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SUMMARY 
 

Plasmodium spp. are apicomplexan parasites that rely on an obligate intracellular life-style. 

They depend on an evolutionary conserved actin-dependent molecular motor machinery that 

facilitates their motility, host cell invasion and egress. Furthermore parasite actin is implicated 

in endocytosis during blood stages. However, the molecular mechanisms that are involved in 

the spatiotemporal regulation of actin-turnover are not yet understood. In this work I report 

implications of the actin-regulators adenylyl cyclase-associated protein (C-CAP), profilin and 

actin depolymerization factor 1 and 2 (ADF1, ADF2) in distinct and previously unanticipated 

cellular processes during the life cycle of in the rodent malarial parasite Plasmodium berghei. 

By using a reverse genetic approach I tagged the endogenous C-CAP genetic locus to a 

fluorescent reporter. C-CAPmCherry localizes in the cytosol, which is consistent with its 

proposed G-actin sequestering activity. Gene deletion demonstrates that the G-actin binding 

protein C-CAP is entirely dispensable for the pathogenic blood stages and ookinete 

development. In in vitro motility assays C-cap(-) ookinetes exhibit a modestly impaired 

motility that indicates involvement of C-CAP in actin-turnover. Nevertheless, these parasites 

are able to infect the mosquito host. Unexpectedly however, the c-cap(-) mutant fails to 

complete oocyst maturation. Defects that emerge in this unique extracellular and non-motile 

replication phase include attenuation of oocyts growth, absence of oocyst compartmentation 

and impeded nuclear divisions. These findings indicate previously unrecognized functions of 

the C-CAP protein in the malarial parasites. Successful trans-species complementation with 

the C. parvum C-CAP ortholog, rescues the c-cap(-) phenotype and proves functional 

redundancy between apicomplexan CAP proteins. Furthermore, the actin regulator profilin 

fails to rescue the defects of c-cap(-) parasites, despite sharing its actin sequestering activity 

with C-CAP. Taken together, C-CAP is the first G-actin sequestering protein of Plasmodium 

species that is not required for motility but performs essential functions during oocyst 

maturation instead. 

Characterization of the actin regulators profilin, ADF1 and ADF2 revealed dramatic 

transcriptional down-regulation and the absence of the profilin protein in sporozoites. To test 

whether G-actin binding proteins interfere with sporozoite functions, I ectopically 

overexpressed of profilin and C-CAP stage-specifically in sporozoites. In these recombinant 

parasites, but not in control lines, demonstrate that overexpression abolishes salivary gland 

invasion and arrests their lifecycle.  
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Based on these unexpected findings and the available literature data, I developed a 

“minimalistic model” for actin regulation in sporozoites that predicts ADF1 as the main actin-

turnover regulating factor. 
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ZUSAMMENFASSUNG 
 

Plasmodien spp. sind einzellige eukaryotische Parasiten, welche sich mittels eines evolutionär 

konservierten und aktinabhängigen molekularen Motors fortbewegen. Diese spezielle Art der 

Fortbewegung ermöglicht dem Parasiten einen aktiven Wirtszellein- und -austritt und damit 

die Etablierung seines pathogenen Lebenszyklusses. Des Weiteren ist bekannt, dass Aktin an 

der Endozytose in den parasitären Blutstadien beteiligt ist. Die molekularen Mechanismen, 

welche das Aktinfließgleichgewicht zeitlich und räumlich regulieren, sind bisher für 

Plasmodien nicht vollkommen verstanden.  

In dieser Arbeit werden die G-Aktin (globuläres Aktin) bindenden Regulatoren, wie das 

Zyclase- assoziierte Protein (C-CAP), das Profilin sowie die Aktin depolymerizierenden 

Faktoren 1 und 2 (ADF1, ADF2) in Plasmodium berghei charakterisiert. 

Mittels genetischer Geninaktivierung zeige ich, dass das C-CAP Gen nicht für die 

Entwicklung von pathogenen Blutstadien und Ookineten in P. berghei notwendig ist. In vitro 

Motilitätsuntersuchungen an Ookineten bestätigen eine verminderte Geschwindigkeit der c-

cap(-) Mutanten, was auf einen aktinabhängigen Prozess hindeutet. Die Fähigkeit den Wirt 

(Moskito) zu infizieren wird dadurch jedoch nicht aufgehoben. Mit Hilfe der Mutante kann 

ich zeigen, dass  

C-CAP eine lebensnotwendige Funktion während der Oozystenreifung und Sporozoiten-

entwicklung in dem invertebraten Wirt besitzt. Die durch den Mangel an C-CAP auftretenden 

Defekte während der extrazellulären Vermehrungsphase sind eine Verminderung des 

Oozystenwachstums, das Fehlen der Oozystenkompartimentierung und die unvollständigen 

finalen Kernteilungen. Diese Ergebnisse deuten auf neue, bisher nicht beschriebene 

Funktionen, des C-CAP Proteins hin. Die erfolgreiche speziesübergreifende 

Komplementierung der c-cap(-) Defekte mit dem orthologen Gen aus Cryptosporidium 

parvum CpC-CAP bestätigt die funktionale Redundanz zwischen beiden Proteinen. Profilin, 

als ein weiteres G-Aktin bindendes Protein, war hingegen nicht in der Lage die Defekte des c-

cap(-) Parasiten auszugleichen und zeigt damit deutlich, dass beide Proteine keine 

funktionellen Redundanzen während des Oocystenwachstums besitzen. Mittels transgener 

Parasiten welche ein C-CAPmCherry Fusionsprotein exprimieren, wird das C-CAP Protein 

im Zytoplasma lokalisiert. Erstmals wird mit dieser Arbeit ein G-Aktin bindendes Protein, C-

CAP beschreiben, welches eine essentielle Funktion während der Oozystenreifung in 

Plasmodium berghei besitzt. 
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Im zweiten Teil der Arbeit werden die Aktinregulatoren Profilin, ADF1und ADF2 

eingehender untersucht. 

Es wird eine dramatische Abnahme der Profilin und ADF1 Transkripte in Sporozoiten 

beobachtet. Außerdem wird die Abwesenheit des Profilin Proteins in Sporozoiten 

nachgewiesen. 

Zur Überprüfung des Einflusses von G-Aktin bindenden Proteinen auf die Funktion der 

Sporozoiten, habe ich Profilin und das C-CAP spezifisch in diesem Stadium überexprimiert. 

Diese Parasiten sind nicht in der Lage die Speicheldrüsen des Wirtes zu besiedeln, was eine 

Unterbrechung des Lebenszykluses hervorruft. Ebenfalls untersuchte Kontrollgruppen zeigen 

diesen Defekt jedoch nicht.     

Aufbauend auf diesen Ergebnissen entwickele ich ein „minimalistisches“ Model zur 

Beschreibung der Aktinregulation in Sporozoiten, in welchem das ADF1 als regulatorisches 

Protein im Mittelpunkt steht. 
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1. Introduction  

Single cell eukaryotes of the phylum apicomplexa are obligatory intracellular parasites that 

essentially rely on host cell invasion, egress and transmigration to establish their pathogenic 

life cycle. Plasmodium and other apicomplexan parasites like Toxoplasma gondii, or 

Cryptosporidium parvum employ an ancient actin-myosin based molecular motor machinery 

to facilitate gliding motility and invasion (Baum et al., 2008a; Morrissette and Sibley, 2002; 

Soldati et al., 2004). This unique machinery clearly distinguishes these parasites from other 

motile eukaryotic cells that employ filopodia, pseudopodia or cilia and flagella for 

locomotion.  

Interestingly, apicomplexan parasites posses a reduced set of biochemically diverse orthologs 

of key G-actin regulatory molecules as compared to other eukaryotic cells (Sattler et al., 

2011; Schuler and Matuschewski, 2006b). Nevertheless, Plasmodium sporozoites exhibit 

unusually fast gliding motility of up to 150 µm/min (Vanderberg et al., 1974). These 

observations suggest that functional characterization of proteins that regulate the actin 

cytoskeleton in the apicomplexan parasite Plasmodium berghei might ultimately help to 

understand their molecular function and relevance for parasite motility and life cycle 

progression. To highlight the differences between host and parasite actin and actin- regulating 

proteins, the introduction will focus first on conventional actin and general regulatory 

mechanisms, followed by their apicomplexan counterparts. 

1.1. Cell motility and the actin cytoskeleton in eukaryotic cells 

Cell motility is a fundamental biological process. Free-living cells like amoeba or cells within 

a multi cellular organism are able to locomote. This includes cell migration during 

embryogenesis, wound healing, cell response of the innate- and adaptive immune system, 

morphogenic processes such as neuronal outgrowth and tumor cell metastasis (Wang et al., 

2005). The so-called crawling motility is characterized by a cycle of four basic steps: 

lamellipodial protrusion at the front cell edge, adhesion to the substratum, forward 

translocation of the cell body and de-adhesion (Pollard and Borisy, 2003). This process is 

facilitated by the dynamic organization of the actin cytoskeleton. Precisely coordinated 

polymerization of actin filaments against cellular membranes induces membrane protrusions 

at the leading edge of the cell and provides the force for active movement (Pollard, 2007; 

Saarikangas et al.; 2010). In contrast, the major components of the cell body, such as the 
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cytoplasm, nucleus or mitochondria, may follow passively due to mechanical stability and 

elasticity of the plasma membrane (Svitkina et al., 1997). 

The actin cytoskeleton is also a central molecular player in endocytosis (Galletta and Cooper, 

2009; Kaksonen et al., 2006), cytokinesis (Oliferenko et al., 2009), intracellular-cargo 

transport (vesicles, organelles, macro molecular protein complexes and RNA) over short 

distances (Fagarasanu and Rachubinski, 2007; Pruyne et al., 2004), and maintenance of cell 

polarity (Martin and Chang, 2006; Vidali et al., 2009). Interestingly, some bacterial and viral 

pathogens manipulate the host actin cytoskeleton to facilitate cell-to-cell transmission. In 

contrast, parasites from the phylum apicomplexa employ their own actin-dependent motility 

for the invasion of host cells.  

1.1.1. Actin biochemistry and polymerization dynamics 

Actin is the most abundant and a highly conserved protein in eukaryotic cells. It is a globular  

42kDa protein, with a characteristic ATPase activity. Under physiological conditions actin 

exists in two major molecular conformations, the globular actin (G-actin) and the filamentous 

polymerized actin (F-actin). F-actin filaments are double helical polymers formed by the 

globular subunits, which are arranged unidirectional giving the filament an important 

molecular polarity. Subunit addition at both ends is diffusion-limited and therefore the 

elongation rate is directly proportional to the concentration of G-actin monomers in solution 

(Drenckhahn and Pollard, 1986; Pollard, 1986). Both filament ends exhibit distinct 

polymerization properties towards G-actin subunits that are bound to ATP. At the barbed or 

plus (+) end a low critical concentration of the Mg2+ ATP complex (0.1 µM) is sufficient for a 

high subunit addition rate to elongate the filament. At the pointed or minus (-) end a relatively 

high critical concentration of the Mg2+ ATP (0.7 µM) is needed for G-actin addition and thus 

results in slow filament growth, respectively (Pollard, 1986; Wegner, 1976). In addition, the 

intrinsic filament polarity is supported by the intrinsic ATPase activity of actin and leads to 

filament maturation. After assembly of ATP bound G-actin at the barbed end ATP hydrolysis 

happened quickly within 2 seconds (Blanchoin and Pollard, 2002). The residual -phosphate 

remains longer, for 350 seconds, with the so-called intermediate filaments (ADP-Pi-actin) 

associated before it finally dissociates (Carlier and Pantaloni, 1986). After phosphate 

dissociation the ADP-actin subunits adjust their actin- to- actin interfaces to become prone for 

disassembly at the pointed end (Carlier, 1990; Pollard, 1986). The continuous cycle of actin 

polymerization, ATP hydrolysis, phosphate dissociation and depolymerization lead to a very 

slow steady state treadmilling process between monomeric and filamentous actin in the cell.  
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The filament treadmilling model (Small, 1995) was initially proposed after studying actin 

filaments in vitro (Carlier and Pantaloni, 1997; Pollard, 1986; Wegner, 1976). Pure actin 

filaments are intrinsically stable at steady state. Polymerization at the (+) end is limited by the 

dissociation at the (-) end and corresponds to filament growth, totally of  0.04 µm/min 

(Pollard and Borisy, 2003). However, motile cells move fast, for example keratocytes (10 

µm/min) or Plasmodium sporozoites (100 µm/min) (Svitkina et al., 1997; Vanderberg, 

1974). To expedite the slow intrinsic growth rate of pure actin filaments, cells express a 

variety of actin cytoskeleton regulatory proteins. 

1.1.2.  Actin cytoskeleton regulating proteins   

Eukaryotic cells express more than 100 accessory proteins regulating the structure and 

dynamics of the actin filament cytoskeleton in response to external stimuli.  

1.1.2.1. Nucleation proteins enhance actin filament elongation 

To ensure constant generation of new filaments for the fast, three-dimensional remodeling 

process, proteins bind to actin filaments and initiate nucleation and promote elongation. Three 

main mechanisms for de novo actin filament nucleation accomplished by different protein- 

complexes, named actin related protein 2/3 complex (Arp2/3), formin and spire have been 

identified.  

The Arp2/3 complex initiates actin filament branches along the existing mother actin 

filament (Machesky et al., 1994; Mahaffy and Pollard, 2006) and creates a highly branched 

actin network at the leading edge of a cell described as “dendritic nucleation” (Svitkina et al., 

1997). Arp 2/3 anchors the pointed end of a new filament in an angle of 70  to the mother 

filament, while the barbed end grows away from the branch towards the cell membrane 

(Pollard, 2007; Svitkina and Borisy, 1999; Volkmann et al., 2001). Once activated, the Arp2 

and 3 along with one actin monomer constitute a stable trimer that acts as a nucleus to 

generate a new branch (Pollard, 2007). The main regulators of the Arp2/3 complex are 

nucleation promoting factors (NPFs) of the Wiskott-Aldrich Syndrome family proteins 

(WASp) (Machesky et al., 1999; Weaver et al., 2003; Welch and Mullins, 2002) and up 

stream signaling molecules, such as small guanosine triphosphosphate hydrolases (GTPases) 

of the Rho-famliy (Cdc42, Rac), the phospholipid phosphatidylinositol 4,5-bisphosphate 

(PIP2), profilin, and proteins containing Src homology domain 3 (SH3) (Higgs and Pollard, 

2001).  
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Formins are key regulators for nucleation and elongation of unbranched actin filament 

bundles (Evangelista et al., 2002; Evangelista et al., 2003; Pruyne et al., 2002). They are most 

common in filopodia of cells (Wallar and Alberts, 2003), in the contractile ring during 

cytokinesis (Kato et al., 2001; Lee et al., 1999; Tolliday et al., 2001), in stress fibre 

formations (Tominaga et al., 2000), focal contacts (Riveline et al., 2001) and focal adhesions 

(Kobielak et al., 2004). The processive association of formin with the growing barbed end 

precludes capping of the filament and allows constant growing (Kovar et al., 2005; Moseley 

et al., 2004; Watanabe and Higashida, 2004). All formins contain the formin homology 

domains 1 and 2 (FH1 and FH2) controlling barbed end growth and specific subcellular 

localization. The FH1 domain has the capacity to tether multiple profilin-ATP-actin 

complexes near the barbed end, which accelerates filament elongation rates up to 1.5 µm per 

second (Higashida et al., 2004; Staiger et al., 2009). The FH2 domain is a stable dimer of 

donut-shaped structure, that wraps around two actin subunits of a barbed filament end, caps it 

and confers nucleation activity (Moseley et al., 2004; Otomo et al., 2005; Xu et al., 2004). 

Formins are also regulated by GTPases of the Rho-family.  

Spire uses a completely distinct mechanism for filament nucleation (Quinlan et al., 2005). It 

first binds four actin monomers through its tandem repeat of four WH2 domains, and then 

assembles them stereo-specifically into a new filament nucleus (Otto et al., 2000; Quinlan et 

al., 2005; Wellington et al., 1999). During the elongation process, spire remains associated 

with the slow growing pointed end (Quinlan et al., 2005). In contrast to Arp2/3 and formin, 

spire is activated by mitogen-activated protein (MAP) kinases (Otto et al., 2000).  

1.1.2.2. Capping proteins terminate filament growth  

Filament termination reduces the depletion of the G-actin pool in the cell by steady state 

polymerization effectively. Capping proteins (CP) are heterodimeric proteins (-, -subunits) 

that bind to the barbed end of a filament and inhibit actin subunit addition and 

depolymerization, thereby inducing new, short and stiffer polymers.  

-actinin/capping protein (CP) is found ubiquitously in muscle- and non-muscle tissues of 

metazoa as well as in single cells like Acantamoeba and Plasmodium (Cooper and Sept, 2008; 

Isenberg et al., 1980; Maruyama and Obinata, 1965; Schuler and Matuschewski, 2006b). The 

hetero dimer exhibits typical barbed end-capping function (Bearer, 1991). Elegant 

biochemical work established that CP is needed for in vitro reconstituted actin-based motility 

(Loisel et al., 1999). Furthermore, CP is a component of the dynactin complex, where it binds 

and caps the barbed end of the actin-related protein1 (Arp1) mini-filament (Schafer et al., 
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1994). The CapZ is a sarcomere specific CP isoform in the muscle of vertebrates (Caldwell et 

al., 1989).  

Gelsolin is a calcium-stimulated barbed end-capping as well as severing protein in higher 

vertebrates (Sun et al., 1999).  

 

 

Figure 1: The actin treadmilling model and its regulation by actin-binding proteins.  

External signals trigger actin dynamics. 1.) Actin nucleator proteins formin and the actin-related 
protein 2/3 complex (Arp2/3) promote and enhance actin polymerization at the barbed end (+) by 
binding of ATP-actin profilin complexes. 2.) Branch formation of the mother filament is initiated by 
the Arp2/3 complex and leads to “dendritic nucleation” the 3 dimensional structures at the leading 
edge of a motile cell. Furthermore, actin filament maturation is indicated by intrinsic actin ATP-
hydrolysis. The phosphate remains associated creating intermediate filaments (light grey circles). 
After phosphate dissociation the ADP-actin filament (white circles) is prone to dissociation at the 
pointed end (-). 3.) Capping proteins (CP, light blue triangle) terminate filament growth and stabilize 
them. 4.) Binding of actin depolymerizing factors (ADF/cofilin, green triangle) to ADP-actin filaments 
induces and enhances debranching and severing of filaments into shorter fragments and ADP-actin 
monomers. 5) G-actin binding proteins like profilin (yellow circle) and the cyclase-associate protein 
Srv2/CAP (red and yellow angle) interact with ADP-actin and recycle sequestered G-actin. 6.) 
Nucleotide exchange of ADP to ATP on actin monomers, is facilitated by profilin and Srv2/CAP. 
After replenishing the polymerization competent pool of ATP-actin, profilin ATP-actin complexes 
interact again with the nucleator proteins formin and Arp2/3. 7.) Constant bending of the actin 
cytoskeleton facilitates actin incorporation on free barbed ends against the cell membrane and pushes 
the membrane forward. Thus, resulting in cellular motility. Chart adapted to Pollard et al. (2007). 
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1.1.2.3. Actin depolymerizing factors (ADF) enhance actin filament disassembly  

Besides gelsolin, ADF/cofilin is a family of ubiquitously small proteins that bind to ADP-

actin filaments and promote their disassembly (Bamburg, 1999). Binding of ADF/cofilin 

proteins promotes dissociation at the pointed end (Blanchoin and Pollard, 1999) thereby 

changing the twist of the actin helix and accelerating severing into shorter segments 

(McGough et al., 1997) and eventually into ADP-actin monomers. Subsequent competition of 

profilin with ADF/cofilin through binding of ADP-G-actin facilitates the nucleotide exchange 

to ATP (Rosenblatt et al., 1995). This “hand over” mechanism returns ATP-actin into the 

polymerization competent steady state. Most of the ADF/cofilins are regulated negatively by 

LIM-kinases that inhibit the interaction with the ADP-actin filaments (Blanchoin et al., 2000). 

Reactivation by removing the phosphate is due to the specific activity of the slingshot 

phosphatase (Niwa et al., 2002). Phosphorylated ADF/Cofilin can also directly activate 

phospholipase D1 (PLD1), which is essential for chemotaxis of phagocytotic cells (Han et al., 

2007).  

1.1.2.4. G-actin binding proteins control actin treadmilling  

Proteins that bind to G-actin are the main regulators maintaining the pool of free G-actin. 

They either influence the nucleotide exchange or sequester the subunits to keep them until 

they are needed.  

Profilin is a small G-actin binding and sequestering protein that plays a central role in all 

eukaryotic cells (Carlsson et al., 1977). It sequesters actin monomers in a 1:1 complex in un-

stimulated cells (Goldschmidt-Clermont et al., 1991). One essential function is the 

acceleration of nucleotide exchange of ADP to ATP on actin subunits, thereby re-generating 

the pool of ATP-actin (Goldschmidt-Clermont et al., 1992; Mockrin and Korn, 1980; Witke, 

2004). The ATP-actin profilin complex binds to formin via the FH1 domain, at the barbed end 

of the filament, thereby increasing the elongation rate (Kovar et al., 2003; Romero et al., 

2004). Apart from the actin buffering capacity, profilin interacts with a plethora (> 50) of 

different proteins to control the actin network. Profilin interacts with phosphoinositides (PIs) 

(Chaudhary et al., 1998; Fedorov et al., 1994; Lassing and Lindberg, 1985) that are capable of 

disrupting the actin-profilin complex and inhibit the monomer sequestering activity (Lassing 

and Lindberg, 1985). Furthermore, profilins interact with proteins containing poly-L-proline 

rich stretches, including members that are known for barbed end elongation such as the 

vasodilator-stimulated phosphoprotein family (Ena/VASP), Wiskott-Aldrich Syndrome 

protein family (WASP/WAVE), formin and the cyclase associated protein (Srv2/CAP) 
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(Bertling et al., 2007; Kovar et al., 2003; Reinhard et al., 1995; Watanabe et al., 1997; Witke, 

2004). However, the poly-L-proline- binding site on profilin is separated from the actin-

binding site. Thus, profilin can integrate signalling events with cytoskeleton rearrangements.  

Thymosin-4 is a G-actin sequestering protein (Safer and Nachmias, 1994) that binds to 

ATP-G-actin and blocks actin assembly, nucleation, and growth at both (+/-) ends of the 

filament and thus preserves G-actin pools.  

1.1.3. The Suppressor of RASV19/ cyclase-associate protein Srv2/CAP (CAP) 

The Srv2/CAP protein is expressed in all eukaryotic organisms studied thus far. Genetic 

disruption of Srv2/CAP causes severe defects in actin organization and actin-based processes 

including cell division, cell motility polarization and endocytosis (Deeks et al., 2007; 

Hubberstey and Mottillo, 2002). The cyclase-associated protein (Srv2p/CAP) was first 

identified in Saccharomyces cerevisiae as a suppressor of the activated rat sarcoma allele 

RAS2VAL19 (Fedor-Chaiken et al., 1990) and was simultaneously isolated as a component of 

the adenylyl cyclase complex in yeast (Field et al., 1990). Functional mapping of the 70kDa 

CAP protein revealed several structural domains indicating a multi-functional protein. The 

amino-terminal domain of  

S. cerevisiae CAP (residues 1-168) is involved in protein-protein interaction and 

oligomerization (Burkhard et al., 2001; Nishida et al., 1998). The N-terminus binds directly to 

adenylyl cyclase and facilitates its activation by RAS (Fedor-Chaiken et al., 1990; Field et al., 

1990). The adenylyl cyclase-binding domain is not conserved in higher eukaryotes, which 

implicates diverged functions during evolution (Hubberstey and Mottillo, 2002). Additionally, 

the specific N-terminal helical domain binds to ADF/cofilin-bound ADP-actin monomers and 

thereby contributes to ADF/cofilin recycling (Moriyama and Yahara, 2002; Quintero-Monzon 

et al., 2009). The carboxy-terminal domain (C-CAP), spanning amino acid residues 370 to 

526, is highly conserved throughout evolution and is well-characterized for binding to 

monomeric ADP-actin in a 1:1 stoichiometry, thus suppressing spontaneous actin 

polymerization (Freeman and Field, 2000; Gieselmann and Mann, 1992; Gottwald et al., 

1996; Hubberstey et al., 1996; Mattila et al., 2004). The central region of the CAP comprises 

the WASp-homology domain (WH2), which binds to ATP-actin and ADP-actin monomers 

with similar affinities and catalyzes nucleotide exchange on actin, which in turn promotes 

actin turnover (Chaudhry et al.). The WH2 domain is flanked by two poly-proline-rich 

stretches P1 and P2 separating the C- and the N-terminal domain. The first poly-proline-rich 

sequence P1 binds to profilin (Bertling et al., 2007; Drees et al., 2001; Lambrechts et al., 
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1997) and the second P2 region apparently supports interaction with Src homology domain 3 

(SH3) domain-containing proteins, such as Abp1, which target CAP to the sites of actin 

rearrangement (Balcer et al., 2003; Freeman et al., 1996; Lila and Drubin, 1997). Native CAP 

constitutes a higher order oligomer of 600 kDa comprising 6 molecules of CAP and 6 

molecules of actin. Recombinant full length CAP adopts a hexamer via interaction between 

the N- and the C-terminus. (Balcer et al., 2003; Moriyama and Yahara, 2002).  

Initial results in S. cerevisiae characterized CAP as a bifunctional protein, since disruption of 

the C-terminus produced other phenotypes than disruption of the N-terminus. Yeast cells 

depleted of the C-terminus exhibited nutritional and morphological defects such as the 

inability to grow on rich medium, sensitivity to nitrogen starvation (Field et al., 1990; Gerst et 

al., 1991), abnormal large and round cells, random budding pattern, and abnormal actin 

distribution (Vojtek et al., 1991). These defects could be rescued by overexpression of the C-

terminus of CAP on one hand, and by complementation with profilin on the other hand 

(Goldschmidt-Clermont et al., 1991; Haarer et al., 1993; Vojtek et al., 1991). The ability of 

profilin to complement the function of the depleted CAP C-terminus in yeast implies a close 

relationship between both conserved proteins during evolution.  

 

Figure 2: Srv2/CAP domain organization and atomic structure.  

(A) X-ray structures of the N-terminal domain (yellow) represented as -helical and the conserved C-
terminal domain (red) as -sheets. Both domains crystallize as dimers. (B) Domains are colored. CC 
coiled-coil (yellow); P1 and P2, proline-rich sequences (green); WH2 domain; WASp-homology 2 
(blue). The actin-binding domain (red) is also important for dimerization. (C) Doted arrows indicate 
direct physical interactions of specific CAP domains with known ligands. Adenylyl cyclase (white 
circle) interacting wit the actin depolymerizing factor (ADF/cofilin, green triangle) and ADP-actin 
(white circle), profilin (yellow circle), ATP-actin (grey circle), and ADP-actin for nucleotide 
exchange, Abp1 (blue circle) and ADP-actin. Chart is adapted from Goode et al. (2006).    
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Taking into account the diverse functional domains, CAP provides a “central hub” between 

external stimuli and the actin cytoskeleton. Recent biochemical work suggests a multi-step 

mechanism that involves the coordinated interplay of multiple CAP domains (Quintero-

Monzon et al., 2009). CAP acts as a crucial binding-platform for actin turnover to convert 

ADF/cofilin-bound ADP-actin complexes into ATP-actin monomers and replenish the pool of 

polymerization competent G-actin. During this process, CAP recycles ADF/cofilin for further 

rounds of filament disassembly and accelerates nucleotide exchange on actin monomers to 

promote rapid actin turn-over (Chaudhry et al.).  

The crystal structure of the N-terminus (N-CAP) revealed a coild-coil domain, which is 

followed by a dimer of six anti-parallel -helix bundles (Burkhard et al., 2001; Nishida et al., 

1998). The C-terminal actin-binding domain (C-CAP) forms an unusual V-shaped dimer. 

Each monomer is composed of six coils of right-handed parallel beta-helices, which from an 

elliptical barrel (Dodatko et al., 2004). The dimerization of C-CAP is facilitated by inter-

strand exchange of the last C-terminal -strands between each monomer (Dodatko et al., 

2004). Furthermore, the unique tertiary structure of C-CAP provides a structural model for a 

wide rage of molecules, which includes the C-CAP/cofactor C-like motif (CARP motif). 

Several cytoskeleton-related proteins including the tubulin binding cofactor C (or tubulin-

specific chaperone C) (TBCC), and the X-linked retinitis pigmentosa 2 protein (RP2) belong 

to this family (Dodatko et al., 2004).  
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1.2. Apicomplexan parasites and their molecular motor 

Apicomplexan parasites constitute a large and diverse group of alveolatan protozoa (Adl et 

al., 2005) that cause severe diseases in humans, including Plasmodium (malaria), Toxoplasma 

(toxoplasmosis), and Cryptosporidium (enteritis) and/or life for instance Theileria 

(theileriosis) and Eimeria (coccidiosis) (Morrison, 2009). Members of the phylum are 

auxotrophic and rely on intracellular life style to gain access to host metabolites for survival 

and replication. Furthermore, this intracellular niche provides a strategy to evade the host 

defense mechanisms. Importantly, to establish their life cycle extracellular apicomplexan 

parasites employ gliding motility powered by their unique acto-myosin system, which 

facilitates invasion, egress out of host cell and transmigration though different tissues 

(Barragan and Sibley, 2003; Frevert et al., 2005; Matuschewski et al., 2002; Soldati et al., 

2004). Here, Plasmodium will be discussed. The highly specialized motile and invasive stages 

of the parasites exhibit a characteristically elongated and polarized cell shape. Their 

unidirectional movement is dictated by the presence of the apical complex, which contains 

secretory organelles. Micronemes and rhoptries discharge sequentially a variety of type I 

transmembrane surface molecules, named TRAP-family proteins (thrombospomdin-related 

anonymous protein) and initiate motility and invasion upon contact with a suitable host cell. 

Calcium-mediated secretion of micronemal TRAP proteins are critical for (i) receptor 

recognition, (ii) attachment to the host cell, (iii) establishing a moving junction (MJ) between 

the host cell and the parasite plasma membrane (Aikawa et al., 1978) and (iv) the formation 

of the parasitophourous vacuole (PV). The PV constitutes a cellular compartment, which 

facilitates parasite growth and replication. The elongated parasite shape is built on the 

subpellicular microtubule scaffold and the alveolata-specific inner membrane complex (IMC). 

Microtubuli (MT) emerge apically from the microtubuli organizing center (MTOC) and run 

along 2/3 of the longitudinal axis of the parasite (Morrissette and Roos, 1998). The IMC 

consists of flattened membranous vesicles between the parasite plasma membrane and the 

microtubuli skeleton extending beneath the entire surface of the parasite. The unique actin-

myosin based molecular motor, which drives parasite motility, is located in the subpellicular 

space (20 nm) between the IMC and the plasma membrane (Lemgruber et al., 2009; Mann 

and Beckers, 2001; Morrissette and Sibley, 2002). The current model describes the 

unconventional myosin A (MyoA) as the major force-generating molecule inside the motor 

(Heintzelman and Schwartzman, 1997; Matuschewski et al., 2001; Meissner et al., 2002; 

Siden-Kiamos et al., 2011). MyoA is immobilized to the IMC by its calmodulin-like myosin 
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light chain and two additional gliding associated proteins (GAP) GAP45 and Gap50 

(Bergman et al., 2003; Herm-Goetz et al., 2002; Johnson et al., 2007). The MyoA heads walk 

along F-actin filaments and create the power stroke. Force transmission from the parasite 

through the extracellular substratum is facilitated by interaction of actin with a variety of 

adhesive transmembrane surface molecules of the TRAP-protein family (Sultan et al., 1997). 

The function of aldolase tetramers, which bind to F-actin and the cytoplasmic tail of TRAP 

(Buscaglia et al., 2003; Buscaglia et al., 2007; Jewett and Sibley, 2003), seem to play a role 

as an intermediate scaffold. Depending on the motility mode aldolase functions as an energy 

supplier or a cytoskeleton-bridging molecule (Starnes et al., 2009). Finally, upon transferring 

these complexes along the parasite body, the adhesive proteins are cleaved by a protease and 

shed in a trail left behind the gliding parasite. Whereas the main motor components are known 

(Daher and Soldati-Favre, 2009) the overall spatiotemporal regulation of the molecular motor 

is still unclear. Thus far, regulation of the parasite motility can occur at different levels, 

including sensing of external triggers, energy supply, trafficking, processing of the motor 

components, and tight regulation of the actin cytoskeleton (Baum et al., 2006a; Baum et al., 

2008a; Schuler and Matuschewski, 2006a). Likewise, additional molecules for sensing and 

connecting external stimuli to the actin cytoskeleton may exist. 

 

 

Figure 3: The motile extracellular stages of Plasmodium and the molecular motor. 

(A) Comparative cell morphology between merozoites, ookinete and sporozoite. Shown are conserved 
secretory organelles that are central for invasion and motility: rhoptries (light blue), exonemes (green), 
micronemes (orange) and dens granula (purple). The polarized cell shape is predicted by additional 
structures: subpellicular microtubuli (MT), nuclei (NUC), inner membrane complex (IMC) and the 
apical polar rings (APR). (B) The molecular motor is located between the IMC and the parasite 
plasma- membrane. MyosinA (MyoA) is immobilized at the IMC via GAP50, GAP45 and MTIP 
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proteins. MyoA binds to F-actin and its ATP dependent head activity moves actin backward. Aldolase 
tetramers are thought to connect the F-actin with transmembrane adhesin molecules and further to host 
cell receptors, thereby transducing the generated force through the surface of the parasite. 
Disengagement of the entire complex involves protease activity, shedding the adhesions from the 
surface and disconnecting host- cell attachment. This chart is modified after Baum et al. (2008).   
 

1.2.1. The motile stages of Plasmodium 

The motile Plasmodium stages, termed merozoites, ookinetes, and sporozoites use the 

common mechanism of the acto-myosin motor for motility and invasion (Baum et al., 2006b).  

Merozoites invade erythrocytes of the vertebrate host to establish the asexual replication 

cycle (Sherman, 1985).  

Ookinetes, which emerge after uptake of the sexual stages during a blood meal by the definite 

host, the Anopheline mosquito, also employ the typical features. Secretion of chitinase and 

membrane-attack ookinete perforin protein (MAOP) facilitates penetration of the periotrophic 

membrane (Dessens et al., 1999; Dessens et al., 2001; Kadota et al., 2004). Additional 

secretion of micronemal proteins like, CDPK3 (calcium dependent protein kinase 3) (Ishino et 

al., 2006; Siden-Kiamos et al., 2006a), CTRP (circumsporozoite and TRAP-related protein) 

(Dessens et al., 1999; Yuda et al., 1999) facilitates migration through the midgut epithelium. 

This process is one of the major bottlenecks during the parasite life cycle. Thereafter, one 

successful ookinete transformed into an oocyst produces thousands of infective sporozoites.  

Sporozoites exhibit an outstanding motility capacity. First, midgut sporozoites actively egress 

out of the oocyst via an ECP protease (egress cystein protease)- driven process (Aly and 

Matuschewski, 2005). They have to breach the basal lamina to enter the hemocoel, from 

where sporozoites invade the salivary glands of the mosquito (Pimenta et al., 1994; Vaughan 

et al., 1992). They remain motile in the cavity and ducts of the salivary glands for several 

days (Frischknecht et al., 2004). After injection of sporozoites into the skin of the vertebrate 

host, they employ active movement to enter the dermal blood vessel where they are passively 

transported by the circulation system to the liver sinusoids (Amino et al., 2006; Vanderberg 

and Frevert, 2004). After adhesion to the sinusoid epithelium, sporozoites gain access to the 

liver parenchyma by migrating through the Kupffer cells (Amino et al., 2006; Frevert et al., 

2005; Pradel and Frevert, 2001). Finally, sporozoites traverse through several hepatocytes, 

before they invade the final hepatocyte for replication (Amino et al., 2006; Mota et al., 2001; 

Pradel and Frevert, 2001; Silvie et al., 2008).  

A detailed understanding of the regulatory processes that triggers the complex developmental 

program opens new avenues to develop potent malaria intervention strategies. 
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1.2.2. Apicomplexan actins and the special case of Plasmodium 

Besides the actomyosin motor complex, gliding motility and invasion of apicomplexan 

parasites essentially relying on filamentous actin. Actin modifying agents, such as 

cytochalasins and Jasplakinolide (JAS), have been used extensively to elucidate 

microfilament functions. Cytochalasins inhibit actin polymerization (Cooper, 1987), whereas 

Jasplakinolide promotes filament nucleation and stabilization (Bubb et al., 1994). Despite 

their distinct molecular functions, both drugs inhibited parasite invasion into host cells and 

influenced the motility in Plasmodium knowlesi and falciparum, in Toxoplasma gondii and 

Cryptosporidium parvum (Dobrowolski and Sibley, 1996; Field et al., 1993; Forney et al., 

1998; Miller et al., 1979; Russell and Sinden, 1981; Shaw and Tilney, 1999). Although actin 

is present in the parasites at relatively high cytosolic levels (8-10 µM) the vast majority (70 - 

90 %) appears to be in the monomeric state (Dobrowolski and Sibley, 1997; Field et al., 

1993). Apparently, the dynamics of the apicomplexan microfilament system differ 

fundamentally form the well-understood turnover in other eukaryotic cells. 

Apicomplexan actin has been localized by immunoelectron microscopy primarily to the apical 

end of the parasite and in the space between the plasma membrane and the inner membrane 

complex in Toxoplasma tachyzoites and Plasmodium merozoites (Cintra and De Souza, 1985; 

Dobrowolski and Sibley, 1997; Shaw and Tilney, 1999; Yasuda et al., 1988). However, 

visualization of actin filaments in motile unfixed stages of Plasmodium or Toxoplasma failed 

thus far (Bannister and Mitchell, 1995; Cintra and De Souza, 1985; Kudryashev et al.). Only 

Jasplakinolide treatment facilitated the detection of actin-like filament in Toxoplasma in a 

random manner underneath the plasma membrane (Wetzel et al., 2003). The most prominent 

effect of JAS treatment in Toxoplasma and Plasmodium is the induction of an apical 

membrane-bound protrusion filled with extensive amounts of parallel-aligned filamentous 

actin structures that are expelled by the parasite (Mizuno et al., 2002; Shaw and Tilney, 

1999). This feature is reminiscent of the acrosomal process of invertebrate sperm (Tilney and 

Inoue, 1985). However, whether the filament organization as visualized by JAS treatment 

reflects the natural state remains a matter of debate. In addition to the role in invasion and 

motility, actin is also required for intracellular growth as indicated by Jas-inhibited abrogation 

of vesicle maturation during ingestion of nutrients by P. falciparum blood stages (Smythe and 

Ayscough, 2006).  

All apicomplexan parasites harbor one conventional actin gene, termed actinI, whereas the 

genus of Plasmodium encodes a second actin isoform, termed actinII (Gardner et al., 2002; 

Wesseling et al., 1989). Both actin isoforms share approximately 83 % sequence identity with 
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homologues from yeast or vertebrate sources and thereby constitute a distinct subfamily 

within conventional actins (Gardner et al., 2002; Schuler and Matuschewski, 2006b; 

Wesseling et al., 1989). ActinI is ubiquitously expressed throughout the Plasmodium life 

cycle and represents the most abundant isoform. In contrast, actinII expression is restricted to 

gametocytes and the protein plays a specific role during exflagellation of male gametocytes 

(Siden-Kiamos et al., unpublished). 

Less than 5 % of the parasite actin could be detected in the filamentous form in fractionation 

assays. Microscopic observations and biochemical analysis of actin filaments revealed their 

short size (~100nm), instability, and a low polymerization rate in vivo and in vitro (Sahoo et 

al., 2006; Schmitz et al., ; Schmitz et al., 2005; Schuler et al., 2005b; Wetzel et al., 2003). 

The formation of short filaments appears to be an inherent property of apicomplexan actin 

molecules and correlates with distinct amino acid substitutions. These substitutions are likely 

to weaken the intra-molecular interactions between actin subunits, thus leading to decreased 

filament nucleation and increased filament instability. Also, posttranslational modifications 

on actin such as acetylation and methylation may alter the polymerization state of the filament 

(Schmitz et al., 2005). It was shown that Plasmodium falciparum actin lacks the methylation 

on histidine 73, which is supposed to favor the ADP binding open state of actin, increasing 

filament instability (Schmitz et al., 2005). In addition, significant differences between parasite 

orthologs can be expected.  

Surprisingly, the parasite moves at the same speed as muscle-actin filament contraction, 

indicating a role for regulatory actin-binding proteins (Schuler and Matuschewski, 2006a, b). 

However, the characterized set of apicomplexan actin-binding proteins does not sufficiently 

explain the unusual actin dynamics of the parasites. It will therefore be critical to learn more 

about their specific properties in the parasite (Baum et al., 2006a; Baum et al., 2008a; Schuler 

and Matuschewski, 2006b).  

1.2.3. A minimal repertoire of actin-binding proteins  

The availability of several apicomplexan genomes (Abrahamsen et al., 2004; Gardner et al., 

2002) facilitated homology searches of microfilament proteins and revealed a strikingly small 

repertoire of actin-binding and actin-regulating proteins (Baum et al., 2006a; Gordon and 

Sibley, 2005; Schuler and Matuschewski, 2006b). Many of the proteins that are considered 

key regulators in yeast and higher eukaryotic cells are absent in apicomplexan genomes 

(Baum et al., 2006a; Schuler and Matuschewski, 2006b). Examples are, the filament 

nucleation and branching Arp2/3 complex, along with the nucleator spire and its known 
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regulators WASP/WAVE, Verprolin/WIP and Abp1. Almost no filament bundling and 

crosslinking proteins like actinin, filamin, spectrin or tropomyosin-related proteins have been 

identified. Moreover, proteins with capping and severing activity, like gelsolin and -

thymosin, appear absent from apicomplexan genomes. Where orthologs exist they often 

exhibit prominent structural differences (Sattler et al.).  

1.2.3.1. Plasmodium F-actin binding proteins facilitate actin filament nucleation and 

stabilization 

The intrinsic instable nature of Plasmodium actin filaments implying important roles for actin 

nucleation and stabilizing factors. 

Formin-homolog proteins are the only identified proteins with barbed end nucleation 

capacity to create unbranched actin filaments (Evangelista et al., 2002; Evangelista et al., 

2003). Apicomplexan genomes encode between two to four formin-homology domain 2 

(FH2) containing proteins. Apart from the FH2 domain, these proteins appear less conserved. 

The formin-homology domain 1 (FH1) domain is rudimentary and contains only two instead 

of four proline rich stretches for binding to profilin-actin complexes. Other regulatory 

domains such as the Rho GTPase-binding domain, the self-regulatory Diaphanous 

autoinhibitory domain (DAD), and the dimerization motif have not been identified (Schuler 

and Matuschewski, 2006b). This raises the question whether apicomplexan formins are able 

to form dimers as the described orthologs and how they are regulated.  

The three Plasmodium falciparum formins are termed formin1, formin2 and MISFIT and 

have been characterized previously (Baum et al., 2008b; Bushell et al., 2009). Formin1 is 

expressed in late blood stages and appears to be essential in blood stages (Baum et al., 

2008b). The apical localization and dynamic signal migration with the moving junction 

between the invading merozoite and the host suggests a role in invasion. In vitro studies 

revealed competent barbed end nucleator activity of formin1 with heterologous chicken actin. 

Contrary to formin1, formin2 expression peaks at mid trophozoite stage and the proteins 

localizes to the cytoplasm indicating a non-overlapping roles (Baum et al., 2008b). The 

formin-like protein MISFIT contains the characteristic FH2 domain and the auto-regulatory 

(DAD) domain. It localizes to the nuclei in microgametes, zygotes and ookinetes. Gene 

deletion of MISFIT established a male-inherited role in ookinete-to-oocyst formation (Bushell 

et al., 2009). Toxoplasma gondii formins exhibit similar actin-binding and nucleation capacity 

(Daher et al.). Interestingly, no interaction with profilin could be detected, suggesting an FH1 

domain independent pathway for actin assembly in Toxoplasma (Daher et al.). In contrast to 

Plasmodium both formins localize in the periphery of the replicating and invading parasite.         
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Coronin represents the only candidate for an F-actin bundling protein in these parasites 

(Gandhi and Goode, 2008). Plasmodium encodes a single copy gene that contains the WH40-

repeat. The microtubule-binding domain of canonical coronins is absent in the parasite 

ortholog. Nevertheless, the majority of actin-binding residues are conserved between species 

and biochemical assays revealed that Plasmodium coronin binds to immobilized F-actin 

(Tardieux et al., 1998).  

Capping protein (CP) is encoded by two single gene copies in the apicomplexan genome 

and constitutes a heterodimeric protein of an - and a -subunit (Gardner et al., 2002; 

Morrissette and Sibley, 2002). Like its conventional orthologs, the recombinant P. berghei 

capping protein (CP/) displayed barbed end capping activity on heterologous actin 

filaments in vitro (Ganter et al., 2009) and as shown in P. knowlesi whole cell extracts 

(Tardieux et al., 1998). The -subunit transcripts were identified as upregulated in sporozoites 

(UIS17), but are also expressed in all motile stages of P. berghei. Gene deletion of the -

subunit established the essential role for sporozoite motility and transmission in P. berghei. 

Likewise, ookinete motility was also reduced in CP knockout parasites (Ganter et al., 2009).  

 

 

Figure 4: Working model of actin regulation in apicomplexan parasites:  

The Plasmodium motor machinery is placed between the inner membrane complex (IMC), and the 
parasite plasma membrane. It is thought that nucleation/polymerization is initiated and promoted by 
fomin1 and its interaction with profilin- bound ATP-actin complexes at the barbed end of the actin 
filament. Filament elongation by formin is facilitated by progressive adding of actin monomers to the 
growing end. Short actin stubs are capped and thereby stabilized by the capping protein (CP). During 
the power stroke, F-actin is moved by the action of myosinA (MyoA) heads. The driving force is than 
translocated through the parasite plasma membrane by interaction of actin with transmembrane surface 
proteins (invasins) via aldolase tetramers, and binding to extracellular target- cell receptors. Backward 
translocation of F-actin bound invasions result in forward movement of the parasite, respectively. The 
depolymerization of ADP-actin filaments is enhanced by the intrinsic instability of the actin filaments 
and through the action of actin depolymerization factors (ADF). While the G-actin sequestering 
proteins C-CAP likely keeps ADP-actin monomers in an unpolymerized form, ADF1 promotes 
nucleotide exchange on actin monomers and stimulates the fast replenishment of polymerizable ATP-
actin pool. 
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1.2.3.2. Plasmodium G-actin binding proteins control the actin treadmilling process 

The combination of high levels of monomeric actin in apicomplexan parasite cells 

(Dobrowolski and Sibley, 1997; Field et al., 1993) with the intrinsic instability of actin 

filaments (Sahoo et al., 2006; Schmitz et al.; Schmitz et al., 2005; Schuler et al., 2005b) 

indicates important functions for G-actin binding proteins in apicomplexan parasites. 

However, therefore it is not surprising that G-actin binders show significant structural and 

functional differences to their canonical orthologs in other phyla (Sattler et al.).  

Profilin is an actin-sequestering protein that contributes to replenishing the pool of 

polymerization competent ATP-actin (Carlsson et al., 1977; Jockusch et al., 2007), and, 

together with formin, it enhances the actin polymerization rate at the barbed end in most 

eukaryotic cells. However, apicomplexa encode some of the most divergent members of the 

profilin family (Kursula et al., 2008). Biochemical properties, such as binding and 

sequestration of actin monomers, binding to proline-rich sequences and binding to 

phosphoinositoles justifies the classification as profilin (Kursula et al., 2008). The crystal 

structure confirmed an overall conserved profilin core fold. Interestingly, a unique mini 

domain that is shared by all apicomplexa extends from the protein surface and probably 

enlarges the actin-binding interface. In Plasmodium, this structure is even more pronounced 

by an extra, mobile, acidic loop, but interaction partners remain unknown (Kursula et al., 

2008). Reverse genetics in Plasmodium berghei revealed that profilin is essential during 

blood stage development, and, therefore more studies are needed to dissect its detailed in vivo 

function. Conditional gene disruption in Toxoplasma gondii demonstrates, that profilin is 

essential for gliding motility, host cell invasion and egress but is not required for intracellular 

growth (Plattner et al., 2008). Similar to Plasmodium, T. gondii profilin sequesters 

monomeric actin (Plattner et al., 2008). The role of profilin in parasite actin regulation is still 

not clear. Whether parasite profilin stimulates nucleotide exchange on monomeric ADP-actin 

and interacts with formin for filament elongation has not been established (Sattler et al., 

2010).  

Actin depolymerizing factors 1 and 2 (ADF1, ADF2) belong to the ADF/cofilin 

superfamily (AC) and are characterized by a dual binding and severing activity on pointed 

ends of F-actin, as well as binding and sequestration of monomeric ADP-actin, to regulate 

actin turnover (Bamburg, 1999). All apicomplexa typically encode one ADF gene (ADF1), 

whereas Plasmodium encodes two isoforms, termed ADF1 and ADF2. The major and 

constitutively expressed ADF1 is essential in P. berghei blood stages (Schuler et al., 2005a), 

whereas ADF2 seems to be very low expressed throughout the life cycle and gene deletion 
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resulted only in minor effects during sporozoite development (Doi et al.). Sequence alignment 

of apicomplexan ADFs with other members of the AC family revealed a generally conserved 

G-actin binding site in both ADF isoforms, whereas the F-actin binding regions exhibit large 

deviations (Huttu et al., 2010; Schuler et al., 2005a). Biochemical analysis showed that both 

ADF1 and ADF2 bind to monomeric actin and accelerate nucleotide exchange on ADP-actin, 

a property usually associated with profilin. However, apicomplexan ADFs exhibit marked 

differences in structure and its F-actin binding properties as compared to conventional ADFs 

(Schuler et al., 2005a). Strikingly, recent studies suggest that ADF1 is able to severe actin 

filaments, despite of its unusually reduced F-actin binding loop in vitro and is required for 

rapid turnover of filaments in T. gondii and P. falciparum (Mehta and Sibley 2011; Wong et 

al., 2011). ADF2, which exhibits a pronounced F-actin binding loop is proposed to display 

conventional AC protein activities (Sattler et al., 2011; Schuler et al., 2005a; Wong et al., 

2011). However, the physiological role for both isoforms remains enigmatic in Plasmodium. 

Recent studies on Toxoplasma gondii ADF revealed similar biochemical functions such as 

monomer sequestration (Mehta and Sibley, 2011). Parasites with suppressed TgADF 

exhibited reduced and aberrant patterns of motility, which led to severe defects in invasion 

and egress of host cells (Mehta and Sibley). Also, signaling that regulates ADFs in 

apicomplexa seem to differ from their orthologs. LIM kinases and slingshot phosphatases 

which usually would regulate the “on” and “off” state of ADFs are absent in the 

apicomplexan genome (Gardner et al., 2002; Schuler and Matuschewski, 2006b). Possibly, 

the phosphocofilin regulator 14-3.3 (Gohla and Bokoch, 2002) and the cofilin phosphatase 

chronophin (Gohla et al., 2005) can complement this regulatory function. Another potential 

regulation mechanism may involve binding of ADFs to phosphatidylinositol 4,5-bisphosphate 

(PIP2) (Yonezawa et al., 1990).  

1.2.4. CAP-homology protein in apicomplexan parasites  

CAP protein homologues were identified in the apicomplexan genome, using the bio-

informatics software tool basic local alignment search tool (BLAST) and the highly conserved 

C-terminal Srv2/CAP amino acid sequence as template (Schuler and Matuschewski, 2006b). 

Interestingly, these CAP proteins are truncated and consist of the highly conserved C-terminal 

domain, only. The N-terminal part of the CAP protein, which contains the adenylyl cyclase-

binding domain and the WH2 domain, appears to be missing in apicomplexan genomes. In 

contrast to the CAP proteins found in Plasmodium, which completely lack the WH2 domain 

and both proline rich stretches, CAP proteins from Toxoplasma gondii and Cryptosporidium 
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parvum contain short N-terminal extensions with significant homology to the WH2 domain of 

S. cerevisiae Srv2p/CAP Proteins.  This single domain structure is classified as PFAM family 

PF08603 and appears to be restricted to protozoa. Still, the overall sequence similarity of 

apicomplexan C-CAP proteins amounts to 70 %. C-terminal amino acid residues specific for 

actin binding are strictly conserved between the eukaryotic species and argue for similar 

functions of the proteins.  

1.2.4.1. Cryptosporidium parvum C-CAP (CpC-CAP) sequesters G-actin  

The biochemical function of the recombinant Cryptosporidium parvum C-CAP protein was 

investigated recently and revealed CpC-CAP as the strongest G-actin sequestering proteins in 

apicomplexan parasites discovered thus far (Julia Sattler, dissertation, Hliscs et al., 2010). 

CpC-CAP was able to bind to monomeric actin via complex formation. The apparent affinity 

of CpC-CAP-actin interaction of 0.78  0.17 µM, is in agreement with previous studies in 

yeast (Mattila et al., 2004). This capacity identified the apicomplexan CpC-CAP as a potent 

actin sequestering protein. Furthermore, CpC-CAP formed dimers with a predicted molecular 

mass of 38.7 kDa in solution. The lack of the N-terminus in apicomplexan C-CAP proteins 

seems to be responsible for the absence of higher molecular C-CAP complexes under 

physiological conditions (Balcer et al., 2003; Hliscs et al., 2010; Moriyama and Yahara, 

2002).  

1.2.4.2. The crystal structure of the apicomplexan Cryptosporidium parvum C-CAP 

protein 

The crystal structure of C. parvum was solved by a structural genomics platform (Vedadi et 

al., 2007). The C-terminal segment of C. parvum C-CAP is similar to the structure of S. 

cerevisiae Srv2/C-CAP and human CAP (Dodatko et al., 2004). The monomer displays the 

similar right- handed -helical fold consisting of 6 individual -helical turns. The 

dimerization takes place by domain swapping. This crystal structures highlights the 

conservation of the C-terminal actin-binding domain in different CAP proteins during 

evolution and suggests their functional homology.  
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Figure 5: CAP-homology proteins in apicomplexan parasites and yeast.  

(A) Protein domain model. Yeast Srv2p/CAP consists of an N-terminal adenylyl cyclase binding 
domain (orange), an intermitted WH2 homology domain flanked by two proline- rich sequences (blue 
and green), and a C-terminal actin- binding domain (red). Apicomplexan CAP orthologs from 
Toxoplasma gondii and Cryptosporidium parvum contain N-terminal extensions with significant 
homology to the WH2 domain of the yeast ortholog (grey), whereas Plasmodium berghei and P. 
falciparum does not. (B) Sequence alignment of CAP homology proteins from S. cerevisiae 
(Srv2p/ScCAP; gi 6324191), T. gondii  (TgCAP; gi 211961913), C. parvum (CpCAP; gi 66357652), P. 
berghei (PbCAP; gi 68074593), and P. falciparum (PfCAP; gi 124505741). Color shading as in A. 
Residues involved in the internal Cys/Ser ladder (marked by asterisks) are highly conserved cross 
species. (C) Crystal structure of C. parvum C-CAP: overview of the CpC-CAP dimer (colored draft 
depicts 1 monomer and grey the second monomer). Each -helical monomer contributes by swapping 
the last C-terminal -helical turn to dimerization.  
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1.3. Objective of this study: 

 

Plasmodium and other apicomplexan parasites employ a unique actin-dependent gliding 

motility machinery for host cell invasion that is critical to their pathogenic life cycle and 

transmission. The Plasmodium genome encodes a very divergent actin with unusual dynamic 

properties and only a very limited and structurally diverse repertoire of classical actin-binding 

proteins as compared to other eukaryotic cells. The underlying molecular mechanisms of how 

G-actin binding proteins manage to regulate the spatiotemporal actin-organization and 

turnover are not yet understood.  

The adenylyl cyclase-associated protein (Srv2/CAP) was first identified in Saccharomyces 

cerevisiae and constitutes a crucial hub for the binding of diverse actin regulators. It links 

external stimuli to the reorganization of the actin cytoskeleton. Plasmodium parasites express 

only a truncated, but highly conserved, C-terminal domain of the CAP protein (C-CAP) that 

confers G-actin sequestering activity.  

The aim of this study is the functional characterization of the PbC-CAP during the life cycle 

of Plasmodium berghei, employing genetic and molecular biological approaches. 

Previous results demonstrate, vital roles for profilin and the actin depolymerization factor 1 

(ADF1) in blood stages, which precluded further functional analysis based on experimental 

genetics.  

In order to shed light on the cellular roles of these G-actin binding proteins, their transcript 

expression and proteins abundance needs to be characterized. 
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2. Material and Methods 

2.1. Materials 

2.1.1. Biological resources: 

Mus musculus: 

Naval Medical Research Institute (NMRI) mice Charles River Laboratories, Germany 

C57/Bl6 Charles River Laboratories, Germany 

 

Anopheles stephensi Nijmegen, Netherlands 

Plasmodium bergei ANKA-GFP-507cl (Janse et al., 2006a) 

Plasmodium bergei ANKA 

Toxoplasma gondii tachyzoites (RH hxgprt-)  

 

Huh7 human hepatoma cells  

E.coli XL-1blue Stratagene, Germany 

TOP 10 cells Invitrogen, Germany 

 

2.1.2. Laboratory equipment 

Agarose gel casting apparatus , Horizon11-14 Whatman 

Amaxa Electroporator Amaxa, Germany 

Centrifuges: 

Bench centrifuge, 5424 Eppendorf, Germany 

Megafuge1.OR Heraeus 

Cooled bench centrifuge 5415R Eppendorf, Hamburg 

Electrophoresis power supply Amersham Pharmacia Biotech 

Freezer -20 C  Liebherr, Germany 

Freezer -80 C , THermoscientific Heraeus, Germany 

Gel documentation system, Gel Doc 2000 BIORAD, Germany 

Heating block, Thermo Scientific Eppendorf, Germany 
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Incubators: 

Incubator, for cells, Thermo scientific Heraeus, Germany 

Incubator, for P. berghei transfection Mytrom, Germany 

Incubator for bacteria, Thermo scientific Heraeus, Germany 

Incubator, Shaker for bacteria , Innova40 Brunswick Scientific 

Incubator for Mosquitoes Mytrom, Germany 

Microscopes: 

Binoculars, M80, MZ10F Leica, Germany 

Leica DM2500 Leica, Germany 

Confocal laser scanning microscope, LSM510 Zeiss, Germany 

Confocal laser scanning microscope,  TSP-SP1 Leica, Germany 

Apotome Imager.Z2 Zeiss, Germany 

Axiovert, 200M, with XL-3 incubator Zeiss, Germany 

Micropipette (Gilson) Abimed, Germany 

Mosquito adults cage BioQuip Products Inc, USA 

Nanodrop ND 1000 peQLab, Germany 

Neubauer counting chamber Marienfeld, Germany 

PCR Thermocycler, MJ-mini BIORAD, Germany 

PCR Thermocycler, StepOnePlus, Realtime PCR Applied Biosystems, USA 

pH-meter Mettler Toledo, Germany 

Photometer, GeneQuant pro Amersham, Germany 

Quarz cuvette Amersham, Germany 

Sterile hood, Herasafe  KS12 Heraeus, Germany 

Vortex-Genie2 Scientific Industries, USA 

Western Blot system, Mini Protean Tetrasystem BIORAD, Germany 

Western Blot detection, FLA 3000 Imager Fuji, Japan 
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2.1.3. Laboratory materials 

2.1.3.1. Miscellaneous 

6-well plate Greiner bio-one, Germany 

24-well plate Greiner bio-one, Germany 

8-well chamber slides, LabTek, Nunc, Fischer, Germany 

8-well glass slides Medeco, Germany 

Cover slips Roth, Germany 

Cryo-freezing tubes Greiner bio-One, Germany 

Electroporation cuvettes Amaxa, Germany 

Eppendorf tubes, 1.5 ml Eppendorf, Germany 

Falcon blue cap (50 mL and 15 mL) Greiner Bio-One, Germany 

Filter paper Schleier and Schuel, Germany 

Forceps Neolab, Germany 

Glass slides, clear Menzel, Germany 

Microscope oil Zeiss, Germany 

Needles, sterile Braun, Germany 

Neubauer counting chamber Roth, Germany 

Nitrocellulose membrane, Hybond Amersham, Germany 

Pasteur pipettes Roth, Germany 

PCR tubes Greiner Bio-One, Germany 

Petri-dishes Starstedt, Germany 

Poly-L-Lysins Coated Cover slips BD, BioCoad, Belgium 

Pipettes tips Brand GMBH, Germany 

PVDF Hybond Membrane GE, Healthcare, UK 

Serological pipettes (10 and 25 mL) Greiner Bio-One, Germany 

Sterile filter (0.2 and 0.4 m) Millipore, Ireland 

Sterile filtration units (500 mL) NALGENE®, USA 

Syringes, 1ml Roth, Germany 

Syringes, insuline Braun, Germany 

Tissue culture flasks (50 and 250 mL) Greiner Bio-One, Germany 

Whatman™ 3MM paper Whatman, UK 
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2.1.3.2. Chemicals 

1 kb DNA-Ladder MBI Fermentas 

6 x loading dye MBI Fermentas 

Page Ruler  (SM0671) Fermentas, Germany 

Agarose Invitrogen, Germany 

Alsever’s solution Sigma-Alrich, Germany 

Albumin Fraktion F Roth, Germany 

Ampicillin Roth, Germany 

LB-agar powder (Lennox L Agar) Invitrogen, Germany 

ß-Mercaptoethanol Sigma, Germany 

Calcium chloride Merck, Germany 

Cellulose (Carboxymethyl) Sigma-Aldrich, Germany 

Coomasie brilliant blue Roth, Germany 

SYBR Safe DNA Gel stain Invitrogen, Germany 

DMEM-medium GibcoBRL, Karlsruhe 

DMSO (Dimethyl sulphoxide) Merck, Germany 

dNTP-mix Fermentas, Germany 

ECL Western Blotting Reagents GE Healthcare Europe GmbH 

EDTA Roth, Germany 

FCS (Fetal Calf Serum), certified (USA) Gibco Invitrogen, Germany 

FCS Gibco Invitrogen, Germany 

Fluoromount G Southern Biotec 

Fibrous Cellulose Powder Whathman, United Kingdom 

Formaldehyde  Merck, Darmstadt 

Gentamycin Invitrogen, Germany 

Giemsa stain BDH Laboratory Supplies 

Glass beads, unwashed Sigma, Germany 

Glucose Merck, Germany 

Glycerol Roth, Germany 

Heparin Ratiopharm, Germany 

Hepes Merck/Calbiochem, Germany 

Hypoxanthine Sigma-Aldrich, Germany 

IPTG MPI Fermentas 
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Isofluran Baxter 

Ketamin (10%) VFW 

Matrigel BD Biosciences, UK 

Magnesium shloride Merck, Germany 

Magnesium sulphate Merck, Germany 

Milk Powder Roth, Germany 

NP-40 Sigma, Germany 

Nycodence Axis Shield, Oslo 

Para-aminobenzoicacid Sigma, Germany 

Para-formaldehyde Serva, Germany 

PBS, sterile solution Gibco Invitrogen, Germany 

PBS, tablets Gibco Invitrogen, Germany 

PCR-buffer set Roche 

PenicillinStreptomycin, liquid Invitrogen, Germany 

Phenylhydrazine 97% Sigma-Aldrich, Germany 

Power SYBR®Green PCR Master Mix Applied Biosystems 

Protogel, 30% Biozym/National D 

Pyrimethamine Sigma, Germany 

RPMI 1640-medium GibcoBRL, Germany 

Saponin Sigma, Germany 

Sodium acetate Roth, Germany 

Sodium hydorgencabonate Roth, Germany 

Sodium chloride Roth, Germany 

Sodium dodecyl sulphate (SDS) Sigma-Aldirch, Germany 

SYBR Safe DNA Gel stain Invitrogen 

SYBR, Green PCR Mastermix, Power Applied Biosystems 

TEMED, 99 % Roth, Germany 

TRIS Roth, Karlsruhe 

Trypsin-EDTA Invitrogen, Germany 

Triton X-100 Roth, Germany 

Xanturenic acid (4.8-Dihydroxylquinalic acid) Sigma-Aldrich, Germany 
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2.1.4. Commercial Kits 

DNAse Turbo Ambion 

HiSpeed Plasmid Maxi Kit; Cat. No. 12663 QIAGEN, Germany 

Human T Cell Nucleofactor Kit Lonza, Germany 

QIAquick PCR Purification Kit; Cat. No. 28106 QIAGEN, Germany 

QIAprep Spin Miniprep Kit; Cat. No. 27106 QIAGEN, Germany 

QIAamp DNA-Blood Mini Kit; Cat. No. 51106 QIAGEN, Germany 

Rapid Ligation Kit Roche 

RETROscript Ambion 

RNeasy Mini Kit; Cat. No. 74104 QIAGEN, Germany 

TOPO TA Cloning Kit (pCR 2.1.-TOPO) Invitrogen, Germany 

2.1.5. Enzymes 

Restriction endonucleases New England Biolabs, Fermentas 

T4-DNA-ligase Fermentas, Germany 

Taq DNA polymerase Fermentas, Germany 

Platinum Taq DNA Pol.(HF) Invitrogen, Germany 

Phosphatase Roche 

ProteinaseK Invitrogen, Germany 

2.1.6. Media 

RPMI Medium 1640 w/HEPES Gbico Invitrogen, Germany 

DMEM 41966  Gbico Invitrogen, Germany 

HBSS Gbico Invitrogen, Germany 

SOC Invitrogen, Germany 

 

Luria Broth (LB) medium 

10 g/l Bacto-tryptone, 5g/l Bacto-yeast extract, 5 g/l NaCl, add to ddH2O pH 7.5 

LB-Agar: LB-Medium, 15 g/l Bacto-agar 

 

Transfection media for P. berghei 

This media contained 160 ml of RPMI 1640 with 25 mM HEPES and L-Glutamine 2.05 mM 

(Gibco), 40 ml of heat-inactivated FCS and 50 μl gentamycin (50 mg/ml). The media was 

filtered sterile. 
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P. berghei ookinete (incomplete media) 

0.425 g NaHCO3 and 2.5 ml of Penicillin / Streptomycin (5000 U/ml and 5000 g/ml) were 

added to 500 ml of RPMI 1640, and the pH was adjusted to 8.0 and the solution was sterile 

filtered. 

 

P. berghei ookinete (complete media) 

Ookinete complete media was prepared from above-mentioned incomplete medium by 

addition of 10 % heat inactivated FCS, 100 nM hypoxanthine and 50 µM xanthurenic acid. 

The pH was adjusted to 8.0 prior use. 

 

Hepatocyte cell culture media (Huh7) 

DMEM medium: 450 ml DMEM, 50 ml FCS, 5 ml Penicillin/Streptomycin 

 

Mosquito dissecting media 

3% Bovine albumin serum in 10 ml RPMI 

2.1.7. Stock and working solutions 

Antibiotics 

Ampicillin 100 mg/mL ampicilin in ddH2O 

Primaquine 60 mg/10 mL primaquine in PBS 

Working antibiotic dilution is 1:1000 in LB medium. 

 

P. berghei freezing solution  

Freezing-solution (for blood parasites): Glycerol: Alsever’s solution (1:9) 

Freezing-solution (for hepatocytes): 10 % DMSO, 90 % FCS 

This solution was prepared by mixing glycerol and Alsever’s solution at 1: 9 ratio. 200 µl of 

isolated blood were diluted with 100 µl of freezing solution and directly frozen at -80°C 

 

Pyrimethamine stock (100x) 

7 mg pyrimethamine was dissolved in 1 ml of DMSO and finally diluted in drinking water. 

PH was adjusted between 3.5 – 5.5. 

 

Giemsa-stain 

10 % Giemsa Solution in H2O 
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Glycerin stock for bacteria long-term storage 

50% Glycerin in ddH2O was autoclaved. Finally, 1 ml of the bacteria culture (5ml LB, 

overnight cultre) were mixed with 500ml Glycerin, slowly cooled down on ice and placed into 

the -80 °C.  

 

Mosquito breading/feeding solution 

Mosquitoes breeding water (for larvae and pupae): 0.1 % sea salt in ddH2O 

Sucrose adults feeding solution: 10 % Sucrose, 0.01 % PABA, add ddH2O 

 

Nycodenz-stock solution 

5 µM Tris pH 7.5 (1 M stock), 3 mM KCL (250 mM stock), 0.3 mM EDTA (0.5 M stock) and 

110.4 g Nycodenz (27.6 g/100 ml), were dissolved in 400 ml dH2O, pack tight light and 

autoclave the solution. Store at 4C.  

 

Xanturenic acid (stock) 

Dissolve 51.3 mg Xanthurenic acid in 1ml NaOH (1mol/L) and add 4 ml ddH2O.  

Finally, followed by steril filtration and storage at 4C. 

2.1.8. Buffers 

Lysisbuffer for western blot samples 

20 mM TrisCl, NaCl 50 Mm, TritonX-100 0.5 %, fill up to vol. 200 ml with ddH2O and add 

proteinase inhibitors (PMSF). Store at 4C.  

RIPA buffer 

Dissolve 0.87g NaCl in 1 ml Triton, add 12.5 ml 4% deoxycholate, 1 ml SDS, 5 ml 1M Tri 

pH 8 and 0.2 ml 0.5M EDTA. Add H2O up to 100 ml.   

 

Electrophoresis-buffer TAE (50x-stock) 

 Tris 2 M, sodium acetate 250 mM, EDTA 0.5 mM, (pH 7.8) 

 

Electrophoresis-running buffer (5x stock) 

25 mM Tris (15.1 g), 250 mM Gycine (94 g), 0.1 % SDS (50 ml, 10 %) to 1L ddH2O. Use 1: 

5 dilution in ddH2O. 
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lectrophoresis-transfer/-blotting buffer (10x stock) 

Add 30 g Tris to 144 g Glycine and dissolve in 1L ddH2O. Use 100 ml buffer (10x) together 

with 200 ml EtOH and 700 ml H2O, cooled.   

 

TBS (20x stock)/ TBS-T 

Add 20 mM Tris to137mM NaCl and dissolve in H2O, adjust to pH 7.6 and fill up to 1L. 

Add 0.05/ 0.1 % Tween 20/NP-40 for TBS-T/TBS-NP40. 

 

Coomassie-destaining buffer 

MetOH 10 ml (100 %), acidic acid 30 ml, ddH2O 60 ml  

 

4 % PFA 

Heat 450 ml of ddH2O up to 60 C and add 20 g para-formaldehyde powder (Fisher :04042). 

5 drops of 2N NaOH (1 drop per 100ml) were added until the solution should cleared. 

Subsequently, 50 ml of 10x PBS were added the pH was adjusted to pH 7.2. The final volume  

 

Microtubuli stabilization buffer (MTSB) (2x stock) 

20 mM MES, 300 mM NaCl, 10 mM EGTA, 10 mM glucose, 10 mM MgCl2, adjust to pH 

6.9.  

500ml was filtered and placed on ice in the dark. Solution was stored in aliquots at -20 C. 

Final aliquots can be mixed with 4 % PFA before storage. 

2.1.9. Antibodies 

Table 1. Antibodies with indicated working dilutions and source 

Primary antibody (animal source) IFA / WB Source 

Anti-PbCSP (mouse) 1: 500 / 1: 2000 (Yoshida et al., 1981), NYU 

Anti-PbHSP70 (mouse)   1: 500 / - Tsuji M, NYU 

Anti-Tubulin monocl.B5-12 (mouse)   1: 300 / 1: 2000  Sigma 

Anti-ds red polyclonal (rabbit)        - / 1: 2000 BioZOL 

Anti-Flag monoclonal M2 (mouse) 1: 3000 / 1: 3000 Sigma 

Anti-Actin (rabbit)   1: 300 / - ICN 

Anti-Actin (rabbit)   1: 300 / - Sigma 

Anti-p28 (mouse)   1: 300 / - Sinden R.E. (2001),  

Imperial collage London 
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2.1.9.1. Antibody generation  

A. PfProfilin (Herwig Schüler) 

Full-length PfProfilin with an N-terminal hexahstidine tag was expressed in E. coli 

BL21(DE3)RIPL cells and purified by nickel affinity chromatography. 1 mg of purified 

protein was separated by SDS-PAGE, the profilin band was cut out and sent to Eurogentec. 

The company immunized two rabbits with 3 x 100 micrograms of this material. The 5370 sera 

recognized Pfprofilin as well as the his-tagged protein. The 5371 sera had almost no cross- 

reactivities (bacterial lysates, rings, trophozoites, and T.gondii lysates). 

Anti-MyosinA (rabbit)   1: 300 / - Pinder et al. 1997 

Anti-CAP380 (rabbit) 1: 1000 / - Srinivasan et al. (2008s) 

John Hopkins Hospital, 

Balimore, USA 

Anti-TgProfilin (goat)   1: 300 / 1: 1000 R & D Systems, Inc 

Anti-PfProfilin (rabbit)   1: 300 / 1: 1000 Eurogenetec, H. Schüler 

Anti-CpCAP (rabbit)            - / 1: 5000 Eurogenetec, J. Sattler 

Anti-PbADF1 (rabbit)   1: 300 / 1: 500 Eurogenetec, J. Sattler 

Anti-PbADF2 (rabbit)   1: 300 / 1: 500 Eurogenetec, J. Sattler 

Secondary antibody IFA  

Anti-mouse Alexa Fluor 488 

(donkey) 

1: 3000 Molecular Probes, NL 

Anti-mouse Alexa Fluor 546 

(donkey) 

1: 3000 Molecular Probes, NL 

Secondary antibody WB  

Anti-mouse-IgG-HRP (goat) 1:10000 Amersham, Germany 

Anti-rabbit-IgG-HRP (goat) 1:10000 Amersham, Germany 

Anti-rat-IgG-HRP (goat) 1:10000 Amersham, Germany 

DNA-stain   

Hoechst 33342 1: 1000 Invitrogen, Germany 

Draq 5 1: 1000 Axxora 

SYTOX Orange  Molecular Probes, NL 

Other stains   

Phalloidin 1: 50 Molecular Probes, NL 
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B. CpCAP, PbADF1, PbADF2 (Julia Sattler) 

Recombinant proteins, CpCAP-His-tag, PbADF1- and PbADF2- GST-tag, were purified with 

appropriate chromatography, and used for antibody generation in rabbit by Eurogenetec.  

2.1.10. Molecular cloning 

2.1.10.1. Plasmodium target vector  

In this study the targeting plasmid vector b3D.DT^H.^D (B3D) or B3D+ was used to replace 

or target genes in the Plasmodium berghei genome. The vector contains a selectable marker (a 

mutated Toxoplasma gondii dihydrofolate reductase thymidylate synthase, Tgdhfr/ts), which 

introduces resistance against pyrimethamine and enables recombinant parasite selection and 

an ampicillin resistance for selection in E. coli during the cloning procedure. Additionally, the 

B3D + vector contains the 3´UTR of the P. berghei dhfr/ts, which confers mRNA stability of 

the introduced transgene.  

The replacement strategy was used, to replace the entire gene (C-CAP) by the Tgdhfr/ts 

selectable marker cassette. Gene targeting was facilitated by introduction of the 3’ and 5’ 

UTRs (untranslated regions) of the PbC-CAP gene into the B3D+, flanking the Tgdhfr/ts. 

Both UTRs facilitate homologous recombination and stable integration into the genomic PbC-

CAP locus. 

The same vector was used to design the complementation plasmid containing the C. parvum 

C-CAP and its mutants CpC-CAPSTOP and CpC-CAP117/118, as well as for the complementation 

with profilin. Therefore, the coding sequence of either CpC-CAPs or profilin were cloned 

upstream of the 5` UTR of PbC-CAP, using it as the endogenous promoter, simultaneously.  

The B3D plasmid was employed for overexpression and Flag-tagging of the PbC-CAP and 

profilin under the CSP and CTRP promoters. Therefore, the integration-strategy was chosen.  

The stage specific promoters were cloned upstream of the Flag-tag and the coding sequence 

of the gene of interest (goi). Subsequently, the PbC-CAP and profilin were cloned with their 

3`UTR into the B3D vector. Linearization of the plasmid, within the goi sequence facilitated 

the introduction of a second goi copy into the genome.  

For transfection, the replacement vector was linearized by digestion with appropriate 

endonucleases. Preparative digestion was analyzed by aragose gel electrophoresis, purified 

and concentrated by ethanol precipitation. Finally, 5- 10 µl DNA were diluted in 10 µl H2O 

and used for transfection. 
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2.1.10.2. Oligonucleotides for molecular cloning and genotyping 

Primers were synthesized by eurofines MWGoperon. For molecular cloning, the Platinum-

Taq polymerase was used for fragment amplification, and for genotyping on gDNA the Taq-

polymerase. 

Table 2. Primer sequences for molecular cloning and genotyping 

Primer Name 

(restriction side) 

Primer Sequence 5`3` 

(restriction side underlined, linker bold) 

objective 

C-CAP annotation 

B5 CL_Tsplice_rev CATTTTTGTAATTGCACACTTCCC 

B7 CL_Tsplice_for2 GTTACACAAAACATATATTGCGGC 

Gene 

annotation 

C-CAP cloning 

B1 CL_5`UTR_ for    (SacII) TCCCCGCGGGCTATGGGCACATCAACAATTTATTATTC

CC 

B2 CL_5`UTR_rev     (NotI) ATAAGAATGCGGCCGCACTTCTTATGTGGTATTTTTCT

GGTAAATTGTTTTATTCC 

B3D+ 

c-cap(-) 

5`UTR 

B3 CL_3`UTR_for     (HindIII) CCCAAGCTTCATTTTTTACATGGAAAAATTAGTTCCC 

B4 CL_3`UTR_rev     (KpnI) CGGGGTACCAATATAAAAATTAATAAGGAAAATGG 

3`UTR 

C-CAPmCherry tagging 

B6 CL_5`UTR            (SacII) TCCCCGCGGTTTCTCGTTTAGTTATTAATTCATAACTCT

AT 

GTTTTTTGTTTCC 

B8 CL_5`UTR linker  (SpeI) CGGACTAGTTGCTGCTGCTGCTGCTGCTGCTGCATA

ATT 

ATACAAATCCGAAACCCTTGTATTTAATTTACCC 

B3D+ 

5`UTR+ C-

CAP ORF  

M C`mCherry_for      (SpeI) CGGACTAGTGTGAGCAAGGGCGAGGAGGATAAC 

M1 C`mCherry_rev     (BamHI) CGGGATCCTTACTTGTACAGCTCGTCCATGCCGC 

mCherry 

C. parvum C-CAP and mutant cloning

C1 CpCAP_for           (SpeI) CGGACTAGTAAAATGAAAGCAGCAAGACAAGTAGTTA

CA 

AATGGTAGT 

C3 CpCAP_rev          (BamHI) CGGGATCCTTATCCATACAATGGAGAAACCATACTTTC

TA 

ATTTGC 

CpC-CAP 

and  

CpC-CAP 

117 ORF 

C4 CpCAP_rev STOP (BamHI) CGGGATCCTTAAATTGCAAGTTCTTTCCAGTCACCTTC

TTC 

TTC 

CpC-CAP 

STOP  

PbProfilin  

P1 Prf1_for                 (SpeI) CGGACTAGTAAAAATGGAAGAATATTCATGGG 

P2 Prf2_rev                (BamHI) CGGGATCC TTATGCGGCACCTGTATCAGTG 

Profilin 

OFR 
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CTRP/CSP_Flag_C-CAP/profilin overexpression 

T23 CTRP_Prom_for   (SacII) TCCCCGCGGATATATACCACTTCCTCAAAATGAATAGG 

T22 CTRP_Prom_rev   (SpeI) GGACTAGTTGTGTTTTGCTTTGTATTTAAAATAGATTA 

CTRP 

promoter 

T25 CSP_Prom_for      (SacII) TCCCCGCGGACATAAAAGGGAATATGGAATATACTAG

C 

T26 CSP_Prom_rev     (SpeI) GGACTAGTAAATATATGCGTGTATATATAGATTTTG 

CSP 

promoter 

B20 Pbc-cap_for          (NotI) ATAAGAATGCGGCCGCGCTAGCAAACCAAGTAAGTTT 

ATC 

B23 Pbc-cap_rev          (BamHI) CGGGATCCGCGCTTCAACTATATAAATGTTCC 

C-CAP 

ORF+3`UTR 

B21 PbPRF_for            (NotI) ATAAGAATGCGGCCGCGAAGAATATTCATGGGAAAAT

TTTTTAAATGAC 

B22 PbPRF_rev           (BamHI) CGGGATCCGGAATACCCCAACTAGCTATGC 

Profilin 

ORF+3`UTR 

Genotyping 

c-cap(-) 

T9 CL_3UTR_rev_endo CCGTAATAAGCTTTTTATGAATAAATTATTTATACAAC 

T8 TgPro_rev CGCATTATATGAGTTCATTTTACACAATCC 

3`UTR 

integration 

T10 CL_5`UTR_for_endo GTTTGCGCATTAAGTGTGTGCACATATATATAG 

T11 OSUTR_rev AATTCCGGTGTGAAATACCGCACAGA 

5`UTR 

integration 

C-CAP::C-CAPmCherry 

T16 TmCherry_rev TTCACGTAGGCCTTGGAGCCGTA 

T10 CL_5`UTR_for_endo GTTTGCGCATTAAGTGTGTGCACATATATATAG 

5`UTR 

integration 

C-CAP:: CpC-CAP/CpC-CAPSTOP 

C3 CpCAP_rev          (BamHI) CGGGATCCTTATCCATACAATGGAGAAACCATACTTTC

TA 

ATTTGC 

C4 CpCAP_rev STOP (BamHI) CGGGATCCTTAAATTGCAAGTTCTTTCCAGTCACCTTC

TTC 

TTC 

T10 CL_5`UTR_for_endo GTTTGCGCATTAAGTGTGTGCACATATATATAG 

 

5`UTR 

integration 

C-CAP::Pbprofilin 

P2 Prf2_rev                (BamHI) CGGGATCC TTATGCGGCACCTGTATCAGTG 

T10 CL_5`UTR_for_endo GTTTGCGCATTAAGTGTGTGCACATATATATAG 

5`UTR 

integration 

Ctrp/csp_Flag_c-cap/profilin 

T25 Flag_for GACTACAAAGACCATGACGGTG  

 CTRPpromTestFor TATATATATTTGTTTTGCTATCTGAGACCG  

 CSPpromTestFor TTTGATAACCCTCACATAAGACAATCC  

TP1  GGTTGCAGCAAACTTATCAATGCCTGG  

TP0  GCAAATTTATGCATTTGATCGGCG  
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2.1.10.3. Oligonucleotides for expression profiling 

Oligonucleotides for RT-PCR and qRT-PCR were designed to amplify a 200 bp DNA 

fragment from cDNA. Primers were chosen to span an exon-intron structure, if it was 

possible. 

Table 3. Primer sequences for expression profiling  

Gene Primer Name Primer sequence 5`3 

RT-PCR 

p41_PBHsp79_for CATATTGATACGATTATGCAATTTTTTATTTACGACACTG PbHsp70 

p43_PBHsp70_rev GTAAGTTTGGCTTTGCTTTTGCGTTAGCC 

qRT-PCR 

X23_PbCL_for CAAAGATAATCAATGGGAAGTGTGC PbC-CAP 

X24_PbCL_rev ATTTAAAACAATACTACATTTCCCACAG 

X1_Prf_rev GCGGCACCTGTATCAGTGC PbProfilin 

X2_Prf_for TAAAGGTTTAGAATATGAAGGACACAG 

X3_ADF1_for TGTGCATATGTTGTTTTTGACGC PbADF1 

X4_ADF1_rev CATCTAGGGCACTTTCAACAACCG 

X5_ADF2_for TATGCCTATCCCAACTCCTGAAG PbADF2 

X6_ADF2_rev GTTCTTCTTCAAATTCATTTATATCACAAG 

X7_GFP_for GATGGAAGCGTTCAACTAGCAGACC GFP 

X8_GFP_rev AGCTGTTACAAACTCAAGAAGGACC 

 

 

2.1.11. Software 

DNA sequence analysis was done with the Clone Manager or SerialCloner1-3 software. 

Primer evaluation was done with Oligo Calc (Oligonucleotide Properties Calculator). Protein 

and DNA sequence alignments were done using manly ClustralW and Muscle software. For 

Image and movie analyzation ImageJ was used. Data processing was done with EXCEL and 

GraphPad Prism V.5., MS Word, MS Powerpoint, Adope Photoshop 
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2.2. Methods 

2.2.1. Microbiological methods 

2.2.1.1. Transformation of Escherichia coli (E. coli) 

The purpose of this technique is the introduction of foreign DNA, mostly in plasmid 

conformation, into bacterial cells (E. coli). The bacteria cell will replicate the DNA along with 

its own to produce large DNA quantities. Using a plasmid containing an antibiotic selectable 

marker, facilitates selection of transformed cells, under antibiotic pressure. “Competent” 

bacteria will take up the foreign DNA. The E. coli strain XL-1 blue (stratagene) was used for 

final target vector amplification and Top 10 cells (invitrogen) were used for the subcloning 

procedure into the TOPO vector (Invitrogen). A frozen stock of competent E. coli (36 µl) 

was incubated on ice for 10 min. Adding ß-mercaptoethanol (0.68 µl) for 10 min on ice, 

induces permeabilization of the bacteria outer membrane. Subsequently, the ligation reaction 

was diluted at least 10 times, mixed with the competent bacteria and incubated for 30 min on 

ice. To induce DNA uptake by E. coli, the bacteria need to be exposed to a temperature of 42 

ºC for 42 sec, called “heat shock”, followed by a incubation, on ice for 2 min. For some 

bacteria, a preculture step for 1 hr shaking at 37 ºC, with 800 ml of LB or SOC medium can 

be performed. The preculture medium does not contain antibiotics, to enhance the first 

bacteria growth amplification. The cells were pelleted with 13.000 rpm, for 30 sec and 600 µl 

of the medium were discharged. To obtain defined bacterial colonies, 200 µl of the 

transformation suspension was than spread on to LB-agar plates, containing the antibiotic 

ampicillin and incubated at 37 ºC for 16-20 hours. Single colonies growing on the LB-agar 

plates were picked up for separate liquid cultures. Different bacterial strains rely on distinct 

transformation protocols, which are described in the manufacturers instruction.  

2.2.1.2. Culturing E. coli on agar plates  

This technique is used to produce discrete colonies containing one clonal E. coli population. 

The bacteria grow on semi-solid surface of the agar-plates, containing antibiotics for 

selection. The agar plate can be stored at 4 C, for up to one month.    
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2.2.1.3. Culturing E. coli in liquid medium 

Luria Bertani (LB) medium is the universal medium to grow E. coli bacteria. It contains 

peptides, peptones, vitamins, and trace elements that are important for bacteria proliferation. 

For selection antibiotics are added. Inoculation of single E. coli colonies on agar plates or the 

pre-culture was the most common technique to grow bacteria. For small-scale plasmid 

purification a 5 ml LB culture was used. For midi- and big-scale DNA purification 50 ml or 

250 ml LB culture is sufficient. Bacteria grow shaking with 250 rpm at 37 C overnight.  

2.2.1.4. Long-term storage of Bacteria 

500 µl of a 5 ml overnight liquid culture is mixed with 1 ml of 500 µl of 50 % Gycerol, and 

stored at –80 C in cryo-vessels. 

2.2.2. Molecular biological methods 

2.2.2.1. Polymerase chain reaction (PCR)  

PCR was used to amplify specific DNA sequences from P. berghei wild type genomic DNA 

or other sources containing template DNA for molecular cloning, gene annotation, diagnostic 

parasite genotyping or gene expression analysis. 

This method is based on the ability of heat stable DNApolymerases to synthesize a new strand 

of DNA from a template, by usage of primers and deoxynucleotiede triphosphates (dNTP). 

Specific primers, complementary to the three prime end of sense and anti sense target DNA, 

were used. Primers contained three prime extensions, coding for specific endonuclease 

restriction sides to facilitate molecular cloning. Repetitive cycles of four steps, (i) the 

denaturation of double strand (ds) DNA, (ii) primer annealing to template DNA, (iii) new 

DNA-strand synthesis by the polymerase and (iv) an elongation step to terminate all 

amplicons, leads to an exponential accumulation of PCR products. 10-50 ng of template DNA 

was used for one PCR reaction. Platinum Taq-Polymerase was employed for amplification of 

fragments used for expression cloning and Taq-Ploymerase was used for analytical PCR. Due 

to the high AT content of Plasmodium DNA the annealing temperature was typically 

performed by 55 C and the extension- temperature was 60 ºC instead of the normal 

temperature (72 ºC). PCR composition and conditions were further set according to the 

primers, polymerase and amplification targets.  
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Standard PCR program: 

Step 1: Denaturation ds DNA 94 ºC, 5 min 

Step 2: Denaturation ds DNA 94 ºC, 30 seconds 

Step 3: Annealing primer 55 ºC, 30 seconds 

Step 4: Extension of new DNA strand 60 ºC, two to five minutes 

Step 5: Elongation 60 ºC, ten minutes 

Step 6: Cycling between steps 2-4 30-35 cycles 

Step 7: store 4 ºC ∞ 

2.2.2.2. Complementary DNA (cDNA) synthesis by reverse transcription (RT) 

This technique uses the ability of the viral DNA polymerizing enzyme Reverse Transcriptase 

to synthesize cDNA from mRNA for further applications. The cDNA was synthesized 

following manufacturers instructions of the “RETROscript Kit” (Ambion). Finally, cDNA 

was stored in aliquots at –20 C to avoid thawing cycles. Also, cDNA samples were tested by 

PCR for gDNA contamination. Primers, which discriminate between g- and c- DNA, by 

spanning an intron, were used to perform standard PCR and subsequent analyses by agarose 

gel electrophoresis. 

2.2.2.3. Qualitative real time-PCR (qRT-PCR) 

This technique is used for qualitative gene expression profiling. cDNA samples and 

appropriate primers were subjected to standard PCR for detection of cDNA/mRNA content. 

Note, this procedure detects and analyses amplicons only at the end of the PCR, which permit 

high real time sensitivity due to saturation of PCR amplicon after 35 cycles. A gDNA control 

was analyzed in parallel. 

2.2.2.4. Quantitative Real Time PCR (qRT-PCR) 

This technique is used for gene expression profiling through the different life cycle stages of 

P. berghei. It is a PCR based technique, which is used to amplify and simultaneously quantify 

the targeted DNA molecule. During double strand DNA synthesis the fluorescent nucleic acid 

marker SYBR green, is incorporated and fluorescence is measured after each cycle. A 

threshold for detection of fluorescence above the background is determined, and the cycle at 

which the fluorescence crosses the threshold is called the cycle threshold Ct. Here, relative 

DNA concentrations are measured during the exponential phase of reaction, by plotting 

fluorescence against the cycle numbers on a logarithmic scale. Measurements are normalized 

using the endogenous control.  
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QRT-PCR was performed on cDNA using the Applied Biosystems StepOnePlus Real Time 

PCR system and Power SYBR® Gene Master mix (Applied Biosystems), according to the 

manufacturers instructions. QRT-PCR was performed in triplicates with the standard PCR 

program containing and elongation step for detection of the melting curve:  

Sample preparation: 

cDNA probe: 10 µl of cDNA diluted in H2O (1:40) 

SYBR probe: 12.5 µl SYBR mix 

 0.1 µl primer mix 

 2,4 µl H2O 

final volume: 25 µl 

Standard qRT-PCR program:  

Step 1: 95 C, 15 min 

Step 2: 95 C, 15 sec 

Step 3: 55 C, 15 sec 

Step 4: 60 C, 45 sec 

Step 5: 40 cycles between step 2 and 3 

Step 6: 60 C, 45 sec 

For determination of the melting curve further steps were added: 

Step 7: 95 C, 15 sec 

Step 8: 60 C, 1 min 

Step 9: 95 C, 15 sec 

Transcript abundance was determined using the 2 Ct method and calculated as followed: 

Step 1: 

Mean of Ct1-3 gene x = mCt gene x 

Mean of Ct1-3 normalizer = mCt norm 

Step 2:  

Ct = mCt norm - mCt gene x 

Step 3: 

Relative mRNA levels = 2 Ct  
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Expression data were normalized using the GFP transgene, which is expressed constitutively 

under the EF1 promoter (Janse et al., 2006b) or the house keeping gene gapdh.  

The melting curve and H2O negative control was analyzed, to exclude gDNA contamination 

and primer efficacy. 

2.2.2.5. Agarose gel electrophoresis  

Gel electrophoresis is used to separate DNA molecules, according to their charge, size and 

conformation. Due to the DNA phosphate backbone, molecules are negatively charged and 

migrate inside an electric field to the positive pole the (anode). Depending on their length they 

are transported differentially fast and far through the gel. Gels were prepared from 0.8 – 1 % 

agarose in 1x TAE buffer. The solution was boiled in a microwave oven to dissolve the 

agarose and allowed to cool down 50 - 60 ºC, before SYBR Safe green (10 µg/100 ml) was 

added. The DNA samples were loaded in 1x loading dye, additional to the 1 kb ladder and 

separated by 100 V for 1 hrs. Ultraviolet light was used to visualize the separated DNA 

molecules in a gel documentation system. 

2.2.2.6. DNA purification by ethanol precipitation 

To obtain purified and concentrated DNA, mainly for the transfection of parasites, 

precipitation using sodium acetate and ethanol was used. 0.1 x volume of sodium acetate (pH 

4.8) and 2.5 x volume ethanol 100 % were added to the DNA and incubated for 30 min at -80 

ºC. The precipitated DNA was collected by centrifugation for 10 min at maximum speed 

(13000 rpm) at 4 ºC. The DNA was washed two times with ice-cold ethanol 70 % and 

centrifuged for 5 min at 4 ºC. The air- dried DNA pellet was than dissolved in an appropriate 

volume of ddH2O.  

2.2.2.7. DNA purification by gel-extraction (Quiagen) 

PCR fragments as well as digested vector backbones were purified by gel- extraction. 

Separation of DNA was performed by agarose gel electrophoresis. Importantly, during cutting 

the fragment out of the gel, UV-light illumination should be avoided. This could be facilitated 

by running a reference probe next to the sample where the size is designated, which is than 

used for orientation in the gel. The exercised gel block containing the sample is further 

processed under manufactures instructions using the gel extraction kit (Quiagen). 
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2.2.2.8. DNA purification by PCR purification Kit (Quiagen) 

This method is preferentially used for purification of PCR fragments and digestion 

preparations. DNA fragments with appropriate size (up to 10 kb) can be purified with a silica 

membrane. Further sample processing was done under manufactures instructions. 

2.2.2.9. Determination of DNA concentration  

The absorption of UV light by nucleic acids is direct proportional to the concentration of 

DNA. The UV absorption of DNA is highest at 260 nm. For calculation of DNA 

concentrations the optical density at 260 nm (OD260) is used: 

 

(OD260 x dilution factor x 50)/1000 = DNA concentration in µg/ml. 

 

The maximum UV light absorption for proteins is 280 nm, therefore the DNA purity can be 

calculated as the proportion of OD260/OD280. Plasmid DNA should have the purity in a range 

of 1.8 – 2.0. Alternatively the Nanodrop spectrophotometer can be used. 

2.2.2.10. Vector and Insert preparation 

For cloning the gene/insert of interest into the target vector, first the plasmid and the PCR 

amplified gene/insert were digested with the respective restriction endonucleases. One unit of 

endonuclease enzyme corresponds to the amount of enzyme required to digest 1 µg of DNA 

under optimal conditions, which depend on the optimum temperature and the proper enzyme 

buffer. The standard endonuclease digestion reaction used for cloning consists of the 

following: 

1-2 µg DNA 

1-2 U/ml restriction enzyme 

1x BSA (bovine serum albumine, indicated if necessary) 

1x Enzyme buffer 

ddH2O/ add to the final volume 

DNA digestion can be done simultaneously by two restriction enzymes, if a suitable buffer is 

available. After digestion the DNA was purified, mainly using the PCR-purification kit or gel 

extraction kit (Qiagen), and was eluted in water.  

Optional, the vector was dephosphorylated for 1hr at 37 C using the rapid- ligation kit 

(Roche), to prevent intrinsic vector ligation. Subsequently, dephosphorylated DNA was 

purified with the PCR-purification kit (Quiagen). 
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2.2.2.11. Ligation of DNA fragments   

The ligation of the digested and dephosphorylated vector with the insert was done with the 

rapid ligation kit (Roche) at 1: 7 molar ratio (vector: insert). T4-Ligase was added for 20 min 

at room temperature or at 4 C overnight, following the manufacturers instructions. 

Afterwards, the ligation reaction is ready to be transferred into competent bacterial cells. The 

remainder of the ligation reaction can be kept on ice or frozen at -20 ºC. 

2.2.2.12. Plasmid DNA preparation 

The plasmid isolation from the bacterial cells was done by alkaline lysis. This method lyses 

the bacterial cell wall and plasma membrane. For precipitation of the proteins, lipids, and 

genomic DNA, acetic acid was used. The circular plasmids do not precipitate and remain in 

the soluble supernatant. The ”QIAprep Spin Miniprep Kit” (Qiagen), was used to isolate the 

recombinant plasmids from the 5 ml overnight culture. Finally plasmids were eluted in 50 µl 

H2O. A detailed description of the isolation procedure is described in the manufacturers 

manual. Midi-scale plasmid preparations were done using the MIDI- kit (Quiagen). 

2.2.2.13. Sequencing of DNA fragments 

Sequencing is an important step to confirm the correct DNA sequence of the transgene, to 

ensure subsequent functionality and to reduce mice numbers for transfection and subsequent 

cloning. 

Every DNA fragment, which was used for transfection, was send to a company for 

sequencing (eurofins mwgoperon).  

2.2.3. Methods for Plasmodium berghei 

2.2.3.1. Transfection of Plasmodium berghei parasites 

During transfection, foreign material, i.e DNA, RNA, or proteins were introduced into 

eukaryotic cells. Stable DNA transfection has been reproducibly established in P. falciparum 

and P. berghei (Thathy and Menard, 2002). The transfection in Plasmodium was performed 

using the blood stage parasites. Molecular biology approaches allow gene targeting, gene 

inactivating or gene modifying by homologous recombination between the introduced 

transgene and the genomic DNA. Since, Plasmodium is haploid for almost all parts of its life 

cycle a simple gene targeting event is sufficient to generate a loss of function mutant (de 

Koning-Ward et al., 2000; Menard and Janse, 1997; van Dijk et al., 1995; Waters et al., 

1997). A major limitation, however, is the inability to delete genes that are essential for 
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asexual blood stage growth. Two stable transfection strategies; (i) the integration strategy, 

where a single crossover occurs to alter the gene of interest, and (ii) the replacement strategy, 

which needs two crossover events to replace the target gene (de Koning-Ward et al., 2000).  

2.2.3.2. Transfection schizont culture of P. berghei 

Transfection was done in mature schizonts that are capable to infect new erythrocytes after 

the transfection event. To gain parasites, NRMI mice or Wistar rats were infected by intra-

peritoneal injection of the respective Plasmodium host strain. In this study the Anka or the 

Anka-GFP-507cl stain (Janse et al. 2006) were used. Animals with 2 to 3 % parasitemia and 

low gametocyte density were employed for the schizonts culture. The blood was harvested by 

heart puncture from isofluran-anesthetized animals with heparin-treated syringes. The blood 

was washed once in 10 ml of pre-warmed transfection media, containing 250 µl heparin/PBS 

(200 U/ml) and erythrocytes were isolated by centrifugation at 1000 rpm for 8 min at room 

temperature. The blood pellet was mixed with 50 ml of pre-warmed transfection media and 

pipetted under the final 100 ml transfection culture in the Erlenmeyer vessel. The culture was 

incubated for 15- 16 hours at gentle shaking by 77- 80 rpm at 37C in a mixed gas incubator. 

The gaseous atmosphere contained 10 % O2, 5 % CO2 and 85 % N2. During this culturing, 

almost all blood stages mature into late schizonts. The quantity and quality of schizonts can 

be tested, by making a Giemsa stained blood smear, from the culture. 

2.2.3.3. Schizont Isolation 

To purify mature schizonts, a 55 % Nycodenz gradient centrifugation was used. 35 ml of the 

overnight culture is distributed into 4 x 50 ml falcon vessels and 10 ml of the Nycodenz 

gradient (room temperature) was mounted under the culture. For gradient generation, the 

culture was than centrifuged for 25 min at 1000 rpm (without brake!) at room temperature. 

Mature schizonts are accumulated in the brownish interphase ring and were collected with a 

Pasteur pipette. Schizonts were washed in 30 ml transfections media in two falcon tubes with 

centrifugation for 10 min at 1000 rpm (without break). The pellet was subsequently 

suspended in 10- 15 ml media (10 to 30 x 106/ ml schizonts). 1 ml of schizonts per one 

transfection was sedimented in 1,5 ml eppendorf tubes by centrifugation of 1 min at 13.000 

rpm at room temperature. 

2.2.3.4. Transfection of P. berghei schizonts by electroporation 

The electroporation increases the cell plasma membrane permeability by an external electrical 

field so that the DNA can easily be taken up. The electroporation was facilitated by usage of 
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the Amaxa electroporator and the U33 program. First, the parasite pellet was resuspended in 

100 µl of human T-cell nucleofactor solution and afterwards mixed with the transfection 

vector. The whole mixture was placed into the transfection cuvette an electroporation was 

started. Afterwards, 50 µl of fresh transfection media was added and the whole transfection 

solution was injected intra-venously into two recipient NMRI mice.  

2.2.3.5. Positive selection of recombinant parasites    

24 hours after transfection the selection pressure was started by the antifolate drug 

pyrimethamine. Pyrimethamine (70 ng/ml; pH 3.6- 5.0) was added to the drinking water and 

parasitemia was monitored over a period of six to ten days. Depending on the genetic strategy, 

mice became positive at different time points. Using the insertion strategy resistant parasites 

became positive between 5 - 7, and by replacement strategy mice became positive at day 8- 

12, respectively. Positive blood samples were collected by heart puncture and stored as 

stabilates, as gDNA for genotyping or were transferred to naïve mice for parasite cloning. 

2.2.3.6. Long-term storage of blood stage parasites 

Infected blood was mixed with freezing solution in a 1: 2 ratio (100 µl blood with 200 µl 

freezing solution), and stored in liquid nitrogen for long-term or at -80C for short-term 

storage. 

2.2.3.7. Giemsa-stained blood smears and determination of parasitemia 

Giemsa staining allows the monitoring of red blood cell infection, differentiation between 

developmental stages and determination of the parasitemia, the percentage of erythrocytes 

infected with Plasmodium. A blood drop was taken from the tail of the mice and smeared 

onto the glass slide. The air-dried smear was fixed in methanol for 3 - 5 min, and afterwards 

stained with 10 % Giemsa solution for 10 - 20 min. After the slides were rinsed with H2O and 

air-dried, microscopic observation followed. Using the 100x objective (immersions oil) in the 

bright field microscope, the average number of erythrocytes in two fields was determined. 

Subsequently, the amount of parasites was counted in 10- 30 fields, with comparable 

erythrocyte density. Finally, the parasitemia is calculated as follows: 

 

∑ of parasites / (∑of erythrocytes per field x ∑of counted fields). 
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2.2.3.8. Preparations of P. berghei blood stage parasites 

The genomic DNA was isolated from blood stage parasites for gene amplification or 

genotyping of transgene parasite lines. Parasite infected erythrocytes where purified from 

leukocytes and thrombocytes by running the blood through a column filled with batting, 

cellulose and glass beads (from the bottom up). The erythrocytes are eluted from the column 

with 1x PBS and collected in a 15 ml falcon. Erythrocytes were pelleted by centrifugation at 

1500 rpm, for 8 min at room temperature. Subsequently, parasites were obtained by 

erythrocyte lysis, through resuspension of the erythrocyte pellet in 14 ml 0.2 % Saponin/1x 

PBS. The parasites were pelleted by a following centrifugation of eight minutes at 3000 rpm, 

room temperature. Parasites were transferred to a 1.5 ml eppendorf tube. Two washing steps, 

including resuspension of the parasite pellet in 1 ml in 1x PBS and centrifugation at 7000 rpm 

for 3 min at room temperature were applied. Parasite pellet was dissolved in 200 µl PBS 1x, 

and stored at –20 C, or further processed to gDNA for genotyping, or for western blot 

samples. 

2.2.3.9. Genomic DNA (gDNA) preparations from P. berghei 

Parasites mostly blood stages, dissolved in 200 µl 1x PBS, and stored by –20 C, were thrown 

and processed following the manufacturers manual of the “QIAamp DNA-Blood Mini Kit”, 

(Qiagen). Finally, gDNA is eluted in 200 µl H2O and stored at –20 C. 

2.2.3.10. Isolation messenger RNA (mRNA) from P. berghei  

For gene expression analysis or for cloning of genes without introns, mRNA was isolated 

from different life cycle stages. All parasite stages were treated using the same protocol 

accordingly to the “RNeasy Mini Kit” manual (Quiagen). Collected parasite cells were kept in 

350 µl RTL buffer with 3.5 µl -Mercaptoethanol, in RNAse free tubes and stored at –80 C. 

After mRNA isolation, samples were eluted in H2O and subsequently processed to cDNA. If 

this was not possible, samples were stored at –80 C. An additional DNAse treatment was 

applied (Turbo DNAse) to ensure purity of mRNA samples. It is important to avoid constant 

defrosting of the sample, because of mRNA instability. The whole mRNA isolation and 

processing was done quickly and with usage of filter tips to avoid RNase contamination of the 

sample.  
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2.2.3.11. Parasite cloning 

Clonal parasite populations were obtained in vivo by intravenous injection of limiting 

dilutions of one parasite into recipient NMRI mice, and calculated as follows: 

 

7 x 106 (∑ number of erythrocytes per 1 ml blood) x parasitemia x 10-2 parasites 

= number of parasitized erythrocytes per µl blood. 

 

Blood was collected by heart puncture from mice with < 1 % parasitemia and six to ten fold 

dilution were made in RPMI (100 µl blood: 900 µl RPMI), on ice. Single parasites were 

injected intra-venously into NMRI mice and kept under pyrimethamine treatment. Finally, 

genotyping using specific primers were used to confirm clonality. 

2.2.3.12. Blood stage development / Growth curve analysis of P. berghei 

To determine blood stage development of mutant and wild type parasites in vivo, mice were 

infected intravenously with 1.000 mixed blood stage parasites. Groups of seven NMRI mice 

were used. Parasitemia was determined by daily microscopic examination of Giemsa- stained 

blood smears. Growth curve analysis was done, by plotting parasitemia against time of both 

groups.   

2.2.3.13. Exflagellation assay of male gametocytes 

The development of male and female gametocytes can be observed using Giemsa-stained 

blood smears. Furthermore, the exflagellation process of male gametocytes, which normally 

occurs in the mosquito midgut, can be visualized ex vivo. A drop of blood is placed onto a 

cover slip and examined with the 40x objective in the bright field microscope. The 

temperature drop of 2 - 5 ºC (to room temperature) induces the exflagellation process after 

10 min, in vitro (Billker et al., 1997). Analysis of the exflagellation is important in order to 

characterize the functionality of mutant parasites and obtain an optimal mosquito infection 

rate.  

2.2.3.14. Gametocyte enrichment and purification 

In order to gain high gametocyte ratio in the infected mice, mice were treated with 100 µl of 

phenylhydrazin/NaCl solution (6.82 µl Ph in NaCl) by intra peritoneal injection, one day 

before infection with P. berghei. After infection, parasitemia and exflagellation is monitored 

daily. At time points (3- 4 days after blood meal) when high exflagellation occurs, 
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sulfadiazine (12.5 mg/l) is added into the drinking water of mice, freshly. Sulfadiazine 

efficiently kills all asexual stages, but not gametocytes. At 48 hrs after starting treatment with 

sulfadiazine, the blood was harvested by heart puncture and run through a column as used for 

blood stage parasite purification. All steps are performed quickly at high room temperature 

and 37 C warm PBS to avoid gametocyte activation. Here, I used PBS only and not the rich 

medium, because of sample preparation for mRNA or western blot. The gametocytes were 

isolated from blood by a Nycodenz gradient centrifugation, as described for schizonts 

purification. The brown interphase ring represents the gametocyte fraction and was collected 

with Pasteur pipette. One washing step was included with 10 ml 1x PBS and centrifugation by 

1.500 rpm for 3 min. The quality of the gametocyte fraction was estimated by a Giemsa- 

stained smear. The material was further processed to mRNA or western blot samples. 

2.2.3.15. Mosquito infection with P. berghei 

In order to get high infectivity rates, mosquitoes should be 2- 4 days old. Starvation of 4- 8 

hrs prior blood meal, can enhance the amount of sucking mosquitoes. Infection was done, by 

feeding of mosquitoes on narcotized NMRI mice infected with P. berghei. Therefore, it is 

important, that mice exhibit significant exflagellation with 4 to 6 exflagellation centers (one 

male gametocyte) in the microscopic field (2000-3000 erythrocyte). The infected mouse was 

placed on top of the mosquito cage for 15 - 30 min. The mice were narcotized with 100µl 

ketamin/ xylazinhydrochlorid (depending on the weigh and age of the mice). After blood meal 

the mosquitoes were placed into the incubator to ensure optimal parasite development.  

2.2.3.16. Ookinete culture and purification 

Ookinetes from P. berghei, which normally occur in the mosquito midgut, can easily be 

cultured in vitro. Fresh blood was harvested from infected NMRI mice. 1 ml of the blood was 

mixed with 9 ml of the complete ookinete medium (pH 8.0) and cultured for 17- 20 hrs in a 

small cell culture flask inside the mosquito incubator. For purification the blood was 

concentrated from the culture by centrifugation with 1.500 rpm for 8 min at room 

temperature, without break. Depending on the further processing Ookinetes were harvested 

either with p28 labeled magnetic beads or with 0.17 M NH4Cl4 (Ammonium chloride), 

erythrocyte lysis.  

The purification with magnetic beads is fast and easy, but should not be used by subsequent 

IFA with anti mouse antibodies. The ookinete pellet is transferred into a 2 ml eppendorf tube 

under dilution with ookinete medium. 3 µl of the p28 labeled beads (p28 is an ookinete 

specific surface molecule) were added and incubated for 10 min an on rotation wheal at room 
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temperature. The tube was placed into the magnetic rack and the blood was carefully 

removed. Two washing steps with adding 1 ml ookinete or 1x PBS are recommended to 

remove residual blood cells. Finally the ookinetes bound to the magnetic beads can be 

resolved in appropriate ookinete medium for further processing.  

For the Ammonium chloride method, the ookinete pellet was resolved in 50 ml ice cold 

0.17M NH4Cl4, and incubated for 30 min on ice, inducing erythrocytes lysis. The ookinetes 

were pelleted by centrifugation with 1.500 rpm, for 5 min, at room temperature, without 

break. 

Ookinetes were further processed.  

Ookinete numbers are determined using the Neubauer counting chamber and calculated as 

following: 

( ookinetes per 4 field/ 4) x 10 x dilution factor = numbers of ookinetes/ µl 

   number of ookinetes/ µl x total volume =  of ookinetes in the sample 

2.2.3.17. Ookinete indirect immuno fluorescence (IFA) 

After standard ookinete culture and purification, ookinetes were mixed with complete 

ookinete medium and incubated on poly L lysine coated cover slips for 30 min at room 

temperature. After ookinete settlement, they were directly fixed with 4 % PFA or MTSB/4 % 

PFA (microtubuli stabilizing buffer), for 10 min, on ice. After removing the fixative, the 

ookinetes were permeabilized with 0.2 % TritonX-100 in 1x PBS (250 µl/well), for 3 min, at 

RT. Blocking was done with 3% BSA in 0.2 % TritonX-100 in 1x PBS, for 20- 30 min, at RT. 

The primary antibody was used by given dilution in 3 % BSA in 0.2 % TritonX-100 in 1x 

PBS, for 1- 2 hrs at room temperature or at 4 C overnight. After three washing steps with 1x 

PBS for 10 min, the secondary antibody with given dilution in 3 % BSA in 0.2 % TritonX-

100 in 1x PBS was incubated for 1- 2 hrs at RT, or at 4 C overnight. After two washing steps 

with 1x PBS the DNA was stained with Hoechst 33342, Dapi or Draq5 in 1: 1.000 dilution 

with PBS. Finally the cover slips were mounted onto glass slides with Fluoromount G.  

2.2.3.18. Ookinete motility assay  

For this ookinete motility assay, ookinetes were cultured and purified under standard 

conditions using p28 labelled beads. Ookinetes were set in commercially available basement 

membrane preparation, matrigel. Motility of individual ookinetes was analyzed combined 

with time- lapse microscopy. Note, that aliquots of matrigel need to be defrosted overnight at 

4 C Purified ookinetes were left in ookinete medium, 20 µl of ookinetes and 20 µl of 

matrigel, were gently mixed by a cut tip, to avoid bubbles. 6 µl were spotted onto a 
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microscope cover slip (18 x 18) rimmed with a thin layer of Vaseline. A couple of cover slips 

were prepared that way, and left at room temperature for 30 min, at 22- 24 C, for 

polymerization of the matrigel. The samples were checked for settled ookinetes and fixed 

erythrocytes, to ensure proper motility. These samples were analyzed with the 63x oil 

objective in DIC/phase illumination. Time-lapse movies were taken by 1 picture every 5 

seconds for 10 minutes. Only ookinetes, which stayed the whole time in the view were used. 

To track the velocity, the movies were analyzed using the ImageJ software and the plugin 

manual tracking. The information about the time between each single picture and the 

conversion factor (Tab. 4) of each pixel in µm, allows setting of fix points and measuring the 

distance between each picture. The distance for every ookinete was followed over time. 

Finally, the velocity was calculated using the Excel program as following: 

 

v (velocity) = s (distance) / t (time) 

 

Table 4. The conversion factor for different objectives 

objective 1 pixel equates 1 µm equates 

100x 0.0645 µm 15.504 pixel 

63x 0.0984 µm 10.163 pixel 

40x 0.156 µm  6.41 pixel 

25x 0.249 µm 4.016 pixel 

10x 0.627 µm 1.595 pixel 

  

2.2.3.19. Ookinete microinjection into the mosquito 

Cultured and purified ookinetes were injected into A. stephensi female mosquitoes as 

described earlier (Sinden et al., 2002; Weathersby, 1952). Female mosquitoes (35) were 

collected in nets covered cups, at least one day before injection. Ookinetes were cultured and 

purified under standard conditions. Defined numbers were resolved in ookinete medium 

adequate to 750 ookinetes in 69 nl (nano) of injection volume. In total 1500 ookinetes were 

injected into one mosquito by two times of 69 nl injection. Mosquitoes were anesthetized with 

carbon dioxide out on a porous polyethylene pad, coupled to a flow regulator (5 l/ min at the 

flow body and 1 l/ min at the polyethylene pad). Mosquitoes should be anesthetized not 

longer that 20 min, for high recovering. The injection was done by a micro injector II 
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(Drummond Nanoject), into the small round chitin plate at the thorax. Mosquitoes were 

placed back into the cup and fed and incubated like usually. 

2.2.3.20. Propagation of Anopheles stephensi mosquitoes 

The mosquitoes were raised in a 14 hrs light /10 hrs dark cycle, 75 % humidity and at 28°C or 

20°C for uninfected and infected mosquitoes. Mosquitoes were fed with sucrose solution and 

mosquito breading solution. 

2.2.3.21. Mosquito midgut preparation and infectivity determination 

Mosquitoes were sucked out of the cage and collected in a 15 ml falcon tube and are kept on 

ice to anesthetize them. They were washed once in 70 % ethanol and once in PBS 1x. 

Dissection takes place in PBS or PRMI under the binocular microscope. With the help of one 

forceps and one syringe tip the abdomen is gently removed so that the midgut becomes 

visible. Mosquito midguts can be stored either in PBS or RMPI media, depending on the 

processing. Infectivity can be easily estimated by GFP fluorescence of the oocysts at day 10 

after infection (if the Anka-GFP-507cl strain was used). Also, non-fluorescent oocysts 

become visible under higher magnification (40x, 100x). 

Infectivity is calculated as followed:  

 

Infectivity = (100 /  total mosquitoes) x  of infected mosquitoes 

 

2.2.3.22. Midgut preparation for electron microscopy (TEM) 

Two charges of mosquitoes were fed in parallel with WT and the mutant parasites. 

Mosquitoes were dissected directly in PBS 1x without the washing step in ethanol. Midguts 

were fixed and stored in 2.5 % glutaraldehyde/PBS (EM grade) at 4 C. 

2.2.3.23. Transmission electron microscopy of midgut-associated oocysts 

For fine structural analysis, midguts were fixed with 2.5 % glutardialdehyde, postfixed with 1 

% osmiumtetroxide, contrasted with tannic acid and 1 % uranyl acetate. After dehydratation 

samples were embedded in Polybed (Polysciences). After polymerization, specimens were cut 

at 60 nm slides and contrasted with lead citrate. Specimens were analyzed in a Leo 906E 

transmissionelectron microscope at 100KV (Zeiss, Oberkochen) using digital camera 

(Morada; SIS). 
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2.2.3.24. Oocyst number and size determination 

Oocyst numbers were counted at least from 10 infected mosquitoes, using the 10x 

fluorescence objective and ten randomly selected microscopic fields. 

For size determination and microscopic analysis of the architecture, midguts were shortly 

fixed for 10 min in 4 % PFA, and permeabilized in 0.2 % Triton X100 for 20 min at room 

temperature. DNA was stained with Hoechst 33342 for 10 min and midguts were 

subsequently mounted in  

40 % glycine/ PBS on glass cover slides. The development of the parasite oocyst was 

investigated over time using a LSM510 confocal laser-scanning microscope (Zeiss). The 

oocyst diameter was measured using the LSM510 image observer software.       

2.2.3.25. Life death assay with SYTOX Orange on midgut associated oocysts 

Infected midguts were incubated for 10 min at RT in 0. 5 µM SYTOX/PBS and subsequently, 

mounted in 40 % glycerin solution. 

2.2.3.26. IFA on oocysts 

Oocysts have a very thick capsule, which is difficult to penetrate. Depending on the question 

either mild or harsh conditions are needed. Infected midguts were dissected in PBS, washed 

1x short in Methanol (-20 C)(optional), and were fixed in 4 % PFA, for 10 min. The harsh 

permeabilization was in 1 % Triton X100/ PBS, for 1 hr, at 37C. After blocking in 3% BSA, 

0.2 % triton PBS, three washing steps in PBS 1x, for 10 min followed. The primary and 

secondary antibodies were used under given dilution in 3 % BSA, 0.2 % triton PBS, for 1- 2 

hrs at 37C. Finally, two washing steps with PBS for 10 min, and incubation with Hoechst 

33342 and Draq5 were done. Oocyst IFAs were mounted in Fluoromount G and sealed with 

nail polish.  

2.2.3.27. Isolation of midgut and salivary gland associated sporozoites 

Midgut sporozoites were mainly isolated at day 14 after mosquito infection. Salivary gland 

sporozoites were isolated between days 17 - 21 after infection. At day 14 midguts were 

isolated as described before and collected on ice in RMPI media containing 3 % BSA. 

Midguts were smashed extensively and centrifuged with low speed at 800 rpm for 3 min, at 

4C. The supernatant contains the sporozoites and is collected. The difficulty to isolate 

salivary gland sporozoites is the dissection of the tiny glands, which sit in pairs at the basis of 

the head. In brief, salivary glands are collected in RPMI with 3 % BSA on ice, smashed and 
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centrifuged at 800 rpm, for 3 min, at 4 C. Pelleting of sporozoites is done by centrifugation 

of 7000 rpm for 3 min at  

4 C. Sporozoite numbers were calculated as described for ookinetes.  

2.2.3.28. Isolation of hemocoel associated sporozoites 

Hemocoel sporozoites were dissected between days 19 - 25 after mosquito infection. 

A glass capillary needs to be stretched under the flame, to become very thin. Mosquitoes were 

collected and kept on ice. Dry mosquitoes were placed under the binocular. The head, the 

wing ends and the last two sections of the abdomen were cut off. Using the fine glass 

capillary filled with RPMI and pushed into the round chitin plate at the thorax, the sporozoites 

were flushed out of the body cavity. The sporozoites are collected first on a parafilm and later 

in an eppendorf tube on ice.  

2.2.3.29. IFA on sporozoite stages 

8-well chamber slides were precoated with 3 % BSA/RPMI for 20 min at 37 C, in a humid 

chamber. Sporozoites were dissected in 3 % BSA/RPMI and incubated for 15 min at 37 C, to 

let them settle down. Fixation was done with 4 % PFA for 10 min, at RT. After 

permeabilization with 0.2 % TritonX100 for 15 min at RT, the samples were blocked with 3 

% BSA/0.2 % TritonX100/PBS for 20 min at RT. Both antibodies were used under given 

dilutions in 3 % BSA/ TritonX100/PBS for 1- 2 hrs at RT, or at 4 C overnight. In between 

and after antibody incubation samples were washed 3x with PBS 1x for 10 min at RT. 

Samples were mounted in Fluoromount G. 

2.2.3.30. Sporozoite motility assay 

The sporozoite motility assay can be performed either by time-lapse microscopy or by IFA. 

For the second method, 8-well glass slides were precoated with 3 % BSA/RPMI for 20 min, at 

37 C, in a humid chamber. Isolated sporozoites in 3 % BSA/RPMI were disposed into the 

wells, and incubated for 20 min at 37 C in the humid chamber. During this step, sporozoites 

settle on the bottom and start gliding. In case of the 2-dimensional glass surface, the 

sporozoite moves directional in circles. During gliding, the adhesive surface proteins like CSP 

or TRAP are shed by the parasite and can be detected by IFA with appropriate antibodies. 

Note that the permeabilization step is not necessary in this case.   
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2.2.3.31. Transmission of sporozoites to mice and determination of the prepatent period 

Natural transmission of sporozoites from the mosquito vector to the mammalian host was 

tested by bite infection of mice by Plasmodium berghei infected Anopheles stephensi 

mosquitoes. Injected sporozoites are transported by the blood circulation system to the liver 

where they invade hepatocytes and develop into exoerythrocytic forms (EEF). After 68 hr of 

liver stage development liver merosomes bud from the hepatocyte and merozoites escape into 

the blood circulation to infect erythrocytes. The prepatent period is the time interval between 

infection and the first ability to detect the infection by a diagnostic method. In case of 

Plasmodium berghei it normally takes three days after infection to detect first blood stage 

parasites by Giemsa- stained blood smears. Infection was done usually on C57/Bl6 mice. 

Mice were anaesthetized with intraperitoneal injection of 80µl ketamin/xylazin and placed 15 

- 20 min on top of the mosquito cage. 

Infection of mice was done by intravenous (also possible: intradermal or sub dermal) injection 

of isolated sporozoites. Thereby a defined number of sporozoites in RPMI are injected (1000- 

10.000 spz.). The prepatent period was estimated by Giemsa-stained blood smear daily. 

2.2.3.32. Propagation of mammalian cells 

Human hematoma (Huh7) cells were maintained in collagen pre-coated 24 well plates (3 x105 

cells/well), in multi-well plates or in chamber slides, in complete culture medium (DMEM / 

FCS 10 % / penicillin/streptomycin). Cells were maintained humidified incubator (10 % CO2, 

37 °C).  

2.2.3.33. Infection of Huh7 cells in vitro/ development of exoerythrocytic stages (EEF)  

To study P. berghei liver stage development in vitro, the human hepato cellular carcinoma 

cell line (Huh7) was used and infected with isolated salivary gland sporozoites. The 

development can be followed up to 65 to 72 hours. 

For infection, mosquitoes were washed 1x in ethanol and 3x in DMED media. Sporozoites 

were isolated and stored in DMEM on ice. For infection, sporozoites were purified and 

resuspended in DMEM complete. Before infection, Huh7 cells were washed 1x with DMEM 

complete. Wells were infected with 10.000 sporozoites in 300µl DMEM complete. After 

settlement for 1 hr at RT in the dark or optional centrifugation for 5 min at 3000 rpm, wells 

were incubated for 2 hrs at 37 C with 5 % CO2. Subsequently wells were washed 3 times 

with 300 µl HBSS and finally incubated in 300 µl DMEM complete. Medium was changed 

daily. 



Material and Methods 

 71

2.2.3.34. Fixation of EEFs 

After the medium was removed, cells were fixed with 250 µl methanol, which was 

immediately removed and followed by a second incubation with fresh 250 µl methanol for 10 

min at RT. After two washing steps with PBS 1x, cells can be kept at 4 C or further 

processed. IFA was done as described for ookinetes, starting with the blocking step. Cells can 

also be fixed with 4 % PFA, but the cells need to be permeabilized with 0.2 % TritonX100 

/PBS before blocking.  

2.2.3.35. Live cell imaging 

RBCs: infected erythrocytes were diluted with 37 C warm RPMI media, and incubated on 

ConcavalinA coated cover slides for 10 min at RT. The slides where washed once and 

mounted in 40 % glycerin/PBS. Live cell imaging was performed afterwards. 

Ookinetes: were kept in complete ookinete medium, placed on the glass slide and covered 

with a Vaseline rimmed cover slip. Sealing was done with paraffin. 

Sporozoites: were also kept in 3 % BSA/RPI medium and handled as described for ookinetes.   

EEFs: Cells were washed 1x with DMEM complete. Medium was removed and cells were 

mounted in one drop (10µl) of 40 % Glycin/ PBS on cover slips. The cover slip was sealed 

with paraffin. Importantly, do not use Fluoromount G for life cell imaging it is toxic! 

Difference between the color emergence of the GFP and mCherry channels in blood and 

ookinete stages are due to the different microscopes, which have been used for live cell 

imaging.   

2.2.3.36. Sample preparation for western blot (denaturating conditions) 

All samples regardless of their origin, were treated the same way. Purified stages were 

properly washed with PBS to avoid contamination, counted and pelleted with maximum 

speed for 3 min. Pellet, was lysed with appropriate amount of Lysis buffer for 30 min on ice 

(100.000 sporozoites in 11 µl final vol.). 2x Laemmli buffer was added to the lysate in 1: 1 

dilution so that the final sample concentration is 1x Laemmli in 11 µl. Samples were cooked 

for 5 min at 95 C, shortly centrifuged, alliquoted into the final loading volume (11 µl), and 

stored at -20 C.  
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2.2.4. Protein biochemical assays 

2.2.4.1. Protein analysis by SDS-PAGE 

Proteins were analyzed by sodium dodecyl sulfate polyacrylamid gel electrophoresis (SDS- 

PAGE). Here, the proteins are separated by their molecular weight. The natural protein 

conformation is destroyed by SDS, and the protein-surface becomes negatively charged, so 

that the protein migrates inside an electric field. The stacking gel focuses the probes at the 

same level before chromatographic resolution is started. Proteins are separated by the 

resolving gel where the pore size determines the migration speed and distance. For all samples 

a 15 % SDS PAGE was prepared: 

 

Table 5. Ingredients for preparations of 15 % SDS-PAGE 

For 2 gels 15 % resolving gel stacking gel 

Protogel polyacrylamide  9.9 ml     2 ml 

Tris- HCl buffer     5 ml (1.5 M Tris, pH 8.8)  1.5 ml (1M Tris, pH 6.8) 

10 % SDS 200 µl 120 µl 

H2O  4.7 ml  8.3 ml 

10 % APS 200 µl 120 µl 

TEMED     8 µl   12 µl 

Total volume (ml)   20 ml   12 ml 

 

The SDS-PAGE was run in electrophoresis buffer for 2 hrs at 100 V at RT. The Gel can be 

stained with Coomassie for 30 min and vacuum dried, or further processed by western blot 

analysis. 

2.2.4.2. Western blot analysis 

After protein separation by SDS-PAGE, proteins were transferred or “blotted” to a PVDF 

membrane by the “wet blotting” method. Here, the blotting was done under wet conditions in 

ice cooled transfer buffer for 1 hr at 100 V.  

2.2.4.3. Indirect immuno-detection by luminescence  

The PVDF membrane was blocked on the shaker in 5 % milk/TBS-T buffer overnight at 4 C, 

or for 2 - 3 hrs at RT. The first antibody was diluted in TBS-T 0.1 %, with 1% milk for 2 hrs 

at RT, or overnight at 4 C. The blot was washed 3 x with TBS-NP40 0.05 % for 10 min at 

the shaker, and subsequently incubated with the secondary horseradish peroxidase (HRP) 
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conjugated antibody diluted in TBS-NP40 0.05 % for 1- 2 hrs at RT, or at 4 C overnight. 

Finally, the blot was washed 3x in TBS-NP40 0.1 % and incubated with the ECL-solution and 

the chemiluminescence was detected in the Fuji LAS3000 detector.   
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3. Results 

3.1. Characterization of the cyclase-associated protein (C-CAP) in 

P.  berghei 

3.1.1. Annotation of the Plasmodium C-CAP gene 

Initially, the Plasmodium berghei C-CAP gene (old ID: PB_001030.01.0 new ID: 

PBANKA_020800) was not completely annotated in the PlasmoDB data bank. The first start 

methionine and the following amino acids were absent in predicted protein sequences as well 

as the corresponding nucleotide sequence (Fig. 6 C, D). In order to reveal the complete 

protein sequence and gene architecture, polymerase chain reactions (PCR) were performed on 

complementary deoxyribonucleic acid (cDNA) from blood stage schizonts with forward 

primers that anneal in the 5´prime region (B5) of the C-CAP gene and a reverse primer in the 

annotated open reading frame (B7) (Fig. 6A, Tab. 2). PCR using indicated primers yielded an 

amplicon of 500 base pairs (bp) on genomic DNA (gDNA) and of 250 bp on cDNA, 

indicating the existence of an intron (Fig. 6 B). The 250 bp PCR fragment was cloned into the 

TOPO 1.4-Vector for sequencing. Alignment of the sequenced P. berghei 250 bp amplicon 

with the annotated the Plasmodium falciparum C-CAP protein sequence identified the 

missing nucleotides and the corresponding gene structure (Fig. 6 C, D). The P. berghei C-

CAP gene is encoded by an initial exon of 16 base pairs and a second exon of 470 base pairs, 

which are separated by an intron of 265 bp. Splicing of the messenger ribonucleic acid 

(mRNA) resulted in an 486 bp long coding sequence (CDS) for the C-CAP protein of 161 

amino acids.  
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Figure 6: Complete gene annotation of the cyclase-associated gene (C-CAP). 

(A) Model of the annotated C-CAP gene structure on genomic deoxyribonucleic acid (gDNA), 
messenger ribonucleic acid (mRNA) and complementary deoxyribonucleic acid (cDNA). The C-CAP 
gene consists of two exons (grey boxes) and one intron. Primer localization and name used for PCR 
are indicated (grey arrows). (B) PCR amplification of fragments, revealed the existence of an intron on 
gDNA, which is spliced out on mRNA/cDNA resulting in a short 250 base pair (bp) fragment. (C) The 
C-CAP gene coding sequence (CDS) is shown in big letters indicating the reading frame and the non-
coding intron is shown in small letters. Characteristic splice sides are marked in grey. (D) Complete 
Plasmodium berghei C-CAP protein sequence. The newly identified peptide is indicated in red letters.   
 

3.1.2. Systematic C-CAP gene expression profiling  

To determine the C-CAP gene transcript abundance in different stages of the P. berghei life 

cycle, standard qualitative real time (RT)-PCR and quantitative real time (qRT)-PCR were 

performed. For characterization of blood stage parasites, mixed stages, synchronized rings, 

trophozoites were obtained ex vivo from infected NMRI mice, while synchronized schizonts 

were prepared from in vitro blood cultures. Mosquito stage samples were obtained from in 

vitro- cultured ookinetes, midgut-associated oocysts at day 6 after feeding, and from midgut- 

and salivary gland associated sporozoites. Liver stage samples were generated in vitro from 

sporozoite-infected Huh7 cells at 24 and 72 hours post infection. The housekeeping gene 

Hsp70 was used for qualitative RT-PCR analysis and indicates the abundance of intact cDNA 

(Fig. 7 A). The constitutive expressed GFP gene in the Anka-GFP-507cl host strain (WT) 

(Janse et al. 2006) was used for normalization of C-CAP gene expression in quantitative RT-

PCR.  

Qualitative RT-PCR revealed that C-CAP gene transcripts were not abundant in mixed blood 

stages, rings or trophozoites (not shown). A prominent amount of C-CAP mRNA could only 
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be detected in late stage schizonts and ookinetes. This signal was abolished during sporozoite 

development, while control gene expression of Hsp70 was detected in every stage (Fig. 7 A).  

Quantification by qRT-PCR confirmed that C-CAP mRNA was most abundant in late stage 

schizonts and ookinetes. The C-CAP expression decreased in young oocysts at day 6 after 

infection and was further reduced to background levels during sporozoite development. The 

lowest mRNA abundance was detected in salivary gland sporozoites. Interestingly, C-CAP 

gene transcription increased again during liver stage development and reached similar levels 

as detected for blood stage merozoites and ookinetes in liver merosomes at 72 hours after 

infection.  

Taken together, the C-CAP gene is differentially expressed during the parasite life cycle in 

moderate quantities as compared to other G-actin binding proteins (Fig. 30 A-C). The highest 

expression was detected in merozoites and liver stage schizonts infecting the mammalian host 

cells, as well as in ookinetes that infect the mosquito midgut. Subsequently, sporozoite 

development in the invertebrate host is characterized by a drastic decrease of C-CAP 

expression. 

 

 

Figure 7: Expression profiling of C-CAP transcripts in Plasmodium berghei life cycle stages. 

(A) PbC-CAP and PbHsp70 transcript expression was monitored with reverse transcriptase chain 
reaction (RT-PCR) in four parasite stages: blood stage merozoites (mero) that invade erythrocytes, 
ookinetes (ook) that penetrate the mosquito midgut, and midgut (mg) and salivary gland (sg) 
sporozoites. Transcript amplification was detected in the presence (+) but not in the absence (-) of 
reverse transcriptase (RT). WT genomic DNA (gDNA) was loaded as control to show proper splicing 
of the C-CAP transcripts. (B) Quantitative real-time RT-PCR experiments were performed using 
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samples as indicated below. Transcript levels were normalized to green fluorescent protein (GFP), 
which is expressed as a transgene under the control of the constitutive EF1 promoter and expression 
levels are plotted as mean of (n) independent experiments (+/- standard error of the mean, SEM). 
Samples: blood stage merozoites (BS mero, n= 21), ookinetes (ook, n= 18), oocyst at day 6 after 
infection (oocy, n= 3), sporozoites (spz) derived from midguts (mg, n= 9) and salivary glands (sg, n= 
11) and liver stage parasites (LS) at 24 h (n= 3) and 72h (n= 3) after infection.  
 

3.1.3. C-CAP is not essential for Plasmodium blood stage development 

To systematically study the in vivo function of C- CAP, the endogenous gene locus was 

targeted by a gene replacement strategy. The targeting plasmid b3D.DT^H.^D+ contained the 

5`UTR  and the 3`UTR of  the C-CAP gene to facilitate integration into the C-CAP genomic 

locus via double crossover homologous recombination and simultaneously deletion of the 

endogenous C-CAP gene. The introduction of the positive selectable marker Toxoplasma 

gondii dihydrofolate reductase (Tgdhfr/ts) into the C-CAP open reading frame should thus 

abolish C-CAP expression (Fig. 8 A). Homologous fragments were amplified from gDNA by 

PCR with specific primers for the 5`UTR (B1/ B2, Tab. 2) and 3`UTR (B3/ B4, Tab. 2) and 

ligated into the targeting plasmid. 10µg of the KpnI and SacII linearized plasmid were 

transfected into gradient purified schizonts of the pyrimethamine-sensitive and GFP 

expressing P. berghei Anka strain (Janse et al., 2006). After pyrimethamine selection the 

parasites were cloned by limiting dilutions and genotyped by PCR. 

Genotyping of two independent c-cap(-) lines confirmed successful integration of the 

Tgdhfr/ts resistance cassette flanked by 5`UTR and 3`UTR, into the host strain. PCR with 

recombination specific primer combinations for 5`UTR (T10/T11, Tab. 2) and 3`UTR (T8/T9, 

Tab. 2) integration resulted in amplification of 2317 kb (5`test) and 1025 kb (3`test) long 

fragments in c-cap(-) parasites but not in wild type parasites, confirming the integration into 

the genomic C-CAP locus (Fig. 8 B). The wild type C-CAP gene locus was detected as a 

fragment of 2752 kb (WT) size in parental parasites, but not in c-cap(-) parasites (Fig. 8 B). 

This confirmed the clonality of the two parasite populations. Furthermore, RT-PCR 

demonstrated the complete absence of corresponding transcripts in the c-cap(-) knockout 

parasites thus confirming the successful disruption of C-CAP gene expression (Fig. 8 C). The 

expression of P. berghei glyceraldehyde 3-phosphate dehydrogenase (GAPDH) remained 

unaffected (Fig. 8 C). 

In summary, the gene deletion of C-CAP is feasible in blood stages and resulted in viable 

parasites. C-CAP is thus not essential in P. berghei blood stages.  

 



Results 

 79

 

Figure 8: Generation of Plasmodium berghei C-CAP gene knockout parasites.  

(A) Gene replacement strategy for the generation of the P. berghei c-cap(-) knockout parasites. The 
wild type (WT) C-CAP genomic locus is targeted with a SacII/KpnI- linearized replacement plasmid 
containing the 5`- and 3`untranslated regions of the C-CAP open reading frame (ORF) and the 
Toxoplasma gondii dihydrofolate reductase (Tgdhfr/ts)-positive selectable marker. Upon a double 
crossover event, the C-CAP ORF is replaced by the selection marker cassette. Recombination-specific 
primer combinations are indicated by arrows and expected fragments by line. Primers shown in black 
hybridize with the vector backbone and primers (grey) hybridize to genomic DNA (gDNA) outside of 
the C-CAP ORF. (B) Genotyping of c-cap(-) parasites using PCR with specific primers as indicated in 
A, confirmed the specific 5´test integration with primers (T10, T11) and 3´test integration with 
primers (T8, T9) and the absence of residual wild type parasites (WT, T9,T10) in the two clonal c-
cap(-) lines. (C) Depletion of C-CAP transcripts in c-cap(-) knockout parasites. Complementary DNA 
(cDNA) from WT and c-cap(-) blood stage merozoites was amplified by 35 PCR cycles with primers 
indicated in A and confirmed the absence of C-CAP transcripts in c-cap(-) parasites. Genomic DNA 
(gDNA) was used to control the cDNA purity. 
 

3.1.4. Phenotypic analysis of c-cap(-) parasite line 

3.1.4.1. C-CAP is dispensable for blood stage replication in vivo  

To characterize the importance of C-CAP during life cycle progression, the proliferation of c-

cap(-) parasites through blood stages was analyzed. To test if c-cap(-) parasites display a 

minor growth or invasion defect during asexual replication groups of 7 recipient mice we 

inoculated with 1000 RBCs infected with mixed blood stages of c-cap(-) and parental wild 

type parasites. The parasitemia was monitored daily by Giemsa-stained blood smears. 
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The growth rate of the c-cap(-) knockout parasites revealed no significant differences during 

the exponential growth as compared to the parental parasites (Fig. 9). During the plateau 

phase at day 6 to 7 after infection with c-cap(-) parasites, infected mice displayed a 

significantly reduced parasitemia as compared to WT parasites in vivo (Fig. 9). 

Gametogenesis, giving rise to the sexual reproductive stages of Plasmodium, was similar to 

WT infected mice (data not shown). Male microgametes of the c-cap(-) mutants showed the 

typical exflagellation process after 10-12 min, similar to wild type parasites.  

Together, these results indicate normal proliferation and invasion of c-cap(-) parasites during 

their asexual reproduction as well as normal gametogenesis. The tolerated gene deletion 

implicates a non-essential role during asexual parasite replication and sexual differentiation. 

  

 

Figure 9: P. berghei C-CAP is dispensable for blood stage replication in vivo. 

C-cap(-) blood stage parasites develop normally in the mammalian host. Asexual blood stage 
development was determined by intravenous injection of 1000 infected erythrocytes. Parasitemia of 
recipient animals (n= 7, each group) was quantified daily by of Giemsa-stained blood smears. Each 
data point represents the parasitemia of one mouse. Horizontal lines indicate the mean of each group. 
Values of p were determined with the t test (*, p < 0.01; **, p < 0.001). All other p values were > 0.01.  
 

3.1.4.2. C-cap(-) parasites exhibit reduced ookinete velocity  

Considering the predicted function of C-CAP in regulation of actin polymerization, we further 

investigated the ookinete motility in vitro by video time-lapse microscopy (Moon et al., 2009; 

Siden-Kiamos et al., 2006b). Purified ookinetes were allowed moving in matrigel and were 

imaged for 10 min in 6 seconds intervals. The resulting movies were analyzed by manual 

tracking, and data were used for calculation of the velocity.  

The entire pattern of ookinete motility could be observed in c-cap(-) and WT parasites as 

described in (Siden-Kiamos et al., 2006). In both strains, stationary stretching, flexing, axial 

twirling and a productive migration over distance were observed. To quantify productive 
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gliding of both strains, the length of migration over time was measured and the calculated 

velocity was plotted in Figure 10 B. The WT employed an average of velocity of 1.3 µm/min, 

while the mutant c-cap(-) parasites show a significant decrease in velocity to 0.93 µm/min. 

Taken together these results demonstrate that c-cap(-) parasites remain motility competent, 

but at a reduced speed as compared to WT parasites.  

 

 

Figure 10: C-cap(-) ookinetes exhibit reduced velocity. 

(A) Pictures were recorded every 6 seconds and ookinetes motility in matrigel was tracked manually 
for 10 min by life cell imaging. The red colored line indicates the track of one ookinete. Ookinetes 
show all typical motility patterns. Scale bar 10 µm (B) Velocity of ookinetes was calculated and 
means with standard deviation (SDV) was plotted in µm/sec for c-cap(-) (3 movies, parasites n= 9) 
and for WT (4 movies, parasites, n= 12). Note that wild type parasites move significantly faster than c-
cap(-) parasites. P-values were determined with students t test (***, p < 0.0003). 
 

3.1.4.3. C-CAP is essential for Plasmodium oocyst development in the mosquito midgut 

To study the phenotype of c-cap(-) parasites during life cycle progression in the invertebrate 

host, Anopheles stephensi mosquitoes were fed on anesthetized NMRI mice infected with 

either clonal mutant and wild type parasites as well as mixed parasite populations. The 

parasite development was monitored over a period of three weeks and the phenotype was 

analyzed in more than ten independent feedings of A. stephensi. Infectivity and oocyst 

numbers of c-cap(-) parasites were estimated from day 4 until day 12 after mosquito feeding 

and compared to WT (data not shown). 

The infectivity of c-cap(-) parasites to midguts varies between 7 and 85 % and shows no 

significant differences to the parental strain (Fig. 11 C), indicating that transmigration and the 
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initial events of transformation from ookinete to oocyst, were unaffected in the c-cap(-) 

mutants.  

However, c-cap(-) parasites consistently formed fewer oocysts per infected mosquito midgut 

as compared to WT parasites (Fig. 11 C). This finding is in good agreement with the observed 

reduction in ookinete motility.  

To further characterize oocyst development in the c-cap(-) strain, oocyst diameter was 

measured in confocal images from day 6 until day 16 post infection. Already at day 6 the 

quantification of oocyst diameters revealed that c-cap(-) oocysts were significantly smaller as 

compared to WT oocysts and exhibit a size reduction by 20.5 % (Fig. 11 B). More 

pronounced differences were observed at later time points. At day 16 c-cap(-) oocysts grew 

only to a size of 13 µm in average, while WT oocysts grew up to an average size of 32 µm. 

This corresponds to a significant size reduction by 60 % in c-cap(-) parasites.  However, WT 

as well as c-cap(-) oocysts displayed a high degree of variance in oocyst size in each group.  

 

 

Figure 11: Disruption of C-CAP leads to complete attenuation of oocyst development in the 
mosquito midgut.  
(A) c-cap(-) oocysts fail to mature. Shown are representative micrographs of GFP-expressing WT and 
c-cap(-) oocysts in the mosquito midgut. The time point after the infectious blood meal is indicated on 
the left. C-cap(-) oocysts were markedly reduced in size and numbers. Scale bars, 20 µm. (B) 
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Quantification of oocyst size during maturation. Shown are oocyst diameters of WT (green) and c-
cap(-) (red) oocysts over time. WT oocysts display continuous size increase whereas c-cap(-) oocysts 
show impaired growth. Data points represent oocyst diameters from randomly selected oocysts of 
parasite-infected midguts (n= 12) from six independent feeding experiments for WT and c-cap(-), 
respectively. Horizontal lines indicate the median oocyst size, p < 0,0001. (C) C-cap(-) parasites do 
not develop sporozoites. Characterization of ookinetes, oocysts, midgut- and salivary gland-
sporozoites revealed no sporozoite development in c-cap(-) parasites in n= 20 independent mosquito 
infections and as consequence no natural transmission of the parasite to mice (n= 3). 
 

In addition to growth, oocyst development is characterized by multiple rounds of 

asynchronous mitotic divisions, termed sporogony (Sinden and Garnham, 1973; Sinden, 

1974). Parasite DNA condenses, segregates and is distributed into individual budding 

sporozoites. This process was monitored microscopically using the DNA stain Hoechst 

33342. At day 8 to 10 after feeding, WT parasite DNA was detected in multiple condensed 

loci distributed throughout the oocyst, indicating ongoing mitotic divisions (Fig. 12 A). 

Despite a reduced size of c-cap(-) oocysts, DNA condensation and nuclear division could be 

observed in c-cap(-) oocysts as well. However, the DNA from mutant parasites showed 

weaker stain, moreover the DNA was distributed to few diffuse nuclei only (Fig. 12 A). The 

amount of total DNA in c-cap(-) parasites corresponds approximately to 4 to 5 rounds of 

nuclear divisions. Additionally, clear differences were observed at day 14 after feeding. No 

sporozoite structures and no final DNA segregation steps were detected in c-cap(-) parasites 

(Fig. 12 B). In contrast, WT oocysts contained the typical radially aligned individual 

sporozoites that mark the final step of daughter cell separation. The DNA was separated into 

nuclei with each single sporozoite, clearly detected by a highly condensed dot stain with 

Hoechst 33342. Systematic quantification of sporozoite numbers at day 14 for midgut- and 

days 17 to 25 for salivary gland- associated sporozoites confirmed the complete absence of 

sporozoite development in mosquitoes infected with c-cap(-) parasites (Fig. 11 C). Natural 

transmission from c-cap(-) infected mosquitoes to C57/Bl6 mice was tested and resulted in 

absence of blood stage parasitemia and malaria symptoms (Fig. 11 C). In mixed feedings, 

where c-cap(-) and wild type parasites were fed simultaneously to mosquitoes, normal oocyst- 

and sporozoite development was observed. Furthermore, mixed sporozoites exhibit normal 

transmission from mosquito to C57/Bl6 mice, with a prepatency of three days, similar to WT 

transmission.  Genotyping of back to mice transmitted parasites, demonstrated still the 

presence of c-cap(-) mutant parasites, by specific detection of the 5`UTR and 3`UTRs. 

Taken together, these results demonstrate a stage-specific and essential function of the C-CAP 

protein during oocyst maturation in the invertebrate host. C-CAP gene deletion leads to 

abrogation of oocyst maturation, indicated by oocyst growth inhibition, incomplete DNA 
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condensation and separation as well as the complete absence of sporozoite development. In 

mixed feeding experiments, the c-cap(-) defects were restored by functional complementation 

by the functional wild type C-CAP gene locus.  

 

 
Figure 12: Oocyst architecture of c-cap(-) mutants.  

Shown are representative micrographs of WT (top) and c-cap(-) (bottom) oocysts at day 10 (A) and 
day 14 (B). Parasites are visualized by endogenously expressed GFP and parasite nuclei are stained 
with Hoechst 33342. Note that c-cap(-) parasites display impaired DNA segregation and do not 
contain sporozoites as compared to wild type (B). Scale bars, 20 µm.  
 

Given the fact that c-cap(-) oocyst numbers decrease sharply early during infection and 

oocysts do not mature, a life death assay was performed to examine the fate of these parasites 

inside the mosquito midgut. SYTOX® Orange stains nucleic acids with high affinity in cells 

and easily penetrates cells with compromised plasma membranes but does not cross the 

membranes of viable cells.  

Mosquito midguts infected with either WT or c-cap(-) parasites where prepared and incubated 

with SYTOX® Orange followed by microscopic observation.  

The mutant c-cap(-) oocysts showed internal nucleic acids stain, whereas the dye is clearly 

excluded from the oocyst in WT parasites (Fig. 13). The SYTOX® Orange stain of c-cap(-) 
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oocysts implicates an increased permeability of the oocyst wall compared to WT and 

demonstrates their compromised viability.   

 

 

Figure 13: C-cap(-) parasites die during oocyst development. 

Shown are representative micrographs of living midgut- associated oocysts of WT (top) and c-cap(-) 
(bottom) at day 13 and 11 after mosquito infection, stained in a to live/death assay with Cytox 
Orange (red). Parasites are visualized by endogenous GFP expression (green). Cytox Orange is 
excluded from WT oocysts, whereas it penetrates the oocyst wall in c-cap(-) parasites, indicating 
compromised viability. 
 

3.1.4.4. Expression and localization of the circumsporozoite protein (CSP) and the 

oocyst capsule protein CAP380 are unaffected by deletion of C-CAP and do not 

contribute to the maturation phenotype. 

The circumsporozoite protein (CSP) and the oocyst capsule protein 380 (CAP380) are 

essential proteins for oocyst maturation and sporozoite development in the mosquito host 

(Menard et al., 1997; Srinivasan et al., 2008; Thathy et al., 2002). Both proteins localize to 

the oocyst capsule during oocyst maturation. Initially, the CSP protein resides in the inner 

cyst membrane and is involved in establishing polarity inside the oocyst; it is thereby essential 

for sporozoite development. Later in sporogony, CSP will cover the major surface protein of 

sporozoites and is important for motility and invasion of both the salivary glands of mosquito 

and hepatocytes of the mammalian host (Coppi et al.). Loss of CSP aborts sporozoite 

development (Menard et al., 1997; Thathy et al., 2002). The CAP380 protein is part of the 

outer oocyst capsule (Srinivasan et al., 2008). Parasites lacking CAP380 develop only small 
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oocysts, which are unable to form sporozoites. The similarities between phenotypes of CSP(-) 

and CAP380(-) parasites and the 

c-cap(-) parasite during oocyst maturation, prompted us to investigate expression and 

localization of CSP and CAP380 in c-cap(-) parasites during oocyst maturation.      

Infected midguts were prepared for CSP detection at day 8 and for CAP380 and CSP 

localization at day 11 after infection for indirect immuno-fluorescence (IFA). Consistent with 

previous findings (Aly and Matuschewski, 2005; Srinivasan et al., 2008; Thathy et al., 2002) 

CSP was detected as a ring surrounding the oocyst in both the c-cap(-) and in WT parasites 

(Fig. 14 A). Later on, CSP localization changes from the oocyst wall to the inner content of 

the cyst in WT and c-cap(-) parasites (Fig. 14 B). In WT the CSP decorates the outer 

membrane of developing sporozoites, whereas in c-cap(-) the CSP locates to the syncytium of 

the undifferentiated oocyst (Fig. 14 B). This result demonstrates that despite of reduced 

growth and absence of sporozoites in c-cap(-) oocysts CSP is correctly expressed and 

localized in mutants. Thus, the inhibition of sporozoite development in c-cap(-) parasites 

appears to be a CSP-independent process.  
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Figure 14: The circumsporozoite protein (CSP) and oocyst capsule protein 380 (CAP380) 
displaying normal expression and localization in c-cap(-) mutant oocysts.  

Shown are representative images of indirect immuno-fluorescence assays (IFA) on oocysts at day 8 
and 11 after mosquito infection, from WT (top) and c-cap(-) parasites (bottom). (A) Localization of 
CSP (red) and parasites (GFP) indicate normal ring staining of CSP on the oocyst capsule in both 
parasites. (B) Localization of CAP380 (green) (Srinivasan et al. 2008) and CSP (red) (Aly et al. 2005) 
by IFA on the oocyst at day 11. Localizations are indistinguishable between wild type and c-cap(-) 
parasite lines.     
 

During oocyst development CAP380 localizes to the outer oocyst capsule in wild type and  

c-cap(-) parasites, indicating a normal cyst wall composition. This is consistent with previous 

findings (Srinivasan et al., 2008). However, despite the normal ring like pattern of CSP and 

CAP380, both proteins seem to be more prominent in the oocyst wall in c-cap(-) as compared 

to WT. Whether this phenomenon is due to the lack of oocyst wall expansion and absent 

growth in mutant parasites, needs further analysis. Together, these results show that CAP380 
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is expressed and localized indistinguishable between wild type and c-cap(-) parasites. Thus, 

C-CAP seems to fulfill an independent function during oocyst maturation. 

 

3.1.4.5. The oocyst maturation defect in c-cap(-) parasites is independent of ookinete 

motility 

Because of the reduced ookinete motility of c-cap(-), the next aim was to test whether c-cap(-) 

parasites  are able to develop into sporozoites when natural midgut transmigration is bypassed 

by ookinetes injection into the hemocoel of the mosquitoes. 

WT and c-cap(-) in vitro-generated ookinetes (n= 1500) were microinjected into the mosquito 

thorax (Sinden et al., 2002; Weathersby, 1952) and development of sporozoites was 

monitored. Quantification of hemocoel- and salivary gland sporozoites was done 17 and 21 

days later (Tab. 6). While substantial sporozoite numbers in WT inoculated mosquitoes were 

detected, no sporozoites were found in mosquitoes injected with c-cap(-) ookinetes. These 

results confirm that sporozoite development is possible in the hemocoel without mosquito 

midgut passage and argues for an additional motility independent function of C-CAP during 

oocyst maturation. 

 

Table 6. Ookinete injection does not restore the c-cap(-) defects 

 

3.1.4.6. Transmission Electron Microscopy (TEM) reveals the absence of inner 

membrane retraction and confirms the DNA segregation defect during oocyst 

maturation 

To further asses the c-cap(-) oocyst maturation defect, the ultra structure of oocysts was 

investigated by Transmission Electron Microscopy (TEM) on mutant and WT oocysts during 

day 6, 8, 10 and 12 after infection. Mosquito midguts were dissected in 1x PBS. Highly 

infected WT and c-cap(-) midguts were selected under the fluorescence microscope, fixed and 
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stored in 2.5 % glutaraldehyde at 4 C. Further processing of the oocysts for TEM was 

performed by Ulrike Abuabed from the imaging facility of the Max Planck Institute for 

Infection Biology, Berlin.  

All TEM pictures show the successful settlement of the WT and mutant c-cap(-) ookinetes in 

their developmental niche, between the basal side of epithelial midgut cells and the basal 

membrane (Fig. 15 A, B). Both parasites transformed successfully from motile ookinetes into 

young sessile cysts at day 6 after infection. The round spherical body of the cyst is encircled 

by a thick capsule, and could be detected as dark electron dense material in both parasites 

(Fig. 15 A, B). The cyst plasma appears as homogeneous electron light material and contains 

organelles like membrane cisternae from the endoplasmic reticulum or the golgi apparatus, 

vesicles and condensed DNA material (Fig. 15 A, B). Marked differences between WT and c-

cap(-) mutant parasites appear at day 6 to 8 after mosquito infection (Fig. 15 A, C).  

The c-cap(-) oocysts are decreased in size as already recognized during their quantification by 

fluorescence microscopy (Fig. 11 A, B). At day 8 after infection severe defects are observed 

in the c-cap(-) mutant parasites. In addition to their reduced size, the majority of cysts appears 

asymmetric and shows strong vacuolization of the cyst plasma (Fig. 15 C).  

 

 

Figure 15: c-cap(-) parasites transmigrate through the midgut epithelium and transform into 
early oocysts.  

Shown are representative micrographs of transmission electron microscopy (TEM) on midgut- 
associated oocysts. (A) WT oocyst at day 6 after infection settles extra cellular on the basal side of 
mosquito midgut cells (mo) and underneath the basal membrane (bm) that separates the cyst from the 
mosquito hemocoel (hoe). The transforming oocyst is surrounded by a thick electron oocyst capsule 
(ooc). Electron dense nuclear material (n), membranous cisternae (mcs) and vesicles (v) are detected. 
(B) c-cap(-) oocyst at day 6 post infection. Complete settlement, transformation and membranous 
structures are visible, but oocysts are clearly smaller. (C) c-cap(-) oocyst at day 8 post infection. Note 
that high degree of vacuolization (vc) in the cyst cytoplasm, asymmetric shape of oocyst and a 
disturbed capsule structure (*). 
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The structure of oocyst capsule develops abnormally as compared to the WT capsule, which is 

characterized by symmetric thickness of the oocyst wall. In contrast, the c-cap(-) parasites 

posses an asymmetric distributed outer cyst wall, which expands into the mosquito cells (Fig. 

15 C). The high degree of vacuolization and the disturbed wall integrity of the cyst indicate an 

early developmental defect in the majority of the c-cap(-) parasites. These findings are in 

agreement with the results from the life death assay with SYTOX® Orange (Fig. 13).  

A proportion of the developmentally arrested c-cap(-) mutant parasites persists as immature 

oocysts in the midgut and survive in the mosquito for up to 27 days. At day 10 after mosquito 

infection, WT oocysts grew to an average size of 28 µm. The DNA has undergone several 

mitotic divisions without cytokinesis resulting in a growing multinucleated parasite. In WT 

parasites the segregated DNA is detected as electron dense compartments in dark grey spots 

in the cytoplasm (Fig. 16 A). In c-cap(-) parasites, however, lesser and larger joined nuclei 

were detected, indicating that the mutant parasite is impaired in DNA segregation and in 

potentially other mitotic processes (Fig. 16 C). During WT development the oocyst 

maturation proceeds with initiation of membrane retraction, which gives rise to subcapsular 

vacuoles (blastomers) and lead to further compartmentation of the oocyst. This process was 

detected on oocysts at day 10 after infection (Fig. 16 B, F) and will be highlighted in a 

following chapter in more detail. However, oocyst membrane retraction or invaginations are 

never observed in c-cap(-) oocysts (Fig. 16 D, I). These defects further intensify through cyst 

maturation as indicated in TEM pictures at day 12 after infection. Oocysts of WT parasites 

undergo further compartmentation of the cytoplasm. Subcapsular vacuoles (blastomers) are 

formed and separate the dividing nuclei with a membrane from the residual oocyst plasma or 

syncytium (Fig. 16 E). The membrane, which confines the blastomer is detected as an electron 

dense line in wild type oocysts (Fig. 16 G *). The underlying nuclear foci are further 

separated from the surrounding blastomer material by a gap. This gap is detected as an 

electron light area in WT (Fig. 16 G). Compared to WT, the c-cap(-) parasites display a lack 

of cyst compartmentation. The blastomer membrane, that usually encircles the DNA 

replication sides are entirely absent (Fig. 16 H-J). This is highlighted in detail in Figure 16 J. 

Here, an abnormal gap appears at the place where usually the electron dense blastomer 

membrane situates. In addition, the membrane retraction is still absent in c-cap(-) mutants 

(Fig. 16 I). Also, the DNA continues its persistence in few undivided areas, indicating the 

absence of final mitotic divisions necessary for sporozoite formation (Fig. 16 H).  
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Figure 16: C-cap(-) oocysts are impaired of membrane retraction and DNA segregation. 

Shown are TEM pictures of oocysts from WT (top A, B) and c-cap(-) (bottom C, D) parasites at day 
10 (A-D) and day 12 (E-J) post mosquito infection. (A) WT oocyst growth underneath the basal 
membrane (bm) and extra cellular of the mosquito cell labyrinth (mo). Nuclear material (n) is 
segregated in small foci through the oocyst plasma. At the oocyst wall (ooc) membrane invaginations 
are visible (detail (B) arrows). (C) C-cap(-) oocysts at day 10 post infection, are located like WT, the 
nuclear material (n) is less condensed and separated, vacuolization (vc) of the cyst plasma is visible. 
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(D) Detail of oocyst wall, no membrane invaginations was detected. (E) Detail of a WT oocyst day 12, 
compartmentation of the cyst plasma into blastomers (bla). Blastomers are filled with condensed 
nuclei loci (n) and surrounded by a blastomer membrane (blm). (F) Detail of membrane invagination 
process at the oocyst wall (asterisk). (G) Detail of blastomer membrane (blm, red asterisk), which 
separates cyst plasma from nuclear material (n) that is encircled by an nuclear gap (ng). (H) Detail of 
c-cap(-) oocyst clearly shows no compartmentation, no blastomers (bla), no blastomer membranes 
(blm), and the nuclear material (n) is not condensed and not segregated. (I) Detail of oocyst wall, 
membrane invaginations are absent. (J) Detail of absent blastomere membrane (blm), but the nuclear 
gap (ng) exists like in WT. 
 

The membrane retraction- or invagination- process in oocysts is highlighted in Figure 17 in 

more detail. These pictures display the dynamic behavior of the wild type cyst capsule. The 

inner plasma membrane starts to invaginate at specific sides from the oocyst wall and take 

along capsule material, indicated by the same dark color of the electron dense capsular 

substance (Fig. 17 A1). Over time these structures become elongated into the cyst plasma 

(Fig. 17 A1-3). At one point the structure rounds up to “vesicular bodies” and seem to 

disconnect from the residual cyst wall (Fig. 17 A4-5). Thus far, it remains elusive if this 

process reflects an uptake mechanism for nutrient acquisition. However, this unique 

membrane retraction process was never observed in c-cap(-) parasites (Fig. 16 D, I). 

 

 

Figure 17: The membrane retraction process on wild type oocyst. 

(A) TEM picture of the dynamic behavior of the WT oocyst capsule membrane (dark grey material) at 
day 10 after infection. Representative occurrence of invaginations, are indicated by numbers (red). (B) 
Schematic representation of the membrane invagination process in a time dependent manner: (1) 
initiation of retraction, (2 - 4) elongation into the cyst cytoplasm and (5) final separation of “vesicle-
like” bodies from the cyst capsule.       
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Taken together, the TEM analysis revealed further details of the developmental defects of  

c-cap(-) mutant parasites. C-cap(-) parasites are able to transmigrate the midgut epithelium 

and transform into early oocyst, like wild type parasites. Strikingly, theses parasites are 

significantly smaller and do not develop sporozoites during their lifetime in the mosquito. 

Two further phenomenons were observed. First, the majority of the c-cap(-) oocysts undergo 

an early dying process during oocyst development. They show high degree of vacuolization 

and disturbed oocyst wall integrity. Second, the persisting parasites fail to accomplish nuclear 

divisions. The process of inner membrane retraction is absent. The c-cap(-) oocysts thus fail 

to mature and to differentiate, as indicated by the impaired growth and the absence of inner 

compartments and sporozoites. In conclusion the C-CAP protein has a stage-specific function 

during oocyst maturation in the mosquito host. 

3.1.5. Localization of the C-CAPmCherry fusion protein  

The stage-specific C-CAP gene expression and the observed phenotype of the knockout 

parasites prompted us to examine the exact subcellular localization of the C-CAP protein in P. 

berghei. Therefore, a parasite line expressing a chimeric C-terminal fusion protein of C-CAP 

and the fluorescent mCherry protein was engineered.  

The endogenous C-CAP gene was replaced by introducing a C-CAPmCherry fusion protein 

and the pyrimethamine selectable marker Tgdhfr/ts cassette by double homologous 

recombination (Fig. 18 A). Gene replacement was enabled by introduction of 5` and 3` UTRs 

of the C-CAP gene, analogues to the knockout strategy (Fig. 8 A). The C-CAP and mCherry 

domains are separated by a short linker peptide sequence of eight alanines to ensure flexibility 

and functional folding of both domains. Transfection was performed in P. berghei Anka-

507cl parasite line expressing GFP (Janse et al., 2006). Clonal parasite lines were obtained, 

by injection of limiting parasite dilutions into mice. For genotyping specific primers for the 5` 

(T10/T11) and 3` (T8/T9) integration were designed and used for diagnostic PCR (Tab. 2). 

Successful integration into the 5`UTR and 3`UTR was confirmed by the presence of the 

predicted amplicons with sizes of 3786 bp (5´test) and 1028 bp (3`test) respectively, in both 

C-CAP::C-CAPmCherry parasite lines (Fig. 18 B). No more of these fragments could be 

detected in WT parasites (Fig. 18 B). Moreover, the specific mCherry integration was verified 

by amplification of a 2081 bp (5`test mCherry) long fragment in both transgene parasites, 

using primers (T10/T16, Tab. 2). In WT parasites the genomic C-CAP gene locus of 2725 bp 

was detected with specific primers (T9, T10), while in the C-CAP::C-CAPmCherry parasite 
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lines this fragment was not amplified, thus confirming the clonality of the recombinant 

parasite lines (Fig. 18 B). 

 

 

Figure 18: Generation of P. berghei C-CAPmCherry fusion parasites.  

(A) Gene replacement strategy for the generation of the P. berghei c-capmCherry parasites. The wild 
type (WT) C-CAP genomic locus is targeted with a SacII/KpnI linearized replacement plasmid 
containing the 5`- and 3`untranslated regions of the C-CAP open reading frame (ORF) and the T. 
gondii dhfr/ts positive selectable marker. Upon a double crossover event, the C-CAPmCherry ORF 
and the selection marker cassette are introduced. Replacement-specific test primer combinations are 
indicated by arrows and expected fragments by line. Black arrows hybridize with the vector backbone; 
grey arrows hybridize on genomic DNA (gDNA) outside of the C-CAP ORF, respectively. (B) 
Genotyping of C-CAP::C-CAPmCherry parasites using PCR with specific primers as indicated in A, 
confirmed the specific 5´ test and 3´ test fragment integration and the absence of residual WT parasites 
in the two clonal C-CAP::C-CAPmCherry lines. Specific mCherry integration was confirmed by 
positive test 5`mcherry fragment amplification.(C) C-CAP::C-CAPmCherry parasites complement 
the c-cap(-) phenotype and develop normally through parasite life cycle compared to WT. 
 

3.1.5.1. Expression of the C-CAPmCherry fusion protein reverts the c-cap(-) phenotype  

After successful integration of the transgene into P. berghei, the C-CAP::C-CAPmCherry 

parasites were systematically followed through the life cycle to test whether they develop 

normally. After confirmation of normal blood stage development, seven independent 
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transmission experiments of the C-CAP::C-CAPmCherry parasite to mosquitoes were 

performed. The infectivity rates of 31 - 100 % are similar to wild type infections. In one 

feeding the oocyst size was characterized at days eight and ten after infection. An average size 

of 26,4 µm and 29.24 µm, which is even larger than compared to WT oocyst, was observed 

(Fig. 18 C). Normal sporozoite numbers, determined from six independent feedings, were 

observed at day 14 for midgut associated sporozoites (17.240  38.776 spz./mosq.) and at 

days 17 to 26 for salivary gland sporozoites (6853  2915 spz./mosq.) (Fig. 18 C). The 

infectivity of C-CAP::C-CAPmCherry sporozoites from mosquitoes transmitted to mice was 

confirmed in two independent infection experiments with C57/Bl6 mice by mosquito bite. 

Blood stage parasitemia was monitored daily by Giemsa stained smears. The prepatency of 

C-CAP::C-CAPmCherry parasites was three days, which is similar to wild type infections. 

Taken together the C-CAP::C-CAPmCherry parasites exhibit normal life cycle progression, 

as compared to WT, and display full complementation of the c-cap(-) defects. I therefore 

conclude that these results confirm fully biochemical activity of the C-CAPmCherry fusion 

protein.  

3.1.5.2. C-CAPmCherry displays cytoplasmic localization during blood stage 

development 

To follow the cellular localization of the C-CAP protein during blood stage development, 

NMRI mice were infected with the clonal C-CAP::C-CAPmCherry parasites. The blood was 

isolated at high parasitemia to ensure representation of different parasite stages. One drop of 

blood was isolated for life cell imaging via fluorescence microscopy.  

As shown in figure 19, no C-CAPmCherry signal was observed during early to late ring 

stages, while the constitutive cytoplasmic GFP signal indicated intact parasites. The first C-

CAPmCherry signal was detected in late stage trophozoites and co-localizes with GFP in the 

cytoplasm (Fig. 19). Furthermore, the C-CAPmCherry signal intensity appeared strongest in 

schizonts and gametocytes indicating high protein abundance in these stages (Fig. 19). 

Moreover, the C-CAPmCherry was abundant in single male microgametes (data not shown). 

The C-CAPmCherry signal abundance in late parasite blood stages confirms the expression 

data from RT-PCR also on protein level, where C-CAP expression could only be detected in 

18h old schizonts in vitro cultures but not in mixed blood stages (Fig. 7 B). 
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Figure 19: C-CAPmCherry is sequential expressed and exhibits cytoplasmic localization in 
blood stages. 

Live cell imaging was performed on P. berghei infected red blood cells (RBCs). Shown are phase 
contrast images (grey) in the first column, GFP (green) expression and localization of the Anka-507cl 
host strain in the second column, C-CAPmCherry protein expression and localization (red) in the third 
column and nuclei were stained with Hoechst 33342 (blue) shown in the forth column. C-
CAPmCherry is not abundant in early and late ring stages (R), first and second row. In trophozoites 
(T), schizonts and gametocytes C-CAPmCherry is abundant and shows cytoplasmic localization, 
shown in the second, third and forth row.     
 

To characterize the expression of C-CAPmCherry, the parasites were followed thorough 

mosquito stage development. Ookinetes were obtained from 18h in vitro cultures, purified 

with p28 antibody labeled magnetic beads, and kept in complete ookinete medium at room 

temperature for live cell imaging. As shown in figure 20, ookinetes display a strong C-

CAPmCherry signal, with overlapping GFP cytoplasmic stain. The C-CAPmCherry protein is 

excluded from the crystalloid bodies (Moon et al., 2009) at the posterior end of the ookinetes 

and from the nucleus (Fig. 20 A, arrows).  

To monitor the C-CAPmCherry fluorescence in vivo during mosquito development, C-

CAP::C-CAPmCherry parasite infected mice were fed to mosquitoes A. stephensi and oocyst 

development on the mosquito midgut was observed at the indicated time points (Fig. 20 B).  
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During oocyst development the C-CAPmCherry fluorescence decreases and shows high 

variability between individual oocysts, but appears independent from oocyst size and age 

(Fig. 20 B). During the separation of individual sporozoites from the oocyst syncytium at day 

12 to 15 post infection, the C-CAPmCherry fusion protein localizes primarily to the 

syncytium but not within the budding sporozoites. As suggested from the gene expression 

data (Fig. 7 B), only a very faint C-CAPmCherry fluorescence was observed during life cell 

imaging on midgut sporozoites (Fig. 20 C). Interestingly a clear punctuated signal in close 

proximity to the nucleus towards the apical tip of the sporozoite was observed. In all midgut 

sporozoites this localization was independent from sporozoite motility. A co-localization with 

specific organelle-markers might reveal the exact organelle identity.  

Mature salivary gland sporozoites at day 22 after mosquito infection exhibit a very weak 

fluorescent C-CAPmCherry signal as compared to the GFP signal intensity. However, the C-

CAPmCherry protein appeared uniformly distributed throughout the cell, confirming the 

cytoplasmic localization of the protein (Fig. 20 C). This pattern was not changed during 

motility in living sporozoites (Fig. 20 C). The motility of the sporozoites is indicated in figure 

20 C. The overlay of individual color channels is shifted, due to the time that is needed for the 

automated filter change in the microscope.  
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Figure 20: C-CAPmCherry expression and Localization in mosquito stages.  

Live cell imaging was performed on all illustrated parasite stages. GFP expression is shown in green, 
C-CAPmCherry in red, nuclei are stained with Hoechst 33342 (blue) and phase contrast images in 
grey. (A) Ookinetes show cytoplasmic C-CAPmCherry localization like GFP. Polarization of the 
ookinete is indicates apical (a) and postal (p). Also, mCherry signal is excluded from the nucleus and 
crystalloid bodies (arrow). (B) Midgut associated oocysts at day 8 (top) and 15 (bottom) post infection 
exhibit weak cytoplasmic C-CAPmCherry signal in the cyst syncytium and is asynchronous intense 
between oocysts. (C) Midgut associated sporozoites at day 14 after infection exhibit a CAPmCherry 
signal restricted to a dot anterior of the nucleus. (D) Salivary gland sporozoites exhibit the weakest 
cytoplasmic C-CAPmCherry signal observed. The merge image of fluorescent and phase channels 
demonstrates the motility of the sporozoite.  
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To observe the C-CAP::C-CAPmCherry liver stage development in the mammalian host, 

salivary gland sporozoites were isolated at day 18 after infection from WT and C-CAP::C-

CAPmCherry parasites and used to infect Huh7 cells. Live cell imaging was performed at 24, 

48 and 72 hours post infection. The C-CAPmCherry protein was present during entire liver 

stage development. At 24 hours post infection only a very weak signal was detected which 

increased during parasite development. The signal peaked at 72 hours, when merosomes were 

fully developed. Each merosome showed cytoplasmic C-CAPmcherry distribution. These 

pictures verify the gene expression analysis in liver stages (Fig. 20 C, B), where C-CAP 

expression increases during development and was the highest in merosome stage at 72 hours. 

Also the protein abundance appears to increase, accordingly. 

 

 

Figure 21: C-CAPmCherry expression and localization in liver stages. 

Live cell imaging was performed on sporozoite infected Huh7 cells in vitro at 24, 48 and 72 hours 
after infection. GFP expression is shown in green (first column), C-CAPmCherry in red (second 
column), nuclei are stained with Hoechst 33342 (blue, third column) and micrographs merge with the 
phase contrast in grey (forth column). The weakest C-CAPmCherry signal was observed at 24 hours 
post infection, which increases over time during development up to 72 hours and exhibit cytoplasmic 
localization during all observed time points.  
 

Taken together, parasites expressing the C-CAPmCherry fusion protein were able to complete 

the Plasmodium life cycle indistinguishable from WT parasites. The C-CAP protein 

abundance was detected via mCherry fluorescence. The strongest fluorescence was observed 
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in blood stages, including late trophozoites, schizonts and gametocytes. During mosquito 

stage development only ookinetes show considerable mCherry signal intensity, which 

dramatically decreases during further sporozoite development. In hepatocytic stages the C-

CAPmCherry fluorescence increases during maturation and was the strongest in merosomes. 

The differential protein abundance correlate with quantitative gene expression data. 

Localization of C-CAPmCherry was uniformly cytoplasmic in all stages, except in midgut 

sporozoites, where a distinct signal in close proximity to the nucleus was observed 

3.1.5.3. C-CAPmCherry protein abundance 

To test the C-CAPmCherry protein abundance, merozoites, gametocytes, ookinetes and 

sporozoite stages were collected from C-CAP::C-CAPmCherry parasites and analyzed by 

western blot. The fusion protein was nicely detected as a distinct band in merozoites, 

gametocytes and ookinetes with its predicted molecular size of 44 kDa (Fig. 22). The 

molecular weight was calculated by summation of the weight of C-CAP (17 kDa) and the 

weight of mCherry (26 kDa), respectively. In both sporozoite stages only a very weak, close 

to background signal was detected, despite of high parasite input (150.000 spz./sample). The 

unspecific bands as seen in midgut sporozoites represent mosquito material, as shown in the 

control sample (Fig. 22).  

Taken together, western blot analysis confirmed the abundance of the C-CAPmCherry fusion 

protein with the right size and confirmed the decrease in sporozoites as is was shown by life 

cell imaging and expression data. 

 

 

Figure 22: C-CAPmCherry protein abundance.  

Western blot analysis using a polyclonal -mCherry antibody, detected the C-CAPmCherry fusing 
protein with its predicted molecular size of 44 kDa (red asterisk). Samples of merozoites (mero), 
gametocytes (gamy), ookinetes (ook, n= 300.000 ook/sample) as well as midgut- (mg) and salivary 
gland (sg) sporozoites (spz., n= 150.000 spz./sample) were used and separated by an 15 % SDS-
PAGE. Uninfected mosquito material (unif. mosq.) was used as specificity control. The molecular 
weight is indicated at the left.   
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3.1.6. Trans-species complementation with the Cyptosporidium parvum  

CpC-CAP ortholog  

Apicomplexan C-CAP protein orthologs are highly conserved throughout the phylum. They 

share 70 % similarity between their deduced amino acid sequences (Fig. N1, A). The crystal 

structure of the Cyptosporidium parvum C-CAP protein was solved by Raimund Hui (SGC, 

Toronto) and is accessible in the protein data bank (PDB). To combine biochemical and 

structural insights of the C-CAP protein with experimental genetics in the model rodent 

parasite P. berghei, trans-species complementation with the Cyptosporidium parvum C-CAP 

ortholog was performed and thus provides a crucial link between the two complementary lines 

of research. 

3.1.6.1. Generation of CpC-CAP complementation parasites  

To investigate the functional redundancy between both ortholog C-CAP proteins from P. 

berghei and C. parvum in vivo, the C. parvum C-CAP coding sequence (cds) was introduced 

into the P. berghei c-cap(-) background. For complementation, the conserved C-terminal C. 

parvum C-CAP coding sequence (amino acids 34-552) was used. The DNA was amplified by 

RT-PCR from C. parvum cDNA (cdg5_440) with C1 and C3 primers as indicated (Fig. 23 B, 

Tab. 2) resulting in a fragment of 519 bp length. Subsequently, the amplicon was sequenced 

and ligated into the B3D+C-CAP knockout plasmid (Fig. 8 A), which contains the 5`UTR and 

3`UTR of the endogenous P. berghei C-CAP gene for homologous recombination and the 

marker cassette Tgdhfr/ts cassette for selection (Fig. 23 B).  The P. berghei ANKA-507cl 

GFP expressing strain (Janse et al. 2006) was transfected with the SacII / KpnI linearized 

B3D+CpC-CAP complementation plasmid. Pyrimethamine resistant parasites Cpc-cap 

(PbC-CAP::CpC-CAP) were cloned in vivo by limited dilutions. 

Successful integration of the replacement plasmid was confirmed by genotyping with 

diagnostic PCR primers (Fig. 23 A, Tab. 2). The 5`UTR and 3`UTR recombination events 

were confirmed by amplification of test´5 with 2530 bp and test´3 with 1025 bp in Cpc-cap 

parasites but not in the wild-type ANKA-507cl GFP parasites (Fig. 23 B). The absence of the 

wild-type locus in PbC-CAP::CpC-CAP parasites was controlled by the absence of 

amplification of the 2752 bp fragment, thus confirming the clonality of  the Cpc-cap strain. 

Moreover, integration of CpC-CAP was confirmed by locus amplification of 519 bp with C1 

and C3 primers, amplifying the CDS of CpC-CAP (Fig. 23 B). 
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Taken together, the integration of the ortholog C. parvum C-CAP gene into the P. berghei C-

CAP knockout parasites resulted in viable P. berghei blood stage parasites.  

 

Figure 23: Trans-species complementation in P. berghei parasites with Cryptosporidium parvum 
C-CAP.  

(A) Sequence alignment of apicomplexan C-CAP actin-binding domain (red residues) orthologs from 
T. gondii  (TgCAP; gi 211961913), C. parvum (CpCAP; gi 66357652), P. berghei (PbCAP; gi 
68074593), and P. falciparum (PfCAP; gi 124505741) with S. cerevisiae (Srv2p/ScCAP; gi 6324191). 
Highly conserved residues are shaded in grey. (B) Replacement strategy to generate a P. berghei 
population that contains the orthologous C. parvum C-CAP cDNA under the control of the P. berghei 
endogenous regulatory promoter sequences (PbC-CAP::CpC-CAP). Integration was facilitated by 
double homologous recombination in the C-CAP knockout (c-cap(-)) background. Diagnostic primers 
and PCR products are indicated by arrows, which hybridize the genomic locus (grey) or the vector 
(black) and bars indicating the fragment size. (C) Genotyping of the Cpc-cap parasites using PCR with 
specific primers as indicated in A, confirmed the specific test5´ (2053 bp) and test3´ (1028 bp) 
fragment amplification and genomic integration. No residual WT parasites (WT, 2752 bp) were found 
in the Cpc-cap line, thus confirming clonality. The CpC-CAP locus was detected at 519 bp size. 
 

3.1.6.2. Cryptosporidium parvum C-CAP reverts the defects of the Plasmodium berghei C-

CAP knockout phenotype. 

As expected from the non-vital role of C-CAP in blood stages the Cpc-cap complementation 

parasites showed normal blood stage development. To follow life cycle progression of Cpc-

cap parasites and to investigate the potential rescue of the c-cap(-) defects, A. stephensi 

mosquitoes were infected and the development of oocysts was documented by microscopy in 

comparison to wild type parasites. 
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Oocyst numbers were counted at day 10 post mosquito infection and did not show significant 

differences to wild-type parasites (Fig. 24 C). The oocyst development was analyzed at day 6, 

8, 10, 12 and 14 using a confocal microscope and oocyst size was measured. As indicated, in 

figure 24 B the oocyst size increased over time similar to WT and no significant differences 

could be detected between WT and Cpc-cap by students t-test. Importantly, sporozoite 

development inside the oocyst could be observed microscopically at day 14 (Fig. 24 A). 

Quantification of midgut-and salivary gland associated sporozoites at day 14 and 17 revealed 

complete parasite development in the mosquito. Cpc-cap infected mosquitoes typically 

displayed a trend towards fewer sporozoites compared to WT, but differences were not 

significant (Fig. 24 C). Accordingly, when transmitted naturally by mosquito bite to naïve 

C65Bl6 mice, Cpc-cap sporozoites consistently induce patent blood stage infections three 

days after inoculation. This prepatent period was indistinguishable from WT sporozoite 

infections, and indicates a normal transmission rate and liver stage development of Cpc-cap 

parasites.  
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Figure 24: Cryptosporidium parvum C-CAP rescues the c-cap(-) defects.  

(A) Restoration of sporozoite formation in Cpc-cap parasites. Midgut associated oocysts (day 14) of 
Cpc-cap detected microscopically by endogenous expressed GFP (green). Nuclei are stained with 
Hoechst 33342 (blue). Phase contrast images are shown (grey) as well as merge of all channels. Scale 
bars, 20 µm (B) Quantification of oocyst development of Cpc-cap (blue) and wild type (WT, green) 
parasites. Both parasite populations show comparable size increases as oocysts mature inside the 
mosquito vector. Each data point represents the oocyst size from randomly selected oocysts of 
parasite- infected midguts (n= 4). Data are from two independent feedings of WT and Cpc-cap each. 
Horizontal lines indicate the median sizes of each group. (C) Sporozoite numbers of WT (green) and 
Cpc-cap (blue) infected Anopheles stephensi mosquitoes. Data are from five independent feeding 
experiments. Differences are statistically non-significant by students t-test (p= 0.4 and 0.13) for 
midgut and salivary gland sporozoites. 
(D) Complete life cycle progression and natural transmission of Cpc-cap parasites compared to WT.  
In conclusion, PbC-CAP::CpC-CAP parasites (Cpc-cap) develop normally in the mosquito 

host as reflected by typical oocyst maturation and sporozoite development. Furthermore, they 

display regular blood- and liver- stage development in the vertebrate host. 

These results demonstrate that a trans-species complementation of the C-CAP protein 

between P. berghei and its ortholog from C. parvum rescues the corresponding defect in c-

cap(-) knockout parasites. Furthermore, this finding confirms a gene specific phenotype of the 

c-cap(-) mutant and excludes pleiotropic effects. Finally, these results identify CpC-CAP and 

PbC-CAP as true functional homologues. 

3.1.6.3. Mutagenesis of CpC-CAP  

The apparent functional redundancy of the P. berghei C-CAP and the C. parvum C-CAP 

proteins in P. berghei, prompted us to analyze the molecular function in vivo by side-directed 

mutagenesis on the CpC-CAP protein. The mutants were generated by Julia Sattler (Sattler, 

PhD thesis, 2010). First, conserved residues of position D117/K118, that mediate G-actin 

binding was mutated with charge-to-alanine substitutions to influence the function by 

impaired actin interaction. Second, mutations affecting the homodimer structure were 

introduced, leading to a premature termination of the CpC-CAP protein and the loss of the 

dimer structure (Fig. 25 A, B).  
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Figure 25: Mutagenesis of the CpC-CAP protein.  

(A) Sequence alignment of apicomplexan C-CAP orthologs actin-binding domains from P. berghei 
(PbCAP; gi 68074593, aa 95-151) with S. cerevisiae (Srv2p/ScCAP; gi 6324191, aa 458-518) and C. 
parvum (CpCAP; gi 66357652, aa 102-163), Identical residues are shaded in blue and similar residues 
are printed in grey. Positions of mutagenesis are marked with a black bars and residue substitutions are 
described below. (B) Overview of the CpC-CAP protein dimer, one monomer (rainbow color) and the 
second monomer (grey) creating a dimer interface by domain swapping. Positions and names of 
mutations are indicated on the structure. CpC-CAPD117A, K118A influences the actin interaction and CpC-
CAPSTOP prevents dimerization.  
 

Both mutants were analyzed for their ability to complement the c-cap(-) defects.  For 

phenotypic analysis in P. berghei the cds of CpC-CAPD117A, K118A and CpC-CAPSTOP mutant 

proteins were amplified by PCR from their expression vectors with specific primers C1/ C3 

for CpC-CAPD117A, K118A and C1/C4 for CpC-CAPSTOP (Tab. 2) and used to replace the CpC-

CAP in the PbC-CAP::CpC-CAP complementation vector (Fig. 26 A). The resulting 

constructs PbC-CAP::CpC-CAPD117A, K118A and PbC-CAP::CpC-CAPSTOP were sequenced, 

KpnI/SacII linearized and transfected into the P. berghei ANKA-507cl GFP strain (Janse et 

al.) Genotyping of clonal parasite lines was performed by diagnostic PCR (Fig. 26 A, Tab. 2), 

and confirmed successful integration of the 5`UTR and the 3`UTR (Fig. 26 B). None of these 

fragments could be amplified in WT parasites, confirming the specificity.  Locus 

amplification using primers C1/C3 and C1/C4 revealed specific fragments for CpC-CAPD117A, 

K118A and CpC-CAPSTOP parasite lines (Fig. 26 B). The WT locus with a size of 2752 bp could 

only be detected in wild type parasites and was absent in mutant parasites, confirming 

clonality of the parasite lines.      
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Figure 26: Generation of mutant Cpc-cap D117A, K118A and Cpc-cap STOPparasites.  

(A) Replacement strategy to generate P. berghei populations that contain the mutated C. parvum C-
CAP ORF under the control of the P. berghei endogenous promoter sequence. Incorporation was 
facilitated by double homologous recombination in the PbC-CAP knockout background. Diagnostic 
primers and PCR products are indicated by arrows, that hybridize with the genomic locus (grey) or 
within the vector (black). Bars indicate the predicted fragments. (B) Genotyping of the Cpc-capD117A, 

K118A and Cpc-capSTOP parasites using PCR with specific primers as indicated in A, confirmed the 
specific 5´test (2530 bp, 2458 bp) and 3´test (1028 bp) fragment amplification and genomic 
integration. No residual WT parasites (WT, 2752 bp) were detected in Cpc-capD117A, K118A and Cpc-
capSTOP mutants, confirming clonality. Specific locus amplification of Cpc-capD117A, K118A (519 bp) and 
Cpc-capSTOP (447 bp) confirmed presence of the altered gene locus. 
 

Phenotypic analysis revealed normal blood stage and ookinete development of both  

Cpc-capD117A, K118A and Cpc-capSTOP mutant parasites  (Fig. 27 B). Both were fed to A. 

stephensi and oocyst development was characterized in comparison to WT, c-cap(-), and Cpc-

cap parasites in three independent feedings experiments (Fig. 27 B).   

Interestingly, the actin binding mutant Cpc-capD117A, K118A developed normal in mosquitoes.  

Oocyst formation was comparable to Cpc-cap and WT parasites (Fig. 27 A, B). 

Quantification of midgut- and salivary gland associated sporozoites (5631  2231) revealed 

equivalent numbers to Cpc-cap parasites (6853  2915) and confirmed normal life cycle 

progression in the mosquito host. Natural transmission to two C65/Bl6 mice was tested and 

resulted in normal prepatency of three days (Fig. 27 B). These results sow that the mutant 

CpC-CAPD117A, K118A protein is able to complement the specific C-CAP function in c-cap(-) 

knockout parasites in vivo, despite of reduced actin binding activity in vitro (Sattler, PhD 

thesis, 2010).  
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In contrast the Cpc-capSTOP mutant could not complement the c-cap(-) knockout defects.  

Only few oocysts were detected, no oocyst growth and maturation, including sporozoite 

development, could be observed (Fig. 27 A, B). This phenotype resembles the characteristic 

defects of those observed in c-cap(-) parasites (Fig. 27 A, B). 

 

 

Figure 27: Phenotypic analysis of Cpc-capD117A, K118A and Cpc-capSTOP parasites.  

(A) Midgut- associated oocysts at day 10 after mosquito infection are detected by endogenous GFP 
expression (green). Note, that Cpc-capD117A, K118A oocysts develop normal, while Cpc-capSTOP oocysts 
are reduced in numbers and size. (B) Table showing the life cycle progression of the mutants Cpc-
capD117A, K118A, Cpc-capSTOP in comparison to Cpc-cap, c-cap(-) and WT parasites. Cpc-capD117A, K118A 
complements the c-cap(-) defects and sporozoite development is restored, while Cpc-capSTOP does not, 
and exhibits characteristic defects of c-cap(-).  
 

3.1.6.4. The CpC-CAPSTOP mutant protein is degraded in vivo 

To verify the protein abundance of both mutants in vivo, western blot analysis was performed 

on ookinete stages. In vitro cultured ookinetes were purified with p28-antibody labeled 

magnetic beads and total protein samples were prepared for western blotting. Ookinete 

proteins were separated on 15 % SDS-PAGE and blotted to polyviylidene difluoride (PVDF) 

membrane. Specific protein detection was achieved with the primary CpCAP antibody and the 
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secondary horseradish peroxidase (HRP)-conjugated anti- rabbit antibody (1: 5000 of 

dilution, each).  

In western blots the wild type CpC-CAP protein was detected as a distinct band with a 

predicted size of 17.8 kDa (Fig. 28 A). No band could be detected in WT ookinete lysate, 

confirming the specificity of the primary antibody in western blots. A prominent protein band 

could be detected with a molecular mass of 17.8 kDa in Cpc-capD117A, K118A ookinetes, which 

is similar to the molecular mass of CpC-CAP. In contrast, no such protein band was observed 

in Cpc-capSTOP mutant ookinetes. In both samples the same amount of protein input of 

500.000 ookinetes was used as indicated by the equal intensity of unspecific bands (Fig. 28 

A). Additionally, a very faint band below 15 kDa was recognized in this mutant, which might 

indicate protein degradation in vivo. To ensure that the primary antibody does recognize the 

mutant CpC-CAPSTOP protein, a control western blot using the recombinant proteins CpCAP, 

CpC-CAPD117A, K118A, CpC-CAPSTOP and others was performed. All recombinant C. parvum 

CAP proteins, were recognized by the same primary CpC-CAP antibody (Fig. 28 B).  

Taken together these results demonstrate that the CpC-CAP and its mutant CpC-CAP D117A, 

K118A proteins are abundant in the parasite, whereas the truncated CpC-CAPSTOP protein 

appears to be degraded. The similarity of the defective oocyst development between c-cap(-) 

and Cpc-cap STOP parasites can thus be explained by the absence of significant levels of CpC-

CAPSTOP protein.  

 

 

Figure 28: Protein abundance of CpC-CAP and its mutants in vivo.  

(A) Western blot analysis of whole protein samples of cultured ookinetes from wild type (WT), the 
complementation Cpc-cap and the mutant parasites Cpc-cap D117A, K118A and Cpc-cap STOP. Species and 
amount of sample input are indicated on the top. Samples were separated using 15 % SDS-PAGE, 
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blotted onto a polyvinylidene fluoride (PVDF) membrane and detected by specific antibody reaction 
of anti CpC-CAP (rabbit) and anti rabbit horse radish peroxidase (HRP) conjugated antibodies. The 
molecular mass is indicated on the left. The CpC-CAP and CpC-CAPD117A, K118A proteins are abundant 
in ookinetes (asterisk), whereas the CpC-CAPSTOP protein could not be detected at the right size but 
only at lower (arrowhead) apparent molecular weight, indicating degradation in vivo. No signal was 
found in WT parasites, confirming the specificity of the primary polyclonal anti CpC-CAP antibody. 
(B) Control western blot analysis to test the specificity of the generated primary anti CpC-CAP rabbit 
antibody on selected recombinant CpC-CAP proteins. The CpC-CAP, CpC-CAPD117A,K118A, and CpC-
CAPSTOP proteins (asterisk, black name), are recognized by the antibody, confirming recognition of 
mutant proteins. 
 

3.1.7. Profilin could not rescue the c-cap(-) defects 

Previous genetic studies in S. cerevisiae provided evidence for a functional redundancy 

between Srv2/CAP and profilin (Vojtek et al., 1991). Overexpression of profilin is able to 

suppress the morphological and nutritional defects of cells lacking Srv2/CAP. Additionally, 

yeast cells lacking profilin, resemble the phenotype of CAP deficient cells, indicating that 

both proteins are involved in similar cellular processes and are able to complement each 

others function (Vojtek et al., 1991). Their molecular interaction facilitates actin turnover 

(Bertling et al., 2007). Since  

c-cap(-) parasites exhibit no striking phenotype in blood- and ookinete stage parasites, 

complementation of C-CAP function by functional related actin binding proteins is plausible.  

This prompted me to test whether the G-actin binding protein profilin is able to rescue the  

c-cap(-) defects during oocyst maturation in P. berghei. Using reverse genetics, the 

endogenous C-CAP was replaced by profilin and the selection marker Tgdhfr/ts by 

homologous recombination (Fig. 29 A). Profilin was amplified with primers P1 and P2 from 

P. berghei schizont cDNA (Fig. 29 A, Tab. 2), to exclude the three introns, and the resulting 

PCR amplicon of 525 bp, was subsequently ligated into the B3D+C-CAP knockout plasmid 

(Fig. 8 A). Transfection was performed with 10 µg of KpnI / SacII linearized replacement 

vector on the GFP expressing P. berghei Anka-507cl parasite line (Janse et al., 2006) and 

clonal parasite lines where obtained. Primers T10/T11 and T8/T9 were used for genotyping 

(Fig. 29 A, Tab. 2) and successfully amplified test5` (2842 bp) and test3`(1028bp) in PbC-

CAP::Pbprofilin parasites, but not in WT (Fig. 29 B). Specific integration of Profilin into the 

C-CAP locus was shown by PCR using primers T10/P2 (Fig. 29 A, Tab. 2) and resulted in 

test5`locus amplification (1613 bp) (Fig. 29 B). Clonality of PbC-CAP::Pbprofilin parasites 

was confirmed by absence of the WT signal (2752 bp), which was still detectable in parental 

parasites (Fig. 29 B).  
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For phenotypic analysis clonal PbC-CAP::Pbprofilin parasites were fed to A. stephensi 

mosquitoes and oocyst maturation and sporozoite development was monitored. Two 

independent feedings showed that PbC-CAP::Pbprofilin parasites exhibit reduced oocyst 

numbers per midgut and are arrested during oocyst maturation, comparable to the c-cap(-) 

phenotype (Fig. 29 C). No sporozoites were detected at day 17 and 27 after feeding (data not 

shown). These results demonstrate, that substitution of C-CAP with Profilin was not 

successful and indicates a distinct function for both proteins during oocyst maturation. In 

PbC-CAP::Pbprofilin parasites profilin is expressed from two copies. First, under its 

endogenous Profilin promoter and second under the promoter of C-CAP, which should result 

in enhanced profilin transcription in schizonts, ookinetes and young oocysts (day 6) (Fig. 7 

B). To test increased profilin transcription and protein abundance, qRT-PCR and Western 

Blot were performed on merozoites and ookinetes from PbC-CAP::Pbprofilin and WT 

parasites. Quantitative RT-PCR with profilin specific primers X1/X2 (Tab. 3), which do not 

differentiate between both profilin proteins, were used for amplification and normalized 

against GFP expression of the P. berghei Anka-507cl strain. No significant differences of 

profilin expression between WT and PbC-CAP::Pbprofilin parasites could be determined in 

merozoites and ookinetes. Western blot analysis was not sensitive enough to detect altered 

protein levels between both parasite strains (data not shown).   
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Figure 29: Profilin does not complement the C-CAP function during oocyst maturation.  

(A) Replacement strategy to generate P. berghei populations, that incorporate P. berghei profilin 
under the control of the endogenous C-CAP promoter sequence in the C-CAP knockout background 
(PbC-CAP::Pbprofilin). Double homologous recombination was facilitated by 5`UTR and 3`UTR of 
C-CAP.   
Diagnostic primers and PCR products are indicated by arrows that hybridize to the genomic locus 
(grey) , or the vector (black). The bars indicate the fragment sizes. (B) Genotyping of the PbC-
CAP::Pbprofilin parasites using PCR with specific primers (as indicated in A) confirmed the specific 
5´test (2842 bp) and 3´test (1028 bp) fragment amplification and genomic integration. No residual WT 
C-CAP locus (2752 bp) was detected in PbC-CAP::Pbprofilin parasites confirming clonality. 
Specific 5`locus amplification (1613 bp) confirmed Profilin integration into the C-CAP locus. (C) 
Representative fluorescence images of mosquito midguts infected with PbC-CAP::Pbprofilin, c-
cap(-) and WT parasites at day 21, and 10 after inoculation. Oocysts are visualized by GFP 
fluorescence of the P. berghei Anka-507cl strain indicating reduced oocyst numbers and reduced 
oocyst size compared to wild type parasites. (D) qRT-PCR of profilin expression in merozoites and 
ookinetes of WT and PbC-CAP::Pbprofilin parasites. No significantly elevated levels of profilin 
mRNA in were detected in PbC-CAP::Pbprofilin parasites. Students t-test was used to define 
significance of p < 0,05.   
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3.2. Characterization of the G-actin binding proteins profilin, 

actin depolymerizing factor 1 and 2 (ADF1, ADF2) in 

Plasmodium 

In apicomplexan parasites only a minimal repertoire of G-actin binding proteins is known to 

regulate actin turnover. In addition to C-CAP, profilin and the actin depolymerizing factors 1 

and 2 (ADF1, ADF2) were identified to bind to monomeric actin. Interestingly, they differ 

significantly in structure and function from their orthologs in other phyla (Kursula et al., 

2008; Schuler et al., 2005a; Schuler and Matuschewski, 2006b). In order to understand the 

function and interplay between these unique proteins during life cycle progression of 

Plasmodium, the mRNA expression levels, protein abundance and subcellular localization 

were characterized in P. berghei.  

3.2.1. Gene expression and protein abundance of G-actin binding proteins 

decrease during sporozoite development in P. berghei  

First, the role of the two G-actin binding proteins profilin and ADF1 will be discussed, 

followed by consideration of the ADF2 protein. Profilin and ADF1 perform essential function 

during blood stage development in P. berghei (Kursula et al., 2008, Schuler et al., 2005a). In 

order to characterize the importance of profilin and ADF1 in non-erythrocytic stages, their 

gene expression was quantified throughout the life cycle of P. berghei using qRT-PCR with 

specific primers X1/X2 for profilin and X3/X4 for ADF1 (Tab. 3). Expression values were 

normalized against constitutive GFP expression of the host Anka-507cl with X7/X8 primers 

(Tab. 3). Expression data verified the high profilin transcript abundance in merozoites and 

ookinetes (Fig. 30 A). However, in contrast to published data (Kursula et al., 2008), profilin 

transcripts decreased drastically in midgut- and salivary gland sporozoites and were detected 

at background levels (Fig. 30 A). During liver stage development profilin gene transcription 

increases again and reaches high levels at 72 hours post infection (Fig. 30 A). The same 

dynamic expression pattern was observed for ADF1 transcript abundance (Fig. 30 B). High 

expression levels were detected in merozoites, ookinetes and during liver stage development 

at 24 and 72 hours after infection (Fig. 30 B). Similar to profilin, ADF1 expression diminishes 

during sporozoite development by 81.6 % compared to high expression in ookinete stages. 

Quantification of ADF2 gene expression with primers X5/X6 (Tab. 3) by qRT-PCR, revealed 

that ADF2 mRNA is only minimally transcribed throughout all stages analyzed (Fig. 30 A). 

Merozoites contained the highest levels of ADF2 mRNA, not more than 4 % and 7 % of the 



Results 

 113

profilin and ADF1 mRNA levels, respectively (Fig, 30 C). During sporozoite stages 

expression decreases close to background (Fig, 30 C). Taken together, ADF1 and profilin 

represent the highest transcribed G-actin binding proteins, followed by C-CAP gene 

expression, (Fig. 7 B) and ADF2 gene expression with the lowest level.  

Protein abundance of all three proteins was investigated by western blot analysis on P. 

berghei wild type protein samples. Endogenous proteins were detected with the primary 

polyclonal rabbit anti-P. falciparum profilin, anti-P. berghei ADF1 and anti-P. berghei ADF2 

antibodies (Tab. 1). The proteins were further traced by chemiluminescence, facilitated by the 

secondary anti-rabbit HRP conjugated antibody (Tab. 1).  

Profilin with an apparent molecular weight of 19 kDa was clearly detected in merozoites, 

gametocytes and ookinetes (Fig. 30 D I.). Interestingly, no profilin protein was found in 

midgut- and salivary gland sporozoites (Fig, 30 D I.). Sufficiently high protein input was 

confirmed in all stages. The protein amount was controlled by robust detection of the 50 kDa 

-tubulin protein in merozoites and gametocytes and with detection of the circumsporozoite 

protein (CSP) in ookinetes with a 52 kDa band and in sporozoite stages with a double band of 

52 kDa and 44 kDa, respectively (Fig. 30 D II.) (Yoshida et al., 1981). The ADF1 protein 

abundance was confirmed in merozoites, gametocytes, ookinetes and sporozoites with a 

predicted molecular size of 14 kDa (Fig. 30 E I.). However, despite of high parasite input as 

controlled by CSP protein detection, (Fig. 30 B II.), the amount of ADF1 protein strongly 

decreased in sporozoite stages (Fig. 30 E I.). The recombinant PbADF1 protein migrated with 

the same molecular weight of 14 kDa like the endogenous ADF1 in parasite samples (Fig. 30 

E II.). The extremely weak transcribed ADF2 protein was not detected in merozoites, 

gametocytes, ookinetes and sporozoite stages in western blot analysis using the same wild 

type samples as for ADF1 detection. The recombinant P. berghei ADF2 protein was 

recognized with a molecular mass of 16 kDa and confirmed functionality of the used antibody 

(Fig. 30 E I.). The specificity of all antibodies was confirmed with uninfected mosquito 

midgut material (Fig. 30 D - F I.). 
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Figure 30: Gene expression and protein abundance of profilin, actin depolymerizing factor 
1(ADF1) and 2 (ADF2). 

(A-C) Expression profiling by quantitative RT-PCR of Pbprofilin, PbADF1 and PbADF2 in 
merozoites (mero), ookinetes (ook), midgut (mg), salivary gland (sg) sporozoites (spz) and liver stages 
(ls) at 24 and 72 hours post infection. Relative mRNA levels were normalized to constitutive GFP 
expression of the Anka-507cl strain. The mRNA levels of profilin and ADF1 are most abundant in 
merozoites, ookinetes and late liver stages. In sporozoite stages the expression declines drastically for 
both genes (A, B). The ADF2 mRNA is very weakly expressed (C). (D-F) Western blot analysis was 
done for merozoites (mero), gametocytes (gamy), ookinetes (ook), midgut- (mg) salivary (sg) gland 
sporozoites (spz), uninfected mosquito material and on recombinant proteins P. falciparum profilin, P. 
berghei ADF1 and P. berghei ADF2. (D) Detection of profilin with a molecular size of 19 kDa using 
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primary rabbit PfProfilin antibody and secondary rabbit HRP conjugated antibody. Protein was 
abundant in merozoites, gametocytes and ookinetes, but not in sporozoites. For loading control the 
membrane was cut as indicated (dashed line) and probed with antisera for -Tubulin and -CSP. (E) 
The ADF1protein was recognized by the rabbit anti P. berghei ADF1 antibody with a molecular 
weight of 13.9 kDa. (F) Detection of the ADF2 protein was not possible in all parasite samples. (D-F) 
To control protein loading tubulin (50 kDa) detection was used in merozoites and gametocytes, CSP 
detection was used for ookinetes (52 kDa), and sporozoites (double band of 52 kDa and 44 kDa) 
(Yoshida et al., 1981).  
 

Taken together, the western blot analysis revealed substantial amounts of the G-actin binding 

proteins profilin and ADF1 in blood stage merozoites and ookinetes. Surprisingly, no profilin 

and only very low amounts of ADF1 protein where detected in sporozoite stages. The ADF2 

protein concentration was below the detection limit of western blot analysis. The dynamic 

fluctuation of the protein amount correlates with the gene expression data.   

3.2.2. Profilin and ADF1 localize to the cytoplasm  

 Indirect immuno-fluorescence (IFA) of profilin and AFD2 was performed to investigate the 

localization and abundance of the proteins in different life cycle stages of P. berghei (Fig. 32 

A, B). The same antibodies as for WB were used for IFA to ensure specificity for endogenous 

profilin and ADF1 detection (Fig. 30 D I., E I.) In ookinetes, profilin and ADF1 exhibit clear 

cytoplasmic localization with an accumulated signal next to the nucleus (Fig. 31 A, B). 

Profilin displays a dotted distribution in the cytoplasm, whereas ADF1 is continuously 

distributed throughout the cytoplasm and clearly excluded from the crystalloid bodies similar 

to C-CAPmCherry (Fig. 19 A). In salivary gland sporozoites no specific profilin signal and 

only a very faint ADF1 signal was observed by IFA (Fig. P1, A, B), confirming the low 

protein abundance as shown in western blot (Fig. 30 D I., E I.). CSP, instead, displayed the 

characteristic staining of the outer pellicule (Fig. 30 A, B). Localization of profilin and ADF1 

was also observed during liver stage development at 24 and 72 hours post infection. Both 

proteins displayed cytoplasmic distribution and co-localize with the heat shock protein 70 

(Hsp70) (Fig. 31 A, B). The cytoplasmic Hsp70 protein was used for specific parasite 

identification and as a control for successful IFA process. In merozoites stages (72 hours) 

profilin and ADF1 are distributed to each single merosome and maintained cytoplasmic. 

Together, these results confirmed stage-specific profilin and ADF1 protein abundance in 

ookinetes and liver stages. Thus far, all monitored G-actin binding proteins exhibit 

cytoplasmic localization. 
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Figure 31: Localization of profilin and ADF1 during life cycle progression of the parasite. 

Indirect immuno-fluorescence (IFA) shows the subcellular localization of profilin (A) with anti-P. 
falciparum profilin antibody and ADF1 (B) with anti-P. berghei ADF1 antibody in the red channel. 
The DNA was stained with Hoechst 33342 in blue and merged with the phase contrast in grey. 
Sporozoites were co-stained with anti-circumsporozoite protein (CSP) antibody (green) and liver 
stages with anti heat shock protein 70 (Hsp70) antibody (green). Both G-actin binding proteins 
localize cytoplasmic and co-localize with Hsp70 in liver stages.  
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3.2.2.1. A subpopulation of profilin is localized to the plasma membrane in ookinetes 

P. berghei profilin and its ortholog in T. gondii share 42 % identity between their deduced 

amino acid sequences (Plattner et al., 2009). Therefore, the -TgProfilin antibody was tested 

in western blot for specificity and cross- reactivity against P. berghei proteins and 

subsequently used for subcellular localization of profilin in ookinetes.  

Western blot analysis confirmed the cross-reactivity of the T. gondii antibody with the P. 

berghei profilin and recognized it with the expected size of 19 kDa in merozoites, 

gametocytes and ookinetes (Fig. 32 A, I.). No profilin protein was detected in sporozoite 

stages, confirming the previous results (Fig. 30 D I.). Clear cross-reactivity of the T. gondii 

antibody with the recombinant P. falciparum profilin was also shown and specific recognition 

of the 17 kDa T. gondii profilin could be demonstrated (Fig. 32 A I.). Interestingly, ookinetes 

displayed an unexpected peripheral profilin localization to the outer pellicule of the parasite 

cell (Fig. 32 B). In contrast, the same antibody was tested in IFA on T. gondii parasites and 

revealed cytoplasmic localization of endogenous profilin (Fig. 32 B), which is consistent with 

published data (Plattner et al., 2008). Together these results indicate that two distinct profilin 

populations may exist inside the Plasmodium ookinete, which are recognized by different 

profilin antibodies. 
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Figure 32: Detection of a profilin subpopulation in ookinetes by an anti Toxoplasma gondii 
profilin antibody. 

(A) Western blot analysis of profilin in merozoites (mero), gametocytes (gamy), ookinetes (ook) and 
midgut (mg) and salivary gland (sg) sporozoites (spz), using the anti-T. gondii profilin antibody, 
revealed cross-reaction with P. berghei profilin (19 kDa) in the samples (red arrow), and with the 
recombinant P. falciparum (19 kDa). The T. gondii profilin was detected with predicted molecular size 
of 17 kDa. No profilin was detected in sporozoite stages, despite of high protein input detected by CSP 
protein in the loading control. (B) IFA detecting P. berghei profilin in ookinetes with anti-TgProfilin 
antibody shown in red and DNA stained with Hoechst in blue, revealed clear localization of profilin to 
the parasite pellicule. IFA of profilin in T. gondii tachyzoites using the same antibody, revealed 
cytoplasmic localization, as published (Plattner et al. 2008). Phase and merge with DNA Hoechst stain 
are shown in blue.  
 

3.2.3. Stage-specific overexpression and tagging of P. berghei C-CAP and 

profilin 

The unexpected differential gene expression and stage-specific protein abundance of the G-

actin binding proteins during the Plasmodium life cycle, prompted us to further investigate the 

function of C-CAP and profilin proteins. To interrogate the influence of temporal changes in 

gene expression of C-CAP and profilin on the parasite phenotype, both proteins were 

expressed under the control of a sporozoite-specific promoter. In addition, both proteins were 

fused N-terminal to a triple Flag-tag to facilitate Co-immuno-precipitation (Co-IP) for the 

identification of novel interaction partners in vivo and to confirm localization.  

Stage-specific overexpression of C-CAP and profilin during the sporozoite stage, was 

achieved by the circumsporozoite protein (CSP) promoter (Thathy et al., 2002) Ookinete 

specific overexpression was realized by the promoter of the circumsporozoite- and 
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trombospondin related sporozoite protein (CTRP) (Dessens et al., 1999). Together, four 

parasite strains were constructed where C-CAP and profilin are Flag-tagged and expressed 

under the control of the CSP or CTRP promoter, respectively (Fig. 33). 

 

 

Figure 33: Overview of promoter and gene combinations for generation of recombinant 
parasites that overexpress C-CAP or profilin under stage-specific promoters.  

The chart indicates promoter specific activity during the Plasmodium berghei life cycle inside the 
mosquito host. After fertilization of male and female microgametes the motile zygote/ookinete (ook) is 
formed, which traverses during the midgut epithelium (mge) and settles under the basal membrane 
(bm) to transform into an oocyst (ooc). Sporozoites (spz) develop inside the oocyst and egress into the 
hemocoel to invade the salivary glands (sg). A signature protein of ookinetes is the circumsporozoite 
and trombospondin related sporozoite related protein (CTRP). Further oocyst maturation and 
sporozoite development is correlated with the expression of the circumsporozoite protein (CSP). The 
G-actin binding proteins examined in this study are indicated in the left column and the resulting 
promoter and gene combinations are shown below the respective stages.    
 

3.2.3.1. Genetic strategy and generation of parasites with stage-specific overexpression 

of Flag- tagged C-CAP or profilin 

First, the promoter swap along with the generation of mutant parasites and their genotyping 

strategy is discussed for all four parasite strains in this chapter. The phenotypic analysis will 

be presented in the following chapters.  

To create the expression vectors, the promoter sequences of CTRP and CSP were amplified 

from gDNA, with primers CTRP prom for/CTRP prom rev and CS prom for /CS prom rev 

(Tab. 2) resulting in promoter length of 180 1bp for CTRP and 1534 bp for CSP (Fig. 34 A). 

Promoter fragments where subsequently ligated into the B3D vector backbone. The triple 
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Flag-tag (69 bp) was inserted downstream the promoter followed by the coding sequence of 

either C-CAP or profilin. For systematically targeting P. berghei C-CAP gene the coding 

sequence, including the intron (829 bp) and the additional C-CAP 3`UTR (801 bp) were 

amplified from gDNA with primers B20 and B23 (Tab. 2). The profilin coding sequence, 

containing the three introns, with a length of 1210 bp and additional 978 bp of the 3`UTR was 

amplified form gDNA with primers B21/B22 (Tab. 2). Both gene sequences were ligated in 

frame to the upstream triple Flag-tag (Fig. 34 A, C). After sequencing the 

CTRP/CSP_Flag_C-CAP and CTRP/CSP_Flag_profilin regions expression plasmids were 

linearized. Transfection was done with the P. berghei Anka strain followed by cloning of 

pyrimethamine resistant parasites. 

Diagnostic genotyping of ctrp_flag_c-cap and csp_flag_c-cap parasites for 5`UTR and 

3`UTR integration was performed with primers B20/T11 and FLAGfor/T9 (Fig. 34 A, Tab. 2) 

resulting in successful amplification of test5` and test3` in parasite transfectants but not in the 

wild type strain (Fig. 34 B). Specific recombination between the promoter and the tagged C-

CAP was tested with promoter specific primers CTRP prom test/CSP prom test and B23 (Fig. 

34 A, Tab. 2) and resulted in amplification of 1887 bp in CTRPprom test and 1790 bp in 

CSPprom test, respectively but not in WT (Fig. 34 B). WT locus amplification of 2752 bp 

with T9/T10 primers (Tab. 2) was successful in wild type but not in recombinant parasites and 

confirms clonality of ctrp_flag_c-cap and csp_flag_c-cap parasites (Fig. 34 B). 
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Figure 34: Generation of recombinant parasites expressing Flag-tagged C-CAP and profilin 
under control of the CTRP or CSP promoters. 

(A, C) Genetic strategy to generate P. berghei parasites which express Flag-C-CAP and Flag-profilin, 
under the control of the circumsporozoite and trombospondin related sporozoite protein (CTRP) and 
circumsporozoite protein (CSP) promoters. The promoter sequences are shaded in dark grey, the triple 
Flag-tag is shaded in red and the C-CAP coding sequence and 3`UTR is shaded in dark blue (genomic 
locus) or light blue (plasmid origin). The profilin sequence is shown in light green (plasmid origin) or 
dark green (genomic locus). Plasmids were linearized with BstBI or BsaBI, respectively (arrow) to 
facilitate insertion. Dashed lines indicate homologous recombination sides. Primers used for cloning 
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and diagnostic genotyping are indicated as arrows in black (hybridization with the gDNA) or in grey 
(hybridization with the plasmid). Amplified PCR fragment lengths are indicated as lines. (B) 
Genotyping of ctrp_flag_c-cap and csp_flag_c-cap parasites using PCR with primers as indicated in 
A, confirmed the specific test5´ (2114 bp) and test3´ (1701 bp) fragment integration. Specific 
promoter combination with the C-CAP ORF, was confirmed by specific CTRPprom test (1887 bp) and 
CSPpromtest (1790 bp). The absence of the WT locus amplification (2752 bp) in the two clonal 
ctrp_flag_c-cap and csp_flag_c-cap parasites, but not in WT confirmed clonality. (D) Genotyping of 
ctrp_flag_profilin and  csp_flag_profilin parsites with PCR confirmed specific test5` (2778 bp) and 
test3` (2371 bp) integration. Recombination was shown by amplification of CTRPprom test (2551 bp) 
and CSPprom test (2427 bp) fragments. Clonality was confirmed by absence of WT locus 
amplification in transgenic parasite strains, but not in wild type (2351 bp).  
 

Genotyping by PCR of ctrp_flag_profilin and csp_flag_profilin parasites for specific 5`UTR 

and 3`UTR integration was performed with B21/T11 and Flagfor/TP0 primers (Fig. 34 C, 

Tab. 2) and results in amplification of test5` and test3` specifically in transfected parasites 

(Fig. 34 D). Recombination between the promoters and profilin was tested with the primers 

CTRPprom test/CSPprom test and B22 (Fig. 34 C Tab. 2) and resulted in predicted 

amplification of 2551 bp in CTRPprom test and 2427 bp in CSPprom test in transfectants, but 

not in wild type parasites (Fig. 34 D). Clonality of the recombinant parasite strains was 

confirmed with primers TP1/TP0 (Fig. 34 C, Tab. 2) and resulted in WT locus amplification 

of 2351 bp in wild type parasites only (Fig. 34 D). 

3.2.4. Phenotypic analysis of csp/ctrp_flag_c-cap/profilin recombinant 

parasites 

For phenotypic analysis all four clonal parasite lines were fed to A. stephensi. The presence 

and localization of the Flag-tagged fusion proteins C-CAP and profilin was monitored by 

western blot analysis and IFA using the anti-Flag antibody. Sporozoite numbers, motility and 

transmission to mice were determined subsequently. 

3.2.4.1. Transgenic parasites that overexpress C-CAP or profilin in the ookinete stage 

display normal life cycle progression 

Indirect immuno-fluorescence in parasites overexpressing either the C-CAP or the profilin-

Flag fusion protein under the CTRP promoter, display a clear Flag-signal only in ookinetes 

(Fig. 35 A, C). No Flag-signal was detected in oocysts at day 14 and midgut- and salivary 

gland sporozoites at day 14 and 22 after feeding (Fig. 35 A, C). Consistent with our previous 

localization of C-CAP (Fig. M3, A) and profilin (Fig. 32 A), both Flag-fusion proteins exhibit 

cytoplasmic localization with slightly stronger signal next to the nucleus (Fig. 35 A, C). 

Western blot analysis confirmed Flag-fusion protein abundance only in ookinetes for Flag-C-

CAP with a predicted molecular weight of 21.3 kDa (Fig. 35 B I.), and for Flag-profilin with 
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a molecular weight of 22.11 kDa (Fig. 35 D I.). The protein input was controlled by detection 

of -Tubulin (50 kDa) in ookinetes and the CSP protein (52/44 kDa) in sporozoite stages and 

revealed substantial amounts of parasite proteins (Fig. 35 B and D II.).  

 

 

Figure 35: Localization and protein abundance of the Flag-C-CAP and Flag-profilin fusion 
proteins expressed under control of the CTRP promoter. 
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(A, C) Indirect immuno-fluorescence (IFA) on ookinete stage, oocyst and midgut sporozoites at day 
14 post infection, detecting the Flag epitope of c-cap (A) and profilin (C) only in ookinetes with 
cytoplasmic localization. The Flag-signal is shown in red and DNA in blue. (B, D) Western blot 
analysis for detection of the Flag-c-cap fusion protein (B) and Flag-profilin (D) in ookinetes (ook), 
mixed blood stages (mix. bs), midgut- (mg) and salivary gland (sg) sporozoite stages (spz) and 
uninfected mosquito material (uninf. mosq.). Wild type samples are indicated (WT). Protein input was 
controlled (B, D, II.) by detection of tubulin (50 kDa) and CSP (44/52 kDa). Molecular weights are 
indicated on the right. 
 

These results clearly demonstrate the successful stage specific overexpression of C-CAP and 

the profilin in ookinetes, regulated by the CTRP promoter. Thus far, no phenotypic 

differences between parasite strains and the WT parasites could be observed and hence 

implicate functionality of the Flag-fusion proteins. 

Following the life cycle progression of the transgene parasites, sporozoite numbers were 

counted for midgut and salivary gland sporozoites. Both parasites developed comparable 

amounts of midgut sporozoites as compared to WT (Fig. 36 A). Both parasites develop 

adequate or higher amount of salivary gland sporozoites per mosquito with 3300 for 

ctrp_flag_c-cap parasites and 20.700 sporozoites for ctrp_flag_profilin parasites as compared 

to WT with 8200 sporozoites (Fig. 36 A). The transmission competence of salivary gland 

sporozoites from both transgene sporozoites was tested in comparison to WT, by intravenous 

injection of 5000 sporozoites into groups of three C75/Bl6 mice. Parasitemia was monitored 

daily by Giemsa-stained blood smears and revealed normal prepatent period of three days for 

all parasite populations (data not shown). Furthermore, motility of both transgene parasites 

was investigated with gliding assays on glass slides and subsequent indirect immuno-

fluorescence against the CSP protein to detect sporozoite trails. Both parasites displayed 

normal gliding motility (Fig. 36 B). 
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Figure 36: Phenotypic analysis of sporozoite development and motility in parasites expressing c-
cap and profilin under the CTRP promoter. 

(A) Sporozoite numbers per mosquito were counted for midgut- (n=1for ctrp_flag_cap/profilin and n= 
2 for WT) and salivary gland sporozoites (n= 2) in n independent feeding experiments each. (B) 
Motility of salivary gland sporozoites was tested in gliding assays and subsequent IFA to detect CSP 
in the sporozoite trails. All sporozoite populations exhibit productive gliding motility. 
 

Together, these results show that overexpression of the G-actin binding proteins C-CAP and 

profilin during ookinete stages, where these genes are abundantly expressed (Fig. 7 B and Fig. 

30 A), does not influence the parasite development. Normal life cycle progression of these 

transgene parasites was confirmed by regular amounts of motile transmission competent 

sporozoites are formed in the mosquito and infection leads to normal liver stage development. 

Furthermore, the functional Flag-tagged C-CAP and profilin can now be used for co-immuno- 

precipitation to identify interacting proteins. 

3.2.4.2. Transgenic parasites that overexpress C-CAP or profilin under control of the 

CSP promoter exhibit ectopic protein expression, resulting in ablated salivary 

gland invasion of sporozoites 

Both parasite lines ctrp_flag_profilin and csp_flag_profilin were investigated for their profilin 

content during ookinete stages by western blot analysis. Endogenous profilin with a molecular 

size of 19 kDa was detected in ookinetes in WT and both transfected parasite strains (Fig. 37 

II.). As expected from the genetic strategy, the additional profilin copy, expressed under 

control of the CTRP and CSP promoter was recognized by the -PfProfilin and the  Flag-

antibody with a molecular size of 22 kDa (Fig. 37 I., II.). This result confirmed the 
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overexpression and presence of two profilin populations in both transfected strains. The 

protein input was controlled by detection of equal amount of the CSP protein (Fig. 37 III.).  

 

 

Figure 37: Detection of two profilin populations in ookinetes, indicating functional 
overexpression of the protein under the CTRP and CSP promoter.  

Western blot analysis of ookinetes from WT, ctrp_flag_profilin and csp_flag_profilin parasite strains, 
show clear detection of endogenous profilin (19 kDa) and the additional expressed Flag-profilin fusion 
protein (22kDa)(II.). Flag specific recognition of the fusion proteins is shown (I.) and protein input 
was controlled with detection of the CSP protein (55 kDa) (III.).  
 

Indirect immuno-fluorescence detecting the Flag epitope of the profilin-Flag fusion protein 

confirms again cytoplasmic localization in ookinetes (Fig. 38 C). The ectopic expression of 

either the C-CAP or the profilin protein during sporozoite maturation is visualized by IFA in 

oocysts, midgut- and hemocoel sporozoites at day 14 and day 27 of parasite development 

(Fig. 38 A, C). Both Flag-fusion proteins localize to the immature sporozoites inside the 

oocyst. In midgut sporozoites the Flag- signal exhibits cytoplasmic localization. Hemocoel 

sporozoites at day 23 of development display atypical peripheral protein localization for Flag-

C-CAP and Flag-profilin (Fig. 38 A, C).  

Western blot analysis confirmed the antibody specificity and detected the flag-profilin protein 

with a distinct band with a molecular weight of 22 kDa in ookinetes, midgut and salivary 

gland sporozoites (Fig. 38 D). These results demonstrate successful ectopic overexpression 

and detection of C-CAP and profilin during sporozoite development, in stages where usually 

both proteins are very low expressed. The localization of the protein changes from 

cytoplasmic pattern in ookinetes and midgut sporozoites to peripheral localization in 

hemocoel sporozoites. 
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Figure 38: Localization and protein abundance of the Flag-C-CAP and Flag-profilin fusion 
proteins expressed under control of the CSP promoter.  

(A, B) IFA in ookinetes, oocyst and midgut sporozoites, at day 14 and hemocoel sporozoites at day 27 
of development. Localization of the Flag-C-CAP fusion protein (A) and the Flag-profilin protein (B) is 
shown in red. DNA was stained with Hoechst 3361 shown in blue and merged with phase contrast. 
Note that the fusion proteins exhibit ectopic expression in sporozoite stages. (C) Detail of the 
peripheral localization of the Flag-C-CAP protein in hemocoel sporozoites. (D) Western blot analysis 
shows ectopic protein abundance of Flag-profilin in sporozoites with the predicted molecular size of 
the fusion protein (22 kDa) thereby confirming the CSP promoter activity. The blot was cut for 
detection of Tubulin and CSP protein in the loading control (D II.). 
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Despite high C-CAP and profilin abundance the recombinant parasites were able to develop 

sporozoites (Fig. 38), indicating that both proteins do not interfere with sporozoite formation. 

For further phenotypic analysis sporozoite numbers were counted. In the case of csp_flag_c-

cap parasites only low numbers of 2796  2040 sporozoites per mosquito were counted from 

three independent feeding experiments, as compared to csp_flag_profilin and wild type 

parasites, which developed similar sporozoite numbers of 11.426  6341 and 14.707  18.975 

per mosquito (Fig. 39 A). Interestingly, no sporozoites were found in the salivary glands of 

mosquitoes infected with csp_flag_c-cap or csp_flag_profilin (Fig. 39 A) in three independent 

feeding experiments. To investigate the competence of midgut sporozoites to egress from the 

oocysts into the hemocoel, hemocoel sporozoites were prepared and numbers were 

determined. Mosquitoes infected with csp_flag_c-cap or csp_flag_profilin developed 1390  

1088 and 800  424 parasites per mosquito and represented less but substantial sporozoite 

numbers as seen in WT hemocoel sporozoites (4875  3872) (Fig. 39 A). Thus might 

implicate a slight impaired oocyst egress capacity in both mutant parasites.    

Gliding assays of hemocoel sporozoites from both transgene parasites did not reveal major 

differences (Fig. 39 B). In all hemocoel sporozoites samples small and diffuse CSP 

accumulations roughly comparable to CSP trails of salivary gland sporozoites were detected 

by IFA. Interestingly, only in wild type samples sporozoites were found close to CSP trails, 

whereas in both transgene parasites no sporozoites were found in connection to “mini” trails 

(Fig. 39 B).   

Together these results show that ectopic overexpression of the C-CAP and the profilin protein 

does not interfere with the sporozoite formation per se, but leads to compromised sporozoite 

oocyst egress and complete abolishment of salivary gland invasion.  
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Figure 39: Phenotypic analysis of sporozoite development in parasites with ectopic 
overexpression of c-cap and profilin under the CSP promoter. 

(A) Sporozoite numbers were counted from midgut- (n= 2), salivary gland- (n= 3) and hemocoel 
sporozoites (n= 3) in n independent feeding experiments. All parasites developed midgut sporozoites, 
but no sporozoites were found in salivary glands of mosquitoes infected with either csp_flag_c-cap or 
csp_flag_profilin parasites. However, theses parasites form less but substantial amounts of hemocoel 
sporozoites, indicating slight impairment of oocyst egress and complete inability of salivary gland 
invasion. Sporozoite number differences were tested by students t-test, and were not significant (p< 
0.5) (B) Motility of hemocoel sporozoites was investigated by gliding assays on glass slides and 
subsequent CSP (green) detection by IFA. All hemocoel sporozoites display incomplete gliding as 
indicated by the “mini” CSP trails or CSP accumulations. Only in WT parasites sporozoites were 
found associated to trails. 
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4. Discussion 

In this study I characterized the function of the G-actin binding protein cyclase-associated 

protein C-CAP in the rodent malarial parasite Plasmodium berghei. By employing 

experimental genetics and molecular biological approaches, I discovered previously 

unrecognized C-CAP functions essential for oocyst maturation.  

My work on the three G-actin binding proteins profilin, and actin depolymerization factor 1 

and 2 (ADF1, ADF2), yielded unexpected results regarding the sporozoite stage, which 

indicate that sporozoites exhibit an actin-dynamic regulation that is distinct than merozoites 

and ookinetes. 

4.1. The cellular function of C-CAP in Plasmodium 

C-CAP gene expression profiling throughout the different life cycle stages of P. berghei 

revealed moderate mRNA levels as compared to the two other G-actin binding proteins, 

profilin and ADF1. Blood stage merozoites, ookinetes and liver stage merozoites exhibited 

most abundant C-CAP transcripts indicating possible functions in invasion and motility. 

Unexpectedly, C-CAP expression dropped to background levels during sporozoite 

development. The cellular function of C-CAP was addressed by reverse genetics, where the 

endogenous C-CAP gene locus was deleted by homologous recombination. The C-CAP gene 

deletion resulted in viable blood stages, demonstrating a non-essential function in this stage of 

the life cycle. Furthermore, growth curve analysis revealed no differences between wild type 

and c-cap(-) parasites in mice.  

These results indicate that lack of C-CAP has no measurable impact on replication, growth 

and invasion of the parasites during the asexual life cycle, despite their actin-dependence 

(Field et al., 1993; Miller et al., 1979; Mizuno et al., 2002; Smythe et al., 2008). One 

plausible explanation is that the cellular role can be compensated by functional redundancy of 

G-actin binding proteins, like profilin or ADF1, that both exhibiting G-actin sequestering 

activity (Huttu et al., 2011; Kursula et al., 2008; Schuler et al., 2005a; Wong et al.). In vivo 

analysis in mice does not permit high resolution of the spatiotemporal parasite activity. 

Therefore it cannot be excluded that minor defects during invasion occur in c-cap(-) parasites. 

Due to the lack of a reliable in vitro culturing system where invasion assays could be 

performed for P. berghei asexual blood stages, live cell imaging of the invasion process and 

flow cytometry-based analysis of the parasite replication could be used in the future for more 

exact parasitemia measurements in mice.  
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Sexual gametocyte differentiation and subsequent ookinete development was not affected in 

c-cap(-) parasites, despite high C-CAP expression and protein abundance in these stages. The 

cellular architecture of c-cap(-) ookinetes was indistinguishable from wild type, as judged by 

localization of cytoskeletal components, for instance tubulin, DNA integrity and Giemsa- 

staining (data not shown). Ookinetes employ an equal actomyosin-based motor as described 

in merozoites. Their motility is susceptible to actin stabilizing and destabilizing drugs, 

resulting in velocity reduction in a concentration specific manner (Siden-Kiamos et al., 2006). 

The integrity of motor components in c-cap(-) ookinetes for myosinA and actin was not 

influenced (data not shown). However, in vitro analysis of ookinete motility revealed a 

significant decrease in velocity as compared to wild type. This is the first indication for a role 

of C-CAP in parasite motility. The speed reduction is consistent with temporal 

disorganization of the actin-skeleton.  Referring to the G-sequestering activity of C-CAP, a 

delayed G-actin turnover leads to impairment of fast retrieval of polymerization-competent 

ATP-actin in motile ookinetes, which in turn retards ookinete velocity in c-cap(-) parasites. 

Nevertheless, c-cap(-) parasites employed all motility patterns known to date (Siden-Kiamos 

et al., 2006) and were able to successfully traverse the mosquito midgut of A. stephensi and 

transform into oocysts. These results show that C-CAP is also not vital for ookinete formation 

and motility. Its absence can perhaps again be compensated by functionally redundant 

proteins. To correlate the in vitro motility with the in vivo situation, mosquitoes where 

infected with c-cap(-), revealing reduced oocyst numbers. In vivo the ookinete has to traverse 

the periotrophic membrane and the midgut epithelium. Therefore, it is likely that reduced 

speed in vitro translates into reduction of successful transmigration events in vivo. Slower 

parasites might be digested in the blood meal or inactivated by defense factors of the 

mosquito host (Lehane et al., 2004; Levashina, 2004). This hypothesis could be assessed by 

TEP1 staining, which recognizes ookinetes that are opsonized by the mosquito immune factor 

(Blandin et al., 2008) and are therefore prone to be eliminated. 

The most important finding of this study is the essential function of C-CAP for oocyst 

maturation and sporozoite formation. C-cap(-) parasites are completely aborted during oocyst 

development and do not form sporozoites. These results strongly support a stage-specific and 

non-redundant function of C-CAP. Initial growth and first mitotic divisions of DNA appear 

unaltered until day 6 of development. Subsequent development differs significantly from wild 

type parasites. Oocysts are arrested in growth and are ~50 % smaller in size at day 14 after 

infection. Furthermore, mitotic divisions are aborted, indicating a DNA condensation and 

segregation defect (Fig. 12). During c-cap(-) persistence in the midgut, oocysts undergo cell 
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death as indicated by life/death stain, vacuolization of the cysts, and loss of GFP expression. 

Transmission electron microscopy data revealed a more detailed phenotype of c-cap(-) 

parasites during development. At day 6, plasma membrane invaginations of the inner oocyst-

wall, known as membrane retractions, occur in wild type oocysts (Baton and Ranford-

Cartwright, 2005; Menard et al., 1997; Terzakis et al., 1967; Vanderberg, 1974) but are 

undetectable in the c-cap(-) mutants. Also, signs of deficient DNA segregation are visible 

(Fig.  16). Later, the defined oocyst compartmentation into blastomers and sporozoites is 

absent in c-cap(-) parasites (Fig. 17). This defect is likely due to the lack of inner membranes 

that define specialized compartments in the resulting sporozoite. Taken together, c-cap(-) 

parasites exhibited an unexpected phenotype, which possibly revealed a novel actin-

dependent role during oocyst maturation. 

4.1.1. The role of C-CAP during oocyst maturation 

The spatiotemporal organization of the developing oocyst is difficult to assess and not much 

research has been done on this unique extracellular replication phase of the parasite. Thus far, 

it is clear that the motile tetraploid ookinetes transform into highly replication-competent and 

metabolically active oocysts. This transformation happens at 18 - 24 hours after blood meal 

(Adini and Warburg, 1999) and is characterized by drastic morphological changes. The 

microtubuli cytoskeleton and the apical complex disassemble to form the round shape of the 

cyst A young oocyst undergoes a dramatic increase in volume, characterized by a 10-fold 

growth in diameter (from 5 µm to 50 µm), and several simultaneous mitotic divisions that 

produce 2.000 - 8.000 haploid nuclei (Canning and Sinden, 1973). It was shown that oocyst 

growth relies on nutrient uptake from surrounding compartments like the hemocoel, for 

instance the essential amino acid leucine (Vanderberg and Rhodin, 1967). In all life cycle 

stages hexoses are essential for Plasmodium and the corresponding transporters have been 

localized to the oocyst periphery, indicating import of hexoses, such as fructose or glucose 

(Blume et al., 2010; Slavic et al., 2010). Considering that the type II fatty acid synthesis 

(FASII) pathway is not essential for sporozoite development (Vaughan et al., 2009), it is not 

surprising that oocysts ingest lipids from the host to built up membranes necessary for 

sporozoite development. Lipophorins (Lp), the main lipid carrier in the mosquito, are 

important factors for oocyst maturation in A. gambiae (Mendes et al., 2008; Rono et al.), and 

can be taken up by the oocysts (Atella et al., 2009). However, the uptake mechanism through 

the dense fibrous capsule remains elusive. The fact that c-cap(-) oocysts do not grow and 

exhibit no inner membranes for compartmentation, may suggest a direct or indirect defect in 
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nutrient and/or lipid uptake. The membrane invagination process observed in wild type 

parasites might contribute to this uptake (Fig. 16, 17). Membrane invaginations, filled with 

capsule components, extend into the cytoplasm and appear to ultimately bud off as electron 

dense, round bodies. Such invaginations and budding processes are absent in c-cap(-) 

mutants. Endocytosis is an actin-dependent process (Smythe and Ayscough, 2006) and has 

been described in Plasmodium blood stages (Smythe et al., 2008). Whether these 

invaginations are endocytic vesicles and reflect actin-dependent endocytosis in developing 

oocysts requires further research. Besides this “endocytosis-like” process, actin and its 

binding proteins are required for numerous fundamental cellular functions. For instance, 

membrane retraction during cytokinesis is mediated by F-actin filament action in the 

contractile ring (Kamasaki et al., 2007). It has been shown that the genesis of cell polarity in 

yeast and Drosophila is controlled by spatial regulation of actin filaments and mRNA 

determinants by CAP (Baum et al., 2000; Kamasaki et al., 2005). Furthermore, the 

positioning of the mitotic spindle during nuclear division depends on actin (Azoury et al., 

2008; Dumont et al., 2007). Dysfunction of these processes is also consistent with the 

observed ultra structural defects of c-cap(-) oocysts. To further dissect the questions of 

whether nutrient uptake, membrane retraction, and nuclear division are actin dependent 

processes in Plasmodium oocysts, axenic oocyst-culture may be performed (Al-Olayan et al., 

2002; Warburg and Miller, 1992; Warburg and Schneider, 1993). This in vitro culture system 

would allow application of inhibitors that interfere either with the actin or the tubulin 

cytoskeleton. However, the in vitro culturing of oocysts remains to be optimized (data not 

shown). Additionally, immuno electron microscopy may help to detect the localization of 

actin. Finally endosomal markers would further contribute to solve this question.  

The c-cap(-) oocysts were tested for expression and localization of other factors essential for 

sporozoite development, such as the circum sporozoite protein (CSP) (Menard et al., 1997) 

and the CAP380 protein (Srinivasan et al., 2008). However, no differences in expression 

timing and localization could be detected in c-cap(-) and wild type oocysts (Fig. 14). This 

finding indicates a CSP and CAP380- independent mechanism of sporozoite development 

abortion. 

The subcellular localization of the C-CAP protein was addressed by expression of a C-CAP 

mCherry fusion protein, which was integrated into a knockout background. The c-cap(-) 

phenotype could be rescued by the c-capmCherry expression throughout the complete parasite 

life cycle. This further confirms a C-CAP-specific phenotype of c-cap(-) parasites. Life cell 

imaging displayed clear cytoplasmic localization in all observed stages (Fig. 19-21) and signal 
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intensity reflected mRNA expression data well. The cytoplasmic C-CAPmCherry localization 

supports its G-actin sequestering function (Julia Sattler, dissertation), because G-actin is 

highly abundant in the parasite cytoplasm (Dobrowolski and Sibley, 1997; Field et al., 1993). 

Furthermore, the lack of the N-terminal and the P2 domain (Schuler and Matuschewski, 

2006b), which confers localization to cortical actin patches in yeast and human (Freeman et 

al., 1996; Freeman and Field, 2000; Lila and Drubin, 1997), is consistent with the 

cytoplasmic pattern of C-CAPmCherry. 

4.2. C-CAP but not its actin-sequestering activity is essential in 

oocysts  

4.2.1. Complementation with Cryptosporidium parvum C-CAP (CpC-CAP) 

The successful functional complementation of the Plasmodium C-CAP loss of function 

mutant by its ortholog from C. parvum provided us with a crucial link for the biochemical 

activity and cellular role in vivo. The C. parvum C-CAP complementation was achieved by 

introduction of the CpC-CAP coding sequence into the knockout vector, with the C. parvum 

transgene being expressed under the control of endogenous C-CAP promoter. Successful 

genomic integration resulted in viable blood stages, indicating tolerance of the C. parvum 

transgene by Plasmodium. Complemented parasites progressed throughout the entire life 

cycle. Oocyst maturation and sporozoite development could be restored and resulted in 

infection-competent sporozoites. These results confirmed that, both proteins are functionally 

redundant, most likely through its G-actin sequestering activity. 

To specifically link G-actin sequestering activity to the cellular function, mutagenesis on 

CpC-CAP was performed. The mutations were predicted to either interfere with the actin 

binding capacity (CpC-CAPD117A, K118A) or with the dimerization (CpC-CAPSTOP). Phenotypic 

analysis throughout mosquito development revealed that the actin-binding impaired CpC-

CAPD117A, K118A protein still rescued the c-cap(-) parasites, whereas the dimerization mutant in 

CpC-CAPSTOP parasites did not. This strongly favors an actin-sequestering independent 

function of C-CAP in oocysts. However, several caveats need to be considered during 

interpretation of the CpC-CAPD117A, K118A mutant: (i) the selected mutation may not be entirely 

sufficient to disrupt actin interaction in vivo as it has been shown in the in vitro assay (Julia 

Sattler, dissertation), (ii) in vitro analysis has been done with rabbit muscle actin, which 

structurally differs from the apicomplexan actin or (iii) the c-cap(-) defect relies entirely on an 

actin-independent process and involves new interaction partners and novel physiological 
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functions of the C-CAP protein. Western blot analysis suggests that the CpC-CAPSTOP mutant 

did not complement due to degradation of the truncated CpC-CAPSTOP protein by the parasite. 

The truncation possibly leads to misfolding of the protein and subsequent proteasome 

targeting. Thus, the mutational analysis did not yet provide validation for the essential 

interaction of CpC-CAP and actin in vivo and favors an actin-sequestering independent 

function. Additional mutants of the CpC-CAP protein were characterized for inhibition of its 

actin-binding activity, complex formation and abolishment of actin-sequestering activity 

(Julia Sattler, dissertation). Using these mutants for further complementation experiments 

might facilitate the dissection of the multiple functions in vivo. 

4.2.2. C-cap(-) mutants can not be complemented by profilin  

To further investigate the role of C-CAP during oocyst maturation, I attempted the 

complementation with profilin overexpression. Both proteins share a common G-actin 

sequestering activity (Kursula et al., 2007; Sattler et al., 2010), and interestingly, C-CAP loss 

of function mutants in S. cerevisiae can be complemented by profilin overexpression (Haarer 

et al., 1993; Vojtek et al., 1991). Expression of profilin from the endogenous C-CAP locus 

was well tolerated by blood stages and ookinetes, but failed to complement the c-cap(-) 

specific defects during oocyst development. This result further supports the conclusion that 

the G-actin sequestering function of C-CAP may not be crucial in oocysts. However, these 

experiments do not exclude redundant functions between profilin and C-CAP in merozoites or 

ookinetes, which suffer no or undetectable defects upon C-CAP deletion.  

4.3. C-CAP and potential actin-independent processes in oocysts 

To address a potential “actin-independent” function of C-CAP in Plasmodium, Co-immuno 

precipitation (Co-IP) and subsequent mass spectrum analysis could be performed in order to 

identify potential interacting proteins. Parasites overexpressing a Flag-tag C-CAP fusion 

protein in ookinetes, were constructed. These parasites exhibited normal life cycle progression 

and the characteristic cytoplasmic localization of C-CAP (Fig. 35, 36). These results indicate 

functionality of the fusion protein and provide a tool for future C-CAP Co-

immunoprecipitation experiments. 

Potential interaction candidates might include actin II, actin related proteins (ARP), and actin 

like proteins (ALP), which share the common actin-fold and an overall sequence similarity 

with actin (Frankel and Mooseker, 1996; Wesseling et al., 1989). Plasmodium species express 

a second actin, termed actinII, which is essential for exflagellation of male gametocytes 
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(Wesseling et al., 1989, Siden-Kiamos, unpublished). Whether actinII plays a role during 

oocyst maturation has not been investigated. ARPs are required for a variety of biochemical 

and structural roles in higher eukaryotic cells, including actin polymerization and branch 

formation (Frankel and Mooseker, 1996; Machesky et al., 1994; Mahaffy and Pollard, 2006), 

vesicle transport along microtubuli (Schroer and Sheetz, 1991), cell division (Karki and 

Holzbaur, 1999), and chromatin remodeling (Shen et al., 2003; Szerlong et al., 2003). In 

apicomplexa, 10 distinct ARPs have been identified (Gordon and Sibley, 2005). The Arp1 

protein is the most conserved member and functions as an integral component of the dynactin 

complex in eukaryotic cells. It also shares the ATPase activity and the capacity to form short 

filaments rods of ~40 nm, with actin. A Plasmodium homologue, Arp1, is expressed 

throughout the parasite life cycle and is essential during blood stage development (Siden-

Kiamos et al., 2010). Also, six unique species-specific actin-like proteins (ALP) have been 

identified in apicomplexa, which share no known homologues in other species. The ALP1 

protein is dynamically associated with the IMC and exerts a role in daughter cell formation in 

Toxoplasma gondii (Gordon and Sibley, 2008). Possibly, ARP and/or ALPs may be capable 

to function stage-specifically in Plasmodium in otherwise actin-dependent processes.  

Another attractive hypothesis is that C-CAP may be a bi-functional molecule that may interact 

with the actin cytoskeleton and the tubulin cytoskeleton in a stage-specific manner. The G-

actin binding capacity was already characterized, and relies on the highly conserved tertiary 

domain structure, called CARP domain. CARP domains representing tandem repeats, which 

are shared between the cyclase-associated proteins (CAP), the X-linked retinitis pigmentosa 

(RP2) proteins and the tubulin cofactor C (TBCC) (Dodatko et al., 2004; Kuhnel et al., 2006). 

The latter two proteins participate in tubulin biogenesis in eukaryotes. TBCC functions, along 

with the tubulin cofactors A- D, in assembly of the alpha- and beta- tubulin heterodimer in 

higher eukaryotic cells (Kirik et al., 2002; Kortazar et al., 2007). Databank research revealed 

that most tubulin cofactors are encoded by the Plasmodium genome (data not shown). The 

CARP domain is clearly shared between the C-CAP and the TBCC (PBANKA_121410) 

protein in P. berghei. It is thus plausible that both proteins are able to mutually interact via 

their tertiary structure (Dodatko et al., 2004), creating dimers, and link the cytoskeleton 

assembly. 
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4.4. Conservation of the N-terminal part of C-CAP in Plasmodium 

parasites 

Initial homology searches in the Plasmodium genome and annotation studies of the C-CAP 

gene confirmed an N-terminal truncation, in comparison to CAP proteins in higher eukaryotes 

(Schuler and Matuschewski, 2006b). However, in the course of annotation updates at the 

Plasmodium genome data bank (PlasmoDB) I identified a protein, which might represent a 

candidate for the missing N-terminal part in Plasmodium. The conserved gene with unknown 

function (PBANKA_020790, named here N-CAP) besides 758 base pairs upstream of the C-

CAP coding sequence (PBANKA_020800) on the second chromosome of the Plasmodium 

berghei Anka strain. The gene encodes for a 140 amino acid protein with a predicted 

molecular size of 16,5 kDa. It contains an N-terminal signal peptide (1-21 aa) and two 

transmembrane domains (TM1 4-26 aa, TM2 88-110 aa). Very interestingly, both genes (N-

CAP and C-CAP) are encoded by two independent open reading frames (ORFs) and represent 

two distinct proteins in all Plasmodium species, except in P. vivax. In P. vivax one single ORF 

fuses both genes (PVX_081500) and encodes for one protein, which contains the N-terminal 

uncharacterized domain and the C-terminal C-CAP domain. Both domains are connected by a 

linker of 9 x DQRN repeats. The possibility exists that both proteins interact with each other, 

as if corresponding homologs are transcribed as one gene. Blast searches with the P. berghei 

N-terminal domain did not reveal any predicted homolog in higher eukaryotes. Taking into 

account that the N-terminal cyclase-associated domain in yeast is not conserved among higher 

eukaryotes (Hubberstey and Mottillo, 2002), it is therefore plausible that apicomplexa encode 

the N-terminus as a separate protein with distinct functions. 

4.5. A brief conclusion of C-CAP 

Taken together, C-CAP is the first characterized G-actin binding protein displaying essential 

roles during oocyst maturation of the malarial parasite. Defects in this extracellular replication 

phase, includes attenuation of oocyst growth, of compartmentation, nuclear divisions, and the 

complete lack of sporozoite development. To what extent the G-actin sequestering activity 

influences these cellular processes in Plasmodium remains to be studied. Motile processes 

such as invasion and transmigration, displayed by merozoites and ookinetes, do not vitally 

depend on C-CAP. Proteins with likely redundant functions, like profilin or ADF1/2 can 

potentially compensate for the loss of C-CAP in these motile stages. The cytoplasmic 

localization of the C-CAPmCherry protein supports a physiological G-actin sequestering 
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activity. Trans-species complementation with the C. parvum C-CAP proved functional 

redundancy between apicomplexan CAP proteins. Establishment of the precise cellular defect 

during oocyst maturation and the exploration of potential biological interaction partners of C-

CAP, will open new avenues to understand the relevance of the cytoskeleton during 

Plasmodium differentiation. 

4.6. The characterization of the G-actin binding proteins profilin, 

ADF1 and ADF2  

Profilin and ADF/cofilins are key regulators of actin dynamics in eukaryotic cells. Despite 

their distinct functions on the actin filaments, they regulate the constant cellular actin 

turnover. Profilin and ADF1 perform essential roles during blood stage development of 

Plasmodium berghei parasites (Kursula et al., 2008; Schuler et al., 2005a), whereas ADF2 is 

not essential and deletion causes only minor defects during oocyst maturation and liver stage 

development (Doi et al., 2010).  

I characterized their protein abundance throughout the Plasmodium life cycle via expression 

profiling by quantitative RT-PCR, western blotting and indirect immuno microscopy. 

Profilin and ADF1 mRNA levels are clearly the most abundant amongst the Plasmodium G-

actin binding proteins, which further emphasizes their importance. In accordance with 

previous data ADF2 mRNA exhibited the lowest expression levels (Schüler et al., 2005a). All 

G-actin binding proteins, including C-CAP, displayed a similar expression pattern. The 

highest expression is observed in merozoites, ookinetes and late liver stages, indicating a 

potential role during invasion, egress and motility. Interestingly, mRNA levels of all G-actin 

binding proteins decrease dramatically by 8 to 30 fold during sporozoite development. 

Profilin and ADF1 transcripts were previously detected in salivary gland sporozoites by RT-

PCR (Kursula et al., 2008; Schuler et al., 2005a). However, quantitative RT-PCR revealed a 

significant downregulation of mRNA in sporozoites, which was not found in previous studies 

by conventional RT-PCR.  

This findings suggests that Plasmodium downregulates the expression of the main G-actin 

binding proteins, profilin, ADF1 and C-CAP, in sporozoites. This result was very surprising, 

considering the exceptional motility of salivary gland sporozoites and the essentiality of 

ADF1 and profilin in blood stages. The absence of the profilin protein in midgut- and mature 

salivary- gland sporozoites was confirmed by western blot analysis. In contrast, the ADF1 

protein is detectable in sporozoites. However, transcriptional downregulation led to 

significantly less protein in sporozoites as compared to ookinetes. Because both transcripts are 
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expressed at similar levels, this raises the possibility of an additional control of gene 

expression, i.e. translational silencing of profilin but not of ADF1. The ADF2 protein was not 

detected in any of the observed stages, which is in agreement with the overall low mRNA 

levels.  

Localization of profilin and ADF1 by immuno fluorescence assays exhibited cytoplasmic 

distribution that is comparable to C-CAPmCherry. Analogous cytoplasmic localization for 

ADF1 and profilin has already been shown in T. gondii intracellular tachyzoites (Mehta and 

Sibley, ; Plattner et al., 2008) and P. falciparum merozoites (Wong et al.). These results are in 

good agreement with the G-actin sequestering function of both proteins, which is expected to 

mainly occur in the cytoplasm. Also, the fluorescence signal intensity reflects the respective 

expression and protein abundance pattern.  

Taken together, my results suggest that Plasmodium tightly regulates expression and protein 

abundance in sporozoites. Despite of mRNA downregulation, ADF1 was the only detected G-

actin binding protein in this stage. However, I cannot formally exclude very low profilin, 

ADF2 and C-CAP protein levels, due to the detection limit by western blot analysis. ELISA 

or proteomic analysis in sporozoite stages would complete my results. Due to the lack of a 

robust conditional knock out system in Plasmodium, genetic evaluation using a promoter 

exchange strategy may be necessary to specifically delete profilin and other G-actin binding 

proteins with exception of asexual stages. Further support for the absence of profilin in 

sporozoites comes from genetically engineered Plasmodium berghei parasites that express a 

fusion protein of T. gondii profilin with GFP under the profilin endogenous promoter. A 

prominent GFP signal was readily observed in blood stages, whereas no GFP signal was 

detected in sporozoites (Katja Müller, personnel communication). This observation further 

supports the notion that the profilin expression is downregulated and the protein is not 

abundant in sporozoites. 

4.7. The two states of profilin  

Interestingly, profilin exhibits a second distinct localization to the periphery of ookinete cells 

that can be visualized by a polyclonal  T. gondii profilin antibody. The T. gondii profilin 

antibody specifically recognizes P. berghei and P. falciparum profilin, as demonstrated by 

western blot. It thus appears that the antibody can distinguish between cytosolic and 

membrane-associated profilin in cells.  

In higher eukaryotes profilin regulates the phospholipid metabolism by binding with high 

affinity to phosphatidy inositol phosphates PI(4,5)P2 and PI(3,4,5)P3 at the cell membrane and 
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inhibiting their cleavage into inositol trisphosphate (IP3) and diacylglycerol (DAG) by 

competing with phospholipase C1 (PLC) (Nishizuka, 1986). The profilin:: PIP2/3 complex 

interferes with the actin-binding and sequestering activity of profilin. The activation of PLC 

allows hydrolysis of the complex and releases profilin into the cytoplasm (Goldschmidt-

Clermont et al., 1991). In contrast, P. falciparum profilin does neither bind to PI(4,5)P2, nor 

PI(3,4,5)P3, but interacts selectively with their precursor molecules phosphoinisitol 

monophosphates (PIPs) and phophatidylic acid (PA) in vitro (Kursula et al., 2008). This 

binding specificity is likely conferred by the rudimentary structure of the non-conserved PIP 

binding residues (Kursula et al., 2008). Whether these results can be extrapolated to in vivo 

conditions remains to be seen, particularly since the phosphainositide profile changes during 

the intra-erythrocytic development of P. falciparum (Tawk et al.). It is conceivable, that the 

minidomain of P. falciparum profilin structure determines its function in the phospholipid-

metabolism and actin-binding capacity. One attractive hypothesis is that resting cells contain a 

high amount of profilin:: PIP complexes, associated with the plasma membrane and inhibiting 

fast spontaneous actin filament assembly. After activation of PLC and concomitant hydrolysis 

of PIP, profilin is released into the cytoplasm to promote actin polymerization, which in turn 

leads to initiation and/or reinforcement of motility. In intracellular T. gondii tachyzoites 

profilin localizes to the cytoplasm, confirming the findings by Plattner et al. (2008). The 

profilin localization in extracellular T. gondii tachyzoites, however, was not clear and needs to 

be re-examined (Plattner et al., 2008). It would therefore, be interesting to link the 

spatiotemporal regulation of profilin to motility in the parasite. Time lapse microscopy of 

moving parasites expressing labeled profilin, combined with inhibition of PLC activity could 

help to solve this question. 

4.8. Overexpression of C-CAP and profilin  

The unexpected absence of profilin and C-CAP in sporozoites, prompted me to test the 

influence of both proteins in these stages. Therefore, I separately placed both genes under the 

control of the circum sporozoite protein (CSP) promoter and generated stable integrations in 

clonal parasite lines. This strategy resulted in transgenic parasites expressing two copies of 

either C-CAP or profilin, under (i) the endogenous and (ii) the CSP promoter. Additional 

Flag-tagging of both proteins facilitated protein detection by western blot and localization by 

IFA. Furthermore, the Flag-tag will allow Co-IP experiments and the identification of 

interaction partners. Control parasites, which overexpress C-CAP or profilin under the 
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circumsporozoite- and trombospondin related sporozoite protein (CTRP) promoter in 

ookinetes, where analyzed in parallel. 

The introduction of a second copy of either C-CAP or profilin was well tolerated by the 

parasites, as revealed by the viability of clonal blood stages.  

4.8.1. Overexpression of C-CAP and profilin in ookinetes does not influence 

the parasite development in mosquitoes  

Ookinete-specific overexpression does not alter the cytoplasmic subcellular localization of the 

Flag-tagged C-CAP and profilin (Fig. 35). The activity of the CTRP promoter is strictly 

confined to ookinetes, as oocysts and sporozoites did not show any detectable Flag-signal. As 

predicted, phenotypic characterization displayed normal development of sporozoites, motility 

and infectivity. These results demonstrate that increasing the amount of C-CAP or profilin 

protein in stages where both proteins are highly abundant does not interfere with the parasite 

development. Furthermore, the parasites efficiently downregulate and degrade these proteins, 

as no residual Flag-signal was detected after ookinete stages. Whether protein overexpression 

has a minor influence on ookinete motility still needs to be examined. But the fact that 

ctrp_flag c-cap/profilin parasites yield similar amounts of midgut sporozoites, already 

excludes a major defect in ookinete motility. 

4.8.2. Ectopic overexpression in sporozoites abolished salivary gland 

invasion  

The ectopic overexpression of profilin and C-CAP under the CSP promoter was shown by 

IFA and confirmed by western blotting for profilin. Again, profilin localized to the cytosol of 

ookinetes. The ectopic expression in midgut sporozoites exhibited cytoplasmic distribution 

for both proteins as well. However, hemocoel sporozoites displayed a distinct peripheral 

localization of both proteins (Fig. 37). Transgenic parasites exhibited comparable numbers of 

midgut sporozoites in the case of profilin overexpression and less numbers for C-CAP 

overexpression. No sporozoites were found in the salivary glands of the mosquitoes and only 

low numbers of hemocoel sporozoites were counted. These results indicate that ectopic 

overexpression of C-CAP and profilin did not influence sporozoite differentiation per se, but 

that sporozoites are impaired in egress from the oocyst and unable to invade the salivary 

glands. Both observations strongly suggest a motility defect. Motility assays, however, were 

not yet conclusive at this stage. To further dissect the phenotype, live cell imaging 

documenting the behavior of hemocoel sporozoites should be performed in the future. 
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Infectivity can be tested in vitro by sporozoite infection of Huh7 cells or in vivo by infection 

experiments to mice. The CSP promoter is also active in early liver stages (Singh et al., 2007) 

and will drive subsequent ectopic expression of C-CAP and profilin. Whether the peripheral 

localization in hemocoel sporozoites explains impaired motility requires further 

investigations. It seems plausible that over saturation of profilin and C-CAP in sporozoites 

perturbs the equilibrium of actin-turnover and thereby interferes with fast motility. Profilin 

may bind to various PIP molecules at the membrane and probably inhibits actin filament 

polymerization. C-CAP saturation may also negatively influence actin polymerization via its 

sequestering activity. It would therefore be helpful to compare the actin localization in 

sporozoites of both mutants to corroborate actin-specific effects on the motility of these 

sporozoites.  

4.9. Conclusions and the “minimalistic model” for actin regulation 

in motile sporozoites 

This study examined the repertoire of G-actin binding proteins in Plasmodium and their 

contribution to parasite motility. In this regard the sporozoite stage apparently stands out in 

terms of gliding, invasion, and in terms of actin-regulation. ADF1, ADF2, profilin and C-CAP 

are most abundant at transcriptomic and proteomic levels in merozoites, ookinetes, and liver 

stage merozoites suggesting a role in invasion and motility. Surprisingly, my study 

demonstrated, that all G-actin binding proteins are tightly down regulated in sporozoites. 

Profilin is, irrespective of its importance for blood stages, not present in sporozoites. The 

second essential protein, ADF1, is the only detectable G-actin binding protein in this stage. 

ADF2 and C-Cap are also most likely not abundant, considering the low expression and the 

live cell imaging data. Furthermore, overexpression of profilin and C-CAP lead to complete 

disruption of salivary gland invasion, most likely due to interference with actin-dependent 

motility.      

The combined results strongly favor a hypothesis that places ADF1 as the major actin 

regulator in sporozoites. It has been shown, that ADF1 is necessary to achieve actin-

sequestering activity in Plasmodium and Toxoplasma, despite only minimal F-actin binding 

capacity (Mehta and Sibley, ; Wong et al.). ADF1 also promotes nucleotide exchange on actin 

(Schuler et al., 2005a) and ADF/cofilin is able to nucleate actin at high local concentrations 

(Andrianantoandro and Pollard, 2006). Considering the narrow space between the IMC and 

the plasma membrane of about 20nm, where the motor machinery, the anchoring proteins, and 

the F-actin turnover are located, it seems particularly efficient to employ few multifunctional 
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proteins instead of many specialized proteins. ADF1 in Plasmodium seems to exhibit all 

essential functions necessary for enhancing actin turnover in the absence of competing 

proteins like profilin. High ADF1 concentrations at the local force traction sides of the gliding 

sporozoite promote filament nucleation at the barbed end of the actin filament. Formin 

activity for nucleation cannot be excluded, but no data are available for sporozoites. The short 

actin filaments are stabilized by the capping protein (Ganter et al., 2009) and thereby ensure 

the movement of the myosin motor protein along the filament. Severing and depolymerization 

at the pointed end as well as the nucleotide exchange on actin can again be facilitated by 

ADF1. According to this model, phosphorylated ADF/cofilin promotes chemotaxis by 

activation of Phospholipase D1 (PDL1) (Han et al., 2007; Lehman et al., 2006), which could 

be one mechanism that directs sporozoites through their final destination in the liver. This 

“minimalistic model” can explain the central aspects for efficient actin-regulation in 

sporozoites that leads to fast and long-lasting motility. 

Actin regulation in the other motile and invasive stages appears to involve a broader spectrum 

of G-actin binding proteins and resembles other apicomplexan parasites, such as T. gondii 

more closely. 

 

 

Figure 40: The “minimalistic model” for actin regulation in sporozoites.  

The actin-depolymerizing factor (ADF1) as the main player of actin turnover. 1) At high 
concentrations ADF1 facilitates actin filament nucleation, perhaps supported by formin. 2) Short actin 
stubs are stabilized by the capping protein (CP), to facilitate the power stroke of MyosinA (MyoA). 3) 
ADF1 can interact with F-actin and promote severing into short actin fragments and ADP-actin 
monomers. 4) ADF1 enhances nucleotide exchange on actin to replenish the ATP-actin pool for 
further rounds of polymerization.  
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6. Appendix 

6.1. Short report 

The circum sporozoite protein (CSP) is already expressed in ookinetes 

The CSP protein plays crucial roles in sporozoite development and maturation (Menard et al., 

1997; Thathy et al., 2002). It furthermore is suggested that this protein interacts with and 

targets both, the mosquito salivary glands and the mammalian liver cells (Amino et al., 2008; 

Frevert et al., 2005; Mota et al., 2001; Singh et al., 2007). Thus far it was reported, that CSP 

protein expression starts at day 6 of oocyst development and first appears at the inner 

membrane of the oocyst capsule, where it is important for the sporozoite formation and 

maturation.   

During this study the CSP protein was widely used as loading control for sporozoite and 

ookinete stages in western blot analysis. Consistently, the CSP protein was detected already in 

ookinetes as a single band with a specific molecular mass of 52 kDa (Fig. 41 and Fig. 37, 32, 

30), which represents the premature, non-cleaved CSP protein (Coppi et al., ; Yoshida et al., 

1981). Later, in sporozoite stages the CSP protein matures by proteolytical cleavage and is 

detected as a double band with molecular sizes of 52 and 44 kDa by western blot analysis 

(Fig. 40).  

 

Figure 41. The circumsporozoite protein (CSP) is expressed in ookinetes. 

Samples from ookinetes (ook) and migut- (mg) and salivary gland- (sg) sporozoites were separated in 
a 15 % SDS-PAGE, blotted on PVDF membrane and detected by -PbCSP antibody in western blot 
analysis. Molecular sizes (kDa) are indicated at the left. The premature CSP is detected with 52 kDa 
(arrow).   
 

The localization and function of the premature CSP protein in ookinetes, is not known thus far. 

Interestingly, previous data reveal CSP mRNA expression and the presence of the premature protein in 

blood stages (Sabine Engelmann, dissertation 2005) and was also discussed by (Natarajan et al., 

2001). Since the CSP is important for infection and one of the major vaccine candidates, it is 
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important to understand the process that leads to the cleavage and protein maturation in sporozoite 

stages. The contributing protease remains to be identified. My results suggest the use of correlative 

proteomics between ookinetes and sporozoites may therefore be helpful to identify the CSP-processing 

maturase.  
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