.)

for the trivialization defined by z′ is given as in (6), it is for any z′′ ∈ I ′′, given by the
same expression involving z′′, with respect to the trivialization defined z′′.

Proof. The change of z′ to z′′ = z′ + 〈z1, z
′〉k − (〈k, z′〉+ 〈z1, z

′〉Q(k))z1 = exp(w)z′ has
on the trivialization the effect of translation by w = z1 ∧ k in the argument. We have
to see that this is the same effect that occurs in the expression (6) above. First of all
Qz′ = Qz′′ because 〈z, z′〉 = 〈z, z′′〉. c(t(λ)z′◦z′+δz is changed to c(t(λ)z′◦z′+(δ+ λw

〈z,z′〉)z.
Now substitute δ − λw

〈z,z′〉) for δ and get the same expression, but [λC−1] multiplied by
exp(−2πi(λw)C−1) , the same happening under translation. The expression claimed for
the Weyl vector, which implicitly depends on z′, is invariant under this operation as
well. In the end, every z′ can be transformed in any vector with 〈z, z′〉 > 0 by the two
operations of translation by UQ and scaling.

Proof of theorem, iv. By the previous lemmas it suffices to prove it for any choice of z′,
so take z′ := z′Borcherds − Q(z′Borcherds)zBorcherds, which is now isotropic, but satisfies
still 〈zBorcherds, z′〉 = 1. As measure we may choose the standard invariant measure on
A(∞), giving Ẑ the volume 1. The trivialization now coincides (up to the factor (2πi)

c(0,0)
2

that we incorporated in the characterization of Ψ(F )) with the one given in [4], up to
identification of I⊥/I with I ⊗ I⊥/I with by k 7→ k ∧ zBorcherds. This interchanges Q
and Qz′ .
Recall from [4, Theorem 13.3 (v)] that the Fourier expansion with respect to this par-
ticular choice is (up to a constant of absolute value 1) given by∏
δ∈Z/NZ

(1−e(δ/N))cδz/N (0)/2[ρ(U,W,FU )]
∏

λ∈(U(ρ)
Z )∗

〈λ,W 〉>0

∏
δ∈(LZ)∗/LZ
δ|
z⊥=λ

(1−e(〈δ, z′〉)[λ])cδ(λ2/2). (7)
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(5) now may be rewritten as ∏
δ∈ 1

N
Z/Z

(1− e(δ))
c(δz,0)

2

and coincides with the product in Borcherds’ expression. The Weyl vector is the same
as well.
Claim: There is a bijection between

{kBorcherds ∈ (< z >⊥Z / < z >Z)∗, δBorcherds ∈ L∗Z/LZ, δ|z⊥ = k}

and
{k ∈ UQ, δ ∈ Q/Z = A(∞)/Ẑ | k ◦ z′ + δz ∈ L∗Z}.

Proof: The map is given sending k to kBorcherds ⊗ z and δ to k ◦ z′ + δz. From the fact

k ◦ z′ + δz = kBorcherds− < kBorcherds, z
′ > z + δz ∈ L∗Z,

we get kBorcherds ∈ (< z >⊥Z / < z >Z)∗. In the other direction, we map δBorcherds to
δ = 〈kBorcherds, z′〉. These maps are inverse to each other. One direction is clear; for the
other we have to show:

δBorcherds=!kBorcherds + (〈δBorcherds, z′〉 − 〈kBorcherds, z′〉)z.

This expression, however, is true for δBorcherds ∈ LQ because LQ is generated by L0 ∼= L0
and z and z′. Furthermore changing it by an element in LZ changes the expression
by some integral multiple of z ∈ LZ. This shows that the 2nd product occurring in
Borcherds’ Fourier expansion is equal to our 2nd product above.
To prove the theorem, it remains to check the integrality properties stated. By multiply-
ing F again by a large constant, we may also assume that the Weyl vector with respect
to I and with respect to any i is integral.
We can just multiply Ψ(F ) one every connected component by an appropriate absolute
value of 1, hence may assume that one Fourier expansion for each connected component
is given precisely by the product of (5) and (6). We get i different expansions with
coefficients in some ring R = Z(p)[ζN,C], p - N which we assume to contain the ring
described by (10.4.10).

Therefore by (10.4.10) Ψ(F ) extends to an (integral) section of H0(M(K∆O)R,Ξ∗(E)
c(0,0)

2
horz. )

for any ∆.
Furthermore, the expansion is invertible integrally, hence we may infer that Ψ(F )−1 is a

section10 of H0(M(K∆O)R,Ξ∗(E)−
c(0,0)

2
horz. ). It follows that Ψ(F ) cannot have any connected

(=irreducible) component of the fibre above p in its divisor.

To prove that Ψ(F ) is actually defined over Z(p), i.e. lies in H0(M(K∆O),Ξ∗(E)
c(0,0)

2
horz. ), let

us check the requested invariance property of the Fourier coefficients.
10Up to the problem of constants, this is Ψ(−F ).
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Let us compute

FC
(
Ψ(F )τ , α, I, z′, ρ, λ, σ

)
= FC

(
Ψ(F ), α, I, z′, ρµI,I′(kτ ), λ, σ

)τ
for all τ ∈ Gal(Q(ζN )|Q).

By the transformation property (12), we are reduced to compute

FC
(
Ψ(F ′)τ , α, I, z′, 1, λ, σ

)
= FC

(
Ψ(ω(µI′(kτ ))−1F ′), α, I, z′, 1, λ, σ

)τ
for F ′ = ω(ρ)−1F . We will, however, keep the letter F .

We have
c(ρ,m,Ψ(ω(µI,I′(kτ ))−1F ) = c(µI′(kτ )ρ,m,Ψ(F ))

by definition of the Weil representation of SO(LA(∞)) and µI′(kτ ) operates trivial on
t(Cλ)z′ ◦z′ because the latter is perpendicular to I⊕I ′ and it operates by multiplication
by kτ on δ. Substituting k−1

τ δ for δ and using invariance of the measure (kτ ∈ Ẑ∗!),
we get the same expression, but all χ(〈z′, δ〉) changed to χ(〈z′, kτδ〉) = χ(kτ 〈z′, δ〉) =
χ(〈z′, δ〉)τ−1 .

However, note that the Fourier expansion in (iv) is only defined up to a complex constant
of absolute value 1. Since for the computation above, we need maybe more than one
Fourier expansion for the same connected component, we are not able to normalize
anymore. However, our previous normalization shows that the occurring constants lie
in R∗. They are invertible because otherwise there would be a connected component of
the fibre above p in the divisor. We hence can infer from the above calculation that

f τ = Λτf

for all τ ∈ Gal(Q(ζN )|Q), where Λτ locally constant invertible on M(KO)R with |Λτ |∞ ≡
1 constant. From (an easily derived variant of) Hilbert 90 follows that there exists a Λ,
locally constant invertible on M(KO)R such that

(Λf)τ = τf

(i.e. Λτ/Λ = Λτ ).

The evaluation of ∫
log ‖ Λf ‖ c1(Ξ∗(E))d

differs from the same expression for f by∑
α∈π0(M(KO))

vol(α) log(|Λ(α)|∞).
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Since |Λ(τ−1α)τ |∞ = |Λ(α)|∞ we may write this as

1
φ(M)

∑
τ∈Gal(Q(ζM )|Q),α∈π0(M(KO))

vol(α) log(|Λ(τ−1α)τ |∞)

= 1
φ(M)

∑
τ∈Gal(Q(ζM )|Q),α∈π0(M(KO))

vol(τα) log(|Λ(α)τ |∞)

= 1
φ(M)

∑
α∈π0(M(KO))

vol(α) log(|NQ(ζM )|Q(Λ(α))|∞) ≡ 0 in R(p)

Here we used vol(τα) = vol(α), which is true because c1(Ξ∗(E)) is Galois invariant.

(10.4.16) We will briefly investigate orthogonal modular forms, i.e. the bundle Ξ∗(E)
along higher dimensional boundary strata (only over C). Let I be a 2-dimensional
isotropic subspace. Denote B the corresponding boundary component (10.2.17). We
have a morphism

B→ H(I)

and also a splitting of this morphism corresponding to a choice of an isotropic I∗ in LZ(p) .
The ‘dual’ morphism maps < z >∈ M∨(H(I)) to the corresponding < z >⊥∈ P(I∗) ⊆
M∨(B) ⊆ M∨(O). Assume such a splitting is chosen. Denote by L0 the orthogonal
complement of I ⊕ I∗.
The fibre over a point [< z >, ρ] ∈ GL(IQ)\DH(I) × GL(IA(∞))/K is of the form (K
appropriate)

WB(Q)\WB(C)×WB(A(∞))/F 0(WB)K,

where [wC, wA(∞) ] is mapped to [wC < z >⊥, wA(∞)ρ] ([< z >, ρ] embedded via the
splitting). F 0(WB) is the stabilizer of < z >⊥ in WB(C); it maps down to F 0(L) =<
z > ⊗L0 in VB(C) = I ⊗ L0.
The fibre itself is aGm-torsor over the Abelian variety VB(Q)\VB(C)×VB(A(∞))/F 0(L)×
K.

(10.4.17) Lemma. Ξ∗(E) is trivial locally on the base.

Proof. This is because F 0(V ) has no nontrivial 1-dimensional representations. Hence
we have a map

W (Q)\(W (C)/F 0(W ))× (W (A(∞))/K)→W (Q)\E × (W (C)/F 0(W ))× (W (A(∞))/K)

given by mapping [w, 1] to w applied to any chosen point (trivialization) in the fibre Ex.
We may do the same with a local section.
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We will give the trivialization more explicitly as follows: Chose a basis of I and a corre-
sponding dual basis of I∗. This induces as well U(C) = Λ2IC ' C and an isomorphism

I ⊗ I⊥/I = I ⊗ L0 ' L2
0. We will write vectors as

(
α
β

)
I

, resp.
(
α
β

)
I∗

Let z′ =
(
α
β

)
I∗

∈ I∗, in the fibre of E over < z′ >. It lies in < z >⊥,for
(

β
−α

)
I

.

Writing an element in w ∈ WB(C) as w = (u, k1, k2), u ∈ C = UB(C), k1, k2 ∈ L0,C, we
get

wz′ =
(
α
β

)
I∗

+ u

(
β
−α

)
I

+ αk1 + βk2 −
(

αQ(k1)
βQ(k2) + α〈k1, k2〉

)
I

.

Note that we have an isomorphism IR⊗RL0,R = (IC/ < z >)⊗CL0,C (because< z >∈ DO
by assumption). Hence we have an isomorphism (as usual)

U(C)W (R) = W (C)/F 0(W ).

This means that we may write an element in W (C)/F 0(W ) uniquely as (u, k1, k2) with
u ∈ U(C) and k1, k2 ∈ L0,R The map

(u, k1, k2) 7→ =(u)

is then the projection onto the imaginary part (2.4.6). The norm of the trivializing
section of E determined by MαβI∗ as explained, is hence given by

|2=(αβ)=(u)|.

If we choose a local lift s : M(KH(I))→ DH(I) → I∗ mapping a point < z >⊂ I to some
point in < z >⊥⊂ I∗, we may extend this trivializing section to a neighborhood of any
point in M(KH(I)).
Now, one may find a local map ρ : L0,C → L2

0,C such that the image is a direct summand
of F 0(L) for all points on the base.
A local chart around any point of the exceptional divisor hence may be described as
follows:

B(R,C)×B(R,C)m−4 ×B(R,C).

The third type ball mapping to a neighborhood of < z >∈ DH(I) to the corresponding
α, β. the second type are just the parametrization of L0,C by means of some basis
followed by ρ. The first is a ball mapping via log to the u-coordinate. The trivializing
section here has norm:

2=(u)=(αβ) + 2|α|2(Q(y1)) + 2|β|2(Q(y2)) + =(αβ〈k1, y2〉),

(here we wrote kj = xj + iyj). In the sequel we only need to remember that it has the
form

log(r1)ψ1(zm−2) + ψ0(z2, . . . , zm−3),
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where ψj are bounded C∞-functions on the neighborhood chosen.

10.5. Main results: Geometric and arithmetic volume of
Shimura varieties of orthogonal type and of their special
cycles

The results of this section finally connect Arakelov geometry on the models constructed
in part I with the analytic functions µ and λ defined in part II. We emphasize again that
the ‘main theorems’ of part I hold true conditionally on the conjecture (3.3.2), hence all
‘theorems’ in this section as well.

(10.5.1) Recall (7.10.4) from the definition of the complex function

λ(L; s) =
∏
ν

λν(L; s)

and its modification λ̃. There are explicit computations of them in (8.2) for the local
factors and in (8.3) for the product. They are related to the Fourier coefficients of
Eisenstein series by the orbit equation (7.10.4).

(10.5.2) Main theorem (Global formulation). Let LZ be a lattice with quadratic
form of discriminant D 6= 0 and signature (m− 2, 2). Let K be the discriminant kernel
of LẐ. It is an admissible compact open subgroup for all p - D. Let ∆ be a complete and
smooth K-admissible rational polyhedral cone decomposition and let M = M(K∆O(L)).
Let E be as before. We have

(i) volE(M) = 4(−1)mλ−1(LZ; 0)
(ii) v̂olE(M) ≡ d

ds4(−1)mλ−1(LZ; s)|s=0 in R2D

Proof of theorem (10.5.2, i). The theorem is true for Heegner points (i.e. all lattices
LZ with signature (0, 2)) by the classical class number formula. A proof of this in our
language is given in section (11.2). We are thus left with the case m ≥ 3 and will give 2
different proofs in this case:
First proof:
Recall the definition of the function µ(LQ,MQ, ϕ; s) (in 7.10.1) related strongly to Fourier
coefficients of an associated Eisenstein series. Let a lattice LZ ⊂ LQ be given and
κ ∈ L∗

Ẑ
/LẐ and MZ =< q >. Let especially ϕ be the characteristic function of κ⊗M∗Z.

We denote the corresponding cycle by Z(LZ, < q >, κ;K).
Recall the orbit equation (7.10.4):

µ(LZ, < q >, κ; s)λ(LZ; s)−1 =
∑
j

λ((g−1
j x)⊥; s)−1.
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From formula (7.6.9), we get for the discriminant kernel K:

µ(LZ, < q >, κ; 0) = volE(Z(LZ, < q >, κ;K))
volE(M(KO(L))) . (8)

Hence the assertion (10.5.2, i) is true for lattices of signature (m − 2, 2) if and only
if it is true for lattices of signature (m − 3, 2), whence it is proven by induction on m.
(Observe that

∑
i 4(−1)m−1λ((g−1

j x)⊥; 0)−1 is volE(Z(LZ, < q >, κ;K)) by the induction
hypothesis).
Second proof: We use τ(SO(LQ)) = 2, where τ is the Tamagawa number.
We have the following elementary relation (see also the proof of (7.6.8)):

Λτ = vol(K) volE(M(KO(L))),

where Λ = 2λ−1
∞ (L; 0) is the comparison factor from lemma (10.4.5) and vol(K) is com-

puted with respect to the product of the canonical volumes. Recall that Λ involved
the canonical volume on SO(LR) and their product over all ν is a Tamagawa mea-
sure. We have vol(K) =

∏
p λp(L; 0) by definition. Everything put together yields

volE(M(KO(L))) = 4(−1)mλ−1(LZ; 0) (which equals also 4(−1)mλ̃−1(LZ; 0)).

(10.5.3) The proof of (10.5.2, ii) is the heart of this thesis and will occupy the rest of
part III, see (10.5.7) for the starting point. In principle, we will use a similar induction
proof, using a comparison of the derivative of the orbit equation with the formula for the
height in Arakelov geometry. In a sense the 2 terms of the derivative of the product in
the orbit equation correspond to the 2 terms defining (or characterizing) the ∗-product
of Greens functions.
In more detail: If we take the derivative at 0 of the orbit equation (7.10.4):

(10.5.4) Corollary. Let MZ be another lattice of dimension n with positive definite
form QM , let K be the discriminant kernel of LZ, D be the discriminant of LZ and D′
be the discriminant of MZ and m− n ≥ 2.

d
d s

(
4(−1)mλ−1(LZ; s)µ(LZ,MZ, κ; s)

)∣∣∣
s=0
≡ htE(Z(LZ,MZ, κ;K))

in R2DD′.
Plugging in formulas (10.5.2) and (8), we get

µ′(LZ,MZ, κ; 0) volE(M(K∆O(LQ)))
+ degE(Z(LZ,MZ, κ;K))v̂olE(M(K∆O(L)))
≡
∑
i

v̂olE(M(Ki∆i
O((g−1

i x)⊥))) (= htE(Z(LZ,MZ, κ;K))
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in R2DD′. Here

degE(Z(LZ,MZ, κ;K)) = volE(Z(LZ,MZ, κ;K))
volE(M(KO(L)))

is the (relative) geometric degree.

The idea is, however, to prove a certain average of (10.5.4) directly (using Borcherds’
products and the calculation of its integral [13, 54]) and then to deduce theorem (10.5.2,
ii) by induction. This average version is (11.6.2) below. The main difficulties are
• The multiple of v̂olE(M(KO(L))) occurring in the average version of the formula

should not be 0. This corresponds to the task of constructing Borcherds products
of non-zero weights (11.3).

• All quantities v̂olE(M(Ki∆i
O((g−1

i x)⊥))) have to be known already. This is not so
easy as in the geometric volume case because the method of using Borcherds prod-
ucts works only if the Witt rank of L is not zero (i.e. if M(KO(L)) has cusps).
Therefore, we first calculate the arithmetic volume of the surrounding variety,
avoiding cycles without boundary in the divisor of the constructed Borcherds
product. Then we allow certain cycles without boundary (in a controlled way)
and reverse the argument to calculate the arithmetic volume of those (11.3).

• Certain boundary terms in the integrals over star products of the occurring Greens
functions (log of the Hermitian norm of sections) have to be shown to vanish
(11.6.3).

Corollary (10.5.4) is very weak because it contains no information from bad primes
whatsoever. We will also prove the following strengthening of (10.5.4). In our opinion
this is the most general statement one can obtain by this method, i.e. by using Borcherds
products without knowledge of the bad fibers of the varieties involved. It partially
answers conjectures of Bruinier, Kudla, Kühn, Rapoport, Yang, and others.

(10.5.5) Main theorem. Let MZ be a lattice of dimension n with positive definite
QM . Let K be the discriminant kernel of LZ, D be the discriminant of LZ and D′′

be the product of primes p such that MZp/M
∗
Zp is not cyclic. Assume m − n ≥ 4, or

m = 4, n = 1 and LQ is has Witt rank 1. We have

d
d s 4(−1)m

(
λ−1(LZ; s)µ(LZ,MZ, κ; s)

)∣∣∣
s=0
≡ htE(Z(LZ,MZ, κ;K))

in R2DD′′.

Note that for n = 1 always D′′ = 1. This theorem will follow from its local ver-
sion (10.5.8).
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(10.5.6) Remark. The last theorem has been proven in full generality, also including
information at 2D and∞ in [68–70] for Shimura curves and in [97] for the modular curve
(n = 1). For the equality at ∞, with µ∞ replaced by the full ∞-factor of the Fourier
coefficient of the Eisenstein series, the special cycles have to be complemented by the
Kudla-Millson Greens functions (7.6.8) made dependent on the imaginary part as well,
cf. also the introduction.

There are stronger results also for Hilbert modular surfaces [15, 65, 67] and for Siegel
threefolds [67]. It was proven also for the product of modular curves (The Z’s for n = 1
are the Hecke correspondences in this case) in [19, section 7.8].

The global formulation of (10.5.2, ii) immediately follows from the following local one:

(10.5.7) Main theorem (Local formulation). Let p 6= 2. Let LZ(p) be a unimodular
(at p) lattice and signature (m− 2, 2). Let K be any admissible compact open subgroup
and ∆ be complete and smooth and let M = M(K∆O(L)). Let E be as before. We have

v̂olE,p(M) ≡ volE(MC)
d
dsλ
−1(LZ; s)

λ−1(LZ; s)

∣∣∣∣∣
s=0

in R(p) and any Z-model LZ ⊂ LZ(p).

Proof. First of all the statement is independent of multiplication of QL by a scalar ∈ Z∗(p)
because the Shimura datum and E as a SO-equivariant bundle are not affected by this
and the Hermitian metric changes by a factor in Z∗(p) with does not change the arithmetic
volume (considered in R(p)).

The strategy of induction, similar to the proof of (10.5.2, i), is to walk through the set
of (unimodular at p) lattices in a special way, starting from lattices LZ(p) with known

v̂olE,p(M(K∆O(LZ(p))))

(for admissible K) and then to construct special Borcherds products by the results in
section (11.3) in a way such that all quantities in (11.6.2) - except the next unknown one
- are already known. This path through the set of lattices will be (mostly) according
to the dimension and Witt rank of the lattice. It is illustrated by the following scheme,
wherein an arrow indicates logical dependence (i.e. the inverse walking direction):
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STEP 1: We start with the case of a lattice LZ(p) of signature (1, 2) and Witt rank 1.
These are up to multiplication of QL by scalars in Z∗(p) of the form QL(z) = z1z2 − z2

3
which is equivalently the space {X ∈M2(Z(p)) | tX = X} with QL(X) = det(X), con-
sidered in (11.1.1). The volume v̂olE,p(M(K∆O(LZ(p)))) has been calculated in Kühn’s
thesis, see (11.1.1) for the comparison.
STEP 2: Hilbert modular surfaces of prime discriminant q ≡ 1 (4). This is the
case considered in [15]. We reproduce their argument here as follows: (11.3.15, i) shows
that a Borcherds lift of non-zero weight can be found, such that all occurring Shimura
varieties in Z(LZ, < −q >, cq;K) for the occurring cq are of the form already treated in
STEP 1. Hence comparison of the formula in (11.6.2) with the derivative of the orbit
equation (7.10.4) shows the truth of theorem (10.5.7).
STEP 3: Siegel modular threefold. In (11.3.16) it is shown that a Borcherds
lift of non-zero weight can be found, such that every Shimura variety occurring in
Z(LZ, < −q >, cq;K) for the non-zero cq’s is of the form considered in STEP 2 (even
copies of the same). Then proceed as in STEP 2.
STEP 4: general Hilbert modular surfaces. In (11.3.16) it is shown that a Borcherds
lift of non-zero weight can be found, such that every Shimura variety occurring in
Z(LZ, < −q >, cq;K) for the non-zero cq’s is a M(K∆O(LZ(p))) for a given lattice LZ(p)

of signature (2, 2), Witt rank 1. Now v̂olE,p(M(K∆O(L))) is known by STEP 3, and
v̂olE,p(Z(LZ, < −q >, cq;K)) may be deduced from the comparison of the formula in
(11.6.2) with the derivative of the orbit equation.
STEP 5: twisted Siegel threefolds. This is the case L is of signature (2, 3) and Witt
rank 1. We have only to avoid Z(LZ, < −q >, cq;K)’s with occurring Shimura varieties
for lattices with are not unimodular at p or compact ones. This is achieved by theorem
(11.3.14, i).
STEP 6: dimension 4 and higher. We know all arithmetic volumes for orthogonal
Shimura varieties of dimension 3. Hence we may proceed by induction on the dimension
and have only to avoid Z(LZ, < −q >, cq;K)’s containing Shimura varieties for lattices
with are not unimodular at p. This is achieved by (11.3.13).
We are left with a couple of cases that have been omitted in the above process. They
can be treated analogously to STEP 4 above, by reversing the usual argument.
STEP 7: product of modular curves. This is the case of signature (2, 2), Witt rank
2. Use (11.3.16) again. This can also be treated directly, using STEP 1 (Kühn’s thesis),
see [19, section 7.8] for a proof.
STEP 8: compact surfaces. This is the case of signature (2, 2), Witt rank 0. Use
(11.3.14, ii).
STEP 9: Shimura curves. This is the case of signature (1, 2), Witt rank 0. Use
(11.3.15, ii)
STEP 10: Heegner points. These are quadratic positive definite lattices. They may
up to multiplication of QL by scalars in Z∗(p) be embedded in a space considered in STEP
1. (11.6.2) and also the construction of Borcherds products are not available in this case,
but this is the easiest case and we prove the truth of (10.5.7) directly in (11.2) using the
∆ modular form (which is, in a sense, a Borcherds product, too).
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The global formulation of (10.5.5) follows immediately from the following local version:

(10.5.8) Main theorem (Local formulation). Let p 6= 2. Let LZ(p) be a unimodular
(at p) lattice and of signature (m − 2, 2), Let MZ(p) be a positive definite lattice of
dimension n with cyclic M∗Zp/MZp. Assume m − n ≥ 4, or m = 4, n = 1 and LQ is
isotropic, or m = 5, n = 2 and LQ has Witt rank 2. Let LZ, MZ any Z-models of
LZ(p) and MZ(p) respectively and let K be any admissible compact open subgroup in the
discriminant kernel of LZ. We have:

µ′(LZ,MZ, κ; 0) volE(M(K∆O(L)))
+ degE(Z(LZ,MZ, κ;K))v̂olE(M(K∆O(L)))
≡htE(Z(LZ,MZ, κ;K))

in R(p). Here degE(Z(LZ,MZ, κ;K)) is the (relative) geometric degree volE(Z(LZ,MZ,κ;K))
vol(M(KO(L))) .

Proof. We first prove it for n = 1: Here it follows immediately from (11.6.2), using
a Borcherds product such that all Z’s in the divisor consist of Shimura varieties cor-
responding to lattices, which are unimodular at p, except for Z(LZ, < q >, κ;K) which
shall occur, too, with non-zero multiplicity. Theorem (11.3.13, ii) enables us to construct
such a product. Note that the assumptions imply that M(KO(L)) has cusps.
Proof for n ≥ 2: Because M∗Z(p)

/MZ(p) is cyclic, we may find lattices M ′Z, unimodular at
p, and < q >Z such that

MZ =< q >⊥M ′Z
is a model of MZp . Let κ = κq ⊕κ′ be a corresponding decomposition. Let SO′(LẐ)αi ⊂
I(LẐ,M

′
Ẑ
)∩κ′ be a decomposition into orbits. We may form the cycles Z(α⊥i , < q >, κq)

on M(Ki∆i
O(α⊥i )), where the Ki are the respective discriminant kernels (all admissible

by construction of M ′Z). The latter Shimura varieties are all equipped with morphisms
into M(K∆O(LZ(p))) (the union of their images is the cycle Z(L,M ′, κ′)). (These Shimura
varieties all have the same Shimura datum, and one could see their images as conjugated
images of a single Shimura variety with varying K as in the definition of special cycle
(10.3)). In each of these Shimura varieties, we have cycles Z(α⊥i , < q >, κq). Identifying
them with their image in M(K∆O(LZ(p))) we get

Z(L,M, κ) =
⋃

SO′(L
Ẑ
)α⊂I(L

Ẑ
,M ′

Ẑ
)∩κ′

Z(α⊥i , < q >, κq).

By the proof for n = 1 we know the height of the right hand side. For this note that the
assumptions imply that M(KiO(α⊥i )) has cusps11. Comparing this with global Kitaoka

11One could certainly weaken those assumption slightly, to allow more cases with m− n = 3, and even
with m− n = 2, using the formula claimed in (11.2.12) for the modular curve, and [70] for Shimura
curves.
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(7.10.5), we get the general result and its truth does, of course, not depend on the models
LZ, MZ chosen and not on K (cf. also 9.4.6).

Since the local orbit equation for λ̃p and µ̃p remains true, if LZp is unimodular, MZp =<
q >, where p2 -M , see also (7.10.4), we get as a direct corollary of (10.5.8):

(10.5.9) Corollary (Local formulation). Let p 6= 2. Let LZ(p) be a lattice with
quadratic form of discriminant p and signature (m − 2, 2), m ≥ 3. For any bigger
unimodular lattice L′Z(p)

and signature (m′−2, 2) such that LZ(p) is a saturated sublattice
(and these exist), the following holds true:
Let M = M(K∆O(L)) and M′ = M(K′∆′O(L′)), where K ′ is an admissible compact open and
such that we have an embedding (of rational ECMSD): K∆O(LQ) → K′

∆′O(L′Q). (K will
then be ‘admissible’ with respect to the discriminant kernel Kp ⊂ SO(LQp) which does
not come from a reductive group scheme anymore (i.e. is not hyperspecial) - compare
6.4.2).
Let E be as before. We have

htE,p(M) ≡ volE(MC)
d
ds λ̃
−1(LZ; s)

λ̃−1(LZ; s)

∣∣∣∣∣
s=0

in R(p) and any Z-model LZ ⊂ LZ(p), where the height is computed in M′.

(10.5.10) Question. (10.5.5) in conjunction with determination of orbits in (6.4.18)
allows to calculate the height at p for embeddings of Shimura varieties of lattices with
cyclic L∗Zp/LZp and m ≥ 3 into such associated lattices unimodular at p. It would be
the first derivative of a weighted sum over some 4(−1)mλ−1(L′Z; s)µ̃(L′, < q >, κ; s)’s for
the unimodular L′ and different q’s. But we do not know how to characterize this value
independently of L′Z and even whether it is independent at all from the embedding. Note
that the naive orbit equation is not true for λ̃ anymore (cf. also 11.2.12).
How is the situation for arbitrary LZ? Is the height independent of the embedding? Is
there a canonical model, or at least a canonical arithmetic volume? If yes, is it the first
derivative of a natural function in s, depending only on LZ? How is the situation for
different K, which do not occur as discriminant kernels of lattices?
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11.1. Kühn’s thesis

(11.1.1) Consider the lattice

LZ(p) = {X ∈M2(Z(p)) | tX = X}

QL = det. It has signature (1, 2).
The group GL2 acts by g ◦X = gXtg on LZ(p) , preserving QL up to scalar. This defines
a group isomorphism GSpin(L) = GL2 and yields an isomorphism of Shimura data

S(L) = H1.

Here, the underlying map DH1 → DS(L) is the restriction of the following map on compact
duals M∨(H1)→ M∨(S(L)):

<

(
a
b

)
>7→<

(
a2 ab
ab b2

)
>, (1)

where <
(
a
b

)
> is a Lagrangian subspace (in this case an arbitrary one dimensional

subspace) in Z2
(p) and <

(
a2 ab
ab b2

)
> is the corresponding isotropic subspace of LZ(p) .

We have a boundary component B , associated with the parabolic group Q = {
(
∗ ∗
∗

)
},

resp. its quotient modulo the center, fixing <
(

1
0

)
>, resp. <

(
1 0
0 0

)
>. PB is the

subgroup scheme
(

1 ∗
∗

)
of Q, resp. its image in the quotient.

We have M∨(B) = A1, where x ∈ A1 is mapped to <
(
x
1

)
>, resp. <

(
x2 x
x 1

)
>

under the boundary map. In addition D(B) = C × DH0 , where DH0 = Hom(Z,Z(1))
canonically. The image of DH1 (or equivalently DS(L)) is the union of H+ × (2πi),
H− × (−2πi). This is the usual identification with the upper and lower half plane.
Recall that the bundle E was defined as the restriction to M∨(S(L)) of the tautological
bundle on P(L) with the natural group action of SO, hence by the action g ◦ X =

1
det(g)gX

tg. Similarly on M∨(H1) we have an L = O(1) (anti-tautological bundle) coming
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from identification with P1. We see from (1) that the bundles E and L⊗−2 are isomorphic
under the above identification, if we forget the group action.

We recall the integral trivializing section (5.7.5 - determined by the point
(

0
1

)
above

<

(
0
1

)
>) of Ξ∗L−1 on M(KB) which is (in this case) given by

(x× α, 1f ) 7→
(

1 x
1

)(
1

α(1)

)(
0
1

)
= α(1)

(
x
1

)
,

resp. of Ξ∗E :

(x× α, 1f ) 7→ α(1)
(
x2 x
x 1

)
.

(11.1.2) To a classical modular form for SL2(Z) of weight 2k with Fourier series

f =
∑
k

akq
k,

we may therefore associate the section f ′ of Ξ∗L⊗2k, whose restriction to H+ × 1f is
given by

τ 7→ f(τ)(2πi)−2k
(
τ
1

)⊗−2k

,

resp. the section f ′ of Ξ∗E⊗k given by

τ 7→ f(τ)(2πi)k
(

1 τ
τ τ2

)⊗k
of Ξ∗E .
The latter has norm (10.4.1):

hE(f ′) : τ 7→ |f(τ)|2(2π)2k2k(2π)−ke−kγ=(τ)2k.

We have

log(hE(f ′)) = log(‖f‖2Pet)− 2k log(4π) + 2k log(2π) + k log(2)− k log(γ)− k log(2π)
= log(‖f‖2Pet)− k log(2π)− k log(γ)− k log(2).

(11.1.3) We have the well-known formula:

volL(Sh(K(1)S(L)) = −1
2ζ(−1) = 1

24 ,
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and therefore
volE(Sh(K(1)S(L)) = ζ(−1) = − 1

12 ,

and
volE(Sh(K(1)O(L)) = 2ζ(−1) = −1

6 .

Recall that the volume is computed as an orbifold volume and E = L⊗−2 forgetting the
group action.
Since multiplying the norm (square root of the metric) by a scalar ρ changes the arith-
metic volume of an arithmetic variety X of arithmetic dimension dim(X) by

− dim(X) log(ρ) vol,

comparing to [71, Theorem 6.1], we see that

v̂olE(Sh(K(1)O(L)) = volE(Sh(K(1)O(L))(−2ζ
′(−1)
ζ(−1) − 1 + log(2) + log(2π) + γ).

On the other hand, we have (8.3.4):

4(−1)3λ̃−1(L, s) = 2ζ(−1)+2ζ(−1)
(
−2ζ

′(−1)
ζ(−1) − 1 + 1

2 log(2) + log(2π) + γ

)
s+O(s2).

Hence formulas (10.5.2, i, ii) are true. (ii) in this case up to a 1
2 log(2), hence in R2.

11.2. Heegner points

(11.2.1) For L′Z a quadratic negative definite lattice of discriminant D, we may find an
embedding L′Z ↪→ L where LZ is the lattice occurring in the last section, but maybe only
with QL multiplied by a scalar. This does not affect the arithmetic volume v̂ol ∈ RD
(see the comment in the proof of 10.5.7).
We want to compute the height (cf. 9.4.2) of Y = M(K′O(L′)) corresponding to the
embedding above. It is equal to (the closure of) Y (C) + Y (C)σ, where σ is complex
conjugation.
There exitst a modular form ∆ of weight 12 with integral Fourier coefficients, such that
a1 = 1 and such that the divisor of ∆′ on M(K(1)

∆ S(L)) (with the canonical ∆) does
not intersect Y . This is because points in Y correspond to elliptic curves with complex
multiplication which have good reduction everywhere.
Hence the height of Y with respect to (Ξ∗E ,Ξ∗h) is given by (cf. 11.1.2 above):

−1
6

∑
z∈Y (C)

log(
√
hE(∆′)(z)) = − 1

12(log(|∆|2)− 1
2 log(2π) + 1

2 log(γ)− 1
2 log(2)).
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Comparison with (8.1) yields

∑
z∈Y (C)

2Z(2s)
Z(s) E(z, s) = volE(Sh(K(1)O(L′))+ htE(Sh(K(1)O(L′))·(s−1)+ O((s−1)2),

where ht is the global height (9.4.2), equal to the (canonical) global arithmetic volume
v̂ol in R2D.

(11.2.2) Theorem. Let L′Z be a primitive negative definite lattice of square-free dis-
criminant D and Y as above. We claim:∑

z∈Y (C)

Z(2s+ 2)
Z(s+ 1) E(z; s+ 1) = 2λ̃−1(L′Z; s).

If D is not square-free, we have at least

∑
z∈Y (C)

Z(2s+ 2)
Z(s+ 1) E(z; s+ 1)

∣∣∣∣
s=0

= 2λ̃−1(L′Z; 0)

and ∑
z∈Y (C)

d
d s

Z(2s+ 2)
Z(s+ 1) E(z; s+ 1)

∣∣∣∣
s=0
≡ d

d s 2λ̃−1(L′Z; s)
∣∣∣
s=0

in all R(p), where p2 - D.

The proof will occupy the rest of this section.

(11.2.3) Corollary. Formulas (10.5.2, i, ii) are true for two dimensional primitive
lattices, in the case of (ii) even as an identity in R2N , where N is the product of primes
p with p2|D, if instead of the arithmetic volume the height of the Zariski closure in
M(K(1)O(L)) is considered.

(11.2.4) Remark. (11.2.2) shows in particular that a better definition of a function in
s giving the correct volumes for all two-dimensional lattices (with primitive form) would
be
∑
z∈Y (C)

Z(2s+2)
Z(s+1) E(z; s + 1). This value may be decomposed into a product over all

primes as well, which satisfy the local orbit equation, too (for λ̃p and µ̃p instead of λp
and µp)! This fact will be discussed in (11.2.12) in the end of this section.

(11.2.5) Let us now take the task of proving (11.2.2). Recall the notation from (11.1.1).
Via ⊥, maximal negative definite sublattices N ∩ LZ correspond bijectively to vectors

S =
(
a b
b c

)
of positive length ac − b2 > 0 with a < 0, c < 0, 2|a, 2|c and (a2 , b,

c
2) = 1.
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They correspond as usual to certain complex vectors of length 0

Zτ =
(

1 τ
τ τ2

)
,

too, with τ ∈ H, by virtue of

aτ2 − 2bτ + c = 0, i. e. τ = b+ i|S|
a

(2)

N = Zτ ⊕ Zτ = R
(
a
2 0
0 − c

2

)
+ R

(
b c

2
c
2 0

)
(3)

(11.2.6) Remark. Be aware that the lattice Nτ ∩ Z3 is not equivalent to Z2, S. This
is however true locally, if | det(S)|p = 1, but not necessarily, if | det(S)|p 6= 1. The
discriminant ofN∩LZ is equal to det(S) if S satisfies the conditions above (the generators
of N given above span a lattice of index c

2 in a primitive one).

(11.2.7) Let K∞ be the stabilizer of Ni, where i is a square root of −1 in C. Its image

in PGL(R) is a maximal compact subgroup. Explicitly: K∞ =
{(

a b
−b a

)∣∣∣∣∣a, b ∈ R
}
.

We identify the symmetric space associated with this quadratic form with GL2(R)/K∞
via g 7→ tgNig = Ngi. Each g ∈ GL(LR) decomposes as

g = zgτk∞

with
τ = x+ iy = g ◦ i, gτ =

(
1 x

1

)(√
y √

y−1

)
= u(x)gl(

√
y).

Suppose given an oriented negative definite subspace Nτ , defined over Q. Its stabilizer
in GL2(Q) is given by

T = {g ∈ GL2(Q) | det(g)−1tgSg = S},

hence PT := T/Gm is a quotient mod ±1 of the orthogonal group associated with the
bilinear form given by S, or equivalently it is the special orthogonal group SO of the
quadratic form given by Nτ .
Consider K =

∏
p PGL2(Zp). It is equally the discriminant kernel associated with the

lattice LZ (because the discriminant is 2). K ∩ PT (A(∞)) hence is the discriminant
kernel of the quadratic from < S >⊥= Nτ ∩ LZ (6.4.2).
Consider the respective complex Shimura varieties associated with O(L) and O(< S >⊥

):
X = [PGL2(Q)\(PGL2(A)/K∞K)] ∼=

[
PGL2(Z)\H±

]
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and
YS =

[
PT (Q)\(PT (A)/PT (R)(K ∩ PT (A(∞))))

]
,

which we consider as analytic stacks (orbifolds) with a natural embedding:

ι : YS ↪→ X (4)
[hf , h∞] 7→ [hf , h∞gτ ] (5)

We will now consider the standard Eisenstein series (of weight 0) associated with Ψ(s) =∏
ν Ψν(s), with Ψν(s,

(
α

δ

)
u(β)k) = |αδ−1|s and compute its ‘trace’ over the set YS .

Observe that we have a different normalization than in (7.4). Assume throughout that
the real part of s is big enough. All infinite series, resp. integrals considered in this
section will then converge absolutely.
First we have∑

h∈YS

1
# Aut(h)E(Ψ(s), h) =

∑
h∈YS

1
# Aut(h)

∑
g∈P (Q)\GL2(Q)

Ψ(s; ghgτ ) (6)

=
∑

h∈PT (A(∞))/K∩PT (A(∞))

Ψ(s;hgτ ) =: f(s), (7)

where we used GL2(Q) = P (Q)T (Q) in the last step. We will denote this quantity by
f(s) in this section.
Considering the right invariance of Ψ(s) under K, this may be rewritten as:

f(s) = Ψ∞(s; gτ )
∏
p

∫
Gm(Qp)\T (Qp) Ψp(s;x)µ
volµ(K ∩ T (A(∞)))

, (8)

where µ is any translation invariant measure on Gm(Qp)\T (Qp).

(11.2.8) Lemma. We have Ψ∞(s; gτ ) =
∣∣∣∣√det(S)

a

∣∣∣∣s
∞

and Ψp(s;h) =
∣∣∣ det(h)
gcd(h12,h22)2

∣∣∣s
p
.

Proof. The first assertion follows from the evaluation of the relation of gτ and S, given
above. For the second assertion consider the case νp(h12) > νp(h22),
hence gcd(h12, h22) = h22. We get:(

1 −h21det(h)−1h22
1

)(
det(h)−1h22

h−1
22

)(
h11 h21
h12 h22

)
=
(

1
h12
h22

1

)

where the matrix on the right hand side is integral. Analogously for the case νp(h12) <
νp(h22).
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(11.2.9) The lemma shows that it is convenient to parameterize the torus T as follows
(recall a 6= 0):

ι : Q2
p − {0} → T (Qp)(

x
y

)
7→
(
x+ 2 bay

c
ay

−y x

)

We have det(ι(v)) = QL(v)
a
2

, where QL(v) = a
2x

2 + bxz + c
2y

2. A translation invariant
measure on T (A(∞)) is given by det(ι(v))−1 d v, where d v is the standard measure on
Qp

2. We choose the measure µ, quotient of this by a measure giving Zp∗ volume 1.
This yields: ∫

Z2
p

|QL(v)
a
2
|s−1
p d v =

∑
i=0..∞

p−2is
∫
Gm(Qp)\T (Qp)

Ψp(s;x)µ

and therefore:

f(s) = |det(S)|
1
2 s∞

2sζ(2s)
∏
p

∫
Z2
p
|QL(v)|s−1

p d v

|a2 |
−1
p vol{x, y | c

ay, x, x+ 2 bay, y ∈ Zp, x2 + 2 baxy + c
ay

2 ∈ Zp∗}
.

Substituting a
2y for y and then x− b

2y for x in the volume computation in the denomi-
nator, we get:

|a2 |
−1
p vol{· · · } = vol{x, y ∈ Zp2 | x2 + ac− b2

4 y2 ∈ Zp∗}.

if b is even or p 6= 2, otherwise substitute in addition x+ 1
2 for x and get

|a2 |
−1
p vol{· · · } = vol{x, y ∈ Zp2 | x2 + xy + ac− b2 + 1

4 y2 ∈ Zp∗}.

Hence in any case:

f(s) = 2−s |det(S)|
1
2 s∞

ζ(2s)
∏
p

ζp(LZp , s),

where ζp(LZp , s) is the normalized local zeta function of the lattice, by definition (see 6.5).
Note that it depends only on the discriminant for 2 dimensional lattices.
Write

f(s) = 2−s |det(S)|
1
2 s∞

ζ(2s) ζK(s)
∏
p2|D

Rp(p−s)

R(p−s) =
ζp(LZp , s)
ζK,p(s)
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where K = Q(
√
−D0) and D = D0f

2, D0 is fundamental.

We have Rp(1) =
∣∣∣D0
D

∣∣∣ 12
p

= |f |−1
p , or Rp(1) =

∣∣∣D0
D

∣∣∣ 12
p

(1− (−D0
p )p−1), in case νp(D) ≥ 2 is

even.
Now calculate

Z(2s+ 2)
Z(s+ 1) f(s+ 1) = 2−sΓ(s+ 1)π

s
2 + 1

2

πs+1Γ( s2 + 1
2)
|det(S)|

1
2 s+1L(χ, s+ 1).

Applying the doubling formula for the Γ-function, we get:

Z(2s+ 2)
Z(s+ 1) f(s+ 1) =

Γ( s2 + 1)
π
s
2 +1 |det(S)|

1
2 (s+1)L(χ, s+ 1).

On the other hand, we have by (8.2.1) and the definition of λ̃ (7.10.4) for square-free
discriminant:

λ̃−1(L′; s) = 1
2

Γ( s2 + 1)
π
s
2 +1 |D|

1
2 (s+1)L(χ, s+ 1).

Hence the first part of (11.2.2) is proven. Note that multiplying the discriminant by
some pj j ≥ 2 multiplies both quantities by a rational function in p−

s
2 with the same

value at s = 0. Hence the second statement of (11.2.2) is true as well.

(11.2.10) More explicitly, we get for bad discriminants the following correction factors:
If νp(D) is odd, this yields (6.5):

R′p(1)
Rp(1) = l − 1 + 1− p

l−1
2

p
l+1
2 − p

l−1
2

and if νp(D) ≥ 2 is even (6.5):

R′p(1)
Rp(1) = l − 1

p− 1 +
((−D0

p )− 1)

((−D0
p )− p)(p

l
2 − p

l
2−1)

+
(−D0

p )
(p− (−D0

p ))

(cf. 11.2.12).

(11.2.11) Remark. The functional equation of the Eisenstein series forces a functional
equation for the Rp’s, namely

Rp(p−s) = Rp(ps−1).

(11.2.12) Remark. Let LZ be the lattice of (11.1.1) again and q a positive integer.
Recall that the quantities µ(L,< q >; s), λ(L; s), λ(α⊥; s) are products over all ν of µν ’s
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and λν ’s, respectively. The λν ’s satisfy the local orbit equation:

λ−1
p (LZp ; s)µp(LZp , < q >; s) =

∑
SO′(LZp )α⊆I(<q>,L)(Zp)

λ−1
p (α⊥; s).

If we substitute λ̃ and µ̃ (correcting factors, e.g. |D|
1
2 s∞ , distributed to the respective

primes) for the respective λ and µ’s, this equation is destroyed, unless there is only one
orbit (q square-free at p). If we let (λ′)−1

p (α⊥; s) be the quantity |D|−
1
2 (s+1)

p
ζp(α⊥;s+1)
ζp(s+1)

(local factor of Z(2s+2)
Z(s+1) E(Y, s + 1), for Y corresponding to α⊥ as above), which agrees

with λ̃−1
p (α⊥; s) if p2 - D, then the following equation is true for all q:

λ̃−1
p (LZp ; s)µ̃p(LZp , < q >; s) =

∑
SO′(LZp )α⊆I(<q>,L)(Zp)

(λ′)−1
p (α⊥; s).

This is particularly striking from our point of view because classical resp. Arakelov
geometry only tell us that the first two coefficients in the expansion at s = 0 in its product
over all ν should be equal. From the point of view of the Shimura correspondence, this
is maybe not so amazing because the two Eisenstein series determining µ̃, resp. λ′ are
(roughly) Shimura lifts of each other. I am indebted to J. Bruinier and T. Yang for this
last comment.

11.3. Preparation of Borcherds forms

(11.3.1) We will work first in the classical setting, with modular forms on H for any
subgroup Γ ⊂ Sp′2(R) commensurable with Sp′2(Z) with values in any representation V
of Sp′2(Z). Here Sp′2 is either Sp2 = SL2 or Mp2. Let k be a weight, half integral, if
Sp′ = Mp and an integer, if Sp′ = Sp.
Let

ModForm(Γ, V, k)

be the space of modular forms of weight k for Γ of representation V , meromorphic at
the cusps. Let

HolModForm(Γ, V, k)

be the space of modular forms of weight k for Γ of representation ρ, which are holomor-
phic at the cusps.

(11.3.2) We consider now a more abstract setting. Consider the modular curve

M(K(N)H(M)),

M = M ⊕M∗ with one dimensional M , and standard symplectic form, where K(N)
is formed with respect to a latice MZ ⊕M∗Z . We are interested merely in the rational
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canonical model in this section. There is a boundary component B associated with the

line < M > with group PB =
(
∗ ∗
0 1

)
and WB = UB = W(M ⊗M) =

(
1 ∗
0 1

)
. Let

U := (M ⊗M)Z. The boundary component is of the type considered in (5.7). There we
saw that there is a morphism B→ H0 and for each complementary line, e.g. < M∗ >,
there is a splitting of this morphism. The morphism determines a diagram

M(KNUoK(N,Gm)B)Q
∼ //

��

spec(Q[ζN ][ 1
NU

∗])

��
M(K(N,Gm)H0)Q

∼ // spec(Q[ζN ])

where the obvious splitting on the right hand side corresponds to the splitting determined
by < M∗ > on the left. There is a trivializing section s, defined over Q, of the bundle
of (nearly holomorphic) modular forms of weight k as described in (5.7).
The expansion of a classical modular form, pulled back via the boundary map and
trivialized by means of this trivializing section looks as follows. For each ζN,C ∈ C,
primitive N -th root of unity, we have a series∑

λ∈ 1
N
U∗

aλ,ζN,C [λ]

(function, defined over C, of a suitable completion of the top-right element of the dia-
gram). In (5.7.2) and (5.7.3) we saw that, up to a power of (2πi), the ai,ζN,C are the
classical Fourier coefficients of f pulled back via the map

Γ\DαH → GL(MQ)\DH ×GL(MA(∞))/K(N)
τ 7→ [τ, k]

where (α, k) ∈ DH0 ×K(1) describes ζN,C = exp(α( kn)).
Hence f τ for τ ∈ Gal(C|Q) has the series∑

λ∈ 1
N
U∗

aτ
λ,ζτ

−1
N,C

[λ],

in the fibre over ζN,C.
Modular forms of level K(N) are the same as modular forms for K(1) with values the
induced representation

indK(1)
K(N)(C).

Such a form f has an expansion ∑
λ∈ 1

N
U∗

aλ,ζN,C [λ],
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too, with ai,ζN,C ∈ indK(1)
K(N)(C). This is now, however, completely determined by its

coefficients ai := ai,exp(2πi/n).
The coefficients of f τ are hence given by

a′i =
(
k−1
τ 0
0 1

)
(aτi ) (9)

where kτ ∈ K(1,Gm)/K(N,Gm) is such that exp(2πi/n)τ = exp(2πikτ/n).
We are interested in the subspace indK(1)

K0(N)(χ, 1) ⊆ indK(1)
K(N)(C) transforming under

K0(N) by the character (χ, 1), where χ is some character of A(∞)∗ with values in ±1.
The Galois operation on modular forms restricts to those with values in this subspace,
as it should be.

(11.3.3) Let Z be the kernel of Mp2(Z) → SL2(Z) and define Γ0(N)′ as Γ0(N) in the
integral case and as its pre-image in Mp2(Z) in the half-integral case. In the half-integral
case, we always assume 4|N and that we are given a character

χ : Γ0(N)′ → µ4,

such that Z acts nontrivially.
We have the space

ModForm(Sp′2(Z), k, indMp2(Z)
Γ0(N)′ (χ)) = ModForm(Γ0(N)′, k, χ).

Consider now the integral weight case again. There are isomorphisms

Γ0(N)\H

∼
��

SL2(Q)\H× SL(A(∞))/K0(N, SL)

∼
��

GL2(Q)\H± ×GL(A(∞))/K0(N,GL).

and a modular form on the bottom with character (χ, 1) pulls back to a modular form
of character χ for Γ0(N). We have an isomorphism

indSp2(Z)
Γ0(N) (χ) = indK(1)

K0(N)(χ) ⊂ indK(1)
K(N)(C)

and can read off the Galois action on Fourier coefficients.

(11.3.4) Let N be an integer such that the Weil representation Weil(L∗Z/LZ) factors
through Sp′(Z/NZ), and consider the line bundle of modular forms Ξ∗L⊗k of integral
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weight k over M(K(N)
∆ H(M))Q. We have a morphism

M(K(N)
∆ H(M))Q →M(K(N,Gm)H0)Q, (10)

induced by the determinant H(M))→ H0, and the fibers of this map are geometrically
connected (∆ is the canonical complete one). The automorphism group of the bundle
(Ξ∗L⊗k)M hence is GLM (OM(K(N,Gm)H0)) We have OM(K(N,Gm)H0)

∼= Q(ζN ) (for any
x ∈ GLN (Q(ζN )) and we denote the corresponding automorphism by a(x)), such that
the inclusion Q(ζN ) ↪→ C, ζN 7→ ζN,C is identified with (the class of) (α, k) ∈ DH0 ×
K(1), where α, k are such that ζN,C = exp(α( 1

N k)). The Weil representation defines a
morphism

w : SL(Z/NZ) 7→ GL(Q(ζN )[L∗/L]),

using the identification ζN 7→ exp(2πi 1
N ), where i is the root of −1 used in the definition

(via the underlying characters on the various Qν).
On Ξ∗L⊗k → M(K(N)

∆ H(M))Q we have the (right) action of the Hecke operators in
GL(Z/NZ), defined over Q. We denote the corresponding action by multiplication on
the right.
From the morphism (10) and the explicit description of its target, we may infer the
formula

(a(xτk)Z)k = a(x)(Zk) (11)

for Z ∈ (Ξ∗L⊗k)M , where τk is the image of k under

GL(Z/NZ) det // (Z/NZ)∗ ∼ // Gal(Q(ζN )|Q).

From the explicit formulæ for the Weil representation (7.2.1) follows1:

(11.3.5) Lemma.

w(
(
α 0
0 1

)
k

(
α−1 0

0 1

)
) = w(k)τα . (12)

Proof. The operators x∗ 7→ ϕ(tαx∗) are Galois invariant. If we act on the operator
x∗ 7→ exp(2πiQL(x∗)β)ϕ(x∗) by τα, we get the same as by substituting β by αβ. If
we act on the operator x∗ 7→

∫
LA(∞)

ϕ(γx) exp(−2πix∗x) dx by τα, we get the same as
by substituting γ by α−1γ, provided dx is chosen Galois invariant (e.g. such that LẐ
has a volume in Q). Now an actual operator w(gl(α)) differ by those considered by a
Υf (αQL)
Υf (QL) in the first case, which is a sign because m is even, hence Galois invariant. In

the third case w(d(γ)) differs by c(γ) := Υf (γQL)

|γ|
1
2

, where |γ| is calculated with respect to

1In other words, the Weil representation extends semi-linearly to GL2 if we let
(
α 0
0 1

)
act by τα
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the chosen measure and its dual. Now consider the equation
(
u(−γ−1)d(γ)

)3 = 1. Since
c(γ)2 ∈ Q, it shows c(α−1γ) = c(γ)τα .

Therefore we may define a twisted right action of GL(Z/NZ) on Ξ∗L⊗k⊗QQ[L∗Z/LZ] by

Z · k := a(w(k−1))(Zk) for k ∈ SL(Z/NZ) and by Z ·
(
α 0
0 1

)
:= Z

(
α 0
0 1

)
. Formula

(11) and (12) show that this is a well defined action of GL(Z/NZ).
Let us denote the quotient bundle by this action by WEIL(L∗Z/LZ). It is a bundle over
the stack M(K(1)

∆ H(M))Q. A section f ∈ H0(MC,WEIL(L∗Z/LZ)) is a modular form for
the Weil representation in the classical sense. It has a ‘q-expansion’∑

λ∈ 1
N
M∗Z

aλ[λ],

where aλ ∈ C[L∗Z/LZ]λ and they coincide with the usual Fourier coefficients (up to a
power of ±2πi, which we may and will ignore). In this case the discussion shows that f τ
for τ ∈ Gal(C|Q) has the coefficients aτλ (usual Galois action). Hence f is defined over
Q, iff aλ ∈ Q[L∗Z/LZ] for all λ, and, more importantly for us:

(11.3.6) Lemma. Let k be a (half-)integral weight and Sp′2 either Sp2 or Mp2 according
to whether k ∈ Z or not. For f ∈ ModForm(Sp′2,Weil(L∗Z/LZ), k) with Fourier expansion

f =
∑
i

aiq
i,

ai ∈Weil(L∗Z/LZ)i, we have for τ ∈ Gal(C|Q) and

f τ :=
∑
i

aτi q
i,

that f τ ∈ ModForm(Sp′2,Weil(L∗Z/LZ), k), too.

Proof. We have proven the statement for k ∈ Z above. For half integral weight, consider
the space L′Z = LZ⊕ < 1 >. We have

Weil((L′Z)∗/L′Z) = Weil(L∗Z/LZ)⊗Weil(< 1 >∗ / < 1 >).

We have the classical theta function

θ ∈ HolModForm(Mp2,Weil(< 1 >∗ / < 1 >), 1
2)

(with integral Fourier coefficients!). Multiplication with it yields a map

ModForm(Mp2,Weil(L∗Z/LZ), k)→ ModForm(Mp2,Weil((L′Z)∗/L′Z), k + 1
2),
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which commutes with the Galois action on Fourier coefficients. By an elementary cal-
culation, one sees that any holomorphic function on H (or even formal Fourier series)
with values in Weil(L∗Z/LZ)(C) which lies in ModForm(Mp2,Weil((L′Z)∗/L′Z), k+ 1

2) after
multiplication with θ has to lie in ModForm(Mp2,Weil(L∗Z/LZ), k). Hence the statement
of the lemma.

(11.3.7) Recall the following construction from [5].
Denote

PowSer(Γ) =
⊕
κ

CJqκK,

Laur(Γ) =
⊕
κ

CJqκK[q−1
κ ],

Sing(Γ) =
⊕
κ

CJqκK[q−1
κ ]/qκCJqκK,

where κ runs through all cusps for Γ. Mp2(Z) operates on these sets.
Let Γ′ ⊂ Γ be a subgroup of finite index, which acts trivial on V . We define

PowSer(Γ, V ) =
(
PowSer(Γ′)⊗ V

)Γ
,

where Γ acts on both factors.
Similarly we define Laur(Γ, V ) and Sing(Γ, V ). We have still (abstractly) a 1:1 corre-
spondence between f ∈ PowSer(Γ, V ) (say) and a collection fκ for each cusp of Γ (not
Γ′!) where

fκ =
∑

m∈Q≥0

amq
m
κ , (13)

and am lies in a subvector space Vm of V , depending on m.

For Γ = Sp′2(Z), we have explicitly Vm = {v ∈ V |
(

1 1
0 1

)
v = e2πimv} and in particular

Vm is zero if m /∈ 1
NZ for some N , depending on Γ′.

There are maps

λ : HolModForm(Γ, k, V ∗)→ PowSer(Γ, V ∗), (14)
λ : ModForm(Γ, 2− k, V )→ Sing(Γ, V ), (15)

which in the representation (13) for the right hand side, this corresponds to taking
Fourier series.
There is a non-degenerate pairing between PowSer(Γ, V ) and Sing(Γ, V ∗) given by

〈f, φ〉 =
∑
κ

res(fκφκq−1
κ d qκ).

Here, the product fκφκ involves duality between V and V ∗. This pairing is invariant
under the operation of Mp2(Z) and hence gives a well defined pairing between the spaces
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in question.
For example if Γ = Mp2(Z) and standard parameter q, up to a scalar this pairing is the
same as

〈f, φ〉 =
∑
m

〈a−m, bm〉,

for f =
∑
m amq

m and φ =
∑
m bmq

m.
In [loc. cit., Theorem 3.1] it is sketched that one can deduce from Serre duality that

λ(ModForm(Mp2(Z), 2− k, V )) = (λ(HolModForm(Mp2(Z), k, V ∗))⊥ ,

and in [loc. cit., Lemma 4.3] this is refined to

λ(ModForm(Mp2(Z), 2− k, V )Z)⊗ C =
(
Gal(Q|Q)λ(HolModForm(Mp2(Z), k, V ∗)

)⊥
.

It is also shown that the last space has finite index in Sing(Mp2(Z), V ).

(11.3.8) Let LZ(p) a quadratic lattice with non-degenerate quadratic form QL of signa-
ture (m− 2, 2) and LZ ⊂ LZ(p) a Z-lattice s.t. Q ∈ Sym2(L∗Z).
Consider the Weil representation Weil = Weil(L∗Z/LZ) associated with a lattice LZ.
We know from (7.7) that on the characteristic function χL

Ẑ
the Weil representation of

Γ0(N)′ is given by a character, which on Γ0(N) may be described by a 7→ χ(a) :=

±Υ(aQL)Υ(QL)−1 extended to Γ0(N) by
(
a b
Nc d

)
7→ χ(a). It has values in ±1 if m is

even and in µ4 if m is odd. The sign of χ(a) is determined by the lift to Γ0(N)′. It is
always +1, if m is even.
Hence, by the adjunctions

HomΓ0(N)′(χ,Weil) = HomSp′2(Z)(indSp′2(Z)
Γ0(N)′ χ,Weil)

and
HomΓ0(N)′(Weil, χ) = HomSp′2(Z)(Weil, indSp′2(Z)

Γ0(N)′ χ)

and considering injection of χL
Ẑ
, resp. evaluation at 0, on the left hand sides, we get

maps
α : indSp′2(Z)

Γ0(N)′(χ)→Weil

and
β : Weil→ indSp′2(Z)

Γ0(N)′(χ)

on the right hand sides.
Accordingly we get maps

α′ : HolModForm(Sp′2(Z), k, indSp′2(Z)
Γ0(N)′(χ))→ HolModForm(Sp′2(Z), k,Weil)
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and

β′ : HolModForm(Sp′2(Z), k,Weil)→ HolModForm(Sp′2(Z), k, indSp′2(Z)
Γ0(N)′(χ))

as well.
This yields a corresponding decomposition:

HolModForm(Γ0(N)′, k,C) = ker(α′)⊕ im(β′).

(11.3.9) Lemma. α and β are Galois invariant with the coordinate-wise Galois action
on Weil and the action (9) on ind. The above decomposition is defined over Q(i) (or Q
if m is even).

Proof. This second statement follows immediately from the first because the condition
of being in ker(α′) or im(β′) is Galois invariant.
The first statement is proven by an explicit examination (cf. 12) of Weil for invariance
under Gal(C|Q(i)) in any case and for Gal(C|Q), if m is even.

(11.3.10) Remark. For prime-cyclic L∗Z/LZ ∼= Fp (in particular m even), we have
χ(a) =

(
a
p

)
, and the decomposition above is well-known as decomposition into + and −

space: We have im(α)m = Cχ±κ+L
Ẑ
where QL(κ) ≡ m

p (1), hence for (m, p) = 1 we get

im(β)m
p

∼=

0 m
p is not represented by L∗Z/LZ,

C m
p is represented by L∗Z/LZ,

and with interchanged conditions for ker(α). (For the comparison with other work, note:
the am

p
via the above identification with C are the coefficients am of the image of f under

the Fricke involution).

(11.3.11) Assume now that n ≥ 3 or n = 2 and Witt rank of LQ = 1.
With the result above, we are able to construct a Borcherds product Ψ(F ) whose divisor

div(Ψ(F )2) =
∑

m∈Q<0

Z(LZ, < −m >, am;K) + Ξ

satisfies certain special properties (see theorems 11.3.13-11.3.16 below).
First we need a lemma:

(11.3.12) Lemma. Let LZ be a lattice of signature (m − 2, 2), m ≥ 4. Let Weil0 be
a subrepresentation of the Weil representation Weil(L∗

Ẑ
/LẐ), which is, as a subspace

defined over Q. Let {M(m)}m∈Q≥0 be a collection of subvector spaces M(m) ⊆Weil∗0,m
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(for the notation, see 11.3.8), such that
∑
m dim(M(m))→∞.

Assume that any modular form in HolModForm(Sp′2(Z),Weil∗0, m2 ) with Fourier coeffi-
cients supported only on M vanishes.

i. There is an F ∈ ModForm(Sp′2(Z),Weil0, 2− m
2 ) with Fourier expansion:

λ(F ) =
∑
m∈Q

cmq
m

with c0(0) 6= 0 and all cm ⊥M(−m),m < 0,

ii. Let 0 > l ∈ Q and cl ∈Weil0,l with cl 6⊥M(−l) be given.

There is an F ∈ ModForm(Sp′2(Z),Weil0, 2− m
2 ) with Fourier expansion:

λ(F ) =
∑
m∈Q

cmq
m

with c0(0) 6= 0, all cm ⊥M(−m),m < 0,m 6= l and cl is the given one.

Proof. (Compare [15, Lemma 4.11])
(i) Let SingM (Sp′2(Z),Weil0) ⊂ Sing(Sp′2(Z),Weil0) be the subspace, where the coef-
ficients satisfy cm ⊥ M(m),m > 0. Obviously SingM (Sp′2(Z),Weil0)⊥ is the sub-
space PowSerM (Sp′2(Z),Weil∗0), where c∗m ∈ M(m) for all m > 0 and c∗0 = 0. Since
λ(ModForm(Sp′2(Z), 2− m

2 ,Weil0)Q)⊗C has finite index in Sing(Sp′2(Z),Weil0) [5] and∑
m dim(M(m)⊥)→∞, we have

λ(ModForm(Sp′2(Z), 2− m

2 ,Weil0)Q) ∩ SingM (Sp′2(Z),Weil0)Q 6= 0.

We want to show that the application [c0(0)] : Sing(Sp′2(Z),Weil0)Q → Q does not vanish
on this intersection. Since(

λ(ModForm(Sp′2(Z), 2− m

2 ,Weil0)Q) ∩ SingM (Sp′2(Z),Weil0)Q
)⊥

=λ(HolModForm(Sp′2(Z), m2 ,Weil∗0)) + PowSerM (Sp′2(Z),Weil∗0)Q,

Note that λ(HolModForm(Sp′2(Z), m2 ,Weil∗0,C)) is a Galois invariant subspace because of
(11.3.6), and because Weil0 is, as a subspace, defined over Q.
Let us assume that there is a relation

[c0(0)] = λ(f) + φ,

where f ∈ HolModForm(Sp′2(Z), 2− m
2 ,Weil∗0) and φ is in PowSerM (Sp′2(Z),Weil∗0).

From this follows that f is a modular form, whose coefficients satisfy c∗m ∈ M(m).
Therefore f = 0, a contradiction.
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(ii) Since cl 6⊥M(l), we find a c∗l ∈M(l) such that c∗l cl 6= 0. We have to show that also
the element [c∗l ql] : Sing(Sp′2(Z), ρ)Q → Q does not vanish on the intersection above,
where now M(l) has been set to 0.
For if this is not the case, we can add an appropriate element not being in its kernel to
our original F to get the result. Suppose that [c∗l ql] vanishes. Then we get a relation:

[c∗l ql] = λ(f) + φ,

where f ∈ HolModForm(Sp′2(Z), 2 − m
2 ,Weil∗0) and φ is in PowSerM (Sp′2(Z),Weil∗0).

Therefore f = 0 as above, a contradiction.

We will now show several theorems, stating that there exist Borcherds lifts, whose divisor
has special properties. This is an essential ingredient in the calculation of arithmetic
volumes later. To not interrupt the discussion, we refer to the next section (11.4) for
several elementary lemmas on quadratic forms which are needed, and to section (11.5)
for several facts about vanishing of modular forms with sparse Fourier coefficients.

(11.3.13) Theorem. i. Let LZ(p) be an isotropic lattice of signature (m − 2, 2),
m ≥ 4, there is a lattice LZ ⊂ LZ(p), such that up to multiplication of QL with a
scalar ∈ Z∗(p) there is an F ∈ ModForm(Sp′2(Z), 2− m

2 ,Weil(L∗Z/LZ)) with integral
Fourier coefficients, such that Ψ(F ) has nonzero weight,
all occurring Z(LZ, < −m >, am;K) in div(Ψ(F )) are p-integral, i.e. consist of
canonical models of Shimura varieties M(KO(L′Z(p)

)), for various lattices L′Z(p)
with non-degenerate quadratic form.

ii. We find an F above, such that div(Ψ(F )) contains, in addition, precisely one
Z(LZ, < m >, κ;K), p|m with non-zero multiplicity.

Proof. (i) Choose any lattice of the form LZ = H ⊕ L′Z in LZ(p) . Let

M(m) =
{

0 |m|p = 1,
Weil∗m |m|p 6= 1.

Then all Z(LZ , < −m >, cm;K) with cm ⊥M(m) consist of p-integral canonical models
of Shimura varieties M(KO(L′Z(p)

)) because v⊥, for any v ∈ LZp with QL(v) = m,
|m|p = 1, is unimodular.
To construct the required Borcherds form, by lemma (11.3.12, i), we have to show that
any modular form f ∈ HolModForm(Sp′2(Z), m2 ,Weil∗) whose Fourier coefficients are
supported only on M , vanishes. But every component of f is (in particular) a modular
form for some Γ(N). It vanishes by lemma (11.5.1).
For (ii), use lemma (11.3.12, ii).
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(11.3.14) Theorem. i. Let LZ(p) be a lattice of signature (3, 2) and Witt rank
1, there is a lattice LZ ⊂ LZ(p), such that up to multiplication of QL with a scalar
∈ Z∗(p). there is an F ∈ ModForm(Mp2(Z), 2 − m

2 ,Weil) with integral Fourier
coefficients, such that Ψ(F ) has nonzero weight, all occurring Z(LZ , < −m >
, am;K) in div(Ψ(F )) are p-integral, i.e. consist of canonical models of Shimura
varieties M(KO(L′Z(p)

)), for various lattices L′Z(p)
with non-degenerate quadratic

form, such that L′ has signature (2, 2) and Witt rank 1.

ii. Up to multiplication of QL with a scalar ∈ Z∗(p), for every L′Z(p)
of signature

(2, 2), Witt rank 0, we find a lattice L of signature (3, 2), Witt rank 1, such that
in div(Ψ(F )) above there occurs, in addition to the subvarieties above, precisely
one Z(L,< l >, ϕ;K) with non-zero coefficient, consisting of canonical models of
Shimura varieties M(KiO(L′Z(p)

)) for various different admissible Ki’s.

Proof. (i) By lemma (11.4.3), we may multiply QL by a scalar such that there is a lattice
LZ ⊂ LZ(p) , with cyclic L∗Z/LZ of order 2D′ where D′ is square-free of the form

LZ = H ⊕ L′Z.

By the very construction (7.1) of the Weil representation, we know that Weil(L∗Z/LZ)
decomposes

Weil(L∗Z/LZ) =
⊗
l|D

Weil(L∗Zl/LZl),

and for each l we have a decomposition

Weil(L∗Zl/LZl) = Weil(L∗Zl/LZl)
+ ⊕Weil(L∗Zl/LZl)

−,

into irreducible representations, here L∗Zl/LZl cyclic of prime order (resp. order 2 or 4)
is used. (If the order is 2, Weil(L∗Z2

/LZ2)− is zero).
We will work with the irreducible representation

Weil(L∗Z/LZ)+ :=
⊗
l

Weil(L∗Zl/LZl)
+,

with product basis build from the basis χ±κ+LZl
∈ Weil(L∗Zl/LZl)+. There will be a

basis vector of the form
γ :=

∑
χκ+L

Ẑ
,

where the sum runs only over primitive κ ∈ L∗Z/LZ.
Let

M(m) =
{

(Cγ)⊥ |m|p = 1,
(Weil(L∗Z/LZ)+)∗m |m|p 6= 1.

Note: Every v⊥ such that γ(v) 6= 0 with QL(v) = m, |m|p = 1 is unimodular. It is also
isotropic because by lemma (11.4.3) m is already represented by L′

Ẑ
.
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To construct the required Borcherds form, by lemma (11.3.12, i), we have to show
that any modular form f ∈ HolModForm(Mp2(Z), m2 , (Weil(L∗Z/LZ)+)∗) with Fourier
coefficients supported only on M vanishes. Note that Weil(L∗Z/LZ)+ is defined over Q
as a subvectorspace.
Now γ ◦ f vanishes by (11.5.1). Since Weil(L∗Z/LZ)+ is irreducible, lemma (11.5.3) tells
us f = 0.
(ii) Use (11.4.5) to construct the lattice LZ and Z(LZ, < x >,LZ;K) consists obviously
of the required models. Since χL

Ẑ
6⊥ γ⊥, apply lemma (11.3.12, ii).

(11.3.15) Theorem. i. Let LZ(p) be an isotropic lattice of signature (2, 2) and
fundamental discriminant −q, q a prime ≡ −1 4, there is a lattice LZ ⊂
LZ(p), such that up to multiplication of QL with a scalar ∈ Z∗(p), there is an F ∈
ModForm(Sp2(Z), 2−m

2 ,Weil(L∗Z/LZ)) with integral Fourier coefficients, such that
Ψ(F ) has nonzero weight,

all occurring Z(L,< −m >, am;K) in div(Ψ(F )) are p-integral, i.e. consist of
canonical models of Shimura varieties M(KO(L′Z(p)

)), for various lattices L′Z(p)

with non-degenerate quadratic form, such that L′ has signature (1, 2) and Witt
rank 1.

ii. Up to multiplication of QL with a scalar ∈ Z∗(p), for every L′Z(p)
of signature

(1, 2), Witt rank 0, we find a lattice L of signature (2, 2), Witt rank 1 and fun-
damental discriminant −q, q a prime ≡ −1 4 (as in i), such that in div(Ψ(F ))
above there occurs, in addition to the subvarieties above, precisely one Z(L,< l >
, ϕ;K) with non-zero coefficient, consisting of canonical models of Shimura vari-
eties M(KiO(L′Z(p)

)) for various different admissible Ki’s.

Proof. (i) Let Weil0 be < Sp2(Z)χL
Ẑ
>, which is irreducible in this case, hence isomor-

phic to im(β) (11.3.8), and as a subspace defined over Q.
By lemma (11.4.3) we may multiply QL by a scalar such that there is a lattice LZ ⊂ LZ(p) ,
with cyclic L∗Z/LZ of order q, of the form

LZ = H⊕ < x2 + xy + 1− q
4 y2 > .

A Z(L,< m >, κ;K) (for admissible K) consists of Shimura varieties of the required
form, if v⊥ for v ∈ ±κ + LẐ, QL(v) = m is isotropic. This is the case, if and only if m
is represented by < x2 + xy + 1−q

4 y2 >. Hence define

M(m) :=
{

Weil∗0,m |m|p 6= 1,
Weil∗0,m ∩R(m)⊥ |m|p = 1,

where R(m) = {f ∈Weil0,m | ∃v ∈< x2 + xy + 1−q
4 y2 >A(∞) : f(v) 6= 0, QL(v) = m}.
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We know (11.3.10) that Weil∗0, j
q

is zero, if χq(j) = −1. The definition of M(m) and

(11.4.4) imply that for primes p′ 6= p with χq(p′) = 1, M(p
′

q ) is also zero.
To construct the required meromorphic modular form, by lemma (11.3.12), we have
to show that any modular form f ∈ HolModForm(Sp2(Z), m2 ,Weil∗0) with Fourier co-

efficients supported only on M vanishes. Let f ′ := ρ(
(

0 −1
1 0

)
)f . We have f ′0 =

f0 +
∑
±i f±i. We know that f ′0(qτ) is a modular form for Γ0(q) again. From the above

follows that all Fourier coefficients ap′ of f ′0(qτ) for p′ 6= p vanish. The vanishing of f ′0
now follows from theorem (11.5.2) and that of f by lemma (11.5.3).
(ii) Use (11.4.2) to construct the lattice LZ and Z(LZ, < x >,LZ;K) consists obviously
of the required models. Since χL

Ẑ
6⊥ γ⊥, apply lemma (11.3.12, ii).

(11.3.16) Theorem. Let LZ(p) be a lattice of signature (3, 2) of Witt rank 2. There
is a lattice LZ ⊂ LZ(p), such that up to multiplication of QL with a scalar ∈ Z∗(p), there
is an F ∈ ModForm(Mp2(Z), 2 − m

2 ,Weil(L∗Z/LZ)) with integral Fourier coefficients,
such that Ψ(F ) has nonzero weight, div(Ψ(F )) consist of exactly one Z(LZ, < −l >, al)
with non-zero coefficient, which itself consists of canonical models of a Shimura varieties
M(KO(L′Z(p)

)), for any (a priori) given lattice L′Z(p)
of signature (2, 2), Witt rank ≥ 1.

Proof. Define LZ(p) = L′Z(p)
⊥< x >, where x is represented by L′Z(p)

and |x|p = 1.
Up to multiplication of QL by a scalar, we find a lattice LZ = H2 ⊥< 1 >⊂ LZ(p) .
Weil = Weil(L∗Z/LZ) is irreducible in this case. Define

M(m) =
{

Weil∗m m 6= x,

0 m = x.

To construct the required meromorphic modular form, by lemma (11.3.12), we have to
show that any modular form f ∈ HolModForm(Mp2(Z), 5

2 ,Weil∗) with Fourier coeffi-
cients supported only on M vanishes. This follows because

HolModForm(Mp2(Z), 5
2 ,Weil∗) =

HolModForm(Mp2(Z), 5
2 , im(α∗)) ⊂ HolModForm(Γ0(4)′, 5

2 , χ
′
4).

The last space is 1-dimensional in this case, hence the first contains only the Eisenstein
series, which has a non-zero coefficient ax.

11.4. Lemmata on quadratic forms

(11.4.1) Lemma. Let LZ(p) be an unimodular lattice of signature (2, 2) and Witt rank
1, with (fundamental) discriminant D. Up to multiplication of QL by a unit, there exists
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a lattice LZ ⊂ LZ(p) of the form

LZ = H⊕ < x2 + xy + 1−D
4 y2 >

if D ≡ 1 modulo 4 or
LZ = H⊕ < x2 − D

4 y
2 >

if 4|D.

Proof. We may write LZ(p) = H ⊕ L′Z(p)
and assume that L′Z(p)

represents 1. L′Z(p)
is

anisotropic by assumption. Then it is well-known and elementary that LZ(p) contains a
Z-lattice of the required form.

(11.4.2) Lemma. Let LZ(p) be a unimodular anisotopic lattice of signature (1, 2). Up
to multiplication of QL with a scalar, there exists a unimodular lattice L′Z(p)

= LZ(p)⊕ <
x > which is isotropic and of prime fundamental discriminant −q, q 6= p and a lattice
L′Z ⊂ L′Z(p)

of the form

L′Z = H⊕ < x2 + xy + 1− q
4 y2 > .

Proof. Write LZ(p) =< α1, . . . , α3 >, with αi square-free. Let D be the square-free part
of
∏
αi. We may find a prime q, different from p, such that q ≡ −1(4) and for any l 6= 2

with νl(
∏
αi) = 2 (hence l - D), we have Dq ≡ −αj modulo Q2

l , where αj is the one not
divisible by l.
We may also prescribe its residue mod 8, such that LQ2⊕ < Dq > is isotropic. For if they
were anisotropic for q, q′ congruent to −1,−5 (8) respectively, we would get < Dq >'<
Dq′ > from Witt’s theorem and the uniqueness of the 4-dimensional anisotropic space,
which is absurd.
Hence

LZ(p)+ < Dq >

is unimodular, of signature (2, 2) with square-free discriminant q. It is isotropic at all
l 6= 2 either because of the congruence condition on Dq. Hence the Witt rank is 1 and
we may apply the previous lemma to it (this changes also the form on LZ(p) by a scalar)
to get the result.

(11.4.3) Lemma. Let LZ(p) be a unimodular anisotropic lattice of signature (1, 2). Up
to multiplication of QL by a scalar, there is a lattice LZ ⊂ LZ(p) of discriminant D = 2D′,
where D′ is square-free and with L∗Z/LZ cyclic.
It has the property that a primitive κ ∈ L∗

Ẑ
/LẐ represents an m ∈ Q if and only if

q(κ) ≡ m (1).
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Proof. First we prove the existence of the lattice. Write LZ(p) =< α1, . . . , α3 >, with
αi ∈ Z square-free. It suffices to construct them locally. The lattice LZ =< α1, . . . , α3 >Z
already satisfies the assumption for all l 6= 2. For l = 2 there are 2 cases:
1. The space is isotropic, whence there is, up to multiplication of the lattice by 2, a
lattice of the form

LZ2 = H ⊥< 1 >,

which has discriminant 2.
2. The space is anisotropic, hence, up to multiplication of the lattice by 2, of the form

LQ2 =< 1, 3, 2ε >

with ε ∈ {1, 3,−3,−1}. In it there exists the lattice

LZ2 =< x2 + xy + y2 >⊥< 2ε >

of discriminant 4, with L∗Z2
/LZ2 cyclic of order 4.

The only-if part of the claimed property is clear. For the if part, it suffices to show
that m is represented by LQl for all l. Consider the space LQl⊕ < −m >. It is
automatically isotropic at all l - D. But at all l|D it is isotropic as well because of
the condition q(κ) ≡ m (1). For l = 2, we need only to consider the case, where
LZ2 =< x2 + xy + y2 >⊥< 2ε >. We get the equation

εz2 ≡ 8m (8),

with z ∈ (Z/8Z)2. Hence m(Q∗2)2 = 2ε(Q∗2)2. This forces the form LQl⊕ < −m > to be
isotropic.

The strong form of the lemma is wrong for lattices of dimension 2. However, we have
the following weaker form:

(11.4.4) Lemma. Let LZ(p) be a unimodular anisotropic lattice of signature (1, 1) and
of prime discriminant q ≡ −1 (4). Up to multiplication of QL by a unit ∈ Z∗(p), there is
a lattice LZ ⊂ LZ(p) of discriminant q of the form

LZ =< x2 + xy + 1− q
4 y2 > .

It has the property that a primitive κ ∈ L∗
Ẑ
/LẐ represents an m = q

p ∈ Q, where q is
prime, if and only if q(κ) ≡ m (1).

Proof. The existence of the lattice is well-known (compare also 11.4.1). The property
follows directly from the law of quadratic reciprocity.



250 Part III. Hermitian automorphic vector bundles and Arakelov geometry

(11.4.5) Lemma. Let LZ(p) be a unimodular anisotopic lattice of signature (2, 2). Up to
multiplication of QL with a scalar, there exists a unimodular lattice L′Z(p)

= LZ(p)⊕ < x >

of signature (3, 2) and a Z-lattice L′Z ⊂ L′Z(p)
of discriminant D = 2D′, where D′ is

square-free of the form
L′Z = H ⊕ L′′Z.

such that (L′Z)∗/L′Z is cyclic.

Proof. Take L′Z(p)
= LZ(p)⊕ < x > for an arbitrary negative x ∈ Z∗(p). It is automatically

isotropic, hence of the form
L′Z(p)

= H ⊕ L′′Z(p)
.

Applying lemma (11.4.3) to L′′Z(p)
, we get the result (this multiplies also QL on LZ(p) by

a scalar — note that multiplying the quadratic form on H by a scalar does not affect its
class).

11.5. Lacunarity of modular forms
(11.5.1) Lemma. Let N > 0 be an integer and p a prime with p - N .
Let f be a holomorphic modular form of (half-)integral weight k 6= 0 for the group Γ(N).
If f has a Fourier expansion of the form

f =
∑

n∈Q≥0

anq
n,

where an is zero, unless n is an integral multiple of p
N , then f = 0.

Proof. The assumption implies that f is periodic with period N
p . It is hence a modular

form for the group Γ, generated by Γ(N) and the matrix
(

1 N
p

0 1

)
. This group contains

the product

C =
(

1 N
p

0 1

)(
1 0
N 1

)
=
(

1 + N2

p
N
p

N 1

)
.

The trace of C is equal to 2+ N2

p . Since p - N , its p-adic valuation is > 1. Hence at least
one of the eigenvalues of C has p-adic valuation > 1. (We choose some fixed extension
of the p-adic valuation to Q). It follows that ‖Ci‖ → ∞ for any chosen p-adic matrix
norm ‖ · ‖. From this, it follows that [Γ : Γ(N)] =∞. For assume that there are finitely
many representatives αi. Let ν be the maximum of their p-adic matrix norms. Every
element γ ∈ Γ is of the form

αiγ‘

for γ‘ ∈ Γ(N). The matrix norm of γ is hence ≤ ν. A contradiction. Hence Γ cannot be
a discrete subgroup, and since k 6= 0, we have f = 0.
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(11.5.2) Theorem. Let q ≡ 1 (4) be a prime and S a finite set of primes. Let χq(x) =(
x
q

)
and k ≥ 2 be an integer.

If f ∈ HolModForm(Γ0(q), k, χq) has a Fourier expansion of the form

f =
∑

n∈Z≥0

anq
n,

with algebraic an, where (i) an = 0, whenever χp(n) = −1, and (ii) ap = 0, whenever
p 6∈ S.
Then f = 0.

Proof. This follows from an idea of [82], see also [15, Lemma 4.14]: Condition (i) forces
f to be in the subspace HolModForm(SL2(Z), k, im(α)) (see 11.3.10). Since q ≡ 1 (4),
there are no forms of type ‘CM’ in this space.
Since the an are algebraic, we can write f as a linear combination

f = c0E0 + c∞E∞ +
n∑
i=1

cifi,

where the ci are algebraic, the fi are cuspidal Hecke eigenforms and E0, E∞ are the
Eisenstein series. Assume n minimal.
In [82, Lemma 1] it is shown that for all sufficiently large primes l the mod l represen-
tation ρ := ρ1,l × · · · × ρn,l contains a subgroup conjugated to

G = SL2(F1)× · · · × SL2(Fn)

and im(ρ)/G is Abelian, where the Fi’s are defined in [loc. cit.]. Choose l such that all
|ci|l = 1, whenever ci 6= 0.
If c0 or c∞ is 6= 0, we proceed as follows: By Chebotarev, there is a positive density of
primes p, such that the image of Frobp is conjugated to

A =
(

0 1
−1 0

)
× · · · ×

(
0 1
−1 0

)
.

Choose ε = ±1 according to whether c0 ≡ c∞ (l) or not. Since G has no nontrivial
Abelian quotient (l > 4) and because im(ρ)/G is Abelian, by possibly multiplying A by
a scalar matrix, we may assume in addition that χq(p) = ε and pk−1 ≡ ε (l). Hence
|ap(c0E0 + c∞E∞)|l = 1 and |ap(fi)|l < 1, We get ap(f) 6= 0 for infinitely many primes,
a contradiction. If c0 = c∞ = 0, choose

A =
(

1 0
0 1

)
×
(

0 1
−1 0

)
× · · · ×

(
0 1
−1 0

)

and argue as before.
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(11.5.3) Lemma. Let Γ ⊂ Mp2(R) be an arithmetic subgroup and Vρ, ρ an irreducible
representation of Γ. Let f ∈ HolModForm(Γ, ρ, k) and β : Vρ → C be a non-zero linear
form. If β ◦ f = 0 then f = 0.

Proof. This follows immediately from the irreducibility: Choose a basis {ei} of Vρ such
that β = e∗0. Since Vρ is irreducible, for any i there is an operator of the form

Oi =
∑
j

αjρ(γj),

which interchanges ei and e0. Consider the form Oi ◦ f . e∗0 ◦ Oi ◦ f is equal to e∗i ◦ f
on the one hand. On the other hand it is equal to

∑
i αi(e∗0 ◦ f)|kγi, which is zero by

assumption. Hence f = 0.

11.6. Borcherds products and Arakelov geometry

(11.6.1) Let the signature of LQ be (m − 2, 2) with m ≥ 4 and assume the Witt rank
to be 1 if m = 4. Let LZ be a lattice of the form LZ = H ⊥ L′Z.
Take a modular form F as in (11.3) with Fourier expansion

F (τ) =
∑
m∈Q

cmq
m,

where cm ∈Weil(L∗Z/LZ) ⊂ S(A(∞)), with c0(0) 6= 0.
We will now prove an average and local version of (10.5.4). It is used in an essential way
in the proofs of (10.5.7) and (10.5.8).

(11.6.2) Theorem. Under the conditions above, we have:∑
q

µ′(LZ, < −q >, cq; 0) volE(M(K∆O(L)))

+
∑
q

degE(Z(LZ, < −q >, cq;K))v̂olE,p(M(K∆O(L)))

=
∑
q

v̂olE,p(Z(LZ, < −q >, cq;K))

in R(p). Here deg denotes the relative geometric degree.

Proof. Let f0 := Ψ(F ) be the Borcherds lift of F — cf. (7.8) and (10.4.12).
We may calculate v̂olE,p(M(K∆O(L))) In the following way:
First assume w.l.o.g. (e.g. by taking a lattice with large discriminant in the construction
of F or by just pulling back Ψ(F ) afterwards) that K is neat.
We know by (10.4.4) that Ξ∗(E)−1 is ample on M(KO) and that some power of it has no
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base points on M(K∆O). Choose some sufficiently fine, smooth, complete, and projective
∆ (by lemma 9.4.5 the arithmetic volume does not depend on this choice) such that
all models exist and all special cycles involved embed nicely as projective schemes (cf.
10.3). Ξ∗(E)⊗k, for some negative k, defines a morphism

α : M(K∆O)→ Pr(Z(p)),

whose restriction to M(KO) is an embedding. Let D be the boundary divisor. Recall:
M and D are defined over Z(p). We have dim(im(D)C) ≤ 1 because Ξ∗(E)⊗kC induces
the Baily Borel compactification. In addition, we may also choose k and F such that
f0 ∈ H0(M(K∆O),Ξ∗(E)⊗k) (10.4.12).

Up to increasing k again, we may find hyperplanes H1, . . . ,Hn intersecting properly
with im(div(f0)), not intersecting (simultaneously) in im(D) at all, and not intersecting
(simultaneously) in the locus, where αFp is not finite. Furthermore, we may assume
that already H1 and H2 do not intersect in im(D)C. Let f1, . . . , fn be the corresponding
sections. Furthermore by (10.4.12, ii)

div(f0) · div(f1) · · · · · div(fn) = 1
2
∑
m<0

Z(LZ, < −m >, c(m);K) · div(f1) · · · · · div(fn)

because the fi, i ≥ 1 do not intersect in D simultaneously.

Note that the arithmetic volume is the sum of this expression and

( 1
2πi)

n
∫

g0 ∗ g1 ∗ · · · ∗ gn,

where
gi = (kΩ, log Ξ∗h(fi))

is the corresponding Green object. Here

Ω := c1(Ξ∗(E),Ξ∗(hE))

is the first Chern form of the bundle Ξ∗(E) with respect to the (log-singular) Hermitian
metric Ξ∗hE . On any parametrization defined by a point-like boundary component as
in (10.2.17) it is given by

d dc log(Y 2)

where Z = X + iY ∈ L0(C).

By (11.6.3) below, we may write this integral as

= 1
(2πi)n

∫
M(K∆O)C

G0kΩ ∧ · · · ∧ kΩ

+ 1
(2πi)n−1

∫
supp(div(f0))∩M(K∆O)C

g1 ∗ · · · ∗ gn
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hence we get the equation (∈ R(p))

1
(2πi)n

∫
M(K∆O)C

G0kΩ ∧ · · · ∧ kΩ

+ kn+1v̂olE,p(M(K∆O(L)))

=kn
∑
q

v̂olE,p(Z(LZ, < −q >, cq;K))

(cf. also 9.3.7) and therefore the required one, taking into account that

1
2
∑
q

degE(Z(LZ, < −q >, cq;K)) = k = c(0, 0)
2

(relative degree) and by (10.4.12, iii):

1
(2πi)n

∫
M(K∆O)C

G0Ω ∧ · · · ∧ Ω ≡

− volE(M(K∆O)C)
∑
q

µ′(LZ, < −q >, cq; 0),

in R(p).

(11.6.3) Theorem. Let LQ be as before, i.e. of signature (m − 2, 2) with m ≥ 5, or
m = 4 and the Witt rank is 1.
Let f0, . . . , fn be sections of Ξ∗(E)⊗k on M(K∆O), intersecting properly:⋂

i

supp(div(fi)) = ∅,

such that
supp(div(f1)) ∩ supp(div(f2)) ∩ supp(D) = ∅

(Witt rank 2), resp.
supp(div(f1)) ∩ supp(D) = ∅

(Witt rank 1).
We have

1
(2πi)n

∫
M(K∆O)C

g0 ∗ · · · ∗ gn

= 1
(2πi)n

∫
M(KO)C

G0kΩ ∧ · · · ∧ kΩ

+ 1
(2πi)n−1

∫
supp(div(f0))∩M(KO)C

g1 ∗ · · · ∗ gn.

All occurring integrals exist.
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Proof. According to [15, Theorem 1.14], we have

1
(2πi)n

∫
M(K∆O)C

g0 ∗ · · · ∗ gn

= lim
ε→0

(
1

(2πi)n
∫

M(K∆O)C−Bε(D)
G0ω1 ∧ · · · ∧ ωn

− 2
(2πi)n−1

∫
∂Bε(D)

G ∧ dcG0 −G0 ∧ dcG
)

+ 1
(2πi)n−1

∫
supp(div(f0))∩M(KO)C

g1 ∗ · · · ∗ gn

where we take any representation

g1 ∗ · · · ∗ gn = (ω1 ∧ · · · ∧ ωgn , G).

The integral
1

(2πi)n
∫

M(KO)
G0ω1 ∧ · · · ∧ ωn

exists by [12, Theorem 2] because

ω1 ∧ · · · ∧ ωn ∼ Ωn,

and we excluded the cases n = 1, Witt rank 1 and n = 2, Witt rank 2.
Any point on the boundary maps either to a 0 or 1-dimensional boundary stratum in
the Baily-Borel compactification. We will prepare special neighborhoods of these points
and call them of first (resp. second) type for the rest of this section.

(11.6.4) A point of the first type lies (identification via boundary map) on the excep-
tional divisor of a torus embedding constructed by means of the torus Gm ⊗KZ, where
KZ is a lattice in < z > ⊗ < z >⊥ / < z >, where < z > is a corresponding isotropic
line. The bundle Ξ∗E is trivial over the whole torus and the trivializing section s has
norm

hE(s) =
∑
i,j

〈λi, λj〉 log(ri) log(rj),

where λi constitutes a basis on KZ and ri is the corresponding absolute value in An ∼=
M(K1

∆1
B) (here ∆′ is just 1 top-dimensional cone together with all its faces, generated by

λ1, · · · , λn. At a point of any other stratum of the compactification we may write this
as ∑

i<m,j<m

〈λi, λj〉 log(ri) log(rj) +
∑
i<m

log(ri)ψi(z) + ψ0(z),

where the ψi are smooth functions in a neighborhood of the point, satisfying d dc ψi = 0.
(just incorporate all terms with log ri, i ≥ m which are non-singular at the point in
question.).
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(11.6.5) A point p of the second type lies (again, identification via boundary map)
at the zero section of the line bundle over M(K1

∆1
B) over M(K1

∆1
B/UB) which a family

of Abelian varieties over M(KH(I)). Choose a trivializing section s of Ξ∗E on a small
neighborhood of the projection of p to M(KH(I)). Such a section was calculated in
(10.4.16), with norm of the form

hE(s) = log(r1)ψ1(zn) + ψ0(z),

where ψ1 is harmonic and does only depend on zn (coordinate on M(KH(I))) and ψ0 is
smooth.

(11.6.6) We will prepare an ε-tube neighborhood of D as follows. We prepared neigh-
borhoods around every point of the boundary above. Take a finite cover Ui consisting
of these. Let σi be a partition of unity defined on D, corresponding to the chosen cover.
Consider a neighborhood Ui with coordinates z1, · · · zi. Assume that D has the equation
(z1)a1 · · · (zn)an = 0. In any other cover Uj overlapping with Ui. D has the equation
(zj1)a

j
1 · · · (zjn)a

j
n = 0, where after a renumbering of the coordinates ak is either equal to

ajk or one of them is 0. If they are equal (i.e. the components of the divisor correspond),
we have

zjk = zk(f jk,0(z1, . . .̂
k , zn) + zkf

j
k(z1, . . . , zn)),

where f jk,0(z1, . . .̂
k , zn) does not depend on zk and is everywhere non zero on the overlap

in question. Define r′k =
∑
σj |zjk|. A global ε-tube neighborhood around D may now be

described as r′k ≤ ε for all k, where ak 6= 0 if ε is chosen small enough.

Write
r′k = rk

(∑
σj |f j0,k(z1, . . .̂

k , zk)|+ rkg

)
,

where g is a bounded C∞ function. If ε is small enough, 0 < r′i ≤ ε will ensure
rk = |zk| > 0. For each point z1, . . .̂

k , zn, {ϕk ∈ [0, 2π], r′k = ε} will parameterize a loop
around the corresponding component of D, independent of the current chart.

We may cover ∂Bε(D) by sets (in our local neighborhood Ui ∼= B(R))

St′k(R) = {z ∈ B(R) | r′k = ε, r′j ≥ ε if aj 6= 0},

for all k, where ak 6= 0.

We have for small r′k and some bounded C∞-function h:

rk =r′k

((∑
σj |f j0,k(z1, · · ·k̂ , zk)|

)−1
+ r′kh

)
,
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drk =drk ′
(∑

σj |f j0,k(z1, · · ·k̂ , zn)|
)−1

+ r′kdrk ′h

+ r′kd
((∑

σj |f j0,k(z1, · · ·k̂ , zn)|
)−1

+ r′kh

)
. (16)

(11.6.7) It suffices to show that on each of the sets

St′k(R) = {z ∈ B(R) | r′k = ε, rj ≥ δε if aj 6= 0},

for some small δ, the limit of the absolute integral

lim
ε→0

∫
St′
k
(R)
|G ∧ dcG0 −G0 ∧ dcG|,

for some (global!) representation

g1 ∗ · · · ∗ gn ∼ (Ωn, G)

is zero. First of all supp(div(f1)) ∩ supp(div(f2)) ∩ supp(D) by construction, hence we
may represent

G = σG1,2Ωn−2 + d dc((1− σ)G1,2)G′,

where, however, σ is equal to 1 in a neighborhood of D. We may furthermore represent
g1 ∗ g2 = (Ω2, G1,2) with

G1,2 = σ1G1Ω + d dc(σ2G1)G2,

where σ1 + σ2 = 1 is a partition of unity of the following form: The intersection of
div(f1) with D occurs precisely on the pre-image under the projection on the Baily-
Borel compactification of a set of isolated points in the 1-dimensional boundary stratum
isomorphic to some M(KH(I)). Choose a C∞-function pσ on M(KH(I)) with support
on some disc B(R) around one of these points, which is 1 on a smaller neighborhood of
the point.
We may assume that in Bε(D) for very small ε, σ1 is just the pre-image of pσ under the
projection M(K∆◦1B)→ M(KH(I)).
We have hence in a neighborhood of D:

G = σ1G1Ωn−1 + σ2G2Ωn−1 + (dσ2 ∧ dcG1)G2 ∧ Ωn−2

−(dc σ2 ∧ dG1)G2 ∧ Ωn−2 + (d dc σ2)G1G2 ∧ Ωn−2.

Since in any of the neighborhoods constructed above

G1 =
∑

aj log(rj) + log(hE(s)) + ψ(z) (17)
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for some harmonic function ψ, where s is the corresponding trivializing section of Ξ(E).
Since in any case (by 11.6.10) the limit of integrals of log-log growth-forms is 0, we are
reduced to show one the one hand that

lim
ε→0

∫
St′
k
(ε)
|dϕjσ?G?Ωn−1| = 0

and
lim
ε→0

∫
St′
k
(ε)
| log(rj) dc(σ?G?)Ωn−1| = 0

in neighborhoods of both types. Every other term in (17) yields a limit over an integral
of a form of log-log type, which is zero by (11.6.10).

If j = k we may rewrite rj by means of r′k and apply (20) of lemma (11.6.11). In the
other case we apply (21) of lemma (11.6.11). (Note that dϕj is trivially of the form
log(rj) times a log log-form.) After this, the vanishing of the limit ε → 0 follows from
(11.6.9).

On the other hand, we have to show

lim
ε→0

∫
St′1(ε)

|dϕ1 (dσ2 ∧ dcG1)− dc σ2 ∧ dG1 + (d dc σ2)G1) ∧G2 ∧ Ωn−2| = 0

(18)

lim
ε→0

∫
St′1(ε)

| log(r1) (dσ2 ∧ dcG1)− dc σ2 ∧ dG1 + (d dc σ2)G1) ∧ dcG2 ∧ Ωn−2| = 0

(19)

(here j = k = 1 because there cannot be an intersection of components above M(KH(I)))

Claim: For (19), we may w.l.o.g. assume that G2 is of the form log(hE(s)), where s is
the trivializing section valid around the whole neighborhood of a point on M(KH(I)), if
we in addition show

lim
ε→0

∫
St′1(ε)

|dr1
r1

(dσ2 ∧ dcG1 − dc σ2 ∧ dG1 + (d dc σ2)G1) ∧ dcG2 ∧ Ωn−2| = 0.

For this, note that we constructed σ2 (in Bε(D)!) as the pre-image (by the projection
M(K1

∆◦1
B)→ M(KH(I)) of a function supported on a small disc around the zeros or poles

of f1 in the boundary of the Baily-Borel compactification. Let X be the pre-image of
the disc in some neighborhood of the boundary in M(K∆◦1B). Applying the theorem of
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Stokes to X ∩ ∂Bε(D), we get

0 =−
∫
X∩Bε(D)

G0 (dσ2 ∧ dcG1 − dc σ2 ∧ dG1 + (d dc σ2)G1)

∧ dcG2 ∧Ω ∧ Ωn−3

+
∫
X∩Bε(D)

G0 (dσ2 ∧ dcG1 − dc σ2 ∧ dG1 + (d dc σ2)G1)

∧ ddcG2 ∧ dc log(hE(s)) ∧ Ωn−3

+
∫
X∩Bε(D)

G0

− dσ2 ∧ ddcG1−ddc σ2 ∧ dG1 + d dc σ2 ∧ dG1︸ ︷︷ ︸
=0


∧ dcG2 ∧ dc log(hE(s)) ∧ Ωn−3

+
∫
X∩Bε(D)

dG0 ∧ (dσ2 ∧ dcG1 − dc σ2 ∧ dG1 + (d dc σ2)G1)

∧ dcG2 ∧ dc log(hE(s)) ∧ Ωn−3

The first line is the one we have to estimate. We may hence instead consider the
remaining three lines. Here all problematic integrals are of the form∫

X∩Bε(D)
log(r1)ξ′ ∧ ξ ∧ dc log(hE(s)) ∧ Ωn−2

or ∫
X∩Bε(D)

dr1
r1
∧ ξ′ ∧ ξ ∧ dcG2 ∧ dc log(hE(s)) ∧ Ωn−3,

where ξ′ is a smooth form generated by rndϕn and drn and ξ is log-log. The latter poses
no problem because dr1

r1
is, up to terms involving dr′1, a smooth form (16).

Now, after the estimates (22, 23) of lemma (11.6.11) we get vanishing of the limit ε→ 0
by (11.6.9) again.

(11.6.8) We will write the quantities in question in the basis

dϕ1, · · · ,dϕn, dr1, · · ·k̂ ,drn,dr′k,

Only the term
dϕ1 ∧ · · · ∧ dϕn ∧ dr1 ∧ · · ·k̂ ∧ drn

gives a nonzero contribution.
Call a form a (*)-form, if it is generated by log(log(ri))M ,

dϕ1, · · · ,dϕn,
dr1

r1 log(r1) , · · ·
k̂ ,

drn
rn log(rn)

and fdr′k for any f , which is smooth outside D.



260 Part III. Hermitian automorphic vector bundles and Arakelov geometry

(11.6.9) Lemma. For every (*)-form σ:∫
St′
k
(ε)
σ = O(log(| log ε|)M )

for some M .

Proof. Easy, see e.g. [12]. The (maybe highly singular) terms fdr′k play no role because
terms involving dr′k do not give any contribution to the integral.

(11.6.10) Corollary. For every log-log-growth-form ξ:

lim
ε→0

∫
St′
k
(ε)
ξ = 0.

Proof. We have by (16)
1

log(rk)
dϕi ≺

1
log(r′k)

σ,

and
drk

rk log(rk)
≺ 1

log(r′k)
σ,

where the σ are of (*)-form.
If ξ has correct degree, by definition, it involves at least either 1

log(rk)dϕk or drk
rk log(rk) .

Hence
ξ ≺ 1

log(r′k)
σ,

for some (*)-form σ. The statement follows by (11.6.9) because, of course, log grows
faster than any power of log− log.

(11.6.11) Lemma. If U = B(R) is a neighborhood of any type and i = 2, or i = 1 if
the Witt rank of LR is 1. For any log-log-growth form ξ of rank 2(n− i)− 1, we have

ξ ∧ Ωi ≺ 1
log(r′k)2σ, (20)

where σ is a (*)-form.
Also we have for any j 6= k

ξ ∧ Ωi ≺ 1
log(r′k) log(rj)

σ, (21)

where σ is another (*)-form.
If U = B(R) is a neighborhood of the second type (11.6.5), we have for any log-log-growth
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form ξ′∧ ξ of rank 2n−5 where ξ′ is a smooth form, generated by rndϕn and drn. where
rn, ϕn are the polar coordinates of the projection to a M(KH(I)) in a neighborhood of
the point.

dϕk ∧ ξ′ ∧ ξ ∧ Ω ≺ 1
log(r′k)

σ (22)

and
ξ′ ∧ ξ ∧ dc log(hE(s)) ∧ Ω ≺ 1

log(r′k)2σ. (23)

Proof. We have in any case:

dc log(ri) = dϕi, (24)

d log(ri) = dri
ri
, (25)

and

dc log hE(s) = dc hE(s)
hE(s)

, (26)

d log hE(s) = dhE(s)
hE(s)

, (27)

Ω ∼ d dc log hE(s) = dhE(s)
hE(s)

dc hE(s)
hE(s)

+ d dc hE(s)
hE(s)

. (28)

In a neighborhood of the first type (11.6.4), we may write

hE(s) =
∑
i,j<m

〈λi, λj〉 log(ri) log(rj) +
∑
i<m

log(ri)ψi(z) + ψ0(z),

where ψi are harmonic functions and ψ0 is smooth. Here the λi are linearly independent
and 〈λi, λj〉 > 0 if i 6= j. Hence for i 6= j always

hE(s)� log(ri) log(rj) (29)

and if QL(λi) > 0
hE(s)� log(ri)2. (30)

Hence

dc hE(s) = log(rk)(
∑
j<m

〈λk, λj〉dϕj + dc ψk) +
∑
i<m

dϕiψi

+
∑

i<m,j<m,i6=k
〈λi, λj〉 log(ri)dϕj +

∑
i<m,i 6=k

log(ri) dc ψk + dc ψ0 (31)
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dhE(s) = log(rk)(
∑
j<m

〈λk, λj〉
drj
rj

+ dψk) +
∑
i<m

drj
rj
ψi

+
∑

i<m,j<m,i6=k
〈λi, λj〉 log(ri)

drj
rj

+
∑

i<m,i 6=k
log(ri) dψk + dψ0 (32)

d dc hE(s) =dϕk(
∑
j<m

〈λk, λj〉
drj
rj

+ dψk) +
∑
i<m

drj
rj

dc ψi

+
∑

i<m,j<m,i6=k
〈λi, λj〉dϕi

drj
rj

+
∑

i<m,i 6=k
dϕi dψk + d dc ψ0. (33)

We now substitute drk
rk

by a form of shape

f
dr′k
r′k

+ ξ,

where ξ is smooth. This is possible by means of formula (16).
First assume i = 2. Ω2 is proportional to

d dc hE(s)
hE(s)

∧ d dc hE(s)
hE(s)

(34)

+ dhE(s)
hE(s)

dc hE(s)
hE(s)

∧ d dc hE(s)
hE(s)

. (35)

In (34), multiplying out the expression (33) squared, we have for every occurring sum-
mand S

S ≺ 1
log(rk)2σ ≺

1
log(r′k)2σ,

where σ is a (*)-form, using the estimate (29).
In (35), multiplying out the product of (31-33), we have

S ≺ 1
log(rk)2σ ≺

1
log(r′k)2σ,

using the estimate (29) again, except for the summands of the form

log(rk) log(rk)(
∑
j<m

〈λk, λj〉dϕj + dc ψk) ∧ (
∑
j<m

〈λk, λj〉
drj
rj

+ dψk) ∧ S, (36)

where S is any summand of (33).
But now in the expression ξ ∧Ω2 either occurs a dϕk

log(rk) from ξ, hence the estimate (20)
is true, or a rkdϕk occurs in S which satisfies a much stronger estimate, or a dϕk occurs
in S. It occurs, however, multiplied with (

∑
j<m〈λk, λj〉

drj
rj

+ dψk) so (36) is zero in
that case.
The estimate (21) is more easy and left to the reader.
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Now assume i = 1 and Witt rank not 2. Then, by the estimate (30), already every
summand S in (31-33) divided by hE(s) satisfies

S ≺ 1
log(ri)

σ ≺ 1
log(r′i)

σ.

The estimates (22, 23) do not involve neighborhoods of the first type.
In a neighborhood of the second type (11.6.5), we may write

hE(s) = log(r1)ψ1(zn) + ψ0(z),

where ψ1 is harmonic and depends only on zn and ψ0 is smooth.
Clearly in this case:

hE(s)� log(r1). (37)

Also

dc hE(s) = log(r1) dc ψ1(zn) + dϕ1ψ1(zn) + dc ψ0(z),

dhE(s) = log(r1) dψ1(zn) + dr1
r1
ψ1(zn) + dψ0(z),

d dc hE(s) = dϕ1 dψ1(zn) + dr1
r1

dc ψ1(zn) + d dc ψ0(z).

We now substitute again dr1
r1

by a form of shape

f
dr′1
r′1

+ ξ,

where ξ is smooth. This is possible by means of formula (16).
Here, for (20), we may argue exactly as before. (21) is vacuous in this type of neighbor-
hood. For (22): Write once again Ω as

d dc hE(s)
hE(s)

(38)

+dc hE(s)
hE(s)

∧ d dc hE(s)
hE(s)

. (39)

In (38), using (37), we have for any summand

S ≺ 1
log(r′i)

σ.

In (39), using (37) again, we get the same for any summand except possibly for

log(r1)2 dc ψ1(zn) ∧ dψ1(zn),

which cancels, however, with ξ′ because dc ψ1(zn) ∧ dψ1(zn) is proportional to rndϕn ∧
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drn.
For (22): Consider:

dc(hE(s))Ω = dc hE(s)
hE(s)

∧ d dc hE(s)
hE(s)

. (40)

Using (37) again, we now have for any summand

S ≺ 1
log(r′i)2σ,

except possibly for
dϕi dψ1(zn) log(r1) dc ψ1(zn),

which cancels with ξ′ because dc ψ1(zn) ∧ dψ1(zn) is proportional to rndϕn ∧ drn.
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