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Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer Reihe von Fragestellungen, die For-
schungsfeldern wie rauschinduziertem Verhalten, Strukturbildung in aktiven Medien
und Synchronisation nichlinearer Oszillatoren erwachsen. Der Fokus liegt auf der ma-
thematischen Modellierung komplexer Mechanismen. Dabei verfügen die verwende-
ten nichtlinearen Modelle über erregbare, oszillatorische und bistabile Eigenschaften
als elementare Moden dynamischer Systeme. Das Zusammenwirken mit stochasti-
schen Fluktuationen trägt wesentlich zur Entstehung komplexer Dynamik bei.
Zu Beginn werden mittlere Verweilzeiten im stationären Zustand des FitzHugh–

Nagumo (FHN) Modells unter dem Einfluß stochastischer Fluktuationen untersucht.
Das Koppeln mehrerer solcher erregbaren Einheiten führt zur Differenzierung zweier
Erregbarkeitstypen, von denen nur ein Typ zusammenhängende Keimbildung zu-
lässt.
Im folgenden Kapitel wird qualitativ untersucht, auf welche Weise sich die ex-

trazelluläre Kaliumkonzentration, die von umliegenden Neuronen gespeist wird, auf
die Aktivität dieser Neuronen auswirkt. Als Basismodell wird das FHN Modell be-
müht, das um eine Gleichung für die extrazelluläre Konzentration erweitert wird.
Neben der Untersuchung lokaler Aktivität wird vor allem die Ausbildung ausge-
dehnter Strukturen in einem heterogenem Medium analysiert. Die raum–zeitlichen
Muster umfassen Wellenfronten und Spiralen aber auch ungewöhnliche Strukturen,
wie erratisch wandernde Cluster oder invertierte Wellen.
Eine wesentliche Rolle bei der Ausprägung von solchen raum–zeitlichen Struktu-

ren spielen die Randbedingungen des betrachteten Systems. Die Beschreibung von
bistabilen Fronten und deren Wechselwirkungen mit Dirichlet Randbedingungen ist
der Hauptaspekt im 4. Kapitel. Sowohl für diskret gekoppelte bistabile Elemente als
auch für kontinuierliche Fronten werden Methoden zur approximativen Berechnung
von Frontgeschwindigkeiten vorgestellt. Typische Bifurkationen werden quantifiziert
und diskutiert.
Der Rückkopplungsmechanismus aus dem Modell zur Beschreibung von neurona-

len Einheiten und deren passiver Umgebung kann weiter abstrahiert werden. Haupt-
augenmerk des 5. Kapitels ist die Behandlung eines Zweizustandsmodells, das über
zwei Wartezeitverteilungen definiert wird, welche erregbares Verhalten widerspie-
geln. Die Rückkopplung besteht aus der mittlere Gesamtaktivität eines Ensembles,
das die individuellen Erregungszeiten beeinflußt. Untersucht wird die instantane
und die zeitverzögerte Reaktion des Ensembles auf diese Rückkopplung. Im Fall
von zeitverzögerter Rückkopplung tritt eine Hopf–Bifurkation auf, die zu stabilen
Oszillationen der mittleren Gesamtaktivität führt.
Das letzte Kapitel befasst sich mit Diffusion und Transport von Brownschen Teil-

chen in einem raum–zeiltich periodischen Potential. Auch hier sind es Synchronisa-
tionsmechanismen, die im Falle eines konstant gekippten Potentials nahezu streu-
ungsfreien Transport ermöglichen. Für die symmetrische Situation, beleuchten wir
die Ursache einer erhöhten effektiven Diffusion und gelangen zu einer quantitativen
Abschätzung der maximierenden Parameter.
Resümierend wird die Wirkung von nichtlinearer Dynamik und stochastischen

Fluktuationen auf räumlich ausgedehnte und gekoppelte Systeme untersucht. Die
Entstehung von kohärenten Strukturen, sei es in Raum oder Zeit, führen wir auf
Übergänge zwischen dynamischen Zuständen und auf Synchronisationseffekte zu-
rück.
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1 Preface
Let us imagine a purely linear world where the laws of nature would be limited to
two types of elementary mechanics. First exponential growth or decay mathematically
captured by a first order differential equation ẋ ∝ ±x. The second type are harmonic
oscillations described by a second order differential equation ẍ ∝ −x. If matter would
follow these laws exclusively the universe would be a bleak and bland spot. Fortunately
for us living creatures there are ruling principles of nature beyond such linear laws that
enable complex interaction between physical objects which finally leads to genesis of life.
Basically one could state that every kind of natural science has its own specific ap-

proach to understand the very same secret; the becoming of life and humankind out of
the elementary components of matter. Yet sixty years ago the hierarchy of the natural
science was clear. The principal constituents of non–living being such as energy, matter
and the laws of their interaction were the topic of physics. The reaction of inorganic
atoms and molecules up to organic structures was studied by chemists. The classifi-
cation of living things, microbes, plants, animals and the analysis of their composition
was reserved for biology and, maybe last, psychologists concentrated on the complex oc-
currence the human (sub–)consciousness produces. Nowadays the borderlines between
these sciences are blurred. Physicists are working together with psychologists in order
to bring to light how the human brain makes us to thinking creatures. Researchers in
theoretical biology use methods from fluid mechanics to find out how microorganisms
move in liquids, and so on.
The research field of stochastic processes and nonlinear dynamics in which the present

work is embedded, can be considered to be close to theoretical concepts of biology.
Nevertheless, it is also a field of pure physics with the ambition to understand the fun-
damental principles of complexity. Hence, we will work with models that indeed have
a biological background. On the other hand, these models are often too simplified to
be able to give quantitative predictions for real biological situations. However, they are
provided to establish the dynamical essence behind complex processes. There are three
basic dynamical regimes that are produced by such simplified and nonlinear models,
which are excitability, self–sustained oscillations and bistability. Their dynamical char-
acteristics and transitions between them through bifurcations are a main aspect in this
work.
Nonlinear systems that exhibit such dynamical regimes are abstract model systems to

describe phenomena which we run across in every day life. In fact, every event triggered
by a strong enough external impact, which evokes a process of subsequent events creating
a self–energizing course of action, is a nonlinear response known as positive feedback.
(i) In case of excitable systems intrinsic slowdown mechanisms inhibit further activa-

tion and drive the system back into the original state. A typical representative

1



1 Preface

showing excitable behavior are neuron cells [21]. However, this concept can be
successfully applied to completely different fields such as economics [135]. Espe-
cially when the system is spatially extended and excitable waves are formed it is
a powerful method even to describe the development of urban crime [131].

(ii) For self–sustained oscillations there is no stable rest state and the slowdown (or
inhibiting) process crosses over into the self–feeding activation again. This proce-
dure is repeated recurrently and it is stable against external perturbations. It is
the basic framework to explain synchronization effects which are based on stable
and self–sustained periodic sequences. Famous and popular examples of such self–
sustained oscillating behavior are the rhythmic blinking of fireflies from south–east
Asia [15] or the oscillating number of preys and predators described by A. Lotka
and V. Volterra [92, 155].

(iii) Bistability as the third kind of elementary nonlinear dynamics is interesting under
the aspect of decision processes. In linear systems transitions are always smooth
and do not lead to a qualitative difference. In bistable systems the two stable
steady states separated by a barrier or threshold can be associated with two distinct
scenarios between which the system can transit. Coexistence of two stable phases
is a generic property for a widely spread class of systems. The classical example
from physics is the mechanism of ferromagnetism and the model for the alignment
of the electron spins by Ising [57]. If the transition from one state to another
propagates in space forcing the system into the new regime we refer to this as a
bistable propagating front, sometimes also called Bloch–fronts in literature [45].
For chemical reactions F. Schlögl obtained a dynamical equation with a cubic
nonlinearity that possesses two stable phases crossing over via a second order phase
transition [127]. Surprisingly, the spread of the Black Death over Europe in the
14th century can be explained by assuming a simple nonlinear model that produces
a bistable front [99]. It even yields a good approximation of its propagation velocity.
Modern research about the spread of epidemics, however, requires extended models
and concepts beyond diffusion [49].

In addition to nonlinearity and spatial diffusion we study a third significant factor of
complexity that influences the physical world and especially any biological process. We
will discuss the effects of stochasticity or noise, present in any system at finite temper-
ature as explained in the next chapter. In the models we investigate in this work, noise
often plays the role of the driving mechanism that forces a system out of stable state.
Concerning the previously mentioned bistable systems the impact of noise can lead to
the famous effect of stochastic resonance [31], an evidence that the presence of noise can
have a constructive impact.
In the following we give a brief outlook over the central themes of the thesis. After

the introduction (chapter 1) we begin with a consideration of the influence of noise on
excitable systems in chapter 2 – Stochastic escape from a fixed point. We estimate
the mean escape time out of a parabolic potential arriving at Kramers’ famous formula
and extend this examination on single and coupled excitable units. The basic model

2
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Figure 1.1: Schematic overview of chapters of the thesis and their thematic interrelation
beyond the numeric order they appear.

we use is the FitzHugh–Nagumo (FHN) model, also in the following chapter 3 – Dy-
namical structures in a heterogeneous active medium. Here we study excitable
units embedded in an inactive environment modeled on the basis of ion exchange mecha-
nisms from cells into the extracellular space by introducing an extra dynamical equation.
The resulting local dynamics possesses each of the three mentioned regimes; excitabil-
ity, oscillatory behavior and bistability and even their coexistence. Different patterns
partly well known but also extraordinary structures appear for the spatially extended
and heterogeneous system under the variation of external parameters. Which type of
patterns is created and its lifetime depends significantly on boundary conditions. This is
the topic of chapter 4 – Bistable wave fronts interacting with boundaries, where
we study bistable fronts and their interaction with Dirichlet boundaries by analyzing
the front velocity. Far away from the boundaries we obtain approximated expressions
for the bulk velocity that turn out to be mono– or bistable. Moreover we find a rela-
tion between the distance of the front to the boundary and the velocity that gives us
the possibility to predict roughly which interaction with the boundary takes place. In
chapter 5 – Excitable two–state units coupled with delayed feedback we take
up the idea from chapter 3 where the additional dynamics induce a positive feedback
mechanism. On the basis of waiting time distributions we define coupled excitable units
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in which the mean activity of the whole ensembles is fed back instantaneously and later
also delayed. We find monostable and bistable regimes for the common output. For
the case of delay even oscillatory behavior can be obtained where the units are synchro-
nized. The phenomenon of synchronization is again an important aspect in chapter 6 –
Synchronization and transport in an oscillating periodic potential. A spatially
periodic potential with oscillating amplitudes is considered which implies properties of
ratchets, phase oscillators and excitable dynamics. We investigate directed transport
and diffusion for a finite tilt and correlated synchronization effects. For an unbiased
potential we describe the interaction of noise and the oscillating amplitudes which can
lead to a fast diffusive spread within the system. The probability density distribution
in the corresponding phase space is determined to shed light on underlying dynamical
mechanisms.

Parallel to the numeric order the chapters appear in the thesis they are related cross-
ways on the level of common subject areas. This is schematically depicted in Fig. 1.1.
Spatially extended propagating waves are the main subject of the chapters 2 & 3, the in-
terplay of interacting active units and their collective behavior is an important aspect in
the chapters 2 & 4, individual oscillations leading to synchronization effects are treated
in the chapters 4 & 5 and finally, effects of noise induced phenomena are discussed in
the 1st & 5th chapter.
As a general aim of the work we want to demonstrate that diverse fields connected to

complex behavior ranging from pattern formation to synchronization can be analyzed
by models which have a relatively simple structure and no more than the three men-
tioned dynamical regimes. With such abstract models we can learn more about the
general properties of the dynamical regimes beyond linear response. That comes along
with the discovery of fundamental bifurcation scenarios that we find for different quan-
tities. We can generate complex patterns which correspond qualitatively to biological
situations and find synchronization in two distinct systems, both by applying relatively
simple model components. For each model system we can identify the dominant control
parameters and show their impact on the dynamics. They constrain the system into the
dynamical regimes and determine whether the output is synchronized, a front rebounds
at a boundary or the effective diffusion is maximized. Knowledge about the influence of
these governing parameters gives us finally control over the dynamical behavior of such
simplified systems. However, it can also enable us to make predictions for more complex
systems.
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1.1 Excitable systems

1.1 Excitable systems
Excitable systems are a subclass of dynamical systems, i.e. they are described by a set of
variables and rules or functions that define their evolution in time. The space spanned
by these variables is called phase space. In phase space the dynamics of such systems
is portrayed as trajectories, which are the parametric curves displaying the variation of
the dynamical variables and their evolution in time.
Characteristic features of the structure of phase space identify the class of excitable

systems. They have one linear stable fixed point as a steady state with its belonging
basin of attraction. This basin defines the zone of influence of the stable fixed point.
Starting from initial conditions within this basin of attraction, trajectories decay to the
steady state, if the corresponding eigenvalues are real. If they have an imaginary part,
trajectories spiral to the steady state. Outside the basin of attraction trajectories first
run away from the equilibrium point and perform a characteristic large excursion in
phase space before they eventually come back to end in the steady state. So, the region
beyond the mentioned basin of attraction finally brings trajectories back to the steady
state and should be also considered as a kind of a larger basin of attraction. In order to
distinguish the inner and outer region the demarcation between them is called threshold.
This threshold can be either smooth or hard steplike. For the first case trajectories
starting within the threshold zone exhibit an amplitude of their excursion which increases
continuously with the distance of their initial values to the fixed point. This is known
as canard–explosion. The hard threshold is a defined subspace and separates initial
conditions whose trajectories either directly lead back to the steady state or let them
run away.
Besides the existence of a steady state and a threshold the response on perturbations

is the third important feature. Perturbing an excitable system in the steady state either
results in sub– or superthreshold behavior. That means elongating the system with a
perturbation below a critical value it immediately relaxes back into the steady state,
however, when the critical perturbation is exceeded the system is forced beyond the
threshold followed by the long journey through the phase space. During the latter
further perturbations do not change the dynamics drastically.

5



1 Preface

1.2 Neuron models

Typical representatives of excitable systems in mathematical biology or biophysics are
neuron models. There is an immense variety of such models and a wide research field
around them describing the biological background more or less precisely [60, 40].
Neurons are cells that transport information coded as electro–chemical signals. Their

membranes separate intra– and extracellular ion concentrations. For example the potas-
sium ion concentration within the cells is much higher than in the extracellular space.
This is treated in more detail in chapter 3. To prevent these charged ions from balanc-
ing through the membrane by diffusion a membrane potential is needed that creates an
equilibrated situation. This potential can be derived with the Nernst equation [60]

Veq = RT

ZF
ln [I]out

[I]in
. (1.1)

The argument in the logarithm is the fraction of outer and inner ion concentration; R is
the universal gas constant; T is the temperature (typically T = 310◦K for living mam-
mals); F is Faraday’s constant and Z is the valence of the ion. Note that this equation
assumes only one type of ions producing the concentrations [I]. In a real biological
scenario a number of different ions are involved in neuronal processes. However, in most
cases it is sufficient to consider the governing ions sodium, potassium, calcium and chlo-
ride (in the following denoted as Na+, K+, Ca2+ and Cl−), each of them has its own
membrane potential. In some models the transport of remaining ions is subsumed as a
leak current. The typical common membrane potential in the equilibrium is about -70
mV [40] and is also called resting potential. It corresponds to the steady state and with
that we have the first ingredient for an excitable system.
In 1952 in their experiment with squid axons Hodgkin and Huxley discovered the basic

mechanisms of voltage and gating dynamics [54]. The pioneering Hodgkin-Huxley (HH)
model consists of one equation for the evolution of the membrane potential including
K+–, Na+– and a leak current and three equations for the gating variables, which
control the opening and closing of ion channels through the membrane. The latter are
in their common effect inhibiting processes whereas the voltage dynamics is the activator
process. We will not write the four equations here, since they will not be further treated
in this work.
Instead we are going to have a closer look at simplified neuron models, that have a

reduced number of equations and manageable set of parameters. It is clear that the
reduction to less number of variables leads to a minimization of available dynamical
regimes. For instance less equations come along with fewer participating time scales and
thus the most two component models cannot provide the transition from single spiking
to tonic bursting behavior.
The working range of parameters controlling the dynamical regime of the models is

mostly chosen to be close to bifurcations, so that the system response is sensitive to
perturbations. Considering the form of the bifurcation and the properties after the
transition two excitability types of neuron models can be distinguished:

6



1.2 Neuron models

Excitability type I:
The excitability of type I characterizes neuron models that undergo a global bifur-

cation such as ’saddle–node–infinite–period’ (SNIPER) bifurcation at a critical value of
the control parameter. Beyond this critical value the steady state is unstable and is
surrounded by a stable limit cycle. The region of excitability is left by a discontinu-
ous increase of amplitude and a soft square-root-like growth of the oscillation frequency
starting from zero level, corresponding to an infinite period time. Examples for neuron
models showing type I excitability are the Ermentrout– or the Izhikevich model [122, 60].

control parameter
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(a)

control parameter

fr
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e
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(b)

Figure 1.2: Illustration of amplitude (a) and frequency (b) behavior close to bifurcation
for type I excitability

Excitability type II:
In the case of excitability II, the dynamical system exhibits a Hopf–bifurcation due

to the tuning of a control parameter. Then the amplitude and frequency behave in-
versely to type I. Oscillations after the bifurcation start with a soft square-root like
amplitude and with an immediate finite frequency. Examples for neuron models show-
ing type II excitability are the Hodgkin–Huxley– or the Morris–Lecar model [54, 96].
Both types of behavior were observed in measurements already in 1948 by Hodgkin,
however the description with bifurcations followed decades later in 1989 by Rinzel and
Ermentrout [122].
In the following sections a two–component neuron model, the FitzHugh–Nagumo

model (FHN) [34] is often used as a canonical model that exhibit excitable or bistable
behavior. Originally it was introduced as a simplification of the HH model to design the
essential properties of spike generation of sodium and potassium ion flow. One possible
representation reads

u̇ = u− 1
3u

3 − v + I , v̇ = ε(au− v + b) , (1.2)

where u denotes the dimensionless voltage variable, describing the activator with its
significant cubic nonlinearity and v stands for the recovery variable, that inhibits the

7
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control parameter
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Figure 1.3: Illustration of amplitude (a) and frequency (b) behavior close to bifurcation
for type II excitability

dynamics. The time scales of both processes are separated by ε which is chosen to be
small. This ensures a fast activator and slow inhibitor dynamics. The system can be
stimulated by an external signal I perturbating the system sub–or superthreshold, when
the system is in the excitable regime. Regarding the nullclines of the dynamics, where
u̇ = 0 for the activator and v̇ = 0 for the inhibitor, the different dynamical regimes
are determined by their relative position. The FHN model approximates dynamics from
models closer to specific biological situations with the cubic shaped nullcline and a linear
inhibitor nullcline. However, there is also an theoretical correspondence to a chemical
reaction scheme, given in [93].
In Fig. 1.4 (a,c,d) the three existent dynamical regimes are illustrated in phase space

where the thin black lines show the nullclines. The arrows stand for the vectorfield
of Eqs. 1.2 and a sample trajectory for each case is drawn with thick solid lines. The
regimes are distinguished by the choice of inhibitor parameters a and b, that moves the
nullcline position while the cubic nullcline remain fixed. Thus the nullclines have either
one or three intersections according to fixed points of the dynamics (u̇ = v̇ = 0) which
can be stable or unstable.
Fig. 1.4 (a) represents the excitable regime including one stable fixed point with the

corresponding pulse shape in time, shown in Fig. 1.4 (b) for the activator (solid) and
the inhibitor (dashed) versus time. In order to describe the depolarization of a neuron
with a rest state at a negative potential the typical excitable FHN model has its fixed
point at negative u–values. Initiated far enough from that fixed point trajectories moves
to the right stable nullcline branch for which the neuron is conceived to be active. After
a certain engaged time it get attracted by the left stable cubic branch and passes the
refractory period before the entire excursion in phase space is completed. Each of the
mentioned phases is related to a part of the depolarization spike in time. However, for
a fixed point position close to the maximum of the cubic nullcline the system acts as
a excitable dynamics, too. The spikes then turn into polarization spikes and the whole
situation would be inverted. We will confront ourselves with such a scenario in chapter 3.
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1.2 Neuron models

Fig. 1.4 (c) shows the bistable situation with two stable fixed points and one unstable
fixed point in between. Trajectories started in the associated basin of attraction end
either in the left or in the right stable fixed point. This regime is considered more
precisely in chapter 4. The remaining figure (d) represents the oscillatory regime with
only one unstable fixed point surrounded by a stable limit cycle. Since this is the only
attractor all trajectories move along a periodic orbit circulating around the fixed point
performing self–sustained oscillations in time. Finally they end on that limit cycle for
t→∞.
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Figure 1.4: Three dynamical types of behavior provided by the FHN model. (a) and (b):
excitable regime with the corresponding pulse shape in time, solid line: acti-
vator, dashed line: inhibitor, (c) bistable and (d) oscillatory regime. Arrows
present the direction field of Eqs. 1.2.
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1 Preface

1.3 Reaction–diffusion systems

Equations are called reaction–diffusion systems (RDS) if they can be divided into a
locally acting reaction and a spatially distributing diffusion part, as the name might
suggest. In mathematical terms reaction–diffusion systems are parabolic equations and
describe the temporal and spatial evolution of a density field. They can be also used as a
macroscopic representation of microscopic processes in which a large number of particles
or individuals move randomly and thus spread in space. By a transition to a continuum
and interpreting the ensemble of single particles as a concentration or density field its
motion can be identified as a diffusion process. Intrinsic interactions that might bias the
collective dynamics find reflexion in an additional reaction term.
Reaction–diffusion systems serve as abstract models for pattern formation such as

moving waves, spirals, spots, target patterns, Turing patterns and many more. Besides
pattern formation in physical systems they are of great relevance in chemistry, biology
and even medicine. To exemplify we want to point out three examples.
One of the origins of research on this field is the investigation of the famous Belousov–

Zhabotinsky (BZ) reaction. Well stirred this is a chemical reaction whose products
oscillate in time. Fortunately these products have different color and the oscillation
period is in the order of seconds. Therefore the oscillations can be seen with the naked
eye. If the reaction is ignited at a local spot and remains unstirred within a petri
dish, recurrent ring–like waves appear which propagate away from the initial point [166].
These wave can break under certain intrinsic circumstances or caused by external stimuli
which leads to free wave ends. Their planar form is unstable and they begin to curl
forming the source of a spiral–wave [1]. For the BZ reaction there is a model that
consists of three variables describing the most important chemical agents involved. This
model that mimics quantitatively the chemical reaction is known as the Oregonator
model [99]. The dynamics of spiral–waves can be controlled in the light–sensitive BZ
reaction and dynamical equations for the tip motion can be derived [133, 97].
Spiral waves in biological systems have been found in experiments with xenopus lae-

vis oocytes, which are egg cells from the African clawed frog [81]. Within such cells
variations in calcium ion concentration are induced by a trigger whereupon chemical
concentration waves and spirals appear, made visible by Ca2+ dyes. The dynamics of
calcium propagation as a significant signaling mechanism has been modelled on various
abstraction levels [165, 83, 29].
Observed electrophysiological patterns in heart tissue of mammals are also a biological

topic with strong relation and high impact on medical science. It has been suggested,
that ventricular fibrillation, which is a cardiac arrhythmia leading to sudden cardiac
death in many cases, originates in a disturbance of the regular self–sustained electrical
scroll waves that cause the heart beat. They have been verified in heart tissue of dogs or
rabbits [158, 25] Understanding the underlying dynamics or the reason of this disturbance
could help to invent supression techniques for ventricular fibrillation.
Each of the presented examples of pattern formation and many more originate from

rather different physical situations. Nevertheless, the phenomenology and mesoscopic
rules of appearance and motion reflect generic features of such systems. Essential condi-
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1.3 Reaction–diffusion systems

tions have to be fullfilled such as being far from equilibrium and thus driving by energy
dissipation and pumping. Therefore those pattern are often called dissipative structures.
Quantitative description serve reaction–diffusion equations generally written as

vi(x, t) = fi(v1...vn) +Di∆vi , i = 1...n , (1.3)

where vi is the i−th field of a set of n contributing fields. For instance it stands for
a concentration of a chemical substance when a chemical reaction shall be described.
This concentration is associated with a diffusion coefficient Di which is assumed to be
constant here and for the whole presented work. The reaction kinetics is described by
the function fi that can include the dependencies on every substance that participates
in the reaction. So, the field propagates in space and time, driven by local reaction and
diffusive dispersion.
The presented examples demand reaction functions that describe excitable behavior

as presented in the previous section. These reaction terms do not need to have their
origins in neuron models. For chemical reactions they can be derived from the reaction
kinetics as mentioned for the Oregonator model describing the BZ reaction. To refer
such media in a more general manner it is often called active media.
In this work we will often apply the FHN dynamics from Eqs. 1.2 as reaction term.

Due to the clear nullcline structure it is a transparent model and thus convenient for
investigating pattern formation phenomena. In Fig. 1.5 a snapshot of a doubled spiral is
shown, simulated with a spatial extended FHN model. Characteristic behavior of FHN
wave fronts in one and two dimensions as well as the influence of stochastic fluctuations
on them has attracted interest [45, 100]. To give the last tersely examples waves and
spirals found in the famous catalytic CO oxidation on Pt(110) and in the completely
different scope of the slime mould Dictyostelium discoideum has been described by the
spatial extended FHN dynamics [6, 152].

Figure 1.5: Spiral patterns due to a spatial extended FHN system. Colors refer to the
different activator values.
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2 Stochastic escape from a fixed point

2.1 Origin of stochastic fluctuations

As mentioned in section 1.2 the activation of excitable systems is caused by external
perturbation. Before we discuss the origin of these perturbation we give a brief overview
of the physical source of stochastic fluctuations.

In 1829 Robert Brown reported about jittering pollen when he looks at water through
a microscope and thought he found the microscopic origin of life [14]. In fact, he was
not the first one, who observed this erratic motion of little things in fluids, however,
since his publication this effect is known as Brownian motion. Although his conclusion
about the living nature of his observations was a misinterpretation, the stochastic force
he found is indispensable for e.g. neuronal functioning and therefore for the functioning
of living being. Also macroscopic and directed motion of creatures is driven by noise.
Almost 80 years later Paul Langevin presented a method how stochastic forces can
be mathematically described on the basis of Newton’s equations of motion [79]. The
following short consideration will make clear, that Brownian motion has a purely physical
background and is finally caused be the surrounding temperature.

The dynamics of a free particle with the mass m and radius Rp moving in a fluid with
the viscosity η is given for simplicity in one spatial dimension by

mẍ = −6πηRpẋ+ F (t) . (2.1)

The knowledge of the discontinuous nature of fluids on molecular scale is reflected in
the force F (t). This said molecules, the fluid consists of, are assumed to have a much
smaller mass and kick the considered particle in infinitesimal short time at distinct times
ti which causes the jitter motion observed by Brown. The responsible stochastic force
may be written as F (t) =

∑
i fiδ(t − ti) with instantaneous kick strength fi at time

ti. In average the force acts equally in each direction yielding 〈F (t)〉 = 0. Writing the
Stokes’ friction as Γ = 6πηr and averaging the dynamical equation 2.1 leads to

m
d

dt
〈xẋ〉 = −Γ〈xẋ〉+m〈ẋ2〉+ 〈xF (t)〉 . (2.2)

The last averaged term contains two independent variables and vanishes. Now, we need
to put a strong condition. We assume the system to be in thermal equilibrium so that,
following the equipartition theorem, every degree of freedom possesses the same amount
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2 Stochastic escape from a fixed point

of energy and we can identify

1
2m〈ẋ

2〉 = 1
2kBQ , (2.3)

with the temperature Q of the system and kB as the Boltzmann constant. We can
substitute the latter expression with the second term on the right hand side of Eq. 2.2
and integrate subsequently assuming that the particle started in x = 0 at time t0 = 0.
After neglecting short time behavior directly after a fluid molecule hit the particle we
arrive at

〈x2〉 = 2kBQΓ t . (2.4)

So, the covered mean distance of a particle that is randomly hit by fluid molecules
growth proportional to

√
t in contrast to a deterministic particle performing ballistic

motion whose proportionality reads x(t) ∝ t. Finally, we identify the spatial diffusion
coefficient as D = kBQ/Γ and we are confronted with a specific form of the famous
fluctuation–dissipation theorem revealing that damping always causes fluctuations or in
other words noise with an intensity given by the temperature Q.

For chemical processes described by reaction–diffusion processes as referred in Eq. 1.3
such thermal noise can play a dominant role and can lead to nucleation, decay or even
stabilization of chemical patterns [18, 95, 52]. Living creatures or structures in vivo
like cells or neurons exist far beyond the thermal equilibrium and thus no fluctuation–
dissipation theorem holds. However, noise is an important driving mechanism and life
would not have been developed without it. In such biological systems the origin of noise
can be deeply hidden in the intrinsic metabolistic interplay and surrounding temperature
is only one of various factors that tunes noise intensity or correlations. For neurons noise
is often considered as a discrete and random input sequence coming from the active
neuronal environment similar to molecules hitting a bigger particle randomly [21].

In neuron models this kind of noise enters as a stochastic current in the activator
equation. Another source of fluctuations is channel noise that can enter the equations
for modeling the dynamics of ion channels through active membranes. A huge number
of such channels transport ions in a not completely identical way. The statistics of
opening and closing events has therefore a certain width which lead to a noise term in
the corresponding Langevin equation [156]. A similar perturbation acting on a much
slower time scale is the extracellular ion concentration that can force ion channels to
release ions when it has reached a concentration threshold. The latter is studied in
chapter 3.

In the following, whenever noise enters in considered models, we assume Gaussian
and white noise. Thus the intensity distribution obeys a Gaussian distribution and
the temporal distance between two stochastic events has no lower or upper limitation
according to a power spectrum that includes the whole frequency range.
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2.2 Escape from a parabolic potential

2.2 Escape from a parabolic potential

In this chapter we estimate the mean escape time from a stable state induced by noise.
We will give a simplified approach coming from an reduced and abstract model to find
the expression for the famous Kramers rate. The underlying neuron model is a Leaky–
Integrate–and–Fire model (LIF) that work as follows. External perturbations affects the
polarized membrane potential until a certain threshold is reached. Then, by definition,
a spike event is produced and after some time (which can also be zero) the potential is
reset to a value close or at the resting potential. This procedure can be described by an
Ornstein–Uhlenbeck process [147] given by the equation

ẋ = −γx+
√

2σξ(t) , (2.5)

for x interpreted as the membrane potential. This is exactly the same dynamics as
given in Eq. 2.1 when x is interpreted as a velocity ẋ and σ as the noise intensity. In
fact, Ornstein and Uhlenbeck did not consider activity of a neuron but the velocity
of a Brownian particle which is confined in a parabolic velocity potential due to the
fluid’s friction. However, for x being a spatial coordinate Eq. 2.5 describes the position
of a particle moving in a spatial parabolic potential. When the potential has a more
complicated structure, than this dynamics hold at least for the linearized region around
a minimum. For Eq. 2.5 the potential reads U(x) = γx2/2 + offset with a minimum at
x = 0 that constitutes the only fixed point of the dynamics. We parameterize a parabolic
potential that prevents free diffusion of the particle in a more generals form as

U(x) = αx2 + βx+ offset = α
(
(x+ β

2α)2 − β2

4α2

)
+ offset . (2.6)

The parameters α and β can be any real numbers. The only condition we put is α > 0
in order to make sure that the potential possesses a minimum as the equilibrium state
for a noise–free particle. The offset is set to be zero for further calculations, since it has
no impact on the physical situation.

We set the domain of definition as x ∈ (−∞, b) and the initial position of the Brownian
particle at xi = a. An absorbing barrier is set at xabs = b which is by definition greater
than a. If the position of the barrier is smaller than the minimum’s position (b < xmin)
then the Brownian particle performs regular cycles containing deterministic motion to
the barrier, crossing the barrier and re–infection at xi. Noise disturbs the regularity of
this procedure and plays therefore a destructive role.

For a barrier beyond the minimum (b > xmin) a noise–free particle ends in the mini-
mum of the potential resting there forever. Stochastic perturbations allows the particle
to leave the minimum and escape over the barrier in a finite time. This situation is
schematically depicted in Fig. 2.1. For an arbitrary potential the mean time to cross
the barrier b the first time depending on the initial position a was calculated 1933 by
Pontryagin [112]. In our notation it reads:
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2 Stochastic escape from a fixed point

U
(x

)

x
a b

Figure 2.1: Scheme of the potential U(x) with the initial state a and the absorbing barrier
b.

T = 1
σ

∫ b

a
dx eU(x)/σ

∫ x

−∞
dy e−U(y)/σ, (2.7)

and is called the mean first passage time T = T (a→ b) (MFPT). A simple approach to
arrive at this expression is given in Appendix A. We apply now the parabolic potential
(2.6) and calculate the inner integral first:

I =
∫ x

−∞
dy e−U(y)/σ =

∫ x

−∞
dy exp

(
− α

σ
(y + β

2α)2
)
. (2.8)

By substituting z2 = α
σ (y + β

2α)2 it remains

I =
√
σ

α

∫ g(x)

−∞
dz e−z

2
, where g(x) =

√
α

σ

(
x+ β

2α
)
. (2.9)

Using the error-function, defined by erf(x) = 2√
π

∫ x
0 dz e−z

2 , we obtain

I = 1
2

√
πσ

α

(
1 + erf[g(x)]

)
. (2.10)

The expression for the MFPT then reads

T = 1
2

√
π

ασ

∫ b

a
dx exp

(α
σ

(x+ β

2α)2
) (

1 + erf[g(x)]
)
. (2.11)

With the same substitution we have performed for the inner integral, we relegate any
parameter dependency from the integrand

T =
√
π

2α

∫ g(b)

g(a)
dz ez

2(1 + erf[z]
)
. (2.12)
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2.2 Escape from a parabolic potential

For simplification we initiate the escape process in the minimum at a = xmin = − β
2α .

Typically, the escape times are given with respect to the barrier height. Here we have
∆U = U(b)− U(xmin) = α(b− xmin)2. Additionally we use a general expression for the
curvature of the potential: U ′′(x) = 2α and thus we can write

T =
√
π

U ′′

∫ √∆U/σ

0
dz ez

2(1 + erf[z]
)
−−−−→
σ�∆U

1
U ′′

√
πσ

∆U e
∆U
σ . (2.13)

The last approximation leads to the famous Kramers formula, calculated in 1940 [73].
In figure 2.2 both expressions are compared in double–logarithmic presentations. Solid
lines correspond to the integral in Eq. 2.13, whereas dashed lines refer to the Kramers
expression. It becomes clear that as soon as the barrier height and the noise intensity
are of the same order of magnitude, Kramers approximation deviates from the exact
integral expression.
However, for any σ . 0.1∆U Kramers formula seems to be an excellent estimate.

Note, that small noise and large barrier heights lead to extremely long escape times.
Reminding noise as an microscopic representant for environmental tempertature such
long times explain the stability chemical compounds that do not decay due to thermal
activation within time scales of biological processes for instance.
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Figure 2.2: Scaling of escape times from Eq. 2.13; dashed lines refer to Kramers ap-
proximation. (a): versus potential height (for σ = 0.01), (b): versus noise
intensity (for ∆U = 1).
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2 Stochastic escape from a fixed point

2.3 Mean escape time in the FHN dynamics

2.3.1 Probability density distribution in phase space

After the treatment of the escape from a parabolic potential we consider the more
extensive situation pertaining the escape from a steady state in an excitable system.
Without having an underlying potential it is not possible to find an analytical expression
as given in Eq. 2.7 for such systems. However, in analogy, the fixed point can be
consideres as a minimum in a potential landscape while the potential barrier which has
to be overcome corresponds to the threshold around that fixed point. We consider a
FHN system as a prototype model for an excitable dynamics in the form

u̇ = 1
ε

(3u− u3 − v) +
√

2σ ξu (2.14)

v̇ = γ + 1 + u+
√

2σ ξv .

Compared to the FHN system from Eqs. 1.2 these equations are written slightly different
but describe the same type of behavior. The inhibitor dynamics is even simplified due to
the lack of any dependency on v itself. Thus the inhibitor nullcline is perpendicular to
the abscissa and crosses the cubic activator nullcline at a point controlled by the value
of γ. It defines the location of the fixed point at (u∗ = −γ − 1, v∗ = γ3 + 3γ2 − 2). For
any γ > 0 the system is excitable and thus we identify this parameter as the excitability.
Noise enters in both variables with the same intensity σ. Again it is assumed to be white
and Gaussian.
Each trajectory following the dynamics given in Eqs. 2.14 has its individual noise

realization and u(t) and v(t) are stochastic variables. Hence, it may be worthwhile to take
a look at the distribution of an ensemble of trajectories, i.e. the density of probability
distribution p(u, y, t) to find a stochastic particle within an interval (u + du, v + dv) at
time t. The evolution of the probability density in space and time is given by a Fokker–
Planck equation [123]. For the FHN system it has been investigated for oscillatory
behavior [145] or for the stationary excitable regime [72]. The specific Fokker–Planck
equation corresponding to the Eqs. 2.14 reads:

∂

∂t
p(u, v, t) = σ

(
∂2

∂u2 + ∂2

∂v2

)
p(u, v, t)

− 1
ε

∂

∂u

[ (
3u− u3 − v

)
p(u, v, t)

]
− ∂

∂v

[
(γ + 1 + u) p(u, v, t)

]
, (2.15)

where the upper line resembles the diffusion equation in two dimensions with the diffusion
coefficient σ according to the stochastic force terms in the Langevin equations with its
noise intensity. The second line contains the drift terms including the reaction parts
of Eqs. 2.14. For boundary conditions that do not allow a leakage of probability (no–
flux or periodic) a stationary solution exist with ∂t p

0(u, v) = 0. It can be found by
numerical methods using finite–differences or finite–element schemes. For some cases it
can be computed much faster by running the Langevin equations directly for numerous
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2.3 Mean escape time in the FHN dynamics

trajectories, which populate the phase space due to noise by degrees. This has been done
to obtain Fig. 2.3 (a) where the density information is color coded. Though this picture
is a snap shot of current positions at a certain time it presents the stationary solution,
yet. After a transient time, which is temporized for the calculation, a balanced fraction
of particles in phase space has been developed forming a stationary distribution. As
it can be seen in the figure the main part of probability accumulates around the stable
cubic branches of the activator nullcline (drawn as dashed lines in the figure). Especially
along the branch that ends into the stable fixed point the probability to find a particle
is maximized.

The distribution of probability in phase space provides information about the dynam-
ical structure of the underlying system. In order to discover such dynamical features we
consider at first the marginal probability density p0(v) =

∫
du p0(u, v) shown in Fig. 2.3

(b) in the upper panel. Although the FHN model is a non–potential system we pre-
sume p0(v) to be connected to a corresponding one–dimensional pseudo–potential via
p0(v) ∝ exp(−Up(v)/σ), illustrated in Fig. 2.3 (b) in lower panel.

The maximum of probability density is represented by a minimum in the pseudo–
potential, which is not necessarily located at the original fixed point position due to the
presence of noise. Depending on the surrounding force field probability may accumulate
on a shifted position close to the fixed point [98]. Nevertheless, it seems likely apply the
approach we have used in the previous section. In the following we discuss a potential
based description that enables us to treat the escape from the stable rest state of the
FHN system as an escape process over a potential barrier.

(a)

−2 −1 0 1 2

v

p
0
(v

)

−2 −1 0 1 2

v

U
p
(v

)

(b)

Figure 2.3: (a): Stationary probability distribution according to Eq. 2.15 for ε = 0.1,
σ = 0.1 and γ = 0.05. (b): marginal density for v (top) with its correspond-
ing pseudo–potential (lower panel)
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2 Stochastic escape from a fixed point

2.3.2 Complete time scale separation

It is reasonable to reduce the two–component dynamics to one dimension, in which an
underlying potential always can be written. This method is due to Lindner et al. [87].
By adiabatic elimination (ε → 0) Eqs. 2.14 can be reduced to the slow dynamics along
the stable branches of the cubic nullcline given by

v̇ = (γ + 1) + ul,r(v) +
√

2σ ξv ,

with ul,r(v) = ∓2 cos
(1

3 arccos
(
± v

2
))
. (2.16)

By assuming transitions between the stable branches to be infinitely fast we need to
treat two decoupled equations instead of the coupled two–component FHN system. The
indices mark the left and right branch. The force terms on the right hand side of the
inhibitor equation correspond to the potentials

Ul,r(v) = −(γ + 1)v − 3
4ul,r(v)

(
v − ul,r(v)

)
. (2.17)

Both potentials are qualitatively different. On the left branch the potential possesses a
minimum retrieving the minimum from Fig. 2.3. In contrast, the right handed potential
is ramp–like and describes the relatively slow course along the right cubic nullcline
branch, where the system is in the activated state for a quasi–deterministic finite time.
We will consider only escape from the first potential, whose minimum, located at v∗,
coincides with the stable fixed point of the excitable dynamics. For ε → 0 a clearly
defined boundary exists, that determines the height of the potential barrier.
We regard perturbations as instantaneous shifts of the nullclines in phase space. For

the case of inhibitor noise the corresponding nullcline fluctuates around its deterministic
value. If this linear nullcline crosses the Hopf–bifurcation point, located at the minimum
of the cubic nullcline (u = −1, v = −2), the corresponding fixed point becomes unstable
and thus repels trajectories. Hence, we consider the location of the cubic nullcline’s
minimum as the threshold position playing the role of the absorbing boundary.
The barrier of the potential that has to be overcome by noise is determined as: ∆Ul =

Ul(v = −2) − Ul(v∗). Note, that ∆Ul depends only on γ. In the limit of low noise the
mean escape time is given in [87] as

T = 1
U ′′l (v∗)

√
πσ

∆Ul
e

∆Ul
σ , for σ � ∆Ul , (2.18)

according to the expression in Eq. 2.13. Here, the curvature is derived at the minimum
of the potential, where a parabolic shape can be assumed. In the mentioned publication
also expressions beyond the Kramers range of validity are given, which we do not consider
here.
Instead, we study the scaling of the parameters noise intensity σ and the excitability

γ as shown in Fig. 2.4. Therein the solid lines refer to Eq. 2.18 and circles present
numerical results. Additionally, dashed lines representing typical scaling are drawn. In
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2.3 Mean escape time in the FHN dynamics

Fig. 2.4 (a) where the escape time is plotted versus noise we chose a excitability value
of γ = 0.2 (and ε = 10−4), which leads to a potential barrier of ∆Ul = 0.0084. For any
noise intensity of the same order of magnitude or less (σ . ∆Ul) the numerically found
escape time matches the Kramers time. The leading dependency on σ is given by the
exponent ∝ exp(∆Ul/σ), shown as dashed line.
In Fig. 2.4 (b) the dependency on γ is displayed. Here, less numerical points are

created. This is due to the fact that for γ ≥ 0.5 the potential barrier is more than ten
times larger than the noise intensity leading to extremely long escape times that may
be longer than typical phd positions. In the potential in Eq. 2.17 we have a leading
order in the excitability of O(γ4) which produces a scaling of T ∝ exp (cγ4) where c is
an arbitrary fit parameter. This scaling is drawn in the figure as dashed line.
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Figure 2.4: Mean escape times from the FHN fixed point. Solid lines are due to the
result from Eq. 2.18 compared to numerical simulations (circles) and scaling
behavior (dashed lines). Used parameters values in (a): γ = 0.2 and ε = 10−4

and in (b): σ = 0.01 and ε = 0.01.

2.3.3 Spatially extended excitable and sub–excitable medium

As mentioned in section 1.3 the spatially extension of excitable systems creates an ac-
tive medium in which a superthreshold perturbation leads to a local activation that can
ignite the surrounding medium forming a spreading pattern. These nucleation processes
strongly depend on the parameters of the medium such as diffusion coefficient or ex-
citability [53]. The excitable regime in the local dynamics splits in three cases in the
spatially extended situation. First the nonexcitable regime, where perturbations never
trigger a superthreshold reaction in the medium. Here, the diffusion for example is so
fast, that each local distortion is quickly balanced. In contrast in the excitable regime
local perturbations grow easily and provide widespread patterns. In between these types
of behavior there is a region of subexcitability, characterized by local super–threshold
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excitations that do not form extended patterns though. Also initial extended structures
with a finite size decay soon.

1 2 3 4

5 6 7 8

Figure 2.5: Snapshots of stabilized moving wave segments due to simulation of a spatial
extended FHN system. Stochastic fluctuations lead to a wave break–up .
The products may grow forming a new stable wave segment or shrink until
they disappear.

There are various works referring to that problem also in two dimensions. In the
photo–sensitive BZ reaction it was shown [75] that the excitability of the medium can be
controlled by tuning the light intensity illuminating the chemical reaction. Considering
moving wave segments in this reaction, one finds illumination intensities for specific
wave sizes, which make those wave segments grow or shrink [125]. The higher the
illumination level the larger the wave segment must be to not decay. There exists an
illumination intensity corresponding to a critical excitability that separates the excitable
and subexcitable region.The dependency between size and excitability saturates at a
finite excitability value beyond which every two–dimensional structure shrinks and finally
disappears. Here, the system is definitely in the subexcitable regime for two–dimensional
patterns.
Showalter et al. invented a technique for stabilizing wave segments of a certain size in

the lightsensitive BZ reaction [95]. It is based on a mechanism of feeding back the current
wave size as an illumination information. We reproduced this technique for simulations of
the spatially extended FHN system where activator noise is added. Some snapshots of a
propagating stabilized wave segment are shown in Fig. 2.5. In the presented situation the
presence of noise leads to a break–up of the segments. However, since the stabilization
mechanism keeps the total wave size fix, some of the pieces survives and grow at the
cost of remaining pieces that decay.
Increasing the light intensity or the excitability, respectively, leads to a system state

where not even one–dimensional patterns can move nor survive. This is illustrated in
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2.3 Mean escape time in the FHN dynamics

Fig. 2.6, where under the influence of noise activation events occur and either decay in
the subexcitable case (Fig. 2.6 a) or form waves in the excitable case (Fig. 2.6 b). In the
FHN system as written in Eqs. 2.16 γ is the excitability parameter and thus plays the
role of light intensity. The smaller γ is the better waves can propagate.

(a) (b)

Figure 2.6: Space–time plots of coupled noisy FitzHugh–Nagumo elements. (a): subex-
citable regime, (b): excitable regime.

In the following we give a brief estimation for the transition parameters from subex-
citable to excitable behavior. We consider N FHN elements coupled to their neighboring
units arranged along a ring so that so asymmetry at edges occur. For the case of activator
coupling the deterministic version of Eqs. 2.14 is extended to

u̇n = 1
ε

(3un − u3
n − vn) + κ(un+1 + un−1 − 2un)

v̇n = (γ + 1) + un , with n = 1, 2, ...N . (2.19)

For the moment, we set the coupling κ to one, so that the only parameters are ε and γ.
In numerical simulations for 0 < γ < γcrit running waves can be found after an initial
superthreshold perturbation, corresponding to the situation shown in Fig. 2.6 (b) while
for γ > γcrit an activated local FHN element will not excite their neighbors as shown in
Fig. 2.6 (a).
We interprete the diffusive coupling as a signal coming from an activated neighboring

element so that for instance the (n+ 1)th element is activated and the (n−1)th element
remains in the fixed point. The maximal output an activated element produces, is the
difference umax − u∗. For a trajectory moving straight from the nullcline’s minimum,
which was assumed to be the absorbing boundary and which is close to the fixed point,
arriving at the right stable branch, we find for umax = 2. Therewith the nullcline of
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2 Stochastic escape from a fixed point

the n–th unit is shifted to vn = 3un − u3
n + ε(umax − un) illustrated in Fig. 2.7 (a)

where a sector of the phase space near the fixed point is displayed. The thin dashed line
corresponds to the unperturbed cubic nullcline and the thin solid line shows the shifted
nullcline. The perpendicular lines demonstrate two values for the excitability that lead
to two different fixed point locations. Relative to them, the shift of the cubic nullcline
causes an escape of trajectories from the fixed point, as shown for the lower trajectory
(thick solid line in the figure) or to a direct decay to the new fixed point as exemplified
by the upper trajectory in the figure.
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Figure 2.7: (a): Shift of the cubic nullcline (thin solid line) from its former position
(dashed line) when a neighboring element is excited. Trajectories are drawn
(thick solid lines) for two values of γ. (b): Line of critical excitability from
Eq. 2.20 with its expansions to the linear order (dashed) separating the
parameter space in the different regions of excitability. Circles represent
numerical results.

As an upper limit for the excitability beyond which the system is definitely subex-
citable, we estimate parameter values that shift the minimum of the nullcline exactly to
the inhibitor position of the former fixed point vpmin = v∗. The unperturbed inhibitor
fixed point value we already estimated as v∗ = γ3 +3γ2−2 and for the shifted minimum
we find vpmin = εumax − 2/(3

√
3)(3− ε)3/2. Solving for γ yields

γlimit = 2 cos
(

1
3arcos

[
vpmin(ε)

2

])
− 1 =

√
ε− 1

6ε+O(ε
3
2 ) . (2.20)

This relation separates roughly the parameter space of γ and ε in the mentioned regions of
subexcitablity (γ > γlimit) and excitability (γ < γlimit). For a finite time scale separation
the vector field belonging to Eqs. 2.19 gets a non–negligible component in v−direction.
Thus trajectories can directly return to the new fixed point even when the minimum is
shifted beyond the fixed point position. The expression given in Eq. 2.20 is therefore
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2.3 Mean escape time in the FHN dynamics

valid asymptotically for ε → 0 and the critical value, that separates the two regimes
of excitability can be estimated as γcrit < γlimit if ε > 0. Fig. 2.7 (b) shows the γ − ε
parameter plane including the relation of Eq. 2.20 which is compared to numerical results,
shown as circles. As expected, the smaller ε the better the critical line from Eq. 2.20
matches the simulations.
Restating the approach from the local FHN element activated by noise we consider

noise induced excitations in FHN units coupled to a passive environment from the same
type. Anew we are interested in the escape times of such coupled excitable elements
that either lead to running activation waves in the spatially extended version or to sin-
gle independent activation events in the subexcitable regime. The following estimation
neglects all kinds of successive dynamics triggered by a very first escape event but exclu-
sively considers a single element that gets activated. This element might be interpreted
as infinitesimal small compartment of a continuous diffusively connected medium. It
can be also interpreted as a participant of a network that consists of discretely coupled
neighbors as formulated for a chain in Eqs. 2.19. For the latter situation we assume
that noise affects only the considered unit while their two neighbors remain completely
unaffected by any distortion.
Writing the inhibitor equation by eliminating adiabatically the fast dynamics (ε→ 0)

as done in Eq. 2.16 and including the discrete coupling from Eqs. 2.19 with neighboring
units located in the fixed point un±1 = u∗ we obtain a inhibitor potential which is biased
due to the coupling κ. It reads:

U(v) = −(γ + 1)v + 3
4u(v)

(
(1− 2

3εκ)u(v)− v + 2εκu∗
)
, (2.21)

with u(v) = r cos
(1

3arcos
[ 4
r3 (2κεu∗ − v)

])
and r = −2

√
1− 2

3κε .

Following the method that we presented in the previous section we consider the minimum
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Figure 2.8: Potential according to Eq. 2.21 for κ = 0 (dashed line) and κ > 0 (solid
line).
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2 Stochastic escape from a fixed point

of the nullcline vmin as absorbing boundary and the fixed point value v∗ as the initial
location. Note, that the latter does not depend on the coupling strength while any κ > 0
increases the absorbing boundary and thus the potential barrier height (see Fig. 2.8).
The increasing barrier height with higher κ is intuitively clear, when we remind, that
the neighbors rest in the passive and non–activatable state to which the dynamical unit
is coupled.
The escape times can be calculated using Kramers formula (Eq. 2.18) and applying

the potential from Eq. 2.21. The outcome is plotted versus the excitability γ in Fig. 2.9
(a) for a coupled unit (solid line) compared to the uncoupled case (dashed line). As
estimated the escape time for a single unit coupled to inactive neighbors is larger than for
a single unit. That remains true also in the small γ range where the Kramers prediction
fails. For larger excitability values the difference is considerable and can exceed one
order of magnitude. For γ ≤ 0.1 the potential barrier is comparable to the noise value
and numerical results deviates from the Kramers curve.
In Fig.2.9 (b) the dependency on the coupling scaled with ε is shown for two noise

intensities. The upper (solid) curve corresponds to a low noise value while for the lower
(dashed) curve is three times larger noise intensity is chosen. Kramers approximations
is in a good agreement with numerical results except for too small κ at the curve with
higher noise strength. It can be seen, that the coupling antagonize higher noise values.
The difference in the escape times even increases with higher coupling which indicates
a non–linear dependency on the latter.
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Figure 2.9: Mean escape times of a FHN unit coupled to passive neighbors calculated
with Kramers formula using the potential from Eq. 2.21 (solid and dashed
lines). Symbols stand for numerical results. (a): coupled and uncoupled case
is compared, solid line and circles: εκ = 0.1, dashed line and stars: κ = 0,
both: ε = σ = 1 · 10−3. (b): two noise intensities are compared, solid line
and circles: σ = 1 · 10−3, dashed line and stars: σ = 3 · 10−3, both: γ = 0.1
and ε = 1 · 10−3.
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2.4 Conclusions
The chapter shall give an overview how noise acts on excitable systems and how it is
to quantify. However, the presented concepts are nothing new. Due to the general
relevance of such processes they are often treated in literature as the reader may have
seen in the references. The method used in the whole chapter deals with an approximated
underlying potential structure and its relation to the nullcline picture in phase space.
We expand this method to a coupled two–component excitable system.
Excitable dynamics are characterized by a rest state that can be left due to the in-

fluence of noise. At the beginning we studied the escape from a parabolic potential
with an absorbing barrier being the simplest model for excitable behavior. For this case
we gave an estimation to arrive at the famous Kramers formula to quantify the escape
over potential barriers. We expand this approach for the FitzHugh–Nagumo dynamics.
Under the condition that the activator and inhibitor time scales are well separated an
underlying potential can be constructed allowing us to use Kramers expression. We
calculate the escape time and find scaling behavior for the excitability parameter.
For a spatial extended excitable medium a differentiation of the character of excitabil-

ity is needed in regard to patterns formation. In the subexcitable regime no extended
patterns can develop and local perturbations decay. Stable and extended structures are
only possible when the excitability parameter is below a critical value. We derived an
approximate formula describing the transition line between these two regimes in the
parameter plane. Finally, we described the excitation of an element which is surrounded
by passive medium. The passive neighborhood enters in the potential which was written
for the local unit. Higher coupling increases the potential barrier and lead to longer
escape times.

27





3 Dynamical structures in a heterogeneous
active medium

3.1 Introduction

In the coming chapter we will successively expand the model which we have studied in
the last section of the previous chapter. In pure mathematical terms a third dynamical
equation will be affiliated to the two–component excitable stochastic FHN dynamics,
introduced in section 1.2. The three dimensional phase space of the extended model
will be investigated and its most important bifurcations will be presented. Furthermore,
this system will be used to arrange a spatial extended heterogeneous medium in which
pattern formation will be discussed.
Although we will keep the level of abstraction high, the model is based on biological

mechanism which is related to the original meaning of excitable systems that is the
neuronal activity and ion channel dynamics within cells. As we introduced in section
1.2, electrical activity of a cell is represented by depolarization of its membrane potential
which is well described by the mentioned HH. But also simplified model systems using
a smaller amount of variables and control parameters [67, 60], are able to specify the
many aspects of neuronal dynamics. But an inevitable assumption and simplification
has been made for these prototypical neuron models in terms of ionic currents. For
example, it was assumed that in spite of transmembrane currents both, extracellular
and intracellular ionic concentrations remain unchanged during depolarizations. Such a
simplification is natural and acceptable if individual neurons or segments of an excitable
medium during sufficiently short activation events are considered.
However, in other cases it will be not realistic. For example, there is the experimental

evidence that extracellular concentration of potassium ions can rise significantly dur-
ing intensive neuronal activity [139, 20]. Detailed models include severals sources and
sinks for extracellular potassium ions. The governing currents are the ion–flow through
the neuronal membrane, lateral diffusion and the uptake by the surrounding glia net-
work [17, 148]. Beside supporting the neurons glia cells have different duties such as
spatial stabilizing of the neuronal network or isolating their electrical potentials. There-
fore they have similar properties like neurons such as a resting potential or the response
to neuronal firing events which may enhance or surpress the neuron’s activity [74]. So,
they can activate potassium pumping when the ion level rises considerably [22]. Mod-
els that take this positive feedback into account show a strong increase of extracellular
potassium concentration up to 80 mM [164, 161, 51]. It is speculated that this ex-
cessive elevation of potassium concentration potentially is an important element of the
mechanism of epileptic seizure development [9, 108].
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3 Dynamical structures in a heterogeneous active medium

In neuro–physiology there is a lot discussion about the functionality of extracellular
ions. It is shown that the decomposition of potassium is not only due to diffusion.
Different pathways must be involved in this process [154, 39, 105, 24]. More recent models
addressed the detailed neuronal morphology [64, 65] or the role of specific ion channels in
formation of self–sustained bursting behavior that may even lead to pathological neural
activation [9, 37]. The wider list of modeling issues on this topic was recently reviewed
in [36].
The aim of the current chapter is to construct a low–dimensional model exhibiting

transparent dynamical regimes and possessing an adequate number of control param-
eters. The exact biological situation, however, would require a rather complex model
which might include numerous dynamical equations. The effects of potassium medi-
ated coupling were investigated using the Hodgkin–Huxley type model [115, 116]. It
was shown that such rather simplified, but still quantitative model reproduces the main
features of small ensembles of potassium–driven neurons. With the approach presented
here, we want to dispense with the possibility of a quantitative description. In order
to discover basic mechanisms and the dynamical rules of larger networks we will use a
well understood model and study the mentioned biological situation under aspects of
excitable, oscillatory and bistable behavior.
Therefor, we construct such a model in the form of an extended FHN system with an

additional equation describing the dynamics of extracellular potassium. Since our model
inherits the key features of a FHN element, it is physically transparent and tractable. It
thus provides the better chance to understand primary underlying nonlinear mechanisms
governing the local activity as well as the formation of spatio–temporal patterns in large
networks. Furthermore, compared to leaky integrate and fire models (see section 2.2) the
FHN unit includes the whole reset mechanism of the neuron and is therefore appropriate
to represent the essence of single neuronal spike events. Some dynamical behavior which
we will observe later on in this chapter refers to the excited state of the FHN which is
not provided by the LIF (see section 2.2) model [16, 143].
Applied to interacting neurons we assume that the interaction of neurons is restricted

to the chemical pathway. Coupling takes place indirectly due to the potassium concen-
tration outside the cells, exclusively. In the extended model no explicit metric will be
applied and thus no distance will be defined. Nevertheless, the neurons are assumed
to be strictly separated and a direct contact of the action potentials is excluded. The
biological fundament for this assumption yields glia cells surrounding the neurons. The
medium consists of neurons and extracellular space which contains such glia cells for
instance. Thus it is heterogenous and signal processing or pattern propagation is slower
than in a homogeneous excitable medium.
The patterns appearing in the spatial extended system show phenomena, which are

reminiscent of chemical experiments in which comparable heterogeneous situations like
two–layer systems or chemical oscillators moving in a diffusive environment have been
studied [10, 141] and which we already referred in section 1.3. Also some of the presented
structures are comparable to patterns reported in studies on calcium ion release across
the endoplasmic reticulum [28, 132]. In these systems clusters with a finite number of
ion channels on the reticulum are related to single excitable elements in our model. After
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Figure 3.1: (a) Schematic representation of the potassium interchange between closely
located cells and extracellular space, (b) structure of the functional model
with the corresponding variables.

releasing the ions they diffuse freely in the cytoplasm forming different kinds of calcium
waves.
In the last section of this chapter we attempt to classify observed spatio–temporal pat-

terns according to the relation between the governing control parameters of the extracel-
lular medium. Peculiar, patterns that cannot appear in a homogeneous FHN medium are
randomly–walking spots, long living meandering excitations, anti–phase firing patterns,
inverted spirals and waves.

3.2 Abstract model for a potassium–driven neuron

3.2.1 Biological background

We consider an environment which is schematically depicted in Fig. 3.1. We assume that
there is a certain volume between the cells from which the ionic exchange with the outer
bath is rate limited. For simplicity we assume that this volume is homogeneous and we
denote the extracellular potassium concentration as [K+]e here. Intracellular potassium
concentration is symbolized as [K+]i.
With time, particularly during firing events in neurons, the potassium channels, la-

beled as *1* in Fig. 3.1 (a), open and outward currents from the cells deliver potassium
to the extracellular space. Thus, [K+]e rises while the intracellular concentration [K+]i
decreases just slightly, because [K+]i � [K+]e. In the following we neglect the associated
intracellular changes of the potassium concentration and assume that this concentration
remains constant.
Beside this source of potassium ion corresponding to an inflow in the extracellular
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3 Dynamical structures in a heterogeneous active medium

space, several uptake mechanisms are counteracting as mentioned in the introduction.
First, there are Na − K ATP pumps, labeled as *1* in Fig. 3.1 (a), which drives K+

back into the cells in order to balance the potassium concentration to its equilibrium
value [K+]0. Additionally, surrounding glia cells absorb potassium ions which will be
subsumed to the previous process as a common decay term. The exchange of K+ ions
with the environmental extracellular bath is assumed to take place by a diffusion process.
Hence, it is governed by the concentration difference between the exterior close to a
potassium delivering cell and the bath. Then the balance of potassium concentration in
the extracellular space can be described as follows:

W
d[K+]e
dt

= 1
F

N∑
i=1

(Ii,K − Ii,deg) + κ([K+]0 − [K+]e) , (3.1)

where W is the extracellular volume per unit area of the membrane and N is the total
number of cells being neighbors to this volume. The currents Ii,K and Ii,deg describe
the influx and the degeneration of potassium ions due to pumps, channels and glia
cells for the ith-cell. They are divided by Faraday’s constant F . The second term
κ([K+]0− [K+]e) models the effective diffusion of potassium to and from the bath. This
balance equation (3.1) provides the basis for the qualitative description in terms of a
functional model which we will introduce below.
Note, that the variation of the ratio between the extra– and intracellular potassium

concentrations affects the corresponding (Nernst-) potential and, hence, the firing activ-
ity. Increase of extracellular potassium concentration may depolarizes the cell beyond
the threshold and can evoke spontaneous firing. However, too high extracellular potas-
sium concentration acts as a toxin and blocks the cell activity completely.

3.2.2 Local model

In the following we propose an abstract model that aims to mimic the qualitative re-
production of main effects arising if a variable extracellular potassium concentration is
taken into account. The structure of the model according to the biological framework is
schematically depicted in Fig. 3.1 (b). Excitable units without direct connections rep-
resenting a number of neurons that contribute to the extracellular potassium increase.
The labeled “external medium”, in which the released potassium accumulates, stands for
the extracellular space that separates the excitable cells. The dynamics of the external
concentration have to fulfill the following conditions: The concentration level

(i) rises when one of the neighboring excitable units is in the active or firing state,

(ii) provides an additional stimulus to surrounding excitable units and

(iii) relaxes to an equilibrium state when no activation is received.

Let us first confine to a single neuron interacting with the external medium. Partic-
ularly, we will implement the activity of an excitable neuron by a FitzHugh–Nagumo
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system, written in the form:

εu̇ = u− 1
3u

3 − v (3.2)

τ(u)v̇ = u+ a− Cz , (3.3)

where ε controls the time scale separation of the fast activator variable u and the slow
inhibitor variable v, as already introduced in the previous section. The operating regime
of the FHN neuron is defined by a, playing the role similar to the applied current in
ionic currents–based neuron models and is the excitability parameter (see section 2.3).
External stimuli are due to synaptic excitatory or inhibitory coupling that works on a
much faster time scale than ionic exchange with to extracellular environment. Therefore
we model the synaptic input as noise which makes the parameter a fluctuate around its
mean value a0:

a = a0 +
√

2σξ(t) , (3.4)

where ξ(t) is white Gaussian noise with zero mean and intensity σ.
As an extension we introduce an additional time scale τ(u) in (3.3) in order to control

the two time scales, associated with firing (high level of u variable) and refractory state
(low level of u) independently. Specifically, we apply the sigmoidal function

Ψ(u) = 1
2

(
1 + tanh

(
u

us

))
, (3.5)

which is sensitive to the current value u. It tends to zero for u� 0, and to one if u� 0,
while us scales the transition between these states. For us → 0 the sigmoidal function
becomes a Heaviside function that distinguishes step–like between the excited and the
resting states of the FHN neuron. With Eq. (3.5) τ(u) shapes as

τ(u) = τl + (τr − τl)Ψ(u) (3.6)

and takes the values τl in the rest state and τr in the excited state, respectively, for a us
to be chosen as small.
Similar to the system given in Eqs. 2.14 the location of the cross section of the activator

and inhibitor nullcline is exclusively controlled by excitability parameter a, as long as
we consider the two–component system given by Eqs. (3.2–3.3) with C = 0. As a third
component we add an equation to model the time evolution of the variable dimensionless
extracellular potassium concentration, labeled as z, here. In the first instance, we do not
consider any spatial dynamics and we write for the time evolution in accordance with
Eq. (3.1)

ż = αg(u)− βz . (3.7)

Two terms govern the dynamics. The first one describes the production term with the
release rate α ≥ 0 that stands for the overall ionic currents outward the cells. These
currents transport ions into the exterior when the unit is excited and channels are open,
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3 Dynamical structures in a heterogeneous active medium

corresponding to u > 0. No ions are delivered when the channels are closed and the
excitable unit is in the rest state or in the recovery period, corresponding to u < 0.
Likewise for the time scales we use the function Eq. (3.5) as a trigger in Eq. (3.7)
(g(u) = Ψ(u)). It set the production term close to zero if the unit is inactive or it
enables the production for an active unit. The second term describes the ion loss by the
mentioned processes like desorption through the glia network with a decay rate β. The
rest state corresponding to the steady state concentration [K+]0 is at z0 = 0 and thus
the concentration is always greater than zero (z(t) ≥ 0).
The value of z enters in Eq. (3.3) with a factor C. It represents the depolarizing effect

of an increased extracellular concentration. For a given non–vanishing value of z, this
results in an effective decrease of the control parameter aeff = a0−Cz ≤ a0, which shifts
the v-nullcline to higher values of u closer to the oscillatory behavior or even further.
The set of equations described above is dimensionless and, therefore, the relationship

to the real biological situation can be only qualitative. However, for the sake of simplicity
and to keep the connection with the original problem, we will use the terminology of
neurophysiology further on in order to describe the dynamical behavior of the model as
well as the meaning of control parameters. In the following we refer to system (3.2)-(3.7)
as the FNK model that stands for the combination FitzHugh–Nagumo plus [K+].

3.2.3 Fixed points and bifurcations
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Figure 3.2: Three–dimensional phase space of the FNK model,
(a) nullcline surfaces labelled with their variables whose time derivative
vanishes on them. The intersections of the cubic u-nullcline, linear v–
nullcline and sigmoidal–shaped z–nullcline may provide one or three equi-
librium points (E1, E2, E3).
(b) Representative trajectory near the stable equilibrium point E1 (thick
line). The nullcline projections on the (u, v) surface are shown as thin lines.

In this section we want to study the main features of the local model in terms of the
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3.2 Abstract model for a potassium–driven neuron

steady states and their stability. For C = 0 the FNK model converges to the original
FHN system with a cubic and a linear nullcline generating one single equilibrium point
at (u0 = −a, v0 = a(a2/3− 1)), which is stable for |a0| > 1 and unstable otherwise. The
whole three–component FNK model, defined by Eqs. (3.2–3.7) possesses three nullcline
surfaces, depicted in Fig. 3.2 (a). There they are labeled as u, v, and z according to the
respective temporal derivative that vanishes on them. While the position of the cubic
surface remains unchanged under the influence of the available parameters, the surface
belonging to the step function can be manipulated by tuning α, β or us. When in the
following numerical results concerning the local dynamics are presented then they are
obtained by chosen parameter range of α = 1.0 . . . 12.0, β = 0.05 . . . 0.5 and us = 0.2.
The slope of the linear surface is controlled by C and its position by a0, that is fixed to

a0 = 1.04 in the following to ensure to be in the excitable regime in the limit of C → 0.
The time scale parameters do not influence the nullcline surfaces and are set as ε = 0.04,
τl = O(1), τr = 1.0.
The fixed points are given by u̇ = v̇ = ż = 0 which yields

u0 + a0 = C
α

2β

(
1 + tanh

(
u0

us

))
. (3.8)

This expression has one or three real solutions for u0. For a large C–range one fixed
point remains close to u0

1 ≈ −a0 at low z-level as a shadow of the steady state of
the FHN system. Using a small us the right hand side of (3.8) becomes nearly a step
function. Then the upper fixed point location can be given as u0

3 = Cα/β − a0 and the
corresponding z–value is the highest z–level the system can reach (z0

3 = zmax = α/β).
Taking C as the control parameter regulating the coupling strength to the exterior

variable z this upper fixed point bifurcates at a critical value Ccrit resulting from

ηCcrit

(
1 +

√
1− us

ηCcrit

)
− usatanh

(√
1− us

ηCcrit

)
− a0 = 0 , (3.9)

where η = α
2β . That expression contains also a solution for a high Ccrit where the lower

fixed point annihilates in a saddle–node bifurcation. Thus, for any coupling higher than
that Ccrit the upper stable fixed point remains as the only attractor in the system. For
a very high C the system always produce so much z by keeping the excitable unit active
that it freezes in a completley depolarized state with a constant high level of z = zmax.
For C values where three fixed points exist the unstable equilibrium in between is located
at u2 ≈ us(2αβ)/(αC−2βus) which is only weakly dependent on C for our choice of the
parameter range. In Fig. 3.2 (a) the positions of these three fixed points are illustrated
and labeled with E1, E2 and E3.
In Fig. 3.2 (b) a representative trajectory for a very small C starting in the E1 vicinity

is shown. The u̇ = 0 and v̇ = 0 nullclines are shown as projections on the (u, v) plane.
The trajectory starts at a point beyond the basin of attraction of E1 and therefore moves
quickly to the cubic branch at positive u–values corresponding to the activated phase of
the unit. During this time z increases and the trajectory also rises in vertical z–direction
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Figure 3.3: Bifurcation diagram for the coupling to the exterior C.
(a) lines mark the u values of fixed points – dashed: saddle, dashed–dotted:
unstable, solid: stable; symbols show the extremal u elongation of limit
cycles – circles: stable, crosses: unstable. The inset shows a zoom of the
supercritical Hopf–bifurcation.
(b) z position of fixed points and limit cycles, lines and symbols as in (a).

controlled by α. After the typical activation course the trajectory comes back to the
polarized state but it is still on a higher z–level. From this level, the phase point moves
downward with the decay rate β performing damped oscillations.
The mono– and multistable regimes in the FNKmodel are illustrated in the bifurcation

diagrams shown in Fig. 3.3. Both diagrams show the same C parameter range whereas
at the Y– axis the variables u and z are displayed. By linearization around the fixed
points the number of (un–) stable directions can be determined. That is coded in the
different line styles: Solid lines stand for complete stable fixed points (three negative
eigenvalues), dashed–dotted lines correspond to complete unstable fixed points (three
positive eigenvalues). For a small C–region there are fixed points which have two unstable
directions with eigenvectors laying approximately in the (u, v) plane and one stable
direction pointing approximately in z–direction. They are drawn as dashed lines.
As already mentioned the lowest fixed point is a relict from the FHN system and is

stable until C ≈ 60 (for α = 1, β = 0.05 and other parameter as mentioned above). This
is far beyond the C–range we want to consider here. However, for C = Ccrit ≈ 0.07 two
additional fixed points appear via saddle–node bifurcation close to the maximal z–level
at zmax = 20. The upper point has one stable direction at first and bifurcates at C ≈ 0.1
into a complete stable fixed point while demerging a limit cycle due to a supercritical
Hopf–bifurcation.
Such limit cycles are also illustrated with their extremal elongation in the bifurcation

diagram in Fig. 3.3 (a). They are symbolized with circles in case they are stable and
with crosses when they are unstable. Note, that in the C, z–diagram the minimal and
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3.2 Abstract model for a potassium–driven neuron
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Figure 3.4: Phase space scenarios for two values of C.
(a) C = 0.02 – black solid: limit cycle, black dashed: unstable limit cycle,
red: two sample trajectories.
(b) C = 0.12 – schematic picture of attracting and repelling structures.

maximal elongation of the periodic orbits are nearly at the same z–level and thus only
one line of symbols appears in the figure. The zoomed region of the Hopf–bifurcation in
Fig. 3.3 (a) discloses the supercritical type. For a small region the created limit cycle is
stable entraining two stable directions from the fixed point.
In the range of C ≈ 0.02...013 there is a stable periodic orbit that annihilates with

an unstable orbit on both sides of that range due to a saddle–node bifurcation. These
unstable orbits merge with the low z–value and the high z–value fixed point branches
after a second saddle–node bifurcation is passed, shown in the zoom region in Fig. 3.3 (a)
for the upper branch. Thus the arriving orbits are stable and bifurcate via a supercritical
Hopf–bifurcation. Within the C range containing the extended stable orbit the system
is either bistable in which the lower fixed point and the limit cycle are regions in phase
space where trajectories run into, or even three attractors exist; the lower and upper
stable fixed point and additionally, the stable limit cycle in between. These cases are
schematically depicted in Fig. 3.4.
The first case is presented in Fig. 3.4 (a) where a section of the phase space is shown

with representing trajectories (red lines) that are repelled from the unstable limit cycle
(dashed black line). Depending on their initial conditions they either run asymptotically
into the stable limit cycle (solid black line) or decay into the lower fixed point. For the
sake of clearness in Fig. 3.4 (b) only the fixed points with their (un–)stable directions
(arrows) and limit cycles are sketched (solid: stable limit cycle, dashed: unstable limit
cycle). Essentially, it can be supposed that the unstable limit cycles separate the basins
of attraction.
Beyond the limit cycle in a parameter range, where only the two stable fixed points

exist, u and v also start to oscillate as a long living transient when perturbing the
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Figure 3.5: Transition to the upper stable state at C = 0.2 after the system is perturbed
from the lower fixed point. During oscillations of u and v the value of z
rises and drives the system to the upper fixed point. In insets (top row) the
corresponding change of the spikes for u is illustrated.

lower fixed point initiation as depicted in Fig. 3.5. In that case the z–level increases
successively, lifting the system up to the maximal value. Thus the depolarizing spikes
transform to polarization spikes, elongating from the depolarized state down to the
former resting polarized level. The inverse firing process stops at a certain z level and
reaches the stable steady state E3 corresponding to completely polarized neurons which
are embedded in extracellular space contaminated by potassium.

3.3 Local dynamics under the influence of noise

Close to the polarized steady state trajectories spiral in the associated lowest fixed
point as it can be seen in the example shown in Fig. 3.2 (b). That gives evidence
of a non–vanishing imaginary part of the eigenvalues. The closer this fixed point is
located at the Hopf–bifurcation value (aHopf = 1), the larger is the imaginary part.
The effective threshold parameter is lowered by a z level greater than zero, provided
by a larger value of C. That contributes to an increase of the imaginary parts of the
eigenvalues. In Fig. 3.6 (a) the evolution in time of the three model variables is shown
after a superthreshold perturbation from the lower stable fixed point for C = 0 (solid
line) and C > 0 (dashed line). Fig. 3.6 (b) shows the zoomed region of the v–evolution
in time after a spiking event close to the fixed point. It can be seen that subthreshold
oscillations are much more pronounced for C > 0.
During the maxima of these oscillations the distance to values in phase space where
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Figure 3.6: (a): Temporal evolution after perturbation in the single-unit model at C =
0.008. The spike is initiated by a short excitatory pulse at the time indicated
by the black arrow. Dotted line (1) in the middle panel shows the y-time
course for C = 0. (b): the enlargement of rectangular area in (a) shows the
subthreshold oscillations after spiking. The dotted (1) and solid (2) lines
illustrate the cases of C = 0 and C = 0.008, respectively.

a new excitation starts is reduced. Hence, during the moments of maximal elongation a
weaker external forcing is sufficient to excite the next spike. This feature is important
to understand how noisy input acts in this model. After the refractory time of a spike
production there are few moments of larger probability for the next noise–induced firing.
It resembles the behavior of so called resonate-and-fire neurons [59, 153] with subthresh-
old oscillations. But, in contrast, it occurs only after a spiking event, when the z–level
has had time to rise. If at this state current noise values are too small to overcome the
reduced threshold, then the next spike will occur after considerably longer time interval
which can lead to bursting behavior [153, 129, 77].
The described subthreshold oscillations become more pronounced when the fixed point

location gets closer to the Hopf–bifurcation and the system can be excited easier. The
spectral power density S(ω), that measures how much power is distributed over frequen-
cies ω a spike train contains, changes significantly when noise intensity is increased, or
the coupling to the exterior is enabled. That can be seen in the left column of Fig. 3.7
where we compare the densities of the unperturbed FHN model (case C = 0, given in
grey) with the FNK model at C = 0.03 (black line). For all panels of the figure, the
noise intensity is assumed to be small, so that the stochastic driving can be regarded as
weak enough to not dominate the whole dynamics. For very low noise intensity, when
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Figure 3.7: The spectral power density (left panels) and the probability distribution den-
sity of interspike intervals (right panels) for the single-unit model with noise.
For comparison the maxima of the spectra are set to one. Curves in black
were obtained with C = 0.03. Curves in gray with filled area were obtained
with C = 0 illustrating the behavior of the unperturbed FHN model. Noise
intensity takes values (a): σ = 0.005 , (b): σ = 0.007 and (c): σ = 0.01 from
top to bottom.

only few spikes appear during the observation time, both models produce essentially
the same shape of S(ω) (not shown in figure). In the FHN model, further increasing of
σ leads to the formation of a broad peak at zero frequency that moves rightward and
reaches the position at ω ≈ 0.06 at σ = 0.01 (Fig. 3.7 (a)-(c)). It corresponds to a more
regular firing due to coherence resonance [85, 110, 48].
The FNK model shows a similar power spectrum at very weak and at the final (σ =

0.01) noise strength, while the evolution of the spectra with increasing noise is different.
Instead of a single broad peak at zero, two sharp peaks appear at zero frequency and
at ω ≈ 0.075. The inspection of time courses shows, that the first peak corresponds to
randomly appearing spikes, while the second peak corresponds to the mean interspike
distance within spiking events. With increasing σ, the peak at zero gradually disappears,
while the second peak collects more power. The third row of panels in Fig. 3.7(c) shows
considerably higher regularity of firing process in the FNK model compared to the FHN
model.
Another quantity which is often inquired for spike trains is the distribution of interspike
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3.4 Two excitable units interacting with a common exterior

intervals wISI. It allows a statistical analysis of the times between two subsequent spikes.
For the FHN and the FNK system it is shown in the right column of Fig. 3.7. While
the activity near zero frequency is mapped on interval values with larger than 20 time
units, a pronounced peak is observed at ISI values ≈ 1 which grows up to an optimal
value with increasing intensity of noise strength σ.
Both, the spectral power density and the interspike interval distribution are considered

again in chapter 5 where their characteristics, depicted in Fig. 3.7, can be recovered in
the abstract two–states model. The basis of that simplified approach provide waiting
time distributions for rest and excited state, which are able to mimic the presented
distributions for the complete FNK system.
To summarize the local dynamics, the behavior of a single unit is characterized by

different dynamical regimes controlled by the parameter C that tunes the coupling to
the additional equation for modeling the extracellular concentration z. It spans the
mono–stable excitable behavior as known from the FHN system and multi–stable regimes
containing stable periodic orbits or an additional stable fixed point at a high z–level. The
addition of noise can lead to coherence resonance which is more pronounced than in the
FHN case. The characteristics of this dynamics is reflected by both the spectral power
density S(ω) and the ISI distribution density wISI. The underlying mechanism of the
discussed features can be regarded as subsequent self–induced depolarization enhanced
by exterior potassium. These results are consistent with previously reported behavior
of higher–dimensional quantitative models [64, 65, 37].

3.4 Two excitable units interacting with a common exterior

The self–depolarization described above plays an important role when two excitable cells
share one z reservoir. Both units contributes to the rising of z when they are excited.
In return they are also responsive to that increased concentration. We replace equation
for the exterior Eq. 3.7 by:

ż = α
(
Ψ(u1) + Ψ(u2)

)
− βz , (3.10)

where u1 and u2 belongs to two separated units each described by the Eqs. (3.2–3.3)
coupled to the common variable z. Depending on the coupling strength C firing of one
unit can provide depolarization for both. We want to estimate how large C at least has
to be in order to depolarize the second unit. Therefore, we consider the dynamics of z
while one unit is excited and the other unit is at rest: Ψ(u1) = 1 and Ψ(u2) = 0. Then
Eq. 3.10 can be integrated giving:

z(t) = α

β

(
1− e−βt

)
. (3.11)

As long as the unit is active z is delivered and the given expression describes an mono-
tonic increase in z. The activation time is the time of allocating the stable cubic nullcline
branch at u > 0 which can be approximated by linearization. It is determined by the pa-
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3 Dynamical structures in a heterogeneous active medium

rameters a0 and ε that we kept constant at a0 = 1.04 and ε = 0.04 yielding an activation
time of tact ≈ 0.48 .
The lower fixed point of the second unit turns to be unstable, when the effective

excitability parameter becomes smaller than one: aeff = a0−Cz < 1. Inserting Eq. 3.11
into this inequality we find a minimal coupling strength:

C
!
≥ β

α

(
a0 − 1

1− e−βt
)
−→
t→∞

β

α
(a0 − 1) . (3.12)

That means, an elevated z–level lowers the excitability parameter value of the second unit
for a certain time t. When the time window is long enough this parameter sinks below
the critical Hopf–value and the second unit gets activated deterministically. Inserting
the activation time of the first unit into Eq. 3.12 for which the z–value has reached its
maximum we obtain a minimal coupling strength Cmin ≈ 0.08 (for α = 1 and β = 0.05).
For any 0 < C < Cmin the second unit exhibits subthreshold oscillations but cannot be
activated without additional perturbations as illustrated in Fig. 3.8. Here, two coupling
values are compared, one just below the minimal value (left column in the figure) and
the other value exactly at the estimated number C = Cmin (right column). The activator
evolution in time, marked with indices for the two cells and the common z–concentration
is shown. An external perturbation initiates a spike in the first unit at t = 10 whereupon

0 10 20 30 40 50

−2

0

2

u
1

C = 0 .079 C = 0 .08

0 10 20 30 40 50
−1.2

−1

−0.8

u
2

0 10 20 30 40 50

0

1

z

t

0 10 20 30 40 50

−2

0

2

0 10 20 30 40 50

−2

0

2

0 10 20 30 40 50
0

10

20

t

Figure 3.8: Activator evolution and common z–level for two coupled excitable units be-
low and at the estimated minimal coupling value after a superthreshold ex-
citation of the first unit. Left panel: The spike of the first unit leads to
subthreshold oscillations in the second unit followed by an eventual decay
into the rest state. Right panel: The first spike evokes an anti–phase firing
sequence in both units.
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3.5 Patterns in a spatially extended medium

the z level rises, shown in the lowest row. That lowers the threshold of both units and
causes subthreshold oscillations when the coupling is below the minimal value. Note
the small range of u2 in the figure. Or it triggers a self–sustained spike sequence when
C is strong enough. In the latter case the units perform anti–phase oscillations after
a transient (see dashed lines in the figure), an effect which is known from glycolytic
oscillations in cells [159]. Perpetual firing let the z–level rise continuously. Following the
same mechanism as described for Fig. 3.5 the system runs into the upper high z–level
fixed point after some time where the oscillations die out, eventually.
The presence of noise can activate the second unit during the phase of subthreshold

oscillations even below the minimal coupling values. Then the increase of z may be
sufficient to evoke the self–sustained oscillation scenario. On the other hand, noise may
also block repeated mutual spike induction for a coupling value greater than Cmin. Thus
noise either acts constructive or suppresses activity, depending on the specific realization.
These considerations in that section will assist the understanding of the firing patterns

in extended situation of many interacting units which follows in the next section.

3.5 Patterns in a spatially extended medium

Several ways are possible to create an extended scenario using the FNK model as the
locally acting reaction dynamics from Eqs. (3.2–3.6). According to the initial biological
situation we consider an inhomogeneous medium with separated active units, correspond-
ing to disjointed cells embedded in the extracellular space being the diffusive medium
for potassium ions described by z.
However, this is not the only option. Alternatively, we could assume that the z(~r, t)

variable describes a continuous diffusive medium with spatial coordinates ~r = (r1, r2).
The excitable units would be placed in a second layer at locally separated sites coupled
by the diffusing field z(~r, t). This geometry is evident and leads to an usual reaction–
diffusion system with three variables. Two variables are locally defined and coupled via
the third. One might imagine a two layer system with excitable units located inside
a gel with low connectivity. The interaction inside this first layer may have a much
lower diffusion coefficient compared to the diffusive coupling of the third species z(~r, t).
For such mixed systems with densely packed excitable particles surrounded by reactive
emulsions pattern formation has been observed in chemical experiments [26, 144].
Here, we focus on the first approach, whose geometry we call binary medium. It

consists of immobile excitable elements embedded in the non–excitable field z(~r, t), which
diffuses in the remaining space of the two dimensional medium. In particular, we use a
regular array of active units in each row and column illustrated in Fig. 3.9 as gray, that
follow Eqs. (3.2–3.3). For each point of the intermediate diffusive medium (white fields
in Fig. 3.9) we write:

żij = α
∑
k∈nb1

Ψ(uk) + κ
∑

l,m∈nb2
(zlm − zij)− βzij ,

(3.13)
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Figure 3.9: Schematic picture of the extended geometry illustrating the binary medium
of neurons (N) and pure z-cells in between.

where the subscript ij denotes the current point in space. The second additional term
describes the coupling within the z–field controlled by the coupling strength κ. The
sum indices nb1,2 denote the sets of neighboring units defining the coupling range. We
have implemented several types of coupling such as nearest or next-nearest neighbor
coupling for nb1 and/or nb2. To keep the dynamics close to the case of discrete diffusion
we discuss the results only for the coupling to the next 8 surrounding boxes, where the
diagonal elements are scaled by a factor of 1/

√
2.

In contrast to conventional reaction–diffusion systems, the active units do not interact
mutually but only via the common external concentration. The z–value that enters in
the inhibitor equation of the active units is the average from the surrounding z–cells. The
external medium is locally coupled with itself and is additionally affected by the neurons
activity. All computations are performed in conditions in which identical individual
units possess at least one stable fixed point at u0 ≈ −a0. Patterns that will be presented
in the following are formed from that non–active polarized state.
Except for the noise realizations the active units are chosen to be identical and pa-

rameters defining their dynamical behavior are fixed for all cases as: ε = 0.04, a0 = 1.04,
C = 0.1, τl = τr = 1.0, us = 0.05. Then they are in the excitable state supplied by a
coupling to the external variable which potentially allows a rich dynamics due to multi–
stability as known from Fig. 3.3. We examine the influence of parameters controlling
the external medium according to the following table:

parameters α β κ σ zmax boundary
set 1 50.0 6.0 2.0 0.00005 8.3 no–flux
set 2 60.0 6.0 130 0.02 10.0 absorbing
set 3 6.0 0.35 4.0 0.0001 17.1 periodic
set 4 10.0 0.5 0.2 0.00002 20.0 no–flux
set 5 150.0 6.3 2.0 0.003 23.8 periodic

With the increasing set number the mean z–level rises successively and with it the
maximal z value as shown in the 6th column. According to the bifurcation diagram
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3.5 Patterns in a spatially extended medium

Fig. 3.3 we go to higher C values along the abscissa and encounter excitable, oscillatory
and bistable behavior. We underline that the rest state of the uncoupled FHN is always
a stable homogeneous state of our dynamics with z = 0. Every excitation of spatio–
temporal structures presented here are evoked by noisy super–threshold stimuli.

3.5.1 Waves, spots and spirals (Fig. 3.10)
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Figure 3.10: Parameter set 1: (a) Noise induced spirals and wave fronts. Colors indicate
the z–level and white and black squares represent active cells in the excited
and rest state, respectively. (b) Activator time series of an arbitrarily chosen
cell.

The local dynamics possess one single fixed point corresponding to the polarized state
of neurons and is therefore excitable. By noise the units can be activated and release
z to their neighborhood. The external concentration of the medium decays much faster
than the units recover, while the diffusion is too slow to distribute the delivered z over
a large distance. The activated units ignite next–nearest neighbor units via the medium
and traveling extended waves are formed as it is depicted in Fig. 3.10 (a), where blue
color stands for a z level close to zero and red color marks the highest z concentration
close to zmax. Black and white dots indicate the location of active units in their rest
(black) and excited (white) state.
At the system borders or due to noise circular waves can break and the free ends curl

forming a spiral wave. Although the dynamics is purely excitable waves appear very
regularly at the chosen noise intensity, noticeable in the time series of an arbitrarily
chosen unit, shown in Fig. 3.10 (b). This ordering effect of noise is also known from
a homogeneous excitable medium [100]. The mean firing rate of the active cells is
rmean ≈ 0.1 and the mean external concentration is zmean ≈ 0.8.
Slightly increased noise strength destroys the spiral wave structure by splitting it into

short fragmented traveling segments that nucleate and annihilate in a random manner
as described in section 2.3.3. The release of potassium in the exterior is still sufficiently
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3 Dynamical structures in a heterogeneous active medium

low and no fixed point exists at high z–values. The external concentration has time to
decay to zero during the refractory and inactive periodes of the units as indicated by
the dominating blue color in the figure.
For comparison, in the two–layer system and for a decay rate of β ≈ 4 or smaller only

short living wave segments supported by noise appear, indicating that this situation is
close to the subexcitable regime.

3.5.2 Noise supported traveling clusters (Fig. 3.11)
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Figure 3.11: Parameter set 2, Colors as in Fig. 3.10. (a): self–feeding clusters, (b):
activator time series of an arbitrarily chosen cell and of a neighboring z–
cell, (c)-(f): snapshots of nucleating, wandering and decaying clusters

The pronounced difference to the former set of parameters is the very large z–diffusion
coefficient κ and a high noise level. Furthermore, it is the only set for which we set
absorbing boundaries, where z = 0. Nuclei that would lead to coherent patterns like
spirals diffuse very fast forming still connected clusters of delivered z. Such developed
clusters can live relatively long wandering through the medium due to the forcing.
The local dynamics is excitable and possess only the low fixed point as a steady

state. Due to the fast z–diffusion a large group of units gets activated whenever an
unit is excited. It supports the formation of a localized high–level z region. Inside those
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3.5 Patterns in a spatially extended medium

clusters the threshold of the units is lowered which support the release of z. This process
leads to self–feeding meandering cluster as depicted in the snapshots of Fig. 3.11 (c-f).
Due to absorbing boundaries released z cannot accumulate. Diffusion quickly transports
z to the boundaries where it flows off.
Note that noise is necessary during the whole time to keep the clusters alive. When

the noise would be switched off the z–level would decay completely to zero and with it
the clusters. Therefore we identify them as noise–supported.
For the given noise intensity the stochastically occurring spike events are quite regular.

The z level follows the activation and forms also coherent oscillation–like elongations as
shown in Fig. 3.11 (b). The mean rate is rmean ≈ 0.2 and the mean z concentration is
zmean ≈ 1.0.

3.5.3 Desynchronized oscillators embedded in a z-sea (Fig. 3.12)

z

0

9

18

(a)

0 10 20 30 40 50 60−3

−2

−1

0

1

2

t

u
28
,2
8

(b)

Figure 3.12: Parameter set 3: (a) Elevated z–level due to permanently oscillating active
cells. Colors as in Fig. 3.10 (a). (b) Activator time series of an arbitrarily
chosen cell.

Compared to the former case less potassium is released but it is also decay more
slowly. The firing time of excitable units tspike ≈ 0.5 is shorter than the decay time
β−1 of z. Therefore we observe oscillating units (Fig. 3.12) embedded in an exterior in
which a high z–level survives longer than the duration of one oscillation period. Thus
the exterior is permanently fed by potassium which is distributed quickly over the whole
medium, shown in Fig. 3.12 (a) as homogeneous green color.
Starting at the z = 0 level, the active units first perform the noise induced transition

to the oscillatory behavior. Except for the the initiating perturbation noise is not needed
to keep the oscillation alive. All units moves along the stable periodic orbit but with
different phases. Along these units the medium is quickly filled with z which starts to
propagate elevating the neighborhood and forming a front like spread over the space. It
is a typical scenario of nucleation in systems with multiple attractors.
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3 Dynamical structures in a heterogeneous active medium

After the transition a quasi–steady picture remains with a sea of high potassium
populated by active units blinking regularly and feeding the exterior with potassium.
We find for the oscillation frequency rmean ≈ 0.34 and for the mean exterior zmean ≈ 5.7.
For a slower diffusion, after a transient, a chess–like blinking pattern is formed based on

the anti–phase firing of neighboring units inside a sea of high z–level. In the deterministic
case regular phase waves move across the medium. Noise adds irregularity and evokes
wave break–up and desynchronization.
In Fig. 3.14 (a) the spatial correlation function is shown for an arbitrary unit over

the distance to its neighboring excitable units along a row. The solid line represents the
long range correlation to the active units in the neighborhood shortly after the wave–
like propagation of the stimulus. A slow decay of the correlation can be seen expressing
the indirect diffusive coupling. The first dip corresponds to the next–nearest active
unit which is less correlated to the considered unit than the next but one. It reflects
that on average neighboring elements fire preferable in anti–phase. However, a small
amount of noise will drive the system to a complete desynchronized state after a couple
of oscillations, shown as the dashed line in Fig. 3.14 (a).
The described situation is typical for the considered extended system and can be found

over a large parameter range. Also in the two–layer system the same oscillating regime
exists for the same parameter set.

3.5.4 Oscillations form a propagating ring-like pattern (Fig. 3.13)
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Figure 3.13: Parameter set 4: (a) Noise induced concentric waves. Colors as in
Fig. 3.10 (a). (b) Activator time series of an arbitrarily chosen cell.

Similar to the former parameter set, a single cell, fluctuating around the rest state, can
reach the stable limit cycle by overcoming the unstable limit cycle due to noise. For the
chosen noise level these events are rare. Once happened β is so small, that the z–level can
rise around the oscillating cell and lowers the threshold of the neighboring cells without
decaying before. Therefore all active units can be elevated to the oscillatory behavior
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3.5 Patterns in a spatially extended medium

successively and a concentric wave appears, shown in Fig. 3.13 with a typical time series
for u recorded from a single cell. For the chosen parameter values the oscillation period
after the transition is rmean ≈ 0.25, while the z–level averages zmean ≈ 6.0. Compared
to the last case diffusion of potassium is reduced drastically. This gives rise to the fact
that the spatial structure can establish at the length scale of a few units.
In Fig. 3.14 (b) the spatial correlation is contrasted with set 3. The solid line shows

a long range correlation shortly after initiating the wave pattern. The active units are
well synchronized and it takes longer time until the structure is destroyed by noise. The
latter desynchronized state corresponds to the dashed line in Fig. 3.14 (b).
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Figure 3.14: Spatial correlation of set 3 (a) and set 4 (b) over the distance to neighboring
units neglecting the inactive sites. Solid lines indicate transient behavior
for early times, dashed lines show the system which becomes uncorrelated
due to noise.

Increasing β the stable and unstable limit cycle annihilate and the local dynamics is
excitable with a single stable fixed point. A noise induced super–threshold perturbation
leads to a singular firing event of the active cell and the z–level in its neighborhood
increases. This elevated concentration ignites neighboring units once and a singular
concentric ring–wave emerges.
Further increase of β shifts the dynamical behavior closer to the subexcitable regime

in which wave segments with open ends exist. Such activated wave segments can be
stabilized over a long time while they travel through the medium. Those patterns always
decay in the two–layer situation. The released z can diffuse to each site of the array
without restriction. Hence, the release rate α needs to be larger in order to provide the
development of stable patterns. Choosing α = 15, for example, and starting with an
initial nucleus which is large enough a structure is formed which we want to call oscillon.
It is an extended but localized spot fed by released z supported by oscillating cells inside
and surrounded by inactive cells. The fixed radius originates in the balance of release
rate and diffusion versus the decay rate of z.
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Figure 3.15: parameter set 5: (a) A bistable wave covers the medium with the high-level
z state. Colors as in Fig. 3.10 (a). (b) Noise induced inverted spirals and
waves with polarized states appear. The z–scale is the same as in (a).

3.5.5 Bistability and inverted waves. (Fig. 3.15)

In this last considered parameter set we apply the largest release rate α coming along
with the highest z–level. After the nucleation of a bistable wave, as shown in Fig. 3.15
(a) the entire space becomes occupied by the high–level z state (z → zmax ≈ 24).
The second stable fixed point exists due to bifurcation of a additional upper state

corresponding to a constant depolarization of the units, as discussed in the section 3.2.3
for the local dynamics. The vicinity of the activated cells is permanently filled with z
dissipated with the rate β and diffusively distributed with the coefficient κ. Similar to
the situation depicted in Fig. 3.6, during the transition from the low to high z state
units oscillate within the propagation front. The extension of this oscillating front can
be enlarged depending on parameter values.
Using periodic boundaries after the front has propageted through the medium the

depolarized high z state is frozen. Biologically interpreted the medium is contaminated
with potassium keeping the neurons permanently depolarized. That would lead to a
serious damage of the cell tissue after few minutes and finally causes cell death as referred
in the introduction of this chapter [36].
The presence of noise can break this frozen situation. Stochastic fluctuations may

force single units into the transient oscillatory regime, so that the polarized lower state
is crossed and less z is released. That leads to a local decay of the maximal z state.
This mechanism creates holes engraved into the high–level z sea. By diffusion those
wholes can spread forming patterns like inverted spirals or propagating waves as shown
in Fig. 3.15 (b). They can be seen as the symmetric relatives to the typical waves
and spirals as found for set 1. Such coherent patterns do not exist in the vicinity of
the considered parameter range for the two–layer system, after the high–level z state is
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reached. Only singular and disconnected holes occur stochastically.
Note that the lower state is still stable and the dynamics is bistable or even multistable.

Thus, depending on the noise configuration, the system can reach the z = 0 state
completely by the backward propagation of an inverted bistable front.
Other types of unconventional patterns have been reported previously. These are

rotating spirals or target waves which run from outward to the center called antispirals
or antiwaves, respectively. Such patterns have been found in the BZ reaction and other
chemical reactions and can be described by specific reaction–diffusion systems [151, 130,
102]. However, in our case the rotational direction of the spirals and the propagation of
waves is the same as for common waves as presented in Set 1.

3.6 Noise induced regularity at absorbing boundaries

The discovered diversity of patterns in the FNK model lead to several open questions.
One of these concerns the interaction with boundaries. The latter parameter set 5 is
described for periodic boundaries. The situation changes, when fixed boundaries are
used. In particular, we want to take a look at Dirichlet boundary conditions with
fixed z = 0. In contrast to periodic boundaries, the medium cannot reach the frozen
depolarized state after it is filled with high level potassium. The concentration flows
across the boundary when a high z–front arrives at them. Under certain conditions
and without noise the front turns around and moves back to the origin of the nucleus
returning the whole system to the z = 0 level. We will discuss the interaction of a
bistable fronts and the conditions of rebounding in more detail in the next chapter.
For the extended FNK model we study parameter values that let the front reflect

on the boundary. We focus on the effects of noise which increases the probability of
nucleation events. After the rebound of an initial front from the boundary the region
near the boundary is prone to get excited by noise. Successive nucleations start spreading
while the part of the font which is directed to the boundary gets reflected. Thus a wave
train appears running from the boundary to the center. This is illustrated for a one–
dimensional FNK system in Fig. 3.16 (a) where the z–level is shown in a space–time
diagram. High level z waves (white) are created close to the boundary and move to
the center more or less regularly, where they annihilate with the wave coming from the
opposite boundary.
For an optimal chosen noise intensity a wave nucleates directly after the recovery time

of the previous wave. Depending on parameter values the recovery time is of the order of
O(10) and thus the wave generation rate for this case is around 0.1. This value is almost
reached as shown in Fig. 3.16 (b) where the nucleation rate is depicted in dependence
on noise intensity and distance to the boundary. The rate diminishes for higher noise
because waves can be destroyed which disturbs regularity. On the other hand less noise
leads to gaps of irregular length after a wave is created. Thus, there is a maximum in
the nucleation rate for an optimal noise value. Such effects where a finite noise intensity
maximizes the regularity whithin a dynamical system where already mentioned for the
patterns from set 1. This counterintuitive mechanism is often found in excitable system
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Figure 3.16: (a): Space–time plot of the one–dimensional FNK system interacting with
absorbing boundaries. The z–variable is shown coded in gray levels.
(b): Nucleation rate in dependence on noise intensity σ and distance to
the boundary. Parameter values: ε = 0.04, a0 = 1.04, C = 0.1, α = 300,
β = 13, us = 0.05, τl = 6, τr = 1, κ = 4 and σ = 0.00175

studied in numerous works as [100, 90, 63].

Additionally the dependency on the distance to one of the boundaries is shown. As it
can be seen, the highest nucleation probability does not occur directly at the boundary
but a little distant. This fact is due to the strict fixation of the boundary site which
influence the nearest neighborhood of the boundary. Farther from the boundary the rate
decreases rapidly because those sites are mostly occupied with traveling waves where
further events are impossible.

Closing the section about spatially extended patterns we want to subsume the re-
ported patterns in an overview given in Fig. 3.17. As already presented, the patterns
are arranged in the order of rising z–level. For the second axis we choose the diffusion
parameter κ which controls the pattern expansion. The left handed section represents
essentially the mono–stable excitable medium close to the FHN dynamics. Thus we find
the classical spiral and wave patterns. In the middle domain for intermediate z–level
units possess a stable periodic orbit solution. Their self–sustained oscillatory behavior
delivers z permanently in the environment. Typically, firing events are desynchronize,
while embedded and supported by a vagrant z–sea. Extended wandering clusters appear
through high diffusion, whereas low diffusion results in higher regularity and therefore
coherent patterns. Even higher z stabilizes the upper steady state where inverted struc-
tures engraved into the potassium contaminated medium can occur. Note that boundary
effects are not included in this scheme and therefore it is a rough classification.
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Figure 3.17: Overview of patterns presented in the current chapter ordered by the aver-
aged z–level and the diffusion coefficient.

3.7 Conclusions
In this section we have introduced a model that qualitatively describes the neuronal dy-
namics at variable extracellular concentration of potassium ions. Using the FitzHugh–
Nagumo model as prototype for an excitable unit, we added a dynamical equation that
qualitatively takes into account the potassium release from neuronal units and depolar-
ization (threshold lowering) as a result of the increased extracellular potassium level.
The analysis of the model for a single unit, for two coupled units, as well as for an
extended array have shown that:

(i) The local deterministic model exhibits stable periodic orbits and an upper stable
fixed point when the coupling C is increased in addition to the stable steady state
from the FHN system.

(ii) The stochastic model of a potassium driven excitable neuron shows resonant be-
havior as subthreshold oscillations for higher values of potassium. With increasing
noise intensity the power spectrum differs from the FHN type with strong time
scale separation. It shows a pronounced and narrow peak at a frequency different
from zero. The broad peak disappears with increasing noise intensity.
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3 Dynamical structures in a heterogeneous active medium

(iii) In the excitable regime two potassium–coupled neurons can ignite each other and
trigger a spike sequence when C is large enough. The oscillation is synchronized in
anti–phase and possessing a frequency doubled to the spiking of a singular neuron.

(iv) A two–dimensional array of potassium–driven neurons shows a variety of noise–
induced spatial–temporal firing patterns depending on the release and decay rates
of z and its diffusion coefficient. Besides patterns known from two–component
RDS systems we find extraordinary patterns like long–living randomly–walking
spots of depolarized states or the high–level potassium state with inverted spirals.

(v) For special parameter regions finite noise intensity leads to higher regularity in the
nucleation rates close to absorbing barriers or in the local spike activity of active
units.

In spite of the simplicity of the generalized model we use, some connections can be
made between our results and relevant neuro–physiological studies, namely, the well
known but still debated ’potassium accumulation hypothesis’ [42, 32, 36] that consid-
ers the self–sustained rise of extracellular potassium as the cause of epileptic activity.
Our computational results could be classified as following: the short–term activation of
the z medium (including concentric and running waves) might describe the potassium
dynamics within the physiological range, while the patterns with persistent high level
z resemble the formation of epileptic seizure and thus can be regarded as representing
pathological conditions.
Furthermore the presented patterns can be found in experiments of specific chemical

reactions as already referred in the chapter. Typical patterns as waves and spirals found
in set 1 and set 4 can be created for example in the in the BZ reaction [13] or in the CO
oxidation on platinum [124] for which Gerhard Ertl receives the Nobelprize in chemistry
in 2007.
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4 Bistable wave fronts interacting with
boundaries

4.1 Introduction

The previous chapter was closed with a discussion about nucleation effects near the sys-
tem boundaries. In this chapter we want to extend these considerations by investigating
the interaction of dissipative wave fronts with boundaries. In general, every imagin-
able experimental situation as well as every natural system is delimited by boundaries.
Experiments in chemical laboratory conditions for instance are often implemented in
petri–dishes or similar geometrical and material confinements. At those boundaries no
chemical agents leak in the exterior which causes no–flux or Neumann boundaries defined
by gradients of the concentration fields that vanish at the boundary position [82, 44, 46].
Corresponding reaction–diffusion models were numerical investigated in order to study
the diversity induced by boundaries over an extended parameter space, which is not
easily possible in experiments [109, 167].
So, it can be claimed, that for chemical reactions no–flux boundaries are the canonical

boundary condition. However, there are biological situations for which other types of
boundaries should be applied. Reminding the Potassium dynamics, as described in the
previous chapter, we modeled ion release through a membrane into a extracellular region
of low–level Potassium concentration. Neglecting detailed dynamics within this region
the ions could be considered as getting absorbed immediately. That absorption could
originate in a fast diffusion or in a highly receptive glia cell network. On the other
hand one may consider the interaction of this low–level extracellular concentration with
a passive bath of high–level concentration. In both cases the boundary values need
to be fixed at a constant concentration value. These Dirichlet boundaries are often
called absorbing boundaries, because in many cases boundary values are set to zero. For
theoretical modeling of complex patterns in RDS absorbing boundaries are sometimes
implemented in order to study the interaction mathematically [138, 7].
To not leave things incomplete we mention the two remaining main types of boundary

conditions which are periodic and natural boundaries. The first deals with a finite
geometry that is spatially folded at the begin and at the end. So the spatial geometry
is a ring in one or a torus in two dimensions. The second type are boundaries that fix
the field values in the infinity to make sure that there is no interaction of patterns with
any system limits.
In the following chapter we are indeed interested in interaction effects of patterns with

boundaries while we focus on the absorbing or Dirichlet type. We will approach that issue
from different sides corresponding to different levels of assumptions and simplifications.
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4 Bistable wave fronts interacting with boundaries

However, one assumption every approach has in common. We concentrate exclusively on
bistable fronts within this chapter. With this simplification we only need to consider a
single transition from one phase to another, in contrast to excitable pulses that possess an
additional back side. Considered bistable fronts here may be regarded as the forefront of
an excitable wave in its short term behavior. Then it approximates a spatially extended
excitable wave before the recovery period.
Bistable fronts are one the very first dissipative patterns that has been studied, be-

cause they already appear in one–component system that have at least a nonlinearity
of quadratic order. The dynamics is described by the famous Fisher–Kolmogorov equa-
tion [33, 71]. Later on, other systems with traveling fronts are investigated for example
for a reaction–diffusion model of an abstract bistable chemical reaction, for the spin
propagation in the Ising-model or for crystal growth [127, 41, 78] Wave propagation is
a phenomenon that occur far from the thermal equilibrium where effects of finite tem-
perature causing stochastic fluctuations play an important role. Hence, the impact of
thermic noise on front propagation attracted much interest [126, 104].
The model systems applied in the mentioned references are quite diverse. However,

for the sake of manageability and because of its condensed mathematical structure some
authors applied the FHN system in order to study universal phenomena of bistable
fronts [45, 107]. As mentioned in the introductory section 1.1 the FHN model does
not only exhibit excitatory or oscillatory behavior but also bistable dynamics. That is
controlled by the relative position of the activator an inhibitor nullcline possessing three
intersections in the bistable case. However, it is of eminent importance for the spatially
extended case which slope the linear nullcline has. The effect on the bistable fronts is
illustrated in Fig. 4.1 where the abstract phase space behavior and the corresponding
space–time plot are shown. For the case shown in Fig. 4.1 (a) the inhibitor nullcline
has a positive slope. The two fixed points, marked as black circles, are stable in the
local dynamics. However, the addition of a diffusion term can destabilize them which
lead to trajectories, sketched as arrows in the phase space figure, which run from such a
diffusively destabilized fixed point to the other remaining stable fixed point. In space this
is represented as a traveling front transforming the system from one state into another
as it can be seen in the space–time plot. Fig. 4.1 (a) shows a situation in which the
stability of both of the fixed points can fall prey to diffusion. Hence, fronts propagating
in both directions can occur for one parameter set. For the attendant space–time plot
the initial activator level is set to the upper fixed point except for a certain section where
the level is set to the lower state. The edges of this inhomogeneity start to propagate in
space and time as traveling fronts at first with different velocities and after a convergent
transient with a common velocity and a finite distance. Note that front directions does
not mean spatial directions here, but define the transition from the lower to the upper
stable state or vice versa.
In Fig. 4.1 (b) the contrary case is shown, in which the stability of the two fixed

point cannot be influenced by diffusion. An initial inhomogeneity, such as the anti–kink
structure we have used for the first case, induces a front propagation that transforms
the whole medium into that fixed point state, whose attractive force is stronger. This
decision can be controlled by a slightly asymmetric position of the linear nullcline.
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Figure 4.1: Two scenarios of bistable front propagation are illustrated. (a): A positive
slope of the inhibitor nullcline can lead to diffusion–induced destabilization of
the fixed points causing traveling fronts in both directions. (b): A negative
slope of the inhibitor nullcline solely lead to a compensation of a initial
inhomogeneity.

One of the characteristic quantities describing theses fronts is the front velocity, which
will play an important role in the following considerations. For this reason we want to
touch an important feature of such bistable two–component systems even though it will
be treated in detail in the coming sections. As suggested for the first scenario presented
in Fig. 4.1 (a) two values for the front velocity with opposite signs coexists for a certain
parameter range and thus the dependence of this velocity on a control parameter has a
hysteresis shape. In Fig. 4.2 this case is contrasted to the second presented scenario from
Fig. 4.1 (b) in which the velocity always depends monotonically on the control parameter.
This general feature is referred also for front dynamics in different RDS [103]. In the
following chapter we will focus on the more complex first case (a), shown as solid lines
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Figure 4.2: Scheme of two scenarios of the velocity dependence on a control parameter.
The solid/dotted line represent the case in which two stable velocities can
coexist whereas the dashed line represent a monostable velocity regime

for stable velocities in the figure and a dotted line for the unstable velocity branch. Note
least because of the analogy to the FNK system from the previous chapter whose specific
positions of nullclines corresponds to this case.
At first we will introduce a local bistable form of the FHN model, with which we

are already familiar. Before we study the effect of diffusion in a continuous spatially
extended system we consider an one–dimensional array of discrete coupled units. That
allows an investigation of the front velocity and boundary effects on the level of null-
clines in phase space. Those discrete arrays are nothing completely abstract but can
be investigated experimental and theoretical for chemical systems [80] or for coupled
electronic units [91, 8]. The continuous bistable front will be studied for a diffusing
activator and a locally acting inhibitor as well as for diffusion in both variables. The
main quantity that characterizes the dynamical regimes we will study here, is the front
velocity. Beside a relation of the velocity and the distance to boundaries we will also
find approximate expressions for the bulk velocities and related critical parameter values
indicating bifurcations. Finally we explore the influence of noise and its effect on the
behavior close to the boundaries.

4.2 Local kinetics and linearization

For the specific form of the FHN system that will be used as the local reaction, we choose

u̇ = f(u)− v , v̇ = ε g(u, v) (4.1)

with f(u) = u− 1
3u

3 and g(u, v) = au− v + b .

The parameter ε has its usual function to control the separation of activator and inhibitor
time scale and is assumed to be always small (ε � 1). A value of b below the saddle–
node bifurcation: |b| < bsn = 2

3(1 − a)3/2 and a < 1 ensures the existence of three
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4.2 Local kinetics and linearization

fixed points. Two of them are stable, if the contiguous Hopf–bifurcation is also passed:
b < bHopf = 2

3 − a < bsn. The slope of the linear inhibitor nullcline is given by the
parameter a whereas b determines the shift and thus the degree of asymmetry of the
fixed points. The activator values are given by:

u0
1 = −r cos

[1
3arcos

(
−3

2(1− a)−
3
2 b

)
− π

3

]
−−→
b=0
−
√

3− 3a (stable)

u0
2 = −r cos

[1
3arcos

(
−3

2(1− a)−
3
2 b

)
+ π

3

]
−−→
b=0

0 (unstable) (4.2)

u0
3 = +r cos

[1
3arcos

(
−3

2(1− a)−
3
2 b

)]
−−→
b=0

√
3− 3a (stable)

with r = 2
√

1− a and the order u0
1 < u0

2 < u0
3. The roots of the cubic nullcline function

f(u) yield three branches that can be inverted and linearized separately:

u(v) =


−2 cos

[
θ(v) + π

3
]
, for u < −1

−2 cos
[
θ(v)− π

3
]
, for − 1 ≤ u ≤ 1

2 cos [θ(v)] , for u > 1
(4.3)

≈


−
√

3− 1
2v, for u < − 2√

3
v, for − 2√

3 ≤ u ≤
2√
3√

3− 1
2v, for u > 2√

3

, (4.4)

where θ(v) = 1
3arcos

(
−3

2v
)
. The nullclines in phase space and the linearized branches

are shown in Fig. 4.3 for typical parameters a = 0.2 and b = 0.05.
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Figure 4.3: The nullcline of the Eqs. 4.1. Dashed lines represent the linearized pieces of
the cubic nullcline according to the expressions in Eq. 4.4.
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4.3 Array of coupled units

4.3.1 Thin front

We combine the bistable units to an one–dimensional array with a locally acting coupling
term in the activator. In this discrete representation the model from Eqs. 4.1 can be
rewritten as

u̇i = f(ui)− vi + κ(ui−1 + ui+1 − 2ui) (4.5)
v̇i = ε g(ui, vi) , (4.6)

where i denotes the position of a unit and κ = D/h2 is the coupling constant in the
discrete system which is the diffusion constant D in the continuous system in the limit
h→ 0. We use Dirichlet boundary conditions for the right end of the array at the lower
local fixed point at ubR = u0

1 and the left end at the upper fixed point at ubL = u0
3.

Consequently, the initial condition for the array has to be inhomogeneous to fulfill these
boundary conditions. In the following we set the left handed part of the units into the
upper fixed point and the right handed part in the lower fixed point, respectively, as
illustrated in Fig. 4.4. The direction of the front propagation, marked with the arrow in
the figure, is due to the choice of values for a and b.
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Figure 4.4: Set of units forming a bistable front according to Eqs. 4.5–4.6. The solid line
with circles represents activator elements ui and dashed line indicates the
corresponding inhibitor values. Parameter values are a = 0.4, b = 0.05 and
κ = 0.1 such that the front consists of a single unit. Dirichlet boundaries are
chosen such that ubL = u0

3 and ubR = u0
1. This is the generic setup for fronts

during the following chapter. Initial conditions can vary, however, to trigger
both moving directions.

Assuming the front as a solution of a one–component bistable system for a moment,
we can approximate the width of the front as lw = 4

√
6κh/(u0

3−u0
1) [126]. For the array

of discrete units we can thus estimate an upper limit for the coupling constant κmax
below which the front consists of one single element, given as κmax = (u0

3 − u0
1)2/24.
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The dynamics of this thin front can be investigated by considering the single front unit
uF having neighbors that are assumed to be fix at uF−1 = uL and uF+1 = uR. That
leads to an effective shift of the activator nullcline for the front unit due to an additional
next–neighbor coupling term:

va = u− 1
3u

3 + κ(uL + uR − 2u) . (4.7)

The coupling is isotropic so that for uL−u = u−uR the coupling term vanishes and the
nullclines coincide with the uncoupled FHN model, see Fig. 4.5, solid curve 1. Relative
to that unperturbed reference nullcline and to a fixed inhibitor line with a = 0.4 and
b = 0 two special cases are illustrated in the figure. The dashed nullcline corresponds
to the shift due to an unidirectional coupling to a neighboring unit which is elongated
to the maximal activator level umax. For a coupling value of κ = 0.1 < κmax = 0.3 the
lower intersection of the nullclines is shifted to a location where the corresponding fixed
point becomes unstable. The same happens to the upper fixed point when for example
the right handed and left handed neighbors are at or close to rest states and the coupling
value chosen as κ = 0.187 (dashed–dotted line in Fig. 4.5). A unit that is affected by
such discrete coupling constellations starts to move and can trigger the propagation of
the whole front. This will be discussed in the next section.
In numerical simulations of Eqs. 4.5–4.6, using a spacing of h = 1 and an array

that consists of 200 units, we find different modes of front motion and behavior at the
boundaries. In Fig 4.6 four typical space–time plots of bistable fronts are presented.
The labels ’region II - V’ define separate parameter regions and will be discussed in
more detail later. The label ’region I’ will be referred later for a regime of no front
propagation. As the initial configuration for the simulation half of the units are set
in the upper activator fixed point value but only the first third of them have also the
inhibitor value in the fixed point to force front propagation to the right. The remaining
units are set in the lower fixed point. The parameter values for the slope of the inhibitor
nullcline and for the time–scale separation are fixed at a = 0.4 and ε = 0.05, the regions
though are defined by different values of κ and b. In three cases of the presented four
examples in Fig 4.6 this initial setup actually leads to front propagation onto the right
handed boundary whereas in the first case, labelled with ’region II’ the front holds its
position until the inhibitor front have reached the upper fixed point as well whereupon
the fronts moves to the left.
The phenomenology of this and the remaining three cases are characterized by different

boundary interactions, that will be quantified in the following sections.

4.3.2 Propagation failure

In such reaction–diffusion systems with a discretized diffusion term there is always a
coupling value, below which no signal can propagate. This phenomenon is called prop-
agation failure [68, 80]. To estimate this value, let us assume that the coupling term
κ(ui+1 + ui−1 − 2ui) should provide strong enough forcing such that an elongation of a
neighboring site ui±1 induces a super–threshold activation in the considered unit ui.
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Figure 4.5: Nullclines according to Eqs. (4.6) and (4.7). Filled and open circles denote
the stable fixed point locations states and states near Hopf–bifurcation, re-
spectively. Boundary values are denoted by eR (right) and eL (left). The
cubic nullcline of the front unit uF from Eq. 4.7 is shifted due to elongated
positions of neighboring units: The solid curve 1 refer to the free case (κ = 0).
Dashed curve 2 corresponds an effective cubic nullcline of the front unit with
neighbors at uF−1 = umax and uF+1 = u with κ = 0.1 (mono-directional
coupling, lower fixed point becomes unstable). Dashed–dotted curve 3 corre-
sponds to neighbors at uF−1 = 1.3 and uF+1 = ubR = −1.341 with κ = 0.187
(interaction with boundary, upper fixed point becomes unstable). Parameter
values a = 0.4 and b = 0 remain constant.

We expect the front to start moving when the coupling is strong enough to shift the
fixed points (marked as eL and eR in Fig. 4.5) beyond the extrema of the cubic activator
nullcline, where they are unstable. The maximal activator value, a unit can reach, is
given by

umax = 2 cos
(1

3arcos
[
−3

2(au0
1 + b)

])
(4.8)

≈ 2
√

3
a+ 2(a− b+ 1) , (4.9)

illustrated by a dashed line in Fig. 4.5. The expression in Eq. 4.9 is due to the linearized
nullclines, mentioned in section 4.2. The next–neighbor coupling term (umax−u) acts on
the considered unit with the strength κ that can be large enough, to force the rest state
into an unstable region. At the critical value for κ, marked in Fig. 4.5 as empty circles,
a subcritical Hopf–bifurcation takes place and an unstable periodic orbit appears. From
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4.3 Array of coupled units

Figure 4.6: Different front behavior illustrated in space–time plots for varying parameters
obtained by numerical simulations. The gray scale represents the activator
value that ranges between the upper (white) and lower (black) fixed point.
Parameter values for region II: b = 0.15, κ = 0.1, region III: b = 0.03,
κ = 0.15, region VI: b = 0.1, κ = 0.2, region V: b = 0.03, κ = 0.25, remaining
parameters for each region: a = 0.4, ε = 0.05.

the condition for the Hopf–bifurcation we obtain:

v′a = (1− κHopf)− u2 != 0 ⇒ uHopf = ±
√

1− κHopf

va(uHopf) = vi(uHopf) ⇒ ±
(2

3(1− κHopf)− a
)√

1− κHopf + κHopfumax − b = 0 .

(4.10)

At these critical parameter values, the lower fixed point eR becomes unstable and the
wave starts moving to the right according to the chosen initial conditions. The analogous
consideration can be made for the destabilization of the upper fixed point eL at which
the term κ(umin − u) acts locally on the activator nullcline and makes the front run to
the left boundary. Using the linearized terms for umax and umin we find two expressions
b1,2(κHopf), shown in Fig. 4.8 as dashed lines. The monotonically decreasing line marks
the transition from a not moving wave profile to a front propagating to the left, corre-
sponding to the destabilization of the upper fixed point. For positive b this propagation
failure limit is at lower κ than for the front moving to the right (increasing dashed line).
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4 Bistable wave fronts interacting with boundaries

This can be understood by the asymmetric positions of the lower and upper fixed point
for b 6= 0. The coupling–induced shift of the cubic nullcline thus may be only sufficient
to destabilize one of the fixed points which makes the propagation failure dependent on
the direction of motion.

4.3.3 Interaction with the boundaries

When the traveling front approaches one of the boundaries it either reverses and moves
back in the opposite direction or it stops at the boundary and forms a stationary profile,
as the four cases from Fig. 4.6 suggest. In the following we want to understand the
mechanism of that different behavior and we will estimate parameter values that define
the regions I – V.
We consider the front running to the left boundary where the boundary value (or the

value of the zeroth unit) is set to u0 = ubL = u0
3 and so is every unit before the unit

approaches. For a coupling κ < κmax the units become elongated from the u0
3 state one

after another. Trajectories in phase space for the very first and second unit next to the
boundary is shown in Fig. 4.7 in relation to the nullclines of an uncoupled FHN unit.
The second unit almost perform the whole excursion in phase space as known from a
uncoupled unit whereas the dynamics of the first unit is biased due to its fixed neighbor.
Depending on the coupling strength, both units reach a stable state and remain in that
new position as depicted in Fig. 4.7 (a) for κ = 0.24181. This local behavior corresponds
to a front that stops at the boundary and forms a stationary profile. A coupling strength
which is increased by an amount of 10−5 leads to trajectories that follow a homoclinic
orbit returning to the upper fixed point (Fig. 4.7 b), corresponding to rebounding wave
front.
In order to investigate the critical value of κ we assume, that the front affects the

units strictly separated. Then the next–nearest boundary unit u1 has its neighbors in
the moment of a passing front at the activator values: u0 = ubL and u2 = u0

1. Note that
this assumption underestimates the position of u2 even for the thin front regime. As
depicted in Fig. (4.7) that unit does not reach the lower fixed point, but it is close by, so
that we approximate the coupling term for u1 as κ(u0

3 +u0
1−2u1). We already mentioned

the emergence of a Hopf–bifurcation to explain the appearance of propagation failure.
The same argument can be applied here for the transition of a stationary front profile
at the boundary to a rebounding wave front. Similar to the condition in Eq. 4.10 we
obtain

±
(2

3(1− 2κHopf)− a
)√

1− 2κHopf + κHopf(u0
3 + u0

1)− b = 0 , (4.11)

where the positive sign belongs to the upper fixed point and the negative sign to the
lower fixed point, respectively. The condition in Eq. 4.11 leads to two branches shown in
Fig. 4.8 as solid lines. The first monotonically decreasing curve corresponds to the posi-
tive sign and thus to the transition from sticking front at right boundary to a reflecting
front (region III – region IV). Within the region IV, beyond this line the upper fixed
point become unstable and the front rebounds at the right boundary, however stops at
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Figure 4.7: Excursions in phase space of the first unit (u1, v1) (solid line) and the second
unit (u2, v2) (dashed line) of the FHN chain close to the left boundary.
(a): The front get stuck and a stationary front profile is formed for κ =
0.24181. The zoomed region shows the trajectory of (u2, v2) spiraling into
the new fixed point. (b): The wave front rebounds at the boundary for
κ = 0.24182. (remaining parameters set as: a = 0.4, b = 0.05 and ε = 0.05)

the left boundary with ubL = u0
3. This asymmetry would be exactly reversed when the

sign of the parameter would be changed. For a κ beyond the second solid line in Fig. 4.8
both fixed points are destabilized due to the local coupling and the wave repels from the
right and the left boundary performing a continued oscillation between them.
Altogether we distinguish five regions in the bifurcation diagram Fig. 4.8. The pa-

rameter domain labelled as I is the region of complete propagation failure, in which the
front does not move. In region II, the front can only move in one direction onto the left
boundary where it gets stuck. In the small region III, the front is able to move to the
left and to the right without rebounding at one of the boundaries. Rebounding on the
right boundary occurs in region IV and in V the wave rebounds at both sides.
We compare the transition curves evaluated from Eq. 4.10 and Eq. 4.11 with numerical

simulations of the Eqs. 4.5–4.6 represented by open circles in Fig. 4.8. The remaining
parameters are fixed at a = 0.4 and ε = 0.05. The additional line consisting of stars
marks the location of κmax; the limit of the thin front approximation. The mentioned
systematic underestimation can be noticed by the shift to smaller values of κ of the
numerical curves. The main reason for that is the assumption of fixed neighbors in the
coupling term. That is only true for κ→ 0 where the difference between the analytical
and numerical results vanishes. For a coupling strength greater than κmax the numerical
curve clearly deviates from the analytical prediction. Here, more than one unit play a
role for the front dynamics and the simple assumption of a coupling term with fixed
neighbors fails.
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Figure 4.8: Bifurcation lines on (κ, b) parameter plane. Roman numbers indicate re-
gions in which the front behaves such as displayed in Fig. 4.6. Dashed lines
mark the limit of propagation failure to the left (decreasing line) and to the
right (increasing line) evaluated by Eq. 4.10. Solid curves represent Hopf–
bifurcation lines from Eq. 4.10 that separate regions of wave rebound only
at the left (region IV) or on the left and right boundary (region V). Stars
mark the limiting coupling κmax below which one single unit forms the front.
Circles show these transitions due to numerical simulations. Remaining pa-
rameter values are a = 0.4 and ε = 0.05.

4.3.4 Self–sustained oscillation near the boundary
The effects described in the previous section are governed by subcritical Hopf–bifur-
cations. Essentially, the front rebound is explained by the destabilization of stable fixed
points due to the influence neighbors, which are assumed to be constant. For stronger
coupling κ > κmax multiple units form the front shape and thus the neighbors in the
coupling term of these front units are definitively time dependent. Even in the continuous
case the wave still either rebounds at the boundaries in the region of small b or gets stuck
for all times.
If the wave profile at the boundary consists of multiple units, new fixed points can

appear along the inhibitor nullcline, which are not necessarily stable (see Fig. 4.9). Close
to the Hopf–bifurcation after which the front would rebound, small oscillations of the
units belonging to the front near the boundary give notice of the close criticality. We
will find such oscillating fronts at the boundary also for the continuous bistable front
even more pronounced.
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Figure 4.9: Excursions in phase space of the first unit u1 (solid line), the second unit u2
(dashed line) and the third unit u3 (dotted line) of the array close to the left
boundary. For κ = 0.6 and b = 0.15 the wave front gets stuck and a front
profile is formed where units close to the boundary perform self–sustained
oscillations. (Remaining parameters: a = 0.4 and ε = 0.05)

4.4 Continuous bistable front

In this section we turn to a continuous bistable medium described by partial differential
equations. Two cases will be distinguished. First, the pure activator diffusion with a
locally acting inhibitor corresponding to a situation similar to the biological background
of the FNK model. There the inhibitor was interpreted as the immobile membrane or
glial dynamics whereas the activator described the diffusing ion concentration. For this
scenario no boundary effects will be discussed. However, we present an approach to treat
such type of spatially extended dynamics. In the limit of small front velocities as well as
for the limit of small time scale separation of activator and inhibitor evolution we will
find approximate front shapes and critical parameter values where elemental bifurcations
take place.

The second considered case is spatial diffusion of both, the activator and inhibitor.
This may correspond to chemical reaction scenarios where the chemical concentration
acting as an activator and the concentration acting as an inhibitor can spread in space.
For this case we also find the elemental bifurcation even more precisely and furthermore
we will be able to treat boundary effects. We will focus on Dirichlet boundaries that
limits the one–dimensional space on both sides. Front propagation within this finite re-
gion shows different interaction behavior that we will quantify with an distance–velocity
relation. This relation also holds for no–flux boundaries when one single sign is changed.
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4 Bistable wave fronts interacting with boundaries

4.4.1 Diffusing activator – immobile inhibitor

Co–moving frame

In the first instance we present the method applied to investigate the following partial
differential equations. For an activator concentration diffusing in a homogeneous active
medium we obtain the one-dimensional reaction–diffusion equation:

u̇ = f(u)− v +D
∂2

∂x2u , v̇ = εg(u, v) , (4.12)

with the cubic function as exerted in Eq. 4.1. We use the same parameter set for the
local dynamics a, b and ε so that the system is bistable. The discrete units from the
previous section can be considered as densely packed in space with an infinitesimal small
spacing (h→ 0). Beside the trivial homogeneous solution for the Eqs. 4.12 describing a
state in which the whole system occupies one of the local stable fixed points and where
the diffusion term vanishes, there is also a non–trivial inhomogeneous solution including
a smooth front forming the transition from one stable fixed point to the other.
The aim of the following discussion is to quantify approximately that front and to

clarify the different types of motion that exist in dependency on the diffusion coefficient
and the local parameters. Therefore we change into co–moving front coordinates ζ =
x−c t, where c denotes the velocity of the front. Thus both differential equations become
ordinary and read

Du′′ + cu′ + f(u)− v = 0 , cv′(ζ) + εg(u, v) = 0 , (4.13)

where the prime stand for the derivative with respect to the new coordinate ζ now. The
quantity that characterizes the front motion is the velocity c. It may take negative as
well as positive values, depending on the orientation in space and on the balance of the
local fixed points. We will also find a stationary case with zero velocity and a front
forming a stable profile. As mentioned in the beginning we assume a natural boundary
scenario. That means, that not until x → ∞ the front reaches the lower fixed point eR
asymptotically and for x→ −∞ the upper fixed point eL, accordingly. In fact, the front
moves in space without interacting with any boundary in a finite time. Essential bulk
properties such as the existence and stability of back– and forward motion can be studied
that teach us the basic dynamical behavior helping to understand near–boundary effects.

Series expansion in c

The condition for the analysis of Eqs. 4.13 for small velocities is the existence of a solution
where c = 0, labeled as u0. Since there is no propagation failure in continuous systems
we find such a stationary solution only for b = 0, where the lower and upper stable fixed
point are symmetrical attractive (see Eqs. 4.2). Then the basins of attraction have the
same size and no direction of motion is preferred. Around that stationary solution we
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4.4 Continuous bistable front

expand the system in powers of c:

u(ζ) = u0(ζ) + c u1(ζ) + c2 u2(ζ) +O(c3),
v(ζ) = v0(ζ) + c v1(ζ) + c2 v2(ζ) +O(c3), (4.14)

ε = ε0 + c ε1 + c2 ε2 +O(c3) .

We substituting these expressions into Eqs. 4.13 and evaluate terms with the same power
of c. This yields for the 0. order:

Du′′0 + u0 −
1
3u

3
0 − v0 = 0 , v0 = au0 . (4.15)

The inhibitor follows immediately the activator dynamics and one ordinary differential
equation with a cubic nonlinearity remains. Besides the homogeneous solutions corre-
sponding to the three fixed points there is a non–homogenous 0. order front solution
given explicitly as

u0(ζ) = 2u0
3

1 + exp(±βζ) − u
0
3 = u0

3 tanh
(
∓ β

2 ζ
)

with β =
√

2
3Du

0
3 , (4.16)

as known from one–component bistable systems [127, 126].
Both given signs solve Eqs. 4.15. However, due to the boundaries the wave has to reach
asymptotically, the sign can be fixed to be minus. This expression represents a stationary
bistable front as an odd function of the coordinate ζ which can be replaced by x because
c = 0. The activator front thickness can be estimated as lw =

√
8D/(1− a).

The 1. order in c produces the following differential equation:

Du′′1 +
(
1− a− u2

0

)
u1 =

(
a

ε0
− 1

)
u′0 . (4.17)

We identify u1 = u′0 for which the right hand side vanishes. Hence, the corresponding
eigenvalue to u′0 that belongs to the differential operator acting on the left hand side is
zero. Then the inhomogeneity on the right hand side is orthogonal to u′0. That results
in a condition for ε0 (

a

ε0
− 1

)∫ ∞
−∞

(u′0)2 dx = 0 ⇒ ε0 = a . (4.18)

At ε = ε0 a supercritical pitchfork bifurcation takes place, where the stationary front
solution becomes unstable. By substituting the result ε0 = a into Eq. 4.17, it becomes
homogeneous and can be solved by choosing u1 = 0. In the series expansion for b = 0
that means, that the linear term always vanishes. To find stable propagating front
solutions below the bifurcation value, it is necessary to evaluate higher orders of the
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4 Bistable wave fronts interacting with boundaries

expansion. From the 2. and 3. order in c we obtain the conditions:∫ ∞
−∞

(
u′0 u

′′
0 − ε1(u′0)2

)
dx = 0 ⇒ ε1 = 0 ,∫ ∞

−∞

(
u′0 u

′′′
0 − aε2(u′0)2

)
dx = 0 ⇒ ε2 = −2

5
(1− a)
aD

< 0 . (4.19)

With the vanishing first order in the activator u1 = 0 the same order is omitted in the ε
equation in the expansion 4.14. In the c− ε relation we obtain a characteristic square–
root like behavior close the critical point and the front velocity below the bifurcation
value is given by

c = ±
√
ε− ε0
ε2

= ±
√

5
2
a− ε
1− aaD . (4.20)

An example for a = 0.1 andD = 1 is shown in Fig. 4.11 (a) where the solid line represents
the stable velocity branches given by Eq. 4.20. Numerical results, shown as circles, are
in good agreement close to the critical value at ε0 = 0.1. It is important to note, that
for any ε > ε0 no moving front solution exists whatever initial condition or remaining
parameter set is used. Within this parameter region, after a transient time, which indeed
depends on the latter, the activator and inhibitor fronts are completely balanced and
stop moving. This is illustrated in Fig. 4.12 (a) as a space–time plot, where the inhibitor
front is initiated in relation to the activator front such that in the beginning a motion
to the right is induced. That regime may resemble the effect of propagation failure.
However, the origin of the latter lays in the discretization of the array and thus does not
exist in our spatially continuous system due to the characteristic c ∝

√
D dependence

verified in Eq. 4.20.
The corrections to the activator and inhibitor field until the 2. order in c read

u(ζ) = u0(ζ) + c2ζ

2aD u′0(ζ) +O(c3),

v(ζ) = au0(ζ) + c u′0(ζ) + c2
(1
a
u′′0(ζ) + ζ

2D u′0(ζ)
)

+O(c3). (4.21)

By inserting the first expression into the second at the front position (ζ = 0) the para-
metric phase trajectory is given by

v(u) = au+ cβ

2u0
3

(
1 + cβ

au0
3
u

)(
u2 − (u0

3)2
)
. (4.22)

The front shape in space from Eqs. 4.21 of both variables is compared with numerical
simulations in Fig. 4.10 (a) for parameter values (a = 0.3, ε = 0.2 and D = 1) that
lead to a front velocity of c ≈ 0.33. Whenever c 6= 0 the propagating inhibitor front
lags behind the activator front. For first order corrections the bias of the fronts can be
approximately written as
δlag ≈ 2/β arcoth(βc/(a −

√
a2 + β2c2). It grows with increasing c and goes to zero for
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4.4 Continuous bistable front

vanishing velocity. The lag can be estimated for higher orders more precisely, but not in
a closed form. Due to the bias of front positions, one can consider the inhibitor front to
shift the activator front forward. In phase space this is represented as curved heteroclinic
orbits connecting the two stable fixed points, illustrated in Fig. 4.10 (b). In contrast,
for c = 0 the trajectory in phase space follows the inhibitor nullcline which can be seen
directly in Eq. 4.22 when neglecting the second term on the right hand side.
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Figure 4.10: (a): Shape of propagating activator (black and circles) and inhibitor (red
and pluses) fronts. Dashed lines are due to Eqs. 4.21. They are compared to
numerical simulations of Eqs. 4.12 (symbols). (b): Corresponding trajectory
in phase space at ζ = 0 with nullclines (thin lines). Numerical simulations
(symbols) compared to the analytical expression from Eq. 4.22 (thick solid
line). Parameter values: a = 0.3, b = 0, ε = 0.2 and D = 1.

Series expansion in ε

Up to this point the approach is valid close to the stationary solution with c = 0. The
condition was a symmetric situation with b = 0. A supercritical pitchfork bifurcation
point marks the transition from one stable stationary front solution to an unstable
stationary front attended by two stable moving fronts with symmetric velocities (see
Fig. 4.11 a). This symmetry is broken for b 6= 0 and the pitchfork bifurcation splits into
a stable branch and a saddle–node bifurcation. This is known as the Nonequilibrium–
Ising–Bloch bifurcation (NIB).
For the asymmetric case no stationary front solution exists and the series expansion

for small c cannot be applied. Alternatively we study the two–component system (4.12)
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for small values of ε. The series expansion reads

u(ζ) = u0(ζ) + ε u1(ζ) + ε2 u2(ζ) +O(ε3) ,
v(ζ) = v0(ζ) + ε v1(ζ) + ε2 v2(ζ) +O(ε3) , (4.23)

c = c0 + ε c1 + ε2 c2 +O(ε3) .

Similar to the expansion for small velocities in the 0. order approximation the system
collapses to an one–component reaction–diffusion dynamics:

Du′′0 + c0u
′
0 + u0 −

1
3u

3
0 − v0 = 0 , c0v

′
0 = 0 ⇒ v0 = const. (4.24)

comparable to Eq. 4.15 but with finite front velocity c0. The activator solution reads

u0(ζ) = us1 + us3 − us1
1 + exp(±βζ) with β = us3 − us1√

6D
,

and c0 =

√
D

6 (us3 + us1 − 2us2). (4.25)

Here, us1,2,3 denote the activator values of the fixed points of Eq. 4.24 given by the
expression in Eqs. 4.3 with θ(v0). The argument v0 is not specified by Eq. 4.24 but it
can determined by the corresponding inhibitor value of the local fixed points given in
Eqs. 4.2.
The expression for c0 is necessary for further analysis. However, the expression of the

0. order solution of the front is infeasible to determine higher order expressions in the
same way as done in the previous paragraph. For further progress of the series expansion
approach a piecewise linear approximation of the cubic branches of the activator nullcline
is required. We are able to describe the front shape between the nullcline’s extrema at
u = ±1 via linearization according to Eqs. 4.3. The solution of the first equation in
Eqs. 4.24 neglecting the cubic term can be expressed within the interval −1 ≤ ulin ≤ 1
as

ulin(ζ) = A exp
(
c̃0
2Dζ

)
sin (λζ) + v0 within ζ1(ulin = −1) ≤ ζ ≤ ζ2(ulin = 1) , (4.26)

where λ =
√

4D−c̃20
2D . In order to have a monotonic front shape the derivative of this

expression must vanish at the limits of validity. That determines conditions for the
coefficient A and the linearized velocity c̃0. The latter can be explicitly written as

c̃0 =
2
√
D log

(
1−v0
1+v0

)
√
π2 + log2

(
1−v0
1+v0

) . (4.27)

Both expressions for the 0. order front velocity from Eq. 4.25 (c0) and from the ap-
proximated Eq. 4.27 (c̃0) depend on the inhibitor value v0. It can take three different
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values, corresponding to the upper and lower local stable fixed point and the unstable
fixed point in between. These three velocity values corresponds to a stable positive and
a stable negative propagation direction and an unstable velocity branch. They can be
read at the ordinate of Fig. 4.11 (b) as the limit ε→ 0.

For the 1. order in ε we obtain

Du′′1 + c0u
′
0 + c1u

′
0 + u1(1− u2

0)− v1 = 0 , c0v
′
1 + g(u0, v0) = 0 . (4.28)

The second equation for the inhibitor can be integrated when the linear approximation
for the front shape u0 ≈ ulin is used. Inserting the integral expression into the activator
equation yields:

Du′′1 + c̃0u
′
1 + u1 = v1 − c1u

′
lin with v1(ζ) = 1

c̃0

∫ ζ

ζ1
(v0 − aulin(χ)− b) dχ . (4.29)

The homogeneous form of the remaining activator differential equation can be solved
by choosing u1 = u′lin. This derivative is orthogonal to the inhomogeneity and we can
proceed as already done to obtain Eq. 4.18. The orthogonality condition leads to an
expression for c1: ∫ ζ2

ζ1

(
v1 − c1u

′
lin
)
u′lin dζ = 0 ⇒ c1 =

∫ ζ2
ζ1
v1u
′
lin dζ∫ ζ2

ζ1
(u′lin)2 dζ

. (4.30)

In Fig. 4.11 the c − ε relation approximated as c(ε) ≈ c0 + c1ε is depicted as dashed–
dotted lines for the symmetric pitchfork– and the biased saddle–node–bifurcation. They
mark the linear slopes for the stable velocity branches at a strong time scale separa-
tion between the activator and inhibitor variable and hence clearly deviate from the
numerically obtained result when ε becomes too large.

The asymmetry due to b 6= 0 and the associated shift of the inhibitor nullcline in
favor of one of the two stable fixed points results in a difference of the velocity values
for both spatial directions. This is directly connected to the distances from the stable
to the unstable fixed point. When for instance us3 − us2 < us1 − us2, then the front prefers
to cover the system with the us3–state and propagates in the corresponding direction
and vice versa. Nevertheless, for small ε there is always a front velocity directed to
the the less preferred fixed point which is a small branch for positive velocities in case
illustrated in Fig. 4.11. This branch annihilates in a saddle–node bifurcation with an
unstable branch that also arrives from small ε. Unfortunately the exact location of the
saddle–node bifurcation is not covered by a series expansion in ε up the linear order.
However, by applying the ε–expansion for the unstable branch, it is possible to roughly
estimate the position of the bifurcation point. The expansion for the unstable branch
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Figure 4.11: Characteristics of front velocity c in dependence on the time scale parame-
ter ε from numerical simulations (symbols) and series expansions (lines).
(a): Pitchfork bifurcation for the symmetric case b = 0 (a = 0.1). Solid lines
represent the stable branches of Eq. 4.20 from the series expansion in c. The
linear approximation for small ε is shown as dashed–dotted lines. (b): Im-
plied saddle–node bifurcation for b = 0.05 (a = 0.2). Again dashed–dotted
lines represent the small ε approximation for stable solutions, the dashed
line stands for the unstable solution of Eq. 4.33. Remaining parameter:
D = 1.

has to be in orders of
√
ε:

uu(ζ) = uu0(ζ) +
√
ε uu1(ζ) + ε uu2(ζ) +O(ε

√
ε) ,

vu(ζ) =
√
ε vu1 (ζ) + ε vu2 (ζ) +O(ε

√
ε) , (4.31)

cu =
√
ε cu1 + ε cu2 +O(ε

√
ε) .

Here, the index ’u’ indicates the unstable solution. The same linearization ansatz as
applied for the stable branches can be used and we arrive for the 0. order at

uulin = 2 cos
(

ζ√
D

)
for − π

√
D ≤ ζ ≤ π

√
D. (4.32)

The 1. order yields an orthogonality condition that yields a simple expression for cu1 :

cu1 =
√
D(a+ b) , (4.33)

and thus an approximated relation for the unstable branch velocity for small ε, shown
as dashed line in Fig. 4.11 (b). Obviously, in order to describe the curvature at the
saddle–node value higher orders have to be considered. However, the negative branch,
which is completely stable, follows the linear velocity dependence over a large ε range.
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The front propagation in space and time beyond but very close to the pitchfork – and

Figure 4.12: Space–time plots for two scenarios near bifurcations. The gray scale indi-
cates the activator level. Left: close to pitchfork – a = 0.1, b = 0, ε = 0.101
and D = 5.0. Right: close to saddle–node – a = 0.2, b = 0.05, ε = 0.0935
and D = 1.0.

saddle–node bifurcation, is depicted in Fig. 4.12. For both cases initial conditions are
chosen such that the front is driven to the right and thus to positive velocities. In
the pitchfork case, neither the positive nor the negative branch exist for ε > εcrit. So
the initial velocity decreases and after a transient, the front stops moving. Beyond the
saddle–node point there is one stable branch with a finite velocity left and thus, the
front inverts its directions and returns to the left boundary. Interpreting the boundary
interaction it is obvious that the front is not able to rebound due to the absence of a
positive velocity branch.
The upper and lower stable velocity branches and their expansions c(ε) = c0 + εc1

are also insightful in the representation over the asymmetry parameter b as shown in
Fig. 4.13. The results from the series expansion are presented as solid lines that are
in a good agreement with the numerical estimations (symbols) for small ε. Especially
in the monostable area the linear approximation seems to be sufficient to estimate the
velocities. We also notice that the bistable area is more extended the smaller ε is. Even
stronger time scale separation would lead to an extension of the bistable velocity regime
until values of b that are beyond the condition for a local bistable dynamics. The local
system then undergoes a Hopf–bifurcation that terminates the stability of one of the
stable fixed points. Also seen in the figure is the fact, that close to the bifurcation
values, the evaluated linear expression fails and the critical points are missed.
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Figure 4.13: Bulk–velocities of the front versus b. Solid lines are due to series expansion
in ε, symbols represent numerical simulations. (a): a = 0.1, (b): a = 0.2
and D = 1 for both.

4.4.2 Activator and inhibitor diffusion

If both, the activator and the inhibitor substance are mobile, the inhibitor is also de-
scribed by a field v(x, t) and its dynamics obeys a parabolic partial differential equation,
too. The method presented here is similar to an approach of E. Meron et al. [46] that
was however applied for a single–edge no–flux boundary.
The Eqs. 4.12 change into

u̇ = f(u)− v +Du∆u (4.34)
v̇ = ε g(u, v) +Dv∆v .

The space can be rescaled by x =
√
Duy, which leads to a inhibitor diffusion constant

being the ratio δ = Dv/Du. The characteristic inhibitor diffusion length is then given
by lD =

√
δ/ε. For small ε this length may be remarkably greater than the activator

diffusion range and the dynamics is dominated by the inhibitor diffusion. This system
behaves rather different to the system analyzed in section 4.4.1 due to the non–vanishing
inhibitor diffusion that governs the dynamics for lD � 0. Within this parameter range,
adiabatic elimination can be assumed to be valid, as ε � 1. Therein the much faster
activator process follows the inhibitor immediately and we can suppose that along the
stable branches of the cubic nullcline u(t) = u(v(t)) holds.
In co–moving frame of the front coordinate is shifted to ζ = y − c t transforming the

partial differential equation for the inhibitor into a ordinary differential of second order.

δv′′(ζ) + cv′(ζ) + ε
(
au(v)− v + b

)
= 0 . (4.35)

For the inverted cubic branches u(v) we apply the linearized expressions from Eqs. 4.4
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4.4 Continuous bistable front

resulting in two linear equations for the upper (positive) stable branch, indicated with
’+’ and for the lower (negative) branch indicated with ’-’ :

v′′±(ζ) + 2αv′±(ζ)− η
(
v± − v0

3,1

)
= 0, (4.36)

α = c

2δ , η = ε

δ

(
a+ 1

2

)
and v0

3,1 = 2
a+ 2

(
b±
√

3a
)
,

that have the solutions:

v±(ζ) = e−αζ
(
A±e

λζ +B±e
−λζ

)
+ v0

3,1 , (4.37)

with λ2 = α2 + η > 0. To make the scenario comparable to the previous section we
consider a wave shape that is fixed at the stable equilibrium values of the local dynamics
v0

3 at the left boundary and v0
1 at the right boundary, as illustrated in Fig. 4.4. The

space between the two boundaries has the length L so that the left handed boundary is
located at y = 0 whereas the right handed boundary at y = L. Then the intermediate
front has a certain distance to the left boundary, denoted as d. It is measured from the
value of the unstable fixed point located on the inhibitory front

v(ζ = d) = v0
2 (4.38)

which is different from zero for b 6= 0.

The Dirichlet boundary conditions for the inhibitor field read v+(−d) = v0
3 and

v−(L−d) = v0
1 which are used as initial conditions for Eqs. 4.36. They determine two of

the four coefficients A± and B±. As a merging condition we assume that the upper and
lower front parts meet at a certain front value vF , where also differentiability is requested.
That results in three further conditions: v+(0) = v−(0) = vF and v′+(0) = v′−(0). With
these five conditions not only the four coefficients can be fixed, in addition to it we have
one equation to determine the distance d. Hence, the shape of the moving front would
given as well as its position in between the two boundaries if the value of vF , which
remains unknown, could be fixed.

The determination of the inhibitor front value vF combines the propagating activator
front with its inhibitory counterpart. Assuming the variable v to be constant for a
moment, the front velocity for the one–component reaction–diffusion system with a cubic
nonlinearity is known for the case of natural boundary conditions. With the help of the ε
series expansion we already found an expression for the velocity of a moving front given
in Eq. 4.25. Here we treat the first equation of the set 4.34 with a rescaled diffusion
constant Du = 1. The activator fixed point values us1,2,3 included in Eq. 4.16 depend
on the specific value of v which we identify with the front value vF in the actual case.
Using the mentioned nullcline–linearization the activator bulk velocity can be written in
a compact form:

ca = −
√

3
2vF +O(v2) . (4.39)
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4 Bistable wave fronts interacting with boundaries

We can assume that both the activator and the inhibitor front move with the same ve-
locity. Then, Eq. 4.39 provides the remaining inhibitor front value. Even though this
system acts in a different manner as in the situation of pure activator diffusion, the
front motion far from the boundaries as well as close to them shows the same types
of bifurcation behavior as discussed in the previous sections. As confirmed by numer-
ical simulations of the Eqs. 4.34 we find again reflection or sticking at the boundaries,
dependent on the choice of parameter values.
In the following we will describe the front motion in the phase space of its distance d

to the boundary at y = 0 and the variation of the distance identifiable as front velocity
ḋ = c. Trajectories in that phase space follow the dynamical equations:

ḋ = c , ċ = h(d, c) . (4.40)

Within this picture we will obtain limit cycles that correspond to reflection on both
boundaries and trajectories, that end in stable fixed points at the c = 0 nullcline, where
the front stops moving. By extending the adiabatic elimination approach we will arrive
at an expression to approximate the unknown function h(d, c) and thus the nullcline
dynamics for ċ = 0.
First, we want to study trajectories close to the ḋ = 0 nullcline. Either a trajectory

crosses this nullcline perpendicularly according to a front that changes the moving direc-
tion. Or a trajectory approaches the nullcline and ends in a stable point corresponding
to a stationary front. These points are mostly located close to a boundary, where they
can be described approximately by the decaying part of the front solutions of Eqs. 4.37
given as

left: v−(y) = (v0
3 − v0

1) e−
√
ηy + v0

1 ,

right: v+(y) = (v0
1 − v0

3) e−
√
η(L−y) + v0

3 . (4.41)

At the very edge of the system either the upper or the lower part of the wave description
is sufficient in order to cover the front shape. Both cases are illustrated in Fig. 4.14 for a
symmetric wave (b = 0) and a system length L = 40. The results from Eqs. 4.41 (dashed
lines) are compared to numerical simulations, indicated as symbols in the figures. Shown
is a situation, where the front is completely relaxed at the boundary holding its position.
Due to Eq. 4.39 the front inhibitor value is zero and the distances to the corresponding
boundaries are given by

left: d0 = −
√

2δ
ε(a+ 2) ln

(
v0

1
v0

1 − v0
3

)
,

right: d0 = −
√

2δ
ε(a+ 2) ln

(
v0

3
v0

3 − v0
1

)
. (4.42)

The points (d0, c = 0) at the left and at the right boundary define fixed point locations
in the considered phase space and are marked as unfilled circles in the Figs. 4.16-4.18.
Beyond the estimation of these stationary points the Eqs. 4.37 serve the possibility
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Figure 4.14: Inhibitor front shape at the left (a) and right (b) boundary follows expo-
nential decay according to Eqs. 4.41 (dashed line) compared to simulations
(symbols). Parameter values: a = 0.2, b = 0, ε = 0.02, δ = 1 and L = 40.

to obtain an expression for a distance–velocity relation h(d, c). By applying boundary
and merging conditions and the inclusion of Eq. 4.39 we find explicitly solved for the
distance:

d(c) = 1
2λ(c) ln

[ 1
2∆(α(c)−(∗) λ(c))

(
α(c)∆(1 + σ(c))+√

4σ(c)η∆2 + (α(c)∆(1 + σ(c)) + λ(c)ν(c)(σ(c)− 1))2

+ λ(c)ν(c)(σ(c)− 1)
)]

(4.43)

with σ(c) = e2λ(c)L , ∆ = v0
1 − v0

3 and ν(c) = v0
1 + v0

3 − 2vF (c) .

The star indicates the sign that is to change to a plus sign when no–flux boundaries are
used instead of Dirichlet boundaries. Before we discuss this longish formula let us regard
the asymptotic behavior. By shifting both boundaries to infinity, so that the front is
always far away from having any boundary influence, we obtain the bulk velocity with
its parameter dependencies. For presentability solved for b it reads

b = a+ 2
4

(
2vF (cbulk) + α(cbulk)

λ(cbulk) (v0
3 − v0

1))
)
. (4.44)

This expression contains the regions of mono– and bi–stability and transitions via saddle–
node bifurcations, shown over parameters b and ε in Fig. 4.15. The left figure (a) shows
the positive and negative velocity branch (solid lines) which are symmetrical with respect
to the sign of b. This type of velocity dependency is qualitatively the same as we have
obtained in the previous section where a pure activator diffusion scenario was considered.
For this system we found approximations of stable velocity branches as shown in Fig. 4.11
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4 Bistable wave fronts interacting with boundaries

and Fig. 4.13. For the current system with two diffusing variables we even can locate the
unstable branches represented as dashed line in the figures. The stable velocities can be
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Figure 4.15: Bifurcation diagrams for bulk velocities. Solid and dashed lines are due to
Eq. 4.44 and circles represent numerical simulations. (a): versus asymmetry
parameter b for fixed ε = 0.01, δ = 0.1, (b): versus time scale separation
parameter ε = 0.01 for fixed b = 0.05, δ = 0.5 and a = 0.2 for both.

compared with numerical simulated wave fronts (circles) by integrating the discretized
RDS given by Eqs. 4.34. A sufficient number of elements were taken into account, so
that boundary influence can be assumed to be negligible and the bulk velocity can be
reached. Because of the assumption that the activator follows immediately the inhibitor
dynamics it is clear that the smaller ε is, the better the theoretical curves match the
numerical points. Thus the agreement in figure (a) is almost perfect for the chosen value
of ε = 0.01 whereas in the figure with the ε dependence the differences become stronger
with increasing time scale separation.
In Fig. 4.11 and Fig. 4.13 the same parameter values are used except the missing

inhibitor term, corresponding to δ = 0. Comparing the diagrams showing the bulk
velocity with respect to b, where in the inhibitor diffusion case δ = 0.1 is used the
quantitative correspondence is obvious. Not only the bifurcation points are located both
at b ≈ 0.2, also the velocity values are similar. However, for δ = 0.5 in the diagram
showing the dependence on ε the bifurcation values are clearly different, although the
velocity value at which the upper branch looses stability is comparable.
In a final step of this chapter we will discuss examples of boundary interaction approx-

imately described by Eq. 4.43 and studied by numerical simulations as well. Fig. 4.16
and Fig. 4.17 show the modes of bistable fronts interacting with two boundaries in the
distance-velocity phase space. Depicted are solid lines corresponding to trajectories in
(d, c) space which are obtained numerically. These trajectories represent the evolution
of the position at the inhibitor front taken at the unstable fixed point value v0

2 with its
current velocity. The propagation direction is marked through attendant arrows on the
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4.4 Continuous bistable front

trajectories. Also shown are dashed lines that present the results due to Eq. 4.43 and
circles corresponding to fixed points given in Eqs. 4.42.
Two characteristic modes of movement and boundary contact behavior are to distin-

guish. Both can be found in Fig. 4.16 (a). Trajectories starting in the positive velocity
region propagate a certain distance due to their initial configuration of the activator
and inhibitor wave before they end in one of the both fixed points close to the bound-
aries. However there is also front propagation reaching the bulk velocity and covering a
finite distance until it get attracted by a fixed point. Wether trajectories reach the bulk
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Figure 4.16: Trajectories as solid lines in distance–velocity (d, c) phase space and d(c)
relation from Eq. 4.43 (dashed line) are shown. Open circles represent
the estimated location of fixed points along the c = 0 line. Both pictures
illustrate cases with two stable points close to the boundaries where the
front comes to rest. (a): For b = 0.1 the only stable direction is at c < 0
and the basin of attraction of the right handed fixed point is much smaller
than that of the left handed fixed point. (b): For b = 0.05 an upper velocity
branch for c > 0 appears maintaining the attractiveness of the right handed
fixed point. Remaining parameter values: a = 0.2, ε = 0.01 and δ = 1.

velocity and stay on this c–level for a certain while, or the front slows down after an
acceleration period in the beginning can be predicted by considering the relation from
Eq. 4.43. Calculating d(c) for the specific parameter values either one stable velocity
branch at negative velocities appears, as in Fig. 4.16 (a) or two additional branches oc-
cur, an upper stable and an unstable branch in between growing from the right handed
boundary when b is decreased. They can be identified with the region of mono – and bi–
stability of the bulk velocities in the bifurcation diagram over b, illustrated in Fig. 4.15.
Therefore it is clear, that in the cases where b is chosen to be close to zero both stable
branches exist.
Reflexion at the boundaries is shown for two examples in the Figs. 4.17. The trajectory

of a front that rebounds at the left as well as at the right boundary forms a periodic
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4 Bistable wave fronts interacting with boundaries

orbit on the d, c–plane, shown in Fig. 4.17 (a). For that symmetric case (b = 0) the
front proceeds running from one boundary to the other. In the very moment of the
turn, the inhibitor front does not relax fully into the exponential shape. Thus, the
estimation of the points (d0, 0) from Eq. 4.42 (see the circles in the figure) loses validity.
The distance–velocity relation approximates the saturation velocities and one part of
reflecting behavior. However, it fails at the open ends where the relation predicts a
finite velocity directly at the boundaries.
Choosing a b slightly different from zero changes the situation, as shown in Fig. 4.17

(b). Due to the broken symmetry the positive velocity branch is at smaller values than
the lower branch. Additionally, the front still rebounds at the right handed boundary but
stops at left boundary. The basin of attraction of the corresponding fixed point spans
the negative velocity region. However, for initial conditions close to that fixed point
but set in the positive velocity region the trajectory runs first to the right boundary
before coming back to the left handed fixed point. This behavior resembles typical
characteristics of an excitable system.
The addition of Gaussian white noise to the activator dynamics at the same parame-

ter set as used for the latter example leads to fluctuations around the stationary front
position. Noise forces the phase point out of the basin of attraction erratically corre-
sponding to a front that detaches from the left boundary. Hence, the front performs
stochastically the whole cycle in phase space. Some of such noisy trajectories are shown
in Fig. 4.18 with its equivalent in space–time (figure b). Similar to an excitable neuron
driven by noise, randomly recurrent spikes appear that are robust on their excursion
against further influence of noise. Even subthreshold excitations can be observed as
small elongations from the fixed point.

4.5 Conclusions

The investigation of bistable fronts as a simplified approach to study excitable waves
was the main aspect of this chapter. Our central focus laid on the interaction of fronts
with Dirichlet boundaries and on the understanding of the observed front reflection or
binding at the boundaries.
At first we considered an array consisting of FHN units with activator coupling that

can be analyzed on the basis of local nullclines. For such discretized chains the effect
of propagation failure as well as parameter regions of reflection and binding at the
boundaries could be quantified in the limit of a thin front (see Fig. 4.8). Transitions
from the binding to reflexion regime has been identified as Hopf–bifurcations of the local
stability. Close to these transitions units which are near boundaries and belonging to a
stationary front profile exhibit oscillatory behavior with a small amplitude.
For a continuous bistable front we considered two cases; pure activator diffusion sim-

ilar to the coupled discrete array and diffusion in both variables. The former has been
analyzed without considering boundary effects. However, we found essential dependen-
cies for the bulk velocity of the front by series expansion for small velocities as well as
in the limit of strong time scale separation. Characteristic bifurcation scenarios such
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Figure 4.17: Phase space trajectories and d(c) relation is depicted as in Fig. 4.16.
(a): For that symmetric system (b = 0) both fixed points appear to be
unstable and trajectories run into a periodic orbit indicating reflexion on
both boundaries. (b): Slightly broken symmetry for b = 0.02. Left handed
fixed point is stable where the trajectory ends after reflexion at the right
boundary. Remaining parameter values: a = 0.2, ε = 0.05 and δ = 0.1.
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Figure 4.18: Dynamics under the influence of activator noise for the same parameter set
as shown in Fig. 4.17. The system resembles the behavior of an excitable
system including large excursions to the right boundary and back to the
left handed fixed point. (a): phase portrait and (b) space time plot.

as saddle–node and NIB transitions have been estimated approximately. In addition we
estimated the front shape and the corresponding trajectories in phase space.
When the inhibitor field diffuses in space accessorily while having a comparable dif-
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fusion coefficient then the system can be treated more extensive. For this purpose the
cubic nullcline which defines the local activator dynamics had to be linearized. We found
a relation between the front velocity and the distance of the front from the boundaries
(Eq. 4.43) which gave us an estimative expression to quantify binding and reflexion of
the front at the boundaries. Even the interaction with no–flux boundaries can be de-
scribed by this expression. Furthermore, the limit of infinitely distant boundaries yields
structurally the same bulk velocity behavior as found for the system with an immobile
inhibitor.
To sum up we can fix, that seemingly complex interaction dynamics between a dissi-

pative wave front and system boundaries as already mentioned in the chapter 3 can be
understood and approximately quantified by analyzing bistable FHN–fronts.
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5 Excitable two–state units coupled with
delayed feedback

5.1 Introduction
The transition to oscillatory or bistable behavior from excitable dynamics was one of
the foci in chapter 3 concerning the local FNK model. In such continuous systems
those bifurcations emerge by tuning an appropriate control parameter which leads to an
abrupt change of the dynamical behavior. They belong to the fundamental bifurcations
in complex systems and are thus a well studied mechanism for single excitable units
and for neuronal ensembles [3, 58, 149]. Within such ensembles the coupling type or
its strength can cause those bifurcations although a single element exhibits excitable
behavior, solely. This was exemplified in chapter 3 for the introduced FNK model where
the chemical coupling via the external medium lowers the excitation threshold until a
bifurcation occurs.
We will take up this idea in the present chapter by considering discrete states instead

of continuous systems. The different dynamical states which are in the FHN system
for instance the rest state, excited state and refractory state can be allocated to three
discrete states where the transitions between the states are modeled by waiting time
distributions [118]. Generally, the discrete state approach is a successful method applied
to study various complex stochastic processes [94, 160, 128].
From Langevin equations describing the temporal evolution of continuous variables,

we already discussed the transition to the Fokker–Planck equation. When the time
scales of dynamical processes within the discrete states are short enough compared to
the transitions between these states one can formulate a master equation as a type of
a Fokker–Planck equation integrated over the basins of attraction in phase space, for
which the discrete states are defined. Thus the master equations express the dynamics of
probability to be in a certain state and their transitions to other states with probability
currents.
In this chapter we introduce master equations for a single system possessing two states,

for an ensemble of such systems coupled via instantaneous connections and with delayed
coupling. The latter is caused by synaptic and dendritic signal transfer with finite
velocity and introduces therefore an additional time scale that may lead to significant
change of common dynamical behavior in ensembles of coupled neurons [47, 157, 19, 4,
23, 113].
Discrete models subjected to delayed feedback exhibit a great variety of dynamical

features and they constitute a tractable way to control synchrony in neuronal, chemical
or other individual based systems [106, 56, 70, 163, 146]. A model that consists of
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5 Excitable two–state units coupled with delayed feedback

two states can be met in several applications, from studies of coherence and stochastic
resonance to bifurcation analysis in networks of excitable or bistable units that exhibit
oscillatory behavior [94, 106, 56, 70].
For the discrete states model investigated in the following the waiting times are given

explicitly and bifurcations can be studied by comparing the time scales in a direct
way. We analyze the statistical properties of an individual unit and the steady states
of a globally coupled ensemble analytically and by numerical simulations. A bistable
regime appearing due to saddle–node bifurcations can be found if the coupling includes
a feedback that supports activity. When the feedback is delayed, an oscillatory regime
emerges via a Hopf–bifurcation in the onset of coherent activation and synchronization
of coupled units.

5.2 Individual unit

5.2.1 Model definition

The system under consideration, depicted in Figure 5.1 (a), constitutes a semi-Markovian
process made up of two discrete states with specific waiting times distributed according
to the density functions w1(t) and w2(t), respectively. So, the system spends a random
amount of time in each state, however independent of the time spent in the preceding
state. This single unit aims to mimic a single stochastic excitable system when specific

2

w2(t) w1(t)

1

(a) (b)

Figure 5.1: (a): Scheme of a two-state excitable unit. State 1 assigns as the resting state,
followed by the excited state 2 with their waiting time distributions w1 and
w2. (b): A typical spike of the FHN system in the excitable regime with
colored areas denoting the states abstraction.

distributions are used. In Fig. 5.1 (b) a typical spike event aroused by a noise induced
excitation is shown in order to illustrate the correspondency to the introduced states.
The neuronal activation course (white area) belongs to state 2 while refractory and rest
state are subsumed in state 1 (gray area). It resembles the same compartmentation as
the step function did for the states in the FNK model controlling the release of potassium

88
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(see chapter 3.2.2). In terms of neuron models state 1 can be interpreted as the polarized
state and state 2 as the the depolarized state, respectively.
It is evident that the whole dynamics of such a discrete process is fully specified by

statistical properties of the waiting times between subsequent events. In our system
the process is renewal, however the distributions of the waiting times are chosen to be
unequal according to neuronal behavior. Thus the waiting times in the resting state obey
different statistics than the waiting times in the excited state. The transition 1 → 2 is
modeled as a rate process:

w1(t) = γ exp(−γt) , (5.1)

where both mean and variance equals 1/γ. Eq. 5.1 describes the distribution of escape
times needed, for an excitable system, to leave the rest state, under the influence of
noise. The transition 2→ 1 is modeled by an Erlang distribution:

w2(t) = a2
t2Γ(a2)

(
a2t

t2

)a2−1
exp

(
−a2t

t2

)
, (5.2)

where a2 is integer. The mean value equals t2 and the variance is given as t22/a2. This
distribution describes the waiting time in the excited state corresponding to the quasi–
deterministic spike production when the impact of fluctuations is negligible. Therefore
the width of w2 should be small, realized by choosing large values of a2 where the Erlang
distribution is close to a δ-distribution.

5.2.2 Interspike interval distribution and power spectral density

The renewal process describing the system above gives rise to a stochastic pulse sequence
defined as s(t) = 0 in the rest state and s(t) = 1 in the excited state, illustrated in
Fig. 5.2. Analyzing its statistical properties, characteristic features of excitable systems
can be extracted.

0

1

t

s(
t)

ISI

Figure 5.2: Rectangular shaped output sequence produced by one unit.
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The interspike interval (ISI) is the time between subsequent pulse events as shown
in Fig. 5.2. The distribution of the ISI times can be expressed as the convolution of their
waiting time density functions, since they are assumed to be independent. It is given as

wISI(t) =
∫ t

0
dt′w2(t′)w1(t− t′)

= γ exp(−γt)
(

a2
a2 − γt2

)a2 [
1− Γ (a2, (a2/t2 − γ) t)

Γ(a2)

]
(5.3)

and depicted in Figure 5.3 (a). In the limit of a δ–distribution the ISI distribution is
simply wISI(t) = w1(t).

The corresponding power spectral density (PSD) measures the power of each fre-
quency ω occurring in the pulse sequence s(t). It can be be expressed in terms of the
corresponding waiting time densities [136, 118]: (see Figure 5.3 (b))

S(ω) = 4
ω2(t2 + 1/γ)Re

ω [(1− iωt2/a2)a2 − 1]
(ω + iγ) (1− iωt2/a2)a2 − iγ

. (5.4)

When 1/γ � t2 (dashed lines in Figure 5.3) the unit spends more time in the resting
state and the ISI distribution is broad. That corresponds to low noise intensity and,
hence, rare pulse events. This is reflected in the fact that low frequencies collect more
power. The PSD even has its highest maximum at ω = 0.

Otherwise, if 1/γ � t2 (solid lines in Figure 5.3) the unit behaves like an oscillator
between the two states with a spectral maximum at finite non–zero frequencies. The
corresponding ISI are narrow distributed around the mean period of one cycle (T =
1/γ + t2). Both PSD and ISI give evidence to coherence resonance, as there are some
preferable frequencies that increase the pulse regularity [110, 38, 88, 119].

The choice of functions for the waiting time density distributions w1 and w2 seems to
be plausible regarding the outcome for the ISI distribution and power spectral density.
In the phase space picture of dynamical systems an increase of the activation rate γ can
be interpreted as a lower excitation threshold around fixed point location. In case of
FHN or FNK models a lower threshold gives evidence to a near Hopf–bifurcation point,
which leads to a more resonant behavior of the system. In the section 3.3 both statistical
measures are studied for the FNK model which is depicted in Fig. 3.7. To remind the
reader, increasing the coupling C to the exterior in that model let the imaginary part
of the eigenvalue belonging to the rest state grow, which led to an elevated excitation
probability. Thus, the activation rate γ in the two–state model corresponds to the
coupling C in the FNK model within a certain range. A direct comparison of the ISI
distribution and the power spectral density of the two–state model depicted Fig. 5.3
and for the FNK model shown in Fig. 3.7 shows the same change in their shape with
increasing γ or C, respectively. This corroborates our assumption that the discrete states
approximation is reasonable at least on the base of acting time scales.
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5.2 Individual unit
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Figure 5.3: (a): Interspike interval distribution of a single unit with an exponential (w1)
and an Erlang (w2) waiting time distribution. (b): Corresponding power
spectral density for two different activation rates. Parameters used for Erlang
distributions are a2 = 100, t2 = 3. The solid lines show an oscillatory unit,
while the dashed lines display excitability.

5.2.3 Generalized master equations

The balance of probability flows serves to determine the occupation probabilities Pi(t),
i = 1, 2 of separate states i. The generalized master equations [69] that hold for these
probabilities read:

d

dt
P1(t) = J2→1(t)− J1→2(t) (5.5a)

d

dt
P2(t) = J1→2(t)− J2→1(t) , (5.5b)

where J1→2(t) and J2→1(t) denote the probability flow from state 1 to 2 at time t and
vice versa. Since the transition 1 → 2 is a rate process, its probability flow is given by
J1→2(t) = γP1(t). The second probability flow is given by the product of the inflow in
state 2 in the past J1→2(t− t′) with the waiting time density, w2(t′) to wait the time t′
in state 2, integrated for all possible t′, namely

J2→1(t) =
∫ ∞

0
γP1(t− t′)w2(t′) dt′ . (5.6)

Inserting the probability flows in Eq. (5.5b) yields:

d

dt
P2(t) = γP1(t)−

∫ ∞
0
γP1(t− t′)w2(t′) dt′ . (5.7)
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5 Excitable two–state units coupled with delayed feedback

The equation (5.7) supplemented by the normalization condition P1(t) = 1− P2(t) can
be given in the closed form:

d

dt
P2(t) = γ[1− P2(t)]−

∫ ∞
0
γ[1− P2(t− t′)]w2(t′) dt′ . (5.8)

This integro–differential Eq. (5.8) characterizes the whole dynamics of a single unit.
It has to be supplemented by initial conditions obeying normalization and contains all

the dynamical features of a single unit. So far the only parameter controlling the system
is essentially the rate γ. While the waiting time distribution to be in state 2 is set to
be close to a δ–distribution, this rate controls the distribution of occupation probability
over both states.

5.3 Ensembles of globally coupled units

5.3.1 Instantaneous coupling

2

��

⊕

��

... w2(t) γ(f(t)) ...

1

__

Figure 5.4: Scheme of a two–states unit coupled by the ensemble’s global output f(t).

The collective behavior of a large population of interconnected two–states units, illus-
trated in Figure 5.4, results from the interplay of individual participants. In order to
investigate its dynamics, an ensemble of N units coupled by their global output f(t), is
considered. The information transmitted to each unit of the ensemble is the fraction of
units in the excited state 2. Although the characteristics of the waiting time densities
do not change due to coupling, the activation rate γ depends on f(t). This mechanism
can be expressed by the sum of output of all units

f(t) = 1
N

N∑
j=1

sj(t) = n2(t)
N

, (5.9)

where n2(t) is the number of units in the excited state at time t. Obviously, f(t) equals
the relative occupation number of the excited state. In the continuum limit the output
is the mean occupation probability of state 2

lim
N→∞

f(t) = P2(t) . (5.10)
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5.3 Ensembles of globally coupled units

We thus consider the activation rate as a function of P2(t),

γ = γ(P2(t)) , (5.11)

and as the same for all the units. The equation that governs the collective dynamics of
the ensemble is uniquely determined by the equation (5.8) for occupation probabilities of
individual units. To that end, by taking Eq. (5.11) into account, the Mean–Field (MF)
equation reads:

d

dt
P2(t) = γ(P2(t))[1− P2(t)]

−
∫ ∞

0
γ(P2(t− t′))[1− P2(t− t′)]w2(t′) dt′ , (5.12)

in which the transition rate from state 1 to 2 is now implicitly time dependent. In
general, equation (5.11) induces an implicit form of steady state solutions, which can be
expressed as

P ∗1 = 1/γ(P ∗2 )
1/γ(P ∗2 ) + t2

, P ∗2 = 1− P ∗1 = t2
1/γ(P ∗2 ) + t2

. (5.13)

The reader is advised to consult the appendix B for calculation details. In Eq. 5.13
can be seen that the stationary probability is given as the fraction of mean waiting
times within the states independently on the width of w2 controlled by a2 . Note that
units belonging to the stationary system still pass through the two states following their
individual waiting times. However, regarding the whole ensemble, the fraction of units
being in state 1 and state 2 remain constant. Stability of the steady states given in
Eq. 5.13 can be acquired by adding small perturbations to the stationary probabilities:
Pi(t) = P ∗i + εi exp(λt) +O(ε2i ) (i = 1, 2). Thus the rate expands up to the first order in
the perturbations as

γ(P2) = γ(P ∗2 ) + ε2 e
λt d

dP2
γ(P2)|P∗

2
+O(ε22) . (5.14)

Inserting both perturbed quantities into the MF–equation 5.12 leads to the characteristic
equation for the eigenvalues. It can be formulated as:

λ+ [γ(P ∗2 )− (1− P ∗2 ) d

dP2
γ(P2)|P∗

2
][1− ŵ2(λ)] = 0 , (5.15)

where ŵ2(λ) is the Laplace transform of w2(t):

ŵ2(λ) = L[w2](λ) =
∫ ∞

0
dtw2(t)e−λt . (5.16)

In case of no influence of fluctuation on the excited state the waiting time is δ–distributed
around its mean t2 and its Laplace transform is simply: ŵ2(λ) = e−λt2 . Then the
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5 Excitable two–state units coupled with delayed feedback

characteristic equation takes the form:

λ+ Γ[1− e−λt2 ] = 0 , (5.17)

where Γ stands for the first expression in brackets in Eq. 5.15. The eigenvalue λ can
be separated in real and imaginary parts: λ = Reλ + i Imλ = ν + iΩ. Searching for a
parameter region where Reλ = 0 leads to:

Re : Γ(1− cos Ωt2) = 0 and Im : Ω + Γ sin Ωt2 = 0 . (5.18)

For any Ω 6= 0 the first condition requires Γ = 0 and thus the second condition yields
Ω = 0. This contradiction forbids vanishing real parts and hence, oscillatory behavior
of the ensemble due to the introduced feedback is excluded. The same can be shown for
any waiting time distribution ω2 [117]. Therefore no Hopf–bifurcation appears through
a coupling in the activation rates that would lead to oscillations between the two states.
However, an appropriate choice for the dependence of γ on P2(t) can induce saddle–

node bifurcations and bistability into the ensemble dynamics determined by Eq. (5.12).
In the following we discuss a specific dependency of the rate on P2(t) from which we
require a direct feedback to the activation rate. That means we construct an expression
that leads to either positive or excitatory feeback, which heightens the activation rate
the more units spend their time in state 2. Or, vice versa, a negative or inhibitory
feedback can be considered, for which units occupying state 2 lower the activation rate.
We will quantify bifurcations for an Arrhenius law–like activation rate γ in particular

according to a potential barrier concept. This is motivated by the noise induced escape
process from the rest state 1 interpreted as diffusion over a barrier (see chapter 2.2).
Inhibitory as well as excitatory coupling can be modeled using

γ(P2(t)) = γ0 exp
(
−∆U0

σ
(1∓ κP2(t))

)
, (5.19)

where the latter requires the ’−’ sign in the last term. Here ∆U0 is a potential barrier, σ
is the noise intensity and κ is the coupling strength. This adoption fulfills the conditions
for Kramers’ time (1/γ) when σ is sufficiently low. It has been used in studies of
coherent and stochastic resonance [88, 110] and in globally coupled networks of bistable
elements [55, 62, 118].
We will focus on excitatory feedback, a type of mutual influence that we already

obtained in the response of the FNK model. We will briefly recall that mechanism for
the reader. In the FNK model active units deliver potassium into the extracellular space
that lowers the activation threshold in turn. That constitutes a typical positive feedback
dynamics. Using the excitatory coupling due to Eq. 5.19 and inserting this expression
into Eq. 5.15 we can study the stability of stable fixed points quantitatively.
For low coupling values the ensemble consisting of infinitely many units possesses

one stable stationary configuration wherein the majority of units are in the rest state,
as shown in Figure 5.5 (a). Following this stable branch for intermediate κ, a bistable
regime appears due to a saddle–node bifurcation, where an additional stable and unstable
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Figure 5.5: Bifurcation diagrams of the stationary steady state P ∗2 . (a): Steady states
with respect to coupling strength, monostability: σ = 0.5 as black line (pitch-
fork point), bistability: σ = 0.4 as red lines, r0 = 1 for both. (b): Steady
states with respect to noise intensity, pitchfork at r0 = 1 (black lines), saddle–
node at r0 = 0.8 (red lines). Remaining parameter values: t2 = 1, κ = 2,
∆U0 = 1.

fixed point at a higher P2 value is created (red curve in Figure 5.5 (a)). The unstable
branch annihilates with the stable lower fixed point at higher coupling values through a
second saddle–node bifurcation and the upper stable fixed point remains. The system
leaves bistability and only the upper branch survives, where the majority of units are
excited. Bistability appears for noise intensities below a critical noise value σcrit at
which a pitchfork bifurcation occurs. This is illustrated as a black line in both panels of
Fig. 5.5.
The critical pitchfork values can be determined by comparing the curvature of the

expressions for the steady states in Eqs. 5.13. Applying the second derivative on the
fixed point expression for P2 and using the Arrhenius–type rate from Eq. 5.19 we obtain

t2 = 1
γ(P ∗2 ) and σcrit = ∆U0κ

4 . (5.20)

The first identity reflects the merging of time scales, where the mean waiting times in
both states are equal and the second equation provides the noise value at the pitchfork
bifurcation point for a given coupling. The whole scenario is illustrated in the (σ − κ)
parameter diagram Figure 5.6 where the light gray region stands for the bistable regime
whereas the dark gray region depicts monostability. The border between them shows the
parameter values where the saddle–node bifurcations take place merging in a cusp point
collapsing to the pitchfork bifurcation. Note that the same bifurcation pattern was found
for moving reaction–diffusion fronts, discussed in chapter 4. The insets in Fig. 5.6 show
the corresponding left and right hand sides of the fixed indicate Eq. 5.13 for P ∗2 whose
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5 Excitable two–state units coupled with delayed feedback

number of cross sections point the monostable or bistable behavior. It is important
to note that although the upper branch is stable, a single unit leaves the ensembles’
steady state after its individual excitation time. However the ensemble reaches one of
two states, determined by the system parameters and the initial configuration of units
distributed in both states.

Figure 5.6: Stability diagram on σ − κ plane. The monostable regime is shown in dark
gray, while light gray corresponds to the bistable regime. The borderline
defines the positions of saddle–node bifurcations, merging in the cusp point
of the pitchfork bifurcation (black dot). The insets in the corresponding
regimes show geometrically the stationary states P ∗2 from Eq. (5.13). The
remaining parameters are the same as in Figure 5.5.

5.3.2 Delayed coupling

Up to this point the global output feeds back immediately to the rate γ. However, due
to finite propagating velocity of signals in neural networks we assume a feedback that
needs a certain but fixed delay time τ to act on the individual activation times. That
addition to the model goes without any geometrical assumption or, in other words, every
participating unit is assumed to have the same distance to any other unit. Therefore
there is no heterogeneity in the feedback delay coming from the entire system. The
introduction of such a delayed feedback induces significant variations on the ensemble
dynamics. In the same manner as before, the rate γ is assumed to be anì increasing
function of P2(t− τ), meaning that the activation rate depends on the fraction of units
that were excited at a certain time τ in the past. Extending Eq. 5.12 by the delay the
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5.3 Ensembles of globally coupled units

MF–equation reads:

d

dt
P2(t) = γ(P2(t− τ))[1− P2(t)]

−
∫ ∞

0
γ(P2(t− t′ − τ))[1− P2(t− t′)]w2(t′) dt′ . (5.21)

It is clear that the stationary states in the delayed system are the same as in the case
of instantaneous coupling, given in Eqs. 5.13. However, the stability or the location of
bifurcations can be different. Besides saddle–node bifurcations even a Hopf–bifurcation
can be induced due to the introduction of delayed feedback [43]. It is characterized by
vanishing real part of the fixed point’s eigenvalue simultaneously with a finite imaginary
part, determining the oscillation frequency directly at the bifurcation.

Linear stability analysis leads to the appearance of a factor exp(−λτ) in the linearized
rate:

γ(P2) = γ(P ∗2 ) + ε2 e
λ(t−τ) d

dP2
γ(P2)|P∗

2
+O(ε22) , (5.22)

which propagates into the characteristic equation:

λ+ [γ(P ∗2 )− (1− P ∗2 ) exp(−λτ) d

dP2
γ(P2)|P∗

2
][1− ŵ2(λ)] = 0 . (5.23)

Oppositely to the previous section for a given set of parameters Eq. 5.23 has complex
solutions that pass the imaginary axis simultaneously.

In the following, deviations in the excitation time are completely excluded. By setting
a2 → ∞ the transition 2 → 1 has a fixed time t2 and the waiting time in state 2 is
δ-distributed, namely w2(t) = δ(t − t2). As already mentioned for the limiting case in
Eq. 5.17, its Laplace transform is ŵ2(λ) = exp(λt2) and thus the characteristic equation,
which we will examine, reads:

λ+ [γ(P ∗2 )− dγ(P ∗2 )
dP ∗2

(1− P ∗2 ) exp(−λτ)][1− exp(λt2)] = 0 . (5.24)

Now, three time scales struggle for dominance, these are first the activation time 1/γ,
second the residence time t2 in state 2 and finally the delay time of the feedback τ .
In order to obtain the parameter values at which the Hopf–bifurcation takes place, we
separate Eq. (5.24) into real and imaginary part and set λ = ν + ıω. For ν = 0 the
characteristic equation yields two independent expression in which we substitute the
rate with γ = P ∗2 /(t2P ∗1 ), taken from Eq. 5.13 for the stationary states. By setting the
real and imaginary part equal zero we obtain:

P ∗2
1− P ∗2

= −2ωt2
(

cot(ωτ) + cot(ωt22 )
)

=: h(ω) (5.25a)
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5 Excitable two–state units coupled with delayed feedback

and κHopf = − σ

2∆U0P ∗2

ωt2
sin(ωτ) . (5.25b)

Inverting the function h(ω) provides an expression for the critical oscillation frequencies
ω at the Hopf–bifurcation depending on parameter values implicated in P ∗2 , shown in the
inset of Figure 5.7 over noise intensity. The second equation is an implicit expression for
the critical parameters on the σ − κ plane where the transition to coherent oscillations
takes place. The parametric curve is shown for different delays in Figure 5.7. The
frequency, needed in this expression, can be taken from Eq. 5.25a.
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Figure 5.7: Curves showing the appearance of Hopf–bifurcations in the parametric σ−κ
plane for different coupling delays. The associated frequencies along the Hopf
curves are shown in the inset. Remaining parameters are fixed at t2 = 1,
r0 = 0.8, ∆U0 = 1 and a2 →∞.

The location and shape of the curve changes with different time delay and divides
the σ − κ plane in two dynamical regimes, an oscillating and a non–oscillating domain.
Inside the oscillating regime all units undergo the transitions 1 → 2 → 1 in a coherent
way leading to an oscillatory global output. Outside this area the ensemble ends up
in a stationary state and exhibits no rhythmic phenomena, although all units change
between both states following their individual waiting time distributions. The critical
oscillation frequency ω along the bifurcation curve increases monotonically with larger
noise intensity, as shown in the inset of Figure 5.7. The area with oscillations in the
σ − κ plane shrinks when the delay decreases. As one limiting case we know from the
previous section that no oscillatory regime exists for τ = 0. There is a minimal but
non–zero delay below which no Hopf–bifurcation emerges. An analytical approximation
of this critical delay can be estimated considering Eq. 5.25b. With respect to ω it takes
the form sin(ωτ) = −αω, where α contains the remaining parameters. The parameter
range we are considering makes α positive and smaller than one and thus solutions of
the transcendental equation are possible for certain values of τ . In fact, they can be
approximated geometrically, assuming that the linear term touches the sinus close to its
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5.3 Ensembles of globally coupled units

first minimum at ωτ = 3/2π. Using this estimation for Eq. 5.25b gives

τ critical ≈ 3π
4

t2σ

κ∆U0P ∗2
. (5.26)

This critical value defines the position of the primary branch in Figure 5.8. From the
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Figure 5.8: Reappearance of the primary Hopf branch (k = 0) for longer delay times
shown for different noise intensities in an ascending order from small to high
noise. Some parts are squeezed and some parts are stretched, depending on
their frequency ω as estimated in Eq. 5.29. Remaining parameters are the
same as in Figure 5.7 .

parametric equations (5.25) for the Hopf–bifurcation points, additional solutions can be
easily derived, given by,

τ ′ = τ + kπ

ω
, (5.27)

where k = 0, 1, 2.... Equation (5.27) indicates reappearance of Hopf–bifurcations and
periodic solutions for larger delays. The primary branch of these solutions appears at
finite delays for k = 0 as shown in Figure 5.8. The reappearance of this primary branch
for larger delays (k = 2, 4, ...) is also shown in the same figure. These branches have the
same frequency dependence, since they consist of the same periodic solutions (for even
values of k), however with some stretching and squeezing. Let us assume two solutions
with different frequencies for delays τ1 and τ2, with τ1 < τ2, on the primary branch. The
projection of their distance on the τ–axis is defined as:

` = τ2 − τ1 . (5.28)

The distance of the same solutions on the k–th branch is given by using Eq. (5.27) as,

`′ = τ ′2 − τ ′1 = `+ kπ
ω1 − ω2
ω1ω2

. (5.29)
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5 Excitable two–state units coupled with delayed feedback

From equation (5.29) it is clear that `′ > ` when ω1 > ω2 and thus the corresponding
parts of k–th branch will be stretched, otherwise they will be squeezed. This seems to
be a general behavior of a delayed system with periodic solutions [162].
Finally, we want to point out that from Eq. (5.25b) follows that also for negative

coupling, values κ < 0, corresponding to inhibitory coupling the Hopf–bifurcation line
exists. Namely, due to Eq. (5.27) odd values of k lead to a − sin(ωτ ′) term entering
in Eq. 5.25b which inverts the sign of κHopf. So, feedback acting delayed with τ ′k and
odd k induces coherent oscillations in the system for inhibitory coupling. However, the
bifurcation line has not the same shape as in Fig. 5.7 mirrored at the σ axis, but the
transition occurs at different values of noise intensity. That becomes clear keeping in
mind the implicit dependency on σ and κ on P ∗2 . The different sign of inhibitory coupling
shifts the stationary states and therefore also the bifurcation lines.

5.4 Numerical simulations

The dynamics of a globally coupled ensemble constituted of a large number of two–
states units is simulated in order to verify the theoretical results presented above. In the
absence of delayed feedback and with an Erlang distribution for the waiting times in the
excited state 2, monostable and bistable behavior is observed. In the bistable case one
of the stationary states can be selected by choosing appropriate initial configurations.
Note that the individual units behave in a different way along the two stable branches,
as already mentioned for the infinite system at the MF level. For stationary occupation
probabilities belonging to the lower stable branch the activation time can be very long.
Then the majority of units stay in the resting state at almost all times only interrupted by
rare transitions into state 2. Units belonging to the stationary state at the upper stable
branch behave differently. Each unit leaves the excited state after a finite excitation
time, however gets excited again after a vanishing short activation time. This complex
behavior arises because the single elements always change between two states following
their individual internal clocks while the lower stationary state is dominated by the time
scale of activation, whereas the excitation time t2 governs the upper stationary state.
By applying the delayed feedback and assuming a constant excitation time (w2(t) =

δ(t − t2)), an additional time scale is introduced that can cause bulk oscillations. As
predicted in the previous section, oscillatory behavior occurs for parameters κ and σ
beyond the Hopf line given by Eqs. (5.25). In the figures 5.9 and 5.10 raster plots show
the results of numerical simulations. The first figure contains two plots for fixed σ and
different κ, thus crossing the bifurcation curve in Fig. 5.7 vertically. The first plot shows
the case for a coupling value outside the oscillatory region and the second plot a case
of collective oscillations. Fig. 5.10 contains three plots for different noise values and a
fixed coupling, corresponding to a horizontal crossing of the bifurcation curve. Only the
middle plot represents the oscillatory regime, the upper and lower plot stand for the left
and right hand sides outside that region. In the upper panel of each figure the activity of
2500 delayed–coupled units is recorded, where the black dots mark the transition events
to the excited state. The activity of an arbitrarily chosen individual unit (dashed line)
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Figure 5.9: Raster plots (upper panels) and global output in addition with an arbitrarily
chosen single unit (lower panels, solid and dashed lines) are shown as a record
of the activity of 2500 units with delayed global coupling. Black dots stand
for the moments where the transition 1→ 2 takes place. Delay value chosen
for this simulation: τ = 0.78
(a): Non–oscillatory regime at κ = 2 and σ = 0.4,
(b): oscillatory regime at κ = 2.3 and σ = 0.4.

and the global output (solid line) are depicted in the lower panel.
The situation for σ = 0.4 and κ = 2 depicted in Fig. 5.9 (a) is essentially the stationary

solution, which we already have seen in the bifurcation diagram in Fig. 5.5 (a), where
the global output is around 0.1, corresponding to the value of P ∗2 in the diagram. Firing
events are comparatively rare and irregular and no pattern in the raster plot emerges.
In Fig. 5.9 (b) the system is shown for κ = 2.3 and hence beyond the Hopf–bifurcation
line. The global output shows distinct oscillations evoked by the coherent transition of
the individual units between states as it can be seen in the corresponding raster plot.
In Fig. 5.10 the coupling value is fixed for each of the three sub–figures at κ = 2.3.

Starting with a noise intensity of σ = 0.2 we find a similar situation as stated in Fig. 5.9
(a), where the system occupies the lower stationary state involving single units which
exhibit rare firing events. For σ = 0.4 the units perform synchronized transitions within
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Figure 5.10: Raster plots and output record as in Fig. 5.9 for the same delay time.
(a): Non–oscillatory regime at σ = 0.2 and κ = 2.3,
(b): oscillatory regime at σ = 0.4 and κ = 2.3,
(c): non–oscillatory regime at σ = 0.6 and κ = 2.3.

a small time interval making the global output oscillate (Fig. 5.9 b). The oscillation
period corresponds roughly to the residence time t2 due to a very fast activation from
state 1. Even higher noise lets the system cross the second Hopf–bifurcation and the
oscillations disappear, as shown in Fig. 5.10 (c) for σ = 0.6. The firing events are more
frequent, however, not synchronized and thus the common output remains constant
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5.4 Numerical simulations

apart from finite size fluctuations.
Two measures are applied to quantify coherent global oscillations. The very presence

of oscillations can be captured by regarding the amplitude in the global output. Using
the mean deviation from its average we define:

amplitude =
√
〈(f(t)− 〈f(t)〉)2〉. (5.30)

Outside the oscillatory region this quantity takes non–zero but negligible values due to
the finite number of elements in the simulated ensemble. As soon as the Hopf line is
passed the amplitude rises smoothly over σ, reaching a maximum and goes down to a
value close to zero when the second Hopf–bifurcation is passed (Fig. 5.11 a). Over κ the
amplitude rises abruptly to a maximum beyond the bifurcation point. At higher coupling
strength the amplitude decreases, although there is no further Hopf–bifurcation. This
is due to further separation of time scales. With increased coupling comes a higher
activation rate and a short stay in state 1. Thus most of the units are in state 2 within
a certain time interval and the coherent transition of a considerable number of units
between the states, which causes elongations in the global output, becomes improbable.
The degree of coherence can be characterized by the synchronization index (S.I.).

Following the analytic signal approach [111] of a measured signal z(t), which is the
global output in our case, one can define:

ζ(t) = z(t) + iz̃(t) = A(t)eiφ(t) , (5.31)

where the imaginary part z̃(t) is the Hilbert transform of z(t). The instantaneous phase
φ(t) of the signal is uniquely defined by Eq. (5.31). Assuming two arbitrarily chosen
subensembles, each consisting of 50 units, the phase difference between them is defined
as, ∆φ = φ1(t)− φ2(t). Therefrom the S.I. can be estimated, given by

S.I. = 〈cos(∆φ)〉2 + 〈sin(∆φ)〉2 . (5.32)

When the phases are narrow distributed around a constant value, the S.I. goes to unity,
otherwise for broad distributed phases it goes to zero. In Figure 5.11 it can be seen that
the S.I. behaves similar to the amplitude at the Hopf values and shows a pronounced
synchronization maximum over both, noise intensity and coupling strength. Coming
closer the second Hopf–bifurcation point by further increase of noise intensity σ the S.I.
decrease to zero. For higher κ the S.I. shrinks after passing the maximum. This lessening
originates in the same reason given for the amplitude decrease.
Finally, both measures are able to detect and quantify the appearance of oscillations in

the global output and their specification close to the Hopf–bifurcation values. However,
both seem to fail for higher coupling values. Although the system is deep into to the
oscillatory regime, the amplitude and the S.I. go down to zero. One reason for that is
already given and concerns the separating time scales and with them the change in the
oscillation characteristics. Nevertheless, the fact that the measures decay to zero is a
finite size effect and would not occur within an ensemble including infinitely many units.
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Figure 5.11: Oscillations amplitude (a-b) given in Eq. 5.30 and synchronization index
(c-d) given in Eq. 5.32 with respect to noise intensity and coupling strength
are plotted. Both measurements are shown for a range that involves the
Hopf–bifurcations.
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5.5 Conclusions

5.5 Conclusions
Coming from abstract models for excitable systems we construct a two–state model,
containing one state for the stationary or polarized state and one state for the active
or depolarized and refractory state. Both states are defined by characteristic waiting
time distributions corresponding to excitable behavior. An ensemble of such two–state
units is considered coupled by a feedback mechanism making the activation rate of single
elements dependent on the fraction of active units within the ensemble.
In analytical studies we found for instantaneous feedback at the MF level monostability

and bistability for the collective occupation probability distribution, which alternate
through saddle–node or pitchfork bifurcations. Each unit changes between both states
following its individual waiting time distribution. The latter is affected by a global
excitatory coupling driving the ensemble to one of maybe multiple stationary stable
states, but never to oscillatory behavior. It is important to note that although the
ensemble reaches a stable state, the individual units still transit between excited and
resting state, following their internal clock.
A more complex behavior arises, when global coupling feeds back to each individual

activation time after a certain time delay. Then the ensemble passes through a Hopf–
bifurcation to an oscillating regime, in the sense of almost synchronous activation of the
individual units. A minimal time delay that creates oscillations in the global output is
approximated and higher delay branches that appear recurrently are considered. For
appropriate time delays a Hopf–bifurcation occurs also for inhibitory coupling, however
for different values of noise intensity.
Finally, numerical simulations are performed to affirm analytical results and estima-

tions. Two measures that capture oscillations best directly at the Hopf–bifurcation are
introduced to quantify the periodic solutions and their synchronization level.
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6 Synchronization and transport in an
oscillating periodic potential

6.1 Introduction

In the previous chapter we have studied synchronization in an ensemble of excitable
elements evoked by global delayed coupling. For this specific model we have shown, that
the specific interplay of associated time scales decides whether collective behavior occur
or not.
However, synchronization is a general and fundamental mechanism and can also

emerge from the interplay of intrinsic dynamical time scales and external periodic driv-
ing. It has been investigated for numerous chaotic and stochastic dynamical systems.
The ability to control those systems by mutual coupling or by external forces was demon-
strated for various systems with a considerable number of possible applications [111, 3].
The great universality of the concept of synchronization is best seen in case of stochastic
resonance [38, 85]. Here, in bistable and excitable systems even small periodic forces in
combination with an optimally tuned noise are able to exhibit dynamical states which
follow the oscillating periodic force.
For systems whose intrinsic dynamical time scales can be excited resonantly by driving

noise, the effect of coherence resonance is established [85, 110]. Irregular spike trains
produced by an excitable system can reach a state of high regularity and coherence at
an optimal noise intensity. An early considered system besides neuron models, where
coherence resonance was shown, has the form

φ̇ = a− cosφ+ ξ(t) , (6.1)

where φ describes a phase variable and ξ may be any kind of noise [150]. For the
same dynamics Stratonovich [137] described phase–locking between an external periodic
driving and the oscillators orbit under the influence of noise (see section 6.5). That kind
of dynamics further constitutes the nucleus of the famous Kuramoto equation [76]) on
which the theory of synchronization for coupled phase oscillators was constructed.
Another aspect, we want to consider in this chapter concerns transport mechanisms

within periodic fields. Interpreting φ as a spatial coordinate Eq. 6.1 also serves the
modeling of such transport processes in which synchronization plays an important role.
If the characteristic length scale is small enough omnipresent thermal fluctuations can
control the dynamics. The Brownian motion of particles in such periodic fields is one
of the basic problems in applied stochastic dynamics. Escape processes over barriers in
combination with diffusive motion within the potential valleys control the mean velocity
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6 Synchronization and transport in an oscillating periodic potential

as well as the dispersion of the transport [86, 121, 84, 12]. We will therefore make use
of established quantities as effective diffusion and Péclet number, that characterizes the
transport process.
One important representative of such systems with periodic fields are systems where

particles move in periodic potentials and time dependent forces or modulations of the
potential enhance a directed flow [120, 3, 50]. A recommendable compendium for these
so called ratchets is given in [120]. Most of the research focused on mean drift within such
systems and on the conditions under which the directed transport is maximized. Also
the diffusion coefficient in these temporally changing potentials have been calculated [35]
and it was proposed to take the diffusion coefficient to evaluate the precision of stochastic
directed transport [89].
In this chapter we study overdamped Brownian transport in a temporally oscillating

and spatially periodic potential. In [114] synchronized mobile states in stochastic ratch-
ets have been reported where the force acts additively as moving periodic potential. Here
we consider synchronization of Brownian particles in periodic potentials where the ampli-
tude is modulated periodically. The interplay of the different time scales in the system,
given by the period of the oscillating potential, the relaxation time of the deterministic
dynamics and the diffusion time gives rise to non–trivial dynamical phenomena, such
as an oscillation driven enhancement of the effective diffusion. Otherwise if additionally
external forces are applied, the particle’s motion becomes quasi–deterministic following
the oscillations in direction of the applied force jumping several periods of the potential
with minimal diffusion. The temporal modulations discussed here could be realized in
different experimental systems such as free–flow dielectrophoresis [2], colloidal particles
in optical fields [30, 140, 11], Josephson-junctions [66, 134] or paramagnetic colloids in
magnetic fields [142, 5].
Note, that within the present chapter the notation of noise intensity and diffusion

seems to be confused, because we denote both with D. The reason is simply, that
for a spread of single trajectories in space caused by noise (Langevin equation level),
the corresponding spatial probability distribution broadens due to a diffusion coefficient
equals to the noise intensity (Fokker–Planck equation level).

6.2 Theta neuron

As a motivation and in order to demonstrate, that systems with an underlying pe-
riodic potential and excitable systems are structurally related, we will briefly discuss
the Ermentrout–Kopell model [27]. It is an abstract one–component model similar to
Eq. 6.1, that exhibits excitable and oscillatory behavior including one parameter being
the bifurcation parameter for a saddle–node bifurcation that divides both dynamical
regimes. It may remind on the Ornstein–Uhlenbeck model, mentioned in chapter 2.2,
in which the reccurence to the stationary state after deterministic or stochastic escape
over an absorbing barrier is externally defined by a reset condition. The Ermentrout–
Kopell model without such a reset condition describes the motion in an extended biased
periodic potential.
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6.2 Theta neuron

The dynamical equation of the Ermentrout–Kopell model is given as

Θ̇ = 1− cos Θ + a(1 + cos Θ) = 1 + a− (1− a) cos Θ , (6.2)

with the associated potential

U(Θ) = −(a+ 1)Θ + (1− a) sin Θ . (6.3)

For a variable Θ whose domain of definition contains every real number, Eq. 6.2 describes
the motion of an overdamped particle in a periodic potential given by Eq. 6.3 and shown
in the main figure of Fig. 6.1. That resembles typical transport processes in ratchets. For
a restricted domain in which the running variable is defined on a circle with −π ≤ Θ ≤ π,
so that for the potential yields U(π) = U(−π) we find excitable or oscillatory behavior.
The corresponding potential section is shown in the inset of Fig. 6.1. Once a particle
has reached the right handed boundary at Θ = π it is set to Θ = −π per definition.
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Figure 6.1: Two realizations of the potential from Eq. 6.3 of the Ermentrout–Kopell
model. Over multiple periods it corresponds to a typical ratchet potential
either including barriers or leading to sliding motion without obstruction
controlled by a. The zoomed region shows a restricted area over 2π which
resembles excitable dynamics when periodic boundary conditions are taken.

The Ermentrout–Kopell model has two fixed points at

Θ0
± = ±arcos

(1 + a

1− a

)
∈ R for a ≤ 0 , (6.4)

within the [−π, π] range. The smaller value Θ− is the rest state and is stable whereas
Θ+ corresponds to the threshold of the system and is unstable. For any Θ < Θ+ the
system decays back to the rest state. But once the threshold is passed the system runs
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6 Synchronization and transport in an oscillating periodic potential

toward the barrier and get reseted to Θ = −π corresponding to a large excursion in
phase space and a spike in time course. Both fixed points merge for a = 0 where they
annihilate due to a saddle–node bifurcation. Thus for a > 0 without having real fixed
points the system has no attractor where the motion comes to rest. Due to the recurrent
reset at the boundary an oscillatory dynamics is generated. The cases of a being smaller
and greater than zero are exemplified in Fig. 6.1 as solid and dashed lines. As it can be
seen the potential possesses barriers for a < 0 while for positive a no barrier obstruct the
motion. The Ermentrout–Kopell model as an abstract neuron model is used for example
in [101].

6.3 Dynamical equation
We consider an overdamped Brownian particle with friction Γ in a heat bath Q in a
spatially periodic and biased potential U(x, t) with oscillating amplitudes. The dynamics
are described by the following Langevin equation

ẋ = −∇U(x, t)
Γ +

√
2Q
Γ ξ(t) . (6.5)

As in previous chapters the second term represents white Gaussian random force with
zero mean and the intensity 2Q/Γ due to thermal fluctuations.
As the potential we choose U(x, t) = A(x)B(t) − fx, with f being a constant force,

whereas A(x) = A(x+ λ) and B(t) = B(t+ T ) are periodic functions in space and time
with wavelength λ and period T . A reasonable and natural choice is the combination of
two simple periodic functions

A(x) = −A0
2 sin (qx), B(t) = sin (ωt). (6.6)

Here A0 is the maximal potential difference between two extrema for f = 0, ω = 2π/T
is the oscillation frequency and q = 2π/λ is the spatial wave number. In contrast to
typical ratchet models here the bias is kept constant in time whereas the amplitudes
alternates their appearance as barriers and valleys. For the given potential Eq. 6.5 can
be transformed into dimensionless variables y = qx, t̃ = A0q2

2Γ t and we obtain

ẏ = cos(y) sin(Ωt̃) + F +
√

2D ξ(t̃), (6.7)

with dimensionless frequency Ω = 2Γω/(A0q
2), force F = 2f/(A0q) and noise intensity

D = 2Q/A0. In the following the dimensionless time will be denoted as ’t’ for simplicity.
The similarities between the dynamics from Eq. 6.7 and the Ermentrout–Kopell model
appear to be obvious. Replacing the force with F = a + 1 and fixating the oscillating
amplitude: sin(Ωt̃) = a − 1 our model transforms directly into the Ermentrout–Kopell
model. However, regarding the explicit time dependency as an extra equation by setting
θ̇ = Ω it becomes clear, that the model defined by Eq. 6.7 has an extra dimension in
phase space and furthermore, an extra degree of freedom due to an additional parameter.
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6.3 Dynamical equation

yyn−1 yn yn+1

F = 0.0

yyn−1 yn yn+1

F = 0.5

Figure 6.2: Illustration of the oscillating potential for F = 0 and F = 0.5 for t = (n+1)T
(solid line), t = (2n+ 1)T/4 (dotted line) and t = (2n+ 1)T/2 (dashed line)
with n = 0, 1, 2, . . . .

Firstly, we are interested in transport properties which we investigate by consider-
ing the asymptotic drift velocity and for the mean spread of stochastic trajectories we
examine the mentioned effective diffusion coefficient

vdrift = lim
t→∞

〈y(t)〉 − 〈y(0)〉
t

Deff = lim
t→∞

1
2
d

dt
〈(y − 〈y(t)〉)2〉 , (6.8)

where 〈·〉 denotes the ensemble average. The quality of the directed transport, that
occurs for F 6= 0, can be measured by the so called Péclet number (also sometimes
referred to as Brenner number), defined as

Pe = vdriftL

Deff
, (6.9)

where L is the characteristic length scale of the system given by L = λ = 2π for
our system. For Pe < 1 diffusion dominates the dynamics and the directed transport
plays a minor role in comparison with the non–directed spread of trajectories. For
Pe > 1 the transport is dominated by the drift while the diffusion broadens the bunch
of directed trajectories. The limit of Pe → ∞ corresponds to a deterministic transport
with vanishing effective diffusion on the characteristic length scale L.
Sample trajectories are shown in Fig. 6.3 for the case of F = 0 (a) and the biased case

where F > 0 (b). They jump in steps of π in space and in steps of 2π/Ω ≈ 31 in time
corresponding to the periodicity of both oscillating functions. Even with one trajectory
for each case it is obvious, that for F = 0 no spatial direction is preferred while for
F = 0.1 the trajectory moves forward only interrupted by a few back–jumps caused by
noise. Note, that without noise, the trajectory moves perfectly directed in the direction
the force is pointing because no permanent barriers exist in our model.
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Figure 6.3: Typical trajectories from Eq. 6.7. (a): F = 0 and (b): F = 0.1, remaining
parameter values: Ω = 0.2 and D = 0.01.

6.4 Effective diffusion in case of F = 0

In case F = 0 the spatial and temporal symmetry in the potential prevents any directed
flux within the system (vdrift = 0). In the following discussion we turn into the picture
of propagating probability densities instead regarding single stochastic trajectories. We
consider a sharp peaked Gaussian distribution initiated at the position y0. The spread
over the potential landscape is characterized by Deff, that may depend on the remaining
system parameters D and Ω, in general.
For large noise intensities the influence of the potential is insignificant and the dynam-

ics of the probability distribution is purely diffusive with the trivial limit Deff → D. If
D is sufficiently low temporarily occurring potential barriers prevent a too fast diffusion
and the acting forces described through the deterministic part of the dynamics plays
an essential role. Therein two different time scales controls the dynamics. On the one
hand the external driving period T = 2π/Ω and secondly the intrinsic relaxation time tr
from an unstable potential maximum to a stable minimum. For oscillation frequencies
much faster than this relaxation time Ω � 1/tr another limiting case exists. Then the
potential is self–averaged to be effectively flat and the probability distribution spreads
with Deff → D, likewise.
The potential, sketched in Fig. 6.2, turns its extrema within a half oscillation period

T/2 = π/Ω. A particle that follows the dynamics from Eq. 6.7 starting close to a
maximum of the potential is able to approach the next nearest minimum, before it
becomes transformed to a metastable maximum, only if the oscillation frequency is small
compared to the inverse relaxation time Ω < π/tr. In that case the particle performs
effectively discrete jumps (see Fig. 6.3 a) between the extreme states of the potential
yn, as labeled in Fig. 6.2. This oscillation induced random walk can be quantified
by assuming the jump probability from a maximum to the left and right as p = 0.5.
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6.4 Effective diffusion in case of F = 0

The jumping events take place within discrete time intervals T/2 corresponding to the
switching of the fixed pint’s stability of the dynamics. The jump length is given by
l = λ/2 = π.
The probability to find the particle at the position yn = n ·π after N jumps is given by

the binomial distribution, which converges towards a Gaussian distribution in the long
time limit

P (y, t) = 1√
2πDeff t

exp
(
− y2

2Deff t

)
. (6.10)

The effective diffusion in the limit of many steps and small l with respect to the mean
square displacement (N →∞, l→ 0) obey the relation 2Deff t = Nl2 with N = 2t/T =
tΩ/π. By replacing l = λ/2 = π we obtain a linear relation between the frequency and
the effective diffusion coefficient:

Deff(Ω) = λ2Ω
π

= π

2 Ω . (6.11)

Thus, the faster the potential oscillates the faster the probability spreads over the poten-
tial. However, as discussed above for large frequencies the effective diffusion will reach
asymptotically the noise intensity D, hence, the linear relation in Eq. 6.11 can not hold
for the whole frequency range.
Obviously, the situations changes for a certain frequency value, at which the simple

jump assumption fails. For intermediate frequencies the Gaussian distribution around a
stable fixed point (potential minimum) yn splits in two parts as soon as the fixed point
becomes unstable (transforms into a potential maximum). Before the split distribution
relaxes completely at the neighboring fixed points yn±1 the oscillations switches the
stability of the fixed points again and a part of the distribution moves back into the
former position yn. That befalls to the majority of the particles at higher oscillation
frequencies Ω beyond a critical frequency which results in an effective localization of the
distribution or a decreasing diffusion, respectively.
We attempt to describe this mechanism by estimating the fraction of probability

u(Ω, D) of a initial distribution at yn to reach yn±1 with respect to the oscillation fre-
quency Ω, schematically depicted in Fig. 6.4. The initial position from which a particle
is able to arrive the neighboring fixed point during half a period of oscillation can be
expressed by yini = yn + δ (δ ≥ 0), where δ is a small displacement from the fixed point.
Effects of noise are assumed to play only the qualitative role of small perturbations close
to fixed points and we neglect noise effects during the sliding motion. Without loss of
generality we set yn = 0 and yn+1 = λ/2 = π. The demanded probability is given by
the complementary error function

u(Ω, D) = erfc
(

δ√
2σ2

)
, (6.12)

with the width σ2 of the particle distribution at yn at time t0. Both the width and the
displacement δ are assumed to become stationary after some initial transient time. In
general σ2 and δ are functions of Ω and D. By numerical simulations of the Eq. 6.7 it
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0 δ y

P (y, t0)

U(t0 + T/4) U(t0) = U(t0 + T/2) U(t0 − T/4)

Figure 6.4: Schematic visualization of the ansatz for derivation of Eq. 6.15. We assume
that only the gray shaded parts of the initial Gaussian distribution are able
to reach the next temporal minimum within T/2.

can be confirmed, that the width of the distribution is governed by the noise intensity
and a simple ansatz σ2(D) = bD is reasonable. To obtain δ(Ω) – noise effect are assumed
to be negligible – we integrate the deterministic part of Eq. 6.7 over a half period

−
∫ yend

δ

dy

sin y =
∫ T/2

0
sin Ωt dt. (6.13)

The left hand side would diverge for an upper limit at πyend. However, due to the
noisy perturbations the particle is able to reach the next fixed point within a finite time.
Therefore we set the final limit to yend = π−ε, where ε represents a small distance which
the particle overcomes by fluctuations alone. By assuming ε to be Ω–independent we
find an expression for the displacement from Eq. 6.13 as

δ = 2 arctan
[
exp

(
− 2

Ω

)
cot

(
ε

2

)]
. (6.14)

Every particle with an initial displacement larger or equal to δ will reach the next fixed
point or yn+1 − ε, respectively, within the half period of potential oscillations. Only
the probability fraction u from Eq. 6.12 contributes to the effective diffusion, that reads
therefore Deff(Ω, D) = π

2 Ωu(Ω, D). As ε represents a small length and σ2 is the variance
of the initial Gaussian distribution, we assume their dependence on D as σ2 = bD and
ε = e

√
D, where e,b remain undetermined. Thus we obtain an expression for the effective

diffusion, valid on a larger Ω range:

Deff(Ω, D) = π

2 Ω erfc
(

2√
bD

arctan
[
exp

(
− 2

Ω

)
cot

(
e
√
D

2

)])
. (6.15)
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Figure 6.5: Effective diffusion vs. Ω obtained from simulations for D = 1.0·10−4 (circles)
and for D = 5.0 ·10−3 (squares) in comparison with results of Eq. 6.15 (solid
line) for e = 0.09 and b = 150. The inset shows the numerical results for the
position Ωmax of the maximum of Deff in dependence on D (crosses) and the
prediction from Eq. 6.15 (solid line).

This result contains a more complex dependancy on Ω compared to the simple linear
relation from Eq. 6.11 and, additionally, it depends on the noise intensity. However, it
can be estimated, that for small frequencies the argument of the complementary error
function collapses to zero and thus the linear limit still holds.
Considering the Ω dependencies further, we can see the result from Eq. 6.15 depicted

in Fig. 6.5 as solid lines for e = 0.09 and b = 150 compared to numerical simulations
(circles and squares). The expression in Eq. 6.15 clearly exhibits the supposed maximum
in the effective diffusion for certain Ω = Ωmax whose position depends on noise intensity
D. After passing this maximum the effective diffusion decreases rapidly to very small
values without reaching zero. So, the diffusive transport enhanced over two orders of
magnitude by oscillations is efficient for a finite range of oscillation frequencies, where
the time scale of intrinsic relaxation commensurate with the oscillation period of the
potential.
The single choice for the values of the remaining free constants b and e is sufficient

in order to cover the position of the oscillation frequency Ωmax, that maximizes the
diffusion, over three orders of magnitude of D (see the inset in Fig. 6.5). Note, that
the expression for Deff in Eq. 6.15 diverges for Ω → ∞. So, beyond frequency values
considered here the presented approach fails.
Next, we will discuss the influence of moderate and high noise intensities. Therefore

the quantity Deff/D is considered that quantifies the ratio of dynamical induced effects
to pure Brownian motion. For Deff/D = 1 the presence of a potential does not affect the
dynamics and trajectories correspond to pure Brownian particles, whereas forDeff/D > 1
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Figure 6.6: Simulation results of Deff/D vs D for Ω = 0.1 (black symbols) and Ω = 0.5
(red symbols) compared with theoretical predictions for Ω = 0.1: Deff/D =
πΩ/(2D) (black line) and for Ω = 0.5 a fit of Eq. 6.15 (red line). The dashed
lines indicate Dmin (Eq. 6.16). .

the system is in the regime of enhanced diffusion induced by the potentials oscillation.
Low Ω and non–vanishing noise intensities yields δ → 0 and therefore Deff ≈ πΩ/2 =

const. with respect to D. Thus over a large noise range the ratio Deff/D decreases as
D−1. That correspond to numerical results until a minimum where Deff/D < 1. (see
black circles in Fig. 6.6 ). The ratio saturates for D → 0 at larger Ω beyond the optimal
frequency Ωmax, where the diffusion can not be enhanced over a certain limit (see red
pluses in Fig. 6.6 ). However, for the chosen Ω the effective diffusion remains about ten
times larger than D even for very small noise intensities. A fit of Eq. 6.15 is in agreement
with the numerical simulations only for not too low and not too large noise intensities.
So smaller Ω increase the range of noise, in which Eq. 6.15 is a valid.
After a minimum is passed, where Deff/D sinks even below one, the ratio approaches

asymptotically unity, where the potential is negligible, compared to the noise intensity.
The minimum can be explained as a signature of barrier diffusion. With increasing
noise the characteristic diffusion length per half-period of the oscillations approaches
the characteristic length of the system λ/2. This leads to significant obstruction of the
diffusive motion. An estimate for the location of the minimum Dmin can be obtained
from calculating the noise intensity D at which the mean square displacement of a free
particle within the time t = T/4 equals λ2/4:

Dmin = λ2Ω
4π = πΩ , (6.16)

shown as dashed lines in Fig. 6.6.
Every numerical result presented in the current and in the next section are produced
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6.5 Synchronization in a biased potential

by simulations of the Eq. 6.7. We used a stochastic Heun algorithm to obtain single tra-
jectories. We averaged over 30000 oscillation periods in time and over initial conditions
yini ∈ (0, 2π) for computing the mean velocity and the effective diffusion. Additionally,
an ensemble of 5-12·1024 trajectories are subsumed to get an appropriate statistics. The
code was implemented on graphic cards using CUDA [61], which allows a high level of
parallelization and thus an accelerated computation.

6.5 Synchronization in a biased potential

The addition of a constant force leads to a temporally constant tilt of the oscillating
periodic potential. Two cases has to be distinguish. For F > Fcrit = 1 the drift motion
of a particle is not hindered by the emergence of potential barriers at any time and
contrariwise, there are potential barriers within time windows due to the oscillation
period of the potential for F < Fcrit. Note, that for both cases there is a finite drift in
the direction of the bias F in contrast to static washboard potentials.
The drift velocity vdrift as a function of the bias shows different plateaus at vdrift =

Ω, 3Ω, 5Ω, . . . , corresponding to a covered distance of 1π, 3π and 5π per oscillation
period. This is shown in Fig. 6.7 for purely deterministic motion (D = 0) relative to
the potential–free case where vdrift = F (dotted line). For small bias until the the first
plateau on which the motion is locked with y = ΩT = π, the drift velocity is even
higher as in the potential–free case. In the plateau region a particle drifting down the
potential is locked in a dynamical state. The oscillation frequency of the potential is
synchronized with the frequency of λ/2–displacements of the particle induced by the
bias of the potential.
This behavior resembles characteristics of a driven oscillator, where such plateaus

correspond to entrainment regimes of an oscillator to an external driving. The spatial
coordinate of a particle jumping from one potential minimum to the next can be con-
sidered as the phase of a driven oscillator while the bias in our case corresponds to the
external driving. As shown in [3] externally driven stochastic oscillators show a strong
inhibition of the effective phase diffusion in the synchronized state, which agrees to the
observed decrease of spatial diffusion in our system.
Based on these similarities, that were already mentioned introductorily for this chap-

ter, we attempt to describe the dynamics of our system in vicinity of the synchroniza-
tion regime by a corresponding phase oscillator. We change into the co–moving frame
z(t) = y(t) − Ωt and average the deterministic dynamics over one oscillation period
T = 2π/Ω. Due to the undetermined time–dependence of z(t) we are not able to obtain
a general solution of the averaged dynamics. However, we may write z as a Taylor series
z(t′) = z(0)+z′(0)t′+ . . . with t′ = t/T . Under the assumption that z(t′) changes slowly
over one oscillation period we keep only the 0–th order from the series expansion and
set z(t′) = zT . With this approximation we obtain the stochastic equation:

żT = ∆− 1
2 sin zT +

√
2Dξ(t) (6.17)
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Figure 6.7: Deterministic drift velocity vdrift averaged over initial conditions as a function
of the tilt shows different plateaus at vdrift = Ω, 3Ω, 5Ω, . . . . The dotted
line stands for the potential–free case where vdrift = F .

with ∆ = |F − Ω|, which is in fact a specific form of Eq. 6.1.
Note, that due to the assumptions the equation holds only in the limit of fast oscil-

lations with respect to the intrinsic relaxation time Ω� t−1
r . Thus for the locked state

with 1:1 synchronization we have

Ω� 1 ⇒ F = Ω > Fcrit = 1 , (6.18)

so we are in the super–critical force regime where no barriers obstruct the motion. In
the co–moving frame even for that case the reduced Equation 6.17 describes a Brownian
particle moving in a tilted stationary periodic potential relative to the bias caused drift
from the original dynamics. An analytical solution for the mean drift velocity in such a
system close to 1:1 synchronization was given by Stratonovich in 1967 [137]:

vdrift = w0 exp
(
− 2
D
w0 −

∆
D
arcos(2∆)

)
+ Ω, (6.19)

with w0 = 1
2
√

1− 4∆2. The effective diffusion can be calculated in case of small noise
compared to the barrier height in Eq. 6.17 (D � 1/2), from the Kramers rates k± to
neighboring minima of the potential U(z) = −∆z − 1

2 cos(z) as Deff = λ2

2
(
k+ + k−

)
:

Deff = w0
2π cosh

(∆
D
π

)
exp

(
− 2
D
w0 −

∆
D
arcsin(2∆)

)
. (6.20)

The effective diffusion breaks down at ∆ = 0 where the potential U(z) is purely sinusoidal
without bias. Symmetric barriers confines the stochastic particle close to a minimum
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Figure 6.8: Analytical results for the drift velocity (red solid line) and the effective diffu-
sion (black solid line) from Eq. 6.19 and Eq. 6.20 at 1:1 synchronization and
fast oscillations (Ω = 5.0, D = 0.05) compared with simulation of Eq. 6.7
(squares: mean velocity, circles: effective diffusion). Dashed lines reference
potential–free case.

and keep the corresponding probability density localized.
The dependency on F for both quantities is shown in Fig. 6.8 as solid lines. The

potential–free case is presented as dashed lines and symbols stand for numerical simula-
tions. Returning to original coordinates of the oscillating potential, the effective diffusion
is minimized at F = Ω. Around that resonant value the mean velocity passes a plateau
at vdrift = F = Ω, indicating the entrainment of a stochastic particle, that moves over
one wavelength in the potential during one period.
Drift and diffusion together with the Péclet number is shown in Fig. 6.10 over a larger

force range and for smaller oscillation frequencies. Again symbols represent numerical
results using the expression from Eq. 6.9 to calculate the Péclet number. This quantity
for the potential–free (dashed lines) case simply reads Pe = 2πF/D. For the two values
of oscillation frequencies selected for Fig. 6.10, Ω = 0.1 and Ω = 0.05, the Stratonovich
expressions from Eqs. 6.19, 6.20, do not hold due to the unfulfilled condition Ω � t−1

r .
However, we present here an approximate approach to describe the dynamics for those
smaller frequencies.
At low Ω (< 1) the first synchronization regimes are located at subcritical forces F < 1

(see Fig. 6.7), where the dynamics is dominated by oscillating barriers. A particle, that
follows the potential has two modes of motion. First, close to a temporal minimum
further directed drift down the bias is hindered by the head–on barrier mounting up for
a finite time window in front of the particle. For that time interval the particle sticks
and therefore we call it stick phase. When the barrier vanishes for half a period the
particle moves down the biased potential and thus we call it slip phase.
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Figure 6.9: Snapshot of probability distribution (solid line) and corresponding poten-
tial (dashed line) after one slow oscillation period for an initiated δ–peaked
distribution at y0 = π/2.

We assume a δ–peaked probability distribution at the begin of the slip phase at the
position y0 corresponding to the fixed point where the particle is located at the beginning
of the step. As soon as temporal barriers occur, the particle relaxes at yl = lλ/2 with
l = (2n+ 1) and n ∈ N and remains in the stick phase for t = T/2. After one oscillation
parts of the distribution reach the next nearest minima and two ’daughter peaks’ are
born as illustrated in Fig. 6.9 which are also narrow distributed around their minima.
The envelope of the generated distribution peaks is assumed to be Gaussian with a

mean µe and the width S. The probability to find particles at unstable fixed points ym
with m = 2n during the stick phase is insignificant small. The total probability to find
the particle close to fixed point yl at the end of the step reads

Wl = 1
2

[
erf
(
y − µe√
2S∆τ

)](l+1)λ/2

(l−1)λ/2
(6.21)

Thus we can formally calculate the mean position and the variance after a single step

〈ye〉 =
∞∑

n=−∞
y2n+1w2n+1, (6.22)

〈(y − 〈ye〉)2〉 =
∞∑

n=−∞
(y2n+1 − 〈ye〉)2w2n+1, (6.23)

with y2n+1 = (n+ 1
2)λ. For that approximative approach it is sufficient to consider only

a finite number of points n ∈ [nmin, nmax] around µe and calculate the mean position
and the variance by renormalizing the probabilities accordingly
W̃2n+1 = W2n+1/

∑nmax
n=nminW2n+1. With results obtained in Eqs. 6.22 and 6.23 we can

calculate the mean drift and the effective diffusion as

vdrift = 2〈ye〉/T, Deff = 〈(y − 〈ye〉)2〉/T . (6.24)
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6.6 Stationary probability density in the y − θ plane

The mean of the particle probability distribution moves in the direction of the bias with
an effective force G = G(F,Ω) within a time interval ∆τ(F,Ω) caused by the combined
effect of the constant bias F and the oscillating potential. The time of vanishing barriers
is ∆τ = 2 arcsin(F )/Ω and for G we choose a linear dependence on F : G(F ) = αF .
Averaging over the potential oscillations leads to α = 1.
The diffusion coefficient S in Eq. 6.21 depends on the applied force and shows a

large increase close to the critical force Fcrit likewise reported in [121]. For simplicity
we assume here a linear increase S = βF , too. The simplified theory given in Eqs.
6.21, 6.24 is compared with numerical simulations of the system for Ω = 0.03, 0.05 in
Fig. 6.10. Symbols represent the numerical results while the black solid line represents
the analytical calculation for a choice of fit parameter values: α = 0.8 and β = 0.04. For
comparison the potential–free case is depicted as dashed lines again. The plateaus of the
drift velocity, the corresponding strong decrease in the effective diffusion accompanied
by multiple peaks of the Péclet number with decreasing magnitude are reproduced. For
increasing Ω a shift of the peaks towards larger F is obtained which leads to a smaller
number of peaks for F < Fcrit. The most obvious difference of theoretical predictions
and simulation data occurs for small F . By using α = 0.8 we assume an overall reduced
effective bias. However, as we have seen even for the deterministic case there is a small F
range in which the addition of the oscillating potential accelerates the drift (see Fig. 6.7).
In that range the fit parameter value should be chosen as α > 1. We describe this
through a step function around Ft as : α(F ) = α2 + (α1 − α2) [tanh (ζ(Ft − F ))− 1] /2.
This phenomenological modification of the model leads to the red lines in Fig. 6.10
and shows agreement to the numerical simulations. Please note that Ft is the only
changing parameter in calculations of the non–linear ansatz for different frequencies.
This good agreement of the theoretical results with the numerical simulations shows that
the theory accounts for the decisive mechanism responsible for the observed behavior:
the combination of transport (slip phase) with repeated confinement (stick phase) at
temporal minimum of the potential.
The giant Péclet numbers indicate a quasi–deterministic Brownian transport. For low

noise strength (D < 0.01) and an optimal choice of F the system shows no dispersion
even for extremely large times (t > 105T , ∼ 104 particles). Compared to the potential–
free case effective diffusion shrinks and Péclet numbers rises over four order of magnitude.

6.6 Stationary probability density in the y − θ plane

The dynamics given by Eq. 6.7 describes the course of single stochastic trajectories
belonging to specific noise realizations. Instead, one may change to the equivalent de-
scription of probability density propagation, as we already did in the previous sections
to investigate characteristic behavior. This consideration can help to clarify the appear-
ance of alternating extrema pointed in Fig. 6.10 for Deff and Pe and give insights to the
distribution of the probability to find a stochastic particle over the potential landscape.
By interpreting θ = Ωt as a phase variable of the temporal oscillations, we can rewrite
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Figure 6.10: Comparison of simulations (symbols) with theoretical results at low Ω (solid
lines): mean velocity vdrift, effective diffusion Deff and Péclet number Pe
vs. bias F for Ω = 0.05 (left column) and Ω = 0.1 (right column) is
shown. Black lines represent the linear ansatz G = αF with α = 0.8,
red lines represent the non-linear ansatz with G = α(F )F with α1 = 1.6,
α2 = 0.8, ζ = 10 for both frequencies. The only changing parameter is Ft:
for Ω = 0.05 Ft = 0.28, for Ω = 0.1 Ft = 0.4. For both examples β = 0.08
is chosen.

Eq. 6.7 into the following autonomous two–component system

θ̇ = Ω
ẏ = cos (y) sin (θ) + F +

√
2Dξ(t) . (6.25)

The ensemble of stochastic trajectories can be translated into the occupation density
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6.6 Stationary probability density in the y − θ plane

p(y, θ; t) in the y − θ plane as the two–dimensional representation of the probability
shown in Fig. 6.4 or Fig. 6.9, respectively. The dynamics of p(y, θ; t) due to the action
of the potential and fluctuations in the space direction is given by the following Fokker–
Planck equation:

∂

∂t
p(y, θ; t) = L̂ p(y, θ; t) with

L̂ =− Ω ∂

∂θ
− sin (θ) ∂

∂y
cos (y)− F ∂

∂y
+D

∂2

∂y2 . (6.26)

The nature of θ–dynamics causes periodic boundary conditions with 2π periodicity in
θ. For the space coordinate we consider a ring with 4π periodicity, so that two minima
in y exist. Then a stationary solution exists for Eq. 6.26 satisfying L̂ p0(y, θ) = 0. The
corresponding stationary probability currents follow from the equation of continuity and
read:

J0
θ (y, θ) = Ω p0(y, θ)

J0
y (y, θ) = [F + sin (θ) cos (y)] p0(y, θ)−D ∂

∂y
p0(y, θ) . (6.27)

The current in θ–direction J0
θ is proportional to the amount of probability scaled by the

frequency Ω > 0. Since p0 is positive or zero, J0
θ flows always in positive θ–direction.

However, the probability current in y–direction is also determined by the negative gradi-
ent of p0. This leads to a current which points away from probability maxima. Obviously,
J0
y becomes larger and more directed in positive y–direction with increasing force F .
Eqs. 6.26 and 6.27 are solved numerically on a adjusted grid using the finite element

method. For Ω = 0.1 and D = 0.001 and four force values the resulting probability
densities and currents are shown in Fig. 6.11. The amount of probability is color–coded,
where blue means almost no probability and yellow until red color represents accumu-
lation of probability. Additionally, white arrows are included that display direction and
strength of probability currents. Moreover, black crosses mark the stable fixed point
locations of the system due to Eqs. 6.25.
In the symmetric case (F = 0) probability is accumulated where stable fixed points

according to minima of the potential are located, discernable as red stripes in the figure.
From these probability maxima the current splits symmetrically to the left and right.
After half a period ∆θ = π the probability gathers at the next minima of the potential.
The next three values of F used in Fig. 6.11 correspond to:

o the first maximum of the Péclet number at F ≈ 0.33,

o the first minimum of Pe at F ≈ 0.63,

o and the second maximum of Pe at F ≈ 0.73

that are shown in Fig. 6.10. The probability distribution corresponding to 1:1 syn-
chronization (F ≈ 0.33) shows clearly the direct thin path from one fixed point to the
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6 Synchronization and transport in an oscillating periodic potential

Figure 6.11: Stationary probability density p0(y, θ) from numerical simulations of
Eq. 6.26 is shown within the phase space range which is periodically con-
tinued for different forces F . The white arrows indicate the vector field
of the probability currents J0

y and J0
θ . The black crosses locate the stable

fixed points of the underlying dynamics. Other parameters are Ω = 0.1 and
D = 0.001.
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6.7 Conclusions

neighboring each ∆θ = π. This path keeps localized and has a very small dispersion
which is manifested in a vanishing effective diffusion coefficient and a giant Péclet num-
ber. For F ≈ 0.63 the paths split and spread to the left and right hand sided fixed points,
leading to a large effective diffusion. In this case vdrift is in between two plateaus. The
distorted paths in the lower left figure clearly illustrates the asynchronous state. Finally,
the fourth picture in Fig. 6.10 shows the case of F ≈ 0.73 at the second maximum of
Pe, corresponding to the second minimum of Deff. The probability path is extended,
connecting every second minimum within a half period and thus overleaping one sta-
ble fixed point, according to 1:3 synchronization. The reason, why the second peak is
less pronounced at this synchronization level is visualized here. Paths spreads stronger
when they cover the doubled distance while the potential is relatively flat, which leads
to higher effective diffusion.

6.7 Conclusions
In this last chapter of this work we treat a dynamical system that is structurally simi-
lar to excitable systems. We have analyzed the non–directed and directed transport of
Brownian particles moving in an a spatially periodic potential with oscillating ampli-
tudes. In the case of vanishing bias the oscillating potential may enhance the effective
diffusion for a specific frequency range. We derived an expression for Deff(Ω, D) to quan-
tify the enhancement which gives us an optimal driving frequency which maximizes the
diffusive transport.
The introduction of a finite bias leads to a finite drift velocity due to broken symmetry

and additional characterizing quantities besides effective diffusion are used. Particu-
larly by considering drift velocity and Péclet number we found synchronization regimes,
with strongly suppress effective diffusion and quasi–deterministic transport at finite
noise strengths. For fast oscillations analytical expression based on previous results
by Stratonovich and Kramers are found for the effective diffusion and mean velocity to
quantify the synchronized state. Also for low frequencies we gave explanations for the
appearance of higher order synchronization. Especially the study of probability densi-
ties and probability currents offered an approximative access to analyze drift velocity,
effective diffusion and Péclet number over a large frequency range. The latter approach
brought us to the investigation of probability density distribution on a two–dimensional
phase space containing the spatial direction and the phase variable of the temporally
oscillatory state. Paths of stationary probability density obtained by numerical sim-
ulations gave more specific insights in the dynamical appearance of synchronized or
desynchronized states.
Our results suggest that in the unbiased case the introduction of an spatio–temporal

periodic force mainly enhances the diffusive transport, whereas for a finite bias it may
significantly suppress diffusion and improve the quality of directed Brownian transport.
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7 Summary

In this thesis spatially extended dynamical systems are studied that are under the in-
fluence of noise. Generally the combination of nonlinear dynamics, noise and spatially
distribution can lead to a high grade of complexity. We have studied in this work a type
of models that have a degree of transparency which allowed us to obtain essential modes
of their dynamical characteristics. Problems addressed in this work ranging from noise
induced activation of a single excitable unit over pattern formation in a heterogeneous
active medium and abstract excitable two–state units coupled to their own output up
to transport properties of Brownian particles moving in a periodic oscillating potential.
Even if these scenarios seem to come from different fields, their qualitative properties
are basically describable by the same type of models.
We will briefly list the most important results here, to give an overview of the most

important questions and results: The stochastic escape from a fixed point is studied in
chapter 2 by applying the FHN model as a prototype of an excitable system. The scaling
of the mean escape time for major parameters is shown for a single unit in Fig. 2.4 and
for a unit which is coupled to inactive neighbors in Fig 2.9. The latter is considered to
be the very first initialization of a nucleation event. We noticed a qualitative difference
in the mean escape time characteristics for a medium in the excitable regime compared
to the subexcitable case.
An extension of the two–component FHN model is analyzed in the subsequent chap-

ter 2. An extra equation was added in order to model the rising potassium ion concen-
tration observed in extracellular space as the surrounding of excitable cells. We referred
to the set of three equations as FNK model. The coupling of an excitable element to
the external variable led to a rich dynamics such as excitable, oscillatory and bistable
behavior as well as their coexistence as shown in the bifurcation diagram Fig. 3.3. The
influence of noise on this three component situation was analyzed by determining the
power spectrum and ISI distribution (see Fig. 3.7). The main focus of this chapter laid
on spatially extended patterns emerging in a heterogeneous medium that consists of
active units embedded in an inactive environment. By variantion of parameter values
that are responsible for the exterior dynamics we found well known structures such as
wave fronts, spirals (Fig. 3.10) and target patterns (Fig. 3.13) as well as unusual struc-
tures such as noise supported traveling clusters (Fig. 3.11) and inverted spiral waves
(Fig. 3.15). A survey of these patterns classified by their parameter dependent appear-
ance is shown in Fig. 3.17. Thus we were able to produce a rich zoo of different patterns
which are partly known from measurements in real biological systems. The diversity was
explained by the underlying dynamics in combination with the presence of noise. Which
type of patterns develop in an active medium depends also on boundary conditions.
This is discussed in detail for a bistable front interacting with the system boundaries
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7 Summary

in chapter 4. We concentrated our analysis on Dirichlet boundary conditions for which
we had to distinguish two kinds of interaction, basically. Either the front reflects on
the boundary or it get bound and stops moving. The types of possible boundary in-
teraction are subsumed in Fig. 4.6. First we considered a discrete array consisting of
bistable elements coupled in the activator for which we obtained expressions that yields
the critical parameter values where the dynamical regime changes. This is summarized
in a parameter plane in Fig 4.8. Then we extend our considerations to the continu-
ous bistable wave front and analyzed first diffusion in the activator with an immobile
inhibitor dynamics and second diffusion in both variables. For the first case we find
approximated expressions for the wave shape (Eqs. 4.21) and the front velocity by series
expansions for small velocities and for a small time scale separation parameter. For the
second case we linearized the problem and found a relation between the front velocity
and the distance of the front to the boundary given in Eq. 4.43 which can be also applied
for the Neumann boundary problem. Trajectories obtained by numerical simulations,
that follows approximately nullclines defined in the distance–velocity phase space are
shown in Figs. 4.16– 4.18. Consequently, the origin of reflexion of fronts at boundaries
has been explained as a mechanism of metastability of the stationary states.
An abstract excitable system modeled as units that possess two discrete states is

studied in chapter 5. They are coupled by their common output which lowers the
activation rate of single units. This kind of positive feedback mechanism is connected
to the three–component FNK model where the external ion concentration enhances the
activity of the embedded neuronal units, however we dealt with an all–to–all connection
in this chapter. The coupling via the activation rate of the two–state units leads to
stationary states of the ensemble given by Eq. 5.13. We obtained mono– and bistability
for the stationary mean occupation probability to be in the upper active state or in the
lower rest state as shown in Fig. 5.6. If the rate of single units reacts on the common
output from a former point in time then the coupling is delayed. For this case the
ensemble’s activity can be oscillatory for a certain parameter range (see Fig. 5.7) and
we find regimes of synchronization. Again, coupling of active units led to the emergence
of coherent patterns, which were manifested as structures in time in this case.
The problem we addressed in the last chapter 6 has a high intrinsic periodicity in space

and time and is also connected to synchronization phenomena. We analyzed the motion
of a Brownian particle in a spatio–temporal oscillating potential. The model we used is
comparable to active units in their oscillatory phase as considered in previous chapters.
However, the main aspect here laid on transport properties which we quantified via the
averaged velocity and the effective diffusion as typical observables. Without a symmetry–
breaking bias we obtained an expression for the effective diffusion given in Eq. 6.15 which
was maximized by a finite oscillation frequency (see Fig. 6.5). For a tilted potential for
which one direction of propagation is preferred, velocity plateaus over the tilting force
appear where the motion of the particles is locked due to synchronization between the
oscillation period and the time of sliding into the potential valleys. Interpreting this
system as a driven oscillator we used expressions for the mean velocity: Eq. 6.19 and
effective diffusion: Eq. 6.20 to describe the synchronized states for supercritical tilts. An
approximated quantitative description is also given for smaller tilts that we compared to
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numerical results as shown Fig. 6.10. The interplay of deterministic dynamics and noise
that produced coherent patterns in the first chapters led here to a coherent transport
through the system due to similar synchronization effects. The transport paths can be
interpreted as structures in the corresponding phase space as shown Fig. 6.11.
To summarize; we studied the interplay of nonlinear dynamics and noise for spatially

extended and coupled active systems. We found transitions from one dynamical regime to
another and effects of synchronization as an underlying mechanism for coherent pattern
formation in space and time.
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Appendix A

1 Mean first passage time

The density distribution p(x, t) for the occupation probability of a Brownian particle in
a one–dimensional potential U(x) with a damping constant set to one is given by the
Langevin dynamics

ẋ(t) = −U ′(x) +
√

2σ ξ(t)

is described by the corresponding Fokker-Planck equation

ṗ(x, t) = ∂

∂x

[
U ′(x)p(x, t)

]
+ σ

∂2

∂x2 p(x, t) = − ∂

∂x
J ,

with D as the diffusion coefficient and J denotes the probability current. It follows

J = −σ
[
U ′(x)
σ

p+ p′
]
,

where the bar means derivation with respect to x. Multiplying with the Arrhenius factor
leads to

J = −σe−
U
σ

[
U ′(x)
σ

e
U
σ p+ e−

U
σ p′
]

= −σe−
U
σ
∂

∂x

[
e
U
σ p
]
.

After integrating and writing the current J as a flow of probability per time J = W/T
we have

T

∫ b

a
dx

∂

∂x

[
e
U
σ p(x, t)

]
= Te

U(b)
σ p(b, t)− Te

U(a)
D p(a, t)

= − 1
σ

∫ b

a
dx e

U(x)
σ W (x, t) = − 1

σ

∫ b

a
dx e

U(x)
σ

∫ x

−∞
dy p(y, t) .

We set b as the absorbing boundary where the probability density is zero (p(b, t) = 0). For
an a close to a potential’s minimum which is deep and far from the absorbing boundary
the probability density in the last integrand can be approximatly estimated relative
to the probability around a as p(y, t) = p(a, t)exp(∆U/σ) with a potental difference
∆U = U(x) − U(a). Since the current J is constant in space, T depends only on the
distance over which probability is transported, given by a and b. So, we arrive at the
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expression for the mean time to reach the boundary b stochastically when started in a:

T = 1
σ

∫ b

a
dx eU(x)/σ

∫ x

−∞
dy e−U(y)/σ .
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Appendix B

2 Stationary solutions in the globally coupled two–state system

The balance of probability flows serves to determine the occupation probabilities Pi(t),
i = 1, 2 of two separate states i. The generalized master equations that hold for these
probabilities read:

d

dt
Pi(t) = Jj(t)− Ji(t) , (1)

where Ji(t) denote the probability flow from state i to j at time t. They can be expressed
by the convolution of the inflow Jj to the state i in the past and the time distribution
to wait in this state:

Ji(t) =
∫ ∞

0
dt′ Jj(t− t′)wi(t′) . (2)

Laplace transformation of the convolution gives the product:

Ĵi(u) = Ĵj(u)ŵi(u) (3)

and therefore the balance equation (1) transforms to

uP̂i(u) = Ĵi(u)ŵj(u)− Ĵj(u)ŵi(u) , (4)

The waiting time distributions are normalized and can be splitted in parts:

1 =
∫ ∞

0
wi(t′) dt′ =

∫ τ

0
wi(t′) dt′ +

∫ ∞
τ

wi(t′) dt′ . (5)

The survival probability can be introduced as the counterpart to the waiting probability

zi(τ) = 1−
∫ τ

0
wi(t′) dt′ =

∫ ∞
τ

wi(t′) dt′ (6)

and after Laplace transformation it reads

ẑi(u) = 1
u

(
1− ŵi(u)

)
. (7)

Using Eqs. 3, 4 and 7 we write for the probability to be in state i:

P̂i =
(4)

Ĵiŵj
u
− Ĵjŵi

u
=
(3)

1
u

(1− ŵi) Ĵj =
(7)
ẑi Ĵj . (8)
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Backward Laplace transformation yields

Pi(t) =
∫ ∞

0
dt′ Jj(t− t′) zi(t′) . (9)

Since the transition 1→ 2 is a rate process, its probability flow is given by J1(t) = γP1(t).
Then equation (9) expressed for state 2 reads:

P2(t) = γ

∫ ∞
0

dt′
(
1− P2(t− t′)

)
z2(t′) . (10)

Let P ∗2 be the stationary solution of Eq. 10. Then we have

P ∗2 = γ
(
1− P ∗2

) ∫ ∞
0

dt′ z2(t′) . (11)

Partial integration over the survival probability yields∫ ∞
0

dt z2(t) =
∫ ∞

0
dt

∫ ∞
t

w2(t′) dt′ = t
[ ∫ ∞

t
w2(t′) dt′

]∣∣∣∣∞
0︸ ︷︷ ︸

=0

−
∫ ∞

0
dt t

d

dt

∫ ∞
t

w2(t′) dt′

= −
∫ ∞

0
dt t

d

dt

(
1−

∫ t

0
w2(t′) dt′

)
=
∫ ∞

0
dt tw2(t) = t2 . (12)

Then the stationary solution can be written as the fraction of residence time to be in
state 2:

P ∗2 = t2
1/γ + t2

= t2
T
, (13)

where T denotes the time of a complete cycle.
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