
Cost-based Optimization of Graph Queries in Relational
Database Management Systems

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Dr. rer nat.
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Dipl.-Ing. (FH) Silke Trißl M.Sc.

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Elmar Kulke

Gutachter:
1. Prof. Dr. Ulf Leser
2. Prof. Johann-Christoph Freytag, Ph.D.
3. Prof. Dr. Thorsten Grust

eingereicht am: 10.07.2011
Tag der mündlichen Prüfung: 16.02.2012

Alles hat ein Ende nur die Wurst hat zwei.
Stephan Remmler

Acknowledgement

This thesis would not have been possible without the help, support, and encourage-
ment of many people.
First of all, I would like to thank my supervisor Prof. Ulf Leser. He gave me the op-

portunity to start my PhD and provided a welcoming and pleasant working environment
at Humboldt-Universität zu Berlin. I am greatly indebted to him for his patience, en-
couragement, and guidance during all these years with ups and downs. I could not have
imagined a more motivated or dedicated advisor for my PhD study.
I am grateful to all who gave me the opportunity to partly finance my PhD by teaching.

I met committed and inquiring students in the courses and exercises I taught for Prof.
Ulf Leser at HU Berlin and Prof. Felix Naumann at HPI Potsdam. Dr. Márta Gutsche
and the Frauenförderung at HU Berlin gave me the opportunity to spark interest in
girls to study computer science. I thank Prof. Louiqa Raschid at University of Maryland
who invited me for a research exchange to the US. I am also grateful to the BMBF who
supported my research.
I would not have finished this PhD thesis without the help and support of many

colleagues and friends. Thanks to Jörg, Timo, and Philippe who shared an office with
me. Thanks to Jens, Melanie, Jana, Long, Roger, and Samira who also accompanied me
for a long time during my thesis. I want to acknowledge all researchers and students
from the groups WBI and DBIS at HU, Informationssysteme at HPI, and Genetik und
Biometrie at FBN. Many thanks for constructive criticism and helpful suggestions. I am
greatly indebted to all colleagues who tried to cheer me up during common lunch and
coffee breaks.
I acknowledge some students, who I met during my time in Berlin. Raphael and Philipp

did a lot of programming in my first project Columba. Johannes, Christoph, Florian, and
André used some ideas of GRIPP in their Studien- or Diplomarbeiten and gave feedback
on the algorithm.
Last but not least, würde ich mich gerne bei meiner Familie bedanken, die während

der gesamten Zeit Freud und Leid mit mir geteilt hat. Meine Eltern hatten und haben
immer ein offenes Ohr für meine Sorgen und Nöte – von ganzem Herzen vielen Dank
dafür. Also, many thanks to my sister. Whenever I needed to discuss a problem, she
listened patiently and gave me good advice.

Abstract

Graphs occur in many areas of life. We are interested in graphs in biology, where
nodes are chemical compounds, enzymes, reactions, or interactions, which are con-
nected by either directed or undirected edges. Efficiently querying these graphs is
a challenging task. In this thesis we present GRIcano, a system that efficiently
executes graph queries.
For GRIcano we assume that graphs are stored and queried using relational

database management systems (RDBMS). We use an extended version of the Path-
way Query Language PQL to express graph queries, for which we describe the syn-
tax and semantics in this work. We employ ideas from RDBMS to improve the
performance of query execution. Thus, the core of GRIcano is a cost-based query
optimizer, which is created using the Volcano optimizer generator. This thesis makes
contributions to all three required components of the optimizer, the relational alge-
bra, implementations, and cost model.
Relational algebra operators alone are not sufficient to express graph queries.

Thus, we first present new operators to rewrite PQL queries to algebra expressions.
We propose the reachability φ, distance Φ, path length ψ, and path operator Ψ. In
addition, we provide rewrite rules for the newly proposed operators in combination
with standard relational algebra operators.
Secondly, we present implementations for each proposed operator. The main

contribution is GRIPP, an index structure that allows us to execute reachability
queries on very large graphs containing directed edges. GRIPP has advantages over
other existing index structures, which we review in this work. In addition, we show
how to employ GRIPP and the recursive query strategy as implementation for all
four proposed operators.
The third component of GRIcano is the cost model, which requires cardinality

estimates for the proposed operators and cost functions for the implementations.
Based on extensive experimental evaluation of the proposed implementations we
present functions to estimate the cardinality of the φ, Φ, ψ, and Ψ operator and the
cost of executing a query. The novelty of our approach is that these functions only
use key figures of the graph. We finally present the effectiveness of GRIcano using
exemplary graph queries on real biological networks.

v

Zusammenfassung

Graphen sind in vielen Bereichen des Lebens zu finden, wobei wir speziell an Gra-
phen aus der Biologie interessiert sind. Knoten in solchen Graphen sind chemische
Komponenten, Enzyme, Reaktionen oder Interaktionen, die durch gerichtete oder
ungerichtete Kanten miteinander verbunden sind. Eine effiziente Ausführung von
Graphanfragen ist eine Herausforderung. In dieser Arbeit präsentieren wir GRIca-
no, ein System, das das effiziente Ausführen von Graphanfragen erlaubt.
Wir nehmen an, dass die Graphen in relationalen Datenbankmanagementsyste-

men (RDBMS) gespeichert sind und darin auch angefragt werden. Als Graphanfra-
gesprache schlagen wir eine erweiterte Version der Pathway Query Language (PQL)
vor. Der Hauptbestandteil von GRIcano ist ein kostenbasierter Anfrageoptimierer,
der mit Hilfe des Optimierergenerators Volcano erzeugt wird. Diese Arbeit enthält
Beiträge zu allen drei benötigten Komponenten des Optimierers, der relationalen
Algebra, Implementierungen und Kostenmodellen.
Die Operatoren der relationalen Algebra alleine sind nicht ausreichend, um PQL

Anfragen auszudrücken. Daher stellen wir zuerst die neuen Operatoren Erreichbar-
keits- φ, Distanz- Φ, Pfadlängen- ψ und Pfadoperator Ψ vor. Zusätzlich geben wir
Regeln für die Umformung von Ausdrücken an, die die neuen Operatoren zusammen
mit den Standardoperatoren der relationalen Algebra enthalten.
Des Weiteren präsentieren wir Implementierungen für jeden vorgeschlagenen Ope-

ratoren. Der Hauptbeitrag dabei ist GRIPP, eine Indexstruktur, die die effiziente
Ausführung von Erreichbarkeitsanfragen auf sehr großen Graphen mit gerichteten
Kanten erlaubt. Wir zeigen, wie GRIPP und die rekursive Anfragestrategie genutzt
werden können, um Implementierungen für alle vorgeschlagenen Operatoren bereit-
zustellen.
Die dritte Komponente von GRIcano ist das Kostenmodell, das Kardinalitäts-

abschätzungen für die vorgeschlagenen Operatoren und Kostenmodelle für die Im-
plementierungen benötigt. Basierend auf umfangreichen Experimenten schlagen wir
Funktionen für die Abschätzung der Kardinalitäten der Operatoren φ, Φ, ψ und Ψ
vor. Zusätzlich leiten wir Funktionen für die Abschätzung der Kosten für die Aus-
führung von Graphanfragen ab. Der neue Ansatz der Kostenmodelle ist, dass die
Funktionen nur Kennzahlen der Graphen verwenden. Abschließend zeigen wir die
Wirkungsweise von GRIcano mit Beispielanfragen auf echten biologischen Netzwer-
ken.

vii

Contents

1. Introduction 1
1.1. Queries on Graphs . 1
1.2. Motivation . 4
1.3. Contribution . 6
1.4. Structure of this Work . 7

2. Definitions and Terminology 9
2.1. Graphs . 9

2.1.1. Definitions . 9
2.1.2. Storage and Traversal . 12

2.2. Relational Algebra . 15
2.2.1. Algebra and Relations . 15
2.2.2. Operators . 16
2.2.3. Equivalence Rules . 18

2.3. Cost-Based Query Optimization . 19
2.3.1. Query Processing . 19
2.3.2. Implementation of Operators . 20
2.3.3. Cost Function and Query Optimization 22

2.4. Volcano . 24

3. Graph Queries 27
3.1. Data Model . 27
3.2. Graph Queries . 28

3.2.1. Query Graph . 29
3.2.2. Evaluation of Graph Queries . 29

3.3. Pathway Query Language . 32
3.3.1. Graphs in PQL . 32
3.3.2. Syntax . 33
3.3.3. PQL and Non-graph Relations . 41

3.4. PQL Semantics . 43
3.4.1. Semantics of Node Conditions . 43
3.4.2. Semantics of Path Conditions . 44
3.4.3. Semantics of HAVING Conditions 45
3.4.4. Semantic of the Subgraph Specification 45
3.4.5. Conversion to Relational Algebra 45

3.5. Related Work . 48

ix

Contents

4. Operators for Graph Queries 55
4.1. Operators for Nodes . 55
4.2. Operators for Paths . 57

4.2.1. Path Operator, Ψ . 57
4.2.2. Reachability operator, φ . 60
4.2.3. Path Length Operator, ψ . 63
4.2.4. Distance Operator, Φ . 65
4.2.5. Summary . 66

4.3. Related Work . 67

5. Implementations for Operators 71
5.1. GRIPP . 71

5.1.1. Index Structure . 71
5.1.2. Reachability Queries . 74
5.1.3. Distance Queries . 82
5.1.4. Path Length and Path Queries . 85

5.2. Other Index Structures . 88
5.2.1. Transitive Closure . 88
5.2.2. Dual Labeling . 89
5.2.3. Label + SSPI . 89

5.3. RDBMS Capabilities . 90
5.4. Recursive Strategies . 91
5.5. Summary . 92
5.6. Related Work . 92

6. Performance of GRIPP 99
6.1. Experimental Setup . 99

6.1.1. Generated Graphs . 99
6.1.2. Real-world Graphs . 99
6.1.3. Implementation Details . 99

6.2. Index Creation . 101
6.3. Query Performance . 102

6.3.1. Reachability Queries . 102
6.3.2. Distance Queries . 106
6.3.3. Path Length Queries . 107
6.3.4. Path Queries . 110
6.3.5. Comparison of Query Types . 110
6.3.6. Summary . 112

7. GRIcano 117
7.1. Cardinality Estimates . 117

7.1.1. Reachability Operator . 118
7.1.2. Distance Operator . 119
7.1.3. Path Length Operator . 123

x

Contents

7.1.4. Path Operator . 125
7.1.5. Validation on Real World Graphs 126

7.2. Cost Functions . 127
7.2.1. Reachability Queries . 127
7.2.2. Distance Queries . 129
7.2.3. Path Length Queries . 132
7.2.4. Path Queries . 134
7.2.5. Validation on Real World Graphs 135

7.3. GRIcano . 135
7.3.1. Experimental Evaluation . 138

7.4. Related Work . 143
7.4.1. Cardinality and Cost Estimates . 143
7.4.2. Rule-based Query Optimization . 143
7.4.3. Cost-based Query Optimization . 144

8. Conclusion and Outlook 147
8.1. Summary . 147
8.2. Future Work . 148

A. Strongly Connected Component 151
A.1. Kosaraju’s Algorithm . 151

B. Rewrite Rules for Operators 153
B.1. Path Operator . 153

B.1.1. Restriction on Start and End Node 153
B.1.2. Path Operator and Other Operators 153

B.2. Path Length Operator . 154
B.2.1. Restriction on Start and End Node 154
B.2.2. From Path Operator Ψ to Path Length Operator ψ 155
B.2.3. Path Length Operator and Other Operators 155

B.3. Distance Operator . 156
B.3.1. Restriction on Start and End Node 156
B.3.2. From Path Operator Ψ to Distance Operator Φ 157
B.3.3. Distance Operator and Other Operators 157

B.4. Reachability Operator . 158
B.4.1. Restriction on Start and End Node 158
B.4.2. From Path Operator Ψ to Reachability Operator φ 159
B.4.3. Reachability Operator and Other Operators 159

C. Additional Algorithms for GRIPP 161
C.1. Relational Schema for Storing GRIPP . 161
C.2. Stop Node List for GRIPP . 161
C.3. Reachability for Sets of Nodes . 162

xi

Contents

D. Graph Properties 165

E. Model Specification for Volcano 167

F. Cost and Cardinality Functions for Volcano 173

G. Exemplary Queries for GRIcano 179

xii

1. Introduction

The topic of this work is cost-based optimization of graph queries in relational database
management systems. In Section 1.1 we first introduce the kind of graphs that led us
to this topic, before we proceed in Section 1.2 with the motivation for our approach.
In Section 1.3 we summarize our contribution in the area of cost-based optimization of
graph queries. Finally, in Section 1.4 we give an overview of this work.

1.1. Queries on Graphs

Graphs occur in many areas of life. Examples are public transport plans, road maps,
the World Wide Web (WWW), or social networks. Common to all these graphs is that
they consist of nodes and edges. Nodes are stations, junctions, web pages, or people.
Edges in such networks are tracks, roads, links, or personal relationships.
All these graphs have interesting features but we are interested in graphs in biology.

To understand the content of these graphs we first make a short digression to cell biology.
For a more comprehensive introduction we refer the reader to Alberts et al. [AJW+08].
All biological cells are built in similar fashion, though there exist differences in the

structure of cells between the three major groups, prokaryotes, eukaryotes, and archaea.
All have in common that they contain a cell membrane as boundary to the outside and
a genome, which holds information for building and maintaining the cell. In eukaryotes
the genome is contained inside the nucleus, while in prokaryotes and archaea the genome
is free in the cytoplasm.
The genome is comprised of long stretches of DNA, the chromosomes. Genes are

short regions of the genome that code for a functional product in the cell. During the
transcription process genes are read and transcribed into RNA. Either the RNA itself is
the functional product or the RNA, possibly with some modifications, is translated to
proteins.
Proteins in a cell are the workhorses as they catalyze reactions, process signals, or

transport molecules. One class of proteins, the enzymes, catalyze chemical reactions,
such as the degradation of sugar or the production of essential amino acids. Another
class, the membrane proteins, reside inside the cell membrane and react to outer stimuli
or facilitate the transport of substances in and out of a cell. When an outer stimuli
occurs membrane proteins may activate or inactivate proteins inside the cell to enhance
or suppress reactions. There exist other protein groups such as histones, which are
concerned with packing the DNA in the nucleus of eukaryotes, collagens, which occur
mainly in muscle cells, or antibodies, which are required in higher organisms for the
immune response.

1

1. Introduction

To give an impression of the complexity of the problem, every human has about 250,000
different proteins in his or her body, according to current estimates. Each protein may
interact with numerous other proteins or some of the hundreds of thousands organic
and inorganic substances. Biologists have studied these complex interactions involving
proteins and other substances. Their knowledge is stored as graphs in publicly available
data sources.
Biological graphs may roughly be divided into three categories, metabolic networks,

signaling pathways, and protein-protein interaction networks1. For a review on different
biological networks see [BN05].
Metabolic networks are graphs, which represent the conversion of substances in a cell.

Nodes in these networks are proteins, other molecules such as sugars or fatty acids,
or reactions. Edges in such graphs are usually directed and indicate that a molecule
participates in a reaction. The most familiar conversion is the glycolysis. In the glycolysis
glucose is converted to pyruvate, which produces energy during the conversion. Proteins
and reactions participating in this conversion are said to be in the glycolysis pathway. In
general, pathways in metabolic networks are subgraphs that stand for specific conversions
defined by researchers. The pathways may overlap, i.e., they may share proteins or
reactions.
Data sources for metabolic networks are KEGG [KGK+04], BioCyc [KOMK+05], and

Reactome [JTGV+05] for instance. Figure 1.1 shows the glycolysis given by KEGG.
Circles are molecules that are converted, rectangular boxes on edges stand for reactions
catalyzed by enzymes that are identified by their EC number, and the boxes with rounded
corners represent other pathways.
Signaling pathways are graphs that capture the information flow in a cell. Nodes in

these graphs are usually proteins or reactions, while edges represent the flow of infor-
mation. For example, Figure 1.2 shows the activation of protein kinase A (PKA) by an
outer stimuli as given by BioCarta [htt11b].
The activated form of PKA regulates several reactions, including one reaction of the

glycolysis presented in Figure 1.1. Depending on the outer stimuli glucose PKA phos-
phorylates or dephosphorylates the complex of the two enzymes phosphofructokinase
2 and fructose-2,6-bisphosphatase. The phosphorylation status influences the reaction
rate of the glycolysis.
The third group of biological graphs are protein-protein interaction networks. In

these graphs nodes are proteins, while edges represent interactions between proteins
and they are usually undirected. Figure 1.3 shows known interactions for the protein
complex phosphofructokinase 2 and fructose-2,6-bisphosphatase (PFKFB1) as given by
String [vMJS+05], a data source for protein-protein interactions. The red node in the
center is PFKFB1. It interacts with protein kinase A (PKACA) and several other
proteins. The different colors of the edges code for different evidences, e.g., interactions
found in other data sources are represented by blue edges, while interactions derived
using text mining methods are shown by light green edges.
Other data sources that contain data about protein-protein interactions are for in-

1See http://www.pathguide.org/ Pathguide: the pathway resource list for a list on data sources

2

1.1. Queries on Graphs

Figure 1.1.: The glycolysis as given by KEGG. The circles are molecules that are con-
verted, rectangular boxes on edges stand for reactions catalyzed by enzymes
that are identified by their EC number, and the boxes with rounded corners
stand for other pathways.

3

1. Introduction

Figure 1.2.: The activation of PKA through an outer stimuli from BioCarta.

stance DIP [XSD+02], BIND [BBH03], Intact [XSD+02], and PubGene [JLKH01].

1.2. Motivation
The examples in the last section show only small parts of different biological graphs.
Table 1.1 shows the number of nodes and edges of selected data sources. For example,
KEGG contains 42,002 nodes and 51,450 edges in its reference pathway as of March 2011.
The reference pathway is a summarization of the pathways of all species. In contrast,
BioCyc stores an individual metabolic network for each of the roughly 400 species. In
addition, in contrast to KEGG BioCyc also represents relationships between genes and
proteins.
Biologist use specialized graph viewing tools to display those graphs. For a review

on the tools see Suderman & Hallett [SH07]. The tools usually display parts of the
entire graph, e.g., a single pathway of a metabolic network, possibly with links to other
pathways as shown in Figure 1.1. With such tools a biologist is only able to navigate
through graphs.
Consider the question ’How many steps does a cell require to produce the amino acid

lysine given the substrate glucose’. A biologist may use the metabolic network of KEGG,

4

1.2. Motivation

Figure 1.3.: Known protein-protein interactions for the protein complex PFKFB1 in hu-
mans. The different colors of edges stand for different evidences, e.g., in-
teractions found in other data sources are represented by blue edges, while
interactions derived using text mining methods are shown by light green
edges.

where she has to start at glucose in the glycolysis pathway, follow the link to the pathway
of the citrate cycle, and then follow the link to the pathway of the lysine biosynthesis.
This way, she will count that there are 25 steps required to produce lysine from the
substrate glucose.
Clearly, when manually navigating through the images of pathways a biologist might

not find the shortest path or occasionally even no path at all although there exists one.
Thus, tools are required that allow users to pose queries such as the one presented above
and return an answer to the user.
In [HNM+00] van Helden and colleagues identified several other questions that are

interesting for biologists:

• Get all reactions catalyzed by a given gene product.
• Find all metabolic pathways that convert compound A into compound B in less
than X steps.
• Retrieve all genes whose expression is directly or indirectly affected by a given
compound.
• Find all compounds that can be synthesized from a given precursor in less than X
steps.

Currently, researchers have to write specialized programs to traverse the graphs to

5

1. Introduction

Biological graph Number of nodes Number of edges
Metabolic networks
KEGG [KGK+04] 42,002 51,450
BioCyc A. thaliana [KOMK+05] 10,951 23,649
Reactome [JTGV+05] 11,795 23,649
Signaling pathways
BioCarta [htt11b] only images
NetPath TGF-β [KMR+10] 705 862
TransPath [KPV+06] > 100,000 >240,000
Protein-protein interaction networks
String [vMJS+05] > 2,500,000 > 50,000,000
DIP [XSD+02] 23,201 71,276
Intact 50,272 543,044

Table 1.1.: Sizes of biological graphs (in March 2011).

answer such queries. Whenever they want to pose a new query these programs need to
be adjusted. In this work we present GRIcano to overcome this problem.

1.3. Contribution

In this work we present GRIcano, a novel tool that efficiently retrieves answers to graph
queries. In GRIcano we employ ideas from query optimization in relational database
management systems (RDBMS) and carry these ideas over to graph query optimization.
In the following chapters we target several aspects of graph queries. We specifically

make the following contributions:

• Extend the existing query language PQL.
We present and extend the Pathway Query Language (PQL) [Les05a], which was
developed to express graph queries. Using PQL a user may express conditions of
a graph query as predicates. In Chapter 3 we describe the syntax as well as the
semantics of PQL.
• Define relational operators to express PQL queries.
In order to optimize a graph query we want to be able to alter the order in which
predicates of the query are evaluated. We may achieve this by rewriting the PQL
query to an algebraic expression and apply rewrite rules for transformation. As
standard operators from relational algebra are not sufficient for expressing PQL
queries, which we discuss in Chapter 4, we develop new and novel operators in this
thesis. We define the path Ψ, path length ψ, distance Φ, and reachability operator
φ to express predicates of graphs queries and provide rewrite rules for the exchange
of operators.
• Propose and experimentally evaluate implementations for operators.
For each proposed operator we have to provide implementations to compute the
result. Thus, in Chapter 5 we discuss implementations to answer reachability,

6

1.4. Structure of this Work

distance, path length, and path queries. We may use GRIPP, our newly developed
index structure, for answering all four types of graph queries. Chapter 6 shows
that we are able to compute the GRIPP index even for very large graphs, for
which the transitive closure cannot be created. In addition, we are able to answer
reachability queries on average in almost constant time regardless the size and
shape of the graph using GRIPP.
• Develop functions to estimate cardinality of operators and cost of im-
plementations.
For cost-based query optimization we require cardinality estimates for the different
operators and cost functions for each implementation. In Chapter 7 we develop
equations that are based on key figures of the graph, which is to our knowledge a
novel approach. Using our cost functions we correctly predict on generated as well
as on real-world graphs the result sizes and fastest implementations.
• Present and evaluate a prototypical implementation of GRIcano.
In Chapter 7 we present GRIcano, the first system that performs cost-based query
optimization for graph queries. The underlying cost-based query optimizer is gen-
erated using the Volcano framework [GM93]. Volcano requires as input the avail-
able operators and rewrite rules of the algebra, the available implementations for
the different operators, and the equations for the cardinality and cost estimates.
We show the effect of GRIcano using exemplary queries.

1.4. Structure of this Work
In Chapter 2 we introduce basic notation on graphs, relational algebra, and cost-based
query optimization. Chapter 3 is devoted to a data model for storing graphs, graph
queries, and PQL, a language to express graph queries. In Chapter 4 we first argue that
PQL queries should be executed like standard SQL queries, i.e., first transforming them
to an algebraic expression. We induce the necessity of new operators for the algebra
and introduce the path operator, Ψ, path length operator, ψ, distance operator Φ, and
reachability operator φ. We also provide rewrite rules for exchanging operators.
In Chapter 5 we provide implementations for the operators proposed in Chapter 4.

We present GRIPP, an index structure to efficiently answer reachability queries even on
large graphs. In Chapter 6 we experimentally evaluate the presented implementations.
In Chapter 7 we devise functions to estimate cardinality for the four newly defined

operators and cost functions for the different implementations. In that chapter we also
introduce GRIcano, our graph query optimizer. We show the capabilities of GRIcano
using selected queries. Chapter 8 concludes the work.

7

2. Definitions and Terminology

This chapter introduces basic notation on graphs, relational algebra, and query opti-
mization. In Section 2.1 we formally define graphs and properties of graphs. Section 2.2
introduces fundamental concepts behind relational algebra. In Section 2.3 we present
an introduction to cost-based query optimization in relational database management
systems.

2.1. Graphs

This work mostly deals with graph structured data. We therefore formally introduce
graphs. For this purpose we adopt notation from Cormen et al. [CLR01].

2.1.1. Definitions

Definition 2.1 (Graph)

A graph G = (V (G), E(G)) is a tuple consisting of a set of nodes V (G) and a set
of edges E(G), with E(G) ⊆ V (G)× V (G).

Whenever the context of the graph is clear we may write G = (V,E).
There exist two types of graphs, directed and undirected graphs. Directed graphs

have ordered pairs of nodes in E. In contrast, in undirected graphs the set E contains
unordered pairs of nodes. Consider (u, v) ∈ E with u, v ∈ V and u 6= v. In a directed
graph only v is adjacent to u, while in an undirected graph the relation is symmetric,
i.e., (u, v) is the same as (v, u).
If (u, v) ∈ E in a directed graph we say node u has the outgoing edge (u, v) and

therefore u is start node of (u, v). In analogy (u, v) is an incoming edge of node v and
therefore v is target node of (u, v). We call u parent of v and v child of u.

Definition 2.2 (Size of a graph)

Let G = (V,E). The size of G is the number of nodes |V | plus the number of edges
|E| in G, i.e., |G| = |V |+ |E|.

Based on the ratio between edges and nodes, which is called the density of a graph, we
are able to divide graphs into two groups – sparse and dense graphs. The literature does
not provide a clear distinction between the two types. As rule of thumb, if the number
of edges E is close to |V |2 the graphs are called dense, otherwise if |E| � |V |2 they are
sparse.

9

2. Definitions and Terminology

a

b c

d

e f

Figure 2.1.: A directed graph. Circles represent nodes; arrows between nodes represent
edges. Nodes in this example are uniquely labeled. The size of the graph is
14 (6 nodes plus 8 edges). For example, the degree of node b is deg(b) = 3.

To describe the shape of a graph we look at the distribution of node degrees. To do
so, we first define the degree of a node.

Definition 2.3 (Degree of a node)

Given a graph G = (V,E). The degree of node v ∈ V deg(v) is the number of edges
in which v participates.

If G is directed we may distinguish between an indegree degin(v) and an outdegree
degout(v) of a node v. The indegree is the number of edges with v as target node and,
in analogy, the outdegree is the number of edges with v as start node.
Based on the distribution of the node degree we distinguish between different graph

topologies. The distribution of the node degrees of random graphs follows a binomial
distribution. Graphs where the distribution of the node degrees follows a power-law are
called scale-free. Barabási and Oltvai describe in [BO04] these topologies.
Nodes and edges are often labeled. Therefore we define a label function for nodes and

edges of a graph.

Definition 2.4 (Label function, φ)

Let L be a set of labels. A label function φ assigns labels to nodes and edges,
φ(V,L) : V → L and φ(E,L) : E → L.

In this work we assume each label l ∈ L consists of a type and a value.

Graphs also contain paths.

Definition 2.5 (Path and path length)

Let G = (V,E). A path p is a sequence of nodes 〈v0, v1, v2, . . . , vk〉, vi ∈ V such
that (vi−1, vi) ∈ E for i = 1, 2, . . . , k. The length of the path is the number of edges
in the path.

If there exists a path p from u to w we say w is reachable from u, written as u w.

10

2.1. Graphs

A path is simple if all nodes in p are distinct, otherwise p is said to contain a cycle.
Formally, a cycle is a path in a directed graph with nodes 〈v0, v1, v2, . . . , vk〉, where
v0 = vk and k ≥ 2. In this work we only consider simple paths.
A directed graph G without cycles is called a directed acyclic graph (DAG). In a DAG

a node may have many parent nodes. If a graph G contains no cycles and every node
v ∈ V has at most one parent it is a tree.

Definition 2.6 (Distance)

Given a graph G = (V,E). The distance between two nodes u,w ∈ V is the length
of the shortest path p between nodes u and w. If no path exists, the distance is ∞.

For a pair of nodes u,w ∈ V there may exist several paths pi with the same path
length.

Example 2.1 (Paths in graphs). Consider nodes a and e in Figure 2.1. Node e
is reachable from node a as there exist several paths from a to e. One path is p1 =
〈a, b, c, f, e〉 with length 4, another p2 = 〈a, b, c, e〉 with length 3. As there exists no
other simple path between both nodes we know the distance between the two nodes is
3. Path 〈b, c, e, b〉 forms a cycle.

After introducing paths we now define ancestors and descendants of a node.

Definition 2.7 (Ancestors and descendants of a node)

Let G = (V,E). A node u ∈ V is ancestor of v ∈ V if a path u v in G exists. In
analogy all nodes w ∈ V are descendants of node v ∈ V for which v w in G exists.

We are able to represent all ancestor-descendant relationships in the transitive closure.

Definition 2.8 (Transitive closure)

Let G = (V,E) with v, w ∈ V . The transitive closure is the graph G∗ = (V,E∗)
with E∗ = {(v, w) | v w in G}.

When answering graph queries we are interested in certain nodes and edges of a given
graph. We thus formally introduce the notation of a subgraph in the following.

Definition 2.9 (Subgraph and induced subgraph)

Let G = (V,E). A graph G′ = (V ′, E′) is a subgraph of G, written G′ ⊆ G, iff
V ′ ⊆ V and E′ ⊆ E.
The graph G′ = (V ′, E′) is an induced subgraph of G = (V,E) iff G′ is a subgraph

of G and E′ = {(u, v)|(u, v) ∈ E, u, v ∈ V ′}.

Graphs and subgraphs may have special properties, for example they may be con-
nected. We distinguish between undirected and directed graphs for the definition of
connected and strongly connected graphs.

11

2. Definitions and Terminology

Definition 2.10 (Connected and strongly connected graph)

• Given an undirected graph G = (V,E). G is connected iff for every pair of nodes
u, v ∈ V a path u v exists.

• Given a directed graph G. G is strongly connected iff every two nodes u, v ∈ V
are reachable from each other, i.e., u v and v u.

Given an undirected graph G. A connected component G′ of G is a subgraph of G
that is connected and can not be extended. In analogy for a directed graph a strongly
connected component is a subgraph of G that is strongly connected and can not be
extended.

Example 2.2 (Strongly connected components). Consider the graph in Figure 2.1.
The graph has one strongly connected component of size > 1 , which contains nodes b,
c, e, and f . Nodes a and d do not belong to this strongly connected component.

Erdös and Rényi investigated random graphs and discovered that random directed
graphs with certain properties contain one giant strongly connected component [ER60].
They showed that undirected graphs with n nodes and m = c ∗ n/2 edges contain for
c < 1 many components, which are no larger than O(logn) nodes. In contrast, graphs
with c > 1 already have with high probability one giant component of the size Θ(n)
nodes. For graphs with directed edges the situation is more complicated [CF04]. Let
d =

∑
i,j ij

li,j

c∗n be the average directed degree, with li,j being the number of vertices with
indegree i and outdegree j and c > 0. Note, the shape of the graph (random or scale-free)
and c influence i and j and thus li,j . For d < 1 the graph contains strongly connected
components of the size O(logn) nodes. Otherwise, if d > 1 the graph contains with high
probability one giant strongly connected component. For a more detailed analysis of
random graphs and other graph models see Bornholdt & Schuster [BS03].

2.1.2. Storage and Traversal

So far, we only considered properties of graphs. We now discuss how to store and traverse
graphs.

Representation of Graphs

To represent graphs we may use two different formats, an adjacency matrix or an adja-
cency list. The adjacency matrix M is of size |V | × |V |. The entry on position M(i, j)
is 1 if an edge between nodes vi, vj with 1 ≤ i, j ≤ |V | exists, otherwise 0. The matrix
representation of a graph is useful for dense graphs.
The adjacency list contains one entry for every edge in the graph. Therefore this list

is of size |E|. That representation is good for sparse graphs. As we mostly deal with
sparse graphs, we use adjacency lists.

12

2.1. Graphs

Graph Traversal

To determine relationships between nodes in a graph we may use graph traversal. Com-
mon algorithms use breadth-first or depth-first search.
Algorithm 2.1 shows the function breadth-first to traverse a graph G in breadth-first

order starting from node u. The algorithm requires two lists, queue, which contains all
nodes that still have to be considered, and traversed, which stores all descendant nodes of
u. Initially, queue only contains u. In the while loop the first node of queue is removed
and its child nodes are considered. If the child node has not been encountered before
(element of traversed) it is added to both lists. The while loop is executed as long as
queue contains nodes. The runtime of algorithms that perform a breadth-first search to
find all descendants of u ∈ V is O(|V |+ |E|).

Algorithm 2.1: Algorithm to perform a breadth-first search on G starting at u to
find all nodes reachable from u.
Data: graph G, node u

1 traversed ← ∅
2 queue ← ∅
3 FUNCTION breadth-first(u)
4 push(queue, u)
5 traversed ← traversed ∪ u
6 while queue 6= ∅ do
7 u ← pop(queue)
8 foreach v ∈ children(u) do
9 if v /∈ traversed then

10 push(queue, v)
11 traversed ← traversed ∪ v
12 end
13 end
14 end
15 end

We may modify the breadth-first search algorithm to return the distance between u
and all descendants of u. Thus, the breadth-first search algorithm may be used to target
the single-source shortest-path problem [CLR01].
Another algorithm to traverse a graph is depth-first search. Algorithm 2.2 shows the

function depth-first to perform a depth-first search in G starting from u. The char-
acteristics of a depth-first search is that the algorithm searches “deeper” in the graph
whenever possible [CLR01] . The algorithm starts at node u and considers all child
nodes v of u. If v is not in list traversed, which stores all descendants of u and u itself,
the algorithm calls the function depth-first again with v as new start node. As soon as
a node u has no further untraversed child nodes the algorithm backtracks. As for the
breadth-first search, the depth-first search reaches all nodes reachable from u in G. The
runtime of algorithms that perform depth-first search to find all descendants of u ∈ V
is O(|V |+ |E|).

13

2. Definitions and Terminology

Algorithm 2.2: Algorithm to perform a depth-first search on G starting at u to find
all nodes reachable from u.
Data: graph G, node u

1 traversed ← ∅
2 FUNCTION depth-first(u)
3 traversed ← traversed ∪ u
4 foreach v ∈ children(u) do
5 if v /∈ traversed then
6 depth-first(v)
7 end
8 end
9 end

Several algorithms use depth-first search as basis. For example, it is possible to assign
every node in a graph a pre- and postorder value. This labeling scheme has been proposed
by Dietz and Sleator [DS87] as indexing method. This scheme was used to label nodes
in trees [GvKT04] and DAGs [ABJ89, TL05]. In this thesis we apply it to arbitrary
graphs containing cycles in Chapter 5.

Definition 2.11 (Pre- and postorder value of a node v)

Let G = (V,E). Assume we start a depth-first search at u and reach v ∈ V . The
preorder value, vpre is assigned as soon as node v is traversed during a depth-first
search of G. The postorder value, vpost is assigned after all descendant nodes of v have
been traversed. After each assignment the counter for the pre- and postorder value is
increased.

Algorithm 2.3 shows the functions to assign every node in G a pre- and postorder
value. Function pre-post ensures that every node in G will receive a pre- and postorder
value. The function depth-first given in Algorithm 2.2 is extended to also assign these
values. The order in which nodes of G are traversed may be determined in function
pre-post. Note, the algorithm does not properly treat cycles.
We apply Algorithm 2.3 to a tree T . Starting at its root node each node receives

exactly one pre- and postorder value. A table of all nodes with their assigned pre- and
postorder values forms an index with which reachability queries may be answered with a
single query. If v is reachable from u, v must have a higher preorder and lower postorder
value than w, i.e., vpre > upre ∧ vpost < upost [DS87]. This condition only holds for
trees. We developed an algorithm in [TL07], called GRIPP, that uses a modified form
of the pre- and postorder labeling and a specific query strategy to also apply pre- and
postorder labeling on general graphs. We introduce GRIPP in Section 5.1.
A further application of depth-first search is to determine which nodes of a graph are

contained in a strongly connected component. There exist several algorithms to solve the
problem, e.g., Kosaraju’s algorithm, Tarjan’s algorithm, Gabow’s algorithm, or Karp’s
algorithm [Sed04]. We provide Kosaraju’s algorithm in Appendix A.

14

2.2. Relational Algebra

Algorithm 2.3: Algorithm to assign every node in G a pre- and postorder value.
Data: graph G

1 traversed ← ∅
2 pp_count = 0
3 FUNCTION pre-post
4 foreach u ∈ V do
5 if u /∈ traversed then
6 depth-first(u)
7 end
8 end
9 end

10 FUNCTION depth-first(u)
11 traversed ← traversed ∪ u
12 upre ← pp_count ++
13 foreach v ∈ children(u) do
14 if v /∈ traversed then
15 depth-first(v)
16 end
17 end
18 upost ← pp_count ++
19 end

2.2. Relational Algebra

This work presents a tool for the optimization of graph queries in relational database
management systems (RDBMS). RDBMS use relational algebra during the evaluation
of queries. In this section we briefly introduce and define terms and notation of the
relational algebra as presented by Date in [Dat03].

2.2.1. Algebra and Relations

To understand relational algebra we first define algebra following Hamilton [Ham82].

Definition 2.12 (Algebra)

An algebra consists of a set A together with a set of operators applied on A.

An algebra allows users to build expressions by applying operators to A and combine
those. Parentheses are used to group expressions, sets, and operators. In addition an
algebra may define rules for its operators. Any rule may be applied to an expression,
as long as the result of the expression is not changed. Therefore, not every rule is
applicable to every operator. Such rules allow the exchange of operations performed in
an expression.
The relational algebra is one example of an algebra. The set A of this algebra consists

of relations defined according to Maier [Mai83]. The notation for relational algebra used
in this work is taken from Garcia-Molina et al. [GMUW02].

15

2. Definitions and Terminology

Definition 2.13 (Relation)

Let a relation scheme S be a finite set of attributes A = {a1, a2, . . . , an}. Corre-
sponding to each attribute ai is a set Di , 1 ≤ i ≤ n, called the domain of values of
ai. Let D = D1 ∪D2 ∪ · · · ∪Dn.
A relation R on relation scheme S is a finite set of mappings {t1, t2, . . . , tj} from S

to D with the restriction that for each mapping t ∈ R, t(ai) must be in Di.

The mappings are called tuples. The value of attribute ai ∈ A in tuple t ∈ R is t(ai).
A tuple t ∈ R is represented as t = {(a1, t(a1)), . . . , (an, t(an))}.

2.2.2. Operators

Operators of relational algebra apply to relations or expressions. Expressions of the rela-
tional algebra construct new relations using operators. We distinguish between operators
for single and for multiple relations.
There exist different standard operators applied to a single relation:

• Selection (σ) – eliminates tuples of a relation.

• Projection (π) – eliminates attributes of a relation.

• Renaming (ρ) – does not change the data of a relation, but changes the name of
the relation or the name of attributes in the relation.

Operators for multiple relations are:

• Set operators (∪,∩, \) – the known set operators union, intersection, and difference
applied to two relations.

• Cartesian Product (×) – produces all possible combinations of tuples from two
relations.

• Join operators (./) – selectively join tuples from the two input relations based on
a condition.

In the following we formally introduce some of the operators.

Selection

The selection operator is applied to a single relation R. It produces a new relation R’,
such that R’ contains all tuples of R that fulfill a given conditional expression.

Definition 2.14 (Conditional expression, C)

A conditional expression C consists of conditions c1, . . . , ci, i ≥ 1 combined by
Boolean operators AND, OR, and NOT.

16

2.2. Relational Algebra

Every condition ci of the conditional expression must evaluate to true or false.
Combining these single conditions using Boolean operators returns true or false for
the entire conditional expression.
We now define the selection operator for a single condition c.

Definition 2.15 (Selection operator, σ)

Given a relation R with attributes A, and given a condition c of the form c = a θ b
or c = a θ k, with a, b ∈ A, k = constant, and θ ∈ {<,≤,=, 6=,≥, >}.
The selection operator σ applied to R with condition c produces a relation as follows

• σa θ b(R) = {t | t ∈ R, t(a) θ t(b)}

• σa θ k(R) = {t | t ∈ R, t(a) θ k}

When applying the selection operator σ to the relation R using a conditional expression
C the resulting relation will contain all tuples t ∈ R for which the conditional expression
evaluates to true.

Projection

The projection operator is used to produce a new relation R’ from a given relation R,
such that R’ only has a subset of attributes of R.

Definition 2.16 (Projection operator, π)

Given a relation R with attributes A = {a1, . . . , an} and a set of attributes A′ with
A′ ⊆ A.
The projection operator π applied to relation R produces a relation as follows
πA′(R) = {t[A′] | t ∈ R}, with t[A′] = {(ai, t(ai)) | (ai, t(ai)) ∈ t, ai ∈ A′}.

Join operators

In a cartesian product all possible combinations of tuples from both relations occur.
More often we want to join only those tuples that match in some way. The natural join
operator and the theta join provide this behavior.
The natural join combines tuples of two relations only if the values in common at-

tributes are equal. The theta join relaxes this requirement by adding a conditional
expression C to the join. We now define the theta join for a single condition c.

Definition 2.17 (Theta join, R ./c S)

Given two relations, R with attributes A and S with attributes B, and a condition c
in the form c = aθb, with a ∈ A, b ∈ B, and θ ∈ {<,≤,=, 6=,≥, >}. Applying the theta
join operator to the two relations results in R ./c S = {r∪ s | r ∈ R, s ∈ S, r(a) θ s(b)}.

17

2. Definitions and Terminology

The theta join only joins tuples for which condition c is true. If the theta join contains
a conditional expression, only tuples are joined for which the conditional expression
evaluates to true.
In R ./c S we may write R.a and S.a for an attribute a contained in both relations R

and S to distinguish the different origins of the attribute. This is different to the natural
join, where common attributes occur only once.

Additional operators

There exist additional operators, which we just mention, that are required for working
with relations. In commercial database systems relations are not sets of entities, but may
be bags of entities, i.e., a tuple might occur more than once in a relation [GMUW02].

• Duplicate-elimination operator (δ) turns a bag into a set.

• Grouping operator (γ) groups tuples in a relation according to their values in an
attribute or a set of attributes.

2.2.3. Equivalence Rules
In relational algebra we may form expressions that contain multiple relations and op-
erators. We are able to change the order of operators in an expression applying rules.
We only introduce some relevant equivalence rules. For a more comprehensive overview
see [GMUW02].

Selection and Join Operator

We consider the combination of join operators with selection operators. Note, we only
show this rewrite rule for the natural join, for the theta join the same applies. The
expression σc(R ./ S), with c = a θ k and k = const may be rewritten as Equations 2.1
and 2.2 show.

σc(R ./ S) = σc(R) ./ S iff a ∈ A (2.1)

σc(R ./ S) = R ./ σc(S) iff a ∈ B (2.2)

When the selection operator contains a conditional expression we have to split the con-
ditional expression and apply the rules described above for every condition.

Example 2.3 (Reformulating a query). Given two relations Protein and Type
and the query ’Return the names of proteins that bind DNA (stated in Type) and
whose sequence starts with ’M”. The relational algebra expression for this query is
πname(σsequence= ’M.*’(Protein) ./ σdescription= ’Bind DNA’(Type)).
We are able to represent every expression from relational algebra as expression tree.

Figure 2.2 shows two possible expression trees for the combination of a selection and
projection operator on a single relation. The root of the expression tree is the result of

18

2.3. Cost-Based Query Optimization

the expression, the leafs are the original relations, and inner nodes are intermediate re-
lations resulting from applying operators. Using this representation we say the selection
operators are pushed down in Figure 2.2(a). An alternative is to first join both relations,
then select the desired tuples, and then project the required attribute. Figure 2.2(b)
shows this possibility.
Both expressions are equivalent, i.e., they will return the same result. When giving

both expressions to a relational database system returning the answer might take longer
in the second case as intermediate relations may be larger. In the next section we
introduce cost-based query optimization. The knowledge of the possibilities to rewrite
relational algebra expressions is important for cost-based query optimization.

Protein

σsequence= ’M.*’

Type

σdescription= ’Bind DNA.’

⊲⊳

πname

(a) First select entries and then join these.

Protein Type

⊲⊳

σsequence= ’M.*’ AND description= ’Bind DNA.’

πname

(b) First join the two relations and then
select.

Figure 2.2.: Two possible expression trees to answer the query ’Give me the names of
proteins that bind DNA and whose sequence starts with ’M”.

2.3. Cost-Based Query Optimization

Many relational database management systems (RDBMS) use cost-based query opti-
mization [GMUW02]. One of the aims of cost-based query optimization is to minimize
the time for the execution of a given query. As we propose to use these ideas for optimiz-
ing graph queries in [Tri07] we first describe query processing and query optimization in
an RDBMS in general.

2.3.1. Query Processing

We now provide a short introduction to cost-based query optimization in RDBMS. For
more elaborate reviews on this topic see [Ioa96, Cha98]. Figure 2.3 shows the typical
workflow of query processing in an RDBMS.
A user poses a query to the database system. The user usually does not enter a

relational algebra expression but a query written in a query language. The most com-
mon query language for relational database systems is the structured query language
(SQL) [DD97]. We assume familiarity of the reader with SQL.

19

2. Definitions and Terminology

Query

Query

Parser

Query Optimization

Query

Rewriter

Query

Planner

Relational

Algebra

Imple-

mentation

Cost

Model

Code

Generator

Query

Processor

Result

Figure 2.3.: Query processing in RDBMS, including cost-based query optimization.

The first step in query processing is to parse the query and rewrite it to a rela-
tional algebra expression. For query optimization the query planner uses three different
sources of information. First, rules for rewriting a relational algebra expression as given
in Section 2.2. Second, the RDBMS considers available implementations of operators
and produces possible execution plans. We discuss implementations of operators in Sec-
tion 2.3.2. Third, the execution of a plan produces costs. These costs are accumulated
over every step of the plan. Thus, every implementation requires a cost model to produce
the cost of execution for this step. We discuss cost models in Section 2.3.3. Finally, the
query optimizer chooses the execution plan with lowest estimated cost. For this plan the
query processor generates the code and executes the query. The result is then returned
to the user.

2.3.2. Implementation of Operators

The operators presented in Section 2.2 are only abstract representations of an actual pro-
cess to handle data in an RDBMS. Consider the selection operator applied on a relation.
To evaluate the expression the database system first has to access the data and then find
tuples that fulfill the conditional expression given in the selection operator. For each
step the database system requires implementations. We briefly discuss implementations
for selected operators in the following.
For all implementations we assume we only need to read the data of relations from

disk, while the result of an operation fits into main-memory or is immediately returned
to the user.

Access to Relations

An RDBMS stores a relation in blocks on secondary storage devices (disks). Thus, for
the evaluation of an expression we have to access these blocks from disk and bring them
to main-memory. RDBMS provide two possibilities to access relations, i.e., read the
entire relation from disk or use indexes of a relation first.
To read the relation from disk and bring it to main-memory the RDBMS has to locate

the first block of the relation on disk. Every block contains a pointer to its next block.
The RDBMS has to follow these pointers to retrieve the remaining blocks of the relation
until all block are read. If the main-memory is not able to accommodate all blocks

20

2.3. Cost-Based Query Optimization

of the relation some blocks have to be removed from main-memory before the entire
relation is read. This will affect the choice of implementations for operators as discussed
in following sections.
Alternatively the RDBMS may access indexes of the relation first. Initially, an index

is created for a single attribute or a set of attributes from one relation. As the index
usually does not contain all attributes its space consumption is smaller than that of the
relation itself. Thus, it may fit entirely into main-memory and can possibly even be kept
there. The index stores a set of pointers for each unique value of the relation pointing to
the location where this tuple is stored on disk. This way an index helps to efficiently find
the location of tuples of interest on disk. For one-dimensional data the most common
indexes are B-tree indexes [Bay72] or hash tables. For multi-dimensional data the most
common indexes are grid files or R-tree indexes [Gut84]. For a description on the index
structures mentioned as well as for other index structures see Database Systems: The
Complete Book by Garcia-Mollina et al. [GMUW02].

Selection Operator

An implementation of the selection operator must return tuples that fulfill the conditional
expression given by the operator. To compute the result the RDBMS either accesses
the relation from disk or employs a suitable index of the relation. In the first case
the implementation sequentially reads tuples from disk and keeps or outputs those for
which the conditional expression evaluates to true. The second case only applies when
there exists an index on attributes given in the conditional expression. In this case the
implementation may first use the index to find the tuples that fulfill the conditional
expression and then specifically access these tuples on disk. Even if an index exists the
RDBMS has to estimate if it is cheaper to read the entire relation sequentially from disk
or to access the index and then perform a random read of the required tuples.

Cartesian Product and Join Operators

The cartesian product operator as well as join operators work with two relations whose
tuples are combined in some way. For now, we assume at least one relation fits into main
memory. If this is the case the implementations first read one relation into main-memory
and then sequentially read the tuples from the second relation.
Implementation of the cartesian product operator, natural join operator, and theta join

operator are similar, except for the tuples that are joined. Implementations are nested-
loop join, which uses two loops for the two relations, sort-merge join, where the relations
are sorted on the attributes involved in the join, and hash join, where tuples are sorted
into buckets and then joined. In case none of the relations fits into main-memory there
exist variations of the algorithms. For a thorough description of the algorithms we refer
the reader to [GMUW02].
Clearly, different implementations of operators require different amount of time to

execute. To decide which implementation is best for the given relational operator we
have to assign a cost function for each implementation. We describe the cost function

21

2. Definitions and Terminology

more closely in the next section.

2.3.3. Cost Function and Query Optimization
A cost function tries to correlate the cost of executing an implementation of a relational
algebra operator with the time required. For the cost function several aspects are con-
sidered, which we mention in the following. First, the location of the data, i.e., is it
necessary to read the input distributed in blocks from disk or is it already present in
main-memory. Second, it takes the size of the relations that are input to operators and
the sizes of intermediate results into account. Third, the complexity of the algorithm,
e.g., the choice of the sorting or join algorithm. There exist many more factors, such as
buffer size, disk seek time, layout of data on disk, available main-memory, or statistics
such as the approximate number and frequency of values for an attribute that may be
considered for a cost function.

Access to Data

The cost of accessing data depends on the location of the data. Accessing data in
secondary storage devices is about 105 times slower than accessing data residing in
main-memory [GMUW02]. Consider relation R stored in B(R) blocks on disk. To read
these blocks the system initially has to locate the first block on disk, where the time
depends on the disk seek time. If the blocks are continuous on disk, the system requires
time proportional to the number of blocks of the relation on disk. Otherwise, more
seek steps need to be performed. Depending on the number of blocks and the available
main-memory (for this operation) a relation may or may not fit into main-memory.
Indexes of a relation also require space, but usually not as much as the entire relation.

Although it would be preferable to keep indexes permanently in main-memory it is
not always possible. Thus the system must load indexes from disk to main-memory if
necessary. If an index is actually used is down to the estimated costs.

Size and Shape of Relations

For the size of relations we have to differentiate between the size of the relation on
disk, i.e., the number of blocks it occupies on disk, which is B(R) and the number of
tuples in the relation T (R), also called cardinality. The number of tuples that fit into
one block depends on the number and type of attributes. To estimate the cost of an
implementation we require B(R) as well as T (R). Additionally, the RDBMS must know
or must be able to estimate the cost for retrieving a block from disk (IO-cost) or handle
a tuple in main-memory (CUP-cost). For relations stored on disk both parameters may
be gathered by the RDBMS in advance.
The RDBMS has also to estimate the size of the output of an operator. For some

operators the size of the output is clear, e.g., for the projection operator, cartesian
product, or sorting operator. For others such as the selection or join operator the
RDBMS is only able to estimate the size of the result, e.g., by gathering statistics of the
relation. These statistics may include the number of different values for an attribute but

22

2.3. Cost-Based Query Optimization

also the distribution of values for which histograms are employed. For a review on this
topic see Chaudhuri [Cha98].

Computational Complexity

Consider the sorting operator. We assume we want to sort relation R, which fits into
main-memory. For reading we have costs of B(R)·IO-cost. As algorithm for sorting we
use bucket sort, which has the computational complexity of O(n · log(n)) [CLR01]. In
the cost function we take this complexity into account by adding T (R) · log(T (R))·CPU-
cost. Thus in total the cost for sorting R is B(R)·IO-cost +T (R) · log(T (R))·CPU-cost.
The proposed equation to estimate the cost of sorting using bucket sort is a simplified
assumption, but may be sufficient for cost-based query optimization. For cost functions
of other operators we refer the reader to [GMUW02].

Query Optimizer

The query optimizer receives a relational algebra expression and produces execution
plans. The chosen plan is the plan with lowest estimated cost of execution. This cost
is the sum of the costs for executing every single step in the execution plan (when no
parallelization is applied). To find the plan with lowest cost the query optimizer con-
siders three different sources of information as shown in Figure 2.3 on page 20. First,
it uses relational algebra and the given rewrite rules to reformulate expressions. Sec-
ond, there may exist multiple implementations for each operator. And third, for each
implementation a cost function is provided.
To find the best execution plan the query optimizer could compute for a given SQL

query equivalent relational algebra expressions. It then could try all possible imple-
mentations for every operator and accumulate the cost of executing the plans. This
strategy is called exhaustive search strategy. It results in the best plan given the costs,
but generating all possible plans might be very time consuming. Thus, the query op-
timizer uses strategies to reduce the time spent on hopefully finding the best plan.
Strategies a RDBMS may use are heuristic selection, branch-and-bound plan enumer-
ation, hill climbing, or dynamic programming [GMUW02]. These strategies take less
time than the exhaustive search strategy with the trade-off that they might not find the
plan with lowest cost. Such strategies were first proposed by Selinger and colleagues
in [SAC+79] who developed System R, one of the first cost-based query optimizers. It
was later improved by Haas et al. in [HFLP89]. Graefe and McKenna developed the
Volcano framework [GM93], a query optimizer generator, which we use in this work.
The optimizer generator requires the definition of rules for relational algebra expres-
sions, knowledge about implementations for operators and their cost functions as well
as their requirements. The Volcano optimizer uses dynamic programming to find the
best execution plan for the query. In the following section we describe Volcano in more
detail.

23

2. Definitions and Terminology

2.4. Volcano

In this work we use Volcano, the optimizer generator [GM93], as basis for GRIcano.
Figure 2.4 gives a schematic overview of Volcano. In general, to create the optimizer a
database implementor has to provide the model specification and compile the optimizer.
A database user may present a query to the optimizer, which returns an optimized
query plan together with the appropriate algorithms and property information. In the
following we describe the system in more detail.

Model specification

Operator

Algorithm

Enforcer

Implementation

Rewrite

System property

Logical property

Physical property

Cost function

Applicability

Optimizer Source Code

Optimizer

Optimizer generator

Compiler

Original query

SELECTcond

JOINjoin_cond

R1 R2

attr attr

Optimized query

R1

attr

prop

filter

SELECTcond

R2

attr

prop

hash
JOINjoin_cond

Figure 2.4.: Schematic overview of Volcano. The database implementor specifies the
capabilities of the database in advance and generates the optimizer. Given
a query the optimizer returns the optimized query plan together with the
appropriate algorithms and property information.

Initially, a database implementor has provide the model specification, i.e., which oper-
ators does the database support, which algorithms are implemented, and which enforcers
are required. Additionally, he has to specify which algorithms are implementations for
which operators and define rewrite rules for operators.

Example 2.4 (Operators and algorithms in Volcano). We assume the database
system is able to perform join and selection. We specify operators JOIN and SELECT
and as algorithms hash, merge, and filter. As merge join expects its input sorted on the
join attributes we also have to define an enforcer SORT.
We specify that algorithms hash and merge are implementations for JOIN and filter for

SELECT. In addition we specify rewrite rules. For example, it is not relevant in which
order the two input relations are used for the join operator as shown in Equation 2.3.

24

2.4. Volcano

Only the join condition needs to be adapted.

JOINjoin_cond(R1 R2) = JOINjoin_cond′(R2 R1) (2.3)

Rewrite rules may also contain conditions as when to apply this rule.

For each operator system properties, which are cardinality and record width, and
logical properties, which are the schema of the resulting relation and selectivity estimates
for attributes, need to be defined. These properties are independent of the algorithm
applied. Algorithm dependent properties are physical properties, such as the sorting of
a relation or the distribution of data. In addition, a cost function must be specified
that estimates the cost for applying an algorithm. An algorithm may not always be
applicable, which must also be specified. Having specified all necessary components, the
optimizer generator creates optimizer source code, which is then compiled to produce
the optimizer.

Example 2.5 (Properties for operators and algorithms). To illustrate the different
properties we use JOIN and its two implementations. Cardinality and record width are
system properties. The record width of the resulting relation is the sum of the record
widths of the two input relations. For the cardinality of the resulting relation the join
condition and the selectivity of the join attributes needs to be considered and the size
estimated. The schema of the resulting relation is the logical property. For JOIN it
contains all attributes from the first relation together with the attributes from the second
relation.
hash and merge are two implementations for JOIN. As physical property hash produces

an unsorted, while merge a sorted relation. In addition, merge may only be applied if
both input relations are sorted on the join attribute, requiring a sorting step first, which
causes additional cost. The two algorithms also have different cost functions. The cost
function for hash is 3 · (B(R1) + B(R2)). In contrast, merge requires (B(R1) + B(R2)),
if the input relations are already sorted on the join attributes.

The generated optimizer is then used to optimize a given user query. The original query
only contains operators required together with their conditions. In addition, knowledge
about the input relations is also required, such as the attributes, width, and cardinality
of the relation. The Volcano optimizer uses, what the authors call, a directed dynamic
programming approach to optimize the query. The optimizer does not create all possible
equivalent expressions and plans, but only those that actually participate in sub-queries
of the query. For a sub-query Volcano stores the best plan for each set of properties (sort
order, distribution of data). Using this knowledge sub-plans with identical properties,
but worse cost are immediately discarded. According to the authors this pruning strategy
efficiently reduces the number of different plans that need to be considered.
The optimizer produces as output the optimized plan, which contains not only the

order and type of operators that must be applied, but also the appropriate algorithm
and additional properties, such as estimated cardinality and cost, for each step.

25

3. Graph Queries

This chapter describes a model for representing graphs, graph queries, languages to
express graph queries, and the evaluation of graph queries.
Consider the query ’Find all paths leading from a node with label name=’Arginine’ to

a node with label name=’D-Proline’ whose path length is shorter than 6’ in KEGG. To
answer this query we first have to define the model to represent biological graphs before
we proceed to answer the query.
In Section 3.1 we describe a model for representing graphs. In Section 3.2 we define

queries on graphs and the result of a graph query. Section 3.3 introduces PQL, a language
to express graph queries. After introducing the query language we present the semantics
of a graph query in Section 3.4. This chapter concludes with an overview of related work
on graph models and graph query languages.

3.1. Data Model

In this work we consider data that are structured as graphs, e.g., biological networks,
social networks, or web graphs. Nodes for example are proteins, persons, or web pages.
Every node may have additional information attached, such as the sequence of a protein,
the name of a person, or the content of a web page.
Nodes are connected by binary edges. Edges represent, for example, the participation

of a protein in a reaction, two persons knowing each other, or a link on a web page
pointing to another page. An edge might also have information attached.
We describe our model to store such graphs in the following. Figure 3.1 depicts the

schema for representing graphs. For every graph we may include additional information
such as the name of the graph, its origin, or creation date.

Node

+node_id:Integer

+external_id:String

Edge

+edge_id:Integer

+from_id:Node

+to_id:Node

Label

+label_id:Integer

+label_type:LabelSet

+value:String

0..n

0..n

0..n

0..n

has

has

Figure 3.1.: UML schema to represent a graph.

27

3. Graph Queries

Nodes

A node of the graph, identified by its external_id, is represented as one object in class
Node. In our representation, each node receives a unique node-ID.
The labels of nodes are objects in class Label, which is discussed below. Each node

may have many labels and each label may be used for many nodes or edges. In the
implementation this many-to-many relationship between the two classes is resolved.

Edges

Each edge in the graph is represented as object in class Edge. This class resembles the
adjacency list of a graph. The class Edge contains three attributes, edge_id, from_id,
and to_id. The attribute edge_id allows us to uniquely identify an edge, while the
other two attributes point to an object in class Node.
We store edge labels in object Label. Each edge may have many labels and each label

may be used for many nodes or edges.

Labels

Labels of nodes and edges are stored in object Label. This object contains attributes
label_id, label_type, and value. Labels are stored according to Definition 2.4 on
page 10, where each label contains a type and a value. Thus, in relation Label the type
of the label is not a primitive data type, but a fixed collection of label types, such as
’name’ or ’sequence’.

Nodes and Edges in Biological Graphs

In biological graphs it is not clear per se, which objects are nodes and edges. There is
a common agreement that molecules, which are consumed or produced by a reaction,
are nodes in a graph. The situation for proteins and reactions is more complicated.
Consider KEGG [KGK+04] for example. Only molecules consumed or produced by a
reaction are nodes. Reactions themselves are represented as hyperedges, i.e., edges with
many start and end nodes. These edges are labeled with names of enzymes that are
responsible for the reaction. In contrast, in Reactome [JTGV+05] molecules, enzymes,
as well as reactions are modeled as nodes. Edges represent the fact that a molecule
participates in a reaction. Both representations may be transformed into each other by
either adding nodes for reactions and enzymes to KEGG and creating new edges or by
representing reactions in Reactome as labeled hyperedges. Our model complies to the
second representation. In a review by Schaefer [Sch04] a more detailed discussion of
different graph types may be found.

3.2. Graph Queries
After describing the data model that we use to represent graphs we proceed to describing
queries on graphs and their evaluation. The goal of querying graphs is to retrieve certain

28

3.2. Graph Queries

nodes and edges of the graph. To achieve this we want to pose a graph query. In the
query we must be able to specify the nodes in which we are interested in. In addition,
we also must be able to specify relationships between these nodes. As the query consists
of nodes and relationships between nodes we consider the query as graph itself. Thus,
in the following we first introduce query graphs intuitively and informally, before we
proceed to the evaluation of graph queries. In Section 3.3 we introduce a query language
that allows users to express graph queries. In this section we also formally specify the
semantics of a graph query.

3.2.1. Query Graph
We start with an example to illustrate query graphs, before we introduce in Definition 3.1
the term query graph more formally.

Example 3.1 (First graph query). Assume a biologist wants to know if an organism
produces D-Proline given the amino-acid Arginine in less than 6 steps. Figure 3.2 shows
the query as graph. Nodes in the query graph are placeholders for nodes in a given
graph. Our example contains two nodes, whose possible instantiations are restricted
by the conditions name=’Arginine’ and name=’D-Proline’. Edges in a query graph are
placeholders for paths in the given graph. In Figure 3.2 the edge contains the restriction
that only paths may be mapped that start at a node with label name=’Arginine’, end at
a node with label name=’D-Proline’, and whose path length is shorter than 6.

A B
path.length<6

name=’Arginine’ name=’D-Proline’

Figure 3.2.: A query graph to find a path between Arginine and D-Proline.

Definition 3.1 (Query graph)

A query graph Q = (V,E,C, φC) is a quad-tuple consisting of a set of nodes V , a
set of edges E, with E ⊆ V × V , a set of conditions C, and a condition function φC
that assigns conditions to nodes and edges in Q.

According to Definition 3.1 a graph query also forms a graph. To each node and edge
in Q conditions may be assigned. In Section 3.3 we present these conditions.

3.2.2. Evaluation of Graph Queries
We now consider the evaluation of a query graph given a data graph GD. The data
graph is the collection of graphs that we use for the evaluation of a query. To illustrate
the evaluation of a graph query we first consider the result of the query given above on
the data graph KEGG.

29

3. Graph Queries

Example 3.2 (Evaluation of the first graph query). Figure 3.3 shows the Arginine
and Proline metabolism as given by KEGG. We find one node with a label of type name
whose value is Arginine and one node with the label of type name whose value is D-
Proline. Figure 3.4 shows two different paths, which exist in the data graph between the
two nodes that are shorter than 6. One path leads from Ornithine over L-Glutamate 5-
Semialdehyde and L-1-Pyrroline 5-Carboxylate to L-Proline, while another goes directly
from Ornithine to L-Proline. Apart from the two paths presented there exist other paths
in the data graph, e.g., one leading over Citrulline.

Figure 3.3.: The Arginine and Proline metabolism as given by KEGG.

When querying a graph we search for a subgraph of GD that fulfills certain criteria.
In Section 3.3 we specify possible criteria, while in Section 3.4 we give the semantics of
these criteria.
In general, given a data graph GD and a query graph Q the subgraph search problem

is to find all subgraphs of GD for which nodes, edges, and paths of the subgraph of GD
fulfill the conditions given by the query graph Q.
Up to now, we have not defined what we mean by fulfill the conditions of Q. For

now, let us assume every edge in Q stands for one edge in GD. Solving the subgraph

30

3.2. Graph Queries

(a) Graph 1. (b) Graph 2.

Figure 3.4.: Two result graphs for the graph query evaluated on KEGG.

search problem would then essentially be equivalent to solving the subgraph isomorphism
problem [CLR01].

Definition 3.2 (Graph isomorphism)

Given graphs G1 = (V,E) and G2 = (V ′, E′). An isomorphism of G1 and G2 is a
bijection f : V ′ → V such that for every (u, v) ∈ E there exists (f(u), f(v)) ∈ E′.

Finding subgraphs of GD that are isomorphic to Q is NP-complete [CLR01]. In the
case when nodes or edges in GD have labels and Q contains conditions on those labels
the problem may be solved more easily as shown by Koyutürk and colleagues in [KGS04].
The reason is that for a given condition on a node we may find only a few nodes in GD,
depending on the selectivity of the condition. Thus, not all possible subgraphs of GD
that are isomorphic to Q are of interest, but only those that contain specific nodes or
edges. Using this knowledge we may start the search at this node or edge.
Solving the graph isomorphism problem would be sufficient if we only allow edges in

Q to stand for edges in GD. In this work we assume edges in Q may also stand for paths
in GD. Thus finding an isomorphic subgraph to the query graph is not sufficient, but
we want to find homeomorphic subgraphs of Q in GD [LR78].

Definition 3.3 (Graph homeomorphism)

Let G1 = (V,E) and G2 = (V ′, E′). An homeomorphism of G1 and G2 is a bijection
f : V ′ → V such that for every (u, v) ∈ E there exists a path 〈f(u), . . . , f(v)〉 in G2.

Definition 3.3 defines graph homeomorphism in the general case. This definition ba-
sically means an edge in G1 may stand for an edge or a path in G2. Thus, in our case,
given a query graph Q we try to find all homeomorphic subgraphs in the data graph

31

3. Graph Queries

GD. In its general case, i.e., if no bindings of nodes in Q to nodes in GD is known, the
subgraph homeomorphism problem is also NP-complete [LR78].
Like Koyutürk and colleagues in [KGS04] we assume nodes and paths in the data

graphs have labels and the query graph contains conditions on those labels. The condi-
tions and their semantics are introduced in the following section when we introduce the
query language for graph queries.
For one query graph Q multiple homeomorphic subgraphs whose labels or properties

comply to the conditions of Q in GD may exist. We therefore introduce the match graph
of Q in GD.

Definition 3.4 (Match graph GM(Q))

Given a query graph Q and a data graph GD. Let G = {G1, ..., Gn} be the set
of all homeomorphic subgraphs of Q in GD whose labels or properties comply to the
conditions of Q.
The match graph for Q in GD, written GM (Q) is defined as

GM (Q) =
⋃
Gi∈G

Gi

We give an example for a match graph in the following section, where we introduce
the pathway query language, PQL, as syntax to express query graphs.

3.3. Pathway Query Language
The syntax and semantics of the Pathway Query Language (PQL) was first described
2005 by Leser [Les05a]. A more detailed description may be found in [Les05b]. Two
diploma theses suggested extensions of the language [Ahl06, Lis07]. In this work we
enhance PQL in the following points:

• Ability to query multiple graphs simultaneously using the FROM clause

• Introducing the LET clause to declare variables for nodes and paths

• Possibility to use ordinary relations in the FROM clause

3.3.1. Graphs in PQL
In the previous section we introduced the data graph GD, the query graph Q, and the
match graph GM . In this work we search for homeomorphic graphs of Q in GD, which
form GM . A user may only be interested in parts of GM , such as nodes. Thus, we allow
users to specify a select graph GS , which is a subgraph of Q, that specifies the parts of
GM , which should be returned. When we restrict GM based on the specifications of GS
we get the result graph GR. PQL allows users to specify Q and GS as we show in this
section. In addition, we formally specify which nodes and edges are contained in GM
and GS based on Q and GS .

32

3.3. Pathway Query Language

To summarize, evaluating a PQL query conceptually requires five different graphs,
namely

• data graph(s) GD

• query graph Q

• match graph GM , with GM ⊆ GD

• select graph GS , with GS ⊆ Q

• result graph GR, with GR ⊆ GM

Example 3.3 (Graphs for the query from Example 3.1). To illustrate the different
types of graphs we use the same query as in the last section, where we wanted to find
all paths in KEGG between a node with label name=’Arginine’ and a node with label
name=’D-Proline’ that are shorter than 6.
Figure 3.5(c) shows the query graph Q for this query. It contains nodes A and B, with

conditions name=’Arginine’ and name=’D-Proline’, respectively. In addition, it contains
an edge with the condition that a directed, simple path between nodes A and B whose
path length is shorter than 6 exists. The data graph GD is a small part of the metabolic
network of KEGG shown in Figure 3.5(a).
Figure 3.5(b) shows the match graph for Q in GM . We bind the node with label

Arginine in GD to node A of Q and the node with label D-Proline to node B. For the
path we find four bindings in GD. There exist other paths between these two nodes, but
these are longer than 6.
In a PQL query we may also specify the subgraph that is returned to the user. This

subgraph is the select graph GS , which is a subgraph of Q. Figure 3.5(d) shows the GS .
In this case we are only interested in nodes of GD bound to A and B of Q. Figure 3.5(e)
shows the result graph GR of the query. In this case we get only one binding for each
node variable as the conditions on the node variables are very restrictive. Clearly, for
other queries we might find more bindings as following examples show.

3.3.2. Syntax

In this section we specify the syntax of PQL. We start with the general syntax of a PQL
query, before we specify the different parts separately.

General Syntax and Examples

The syntax of PQL is closely related to the syntax of SQL. A PQL query consists of five
parts – a SELECT, FROM, LET, WHERE, and HAVING clause. Figure 3.6 shows the syntax of
a PQL query.
To give a first impression of the query language we give two examples.

33

3. Graph Queries

(a) Data graph GD: metabolic network of KEGG. (b) Match graph GM (Q).

A B
path.length < 6

name=’Arginine’ name=’L-Proline’

(c) Query graph Q: node A, node B, and
path P.

A B

(d) Subgraph specification GS : node A,
node B.

(e) Result graph GR.

Figure 3.5.: The five different graphs of a PQL query.

Example 3.4 (PQL statement for graph query from Example 3.1). In the fol-
lowing we provide the PQL statement for the query graph from Example 3.1.

SELECT A, B
FROM Kegg k
LET node A IN k, node B IN k, path P IN k
WHERE A.name = ’Arginine’

AND B.name = ’D-Proline’
AND P.path = A[->]B
AND P.length < 6;

34

3.3. Pathway Query Language

SELECT subgraph-specification

,

FROM graph relation,
, ,

LET variable-type variable-name IN graph

,

WHERE where-condition

HAVING having-condition

Figure 3.6.: PQL query syntax.

Example 3.4 shows that the data graph ’Kegg’ is specified in the FROM clause. In the
LET clause we may state node and path variables. In the WHERE and HAVING clause a user
may specify conditions on node and path variables. Finally, the SELECT clause specifies
the select graph.
In the following we formally specify the syntax of the different parts of a PQL query.

We first specify the FROM and LET clause, before we specify conditions on nodes and
paths in the WHERE and HAVING clause. We conclude the language specification with the
SELECT clause. To illustrate the clauses we introduce a second example for which the
query is built during the introduction of the syntax of PQL.

Example 3.5 (Running example). Consider Figure 1.1 on page 3. The conversion
of α-D-glucose to pyruvate involves 22 enzymes. Assume a biologist is interested in all
proteins that interact with one of those enzymes present in mammals and the direct in-
teraction partners of those enzymes. No single data source for biological graphs supplies
all required data. Thus, we use two different sources, namely KEGG for the conversion
of substances and Intact for protein-protein interactions.

FROM clause

Let GD be the set of graphs consisting of G1, . . . , Gn, n ≥ 1, which are input to the
graph query. We may specify this set of graphs in the FROM clause as Figure 3.6 shows.

FROM clause := FROM graph, (graph)*

graph := graph_name (alias)?

alias := (’A’ ... ’Z’ | ’a’ ... ’z’)+

Every data graph in the database may be referred in the FROM clause by its name.
Multiple graphs are separated by colons. Every graph in the FROM clause may optionally

35

3. Graph Queries

be associated to an alias for this graph. The alias of the graph must be unique in the
query.

LET clause

The LET clause specifies the node and path variables of the query graph Q. In addition,
it allows a user to state of which graph nodes and paths must be bound to node and
path variables in the query. Every node and path variable must be assigned to exactly
one data graph.

LET clause := LET variable (, variable)*

variable := variable_type variable_name (IN graph)?

variable_type := ’node’ | ’path’
variable_name := (’A’ ... ’Z’| ’a’ ... ’z’)+
graph := graph or graph alias specified in FROM clause

A variable in the LET clause stands either for a node or an edge in the query graph Q.
Thus, a variable in the LET clause may be of two different types, node and path. The
variable_name is the name of the variable, by which it is referred to in other clauses.
The variable_name must be unique within the query.
The last part of the variable declaration consists of the specification from which graph

nodes or paths must be bound to this variable. We may only use graphs or graph aliases
specified in the FROM clause. If the FROM clause contains only one graph this last part
may be omitted.

WHERE clause

The WHERE clause specifies conditions on variables inQ. All conditions must be connected
by AND or OR1.

WHERE clause := WHERE condition (connector condition)*

condition := node_condition | path_condition
connector := AND | OR

Node conditions

We first describe conditions on node variables of the query graph Q. The node variables
of Q are given in the LET clause. In the WHERE clause we may pose conditions on nodes
in Q, e.g., the node has a specific label.
Given two variables A and B that are specified as node variables in the LET clause, i.e.,

. . . LET node A, node B We specify the following conditions on nodes.
1Note, PQL currently does not support negation or parenthesis.

36

3.3. Pathway Query Language

A = B
A != B

A.type op n
A.type text_op string
A.type op B.type

A HAS (ontology|hierarchy, node-concept)

type := any label type of GD | (in|out)degree
op := ’=’ | ’!=’ | ’<’ | ’>’ | ’<=’ | ’>=’
text_op := op | ’LIKE’
n := numeric value

In the following we give an example for conditions on node variables in the WHERE
clause.

Example 3.6 (WHERE clause with node conditions). In our running example we use
six node variables in the LET clause. The following PQL statement shows the conditions
for those node variables.

...
FROM Kegg k, Intact i
LET node A IN k, node B IN k, node C IN k, node D IN k,

path O IN k, path P IN k, path Q IN k,
node X IN i, node Y IN i, path R IN i

WHERE A.name = ’α-D glucose
AND B.name = ’Pyruvate’
AND C HAS (Type, ’Reaction’)
AND D HAS (Type, ’Enzyme’)
AND D HAS (NCBI Taxonomy, ’Mammal’)
AND X.name = D.name
AND Y HAS (Type, ’Protein’)

...

In Section 3.4 we formally define the semantics of the conditions. For now we describe
the result intuitively. On node variable A we bind nodes from KEGG that have a label
with type ’name’ whose value equals ’α-D Glucose’. In similar fashion, on node variable
B we bind nodes from KEGG that have a label with type ’name’ whose value equals
’Pyruvate’.
For node variable C we consider a Type hierarchy that contains concepts for node types,

which biological graphs use, such as reaction, protein, enzyme, or catalytic enzyme, and
their relationships. We may bind all nodes of KEGG that have a label of type ’Type’
whose value is either ’Reaction’ or the name of a successor concept of ’Reaction’ in the

37

3. Graph Queries

Type hierarchy, e.g., ’catalyzed’ and ’self-catalyzed’. Similarly on node variable D we
may bind all nodes of KEGG that have a label of type ’Type’ whose value is ’Enzyme’
or a successor concept of ’Enzyme’ in the Type hierarchy. In addition these nodes must
have a label of type ’NCBI Taxonomy’ whose value is ’Mammal’ or a successor concept
of ’Mammal’, such as ’Human’, ’Mouse’, or ’Chimp’, in the NCBI Taxonomy.
To node variables X and Y we may only bind nodes of the data graph Intact. For node

variable Y we may bind nodes that have a label of type ’Type’ with the value ’Protein’
or a successor concept of ’Protein’ in the Type hierarchy. For node variable X the case is
more complicated. We may bind to X all nodes that have a label of type ’name’ whose
value is equal to the value of a label of type ’name’ from a node bound to node variable
D. Note, these are not the same nodes as they originate from different graphs. Those
two nodes must share the same label.

Path conditions

Until now, PQL queries are not much more powerful than searching keywords in a
database of node labels. Thus, we now introduce path conditions.
Given variables A and B specified as nodes and P and R specified as paths in the LET

clause, i.e., . . . LET node A, node B, path P, path R We specify the following
conditions for paths:

P.path = A[-|->|<->]B
P.start = A
P.end = B
P.edge = [-|->|<->]
P.length num_op n

num_op := ’=’ | ’!=’ | ’<’ | ’>’ | ’<=’ | ’>=’
n := positive integer

For every path variable in the LET clause we only bind directed paths to this variable,
unless otherwise specified in the WHERE clause using P.path or P.edge. The direction of
edges in a path is specified by providing one of the options from [-|->|<->|<-]. For -
we consider all edges, regardless their direction. If -> is given the path may only contain
directed edges, while for <-> each edge in the path must be bi-directional.

Example 3.7 (WHERE clause with path conditions). In our running example we have
path variables O, P, Q, and R. On O, P, and Q we may only bind paths from KEGG, while
on R only paths from Intact may be bound. On O we bind paths that start at a node
bound to A and end at a node bound to C, while for P the paths must start at a node
bound to C and end at a node B. On Q we bind paths of KEGG that start at a node
bound to C leading to a node bound to D, and whose length equals one. In addition all
edges on this path must be bi-directional, i.e., for an adjacent node pair u, v there must
exist both directed edges (u, v) and (v, u).

38

3.3. Pathway Query Language

To find all interacting proteins for the enzymes in Intact we require the path variable
R. We bind all paths from Intact regardless of the direction of the edges to paths that
start at a node bound to X and end at a node bound to Y, whose length is shorter or
equal to two.

...
FROM Kegg k, Intact i
LET node A IN k, node B IN k, node C IN k, node D IN k,

path O IN k, path P IN k, path Q IN k,
node X IN i, node Y IN i, path R IN i

WHERE ...
AND O.path = A[->]C
AND P.path = C[->]B
AND Q.path = C[<->]D
AND Q.length = 1
AND R.path = X[-]Y
AND R.length <= 2

...

HAVING clause

Assume in our running example a user is interested in the result only if there exists
exactly one binding for node variable A. This means, there must exist only one node
with label (name, ’α-D glucose’) in KEGG. This example shows we want to pose a
condition on the number of bindings for a node or path variable. To specify this we
introduce the HAVING clause for PQL.

HAVING clause := HAVING condition (connector condition)*

connector := AND

The conditions on nodes or paths filter the result according to the number of existing
bindings.
Given two variables A and P that are specified as node and path in the LET clause, i.e.,

. . . LET node A, path P We specify the following conditions:

A.count num_op n
P.count num_op n

num_op := ’=’ | ’!=’ | ’<’ | ’>’ | ’<=’ | ’>=’
n := positive integer

39

3. Graph Queries

Example 3.8 (HAVING clause). Consider our running example again. A user might
only be interested in an answer to the query if only one node with label (’name’, ’α-
D glucose’) and one with label (’name’, ’pyruvate’) exists. In addition the number of
different paths between both nodes should not exceed five. The following HAVING clause
expresses this.

...
FROM Kegg k, Intact i
LET node A IN k, node B IN k, node C IN k, node D IN k,

path O IN k, path P IN k, path Q IN k,
node X IN i, node Y IN i, path R IN i

WHERE ...
HAVING A.count = 1

AND B.count = 1
AND P.count <= 5

...

SELECT clause

Until now we only specified the query graph Q and its bindings to nodes and paths in
the data graph GD. The query graph may contain node and path variables in which a
user is not interested in. Thus, PQL offers a possibility to state which node and path
variables should occur in the result using the SELECT clause.

SELECT clause := SELECT subgraph-specification
(, subgraph-specification)*

Given two variables A and P that are specified as node and path variable in the LET
clause, i.e., . . . LET node A, path P We specify the following subgraph-specifica-
tions in the SELECT clause:

*
A
P
P.start | P.end

n := positive integer

Example 3.9 (Complete PQL statement for the running example). We com-
plete the PQL statement of our running example by adding the SELECT clause. For
Example 3.5 we are only interested in the proteins that interact with the enzymes and
the shortest paths between them. Thus, we give the complete PQL statement in the
following.

40

3.3. Pathway Query Language

SELECT X, Y, R
FROM Kegg k, Intact i
LET node A IN k, node B IN k, node C IN k, node D IN k,

path O IN k, path P IN k, path Q IN k,
node X IN i, node Y IN i, path R IN i

WHERE A.name = ’α-D glucose
AND B.name = ’Pyruvate’
AND C HAS (Type, ’Reaction’)
AND D HAS (Type, ’Enzyme’)
AND D HAS (NCBI Taxonomy, ’Mammal’)
AND X.name = D.name
AND Y HAS (Type, ’Protein’)
AND O.path = A[->]C
AND P.path = C[->]B
AND Q.path = C[<->]D
AND Q.length = 1
AND R.path = X[-]Y
AND R.length <= 2

HAVING A.count = 1
AND B.count = 1
AND P.count <= 5

To illustrate this PQL statement Figure 3.7(a) shows the query graph. Nodes and edges
contain conditions given in the WHERE clause of the PQL query. Figure 3.7(b) shows the
select graph GS . From the entire result we are only interested in nodes bound to node
variables X and Y and paths bound to path variable R.

3.3.3. PQL and Non-graph Relations

So far, we only allowed graphs to be input to a PQL query. This might not always be
sufficient as the following example shows.

Example 3.10 (Introducing non-graph relations to PQL). In Example 3.9 we
provide the complete PQL statement to identify all proteins that interact directly or via
another component with an enzyme that participates in the conversion of α-D glucose
to pyruvate. Assume we also have a relation called Microarray_experiment that stores
information about microarray experiments [THC+99], i.e., gene name, fold change for
this gene, and experiment number.
We are now only interested in proteins that directly or indirectly interact with enzymes

if both, the protein as well as the enzyme with which it interacts with, is up-regulated
in the same microarray experiment.

Although, we might have stored all relevant data in the same database, i.e., graphs
and other relations, we have no opportunity to express a query such as the one of

41

3. Graph Queries

KEGG

A C B

D

P.count <= 5

Q.length = 1

name=’α-D glucose’

count = 1

HAS

(Type, ’Reaction’)

name=’Pyruvate’

HAS (Type, ’Enzyme’)

HAS (NCBI Taxonomy, ’Mammal’)

Intact X Y
R.length <= 2

name=D.name HAS (Type, ’Protein’)

(a) Query graph Q.

Intact X Y
R

(b) Select graph GS .

Figure 3.7.: The query and select graph specified in the PQL query for Example 3.5.

Example 3.10 in a PQL statement. Thus, we extend PQL to also use relations that are
not part of the graph model (see Section 3.1) as input to a PQL query.

Extension to the FROM clause

The FROM clause of PQL contains the graphs that are input to the graph query. It is a
natural extension to also state all non-graph relations in the FROM clause of a PQL query
as well. Thus, the FROM clause of a PQL query is as follows.

FROM clause := FROM graph, (graph | relation)*

graph := graph_name (alias)?
relation := relation_name (alias)?

alias := (’A’ ... ’Z’ | ’a’ ... ’z’)+

As for the alias for the graph the alias or tuple variable of the relations must be
unique within the query.

42

3.4. PQL Semantics

Extension to the WHERE clause

To use non-graph relations we also have to extend the syntax of the WHERE clause. This
extension is straight forward. If an expression only affects attributes of a relation the
same rules apply as in an SQL statement. There is only a difference when we want to
pose a condition on node variables involving a relation. In this case the definition of the
semantics of node conditions must be extended.
Given a node variable A specified in the LET clause and relation R with attribute attr

specified in the FROM clause. We define the following condition for nodes.

A.type op R.attr

op := ’=’ | ’!=’ | ’<’ | ’>’ | ’<=’ | ’>=’

Example 3.11 (PQL query with non-graph relations). To illustrate the usage of
relations in a PQL query we extend the PQL statement from Example 3.9 to also account
for the expression level of different enzymes and proteins as given in Example 3.10.

SELECT X, Y, R.shortest
FROM Kegg k, Intact i,

Microarray_experiment ma, Microarray_experiment mb
LET node A IN k, node B IN k, node C IN k, node D IN k,

path O IN k, path P IN k, path Q IN k,
node X IN i, node Y IN i, path R IN i

WHERE ...
AND D.name = ma.name
AND ma.fold_change > 2
AND mb.fold_change > 2
AND mb.name = Y.name
AND ma.exp_no = mb.exp_no

HAVING ...

3.4. PQL Semantics
There may be many interpretations on the meaning of a PQL query with multiple
graphs, relations, node and path variables. We first start by giving the semantics of
node conditions, path conditions, HAVING conditions, and the subgraph specification.

3.4.1. Semantics of Node Conditions
Let A and B be two node variables specified in the LET clause. A node condition in the
WHERE clause is interpreted as Boolean function. Given a mapping of node variables A
and B to nodes in GD a condition evaluates to TRUE or FALSE.

• A = B returns TRUE if A and B are mapped to the same node in GD, and otherwise
FALSE.

43

3. Graph Queries

• A != B returns TRUE if A and B are not mapped to the same node in GD, and
otherwise FALSE.
• A.type op n returns TRUE if the node of GD mapped to node variable A in Q
contains a label of type type, whose value is equal to, not equal to, smaller than,
or larger than (depending on op) the given numeric value, and otherwise FALSE.
• A.type text_op string returns TRUE if the node of GD mapped to node variable

A in Q contains a label of type type, whose value is equal to, not equal to, smaller
than, larger than, or LIKE (depending on text_op) the given string, and otherwise
FALSE.
• A.type op B.type returns TRUE if the node of GD mapped to node variable A
contains a label of type type whose value is equal to, not equal to, smaller than,
or larger than (depending on op) the value of the label of the node mapped to B
whose type equals type, and otherwise FALSE.
• A HAS (ontology|hierarchy, node-concept) returns TRUE if the node of GD

mapped to A has a label of type ontology|hierarchy with the value node-concept
or any successor of node-concept in the ontology or hierarchy specified by onto-
logy|hierarchy, and otherwise FALSE.
• A.type op R.attr returns TRUE if the value of label with type type of the node
mapped to A is equal to, not equal to, smaller than, or larger than (depending on
op) the value of tuple t for attribute attr, t(attr) and otherwise FALSE.

3.4.2. Semantics of Path Conditions

Let A and B be node variables and P be a path variable specified in the LET clause. A path
condition is interpreted as a Boolean function. Given an assignment of path variables P
to paths in GD a condition evaluates to TRUE or FALSE.

• P.path = A[-|->|<->]B returns TRUE if the simple path assigned to
P = 〈v0, v1, ..., vk〉 with i = 1, 2, . . . , k has
– v0 ∈ set of nodes bound to A, vk ∈ set of nodes bound to B, and
– (vi−1, vi) ∈ E(GD) ∨ (vi, vi−1) ∈ E(GD) for A[-]B

– (vi−1, vi) ∈ E(GD) for A[->]B

– (vi−1, vi) ∈ E(GD) ∧ (vi, vi−1) ∈ E(GD) for A[<->]B

otherwise FALSE.
• P.start = A returns TRUE if the simple path assigned to P begins at a node bound

to A, and otherwise FALSE.
• P.end = B returns TRUE if the simple path assigned to P ends at a node bound to

B, and otherwise FALSE.
• P.edge = [-|->|<->] returns TRUE if the simple path assigned to

P = 〈v0, v1, . . . , vk〉 with i = 1, 2, . . . , k only contains edges such that
– (vi−1, vi) ∈ E(GD) ∨ (vi, vi−1) ∈ E(GD) for [-]

44

3.4. PQL Semantics

– (vi−1, vi) ∈ E(GD) for [->]

– (vi−1, vi) ∈ E(GD) ∧ (vi, vi−1) ∈ E(GD) for [<->]

for all i = 1, 2, . . . , k, and otherwise FALSE.
• P.length num_op n returns TRUE if the simple path assigned to P has a length

equal to, not equal to, shorter than, or longer than (depending on num_op) n,
otherwise FALSE.

3.4.3. Semantics of HAVING Conditions

Let A be a node variable and P be a path variable specified in the LET clause. A node
condition in the HAVING clause is interpreted as Boolean function. Given an assignment
of node variable A to nodes in GD or a path variable P to paths in GD a condition
evaluates to TRUE or FALSE.

• A.count num_op n returns TRUE if the number of different nodes from GD assigned
to node A equals, not equals, is smaller, or is larger than (depending on num_op)
the numeric value n, and otherwise FALSE.
• P.count num_op n returns TRUE if the number of different paths from GD assigned
to path P equals, not equals, is smaller, or is larger than (depending on num_op)
the numeric value n, and otherwise FALSE.

3.4.4. Semantic of the Subgraph Specification

Let A be one of the node variables and P be one of the path variables specified in the
LET clause. To construct the result graph GR all subgraph-specification elements in the
SELECT clause are evaluated successively.

• If the element is ’*’ all unique nodes and paths bound to any node or path variable
of the LET clause are added to GR.
• If the element is ’A’ then all unique nodes bound to A are added to GR.
• If the element is ’P’ then all unique paths (nodes and edges) bound to P are added
to GR.
• If the element is ’P.start’ then all unique start nodes of paths bound to P are
added to GR.
• If the element is ’P.end’ then all unique end nodes of paths bound to P are added
to GR.

3.4.5. Conversion to Relational Algebra

The syntax of PQL is closely related to the syntax of SQL. Thus, we also convert PQL
statements to relational algebra in the same way as SQL statements are converted.
To convert an SQL statement into a relational algebra expression we require the fol-

lowing steps [GMUW02]:

45

3. Graph Queries

• Start with the tuple variables given in the FROM clause and create the cartesian
product of their tuples.
• If the WHERE clause contains conditions, apply the selection operator σ on this

product with the conditions of the WHERE clause.
• Apply the projection operator π with the attributes in the SELECT clause.

The expression created this way may then be transformed using the equivalence rules
for relational algebra operators given in Section 2.2.
In the same spirit we want to convert a PQL statement to a relational algebra ex-

pression. The problem is, a PQL query may contain multiple graphs, node and path
variables, and relations with their tuple variables. We have to consider the node and
path variables as well as the tuple variables for the conversion of a PQL query. The first
step of the conversion is to bind all tuples of a relation to its tuple variable, bind all
nodes and paths of the graph to node and path variables given in the LET clause. Thus,
the evaluation of a PQL query is as follows:

• Start with the node and path variables given in the LET clause and the tuple
variables given in the FROM clause and create the cartesian product of
– all nodes bound to node variables
– all paths bound to path variables
– all tuples bound to tuple variables

• If the WHERE clause contains conditions apply the selection operator σ on this
product with the conditions of the WHERE clause.
• Apply the projection operator π on the result with the node and path variables
stated in the SELECT clause.

If the PQL statement contains an aggregate function we also have to use an aggregation
operator. Thus, converting a PQL query to an algebra expression conceptually follows
the same principle as in SQL. The only difference is that PQL also uses node and path
variables. So far, we have not defined what node and path variables are. We will do this
in the following.

Binding Nodes and Paths to Variables

To store graphs we map our graph data model to the relational data model. In addition,
we also translate PQL statements into an algebra expression. Thus, node and path
variables must also comply to the relational data model. While tuple variables in a PQL
statement are treated in the same was as in an SQL statement, we have to specify the
data model for node and path variables. We define a virtual relation for each of the node
and path variables given in a PQL statement. Figure 3.8 shows the two virtual relations
that represent nodes and paths of a graph. We discuss in Chapter 4 how and when these
virtual relations are filled. Depending on the PQL statement and the condition on nodes
and paths these virtual relations may contain only few nodes or paths of the graph.

46

3.4. PQL Semantics

Nodes

node_id

external_id

label_id

label_type

value

(a) Node view

Paths

path_id

start

end

length

node_id

position

(b) Path view

Figure 3.8.: Virtual relations Nodes and Paths. The view Nodes holds all nodes together
with their annotation, while the view Paths may hold information for every
cycle-free path of the graph.

Example 3.12 (Expression tree for PQL statement). To show the translation of a
PQL statement to a relational algebra expression we consider the PQL statement from
Example 3.4.

SELECT A, B
FROM Kegg k
LET node A IN k, node B IN k, path P IN k
WHERE A.name = ’Arginine’

AND B.name = ’D-Proline’
AND P.path = A[->]B
AND P.length < 6;

When converting this PQL statement into an algebra expression we require twice the
virtual relation Nodes and once Paths. Figure 3.9 shows two possible expression trees
for the given PQL statement. The tree in Figure 3.9(a) shows the tree that is initially
produced, while Figure 3.9(b) shows a tree, which is transformed according to relational
algebra rules. Note, the views that stand for node and path variables are not resolved.
How to resolve these views and rules for rewriting are described in Chapter 4.

Evaluation of the HAS function

The HAS function is a special construct in the WHERE clause of a PQL query. It takes
as argument the name and one concept of a hierarchy or an ontology. We consider a
hierarchy or an ontology as graph as well. Thus, to retrieve all successor nodes of a given
concept we pose a PQL statement.

Example 3.13 (PQL query to retrieve successor concepts of a given concept).
Assume we want to retrieve all successor concepts of ’macromolecule’ from the Type
hierarchy. If we consider the Type hierarchy as graph we use the following PQL statement
to get an answer to this question.

47

3. Graph Queries

Nodes A Nodes B

× Paths P

×

σA.name=’Arginine’ AND

B.name=’D-Proline’ AND

P.path = A[->]B AND

P.length < 6

πA, B

(a) Expression tree 1.
Nodes A

σA.name=’Arginine’

Paths P

σP.length < 6

×

Nodes B

σB.name=’D-Proline’

×

σP.path = A[->]B

πA, B

(b) Expression tree 2.

Figure 3.9.: Possible expression trees for the PQL statement.

SELECT B
FROM Type t
LET node A IN t, node B IN t, path P IN t
WHERE A.concept = ’macromolecule’

AND P.path = A[->]B

This basically means the construct HAS is an abbreviation for the type of query given
in Example 3.13. More specifically, the following holds:

HAS (hierarchy , ’value ’) = SELECT B FROM hierarchy
LET node A, node B, path P
WHERE A.concept_name = ’value ’

AND P.path = A[->]B

When converting a PQL statement to a relational algebra expression we thus expand
the HAS condition. To find all successor concepts of an hierarchy or ontology the same
algorithms and optimizations are applicable as for optimizing graph queries.

3.5. Related Work
In this section we discuss related work on graph queries. Angles and Gutierrez present
a survey on models to represent graphs and graph query languages in [AG05]. In the
following we also discuss the works presented there, with main focus on the follow-
ing points. First, the data model and its ability to store graphs as well as non-graph
data. Second, we discuss the capabilities, usage, and optimization possibilities of exist-
ing languages. Third, we discuss if the data models together with their respective query
languages are implemented in existing systems and if these systems are already used for
storing biological graphs.

48

3.5. Related Work

Deductive Databases

Several works discuss the possibility to represent graph structured data using first or-
der logic. Bancilhon and Ramakrishnan introduce in [BR86] Datalog as possibility to
represent and query graphs. Datalog is a logical query language [GMUW02], which is
inspired by Prolog. Nodes and edges in Datalog are represented by predicates. To access
data in other data sources these data also must be modeled as predicates.
In Datalog a graph query is expressed using rules on predicates. Using these predicates

it is possible to form complex queries that may contain cycles or regular expressions over
paths, i.e., the path should not contain a node with a specific label. This is certainly
an advantage over PQL, but on the other hand, the formulation of graph queries using
rules is quite complex. Rules may be combined to form programs as presented for G-Log
by Jaredaens and colleagues in [PPT95]. Writing rule-based programs might be difficult
for scientists used to programming languages and SQL, thus Consens and Mendelzon
presented in [CM90] GraphLog, a graphical query language to express graph queries.
This query language is an extension to G and G+ presented by Mendelzon and Wood
in [MW89] and may be led back to Datalog. As the complexity of evaluating arbitrary
combination of rules is high, GraphLog does not allow queries that contain cycles for
performance reasons.

Object-oriented Graph Representation

In the object-oriented model nodes, edges, and paths are represented as objects of specific
classes. Every class may contain further attributes, e. g., the class for nodes may contain
the attribute name. Güting presents in [Güt94] GraphDB, a database that uses such a
data model. This data model allows the storage of any type of graph. One drawback is,
for any new attribute the classes need to be rewritten. Accessing data from other data
sources is possible if a class for these data exists and the relationship between nodes or
edges and these data is defined. To query GraphDB a scientist may use the proposed
query language. The query language allows the specification of the subgraph of interest,
which may also contain paths or regular expressions over path labels. This clearly is
an advantage over PQL, but GraphDB never left the stadium of a proposal for a data
model and query language.
In the same style Amann and Scholl propose in [AS92] a graph data model and the

query language GRAM. The model assumes that there exist classes for nodes and edges.
The query language is based on regular expressions over these classes to find paths in
a graph. Sheng and colleagues present in [SÖÖ99] an object-oriented graph model and
the query language GOQL. To query graphs they introduce new capabilities to OQL,
the standard query language for object-oriented databases. This extension is capable to
express graph queries, including regular expressions over path labels.
Object-oriented database system and the capabilities of the proposed query languages

make these systems interesting for storing and querying graphs, but implementations
of the query languages never left the status of prototypes. For example Sheng and
colleagues [SÖÖ99] implemented GOQL to VStore, an object-oriented database system.

49

3. Graph Queries

VStore is based in the o-algebra, an algebra similar to relational algebra, but adapted
for object oriented database systems. In their work the authors introduce new operators
for the o-algebra to capture the capabilities of GOQL, but they do not give rewrite rules
or special implementation for path expressions as we introduce for PQL in Section 4. In
addition, research on object-oriented databases is currently much less popular than for
relational database systems. Thus, in our work we prefer to store and query graphs in
an RDBMS and not in an object-oriented environment.

Semi-structured Data and XML

Abiteboul describes in [Abi97] the main aspects of semi-structured data and argues
for the need of query languages for this type of data. The structure of these data is
irregular and only implicitly given by the data. Intuitively, semi-structured data may
be considered as graphs (in most cases they are trees or DAGs).
A special case of semi-structured data are data that comply to the Extensible Markup

Language (XML) [BPSM+06]. XML data usually form a tree, where nodes are elements
of the XML document and edges are given by the nested structure of the document. In
addition, there exists an order between sibling nodes. The tree structure is broken (then
forming DAGs or graphs) when XPointer [DJG+02] or XLink [DMO01] elements are used
in the document. The World Wide Web Consortium (W3C) recommends XML Query
(XQuery) [DFF+07] as query language. This language is based on FLWOR expressions
(FOR, LET, WHERE, ORDER BY, and RETURN), which is similar to SQL and PQL. A subpart
of XQuery is XPath, which allows the specification of path structured query graphs
to retrieve parts of an XML document. The main drawback of XQuery compared to
PQL is that it is only capable to query tree structured XML documents, thus making it
inapplicable for storing and querying biological networks.
Prior to XQuery other query languages have been proposed to query semi-structured

data that form general graphs. In [AQM+97] the group around Abiteboul proposes
the query language Lorel. This language is specifically designed to cope with schema
heterogeneity and additionally allows regular path expressions. The authors briefly in-
troduce the implementation in the Lore system, which also performs query optimization.
In [BDHS96] Buneman and colleagues present a query language for unstructured and
semi-structured data called UnQL. They also introduce new operators to rewrite the
queries to a calculus. The group around Shasha present in [GS02] GraphGrep, a method
for querying graphs. They introduce the query language Glide, which combines features
from XPath and Smart, a language to query chemical molecules. To evaluate graph
queries efficiently they index the data, which we discuss more closely in Section 5.6.
Most systems proposed above never left the status of prototypical implementations.

Current systems to store XML data are native XML databases such as eXist [htt08]
or XML extensions to RDBMS. These systems provide XQuery as query language. As
much research is put into optimization of queries on XML documents as well as on index
structures for XML documents we discuss some works in Section 4.3 and in Section 5.6,
respectively.
Several groups use XML to store biological data. The most prominent exchange for-

50

3.5. Related Work

mats for biological graphs are the Systems Biology Markup Language (SBML) and
BioPAX. Both exchange formats are based on XML with XLink elements. For an
overview over the predominant formats SBML, PSI, MI, and BioPAX we refer the
reader to Strömbäck and Lambrix [SL05]. Although XML allows the storage of bi-
ological graphs, querying the data using XQuery is not possible as especially XLink
elements cannot be resolved. Thus, making the result of an XQuery possibly incom-
plete. Sohler and colleagues present in [SHZ04] ToPNet, a tool for storing and querying
biological graphs. They query ToPNet using XML-based templates. In [SZ05] they give
algorithms to find matching subgraphs to such an XML template. They only allow users
to query for subgraphs that are isomorphic to the XML template. In PQL we also allow
the search for homeomorphic subgraphs.

Semantic Web and RDF

The semantic web aims to provide semantic information about resources on the web. A
W3C recommendation for the representation of information is the Resource Description
Framework (RDF) [Bec04]. RDF allows the representation of semantic information as
graphs. As for semi-structured data several query languages have been proposed.
Karvounarakis et al. present in [KAC+02] the query language RQL, which is inspired

by OQL. For an RQL query graph the matching subgraphs may be found by subgraph
isomorphism, but not by subgraph homeomorphism. The W3C also provides a recom-
mendation for querying RDF graphs, called SPARQL [PS08]. As for RQL this language
only allows the specification of query graphs in which the edges are mapped to edges
in the data graph, but not to paths in the data graph. Several groups presented ex-
tensions to the query language SPARQL that allow regular path expressions. Kochut
& Janik introduce in [KJ07] SPARQLeR, Alkhateeb and colleagues present in [ABE09]
PSPARQL, and Detwiler et al. describe in [DSB08] GLEEN.
For the efficient execution of SPARQL queries indexing techniques for RDF graphs

have been proposed. Heese et al. [HLQR07] suggested to index the RDF graph for graph
patterns in analogy to index frequently queried attributes in RDBMS. In addition, Hartig
and Heese presented in [HH07] operators to logically represent a SPARQL query. They
also present transformation rules to optimize such a query. We discuss both in Section 4.3
more closely. We may not be able to transfer knowledge gained from these works to the
evaluation of PQL queries. The reason is we intend to find homeomorphic subgraphs,
i.e., where an edge in the query may stand for a path in the data graph, which is more
complex than to find isomorphic subgraphs, the intention of SPARQL. In contrast, the
authors of PSPARQL present algorithms that find homeomorphic subgraphs. We discuss
these algorithms in Section 5.6.

Relational Database Management Systems

In RDBMS graphs may be stored in relations. Due to the high flexibility in schema
design RDBMS are well suited to store graphs. In this work we propose in Figure 3.1
(on page 27) a model to store any type of graph. Dar and Agrawal use a similar model

51

3. Graph Queries

to store graphs in an RDBMS and extend in [DA93] SQL to query graphs. They propose
a syntax where the closure of the graph is stated in the FROM clause. In the WHERE clause
it is possible to restrict paths by their start or end node, while a subquery on the paths
is necessary to restrict paths by their properties, such as path length. This proposed
extension to SQL allows users to pose all types of graph queries, but as conditions may
be stated in two different location its syntax is difficult to understand. In [DNR09]
Dries and colleagues describe a graph model for relational database systems and a query
language. The graph model consists of objects and relations between objects. Thus,
in their model nodes and edges of a graph are objects and the connection between an
edge and a node is given by the relationship between the objects. Their proposed query
language is a mixture of SQL and query languages developed for deductive databases,
i.e., it contains a SELECT, FROM, and WHERE clause as in SQL and allows the specification
of regular path expressions as in query language for deductive databases. In contrast
to PQL only one data graph at a time may be used and the query language is not able
to query normal relations in parallel. Moreover, the authors only propose the query
language, but state that the development of an efficient and scalable implementation
remains an important issue.
He and Singh present in [HS08] GraphQL, a graph query language. As this language

is similar to Datalog, the specification of the query graph is not as straightforward as
in PQL. In addition to the query language the authors also present a graph algebra to
rewrite a graph query into a graph algebra. Moreover they present algorithms to answer
graph queries and optimization methods. We discuss both in Section 7.4.
For biological graphs different database schemas have been developed, an overview may

be found in Schaefer [Sch04]. For the metabolic network aMAZE the database schema
may be found in Lemer et al. [LAC+04] and for Reactome in Vastrik et al. [VDS+07].
In addition RDBMS also allow users to access further data stored as relations. This is
a great advantage over other systems, as many data are available for RDBMS. Some
RDBMS also store and query graphs differently. In [EB06] Eckman and Brown propose
to store graphs as first-class SQL data type within the database. This extension is called
the Systems Biology Graph Extender (SBGE), which performs various functions on the
data type graph, such as graph set operations, shortest path computation, and subgraph
isomorphism tests. One drawback of their approach is that the graph must be loaded
entirely in main-memory for efficient query execution.
The predominant query language in RDBMS is the Structured Query Language (SQL).

Since the ANSI SQL-99 standard it is possible to express recursive queries using the
syntax WITH RECURSIVE [GP99]. Database systems have adopted this standard by
now [PBBS10]. Some database system use their own syntax, e.g., Oracle10g uses
CONNECT BY PRIOR. The current specification only targets edge disjunct paths using
the additional condition NO CYCLES, but we are interested in node disjunct paths, which
is not possible using the given syntax.
Many researchers work on cost-based query optimization in RDBMS [Cha98]. The

insights of this research have gone into commercial as well as open-source RDBMS. To
our knowledge current RDBMS do not optimize the recursive part of an SQL query.
Therefore, the evaluation of an SQL statement that contains a recursive part may be

52

3.5. Related Work

prohibitively slow as we show in Section 6. One reason for missing optimization is that
known operators from relational algebra are not sufficient to express recursion [Agr88].
We target this problem in the next chapter.

53

4. Operators for Graph Queries

This chapter discusses the possibility to express graph queries using algebra expressions.
In Section 4.1 we show that existing relational algebra operators are sufficient for binding
nodes to node variables. In Section 4.2 we then motivate the need for new operators
to express PQL statements. We introduce four new operators, the path operator Φ,
path length operator φ, distance operator Ψ, and reachability operator ψ. Finally in
Section 4.3 we present related work in the area of algebraic operators for graph query
execution.

4.1. Operators for Nodes
In Section 3.4 we introduced view Nodes. This view is basically composed of information
that is already present in the model for storing graphs, which is given in Figure 3.1 (on
page 27). Assume, we create a relation for each class present in the model. We first
show how view Nodes is defined and then explain how to evaluate node conditions on
this view.
Figure 4.1 gives the SQL statement to declare view Nodes. Equation 4.1 shows the

relational algebra expression to resolve it. We see, relational algebra operators presented
in Section 2.2 are sufficient to resolve this view.

CREATE VIEW Nodes AS
SELECT Node.node_id, Node.external_id,

Label.label_id, Label.label_type, Label.value
FROM Node, Node_label, Label
WHERE Node.node_id = Node_label.node_id

AND Node_label.label_id = Label.label_id;

Figure 4.1.: View definition for view Nodes.

Nodes = (Node ./ Node_label ./ Label) (4.1)

Example 4.1 (Sample graph). To illustrate views Nodes and Paths we provide a
small exemplary graph. Figure 4.2 shows a simplified subgraph of the Arginine and
Proline metabolism shown in Figure 3.3 (on page 30). We store the data of the graph
according to the model presented in Figure 3.1 (on page 27). Figure 4.3 shows the
relations for the exemplary graph.

55

4. Operators for Graph Queries

Figure 4.2.: Exemplary subgraph of the Arginine and Proline metabolism as given by
KEGG. Reactions together with their catalyzing enzymes are omitted.

�

�

	

node_id external_id
1 Arginine
2 Ornithine
3 Urea
4 Citrulline
5 L-Argininosuccinate
6 Aspartate

(a) NodeKegg

�

�

	

edge_id from_id to_id
1 1 2
2 1 3
3 1 4
4 1 5
5 4 2
6 5 4
7 5 6

(b) EdgeKegg

�

�

	

edge_id label_id
1 99
2 99
3 99
4 99
5 99
6 99
7 99

(c) EdgeKegg_label�

�

	

node_id label_id
1 1
2 2
2 20
3 3
4 4
4 20
5 5
5 20
6 6

(d) NodeKegg_label

�

�

	

label_id label_type value
1 name Arginine
2 name Ornithine
3 name Urea
4 name Citrulline
5 name L-Argininosuccinate
6 name Aspartate
20 Type compound
99 null null

(e) LabelKegg

Figure 4.3.: Relations to represent the exemplary graph from Figure 4.2.

Selection on Nodes

In PQL it is possible to select specific nodes from the graph using type op n or type
text_op s in the WHERE clause. Equation 4.2 defines the rewrite rule for the selection
condition type op n. The equation also shows the selection condition on the resolved
view. The rewrite rule for selection condition type text_op s is easy to deduce from

56

4.2. Operators for Paths

Equation 4.2 and thus omitted.

σtype op nNodes = σlabel_type=type AND value op nNodes

= σlabel_type=type AND value op n(Node ./ Node_label ./ Label)
(4.2)

Equality Condition on Nodes

The WHERE clause may also contain equality conditions for nodes, i.e., A = B. Equation 4.3
shows how to rewrite the expression to be applicable on view Nodes. We are able to
transform the original expression, which contains a cartesian product, to an expression
with a theta join by applying relational algebra rules.

σA=B(Nodes A× Nodes B) = σA.node_id=B.node_id(Nodes A× Nodes B)
= Nodes A ./A.node_id=B.node_id Nodes B

(4.3)

Label Comparison for Nodes

The WHERE clause may also contain the condition A.type op B.type. Equation 4.4
shows how to rewrite the expression to be applicable on two views Nodes.

σA.type op B.type′(Nodes A× Nodes B) =
σA.label_type=type AND B.label_type=type′ AND A.value op B.value(Nodes A× Nodes B)

(4.4)

4.2. Operators for Paths
If we resolve the Paths view using an SQL statement that joins relation Edge n times we
face two problems. First, we run into cycles, i.e., nodes occur more than once in a path.
Second, even if we join Edge of cycle-free graphs we do not know how long the longest
path in the graph is, and thus how many joins are required. In relational algebra we are
only able to express that we want to join Edge exactly n times. This means, classical
operators of relational algebra are not sufficient to express path queries. Therefore, we
have to introduce new operators.

4.2.1. Path Operator, Ψ
To resolve the Paths view we introduce the path operator Ψ. This operator uses relation
Edge as input and takes the orientation of edges in the path and possibly conditions on
the length of the path as parameters.

Definition 4.1 (Path operator, Ψ)

Given relation Edge, which stores all edges E of a graph G as {(edge_id, e),
(from_id, vm), (to_id, vn)}, with vn, vm being node_ids of nodes in G. Given condi-

57

4. Operators for Graph Queries

tions on paths, cond := ([->] | [-] |[<->]), (length_cond)? and length_cond
:= length op n (AND length op n)* 1.
The path operator Ψcond applied to Edge produces relation Paths such that

Ψcond(Edge) = {(path_id, j), (start, u), (end, w),
(length, length(pj)), (node_id, vi), (position, i)}

∀vi ∈ pj = 〈v0, . . . , vi, . . . , vn〉, 0 ≤ h, i < n, u = v0, w = vn, vi 6= vh for i 6= h and

• (ek, vi, vi+1) ∈ Edge if cond = [->]
• (ek, vi, vi+1) ∈ Edge ∨ (el, vi+1, vi) ∈ Edge, k 6= l if cond = [-]
• (ek, vi, vi+1) ∈ Edge ∧ (el, vi+1, vi) ∈ Edge, k 6= l if cond = [<->]

and length(pj) fulfills length_cond

If no length condition is given, all paths regardless their length are of interest.

Example 4.2 (The Paths relation). To illustrate the idea of the path operator Ψ
and the content of view Paths we use nodes and edges from Example 4.1 to produce
Ψ[−>](EdgeKegg). Figure 4.4 shows all directed paths for the graph from Figure 4.2.

�

�

	

path_id start end length node_id position

1 1 2 1 1 0
1 1 2 1 2 1
2 1 3 1 1 0
2 1 3 1 3 1
3 1 4 1 1 0
3 1 4 1 4 1
4 1 2 2 1 0
4 1 2 2 4 1
4 1 2 2 2 2
5 1 5 1 1 0
5 1 5 1 5 1
6 1 4 2 1 0
6 1 4 2 5 1
6 1 4 2 4 2
7 1 6 2 1 0

(a) Paths

�

�

	

path_id start end length node_id position

7 1 6 2 5 1
7 1 6 2 6 2
8 1 2 3 1 0
8 1 2 3 5 1
8 1 2 3 4 2
8 1 2 3 2 3
9 4 2 1 4 0
9 4 2 1 2 1

10 5 4 1 5 0
10 5 4 1 4 1
11 5 6 1 5 0
11 5 6 1 6 1
12 5 2 2 5 0
12 5 2 2 4 1
12 5 2 2 2 2

(b) Paths (cont.)

Figure 4.4.: Ψ[−>](EdgeKegg) for the graph in Figure 4.2. Tuples displayed in bold are
the result of the query given in Example 4.3.

Path Operator with Restriction on Start and End Nodes

In a PQL query we may state that paths bound to a path variable start or end at a node
bound to a node variable. Consider the following example.

Example 4.3. Assume we want to find all paths in KEGG that start at a node that has
as label (name, ’Arginine’). We express the query using the following PQL statement.

1We do not support disjunction inside the operator. This needs to be resolved differently, like by
enhancing the PQL query capabilities.

58

4.2. Operators for Paths

SELECT *
FROM Kegg
LET node A, path P
WHERE A.name = ’Arginine’

AND P.start = A;

Converting the given PQL statement to an algebra expression results in
σP.start=A.node_id AND A.name=′Arginine′(NodesKegg A×Ψ[−>](EdgeKegg) P).
A naive strategy to evaluate this statement would be to first resolve the Paths view

using Ψ, create the cartesian product with the nodes view, before restricting the tuples to
those whose start nodes are nodes bound to node variable A and whose label has the value
(name, ’Arginine’). Actually computing the result would require to first compute all
paths of a graph, before possibly discarding many unnecessary tuples. A more reasonable
step would be to only compute paths that start at a node bound to A. Using Ψ we are
not able not express this fact.

The example above motivates the introduction of three more operators, called Ψstart,
Ψend, and Ψboth, which are derived from Ψ. Equations 4.5 – 4.7 show the definition of
these operators (cond stands for ’[->], (length_cond)?’, ’[-], (length_cond)?’, or
’[<->], (length_cond)?’).

Ψstart
cond, start=A.node_id(Nodes A, Edge)

:= σstart=A.node_id(Nodes A×Ψcond(Edge))
= Nodes A ./A.node_id=start Ψcond(Edge) (4.5)

Ψend
cond, end=B.node_id(Edge, Nodes B)

:= σend=B.node_id(Ψcond(Edge)× Nodes B)
= Ψcond(Edge) ./end=B.node_id Nodes B (4.6)

Ψboth
cond, start=A.node_id AND end=B.node_id(Nodes A, Edge, Nodes B)

:= σstart=A.node_id AND end=B.node_id(Nodes A×Ψcond(Edge)× Nodes B)
= Nodes A ./A.node_id=start Ψcond(Edge) ./end=B.node_id Nodes B (4.7)

Rewrite Rules for Path Operators

We also define rewrite rules for path operators in combination with other operators from
relational algebra as rewriting expressions is an essential step in query optimization. No
rewrite rules for operator Ψcond(Edge) are necessary. Equation 4.8 shows the rewrite
rule for operator Ψstart

cond(Nodes, Edge) together with a selection operator. This rewrite
rule may only be applied if the selection operator contains only attributes from relation

59

4. Operators for Graph Queries

Nodes.

σsel_cond(Ψstart
cond(Nodes, Edge)) = Ψstart

cond(σsel_cond(Nodes), Edge)

if sel_cond contains only conditions on attributes of Nodes

(4.8)

Clearly, we may also push the selection operator to relation Nodes for operators Ψend

and Ψboth. The according rewrite rules may be found in Appendix B.
We also give rewrite rules for path operators and the join operator. Equation 4.9

shows the equation for Ψstart. This equation shows that we may push a join down to
the Nodes view, if the join condition only involves an attribute from the Nodes view
and one from the second relation. For Ψend and Ψboth the equations are also given in
Appendix B.

R ./R.attr op A.attr Ψstart
cond(Nodes A, Edge))

= (Ψstart
cond((R ./R.attr op A.attr Nodes A), Edge)

(4.9)

Example 4.4. The PQL statement from Example 4.3 may be converted to a relational
algebra expression. We picture this statement as expression tree in Figure 4.5(a). We
are able to transform this tree into the expression tree given in Figure 4.5(b). Clearly,
we may first split the selection operator and then push the operator with the condition
A.name=’Arginine’ down to the Nodes view.

EdgeKegg

Nodes A Ψ[->]

×

σA.name=’Arginine’ AND

start = A.node_id

(a) Original expression tree.
Nodes A

σA.name=’Arginine’ EdgeKegg

Ψ
start

[->], start = A.node_id

(b) Transformed expression
tree.

Figure 4.5.: Possible expression trees for the PQL statement from Example 4.3.

4.2.2. Reachability operator, φ
In the examples so far we required the entire information contained in view Paths, such
as intermediate nodes or path lengths, for the result. Sometimes we also want to answer
simpler queries, such as the one given in Example 4.5.

Example 4.5 (Reachability query). Assume we want are interested in all nodes of
type ’compound’ that are reachable from a node with label (name, ’Arginine’), i.e., for

60

4.2. Operators for Paths

which a path between the two nodes exists. The following PQL statement expresses this
query.

SELECT B
FROM Kegg k
LET node A, node B, path P
WHERE A.name = ’Arginine’

AND B HAS (type, ’compound’)
AND P.path = A[->]B

This query retrieves only nodes bound to node variable B, not actual paths bound to
path variable P.

More generally, assume, we have a PQL statement that contains a path variable P,
which is not stated in the SELECT clause and only contains conditions on its start and/or
end node in the WHERE clause. Such a query only retrieves distinct node pairs between
which paths exist. Converting this expression to our algebra using only path, selection,
and duplicate-elimination operators results in δ(πstart,end(Ψcond(Edge))). This statement
requires to first resolve the Paths view before projecting attributes start and end and
finally de-duplicating the node pairs.
A more efficient way is to only compute reachability information, which is faster than

computing paths (see Chapter 6). Therefore, we introduce the reachability operator φ
to be able to use dedicated algorithms for answering reachability queries.
Definition 4.2 (Reachability operator, φ)

Given relation Edge, which stores all edges E of a graph G as {(edge_id, e),
(from_id, vm), (to_id, vn)}, with vn, vm being node_ids of nodes in G. And given
conditions on paths, cond := ([->] | [-] |[<->]).
The reachability operator φcond applied to relation Edge produces

φcond(Edge) = {(start, u), (end, w)|
∃ pj = 〈v0, . . . , vi, . . . , vn〉,
0 ≤ h, i < n, u = v0, w = vn, vi 6= vh for i 6= h and

• (ek, vi, vi+1) ∈ Edge if cond = [->]
• (ek, vi, vi+1) ∈ Edge ∨ (el, vi+1, vi) ∈ Edge if cond = [-]
• (ek, vi, vi+1) ∈ Edge ∧ (el, vi+1, vi) ∈ Edge if cond = [<->] }

Example 4.6 (Result for Example 4.5). Figure 4.6 shows φ[−>](EdgeKegg) from
Example 4.1. Consider again Example 4.5. To answer the query we have to know the
node with label (name, ’Arginine’) has node_id 1 and nodes with node_id 2, 4, and 5
are compounds. Thus, the answer to the query are node_ids 2, 4, and 5.

61

4. Operators for Graph Queries

�

�

	

start end

1 2
1 3
1 4
1 5
1 6
4 2
5 4
5 6
5 2

Figure 4.6.: The reachability operator φ applied on relation EdgeKegg. The tuples in
bold are required for the PQL statement in Example 4.5.

Reachability Operator with Start and End Nodes

Consider Example 4.5, where we have a path variable P on which only paths may be
bound that start at a node bound to A and end at a node bound to B. For the path
operator, Ψ we defined Equations 4.5–4.7, which are also valid in modified form for φ.
For example, Equation 4.10 is the modified form of Equation 4.7. The equations for the
remaining operators φstart and φend are easy to deduce from Equations 4.5 and 4.6 and
are thus omitted.

σstart=A.node_id AND end=B.node_id(Nodes A× φcond(Edge)× Nodes B)
= Nodes A ./A.node_id=start φcond(Edge) ./end=B.node_id Nodes B

= φboth
cond, start=A.node_id AND end=B.node_id(Nodes A, Edge, Nodes B)

(4.10)

From Path Operator Ψ to Reachability Operator φ

So far, we only defined the reachability operator. We gave no rules how to rewrite an
expression containing a path operator to an expression containing a reachability operator.
Equation 4.11 shows this rewrite rule for Ψ to φ.

δ(πA(Ψcond(Edge))) = πA(φcond(Edge))

if A = {start, end} and cond = [->] | [-] | [<->]

(4.11)

Using Equation 4.11 and the rewrite rules from φ to φstart, φend, or φboth, shown for
φboth in Equation 4.10, we are able to deduce the rewrite rules for Ψstart to φstart, Ψend

to φend, and Ψboth to φboth.

Rewrite Rules for Reachability Operators

The reachability operator is defined in the same style as the path operator. Thus,
the rewrite rules defined for Ψ in Equations 4.8 – 4.9 may be used. As rewriting the
equations for the reachability operator, φ is trivial, the equations are omitted. Basically,

62

4.2. Operators for Paths

we push down a selection operator to one of the participating relations of φstart, φend, and
φboth. We also push down a join operator together with its join partner to the respective
relation.

4.2.3. Path Length Operator, ψ
In a PQL statement we may also pose length conditions on paths, as Example 4.7 shows.

Example 4.7 (Path length query). Assume, we are still interested in all nodes of
type ’compound’ that are reachable from a node with label (name, ’Arginine’), as stated
in Example 4.5. Now we also require the path length to be equal to 2. The following
PQL statement expresses this query.

SELECT B
FROM Kegg k
LET node A, node B, path P
WHERE A.name = ’Arginine’

AND B HAS (type, ’compound’)
AND P.path = A[->]B
AND P.length = 2

We are only interested in nodes bound to node variable B. Thus, we only require
information about start and end node of a path and path lengths for paths between the
two nodes.

Assume, the WHERE clause contains a length restriction or the HAVING clause a re-
striction on the number of paths bound to P. There may also conditions on the start
and end node, but P is not stated in the SELECT clause. Thus, we are only inter-
ested in attributes path_id, start node, end node, and length. A possible expression
using our algebra results in δ(πpath_id,start,end,length(Ψcond(Edge))). Figure 4.7 shows
δ(πpath_id,start,end,length(Ψ[−>](EdgeKegg)) for the graph from Figure 4.2.�

�

	

path_id start end length

1 1 2 1
2 1 3 1
3 1 4 1
4 1 2 2
5 1 5 1
6 1 4 2
7 1 6 2
8 1 2 3
9 4 2 1

10 5 4 1
11 5 6 1
12 5 2 2

Figure 4.7.: δ(πpath_id,start,end,length(Ψ[−>](EdgeKegg)) for the graph in Figure 4.2. Tu-
ples displayed in bold are required for the result of the query given in Ex-
ample 4.7.

Compare the tables in Figure 4.4 and 4.7. As one may see, the latter contains fewer
tuples and attributes. In Chapter 6 we show, immediately computing the result of

63

4. Operators for Graph Queries

δ(πpath_id,start,end,length(Ψcond(Edge))) is more efficient than to first compute all paths
of a graph, before discarding some information. To give this opportunity to the query
optimizer we need a third operator, the path length operator ψ.

Definition 4.3 (Path length operator, ψ)

Given relation Edge, which stores all edges E of a graph G as {(edge_id, e),
(from_id, vm), (to_id, vn)}, with vn, vm being node_ids of nodes in G. Given condi-
tions on paths, cond := ([->] | [-] |[<->]), (length_cond)? and length_cond
:= length op n (AND length op n)* 2.
The path length operator ψcond applied to Edge produces

ψcond(Edge) = {(path_id, j), (start, u), (end, w), (length, length(pj))}

∀pj = 〈v0, . . . , vi, . . . , vn〉, 0 ≤ h, i < n, u = v0, w = vn, vi 6= vh for i 6= h and

• (ek, vi, vi+1) ∈ Edge if cond = [->]
• (ek, vi, vi+1) ∈ Edge ∨ (el, vi+1, vi) ∈ Edge, k 6= l if cond = [-]
• (ek, vi, vi+1)Edge ∧ (el, vi+1, vi) ∈ Edge, k 6= l if cond = [<->]

and length(pj) fulfills length_cond

Please note, in the result set of the path length operator we might find a pair of nodes
with the same path length multiple times. The reason is that multiple paths of the same
length between these two nodes may exist. The tuples are only distinguished by their
path_id.

Path Length Operator with Start and End Node

For the path operator Ψ we defined Ψstart, Ψend, and Ψboth in Equations 4.5– 4.7. These
equations are also valid in modified form for ψ. The equations are given in Appendix B.

From Path Operator Ψ to Path Length Operator ψ

We also have to define rules to rewrite an expression containing a path operator Ψ to
an expression containing a path length operator ψ. Equations 4.12 and 4.13 state the
rewrite rules.

δ(πA(Ψcond(Edge))) = πA(ψcond(Edge))

if A = {path_id, start, end, length}
(4.12)

2We also do not support disjunction inside this operator.

64

4.2. Operators for Paths

δ(γA,count(path_id)(Ψcond(Edge))) = γA,count(path_id)(ψcond(Edge))

if A = {path_id, start, end, length}
(4.13)

In the same style we define rewrite rules for ψstart, ψend, and ψboth, which are given in
Appendix B.

Rewrite Rules for Path Length Operators

The path length operator ψ is almost identical to the path operator Ψ. Thus, Equa-
tions 4.8 and 4.9 may be modified for ψ (equations given in Appendix B).

4.2.4. Distance Operator, Φ
The path length operator may always be applied when a length restriction on a path is
given and when the actual path is not required in the SELECT clause. In some cases, not
all lengths of paths are required. Consider Example 4.8.

Example 4.8 (Distance query). Remember, in the last example (Example 4.7) we
required that the length of the path between nodes with label (name, ’Arginine’) and
nodes of type ’compound’ must be greater or equal to 2. We now require that the length
of the path is less than or equal to 2. To answer this query it is sufficient to know for
each node pair that there exists at least one path that is shorter than 2, i.e., the distance
(the length of the shortest path) between these nodes must be lower or equal to 2.

Definition 4.4 (Distance operator, Φ)

Given relation Edge, which stores all edges E of a graph G as {(edge_id, e),
(from_id, vm), (to_id, vn)}, with vn, vm being node_ids of nodes in G. And given
conditions on paths, cond := ([->] | [-] | [<->]), (length < n)?.
The distance operator Φcond applied to relation Edge produces

Φcond(Edge) = {(start, u), (end, w), (length, length(pj))|
∃ pj = 〈v0, . . . , vi, . . . , vn〉 and
@ pl = 〈v0, . . . , vi, . . . , vm〉 with length(pl) < length(pj),
0 ≤ h, i < m < n, u = v0, w = vn = vm, vi 6= vh for i 6= h, and

• (ek, vi, vi+1) ∈ Edge if cond = [->]
• (ek, vi, vi+1) ∈ Edge ∨ (el, vi+1, vi) ∈ Edge if cond = [-]
• (ek, vi, vi+1) ∈ Edge ∧ (el, vi+1, vi) ∈ Edge if cond = [<->] }

Consider the graph given in Figure 4.2 again. Φ[−>](EdgeKegg) produces the relation
given in Figure 4.8. As one may see, this relation contains fewer attributes and, in this

65

4. Operators for Graph Queries

example also fewer tuples, than ψ[−>](EdgeKegg) given in Figure 4.7. Please note, while
the path length operator may produce a node pair with the same length multiple times,
only differentiated by the path_id, the distance operator produces each node pair only
once with its distance. �

�

	

start end length

1 2 1
1 3 1
1 4 1
1 5 1
1 6 2
4 2 1
5 4 1
5 6 1
5 2 2

Figure 4.8.: Φ[−>](EdgeKegg) for the graph in Figure 4.2. Tuples displayed in bold are
required for the result of the query given in Example 4.8.

Distance Operator with Start and End Node

As for the path operator Ψ, the path length operator ψ, and the reachability operator φ
we define Φstart, Φend, and Φboth according to Equations 4.5–4.7 (given in Appendix B).

From Path Operator Ψ to Distance Operator Φ

In Equation 4.14 we also provide rewrite rules to rewrite an algebra expression containing
a path operator to one containing a distance operator.

πA(Ψcond(Edge)) = πA(φcond(Edge))

if A = {start, end} and cond = [->] | [-] | [<->], (length_cond)?

with length_cond := length op n (AND length op n)* and op := < | ≤
(4.14)

In the same style we define the rewrite rules for Φstart, Φend, and Φboth (see Ap-
pendix B).

Rewrite Rules for Distance Operators

The rewrite rules for the distance operator Φ are similar to those for the remaining three
operators (see Appendix B).

4.2.5. Summary

The path operator Ψ would be sufficient to convert all possible PQL statement to rela-
tional algebra expressions. For query optimization we introduced three more operators,

66

4.3. Related Work

the reachability operator φ, the path length operator ψ, and the distance operator Φ.
For each of these operators we gave rewrite rules as when to transform an expression
containing a path operator to an expression containing one of the other operators. In
this section we summarize which operators are applicable in which situation. For ex-
ample, the PQL statement in Example 4.5 expresses a reachability query for which we
are interested in the end nodes of paths. Thus, in our extended algebra we may apply
the path operator Ψ, but we may also transform the expression to contain either the
path length operator ψ, the distance operator Φ, or the reachability operator φ. In Ta-
ble 4.1 the applicability of operators for different combinations of projection attributes
as well as select conditions is displayed. The PQL statements always have the form
of SELECT ...FROM ...LET node A, node B, path P (WHERE)? ...(HAVING)? ...,
i.e., with or without a WHERE and HAVING clause. Take for example the third column
and the third row of Table 4.1. This combination represents the following PQL query
without HAVING clause.

SELECT A, B
FROM ...
LET node A, node B, path P
WHERE P.path = A[->]B

AND P.length < n

For this query we may use the path operator Ψ, path length operator ψ, or the distance
operator Φ to express the query in relational algebra as Table 4.1 shows. The reachability
operator φ is not applicable as a length restriction is applied.
Table 4.1 shows some of the conditions possible in the WHERE clause of a PQL state-

ment. Further conditions are A.name=’x’, B HAS (Type, y), or P.start=A. Any select
condition on nodes may be directly applied to the Nodes view and does not influence the
choice of operator to assess paths. The remaining conditions P.start = A and P.end
= B are semantically the same as P.path = A[->]B and the same operators may be
applied.

4.3. Related Work

In this section we discuss related work on operators for extending the relational algebra
to handle path queries. Our focus lies on three main points. First, the capability of
the introduced operators to answer graph queries. We discuss, which type of queries
are supported, such as reachability, distance, path length, or path queries. Second,
we discuss rewrite rules for the operators and their applicability. Finally, as outlook
to Chapters 5, 6 and 7 we consider if there exist implementations for the operators
including cost functions and cardinality estimates, as these are important for efficient
query execution.

67

4. Operators for Graph Queries

SELECT

A B A, B P A, P B, P *

WHERE HAVING
φ, Φ,
ψ, Ψ

φ, Φ,
ψ, Ψ

φ, Φ,
ψ, Ψ Ψ Ψ Ψ Ψ

WHERE P.path = A[->]B

HAVING

φ, Φ,
ψ, Ψ

φ, Φ,
ψ, Ψ

φ, Φ,
ψ, Ψ Ψ Ψ Ψ Ψ

WHERE P.path = A[->]B

AND P.length < n HAVING

Φ,
ψ, Ψ

Φ,
ψ, Ψ

Φ,
ψ, Ψ Ψ Ψ Ψ Ψ

WHERE P.path = A[->]B

AND P.length = n HAVING
ψ, Ψ ψ, Ψ ψ, Ψ Ψ Ψ Ψ Ψ

WHERE P.path = A[->]B

HAVING A.count op m

φ, Φ,
ψ, Ψ

φ, Φ,
ψ, Ψ

φ, Φ,
ψ, Ψ Ψ Ψ Ψ Ψ

WHERE P.path = A[->]B

HAVING P.count op m
ψ, Ψ ψ, Ψ ψ, Ψ Ψ Ψ Ψ Ψ

Table 4.1.: Applicability of operators path (Φ), path length (φ), distance (Ψ), and
reachability (ψ) for different PQL statements. The PQL statements al-
ways have the form of SELECT ... FROM ... LET node A, node B, path
P (WHERE)? ... (HAVING)? A is meant as start node, B as end node.

Path Operators for RDBMS

Rosenthal et al. propose in [RHDM86] new operators for relational algebra to answer
graph queries. They state a path enumeration operator is needed, but do neither define
its input nor its output. They also state that in the case of distance or reachability
queries a grouping and projection is necessary, but they do not explicitly introduce new
operators to resolve these combinations. They present some rewrite rules for the new
operator by example, but no formal introduction is given.
In [Agr88] Agrawal proposes the α-operator as additional operator for relational alge-

bra to handle recursive queries. Applying the α-operator to a relation of edges results
in a new relation that stores node pairs and as additional attribute all cycle-free paths
between the pairs as an enumeration. As the attribute for the path is not in first nor-
mal form, it may not be directly accessed using relational algebra operators. Thus, the
author proposes special predicates to work with paths stored in this attribute. The α-
operator is similar to our proposed path operator Ψ, yet no rewrite rules, especially for
the situation with a restriction on the start or end node, are given.
In [DAJ91] Dar and colleagues extend the idea given in [Agr88] to overcome this

shortage. They state that in case a restriction on the start node or on nodes or edges in
the path is given, this selection should be pushed into the path computation. In addition
they state in some cases nodes and edges of a path are not required and thus do not

68

4.3. Related Work

have to be computed. Our proposed operators and rewrite rules follow the same idea.
In [DA93] Dar and Agrawal refine their previous approach and propose an extension to
SQL to provide a syntax to query graphs as discussed in Section 3.5.
Ordonez presents in [Ord05] an extension of the database system Teradata to express

recursive views. Using these views it is possible to express recursive queries. The author
also presents query optimization strategies for evaluating the recursive views when con-
ditions are applied. One problem of this approach is that recursive views are not able
to handle cycles, i.e., an execution will not terminate unless a termination condition is
explicitly given in the view definition.
Eckman & Brown follow in [EB06] a different approach. They store biological graphs

as data object in an RDBMS. They provide several methods that may be applied to the
data object, which perform various analyses. A disadvantage is that the graph is stored
as single object and thus, for efficient execution of a query should fit together with is
result into main-memory.

Operators for Graph Queries in Other Areas

Query optimization is also important in other areas than RDBMS, for example for semi-
structured data or data complying to the RDF data model. For semi-structured data
Buneman and colleagues present in [BDHS96] a query language called UnQL. They
also introduce new operators to rewrite the queries to lambda calculus. Although the
operators are not expressed the same way, the capability and optimization strategies are
similar to those proposed for our path operator Ψ, but defined only for DAGs and trees.
In [BFS00] the authors refine their proposed language and operators, but they do not
consider cases where only path length or reachability is required. They also state in the
paper that “future work is needed to combine these (calculus and rewriting rules) with
a cost model and an optimization algorithm”.
Beeri and Tzaban present in [BT99] SAL, an algebra for semi-structured data. They

propose several operators to convert queries on XML documents to an algebraic ex-
pression, but this algebra lacks an equivalent to our proposed path operator. Although
selection of nodes and edges, projection of subtrees, and join of trees are possible, the
algebra is not capable to express paths of arbitrary length, which we find necessary.
In [BMR99] Beech and colleagues overcome this problem. Their ’follow’ operator takes
a collection of nodes as input and in its basic form selects edges of a specific type starting
at nodes in the input, or, if a Kleene star is added, allows arbitrary paths. Thus, their
follow operator is similar to our proposed path operator Ψ. In the paper the authors do
not give any rewrite rules for optimization nor introduce algorithms to efficiently exe-
cute the queries. In [FHP02] Frasincar and colleagues take up the operators proposed by
Beech et al. and give rewrite rules involving these operators. Neither reachability queries
nor path length queries can be expressed using their proposed algebra. In addition, they
do not give algorithms for evaluating their version of the path operator.
Fernandez and colleagues present in [FSW00] an algebra for XML Query. Apart from

selection, projection, and join they also introduce a structural recursion operator, which
basically resembles our path operator. They also give equivalence and rewrite rules for

69

4. Operators for Graph Queries

query optimization, but their proposed operators are only applicable for tree structured
XML documents. In addition reachability or path length are not supported as these are
not necessary for querying XML documents.
In [CCS00] the authors follow a different approach. They propose the ’bind’ operator

to convert queries on XML document to relational algebra expressions. This operator
takes as input a collection of trees, contains as argument a tree pattern, and returns
variable bindings between the pattern and the input trees. To rewrite the expression
they split a bind operator, i.e., split the pattern of the argument, to produce an expres-
sion containing two bind operators. In addition, they give rewrite rules to transform
expressions containing the bind operator together with selection, projection, join, and
map. Following the same concept, Jagadish and colleagues propose TAX [JLST01],
an algebra for XML. They propose four operators (selection, projection, product, and
grouping) that take as input a collection of trees. The selection operator, similar to the
bind operator proposed in [CCS00], returns those trees that satisfy the selection condi-
tion, given as pattern tree. In the same line He and Singh [HS08] define their selection
operator. Their proposed operator may also be used for general graphs as input and
returns isomorphic subgraphs to the input pattern. Thus, it is not comparable to our
path operator as we return homeomorphic subgraphs. In addition, all three operators
are not capable to express reachability or path length queries. Also, for the first two the
authors do not give any algorithms for the proposed operators, no cardinality estimates,
or cost functions. Only He and Singh provide in [HS08] algorithms and cost functions,
which we discuss in Section 7.4.
Wu and colleagues present in [WPJ03a] an optimization strategy for queries on XML

documents. They introduce the structural join to determine ancestor-descendant rela-
tionships of XML elements in a document. In this work the authors only introduce a
strategy that is similar to our proposed reachability operator φ, while path lengths or
paths are not considered, as they are not part of the XQuery language. Apart from the
introduction of the structural join, they also investigate the best order for a query that
contains multiple structural joins.
In the area of the semantic web Hartig and Heese presented in [HH07] the SPARQL

query graph model for the execution of SPARQL queries. This model is based on re-
lational algebra and contains operators and transformation rules to rewrite a SPARQL
query. Although RDF data are graph structured, the original query language SPARQL
does not allow for queries that contain paths of arbitrary length. Thus, the operators and
rewrite rules proposed by the authors may not be applicable in our setting. In the works
on extending SPARQL for regular path expressions the authors only introduce the lan-
guage and some algorithms for execution, but no explicit operator or algebra [ABE09].
Concluding, optimization of graph queries in a RDBMS still requires attention, as cur-

rent proposals either lack the ability to handle cycles [Ord05], are not capable to express
path queries, or lack an efficient implementation for the proposed operators [DA93].

70

5. Implementations for Operators

In this chapter we present implementations for the reachability, distance, path length,
and path operator presented in the previous chapter.
We assume that the data are stored in an RDBMS. Our goal is that the entire path

computation occurs inside this system. In an RDBMS we find tuples either by scanning
the entire data at query time or by using a precomputed index, which according to
[GMUW02] is “a data structure that makes it more efficient to find ... tuples”. Conveying
this fact to graph queries means, we may either scan relation Edge multiple times at query
time or precompute and store index structures. There exist several index structures,
which may be used for answering different kinds of queries. In this chapter we present
four index structures more closely, namely our newly developed index structure, called
GRIPP, the transitive closure, DualLabeling [WHY+06], and Label+SSPI [CGK05].
In Section 5.1 we present GRIPP. We describe how to create the index structure itself

before we present different query strategies. We provide implementations for all four
types of operators that use the GRIPP index. In Section 5.2 we present the remaining
three index structures. In contrast to GRIPP, these index structures may only be used
for answering reachability and distance queries.
We also presents two methods that traverse the graph at query time. For these

methods no precomputed index is necessary. In Section 5.3 we describe the built-in
function of an RDBMS to answer graph queries, while in Section 5.4 we show algorithms
that recursively traverse a graph. In Section 5.5 we summarize which algorithms are
applicable for which operators. All algorithms are experimentally evaluated in Chapter 6.
This chapter concludes in Section 5.6 with a reflection on related work in the area of

index structures and algorithms to answer graph queries.

5.1. GRIPP
In this section we present the theoretic foundations of GRIPP. We first describe the
GRIPP index structure itself before we present the query strategies to answer reacha-
bility, distance, path length, and path queries.

5.1.1. Index Structure
The GRIPP index structure, which we propose in [TL07], is based on pre- and postorder
labeling of nodes in a graph as explained in Section 2.1 on page 14. In GRIPP every
node in the graph receives at least one pair of pre- and postorder values. As nodes may
have multiple parents one pair is not sufficient to encode the entire graph structure.
Therefore, some nodes are assigned more than one value pair.

71

5. Implementations for Operators

For now, we assume the graph has exactly one root node, i.e., one node without
incoming edges. We also assume an arbitrary, yet fixed order among child nodes, e.g.,
given by the ID of the node. Later in this section we explain how to deal with graphs
with multiple or no root nodes.
For the creation of the GRIPP index we start at the root node of G. During a

depth-first traversal of G we assign pre- and postorder values. We traverse child nodes
according to their order. A node v with n > 1 incoming edges is reached n times on
edges ei, with 1 ≤ i ≤ n. Edge ei on which we reach v for the first time is called a tree
edge. We assign a preorder value to v and proceed the depth-first traversal. After all
child nodes have a value pair, v receives its postorder value. We reach v n − 1 times
again. Assume we reach v over edge ej , with ej 6= ei. We call ej a non-tree edge and
assign a pre- and postorder value to v, but do not traverse child nodes of v. We store
the pre- and postorder values of tree- and non-tree instances together with the node
identifier, depth information, and edge_id as node instances in an index table, IND(G).
The depth of an instance is its distance from the root instance. Every node has as many
instances in IND(G) as it has incoming edges in G. Analogously to the distinction of
tree and non-tree edges we distinguish between tree and non-tree instances in IND(G).

Definition 5.1 (Tree and non-tree instances)

Let IND(G) be the index table of graph G. Let v ∈ V be a node of G and v′ be an
instance of v in IND(G). v′ is a tree instance of v, iff it was the first instance created
for v in IND(G). Otherwise v′ is a non-tree instance of v.

The GRIPP index structure resembles a rooted tree, which we call the order tree,
O(G).

Definition 5.2 (Order tree)

Let G = (V,E) and let IND(G) be its index table. The order tree, O(G), is a tree
that contains all instances of IND(G) as nodes and all edges of G as edges between
the nodes in O(G).

Every non-tree instance in O(G) is a leaf node, while tree instances may be inner or
leaf nodes. Note, the shape of O(G) depends on the order with which G is traversed.
In Section 5.1.2 we shall explain how we determine an order that is well suited for our
purpose.

Example 5.1 (IND(G) and O(G)). Figure 5.1 shows a graph and Figure 5.2(a) shows
its index table resulting from a traversal in lexicographical order of node labels. Nodes
A and B have two instances in IND(G) because they have two incoming edges in G. In
Figure 5.2(b) the instances of IND(G) shown in Figure 5.2(a) are plotted using pre- and
postorder values as coordinates. Nodes A and B occur twice in O(G) as they have two
instances in IND(G).

The space requirement to store the GRIPP index table is O(n+m), i.e., linear in the
size of the graph. More precisely IND(G) has as many entries as G has edges plus one

72

5.1. GRIPP

r

A

B C D

E F G H

Figure 5.1.: A graph G

�

�

	

node pre post depth type
r 0 21 0 tree
A 1 20 1 tree
B 2 7 2 tree
E 3 4 3 tree
F 5 6 3 tree
C 8 9 2 tree
D 10 19 2 tree
G 11 14 3 tree
B 12 13 4 non-tree
H 15 18 3 tree
A 16 17 4 non-tree

(a) Index table, IND(G).

-

6

pre

post

5 10 15 20

5

10

15

20
�
r
�A

�B

�E

�B
�F

�A

�C

�A
�D

�G
�B

�D
�H
�A

�

�

(b) Order tree O(G).

Figure 5.2.: GRIPP index table IND(G) and its order tree O(G). Non-tree instances in
O(G) are displayed in gray, tree instances in black.

entry for every root node. To create the GRIPP index structure we perform a depth-first
traversal, requiring O(n+m) time.

Algorithm for Index Creation

Traversal Order We choose a traversal order of nodes to optimize reachability queries.
Based on considerations presented in Section 5.1.2 we found that the degree of nodes is
important. We thus traverse nodes in descending order of their degrees.

Graphs with Multiple or no Root Nodes So far, we only explained the creation of the
GRIPP index structure for graphs with a single root node. Other kinds of graphs may
be treated as follows. We first add a virtual root node r to the graph. We add an edge
between r and the node with the highest degree among all nodes. We then traverse and
label nodes starting from r and using child nodes in the order of their degree. In general,
some nodes will not be reached during this traversal, i.e., nodes without incoming edges

73

5. Implementations for Operators

or nodes in not connected subgraphs. We identify these nodes and add another edge
from r to the node with highest degree. This is repeated until all nodes have at least
one instance in the index table. This way, we uniformly handle graphs with none, one,
or multiple root nodes.
Algorithm 5.1 shows the algorithm to compute the GRIPP index table IND(G). To

answer distance, path length, and path queries we also compute and store the depth of
an instance, i.e., the distance of the instance to the root instance in O(G). To store
traversed nodes we use the global variable seen.

Algorithm 5.1: The GRIPP algorithm to compute IND(G)
1 pre_post ← 0; seen ← ∅
2 PROCEDURE compute_GRIPP()
3 while ¬empty(node \ seen) do
4 pre_node ← pre_post
5 pre_post ← pre_post + 1
6 next_node ← next(node \ seen) // order by degree
7

8 PPtraversal(next_node, 0)
9 GRIPP ← GRIPP ∪ (next_node, pre_node, pre_post, 0, T)

10 pre_post ← pre_post + 1
11 end
12 end
13 PROCEDURE PPtraversal(next_node, cur_dist)
14 seen ← seen ∪ next_node
15 while child ← next(children(next_node)) // order by degree
16 do
17 pre_node ← pre_post
18 pre_post ← pre_post + 1
19 if child /∈ seen then
20 node_inst ← T
21 PPtraversal(child, cur_dist +1)
22 else
23 node_inst ← N
24 end
25 GRIPP ← GRIPP ∪ (child, pre_node, pre_post, cur_dist +1, node_inst)
26 pre_post ← pre_post + 1
27 end
28 end

5.1.2. Reachability Queries

In the following section we show how to use the GRIPP index to efficiently answer
reachability queries for a fixed pair of nodes. Recall from Section 2.1 reachability queries
in pre- and postorder labeled trees are answered with a single lookup as all reachable
nodes of u have a preorder value that is contained within the borders given by upre
and upost. When we try to query the GRIPP index structure in this way, we face two
problems. First, u may have multiple instances in IND(G), each with its individual

74

5.1. GRIPP

pre- and postorder value. Second, in the preorder range of an instance u′ we only find
instances of nodes that are reachable from u′ in O(G). Nodes reachable from u in G
but not from u′ in O(G) are missed. Thus, to find all reachable nodes in G, we have to
extend the search, using the hop technique.
To evaluate if v is reachable from u we use the index table IND(G). Observe, u may

have many instances in IND(G), but only one of them is a tree instance. Every non-tree
instance of u in IND(G) is a leaf node in O(G) and therefore has no successors in O(G).
Let u′ be the tree instance of u. If u′ is an inner node in O(G) then it has reachable
instances v′ in O(G) such that u′pre < v′pre < u′post. Those are retrieved with a single
query. We call this set of instances reachable instance set of u.

Definition 5.3 (Reachable instance set)

Let u ∈ V be a node of graph G and u′ ∈ IND(G) its tree instance. The reachable
instance set of u, written RIS(u), is the set of all nodes that have instances reachable
from u′ in O(G), i.e., which have a preorder value in [u′pre, u′post].

To determine if v is reachable from u we proceed as follows. We first search for the
tree instance u′ of u and retrieve its reachable instance set. If v ∈ RIS(u), we finish
and return true, otherwise we have to extend the search. If RIS(u) contains non-tree
instances of nodes, their child nodes might not have an instance in RIS(u), i.e., these
nodes are reachable from u in G, but not from u′ in O(G). To account for this, we have
to examine all non-tree instances of nodes in RIS(u). We call those nodes hop nodes.

Definition 5.4 (Hop node)

Let u, h ∈ V and h′ be a non-tree instance of h. If h′ ∈ RIS(u) then h is called a
hop node for u.

Example 5.2 (RIS(u) and non-tree instances). In Figure 5.3(a) the reachable in-
stance set of node D is shown. It contains instances of nodes G, B, H, and A. Two
instances in RIS(D) are non-tree instance, namely B and A, i.e., both are hop nodes for
D.

Every hop node in RIS(u) has a reachable instance set in O(G). The nodes in this set
are reachable from u in G, but not from u′ in O(G). We need to check if v is in one of
those. Therefore, we identify all hop nodes and recursively check their reachable instance
sets by performing a depth-first search over O(G) using hop nodes in ascending order
of their preorder values. We stop traversing O(G) if we find node v in some reachable
instance set or if there exists no further non-traversed hop node.
In IND(G) exist (m−n) non-tree instances, each of which may be a hop node. Thus,

querying GRIPP to answer if v is reachable from u requires in worst case (m−n) queries.
However, in the following we show pruning strategies that allow us to query graphs on
average in almost constant time regardless the size and shape of the graph, as shown in
Section 6.

75

5. Implementations for Operators

-

6

pre

post

5 10 15 20

5

10

15

20
�

r

�

A

�
B

�
E

�
B
�
F

�

A

�
C

�

A �
D

�
G
�B

�
D

�
H
�A

�

�

(a) RIS(D)

-

6

pre

post

5 10 15 20

5

10

15

20
�

r

�

A

�
B

�
E

�
B
�
F

�

A

�
C

�

A �
D

�
G
�B

�
D

�
H
�A

�

�

	

(b) RIS(D) and RIS(B) in dark gray;
RIS(A) in light gray.

Figure 5.3.: The example shows the evaluation if r is reachable from D on the GRIPP
index structure from Figure 5.2(a). Nodes A and B are hop nodes for D.

Pruning Strategies

Example 5.3 (Query evaluation using GRIPP). Consider Figure 5.3(b) and the
question if r is reachable from D. We find non-tree instances of nodes B and A in
RIS(D). If we first use node A as hop node, we find non-tree instances of A and B in
RIS(A). Clearly, we do not need to use A as hop node again. Therefore, we next use B
as hop node. The tree instance of B is successor of the tree instance of A in O(G). This
implies RIS(B) is contained in RIS(A), i.e., we do not find new instances in RIS(B)
that are not already contained in RIS(A). Therefore, using B to retrieve RIS(B) is not
necessary; B is pruned from the list of hop nodes.

In general we want to avoid posing queries for preorder ranges which we have already
checked. During our search we keep a list U of all nodes that have been used to retrieve
a reachable instance set. Now assume we have found a new hop node h. The decision
whether we need to consider the reachable instance set of h entirely, partly, or not at
all depends on the location of the tree instance h′ of h relative to the tree instances of
nodes in U . There are four possible locations of h′ in relation to the tree instance u′ of
a node u ∈ U in O(G). These are shown in Figure 5.4. h′ either is (a) equal to, (b) a
successor of, (c) an ancestor of, or (d) a sibling to u′. Given that fact, we may consider
all nodes in U for pruning, it results in four possible cases: (a) h′ is equal to the tree
instance of some node in U ; (b) h′ is successor of the tree instance of some node in U ;
(c) h′ is ancestor to all tree instances of nodes in U ; (d) h′ is sibling to all tree instances
of nodes in U . Note, by construction, the pre- and postorder ranges of two instances
never overlap. They are either disjoint or one is entirely contained in the other.

• In the first case (Figure 5.4(a)), we skip h entirely because a non-tree instance of
h has already been used as hop node and thus RIS(h) has already been checked.

76

5.1. GRIPP

�
�
��

A
A

AA
�

h
′
= u

′

(a) h′ equals u′
�
�
��

A
A

AA
�
u
′

�
�

A
A
�
h
′

(b) h′ successor of u′
�
�
��

A
A

AA
�

h
′

�
�

A
A
�
u
′

(c) h′ ancestor of u′
��AA
�
u
′

�
�

A
A
�
h
′

(d) h′ sibling to u′

Figure 5.4.: Possible locations of h′ of hop node h relative to u′, u ∈ U .

• In the second case, we also skip h. In this case (see Figure 5.4(b)) there exists u ∈ U
such that h′ is successor of u′, i.e., h′ ∈ RIS(u) in O(G). Thus, RIS(h) ⊂ RIS(u).
• In the third case (Figure 5.4(c)) we have to be more careful. Consider Figure 5.3(b)
and the query reach(D, r). Assume, we have retrieved RIS(D) and RIS(B) and
expand the search using A as hop node. RIS(A) contains the tree instance of B
and D and therefore also contains RIS(B) and RIS(D). Thus, when we consider
RIS(A) we skip the pre- and postorder range of RIS(B) and RIS(D).
• In the last case (Figure 5.4(d)), no pruning is possible and we have to consider the
entire reachable instance set of h, as there exists no previous reachable instance
set that covers instances in RIS(h).

Skip Strategy

We first assume only one u′ exists that is successor of h′. Thus, RIS(u) ⊂ RIS(h). This
situation is displayed in Figure 5.4(c). Considering the entire reachable instance set of
h leads to duplication of work. To avoid this work we use the skip strategy working as
follows. For every node u ∈ U we stored the pre- and postorder value, i.e., the borders
of RIS(u). In this range all instances are covered by RIS(u) and we are able to skip
the preorder range without missing instances. We only have to consider instances from
RIS(h) whose preorder values lie outside the pre- and postorder range of u′.
If there is more than one successor node of h in U , the situation is slightly more

complicated. Essentially, we skip all their ranges when searching RIS(h). We could
optimize the search merging ranges iteratively, thus reducing the number of necessary
interval operations. However, as we search U only a few times during a reachability query
(see also Section 6) we believe the cost to merge ranges does not account for the gain
of merging. Therefore, if multiple u exist in RIS(h) each of their ranges is considered
separately for skipping.

Stop Strategy

When querying graphs for reachability between nodes u and v we stop extending the
search as soon as we have found an instance of v in the reachable instance set of the
current hop node h. If v /∈ RIS(h) we must check every hop node in RIS(h) and start a
recursive search. It would be advantageous if we knew in advance that in RIS(h) no hop
node exists that extends the search. In this case we do not have to query for the tree
instances of hop nodes. We now show cases where this property may be precomputed.

77

5. Implementations for Operators

Recall, a hop node for node s is a node h that has a non-tree instance in RIS(s). h is
not used as hop node if the tree instance of h is in RIS(s) (Figures 5.4(a) and 5.4(b)).
We are able to precompute a list of nodes S for which all hop nodes have this property.
We call these nodes stop nodes as their reachable instance sets do not extend the search.
Definition 5.5 (Stop node)

Let s ∈ V be a node of graph G and let RIS(s) be its reachable instance set
in O(G). s is called a stop node iff all non-tree instances in RIS(s) also have their
corresponding tree instances in RIS(s).

Intuitively, a stop node s is a node in G for which a corresponding tree instance for every
non-tree instance in RIS(s) exists in the same set. Thus, all nodes reachable from s in G
are reachable from s′ in O(G), i.e., have an instance in RIS(s). Clearly, nodes reachable
from s in G may also have non-tree instances in other reachable instance sets than in
RIS(s). Algorithm C.1 in Appendix C.2 shows the function to compute stop nodes.
When we reach the tree instance of a stop node s during the search we immediately

know we do not need to extend the search using hop nodes of RIS(s).

Example 5.4 (Stop nodes). The GRIPP index structure in Figure 5.2 contains several
stop nodes, namely nodes r, A, B, E, F , and C. As heuristic, during the search we
prefer stop nodes as hop nodes over non-stop nodes.

Algorithms

In this section we present the algorithm to answer reachability queries using the GRIPP
index. We show strategies to answer reachability queries for a single pair of nodes. In
addition, we briefly describe how to find all reachable nodes for a given start node.

Pair of Nodes To answer if v is reachable from u Algorithm 5.2 starts by testing
v ∈ RIS(u) with a query over the index. If v ∈ RIS(u) the algorithm stops. Otherwise
it adds u to the list U of used nodes. If u is a stop node, the algorithm returns. Next,
we perform a depth-first search considering non-tree instances in RIS(u) in ascending
order of their preorder rank as hop nodes, unless RIS(u) contains a non-tree instance of
a stop node, which is preferentially used. In the next step we select all hop nodes from
RIS(u) which are not already covered by another reachable instance set. For every hop
node h we determine the location of its tree instance h′ and test if RIS(h) is completely
or partly covered by nodes in U . If not, we proceed, using h as next hop node. We stop
once we find an instance of v or if there are no more non-traversed hop nodes.

Set of Reachable Nodes In some cases we want to find all nodes that are reachable
from a given node u. In this case, we could use Algorithm 5.2 and test for all nodes
in G if they are reachable from u. A more efficient way is to use a different function,
called reachability_set(u) that receives as input u and returns all nodes that are
reachable from u in G. This function is a slight variation of Algorithm 5.2 and is given
in Appendix C.3.

78

5.1. GRIPP

Algorithm 5.2: Function to answer if v is reachable from u using GRIPP.
1 used_hops ← ∅; used_stops ← ∅
2 FUNCTION reachability(u, v) RETURNS boolean
3 if v ∈ RIS(u) then
4 return true
5 else
6 used_hops ← used_hops ∪ (u)
7 if u ∈ STOP_NODES then
8 used_stops ← used_stops ∪ (u)
9 return false

10 else
11 while non_tree_inst ← nextStop(RIS(u)) do
12 tree_inst ← getTreeInst(non_tree_inst)
13 if reachability(tree_inst, v) then return true
14 end
15 if isInRIS(u, used_stops) then return false
16 H1 ... Hn ← getUsedHopsInRIS(u)

// skip ranges
17 non_tree_instances ← getNonTreeInst(RIS(u) \ RIS(H1) \ ... \ RIS(Hn))
18 foreach non_tree_inst ∈ non_tree_instances do
19 tree_inst ← getTreeInst(non_tree_inst)
20 if !hasChildren(tree_inst) then continue

// if new hop has been used as hop
21 if tree_inst ∈ used_hops then continue

// if new hop is in a RIS of a used hop
22 if isInRIS(tree_inst, used_hops) then continue

// otherwise call recursively
23 if reachability(tree_inst, v) then return true
24 if isInRIS(u, used_stops) then return false
25 end
26 return false
27 end
28 end
29 end

Theoretic considerations We would like to estimate how many recursive calls are re-
quired to answer u w. We know, in worst case we require (m − n) calls, as (m − n)
non-tree instances are in IND(G). But on average we need less calls as the following
considerations show.
In every graph one may identify strongly connected components C1 ... Ck in linear

time using Algorithm A.1 on page 152. Each component is collapsed into a representative
node (see Figure 5.5(a)). The reachability information for nodes within one component
are identical (this obvious optimization is used by many graph indexing strategies, such
as [ABJ89] or [WHY+06]). Therefore, we divide the problem in two separate parts. First,
estimate the number of calls if u and w are within one strongly connected component,
and second, if they belong to different components of the component graph.
To estimate the number of recursive calls if u and w are in the same component we

have to consider the traversal order for nodes within one strongly connected component

79

5. Implementations for Operators

C1

r

a1 a
n

c

s1

s
n

C2

(a) Structure of a graph. Solid lines indi-
cate edges, dotted lines paths. The gray
area mark strongly connected components
of the graph.

c
′

s1

s
n

r

a1 a
n

(b) Optimal GRIPP index structure. Cir-
cles indicate tree instances, squares non-tree
instances. The double circled node is the
stop node, the double squared nodes are its
non-tree instances. In gray is the area of
instances of the giant strong component.

Figure 5.5.: General idea of an optimal index structure for GRIPP.

C. Assume, during index creation we reach node c ∈ C. We add the tree instance of c
to IND(G). If no other node of C has been traversed before, we traverse all remaining
nodes of C – all are reachable from c since C is a strongly connected component. Thus,
every node in C will have a tree instance in RIS(c) and we are able to answer if w is
reachable from u for u = c and w ∈ C with a single lookup.
If u 6= c, but u ∈ C the situation is different. Suppose RIS(u) contains a non-tree

instance of c and suppose we use c as first hop node. Then we are able to answer if w is
reachable from u (with w ∈ C) with two recursive calls, i.e., one to retrieve RIS(u) and
one for RIS(c). To achieve this for every u ∈ C, we have to find a traversal order such
that for every node u ∈ C, RIS(u) contains a non-tree instance of c. We therefore must
solve the following problem: Find a node c ∈ C such that we may divide C in partitions
P1, . . . , Pn with n ≤ degin(c). For every Pi, 1 ≤ i ≤ n compute a Hamilton path starting
at node u and ending at node c, with u = c or u child node of a node in Pj , j 6= i. If we
create GRIPP along those Hamilton paths we ensure for every node u ∈ C that RIS(u)
contains at least one non-tree instance of c.
Now suppose, we have not traversed any successor node of c in G when we traverse

c, i.e., we have not traversed any nodes of C or any nodes in successor components of
C. We traverse nodes in C along Hamilton paths [BS03] and also traverse all nodes
in successor components of C. This means all reachable nodes of c in G have a tree
instance in RIS(c). In addition, every non-tree instance in RIS(c) must also have its
corresponding tree instance in RIS(c), i.e., c is a stop node. In Figure 5.5(b) the tree
instance of c, c′ is shown as double circled node in the gray area. Given u ∈ C we may
answer if w is reachable from u for any node w ∈ G with at most two calls, one initial
call to test RIS(u), finding a non-tree instance of c (or possibly already an instance of

80

5.1. GRIPP

w), and a second call using c as hop node to test RIS(c). As c is a stop node we do not
have to use any further hop node, regardless if RIS(c) contains an instance of w or not.
Next, we have to consider the case when both nodes are in different components of

the component graph. In case the start node is in C and the end node in a successor
component of C we have to ensure component C is traversed before any of its successor
components. Clearly, this is not possible for any C, but the problem is alleviated (for
some graphs) by the following observation. Erdös and Rényi [ER60] proved that directed
random graphs with more edges than nodes contain one giant strongly connected com-
ponent C. The size of C depends on the graph density. The experimental results given
in [Wag06] show it is also true for scale-free graphs (but we are not aware of a formal
proof). Therefore, graphs of a certain density usually appear as shown in Figure 5.5(a),
with one component being very large (giant) and all other components being small. In
this setting, it is only important to traverse the giant component before any of its suc-
cessor components. Recall, for nodes in a component C that has been traversed before
any of its successor components we may answer if w is reachable from u, with u ∈ C
and w ∈ G, with two recursive calls.
We may also estimate the number of recursive calls if both nodes are not in C. If

RIS(u) contains no non-tree instance we immediately return false using one call. Oth-
erwise, we have to query GRIPP recursively, but we use at most m′ − n′ recursive calls
with m′ number of edges and n′ number of nodes in the component graph. In some
cases this number may even be reduced. Consider the case where u is sibling to nodes
in C and RIS(u) only contains non-tree instances of nodes in C and possibly of nodes
in successor components of C. Suppose we first use a node from C as hop node. We
then need at most three recursive calls to answer if w is reachable from u. One call to
retrieve RIS(u), finding the non-tree instance h′ of a node h ∈ C and using h as hop
node, one call to retrieve RIS(h), which contains a non-tree instance of c, and one call
to test RIS(c). If we ensure this order of hop nodes we may also answer reachability
queries for such cases with a constant number of calls.
Clearly, these considerations also have implications for a good traversal order of the

graph. An algorithm to determine a good traversal order would proceed as follows.
First identify all strongly connected components and build the component graph. Us-
ing Kosaraju’s algorithm (Appendix A) this takes O(n + m) time. Second, determine
the traversal order of components in the component graph by computing the size of
the successor sets of all k components, which basically means to compute the tran-
sitive closure over the components and thus requires O(k3) time. Third, compute a
good order for nodes within every component C by first identifying a node c and then
computing Hamilton paths as described above. As finding Hamilton paths in graphs is
NP-complete [CLR01], especially this step is not feasible for practical application. Thus
we use a heuristic when creating the GRIPP index, which we present in the following.

Heuristic for Traversal Order During index creation, we want to ensure to traverse
nodes from the giant strongly connected component before any other nodes. We assume
nodes with a high degree have many successor nodes and may be reached by many nodes,

81

5. Implementations for Operators

thus they are very likely member of the giant strongly connected component. Choosing
the node with the highest degree as first node to traverse during index creation has the
additional advantage that it also has many incoming edges and therefore will get many
non-tree instances in IND(G). Thus, it is likely to find a non-tree instance of this node
in the reachable instance set of other nodes, and recall, this node is a stop node.
During graph traversal we try to traverse the child node with the largest reachable

instance set first as this node covers a large part of the remaining graph. We use the
heuristic that a node with a high degree is likely to have a larger reachable instance set
than a node with a lower degree. Therefore, we prefer child nodes with a high degree,
i.e., we traverse child nodes according to their degree. In Chapter 6 we show this using
these heuristics we reach an almost constant query time over different sizes and shapes
of graphs.

5.1.3. Distance Queries

In this section we show how to answer distance queries using GRIPP. Please remember,
for reachability queries it was sufficient to find one path between a given pair of nodes.
For distance queries it is not the case as we want to find a specific path.
We first consider a strategy for computing the distance between a given pair of nodes.

We use a bidirectional breadth-first traversal for which the basic idea is shown in Fig-
ure 5.6. In a bidirectional search we start the search from the start node in forward
direction and from the end node in reverse direction. In each step we expand both sets
of reachable nodes. The search terminates when we find a node that is common in both
sets or no set may be expanded further. In case we find a common node in both sets, the
sum of the distances between the start and common node and common and end node is
the distance between the two nodes.

1 2 3 3 2 1

start

end

Figure 5.6.: Bidirectional search in a directed graph. The search proceeds in forward
direction from the start node and in backward direction from the end node.
The different colors represent the steps 1 – 3.

The bidirectional search to answer distance queries for a given pair of nodes u,w
using GRIPP works as follows. We first retrieve the tree instance u′ of u from IND(G).
Next, we retrieve RIS(u). For each reachable instance v′ ∈ RIS(u) we may compute
v′depth−u′depth . Note, the difference in depth values does not reflect the distance between
the two nodes u and v. It is possible that we reach v starting from u on a shorter
way by using hop nodes. This has two implications for the algorithm. First, we know

82

5.1. GRIPP

the distance between u and v only after all hop nodes with lower depth difference have
been traversed. Second, we have to use more hop nodes than for answering reachability
queries.
After retrieving RIS(u) we want to retrieve RIS(w), which are the ancestors of w.

We could retrieve some ancestors from IND(G), i.e., those that are on a path from the
virtual root of O(G) to instances of w. This is neither complete nor efficient. Instead, we
compute a second index called GRIPPreverse. This index is built in the same fashion as
the original GRIPP index, which we now call GRIPPforward, but on the reverse edges
of the graph. Thus, using GRIPPreverse we retrieve all ancestors for w the same way
as we retrieve successors from GRIPPforward for u.
The next step in the bidirectional search is to compare the instances in RIS(u) and

RIS(w). If we do not find instances of the same node in both sets we have to proceed
the search using the hop node with lowest difference of depth values. This instance may
either be in RIS(u) or RIS(w). Otherwise, if we find instances of v in both sets, i.e.,
v′ ∈ RIS(u) and v′′ ∈ RIS(w), we have to check if there exists an instance x′ ∈ RIS(u)
such that x′depth − u′depth < v′depth − u′depth . If this is the case we have to proceed using
hop nodes as we have not yet determined the distance between u and v. In analogy we
perform this step for v′′. We have to continue until no further hop nodes are available
or we have found a node that has instances in both sets and no further hop nodes with
shorter depth difference can be used.

Example 5.5 (Distance query evaluation). Consider again Figure 5.3 on page 76
and the GRIPP index structure in Figure 5.2(a) on page 73, which now becomes GRIPP-
forward. We are interested in the distance between nodes D and E. For simplicity we
only describe a breadth-first search in forward direction. In RIS(D) we find no instance
of E, thus we have to use a hop node. We may use A or B as hop nodes as both hop
nodes have the path length of 4− 2 = 2. We select A as next hop node. In RIS(A) we
find an instance of E with path length 2 + 3− 1 = 4. In case of a reachability query we
could stop here, but for the distance query we need to explore all hop nodes with shorter
path length than the currently found shortest path length. Thus, we also have to use B
as hop node. In RIS(B) we also find an instance of E with path length of 2 + 3− 2 = 3.
As there are no further unexplored hop nodes we know the distance between D and E
is 3.

Pruning Strategies

For answering distance queries we may only prune in two cases. Consider again Figure 5.4
(page 77).

• In the first case (Figure 5.4(a)), we skip h entirely because a non-tree instance of
h has already been used as hop node and therefore the reachable instance set of
the tree instance of h has already been checked, no shorter path may be found.
• In the second case (see Figure 5.4(b)), we cannot skip h when answering distance
queries. There exists u ∈ U such that h′ is successor of u′, i.e., h′ ∈ RIS(u) in
O(G). Although, we have seen the entire reachable instance set of hop node h, we

83

5. Implementations for Operators

may find shorter path lengths to instances in RIS(h). Thus, we have to use h as
hop node.
• In the third case (Figure 5.4(c)) we again have be careful. We skip the pre- and
postorder range of RIS(h) as we have already found h and thus all instances in
RIS(h) with a shorter path length during the breadth-first search. We only have
to consider the remaining instances of RIS(u).
• In the last case (Figure 5.4(d)), again, no pruning is possible.

Algorithms

We compute the distance between nodes using the GRIPP index. As for reachability we
differentiate between computing the distance for a pair of nodes and the distance for all
reachable nodes given a start node. In the following we describe the more complicated
algorithm for determining the distance for a pair of nodes. We briefly describe the
set-based algorithm later in this section.

Pair of Nodes Algorithm 5.3 shows the function to compute the distance for a given
pair of nodes. For the start and end node we have two sets each, one set for possible hop
nodes (poss_hop_start and poss_hop_end) and one set for reached nodes (found_start
and found_end). Initially, poss_hop_start and found_start contain only the start node.
For each node in both sets we also store the length of the shortest path between the
start node and this node found so far. For the start node to itself this length is 0. We
do the same for the end node.
In contrast to a bidirectional breadth-first search, where each step increases the dis-

tance by exactly one in each direction, in GRIPP we may increase the distance by more
than one. Thus, we first check, in which direction we should expand the search. If the
distance from the start node is smaller or equal to the distance from the end node, we
expand the search in forward direction (line 7) by using function search. In this function
we first consider all possible hop nodes from poss_hop_start to find the next hop node
(lines 23 – 32). We basically use the hop node, whose path length to the start node is
lowest (called next). In addition, in this step we delete all possible hop nodes for which
we have found a tree instance with shorter path length to the start node (line 25).
If we are not able to identify a next hop node we return (line 44). Otherwise, we

use next to expand the search (lines 35 – 42). We add the node of next to found and
delete it from poss_hop. In the next step we retrieve all reachable instances of next. For
each instance we check if we have already seen an instance of this node. If we have not
seen this node or seen this node with a longer path length to the start, we adjust found
for this node. In addition, if it is a non-tree instance, we have to add it to the set of
possible hop nodes. Otherwise, we delete it from this set if it exists. Before we return
from search we adjust the distance for which we have already checked all hop nodes
(line 45).
After expanding either set we have to check if found_start and found_end contain

instances of the same nodes (lines 11 – 17). Note, even if both sets have nodes in
common, we may not have found the distance between the nodes. In found_start we only

84

5.1. GRIPP

know the distance from the start node for those nodes, whose path length is shorter than
or equal to the minimum path length in poss_hop_start. We return the distance if the
path length for both nodes is shorter than distance_start and distance_end, respectively,
and the sum of both shorter than the distance found so far.

Distance for Sets For a given start node we may compute the distance to all reachable
nodes. We use a variation of Algorithm 5.3. In this algorithm, we only require the
search in forward direction starting from the start node. We terminate the search only
if no further possible hop nodes are available. The set found_start contains all reachable
nodes together with their distances to the start node.

Distance with Length Restrictions In case we have a restriction on the maximal
length of paths we have to add a condition. Whenever we compute distance_start or
distance_end we check if they exceed the given path length. If this is the case, we
return.

5.1.4. Path Length and Path Queries

We may use GRIPP to answer path length and path queries. The strategy for GRIPP is
similar to the approach for the recursive query strategy, but we may utilize the knowledge
from the order tree O(G).

Example 5.6 (Path query evaluation). Consider the GRIPP order tree, O(G) in
Figure 5.2(b). We are interested in all paths between D and E. In RIS(D) exists a path
from D over H to A. We may use A as hop node and find a path from A over B to E.
Thus, the entire path is p1 = 〈D,H,A,B,E〉 with length 4. We also find a second path
p2 = 〈D,G,B,E〉 with length 3 when we use B as hop node.

Example 5.6 shows that we have to consider the GRIPP index structure only three
times to find all paths between the two nodes. In comparison, for the recursive query
strategy we would have to consider relation Edge six times.

Pruning Strategies

For path length and path queries we may use the same pruning strategies as for distance
queries.

Algorithms

In this subsection we describe the function to compute actual paths using GRIPP. The
computation of path lengths is a slight variation and thus described later in this subsec-
tion.

85

5. Implementations for Operators

Algorithm 5.3: Function to find the distance between two given nodes u and v
using the GRIPP index.

1 distance = ∞; dist_start = 0; dist_end = 0; continue = true
2 poss_hop_start [u] = dist_start; poss_hop_end [v] = dist_end
3 found_start [u] = dist_start; found_end [v] = dist_end
4 FUNCTION distance(u, v) RETURNS integer
5 repeat
6 if dist_start ≤ dist_end then
7 continue = search(poss_hop_start, found_start, dist_start, RIS_fw)
8 else
9 continue = search(poss_hop_end, found_end, dist_end, RIS_rv)

10 end
11 foreach n ∈ (found_start ∩ found_end) do
12 if found_start [n] ≤ dist_start AND found_end [n] ≤ dist_end
13 AND found_start [n]+ found_end [n] ≤ distance then
14 distance = found_start [n]+ found_end [n]
15 continue = false
16 end
17 end
18 until continue = false
19 return distance
20 end
21 FUNCTION search(poss_hop, found, dist, RIS_dir) RETURNS boolean
22 min_distance = ∞; next = null
23 foreach hop ∈ poss_hop do
24 if poss_hop [hop] > found [hop] then
25 poss_hop [hop].delete
26 else
27 if min_distance ≥ poss_hop [hop] then
28 dist = min_distance = poss_hop [hop]
29 next = hop
30 end
31 end
32 end
33 if next 6= null then
34 found [next] = dist; poss_hop [next].delete
35 foreach i ∈ RIS_dir(next) do
36 d = dist + depth(i) - depth(next)
37 if (! found [i].exists) OR (found [i].exists AND found [i] > d) then
38 found [i] = d
39 if inst(i) = non_tree_inst then poss_hop [i] = d
40 else if poss_hop [i].exists then poss_hop [i].delete
41 end
42 end
43 else return false
44 dist = getMinVal(poss_hop); return true
45 end

Paths for Sets Algorithm 5.4 shows the function to compute paths given a single start
node. We decided not to use the bidirectional search because we are only interested

86

5.1. GRIPP

in cycle-free paths. Computing paths in forward and reverse direction would require
to check each forward path if it contains nodes from the reverse path. As this is time
consuming we decided to compute all paths in forward direction and then restrict them
to those containing an end node.
In Algorithm 5.4 we basically perform a depth-first traversal of the GRIPP index, dur-

ing which we store nodes of the path that we are currently exploring in list path_nodes.
The algorithm starts by retrieving RIS(u) ordered by their preorder values. For each
instance inst we first compute the length to the start node, before we check if we have
already seen the node of inst in the path we are currently expanding. If this is not the
case, we add the node of inst to path_nodes at position len, which is the length to the
start node. As we are interested in all paths, including their intermediate nodes, we loop
through the nodes of the current path (lines 13 – 15) and add all nodes together with
the remaining information as new tuples to relation Paths, which is returned in the end
(line 22). If inst is a non-tree instance, we use this node as hop node by calling function
paths. We continue using hop nodes until no further hop node may be used.
If an end node or a set of end nodes is given, we restrict the returned paths to those

containing as end node one of the nodes in the given set.

Algorithm 5.4: Function to find all paths that start at a given node u using the
GRIPP index.

1 path_nodes (0) = u
2 start = u
3 FUNCTION paths(u, length) RETURNS Paths
4 skip_to = 0

// RIS ordered by preorder value
5 foreach inst ∈ RIS(u) do
6 len = length- u depth + inst depth

7 if inst pre ≥ skip_to then
8 if inst node ∈ path_nodes then
9 skip_to = inst post

10 continue
11 end
12 path_nodes (len) = inst node

13 for n = 0; n < path_nodes.size; n ++ do
14 Paths ← Paths ∪ (start, inst node, len, path_nodes (n), inst edge_id, n)
15 end
16 if inst inst = nontree then
17 Paths ← Paths ∪ paths(inst node, len)
18 end
19 path_nodes (len) = null
20 end
21 end
22 return Paths
23 end

The algorithm for computing all path lengths is a slight variation of Algorithm 5.4.
Instead of returning paths, we are only interested in node pairs with their path length.
This means, instead of looping through all nodes of the current path in lines 13 - 15 of

87

5. Implementations for Operators

Algorithm 5.4 we only return the start node, the current instance and the length of the
path. The rest of the algorithm is the same.

Paths and Path Lengths Queries with Length Restrictions If we have restrictions on
the length of paths we add in line 16 of Algorithm 5.4 the condition that we only call the
function paths(u, length) again if the path length does not exceed the given maximal
path length.

5.2. Other Index Structures

There exist several other index structures to support reachability and distance queries.
In the following we present three of them, namely the transitive closure, Dual Label-
ing [WHY+06], and Label+SSPI [CGK05]. The latter two may only be used to answer
reachability queries. The transitive closure may be modified to also store distance values
for each node pair.

5.2.1. Transitive Closure

The transitive closure of a graph was formally defined in Definition 2.8 (page 11). The
transitive closure for a directed graph contains one entry for each node pair (u, v) for
which a directed path from u to v exists. The computation of the transitive closure may
easily be extended to also contain the distance between the two nodes.

Theorem 5.1. Computing the transitive closure using the Floyd-Warshall algorithm
requires O(n3) time and O(n2) space [CLR01].

For a proof of this theorem see Cormen et al. [CLR01].

Index Creation

Several algorithms [AJ87, Ioa86, War75, War62] were developed to compute the tran-
sitive closure inside an RDBMS. We use the semi-naive algorithm presented by Lu in
[Lu87], as it is well suited for the implementation in an RDBMS. For this algorithm we
give experimental results in Section 6.2.

Reachability and Distance Queries

We use the transitive closure to answer reachability and distance queries. For path
length and path queries the transitive closure cannot be applied as this information is
not present in the index structure. To answer reachability or distance queries a single
lookup of relation TC is sufficient.

88

5.2. Other Index Structures

5.2.2. Dual Labeling
In [WHY+06] Wang et al. emphasize that the size of the transitive closure grows
quadratic in the number of nodes in the graph. Their conclusion is that the transi-
tive closure is not applicable for large graphs. In their work they propose a different
approach, called Dual Labeling, which we briefly present here.

Index Creation

The algorithm to create the Dual Labeling index consists of three steps. Given a graph
G, the first step is to compute all strongly connected components of G. After identifying
the components they construct the component graph GC , which forms a DAG and is
usually smaller than G. The second step is to label a spanning tree of GC using pre- and
postorder values as given in Algorithm 2.3 on page 15. To also encode the reachability
information induced by non-tree edges of GC they create a transitive link table, which
basically represents the transitive closure over non-tree edges of GC .
The resulting index structure has the size O(n+t2), where n is the number of nodes in

G and t is the number of nodes in GC . As GC is usually smaller than G, the index created
by Dual Labeling also generally is smaller than the transitive closure. An advantage is
it may be queried for reachability in constant time as we explain in the following.

Reachability Queries

The algorithm for querying the index structure generated by Dual Labeling proceeds in
three steps. Given a pair of nodes u, w and the question whether w is reachable from
u. The algorithm first consider if both nodes are in the same connected component. If
this is the case it returns true, otherwise it considers the pre- and postorder encoded
spanning tree. If u is in a component that has a lower preorder and higher postorder
number than the component in which w is, the algorithm returns true, otherwise it
proceeds to query the transitive link table. Using this table and the pre- and postorder
values of the components of u and w it is possible to determine whether w is reachable
from u over non-tree edges. For further details on the index structure and query method
we refer the reader to the original publication [WHY+06].
Concluding, querying the index of Dual Labeling requires at most three queries and

thus the query time is constant.

5.2.3. Label + SSPI
For Dual Labeling it is still necessary to compute a transitive closure. In [CGK05]
Chen et al. present an index structure to answer reachability queries where no such
computation is necessary. They call their index Label + SSPI.

Index Creation

To create Label + SSPI the first two steps are identical to the first steps of Dual La-
beling. They also start by identifying connected components, compute the component

89

5. Implementations for Operators

graph GC , and then label a spanning tree using pre- and postorder values. In the third
step they only store the non-tree edges of GC plus adjacent edges in the Surrogate &
Surplus Predecessor Index (SSPI). For more details please refer to the original publica-
tion [CGK05].

Reachability Queries

The query processing for Label + SSPI is similar to the reachability query processing
of Dual Labeling. To answer the query whether w is reachable from u Label + SSPI
also first considers if the two nodes are contained in the same component. If not, the
reachability information encoded in the pre- and postorder labels is considered. If the two
components are not reachable via a tree edge, they might be reachable via a combination
of tree and non-tree edges. Thus, the algorithm has to consider the SSPI index. As this
index only stores the non-tree edges plus some additional information, but no transitive
relationships, it has to recursively traverse the SSPI index to answer the query. Thus,
this method does not have a constant query time, but it depends linearly on the number
of nodes and edges in the component graph.

5.3. RDBMS Capabilities
The SQL 99 standard [GW02] defines WITH as syntax to answer recursive queries using
SQL. Several database systems have implemented this standard so far [PBBS10]. The
advantage of using recursive SQL is that no specialized, precomputed index is required
to answer recursive queries inside an RDBMS.
Oracle’s implementation 1 does not comply to the SQL 99 standard as they use the

syntax CONNECT BY PRIOR [Pri04].
In Section 6 we use Oracle 10g to answer reachability and distance queries. We cannot

use recursive SQL for path and path length queries as it does not produce node disjunct
paths. Instead it produces edge disjunct paths, which means, a node may occur multiple
times in a path. This does not comply to the requirement given in Section 3.3 that paths
returned from a PQL query must be simple, i.e., no node may occur multiple times in a
path.
Answering reachability and distance queries using Oracle’s syntax requires as input

relation Edge. This relation is then joined multiple times to itself using the condition
given by CONNECT BY PRIOR To ensure that the statement terminates on a graph
containing cycles the additional keyword NOCYCLE has to be included. It is also possible
to add a start node using START WITH. We may state the end node inside the WHERE
clause. To also answer distance queries Oracle provides the attribute level, which is
the number of edges traversed starting from the start node.

Example 5.7 (Distance query using RDBMS capabilities). Using the following
SQL statement in Oracle we find all nodes that are reachable from node D, including
the distance from node D. The edges of the graph are stored in relation Edge.

1www.oracle.com

90

5.4. Recursive Strategies

SELECT ’D’ AS start_node, to_id AS end_node, min(level) AS distance
FROM Edge
WHERE to_id <> ’D’
START WITH from_id = ’D’
CONNECT BY NOCYCLE PRIOR to_id = from_id
GROUP BY ’D’, to_id

5.4. Recursive Strategies

We may also answer graph queries using user defined functions that implement the
algorithms presented in Section 2.1. We either use breadth-first traversal strategies as
presented by Algorithm 2.1 on page 13 or depth-first traversal strategies as presented by
Algorithm 2.2 on page 14. The advantage of recursive query strategies is they require
no precomputed index structure.
In the following we omit any algorithms as they are only slight variations of the

breadth-first and depth-first traversal given in Section 2.1. For each operator we only
state the type of search and the alterations one has to make in comparison to the original
algorithms.

Reachability Queries

For reachability queries we use depth-first traversal. For a given pair of nodes we start
at the start node and stop as soon as we have found the target node. If only a start node
is given, we continue the traversal until we have no more untraversed nodes available
and return all traversed nodes.

Distance Queries

For distance queries we apply a breadth-first traversal. In case we are looking for dis-
tances for a pair of nodes we apply the bi-directional breadth-first traversal. We describe
the principle in Section 5.1.3. If just a start node is given, we use a simple breadth-first
search starting from the start node.

Path Length and Path Queries

To answer path length queries we perform a depth-first traversal, during which we store
all nodes of the current path. The traversal stops as soon as we have traversed all paths.
This may require to traverse nodes multiple times when these nodes lie on different
paths.
For path length queries we only return the node pair together with their path lengths,

while for path queries we also return the entire path for the each pair of nodes.

91

5. Implementations for Operators

5.5. Summary

Table 5.1 summarizes the available implementations for the different operators for di-
rected paths. For paths where the direction of the edges is irrelevant and for cases where
we require the edges to be bidirectional we may use a specialized form of the recursive
query strategies, which is not discussed in this work.

GRIPP recursive TC SQL Dual La-
bel

Label
+SSPI

Reachability X X X X X X
Distance X X X X no no
Path length X X no no no no
Path X X no no no no

Table 5.1.: Summary of the available implementations for the different operators (X
means the implementation is available).

5.6. Related Work

The aim of this thesis is to query large biological graphs fast and efficiently. Whenever
possible we want to employ index structures for graphs. Many groups investigated index
structures for different types of graphs to answer a variety of graph queries. We first
consider strategies to index graphs for answering reachability and distance queries. We
survey methods to compute the transitive closure and then proceed to various node
labeling techniques, before we present methods that combine both. In [YC10] Yu and
Cheng also review several of the methods presented in the following. In the area of path
queries we present index structures that are based on common substructures, before we
describe query strategies that do not rely on precomputed index structures, but traverse
the graph at query-time.
For all methods presented we discuss their applicability on typical biological graphs.

As presented in Section 1.2 biological graphs have sizes between a few thousand nodes
and edges and millions of nodes and edges. Table 5.2 summarizes the indexing times,
index sizes, and query times for different index structures. In addition, in that table
we present the maximum number of nodes and edges for which the index structure was
created.

Transitive Closure Based Methods

Using the transitive closure (TC) we may answer reachability and distance queries. Many
researchers have developed and improved algorithms to compute the transitive closure.
The earliest ideas were to compute TC using an adjacency matrix. Warshal presented

in [War62] this idea first. In [War75] Warren improved the algorithm given by Warshal.
Both algorithms are based on three nested loops over all nodes in the graph. Agrawal and

92

5.6. Related Work

Jagadish revisited the ideas and presented in [AJ87] algorithms to reduce the amount of
main-memory consumption by successively looping over specific blocks of the adjacency
matrix.
In an RDBMS it is advantageous to use an adjacency list instead of an adjacency

matrix as input. In [Lu87] Lu thus presents an algorithm that is based on the idea
from Warren, which works on adjacency lists. Lu et al. show this algorithm only
is advantageous if the intermediate results fit into main-memory [LMR87]. The naive,
semi-naive, and logarithmic algorithm presented by Ioannidis in [Ioa86] are better suited
to compute TC if this is not the case. In this work we use the semi-naive algorithm,
which takes the tuples in TC with the highest distance at each step and produces new
node pairs by joining those with the edge table. In contrast, the naive algorithm joins
all tuples in TC with the edge table, thus producing more new tuples, but also more
irrelevant tuples. The logarithmic algorithm takes all tuples with highest distance in TC
and joins these with relation TC producing in step n node pairs for paths with length
up to 2n−1. Thus, this algorithm requires only logn steps to produce TC.
The transitive closure has a great disadvantage for large graphs. It requires O(n3)

time to compute and O(n2) space to store. Therefore, other index structures have been
developed.
Cohen et al. present the 2-Hop-Cover [CHKZ03], an index structure, which may be

much smaller than the transitive closure. The idea of 2-Hop-Cover is the following.
Determine a node h over which many paths lead. Use this node and find all nodes that
reach h (stored in Lin(h)) and which h reaches (stored in Lout(h)). Repeat finding new
hop nodes h until all node pairs of TC are covered. To answer a reachability query one
has to join the sets Lin(h) and Lout(h) on the same h. To compute the 2-Hop-Cover
we still require the transitive closure first. In [STW04] Schenkel et al. proposed HOPI,
a method that is based on graph partitioning. They first compute 2-Hop-Covers for
partitions of the graph, which is advantageous, as the 2-Hop-Cover for a partition is
smaller than for the entire graph. To also cover cross-partition edges they have to do
a postprocessing step. In [CYL+08] Cheng et al. also propose to partition the graph
for constructing the 2-Hop-Cover. In contrast to Schenkels approach they partition the
graph hierarchically, i.e., they keep splitting the graph into two subgraphs. In their
algorithm called MaxCardinality-I they try to create splits that are optimal for the 2-
Hop-Cover. In [CY09] they use this strategy to compute a distance-aware 2-Hop-Cover,
i.e., an index structure with which distance queries may be answered. On the downside,
the size of this distance-aware 2-Hop-Cover is much larger than that of the reachability
only encoding. The disadvantage of 2-Hop-Cover is that the transitive closure either
for the entire graph or for partitions has to be computed, which may be impossible for
typical biological graphs.
In [JXRF09] Jin et al. extend the 2-Hop-Cover to a 3-Hop-Cover for answering reach-

ability queries. They follow the idea presented by Bast et al. [BFM06] to create the
3-Hop-Cover. Bast et al. produce an index structure for road networks, which stores
for each node a set of nearby hop nodes. The idea is as follows. For a sufficiently long
distance regardless where you start you have to pass one close-by hop node to reach
your destination, most likely on a highway. Likewise, before you reach your destina-

93

5. Implementations for Operators

tion you have to pass through a hop node close to the destination. The challenge is to
identify these hop nodes for each node. Bast et al. limit the complexity by applying
a grid to the road network and searching only within a cell for those hop nodes. For
the 3-Hop-Cover this method is not applicable as the graphs do not have 2-dimensional
coordinates. In [JXRF09] the authors use a chain decomposition of a DAG. The chains
may be viewed as highways, on which to identify hop nodes. For each reachability query
they have to hop from a start node to a chain and find a hop from this chain to the end
node, thus 3-Hop-Cover. Although the 3-Hop-Cover reduces the size of the 2-Hop-Cover
as their experiments show, this index structure is still bigger than GRIPP.

Node Labeling Based Methods

The transitive closure or the 2-Hop-Label have the disadvantage that both have to store
many node pairs. Index schemes that are based on node labeling only provide labels for
each node, but may also be used to answer reachability queries.
In [DS87] Dietz and Sleator present the pre- and postorder labeling. This method is

heavily used in the area of XML documents to label elements of a document [Gru02,
GvKT03, GvKT04]. Grust et al. present the Staircase join in [GvKT03]. They use pre-
and postorder values to retrieve ancestor, successor, and sibling concepts efficiently. In
[BKS02] Bruno et al. use this scheme to efficiently answer path and twig queries on
XML documents. The drawback of pre- and postorder labeling is, it is only applicable
to trees.
In a DAG some nodes have to get more than one pre- and postorder label to cover

the entire reachability information. In [TL05] we solve the problem by traversing and
labeling each node as often as this node has a path to the root node. This leads to
an exponential growth for the number of pre- and postorder labels in the number of
additional edges. In [ABJ89] Agrawal et al. present a method to label a DAG using pre-
and postorder labels, but they propagate intervals of a child node with multiple parent
nodes to all their ancestor nodes. When appropriate, they merge intervals of ancestor
nodes. Using this technique they avoid an exponential growth, but the construction
requires O(n2) time. In [CGK05] Chen et al. propose to index a DAG-structured XML
document by first indexing a spanning tree and encode the remaining non-tree edges
using a special index structure (SSPI, see 5.2.3). Yildirim et al. present in [YCZ10]
GRAIL an indexing method for DAGs to answer reachability queries. In GRAIL they
label each node with d postorder values, generated by d depth-first traversals using a
random order of child nodes in each of the traversals. This way they quickly answer
that w is not reachable from u by comparing the postorder values, but to verify that w
is reachable from u they need to do a depth-first traversal. Thus, this method is only
well suited for very sparse graphs, where few node pairs are reachable from each other,
while for denser graphs other indexing methods should be employed. Jin et al. present
in [JXRW08] a different method to label nodes of a DAG. They determine a traversal
order based on a path decomposition of the DAG, where nodes on the same path are
traversed before nodes of other paths. Each node receives a postorder value and a path
identifier. The edges that are not covered by this index structure need to be traversed

94

5.6. Related Work

recursively utilizing the information given by the postorder value and the path identifier,
just as for GRIPP.
Another node labeling scheme is the Dewey encoding. In [TVB+02] Tatarinov et al.

and in [GV07] Georgiadis & Vassalos applied this scheme to XML documents to answer
XPath and XQuery queries. As with the pre- and postorder labeling the Dewey encoding
is only applicable for tree structured graphs.

Hybrid Methods

Both indexing schemes, the transitive closure as well as node label based methods,
provide advantages. Thus, several groups have developed indexes that combine these
two schemes.
In [HWYY05] He et al. present HLSS. The algorithm first computes strongly con-

nected components and merges all nodes of a component to get the component graph.
Next, they index a spanning tree using pre- and postorder labeling, and encode the
non-tree edges using 2-hop-labeling. This achieves a constant query time. In [CYL+06]
Cheng et al. use the same idea as He et al., but in their algorithm called MaxCardinality-
H they compute the 2-Hop-Cover differently. Wang et al. present in [WHY+06] Dual
Labeling, where they compute the transitive closure for non-tree edges as described in
Section 5.2.2.
All hybrid methods reduce the number of edges, which need to be indexed, by first

identifying strongly connected components and then indexing a spanning tree separately.
Over the remaining non-tree edges the transitive closure or the 2-Hop-Cover needs to be
computed and their complexities remain. Thus, for huge graphs those methods might not
be applicable. In addition, all methods that reduce the graph by identifying the strongly
connected components are not suitable to also index the distance between nodes.

Subgraph Based Methods

Queries on semi-structured or XML documents may also be considered as graph queries.
For this type of queries several index structures have been developed, which we briefly
discuss here for the sake of completeness. Most of these index structures rely on graphs
that contain only a few distinct labels, which is not the case for typical biological net-
works. In [GW97] Goldman and Widom present DataGuides, an index structure that
summarizes the structure of a semi-structured document, such as an XML document.
The actual data values of leaf nodes are omitted. This index structure assumes that
there exist few different labels on inner nodes, which result in only few different paths
and thus in a small DataGuide compared to the original document. Milo & Suciu present
in [MS99] a similar structure, which they call 1-index. They also present an index called
T-index that is based on indexing paths of semi-structured data. The index of Giugno
& Shasha, called GraphGrep [GS02], indexes all paths of a semi-structured document.
As this index might grow quite considerably, this group presents in [SWG02] an index
that holds all paths up to a specific length. The authors of [CMS02] also want to reduce
the number of indexed paths. They analyze the workload and index only those paths

95

5. Implementations for Operators

that frequently occur in results to queries. Kaushik et al. follow in [KSBG02] a different
idea. They merge nodes in a DataGuide to produce the A(k) index, in which k stands
for the length of the paths that must be preserved. This way, the DataGuide may be
condensed.
Yang and Sze describe in [YS07] a method to extract meaningful pathways from bio-

logical networks. Given a graph query q. Their aim is to find similar subgraphs in the
data graph G. They present an algorithm that either maps an edge in q to an edge in G
or that allows for up to n inserted, deleted, or mismatched edges between any two nodes
in q. To achieve this, the authors compute the distance between selected node pairs
and build and index of these at query time. In [ZL07] the authors argue this procedure
is time consuming, especially for greater n and thus present an index structure, which
enhances the performance of subgraph matching. Their index only allows the search for
isomorphic subgraphs, i.e., an edge in q is mapped to an edge in G. Although interest-
ing, both methods suffer from the fact that a user has to specify a concrete subgraph, of
which isomorphic or very similar subgraphs in a data graph are retrieved. A researcher
may find such similar subgraphs also by browsing the data graph.
Indexing subgraphs is not just of interest for semi-structured data, but also in the

following scenario. Given a database D that contains k graphs. Given a query Q, find
the graphs of D for which the query graph is a subgraph. One option is to index all
paths up to a specified length as proposed in [SWG02]. Several groups [KK04, YYH04,
YYH05, HS06, CYY+07, CKNL07, ZHY07] show it is better for this scenario to not just
index paths, but build an index on frequent subgraphs. All these methods differ in their
choice of frequent subgraphs and how to use the knowledge gained from these subgraphs
for a query. These methods are interesting, but not applicable for PQL, as they only
try to find graphs that are isomorphic to the query graph, which is not sufficient in our
scenario. In addition, all methods that summarize the structure of the data or that are
based on frequent subgraphs assume that many nodes in the graph share the same label.
In biological graphs every node may have a different set of labels and each node must
be considered independently. Thus, biological graphs provide no simple possibility to
summarize the structure or to find frequent subgraphs.

Querying Without Indexing

Rosenthal et al. describe query strategies to answer reachability, distance, and path
queries [RHDM86]. Their methods are solely based on graph traversal, no precomputed
index is used. Clearly, this method has some advantages (no computation and storage of
an index, no update problems), but on the downside, recursively traversing the graph at
query-time requires lots of time as we show in Section 6. In [MW89] Mendelzon & Wood
assume that they have a graph that has labeled nodes and edges. They also assume the
query is a regular expression over node and edge labels, which may also include Kleene
stars. They suggest to solve the query by using a finite state automaton, for which they
present an algorithm that is based on graph traversal at query time.
Kim et al. propose in [KYHJ02] a strategy to find the distance between a node pair

in scale-free graphs with directed, unlabeled edges. Given a start node they traverse the

96

5.6. Related Work

child nodes in order of their degree. The assumption is that the shortest path for many
node pairs leads over the node with highest degree – called hub – in a scale-free graph.
The experiments show the returned distance for a node pair is only about 50 % worse
than distance of the exact algorithm. Zwick proposed in [Zwi98] also an exact and an
almost exact algorithm to determine the distance for a pair of nodes. Their proposed
algorithms only work on graphs with weighted (6= 1), directed edges.
In [ABE09] Alkhateeb et al. want find matching homeomorphic subgraphs in an RDF

dataset given a PSPARQL query containing a regular expression. They use a non-
deterministic finite automaton to represent the given regular expression pattern and
then try to find instantiations of it in the RDF data set using a variation of the recursive
search. Koschmieder [Kos09] et al. also answer graph queries containing regular path
expressions. Both methods differ only in the usage of the automaton. As PQL does
not allow for regular path expressions, it is not necessary to build an automaton for its
execution.

97

5. Implementations for Operators

A
lg
or
ith

m
In
de

x
T
im

e
In
de

x
Si
ze

Q
ue

ry
tim

e
Te

ch
ni
qu

e
La

rg
es
t
G
ra
ph

s

G
R
IP

P
[T
L0

7]
O

(n
+

m
)

O
(n

+
m

)
O

(m
−

n
)
(w

or
st
),

O
(1

)
(a
ve
ra
ge
)

P
P

la
be

lin
g

5,
00
0,
00
0
no

de
s;

10
,0
00
,0
00

ed
ge
s

Tr
an

si
tiv

e
C
lo
su
re

[L
u8

7]
O

(n
3
)

O
(n

2
)

O
(1

)
T
C

10
,0
00

no
de

s;
20
,0
00

ed
ge
s

D
ua

lL
ab

el
in
g
[W

H
Y

+
06
]

O
(n

+
m

+
n
′3

)
O

(n
+

m
+

n
′2

)
O

(1
)

C
om

po
ne
nt

G
ra
ph

+
P
P

la
be

lin
g
+
T
C

ov
er

m
’

no
n-
tr
ee

ed
ge
s

13
,9
69

no
de

s;
17
,6
94

ed
ge
s

La
be

l+
SS

P
I
[C
G
K
05
]

O
(n

+
m

)
O

(n
+

m
)

O
(m
−

n
)

P
P

la
be

lin
g
(g
ra
ph

)
40
0,
00
0
no

de
s;

72
0,
00
0
ed
ge
s

2-
H
op

-C
ov
er

[C
H
K
Z0

3]
O

(n
3
)

O
(n

m
1/

2
)

O
(1

)
2-
H
op

-C
ov
er

90
0
no

de
s;

1,
74
0

ed
ge
s

H
O
P
I
[S
T
W

04
]

O
(n

3
)

O
(n

m
1/

2
)

O
(1

)
G
ra
ph

pa
rt
iti
on

in
g
+

2-
H
op

-C
ov
er

5,
24
4,
87
2
no

de
s;

5,
30
8,
08
7
ed
ge
s

M
ax

C
ar
di
na

lit
y-

I
[C
Y
L+

08
]

O
(n

3
)

O
(n

m
1/

2
)

O
(1

)
G
ra
ph

pa
rt
iti
on

in
g
+

2-
H
op

-C
ov
er

50
0,
00
0
no

de
s;

70
0,
00
0
ed
ge
s

3-
H
op

-C
ov
er

[J
X
R
F0

9]
O

(k
n

2
)

no
t
gi
ve
n

O
(lo

g
n

+
k

)
Pa

th
de

co
m
po

si
tio

n
+

Pa
rt
ia
lT

C
10
,0
00

no
de

s;
20
,0
00

ed
ge
s

P
P

la
be

lin
g
in

X
M
L
[G

vK
T
04
]

O
(n

+
m

)
O

(n
)
(t
re
e)

O
(1

)
(t
re
e)

P
P

la
be

lin
g
(t
re
e)

5,
07
7,
53
1
no

de
s;

5,
07
7,
53
0
ed
ge
s

P
P

la
be

lin
g
in

D
A
G
s
[A

B
J8

9]
O

(n
2
)

O
(n

2
)
(D

A
G
)

O
(1

)
(D

A
G
)

P
P

la
be

lin
g
(D

A
G
)

1,
00
0
no

de
s;

10
,0
00

ed
ge
s

G
R
A
IL

[Y
C
Z1

0]
O

(d
(n

+
m

))
O

(d
(n

))
O

(n
+

m
)
(w

or
st
),

O
(d

)
(b
es
t)

m
ul
tip

le
(d
)
P
P

la
be

lin
gs

10
0,
00
0,
00
0
no

de
s;

50
0,
00
0,
00
0
ed

ge
s

Pa
th

tr
ee

[J
X
RW

08
]

O
(m

+
n

lo
g

n
)

no
t
gi
ve
n

O
(1

)
(D

A
G
)

Pa
th

de
co
m
po

si
tio

n
+

P
P

la
be

lin
g

10
0,
00
0
no

de
s;

20
0,
00
0
ed
ge
s

H
LS

S
[H

W
Y
Y
05
]

O
(n

+
m

+
m
′3

)
O

(n
+

m
+

n
′ m
′1

/
2
)

O
(1

)
C
om

po
ne
nt

G
ra
ph

+
P
P

la
be

lin
g
+

2-
H
op

-C
ov
er

ov
er

m
’n

on
-t
re
e
ed

ge
s

1,
00
0
no

de
s;

3,
00
0
ed

ge
s

M
ax

C
ar
di
na

lit
y-

G
[C
Y
L+

06
]

O
(n

+
m

+
m
′3

)
O

(n
+

m
+

n
′ m
′1

/
2
)

O
(1

)
C
om

po
ne
nt

G
ra
ph

+
P
P

la
be

lin
g
+

2-
H
op

-C
ov
er

ov
er

m
’n

on
-t
re
e
ed

ge
s

33
6,
24
4
no

de
s;

39
7,
71
3
ed
ge
s

Ta
bl
e
5.
2.
:O

ve
rv
ie
w

of
m
et
ho

ds
de

sc
rib

ed
in

lit
er
at
ur
e
to

an
sw

er
re
ac
ha

bi
lit
y
qu

er
ie
s.

98

6. Performance of GRIPP

In this chapter we evaluate the performance of the algorithms proposed in Chapter 5.
In Section 6.1 we first describe the graphs used for our experiments, before we present
the actual experimental setup. In Section 6.2 we show index times and index sizes for
GRIPP in comparison to other methods, such as the transitive closure, Dual Labeling,
and Label + SSPI.
In Section 6.3 we show the query performance of GRIPP and compare it to other

methods. For reachability and distance queries we compare GRIPP to the recursive
query strategy, the transitive closure, and built-in recursive query capabilities of the
RDBMS. For path length and path queries we compare GRIPP only to the recursive
query strategy. From these experiments we shall deduce cost functions and cardinality
estimates in Chapter 7.

6.1. Experimental Setup
6.1.1. Generated Graphs
To systematically evaluate our approach we use synthetic data. We created random and
scale-free graphs in the size of 25 to 2,500,000 nodes and average outdegree between 1
and 10 using the methods described in [BA99]. The degree distribution in scale-free
graphs follows a power law with an exponent γ = 2.7. More information about the
graphs may be found in Appendix D.

6.1.2. Real-world Graphs
We also use real-world data for evaluation. We use data of signal transduction path-
ways from NetPath [KMR+10] and metabolic networks provided by KEGG [KGK+04],
Reactome [JTGV+05], and BioCyc [KOMK+05]. Nodes represent enzymes, chemical
compounds, or reactions, while edges represent the participation of an enzyme or com-
pound in a reaction. The degree distribution in these networks follows a power law with
exponent γ = 3.0, i.e., they are also scale-free. Properties of these data set are provided
in Table 6.1.

6.1.3. Implementation Details
GRIPP as well as all competitive methods (based on the original code kindly provided
by their authors and reimplemented for RDBMS) are implemented as stored procedures
in Oracle 10g. We performed the tests on a DELL dual Xeon machine with 4 GB RAM.
Queries were run without rebooting the database or emptying the cache.

99

6. Performance of GRIPP

Database No. nodes No. edges Max. degree No. degree zero
Signal transduction pathways
NetPath KitReceptor 284 331 50 105
NetPath Notch 333 391 32 123
NetPath TGF-β 705 862 60 266
NetPath TNF-α 809 1,010 32 298
Metabolic pathways
KEGG 42,002 51,470 1,745 25,028
Reactome 11,795 19,357 411 1873
BioCyc A. thaliana 10,951 23,649 488 707
BioCyc E. coli 3,844 8,277 265 231
BioCyc H. sapiens 8,816 18,821 437 484

Table 6.1.: Number of nodes and edges in biological graphs.

Indexing is performed by stored procedures entirely inside the database system. The
resulting index structure is stored in relations. The indexing times are averaged over
five different graphs for every graph type (random and scale-free), number of nodes, and
number of edges.

All query functions are implemented as stored procedures as well. Therefore, we are
able to compute the result entirely inside the RDBMS. Depending on the type of query
(path, path length, distance, or reachability query) the procedure returns relation Paths
given in Figure 3.8(b) on page 47 or a relation containing a subset of the attributes of
Paths. For path length queries these are path_id, start, end, and path_length, for
distance queries attribute path_id is omitted from this set and for reachability queries
only attributes start and end are returned.

For each query type, i.e., path, path length, distance, and reachability, different meth-
ods are available to query the graph. These methods are pair, setA, setB, setAB, and
all. For example, for reachability queries the method pair expects as input a pair of
nodes and uses the algorithms presented in Chapter 6 to return the node pair if they
are reachable from each other. Methods setA and setB expect as input a set of start
nodes (A) or a set of end nodes (B) and use for each node in the set the algorithm for a
start node to find all reachable nodes either on forward edges (setA) or on reverse edges
(setB). The method setAB expects as input a set of start and end nodes and uses for
each pair of input nodes the algorithm for pairs of nodes. Method all uses the algorithm
for a start node to find all end nodes to process each node of the graph. These five
methods are implemented for each operator and each query type.

Method pair is repeated 1,000 times on each graph, i.e., giving an average over 5,000
queries on 5 graphs. The methods ’setAB’, ’setA’, ’setB’, and ’all’ are repeated 2 times
on each graph, i.e., giving an average over 10 queries on 5 different graphs.

100

6.2. Index Creation

6.2. Index Creation

For indexing we compare GRIPP to the Transitive Closure (TC), the Dual Labeling
approach by Wang et al. [WHY+06], and the Labeling+SSPI approach by Chen et
al. [CGK05]. The latter two algorithms are only able to index directed, acyclic graphs
(DAG). Therefore we first identify strongly connected components (SCC) of G and
collapse each component into one node. This step requires O(n + m) using Kosaraju’s
algorithm [CLR01] presented in Appendix A.1.
Table 6.2 (page 114) shows the average time required to create the different index

structures for scale-free graphs with 100 to 2.5 million nodes and twice the number
of edges. The data show that GRIPP scales roughly linear with the number of nodes
for a fixed density. For example, we computed the GRIPP index table for a scale-free
graph with 2,500,000 nodes and 5,000,000 edges in less than three hours. Thus, we
may compute the GRIPP index even for very large graphs. In contrast, the time to
compute the TC grows roughly quadratic in the number of nodes. Therefore, we did not
compute the transitive closure for graphs with more than 10,000 nodes. For example,
computing the transitive closure for graphs with 10,000 nodes and 20,000 edges requires
about 30,000 seconds or 8.5 hours. In comparison, computing GRIPP for the same
graphs takes less than 35 seconds. The time to create the list of stop nodes for GRIPP
always takes less than five seconds. We computed the SCC and thus Dual Labeling
and Label+SSPI only for graphs with 25,000 nodes or less. The reason is that Dual
Labeling does not scale well for index creation and Label+SSPI for query times. While
the indexing times for Label + SSPI grow linear – similar to GRIPP –, the indexing
time for Dual Labeling grows quadratic.
Indexing times for random graphs are similar and thus omitted.
Table 6.3 shows the average number of tuples for the different index structures for

scale-free graphs with 100 % more edges than nodes. The figures show that the size
of the GRIPP index table (figures are only shown for forward, figures for reverse are
similar) grows linear with the size of the graph. The GRIPP index table of a scale-
free graph with 10,000 nodes and 20,000 edges contains about 22,000 instances (20,000
instances for the edges, 2,000 instances for nodes without incoming edges, root nodes of
subgraphs). In contrast, the transitive closure for the same graph contains more than
60 million node pairs. For graphs with twice the number of edges than nodes we always
identify exactly one stop node. The figures for random graphs behave similar and are
therefore omitted.
Identifying strongly connected components and building the component graph reduces

the number of nodes and edges. The component graph for graphs with average outdegree
2 contains about 45 % of the initial number of nodes and about 30 % of the initial number
of edges. Dual Labeling as well as Label+SSPI use this component graph for indexing.
Both index structures require three index tables, one to map nodes in the original graph
to nodes in the component graph (contains as many tuples as there are nodes in the
original graph), one for the pre- and postorder labeling of the spanning tree (contains as
many tuples as there are nodes in the component graph) and either the transitive links for
Dual Labeling or the Surrogate and Surplus predecessor index (SSPI) for Label+SSPI.

101

6. Performance of GRIPP

The figures show that the transitive link table also grows quadratic in the number of the
nodes in the graph, while the SSPI index grows linear with the number of edges in the
component graph.
Table 6.4 shows the time required to index graphs with 5,000 nodes and an increasing

number of edges. The indexing times for GRIPP (times only shown for GRIPP forward,
times for GRIPP reverse are similar) and the computation of the strongly connected
components grow linear with increasing number of edges in the graph. Note, the in-
dexing time for GRIPP is faster than the time for computing the strongly connected
components. This behavior has two reasons, first in GRIPP we require only one pass of
the graph, while for SCC we require two, and second constructing the component graph
also takes time. The indexing times for the transitive closure also grow with increas-
ing number of edges. In comparison, for Dual Labeling and Label+SSPI the indexing
times drop. This behavior is due to size of the component graph. Table 6.5 shows that
the component graph shrinks with increasing number of edges in the graph. While the
component graph of a graph with 5,000 nodes and 5,000 edges contains almost the same
number of nodes and edges, a graph with 5,000 nodes and 20,000 edges contains only
about 200 nodes and 220 edges. Clearly, the time required to index a small component
graph is much less compared to index a large one. Table 6.5 also shows that the tran-
sitive closure for graphs with 5,000 edges contains only few pairs of nodes. In contrast,
in graphs with 5,000 nodes and 15,000 edges almost all nodes are reachable from each
other, as the transitive closure contains almost the maximal number of (5, 000)2 entries.
For GRIPP, the number of instances is dependent on the number of nodes and edges in
the graph. The table also shows that only graphs with very low density have more than
one stop node for GRIPP.

6.3. Query Performance
We now show a systematic evaluation of the performance of the algorithms presented
in Section 5 using synthetic graphs. We provide average result sizes and average query
times to answer different types of queries, namely reachability, distance, path length, and
path queries. In addition, we show for each algorithm the performance of the different
query methods, pair, all, setA, setB, and setAB.

6.3.1. Reachability Queries
We compare querying GRIPP to answer reachability queries with recursive query strate-
gies using depth-first search, querying the transitive closure, Dual Labeling, and La-
bel+SSPI. We also tested Oracle’s 10g implementation of recursive SQL.
We first show the performance for answering reachability queries for a given pair of

nodes. Given an end node we stop the search in all algorithms as soon as we have found
this end node.
Figures 6.1(a) and 6.1(b) show the average number of tuples returned for answering

reachability queries on different graphs. The average number of tuples for different
number of nodes with fixed density of 2 remains almost constant at 0.6, i.e., about 60

102

6.3. Query Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 100 1000 10000 100000 1000000

A
v
g

.n
u
m

b
e

r
o

f
tu

p
le

s

Number of nodes

Average number of tuples for method ’pair’ on different graphs

random
scale-free

(a) Increasing number of nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
v
g

.n
u
m

b
e

r
o

f
tu

p
le

s

Number of edges

Average number of tuples for method ’pair’ on different graphs

random
scale-free

(b) Increasing number of edges.

Figure 6.1.: Average number of tuples returned for answering reachability queries for
pairs of nodes on different graphs.

% of the randomly selected node pairs are reachable from each other. There are only
minor differences between random and scale-free graphs. For graphs with 5,000 nodes
and 5,000 edges Figure 6.1(b) shows that for a given node pair it is very unlikely (0.4
%) that the end node is reachable from the start node. With increasing graph density
this probability increases. For graphs with 5,000 nodes and 30,000 edges almost all node
pairs are reachable from each other.

 1

 10

 100

 1000

 10 100 1000 10000 100000 1000000

A
v
g
.
n
u

m
b
e

r
o
f

re
c
u
rs

iv
e

 c
a
lls

Number of nodes

Average number of recursive calls for method ’pair’ on scale-free graphs

recursive
GRIPP

TC
Dual
SSPI

(a) Number of calls.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1000000

A
v
g
.

q
u
e
ry

 t
im

e
 (

s
e
c
)

Number of nodes

Query times for method ’pair’ on scale-free graphs

recursive
GRIPP

TC
Dual
SSPI

(b) Query times.

Figure 6.2.: Average number of calls and average query time for answering reachability
queries for pairs of nodes on different graph sizes (25 – 2,500,000 nodes) of
scale-free graphs with average outdegree of 2.

Figure 6.2(a) shows the average number of recursive calls for the different query strate-
gies on scale-free graphs with 25 to 2,500,000 nodes and 100 % more edges than nodes.
The figures for random graphs are similar and thus omitted. Clearly, for TC and Dual
Labeling we need only one lookup to answer reachability queries. The number of recur-
sive calls for the recursive query strategy and for Label+SSPI depends on the size of the

103

6. Performance of GRIPP

graph. For graphs with 1,000 nodes and 2,000 edges we require on average 27 calls for
the recursive query strategy, ranging from 1 call for a node without child nodes to 704
calls in worst case.
When querying graphs using GRIPP the number of recursive calls remains almost

constant at 2.2 over different sizes of graphs, with the maximum number of calls ranges
from 4 to 8. This fact indicates that using our heuristics to create the GRIPP index
produces an index structure that is close to the optimal index structure described in
Section 5.1.2. Thus, answering reachability queries requires almost constant time.
The query times shown in Figure 6.2(b) for GRIPP, the recursive query strategy,

and Label+SSPI correspond well with the number of recursive calls. The increase in
query time for GRIPP on graphs with 2.5 million nodes and 5.0 million edges could not
be explained. For random graphs this increase could even be seen for smaller graphs
(500,000 nodes). A reason could not be detected and requires further investigation.
Please note, querying GRIPP is only about three times slower than querying TC, while
the recursive query strategy is up to over an order of magnitude slower than using
GRIPP, depending on the graph size.
The figures for Oracle’s implementation of recursive SQL are not shown, as they are

very slow even for small graphs. A single query on a graph with 100 nodes and 200
edges took more than 10 seconds, on a graph with 1,000 nodes and 2,000 edges it did
not complete within 5 hours. The reason seems to be that Oracle enumerates all paths in
the graph beginning from the start node. For tree structured data, as found for example
in parts hierarchies, this poses no problem as only few paths will be found, whereas for
general graphs the number of paths grows exponentially with an increasing number of
nodes and edges.

 1

 10

 100

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
v
g
.
n
u
m

b
e
r

o
f
re

c
u
rs

iv
e
 c

a
lls

Number of edges

Average number of recursive calls for method ’pair’ on scale-free graphs

recursive
GRIPP

TC
Dual
SSPI

(a) Number of calls.

 0.001

 0.01

 0.1

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
v
g
.
q

u
e
ry

 t
im

e
 (

s
e

c
)

Number of edges

Query times for method ’pair’ on scale-free graphs

recursive
GRIPP

TC
Dual
SSPI

(b) Query times.

Figure 6.3.: Average number of recursive calls and average query time for answering
reachability queries for pairs of nodes on different graph densities for graphs
with 5,000 nodes and 5,000 – 50,000 edges.

Figure 6.3 shows the average number of calls and average query time on scale-free
graphs with 5,000 nodes and 5,000 to 50,000 edges. The figures for random graphs
are similar and therefore not given. For GRIPP, the recursive query strategy, and La-

104

6.3. Query Performance

bel+SSPI the number of recursive calls peaks at 7,500 – 10,000 edges and then drops.
This behavior is expected as for graphs with 5,000 edges the number of nodes without
outgoing edges is high. Thus, we may start at such a node or hit such a node quite
early during the search and return. For graphs with 7,500 or 10,000 edges this number
is already much lower and thus, we have to explore more nodes on the way. In denser
graphs the recursive query strategy more likely finds the target node during the search,
whereas for GRIPP it is more likely to find a non-tree instance of a stop node in a RIS.
For Label+SSPI the reason is different, as with increasing number of edges the size of the
component graph decreases and thus the size of the giant strongly component increases.
If a node pair is contained in the strongly connected component no recursive calls on
SSPI are necessary.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Size set A

Query times for method ’set A’ on graphs with 1000 nodes

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(a) Query times.

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 20

 40

 60

 80

 100

 120

 140

Query times for method ’set AB’ on scale-free graphs with 1,000 nodes

S
iz

e
S

et
 B

recursive (scale-free)
GRIPP (scale-free)

TC (scale-free)

Size Set A

(b) Query times.

Figure 6.4.: Average number of tuples and average query time for answering reachability
queries for a given set of start nodes on graphs with 1,000 nodes and 2,000
edges.

Figure 6.4(a) shows average query times for the three different methods to answer
reachability queries on graphs with 1,000 nodes and 2,000 edges for an increasing number
of start nodes to return all reachable end nodes. In this case, querying the transitive
closure is even slower than querying GRIPP, which is surprising. An explanation may be
found in the fact that we implemented all query strategies as stored procedures. They
take the set of start nodes as input. In case of the transitive closure, this set cannot
directly be joined with TC, but for each node in the input set TC must be queried
and the result appended to the output, just as for GRIPP. Thus, if the the size of the
input set is 100 we have to perform 100 queries on TC, which has over 600,000 tuples,
compared to about 260 queries on the GRIPP index, which has some 2,200 tuples. It
should be faster if transitive closure is directly joined with the input set.
Figure 6.4(b) shows average query times for varying sizes of start and end nodes on

scale-free graphs with 1,000 nodes and 2,000 edges. The figures show that the time to
answer reachability queries using recursive query strategies is much slower than using
either TC or GRIPP. In comparison, querying TC is about ten times faster for 100 start
and end nodes than GRIPP, which in turn is also about ten times faster than using the

105

6. Performance of GRIPP

recursive query strategy.
Concluding, the time to answer reachability queries using GRIPP is almost constant

over different number of nodes and different densities of graphs for a given pair of nodes.
Using TC is fastest to answer reachability queries, but we are not able to compute it for
graphs with more than 10,000 nodes in reasonable time. The time required to answer
reachability queries using the recursive query strategy grows steeply with increasing
number of nodes. The query time of Dual Labeling is also constant, but its index
structure cannot be computed in reasonable time for graphs with more than 25,000
nodes. The disadvantage of Label+SSPI is that its query time grows with increasing
number of nodes in the graph. Thus, out of the five presented methods the only practical
method to answer reachability queries in large graphs is GRIPP.

6.3.2. Distance Queries

To answer distance queries we may use GRIPP, the transitive closure, if it also con-
tains distance information, recursive query strategies, and DB-built-in recursive query
functions.

 1

 10

 100

 10 100 1000 10000

A
v
g
.
n
u
m

b
e
r

o
f
re

c
u
rs

iv
e
 c

a
lls

Number nodes

Average number of recursive calls for method ’pair’ on graphs

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(a) Number of calls.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Number nodes

Query times for method ’pair’ on graphs

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(b) Query times.

Figure 6.5.: Average number of recursive calls and average query time for answering
distance queries for pairs of nodes on different graph sizes (25 – 5,000 nodes)
and average outdegree of 2.

Distance queries return the same number of tuples as reachability queries, thus these
figures are omitted. Figure 6.5 shows the average number of recursive calls and average
query time to answer distance queries for a given pair of nodes on graphs with increasing
number of nodes. As expected, the query time for the transitive closure is almost con-
stant for different sizes of graphs as we require only one lookup in TC. In contrast, the
number of recursive calls for the recursive query strategy and for GRIPP increases with
increasing number of nodes in the graph. Although the recursive query strategy requires
more recursive calls than querying GRIPP, the recursive query strategy is faster. The
reason is that GRIPP performs many additional steps in each call to find the next hop
node and to update distance values of nodes found, which is not necessary in the re-

106

6.3. Query Performance

cursive query strategy. For graphs with increasing average degree GRIPP also performs
worse than the recursive query strategy and querying TC.
The difference between the query times for random and scale-free graphs is due to the

difference in the average distance between two nodes (data not shown). The average
distance for scale-free graphs is smaller than for random graphs. Thus, less calls and
also less time is required to answer distance queries for a given pair of nodes on scale-free
graphs.

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Maximum path length

Query times for method ’pair’ on graphs with 2500 nodes and 5000 edges

recursive (random)
GRIPP (random)

TC (random)
Oracle (random)

recursive (scale-free)
GRIPP (scale-free)

TC (scale-free)
Oracle (scale-free)

(a) Length restriction.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Number nodes

Query times for method ’pair’ and ’pair low’ on scale-free graphs

recursive
GRIPP

TC
recursive (low 10)

GRIPP (low 10)
TC (low 10)

(b) With and without length restriction.

Figure 6.6.: Average query time for distance queries with a given pair of nodes and length
restriction on the path length on graphs with 2,500 nodes and 5,000 edges.

If a length restriction in the query is given we may use this knowledge while computing
the distance between a pair of nodes. Figure 6.6(a) shows the average query time for
the four different methods on scale-free and random graphs with 2,500 nodes and 5,000
edges and increasing maximal path length. While the query time for TC remains almost
constant for different path lengths, GRIPP, the recursive query strategy, and the DB-
built-in recursive query function increases with increasing path length. The DB-built-in
recursive query function shows the steepest increase. It is similar to the query times for
path length and path queries given in the next section, which leads us to the assumption
that the implementation enumerates all paths in the graph. Figure 6.6(b) compares the
query times with and without length restriction. The figure shows that only GRIPP
benefits from the length restriction, as it has to update the distance for fewer nodes.

6.3.3. Path Length Queries

We may answer path length queries using either GRIPP or the recursive query strategy.
For the evaluation we always restrict the maximal length of the paths. This has two
reasons. First, in a large graph the length of the longest path between two nodes may
be as long as the number of nodes in the graph. This path is most likely not of interest
for a biologist, but shorter paths are. Second, with increasing path length the size of the
intermediate and final results grows exponentially. Thus, the system quickly runs out of
memory for larger maximal path length. Clearly, this is a limitation of the algorithms

107

6. Performance of GRIPP

and the system presented and may arouse the discussion if the setting inside a classical
RDBMS is up to date.

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

A
v
g
.
n
u
m

b
e
r

o
f
tu

p
le

s

Maximum path length

Number of tuples for method ’pair’ on random graphs

size 25/50
size 50/100

size 100/200
size 250/500

size 500/1000
size 1000/2000

(a) Random graphs.

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

A
v
g
.
n
u
m

b
e
r

o
f
tu

p
le

s

Maximum path length

Number of tuples for method ’pair’ on scale-free graphs

size 25/50
size 50/100

size 100/200
size 250/500

size 500/1000
size 1000/2000

(b) Scale-free graphs.

Figure 6.7.: Average number of tuples as answer to path length queries for pairs of nodes
on different graph sizes (25 – 1000 nodes) with average outdegree of 2 and
increasing maximal path length.

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Maximum path length

Query times for method ’pair, GRIPP’ on random graphs

time 25/50
time 50/100

time 100/200
time 250/500

time 500/1000
time 1000/2000

(a) Random graphs.

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Maximum path length

Query times for method ’pair, GRIPP’ on scale-free graphs

time 25/50
time 50/100

time 100/200
time 250/500

time 500/1000
time 1000/2000

(b) Scale-free graphs.

Figure 6.8.: Average query time for path length queries for pairs of nodes on different
graph sizes (25 – 1000 nodes) with average outdegree of 2 and increasing
maximal path length.

Figure 6.7 shows the average number of tuples for different graph sizes for the method
pair. The figures show that with increasing maximal path length the average number
of tuples returned increases. Remember, reachability queries return on average about
0.6 tuples for a given pair of nodes, regardless the graph type. In contrast, path length
queries with the length restriction 10 return on average 24 tuples per pair on scale-free
graphs with 500 nodes. Recall, for every unique path between start and end node the
path length is returned. Thus, we may return the node pair with length l multiple times.
In both graph types the average number of tuples is dependent on the graph size. For

random graphs the curves remain almost parallel for different graph sizes over length,

108

6.3. Query Performance

with larger numbers for smaller graphs. The reason is that in smaller graphs it is more
likely to find the end node in a path of length l in comparison to larger graphs. In scale-
free graphs these curves cross at a maximal path length of about 7. The reason is that
the degree distribution, which is binomial in random graphs and follows a power law in
scale-free graphs. While in random graphs the probability to find the target node in a
path remains almost constant over the path length, in scale-free graphs this probability
increases with increasing length as we might find a hub node, i.e., a node with a high
outdegree. This node is connected to many other nodes, thus, it opens many paths,
possibly some to the target node. In Chapter 7 we show that with increasing graph size
the maximum outdegree of this hub grows. As this outdegree is similar in both graph
types for small graphs (25 and 50 nodes) their behavior is similar. Only for larger graphs
the maximum outdegree differs more considerably as Table 7.1 in Chapter 7 (page 118)
shows.
Figure 6.8 shows the average query time for randomly selected node pairs on different

graph sizes using GRIPP. The query times for the recursive query strategy are slightly
slower than for GRIPP (data not shown). In both cases, the query times are approx-
imately proportional to the number of recursive calls for each method (data also not
shown).

 0.1

 1

 10

 100

 1000

 10 100 1000

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Number nodes

Query times for method ’all’ on graphs with maximum path length less than 8

recursive random
GRIPP random

recursive scale-free
GRIPP scale-free

(a) Increasing number of nodes.

 0.1

 1

 10

 100

 1000

 10000

 100 150 200 250 300 350 400 450 500

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Number edges

Query times for method ’all’ on graphs with 100 nodes and maximum path length less than 8

recursive (random)
GRIPP (random)

recursive (scale-free)
GRIPP (scale-free)

(b) Increasing average outdegree.

Figure 6.9.: Average query time to answer path length queries with method all on dif-
ferent graphs.

Figures 6.9(a) and 6.9(b) show the time required to get the results for path length
queries for all possible node pairs of a graph. The query times are proportional to the
number of tuples returned (data not shown). The figures also show that GRIPP is
slightly faster than the recursive query strategy. Using knowledge from the order tree
O(G) does not boost the performance significantly. In addition, this speed increase gets
lost for denser graphs, as Figure 6.9(b) shows. The reason is that the more additional
edges are in the graph, the more often GRIPP needs to recursively query the index
structure.
Figure 6.10(a) shows the average number of tuples returned for varying set sizes of

start and end nodes for random graphs. As expected the larger both sets are, the more

109

6. Performance of GRIPP

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Number of tuples for method ’set AB’ on random graphs with 100 nodes and maximum path length less than 8

S
iz

e
S

et
 B

A

v
g
.
n
u
m

b
e
r

o
f
tu

p
le

s

random
 16000
 14000
 12000
 10000
 8000
 6000
 4000
 2000

Size Set A

(a) Number of Tuples.

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Comparison of forward and reverse methods for GRIPP with increasing set sizes

S
iz

e
S

et
 B

A

v
g
.
q
u
e
ry

 t
im

e

Size Set A 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Comparison of forward and reverse methods for GRIPP with increasing set sizes

S
iz

e
S

et
 B

A

v
g
.
q
u
e
ry

 t
im

e

GRIPP fw (random)
GRIPP rv (random)

Size Set A

(b) Query time.

Figure 6.10.: Average number of tuples and average query time to answer path length
queries for a varying number of start and end nodes on random graphs with
100 nodes, an average outdegree of 2, and given maximum path length of
less than 8.

tuples are returned, resulting in a maximum when both sets contain all nodes.
Figure 6.10(b) shows the query times to answer path length queries for increasing sizes

of the sets of start and end nodes (setAB). We may utilize two different strategies. First,
starting at the nodes in setA and search in forward direction (orange). Second, starting
at the end nodes of setB and search in backward direction (green). The colored bottom
indicates which method is advantageous for which number of nodes. In the orange area
the reverse search strategy is advantageous, in the white area both strategies are almost
equal, while in the green area the forward strategy is better. This indicates which method
to use for answering path length queries when a set of start and end nodes is given.

6.3.4. Path Queries

To answer path queries we may use GRIPP or the recursive query strategy. We again
restrict the maximal length of paths. The figures are very similar to the figures for path
queries, only the absolute number of tuples returned is higher for path than for path
length queries. The query times are just slightly higher (figures not shown) as all nodes
of the path must be returned.
Concluding, for path length and path queries it is only feasible to return the result

sets for a maximum path length as otherwise the number of tuples grows exponentially.
When executing path and path length queries GRIPP has only marginal advantages over
recursive query strategies.

6.3.5. Comparison of Query Types

Figure 6.11 shows the average number of tuples returned to answer different types of
graph queries on random and scale-free graphs for a given pair of nodes. While in

110

6.3. Query Performance

both graphs the number of tuples returned for reachability and distance queries remains
almost constant at 0.6, the numbers for path length and path queries vary. In random
graphs the number decreases, as with increasing size of the graph it is less likely to
find an end node on a path of length less than 10. In contrast, this number is hardly
influenced in scale-free graphs, as we may find a hub node on this path, which opens
many new paths.

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06

A
v
g
.
N

u
m

b
e
r

o
f
T

u
p
le

s

Number of Nodes

Number of tuples for method ’pair’ on random graphs

Path less 8
Path Length less 8

Distance
Reachability

(a) Random graphs.

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06

A
v
g
.
N

u
m

b
e
r

o
f
T

u
p
le

s

Number of Nodes

Number of tuples for method ’pair’ on scale-free graphs

Path less 8
Path Length less 8

Distance
Reachability

(b) Scale-free graphs.

Figure 6.11.: Comparison of result set sizes to answer different types of queries given
a pair of nodes (graphs with average outdegree of 2). For path and path
length queries the maximum path length is restricted to less than 8.

Figure 6.12 compares the average query times for method ’pair’ to answer queries for
the four different query types, namely reachability, distance, path length, and path. Fig-
ures 6.12(a) and 6.12(b) show the comparison for random graphs, while Figures 6.12(c)
and 6.12(d) do this for scale-free graphs. We only show the figures for GRIPP and
the recursive query strategy as only those are able to process all four types of queries.
Figures 6.12(a) and 6.12(c) show almost no difference between the depth-first search
used to answer reachability queries and the bi-directional breadth-first search used for
distance queries in the graphs under consideration. In contrast, for GRIPP a difference
between both query types (reachability and distance) is clearly visible. The figures also
show that on scale-free graphs the recursive query strategy and GRIPP are orders of
magnitude faster for answering reachability and distance queries compared to answering
path or path length queries.
Note, there is an increase in query time to answer reachability queries for GRIPP with

increasing graph size. Although the number of recursive calls remains almost constant
over the different sizes of graphs the query time increases. We are not able to explain
this behavior, but believe this is due to buffer size. More investigation is needed to look
into this behavior.
Figure 6.13 compares the query times to answer reachability, distance, and path length

queries for a given pair of nodes on real-world graphs. Figure 6.13(b) shows that the
query time to answer reachability queries using GRIPP is almost constant over the
different graph types, which verifies our findings on synthetic graphs. In comparison,

111

6. Performance of GRIPP

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06

A
v
g
.
q
u
e
ry

 t
im

e
 [
s
e
c
]

Number of Nodes

Query times for method ’pair, recursive’ on random graphs

Path less 8
Path Length less 8

Distance
Reachability

(a) Recursive on random graphs.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06

A
v
g
.
q
u
e
ry

 t
im

e
 [
s
e
c
]

Number of Nodes

Query times for method ’pair, GRIPP’ on random graphs

Path less 8
Path Length less 8

Distance
Reachability

(b) GRIPP on random graphs.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06

A
v
g
.
q
u
e
ry

 t
im

e
 [
s
e
c
]

Number of Nodes

Query times for method ’pair, recursive’ on scale-free graphs

Path less 8
Path Length less 8

Distance
Reachability

(c) Recursive on scale-free graphs.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06

A
v
g
.
q
u
e
ry

 t
im

e
 [
s
e
c
]

Number of Nodes

Query times for method ’pair, GRIPP’ on scale-free graphs

Path less 8
Path Length less 8

Distance
Reachability

(d) GRIPP on scale-free graphs.

Figure 6.12.: Comparison of query times to answer different types of queries given a pair
of nodes on graphs with average outdegree of 2.

answering reachability queries using the recursive query strategy is dependent on the size
of the graph as Figure 6.13(a) shows. For the small graphs from NetPath we may answer
reachability queries very fast, while we require more time for the larger graphs KEGG
and Reactome. The figure also shows that the query times for answering reachability
and distance queries using the recursive query strategy are similar. In comparison,
for GRIPP these times differ greatly, as we already showed for synthetic graphs. The
query times to answer path length queries differ greatly for the different graphs. Both
algorithms are very fast for the small and very sparse graphs from NetPath. For the
metabolic networks of KEGG, Reactome, and BioCyc they require orders of magnitude
more time than for answering reachability or distance queries.

6.3.6. Summary

Reachability and distance queries return fewer tuples than path length queries, which
in turn return fewer tuples than path queries. Only for path length and path queries a
difference between random and scale-free graphs is observable.

112

6.3. Query Performance

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athaliana

BioC
yc Ecoli

BioC
yc H

sapiens

A
v
g

.
q

u
e
ry

 t
im

e
 (

s
e

c
)

Datasources

Query times for method ’pair, recursive’ on real world graphs

Reachability
Distance

Path Length less 6

(a) Recursive on real-world graphs.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athaliana

BioC
yc Ecoli

BioC
yc H

sapiens

A
v
g

.
q

u
e
ry

 t
im

e
 (

s
e

c
)

Datasources

Query times for method ’pair, GRIPP’ on real world graphs

Reachability
Distance

Path Length less 6

(b) GRIPP on real-world graphs.

Figure 6.13.: Comparison of query times to answer different types of queries given a pair
of nodes on real-world graphs.

In terms of query times, for reachability and distance queries the TC would be the
first choice, if it is possible to compute the TC. Otherwise, for reachability queries
GRIPP is best, regardless the size or shape of the graph, while for distance queries a
bi-directional breadth-first search is best. Answering path length and path queries is
orders of magnitude slower than answering distance or reachability queries. For both
query types GRIPP has minor advantages over the recursive query strategy. In the next
chapter we use the knowledge gained in this chapter to develop cardinality estimates for
the different types of queries and cost functions for the different algorithms.

113

6. Performance of GRIPP

Ta
bl
e
6.
2.
:A

ve
ra
ge

tim
e
in

se
co
nd

s
an

d
st
an

da
rd

de
vi
at
io
n
fo
r
di
ffe

re
nt

in
de

xi
ng

m
et
ho

ds
on

sy
nt
he

tic
sc
al
e-
fr
ee

gr
ap

hs
w
ith

10
0
%

m
or
e
ed

ge
s
th
an

no
de

s.
T
he

in
de

xi
ng

tim
es

fo
r
G
R
IP

P
re
ve
rs
e
ar
e
al
m
os
t
id
en
tic

al
to

G
R
IP

P
fo
rw

ar
d.

(T
C

=
tr
an

sit
iv
e
cl
os
ur
e,

SS
C

=
st
ro
ng

ly
co
nn

ec
te
d
co
m
po

ne
nt
s)

G
R

IP
P

fo
rw

ar
d

T
C

SC
C

D
ua

lL
ab

el
in

g
La

be
l+

SS
P

I
N

o.
N

od
es

In
de

x
St

op
no

de
s

10
0

0.
3
±

0.
00

0.
0
±

0.
00

0.
5
±

0.
05

0.
4
±

0.
01

0.
5
±

0.
05

0.
2
±

0.
01

50
0

1.
0
±

0.
01

0.
1
±

0.
01

14
.9
±

1.
14

1.
7
±

0.
03

2.
5
±

0.
35

0.
6
±

0.
05

1,
00

0
2.

0
±

0.
01

0.
1
±

0.
01

61
.8
±

6.
04

3.
3
±

0.
01

6.
2
±

0.
75

1.
2
±

0.
08

5,
00

0
9.

1
±

0.
14

0.
3
±

0.
05

6,
00

1.
1
±

18
9.

58
19

.1
±

0.
24

25
7.

8
±

30
.7

6
7.

0
±

0.
31

10
,0

00
18

.3
±

0.
24

0.
3
±

0.
03

-
43

.5
±

0.
85

1,
77

1.
9
±

13
5.

10
15

.5
±

0.
29

25
,0

00
45

.6
±

0.
29

0.
2
±

0.
02

-
38

4.
8
±

3.
93

26
,2

84
.2
±

1,
35

7.
40

10
0.

0
±

1.
44

50
,0

00
91

.6
±

1.
08

0.
2
±

0.
01

-
-

-
-

10
0,

00
0

19
2.

2
±

1.
35

0.
3
±

0.
01

-
-

-
-

50
0,

00
0

1,
14

0.
7
±

9.
54

0.
8
±

0.
04

-
-

-
-

1,
00

0,
00

0
2,

81
1.

9
±

10
.9

2
1.

4
±

0.
04

-
-

-
-

2,
50

0,
00

0
9,

06
1.

7
±

19
5.

68
4.

6
±

0.
72

-
-

-
-

Ta
bl
e
6.
3.
:A

ve
ra
ge

nu
m
be

r
of

tu
pl
es

an
d
st
an

da
rd

de
vi
at
io
n
fo
r
di
ffe

re
nt

in
de

xi
ng

m
et
ho

ds
on

sy
nt
he

tic
sc
al
e-
fr
ee

gr
ap

hs
w
ith

10
0
%

m
or
e
ed

ge
s
th
an

no
de

s.
Fo

r
th
es
e
gr
ap

hs
w
e
al
w
ay
s
id
en
tif
y
ju
st

on
e
st
op

no
de

.
T
he

in
de

x
siz

es
fo
r

G
R
IP

P
re
ve
rs
e
ar
e
sim

ila
r
to

th
e
on

es
fo
r
G
R
IP

P
fo
rw

ar
d
an

d
th
us

om
itt

ed
.
(T

C
=

tr
an

sit
iv
e
cl
os
ur
e,

SS
C

=
st
ro
ng

ly
co
nn

ec
te
d
co
m
po

ne
nt
s)

G
R

IP
P

fo
rw

ar
d

T
C

SC
C

D
ua

lL
ab

el
in

g
La

be
l+

SS
P

I
N

o.
N

od
es

In
de

x
N

od
es

E
dg

es
tr

an
si

ti
ve

lin
ks

SS
P

I
10

0
21

9
±

4.
6

6,
36

1
±

42
3.

3
39
±

4.
5

54
±

7.
7

66
±

37
.7

48
±

7.
8

50
0

1,
09

1
±

4.
8

14
9,

42
1
±

6,
83

1.
5

22
4
±

16
.4

32
2
±

35
.1

1,
46

1
±

73
8.

2
29

4
±

31
.2

1,
00

0
2,

18
3
±

17
.7

61
4,

72
8
±

18
,8

62
.1

42
6
±

21
.9

59
6
±

41
.9

4,
64

7
±

2,
02

3.
1

54
4
±

35
.3

5,
00

0
10

,9
41
±

30
.1

15
,0

80
,9

68
±

28
9,

57
8.

8
22

02
±

67
.7

31
28
±

14
8.

7
11

3,
35

4
±

24
,1

55
.5

2,
83

4
±

14
0.

9
10

,0
00

21
,8

10
±

25
.3

-
4,

31
0
±

48
.8

6,
14

3
±

65
.0

41
9,

53
4
±

18
,5

54
.2

5,
57

5
±

63
.5

25
,0

00
54

,5
72
±

72
.2

-
10

,9
45
±

10
0.

0
15

,6
21
±

19
6.

8
2,

83
5,

82
2
±

14
2,

28
4.

6
14

,1
93
±

21
4.

7
50

,0
00

10
9,

17
8
±

98
.4

-
-

-
-

-
10

0,
00

0
21

8,
43

3
±

13
2.

1
-

-
-

-
-

50
0,

00
0

1,
09

1,
99

8
±

37
7.

7
-

-
-

-
-

1,
00

0,
00

0
2,

18
4,

20
2
±

92
2.

7
-

-
-

-
-

2,
50

0,
00

0
5,

46
5,

79
4
±

2,
61

0,
5

-
-

-
-

-

114

6.3. Query Performance

Ta
bl
e
6.
4.
:A

ve
ra
ge

tim
e
in

se
co
nd

s
an

d
st
an

da
rd

de
vi
at
io
n
fo
r
di
ffe

re
nt

in
de

xi
ng

m
et
ho

ds
on

sy
nt
he
tic

sc
al
e-
fr
ee

gr
ap

hs
w
ith

5,
00

0
no

de
s
an

d
in
cr
ea
sin

g
nu

m
be

r
of

ed
ge
s.

T
he

in
de

xi
ng

tim
es

fo
r
G
R
IP

P
re
ve
rs
e
ar
e
sim

ila
r
to

th
e
tim

es
fo
r

G
R
IP

P
fo
rw

ar
d.

(T
C

=
tr
an

sit
iv
e
cl
os
ur
e,

SS
C

=
st
ro
ng

ly
co
nn

ec
te
d
co
m
po

ne
nt
s)

|
N

o.
G

R
IP

P
fo

rw
ar

d
T

C
SC

C
D

ua
lL

ab
el

in
g

La
be

l+
SS

P
I

E
dg

es
In

de
x

St
op

no
de

s
5,

00
0

5.
8
±

0.
05

1.
0
±

0.
03

7.
7
±

1.
76

18
.4
±

0.
23

67
6.

4
±

17
.9

8
15

.2
±

0.
21

7,
50

0
7.

3
±

0.
04

0.
8
±

0.
03

2,
36

5.
5
±

14
6.

30
18

.6
±

0.
17

84
4.

8
±

54
.0

8
11

.5
±

0.
31

10
,0

00
9.

1
±

0.
14

0.
3
±

0.
05

6,
00

1.
1
±

18
9.

58
19

.1
±

0.
24

25
7.

8
±

30
.7

6
7.

0
±

0.
31

12
,5

00
17

.3
±

0.
99

0.
4
±

0.
07

7,
00

2.
9
±

3,
91

6.
81

28
.9
±

16
.1

8
68

.3
±

3.
40

3.
7
±

2.
05

15
,0

00
12

.8
±

0.
15

0.
1
±

0.
01

11
,0

01
.3
±

22
6.

00
20

.7
±

0.
14

18
.6
±

2.
14

2.
2
±

0.
13

20
,0

00
16

.2
±

0.
17

0.
2
±

0.
00

-
24

.0
±

0.
57

3.
7
±

0.
32

0.
8
±

0.
04

25
,0

00
19

.7
±

0.
19

0.
2
±

0.
01

-
27

.7
±

1.
34

1.
4
±

0.
16

0.
4
±

0.
04

30
,0

00
23

.5
±

0.
99

0.
1
±

0.
01

-
31

.1
±

1.
33

0.
6
±

0.
04

0.
2
±

0.
02

40
,0

00
29

.8
±

0.
49

0.
1
±

0.
01

-
38

.5
±

2.
04

0.
2
±

0.
02

0.
1
±

0.
01

50
,0

00
37

.4
±

1.
66

0.
2
±

0.
01

-
46

.1
±

1.
49

0.
2
±

0.
02

0.
1
±

0.
01

Ta
bl
e
6.
5.
:A

ve
ra
ge

nu
m
be

r
of

tu
pl
es

an
d
st
an

da
rd

de
vi
at
io
n
fo
r
di
ffe

re
nt

in
de

xi
ng

m
et
ho

ds
on

sy
nt
he

tic
sc
al
e-
fr
ee

gr
ap

hs
w
ith

5,
00

0
no

de
s
an

d
in
cr
ea
sin

g
nu

m
be

r
of

ed
ge
s.

T
he

nu
m
be

r
of

tu
pl
es

fo
r
G
R
IP

P
re
ve
rs
e
ar
e
sim

ila
r
to

th
e

nu
m
be

r
fo
r
G
R
IP

P
fo
rw

ar
d.

(T
C

=
tr
an

sit
iv
e
cl
os
ur
e,

SS
C

=
st
ro
ng

ly
co
nn

ec
te
d
co
m
po

ne
nt
s)

N
o.

G
R

IP
P

fo
rw

ar
d

T
C

SC
C

D
ua

lL
ab

el
in

g
La

be
l+

SS
P

I
E

dg
es

In
de

x
St

op
no

de
s

N
od

es
E

dg
es

tr
an

si
ti

ve
lin

ks
SS

P
I

5,
00

0
7,

48
1
±

50
.5

67
±

10
.6

11
0,

38
3
±

11
,0

18
.8

4,
99

9
±

2.
2

4,
99

8
±

2.
7

1,
41

3,
95

6
±

43
,9

58
.7

3,
79

8
±

34
.4

7,
50

0
9,

10
9
±

26
.1

1
±

0.
0

8,
95

7,
33

5
±

31
3,

95
3.

8
3,

58
6
±

73
.2

4,
51

3
±

13
5.

8
56

7,
91

6
±

46
,1

49
.0

3,
97

7
±

10
3.

1
10

,0
00

10
,9

41
±

30
.1

1
±

0.
0

15
,0

80
,9

68
±

28
9,

57
8.

8
2,

20
2
±

67
.7

3,
12

8
±

14
8.

7
11

3,
35

4
±

24
,1

55
.5

2,
83

4
±

14
0.

9
12

,5
00

13
,1

19
±

26
.3

1
±

0.
0

14
,8

23
,2

89
±

8,
28

0,
17

8.
0

1,
10

9
±

62
0.

5
1,

44
6
±

80
8.

5
20

,5
48
±

4,
41

9.
6

1,
34

9
±

75
4.

7
15

,0
00

15
,3

63
±

22
.9

1
±

0.
0

21
,2

02
,3

38
±

21
2,

34
6.

6
79

1
±

46
.0

98
3
±

62
.3

35
02
±

2,
30

4.
0

92
8
±

57
.8

20
,0

00
20

,1
41
±

8.
2

1
±

0.
0

-
30

7
±

20
.5

33
9
±

25
.8

16
3
±

59
.0

32
8
±

23
.0

25
,0

00
25

,0
69
±

7.
0

1
±

0.
0

-
14

1
±

15
.3

15
0
±

18
.8

65
±

6.
9

14
5
±

16
.6

30
,0

00
30

,0
27
±

3.
2

1
±

0.
0

-
56
±

5.
3

57
±

6.
1

25
±

3.
0

55
±

5.
9

40
,0

00
40

,0
06
±

2.
3

1
±

0.
0

-
13
±

2.
1

12
±

2.
1

5
±

2.
3

11
±

2.
1

50
,0

00
50

,0
03
±

1.
3

1
±

0.
0

-
4
±

2.
9

3
±

2.
9

2
±

0.
0

2
±

3.
0

115

7. GRIcano

In this chapter we describe GRIcano, a query optimizer for PQL queries. The optimizer
supports the operators and rewrite rules given in Chapter 4 and uses knowledge about
implementations presented in Chapter 5. Our aim is to perform a cost-based query
optimization. Therefore, cardinality estimates for approximating the size of intermediate
result sets and cost functions for estimating the cost of each step are required. In
Section 7.1 we develop cardinality estimates for the operators presented in Chapter 4.
In Section 7.2 we provide cost functions for the different implementations of reachability,
distance, path length, and path queries given in Chapter 5.
In Section 7.3 we show how we use the cardinality estimates and cost functions to

create GRIcano, a query optimizer for PQL queries, which is based on Volcano, the
query optimizer generator presented in Section 2.4. We show the effect of graph query
optimization using exemplary queries. In Section 7.4 we discuss related work on cost-
based graph query optimization.

7.1. Cardinality Estimates

In this section we develop functions to estimate the cardinality, i.e., the size of the
result set for the four operators presented in Section 4. The cardinality for the different
operators is defined as follows.

Definition 7.1 (Cardinality of operators)

Let G = (V,E) be a graph. Let S ⊆ V be the set of start nodes and T ⊆ V be the
set of target nodes, with u ∈ S, w ∈ T , s = |S|, and t = |T |.

• The cardinality of the reachability operator, |φ(s, t,G)|, is the number of distinct
node pairs u,w for which u w holds in G.
• The cardinality of the distance operator, |Φ(s, t,G)|, is equal to |φ(s, t,G)|.
• The cardinality of the path length operator, |ψ(s, t,G)| is the number of unique
simple paths between any pair u, w in G.
• The cardinality of the path operator, |Ψ(s, t,G)| is the number of nodes in all
unique simple paths between any u and w in G.

Cost-based query optimization in RDBMS uses statistical data of relations to estimate
cardinalities of predicates and sub-queries [Cha98]. These statistical data include the
size of a relation and the distribution of values of attributes, which are stored in his-
tograms [Ioa03]. We may consider graphs as input relations. Thus, we use key figures of

117

7. GRIcano

the graph to estimate cardinality for graph queries. These properties should be easy to
determine and significant. To our knowledge no cardinality estimates for graph queries
have been described that are based on key figures of the graph. We found the number
of nodes and edges, the outdegree of the node with highest outdegree, and the number
of nodes without outgoing edges are properties that differentiate well between different
graph sizes and shapes [TL10]. This knowledge may easily be gained while loading the
graph.

No. nodes No. edges Random graphs Scale-free graphs
Max. degree Zero degree Max. degree Zero degree

100 200 6.2 12.0 10.8 14.6
500 1,000 7.6 68.8 23.6 82.2

1,000 2,000 7.8 135.6 28.2 156.4
5,000 10,000 8.8 680.4 58.8 794.2
10,000 20,000 9.6 1,346.8 91.8 1,567.2
50,000 100,000 9.8 6,753.6 190.4 7,983.8

100,000 200,000 11.2 13,520.2 237.8 15,839.2
500,000 1,000,000 11.4 67,666.0 588.2 79,475.8

1,000,000 2,000,000 11.6 135,198.0 748.2 158,780.8
5,000 5,000 6.8 1,839.0 34.4 1,935.4
5,000 10,000 8.8 680.4 58.8 794.2
5,000 15,000 10.8 240.6 90.4 335.2
5,000 20,000 13.6 83.8 118.2 149.0
5,000 25,000 15.2 31.8 136.4 66.6
5,000 30,000 16.2 14.0 149.6 27.6
5,000 40,000 20.0 1.6 184.2 6.0
5,000 50,000 22.8 0.2 245.0 1.4

Table 7.1.: Key figures for different random and scale-free graphs (Max. degree = out-
degree of the node with highest outdegree; Zero degree = number of nodes
with outdegree 0). The figures are averaged over five generated graphs for
each graph type.

Table 7.1 shows values of these key figures for different graphs. In Appendix D a more
complete list, including the standard deviation, is given. The outdegree of the node with
maximum outdegree for random graphs increases only slightly with growing number of
nodes, whereas in scale-free graphs a much steeper increase is visible. In contrast, the
increase in the number of nodes without outgoing edges increases in both graph types
almost identically. For a constant number of nodes and increasing number of edges a
clear difference between random and scale-free graphs in terms of the highest outdegree
is also observable.

7.1.1. Reachability Operator

Assume we want to estimate the cardinality of the reachability operator φ for a given set
of start and end nodes. Clearly, the larger both sets are, the more tuples are returned
on average. The size of the result set is also influenced by the density of the graph.
With increasing average node degree we may expect an increase in the probability of

118

7.1. Cardinality Estimates

u w until a saturation occurs. We use the saturation function 1−e−x as it reflects our
experimental data better than other saturation functions, such as

(
a− b

x

)
or
(
a·x
b+x

)
(data

not shown). Variable x is a placeholder for a function that contains the key figures of the
graph. Our experimental evaluation in Chapter 6 shows that only the average degree
influences the result size. Our experiments show that the fraction between additional
edges (m − n) and number of nodes n provides a good approximation. Equation 7.1
shows |φ(s, t,G)|∗ to estimate the cardinality of reachability queries.

|φ(s, t,G)|∗ = s · t · (1− e−
m−n

n) (7.1)

Experimental Validation

We validate Equation 7.1 using the data from Section 6. Figure 7.1 shows that the
estimated cardinalities corresponds well with the experimentally determined result sizes.
Please note, the shape of the graph, i.e., if it is random or scale-free, has no influence
on the cardinality of the result set as we already discussed in Section 6.3.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 100 1000 10000 100000 1000000

A
v
g
.
n
u

m
b

e
r

o
f
tu

p
le

s

Number of nodes

Average number of tuples for method ’pair’ on different graphs

random
scale-free

card_reach(s, t, G)

(a) Pairs of nodes, increasing number of nodes,
avg. outdegree = 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
v
g
.
n
u

m
b

e
r

o
f
tu

p
le

s

Number of edges

Average number of tuples for method ’pair’ on different graphs

random
scale-free

card_reach(s, t, G)

(b) Pairs of nodes, increasing avg. outdegree, n
= 5,000.

Figure 7.1.: Average number of tuples and estimated cardinality of reachability queries.

7.1.2. Distance Operator

The cardinality of the distance operator is equal to the cardinality of the reachability
operator as for each node pair only one distance value is returned. Thus, Equation 7.2
holds.

|Φ(s, t,G)|∗ = |φ(s, t,G)|∗ (7.2)

119

7. GRIcano

Distance with Length Restriction

Using the distance operator we may restrict the result to those node pairs, whose distance
is shorter than l. The upper bound of the cardinality of the distance operator with length
restriction, |Φ(low)(s, t,G, l)|∗ is |Φ(s, t,G)|∗ for infinite l. Given a finite value for l we
have to estimate the number of unique nodes that may be reached within path length l
from a given start node.
Assume we start at a single start node on a graph with average outdegree of m

n = 2.
At path length l = 1 we find on average 1 · 2 = 2 nodes, at length l = 2 we find 2 · 2 = 4
nodes, and at length l = 3 we find 4 ·2 = 8 new nodes, which results in 8+4+2+1 = 15
nodes seen at length l. Equation 7.3 provides the function to calculate the number of
nodes seen at length l, which is the number of nodes seen in the last step plus the number
of newly found nodes.
We may estimate the number of newly found unique nodes by multiplying the number

of nodes found at length l− 1 with the average outdegree. This equation would only be
true on infinite graphs with a constant outdegree. For the graphs under consideration
we have to regard several side effects, such as the degree of nodes or duplicate nodes in
sets. In Equation 7.4 we account for these side effects by applying a correction factor
corr_factor_dist(G, l) when computing the number of newly found unique nodes. We
develop the correction factor in the following. For now assume dx(G) = m

n . We provide
an extended function for dx(G) in Equation 7.10 later in this section.

seen_nodes(G, l) =
{

1 l = 0
seen_nodes(G, l − 1) + found_nodes(G, l) l > 0

(7.3)

found_nodes(G, l) =
{

1 l = 0
found_nodes(G, l − 1) · dx(G) · corr_factor_dist(G, l) l > 0

(7.4)

Assume at length l − 1 we find k new nodes. Computing the number of nodes for l
would result in k · dx(G) new nodes, ignoring the correction factor. This figure is only
valid, if all k nodes have outgoing edges. Table 7.1 shows this may not be true for
the graphs under consideration, as about 15 % of nodes in scale-free graphs have an
outdegree of 0. Thus, we have to consider the probability of a node having outdegree
0 to compute the number of nodes found at step l. If we assume equal distribution of
selected nodes in the set of k nodes we may use Equation 7.5 to estimate this probability.

pzero(G) = z

n
(7.5)

Equation 7.5 estimates the probability for a node to have outdegree of 0 by dividing the
number of nodes with outdegree 0 (z) with the number of nodes n. We use (1−pzero(G)),
which is the probability of a node to have outgoing edges, to estimate the number of
nodes found at length l. Applying the correction factor provided in Equation 7.5 results
at length l in a set of k · dx(G) · (1 − pzero(G)) new nodes, as only the fraction of

120

7.1. Cardinality Estimates

(1 − pzero(G)) nodes have outgoing edges. Equation 7.6 provides the general equation
for estimating the number of newly found nodes.

new_nodes(G, l) = found_nodes(G, l − 1) · dx(G) · (1− pzero(G)) (7.6)

Within this set we may find the same node multiple times over different edges. For
distance queries we are only interested in finding each node once. To calculate the
number of newly found unique nodes we have to estimate the probability of finding a
node more than once. We may use the urn model known from statistics to develop an
equation. Consider an urn with 1 red ball and n − 1 black balls. We draw b times
and always put back the ball. The probability to draw the red ball exactly c times is((

1
n

)c
· (1− 1

n)b−c ·
(b
c

))
[KRBV06]. For our problem we may consider nodes of G as

balls and new_nodes(G, l) as number of draws.

pintra(G, l) = 1−
((1

n

)0
·
(

1− 1
n

)new_nodes(G,l)−0
·
(

new_nodes(G, l)
0

)

+
(1
n

)1
·
(

1− 1
n

)new_nodes(G,l)−1
·
(

new_nodes(G, l)
1

))
(7.7)

= 1−
((

1− 1
n

)new_nodes(G,l)

+
(1
n

)
·
(

1− 1
n

)new_nodes(G,l)−1
· new_nodes(G, l)

)
In Equation 7.7 we estimate the probability of finding duplicate nodes within the

set of newly found nodes, pintra(G, l) by estimating the probabilities of finding a node
exactly 0 or 1 time. The sum of both probabilities is subtracted from 1 to estimate the
probability of finding a node more than once.
We may not only find duplicate nodes within the set of newly found nodes. At length

l we may find nodes in the new set that have already been found in a previous step. We
account for these duplicates by estimating the probability for a node to be part of the
set of all nodes seen up to length l− 1. Equation 7.8 shows the equation to compute the
probability that a node has been found before.

pinter(G, l) = seen_nodes(G, l)
n

(7.8)

We use the three presented probabilities pzero(G), pintra(G, l), and pinter(G, l) for
corr_factor_dist(G, l) in Equation 7.9. (1 − pzero(G)) is the fraction of nodes with
outgoing edges, which may expand the search. Using (1 − pintra(G, l)) allows us to
estimate the fraction of non-duplicate nodes in the set of newly found nodes. Finally,
(1 − pinter(G, l)) is the fraction of nodes that may not have been encountered before.
Applying the correction factor in Equation 7.4 we may estimate the number of newly
found unique nodes.

121

7. GRIcano

corr_factor_dist(G, l) = (1− pzero(G, l)) ·
(1− pintra(G, l)) · (1− pinter(G, l)) (7.9)

So far, the presented equations do not account for different graph types, i.e., if they
are random or scale-free. The main difference between random and scale-free graphs is
the outdegree of the node with highest degree x as Table 7.1 shows. Assume, we hit
a node with high outdegree during the search. This node leads to many newly found
nodes. Thus, we assume the higher the highest outdegree, the more nodes may be found
in each step. So far we assume dx(G) = m

n . We found the average outdegree being
too low to account for the figures, as nodes with outdegree 0 are already handled by
pzero(G, l). On the other hand, using dx(G) = x would be too high. We found that
1/2 · (m/n+

√
x) reflects our data best as Equation 7.10 shows.

dx(G) = 1
2 ·
(
m

n
·
√
x

)
(7.10)

In Equation 7.11 we use Equations 7.2 and 7.3 to estimate the cardinality of distance
queries with length restrictions given a set of start and end nodes.

|Φ(low)(s, t,G, l)|∗ = |Φ(s, t,G)|∗ · seen_nodes(G, l)
n

(7.11)

Experimental Validation

We validate Equation 7.11 using the experimentally determined result sizes from Sec-
tion 6. Apart from the experimental values and the cardinality estimates based on
Equation 7.11 we also show in Figure 7.2 the influence of the different terms. Using
dx(G) = m

n and corr_factor_dist = 1 (labeled found * d) we see an exponential growth
of the cardinality, and an underestimation of the cardinality in scale-free graphs for small
l. Taking the number of nodes with outdegree 0 into account by applying (1−pzero(G))
already decreases the exponential growth (found * d * (1-pzero)). We already observe a
curve similar to the experimentally determined values when adding the correction factors
for duplicate nodes within as well as between sets. Finally, using Equation 7.10 for dx(G)
results in |Φ(low)(s, t,G, l)|∗. The figures show we are able to predict the experimentally
determined cardinality well.
Figure 7.3 verifies this finding for constant l and average degree but increasing number

of edges. The proposed function in Equation 7.11 captures the general trend for all graph
sizes and types well, which is important. It is necessary to know if the size of the result
set for s start and t target nodes is more likely close to (s× t) or to 0.

122

7.1. Cardinality Estimates

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 2 4 6 8 10 12 14

A
v
g

.n
u
m

b
e

r
o

f
tu

p
le

s

Maximum path length

Average number of tuples for method ’pair low’ on random graphs with 1,000 nodes

size 1000/2000
card_reach(s, t, G)

found*d
found*d*(1-pzero)

found*d*(1-pzero)*(1-pintra)*(1-pinter)
card_dist_low(s,t,G,l)

(a) Random graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 2 4 6 8 10 12 14

A
v
g

.n
u
m

b
e

r
o

f
tu

p
le

s

Maximum path length

Average number of tuples for method ’pair low’ on scale-free graphs with 1,000 nodes

size 1000/2000
card_reach(s, t, G)

found*d
found*d*(1-pzero)

found*d*(1-pzero)*(1-pinter)*(1-pintra)
card_dist_low(s,t,G,l)

(b) Scale-free graph.

Figure 7.2.: Average number of tuples and estimated cardinality to answer distance
queries with length restriction for pairs of nodes on graphs with 1,000 nodes
and 2,000 edges and increasing path length.

7.1.3. Path Length Operator

Next, we estimate the cardinality of the result when applying ψ. This operator returns
the path lengths for all paths between a given pair of nodes. If a length restriction is
given, the path lengths of all paths shorter than the given length restriction are returned.
We have to estimate the number of paths between a given start and end node to estimate
the cardinality of the result of the path length operator.
Estimating the number of paths of length up to l is similar to estimating the numbers

of nodes seen for distance queries with length restriction given in Equation 7.3. Thus,
we may use similar considerations to estimate seen_paths(G, l). The number of paths
seen at length l is the number of paths seen at length l − 1 plus the newly found paths
as Equation 7.12 shows. To estimate the number of newly found paths we may again
assume to start the search at a single start node on a graph with average outdegree of
2. At length l = 1 we find on average 1 · 2 = 2 new paths and at l = 2 2 · 2 = 4 new
paths. Equation 7.13 shows the equation to estimate the number of new paths found at
length l. As for estimating the number of nodes found in distance queries we have to
consider correction factors to estimate the number of paths found at length l, which we
discuss in the following.

seen_paths(G, l) =
{

0 l = 0
seen_paths(G, l − 1) + found_paths(G, l) l > 0

(7.12)

found_paths(G, l) =
{

1 l = 0
found_paths(G, l − 1) · dx(G) · corr_factor_path(G, l) l > 0

(7.13)

Assume, at length l − 1 we found k paths. We now have to estimate how many of

123

7. GRIcano

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 100 1000

A
v
g

.n
u
m

b
e

r
o

f
tu

p
le

s

Number of nodes

Average number of tuples for method ’pair low’ with l<6

random (exp)
scale-free(exp)

card_dist_low, random
card_dist_low, scale-free

(a) Path length < 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 100 1000

A
v
g

.n
u
m

b
e

r
o

f
tu

p
le

s

Number of nodes

Average number of tuples for method ’pair low’ with l<8

random (exp)
scale-free(exp)

card_dist_low, random
card_dist_low, scale-free

(b) Path length < 8.

Figure 7.3.: Average number of tuples and estimated cardinality to answer distance
queries with length restriction for pairs of nodes on graphs with varying
graph sizes and constant average outdegree of 2.

these paths may be expanded to length l. There exist two conditions that prohibit the
extension of a path. First, we clearly cannot extend the path if the end node of the
path has no outgoing edges. Second, we stop extending the path if we find a node more
than once in a path. We may account for both conditions using the correction factor for
paths.
We already provided Equation 7.5 that allows us to estimate the fraction of paths that

contain end nodes without outgoing.
For estimating the fraction of paths in which we may find a node multiple times we

use the urn model presented in the last section again. The nodes of the graph again are
the balls. As we want to estimate the probability of a node to occur more than once in
a path the number of draws is l. Thus, we may compute the probability of not finding
a node exactly 0 or 1 time in a path as Equation 7.14 shows.

pPathDupl(G, l) = 1−
((1

n

)0
·
(

1− 1
n

)l−0
·
(
l

0

)
+
(1
n

)1
·
(

1− 1
n

)l−1
·
(
l

1

))

= 1−
((

1− 1
n

)l
+ 1
n
·
(

1− 1
n

)l−1
· l
)

(7.14)

In Equation 7.15 we take the probability of not finding a node with outdegree 0,
pzero(G) and the probability of not finding a node more than once, pPathDupl(G, l)
into account for corr_factor_path(G, l) to estimate the number of newly found paths
at length l.

corr_factor_path(G, l) = (1− pzero(G)) · (1− pPathDupl(G, l)) (7.15)

Using seen_paths(G, l) given in Equation 7.12 we may estimate the number of paths

124

7.1. Cardinality Estimates

found for a single start node of length up to l, regardless their end nodes. To estimate
the cardinality for a given pair of start and end nodes we have to divide seen_paths(G, l)
by the number of nodes of the graph as Equation 7.16 shows.

|ψ(low)(s, t,G, l)|∗ = s · t · seen_paths(G, l)
n

(7.16)

Experimental Validation

To validate Equation 7.16 we use the experimentally determined values from Chapter 6.
Figure 7.4(a) shows the results for varying number of nodes, constant average outdegree
of 2, and maximum path length of less than 8. As the figures show, the cardinality
estimates work well. Figure 7.4(b) shows the numbers for an increasing average outdegree
but constant number of nodes. Although the estimates are not perfect, they provide a
good approximation for the size of the result set. Figures 7.4(c) and 7.4(d) show the
influence of the length of the path and the sizes of the sets of start and end nodes. As
one may see, in both cases the estimated cardinalities correspond well with the observed
values.

7.1.4. Path Operator

Finally, we deduce the cardinality estimates when applying a path operator Ψ. In
contrast to the path length operator, which only returns one tuple for each path, the
path operator returns l + 1 tuples for each path.
As the basic principle of the path operator and the path length operator is the same, we

use the same considerations. Equation 7.17 shows the equation to estimate the number
of tuples returned for a single start node. Remember, in Equation 7.12 we computed
seen_paths(G, l). Equation 7.17 uses the same functions, but multiplies the number of
newly found paths with their length to return the number of tuples.

path_tuples(G, l) =
{

0 l = 0
path_tuples(G, l − 1) + (l + 1) · found_paths(G, l) l > 0

(7.17)

Using Equation 7.17 we estimate the cardinality of the path operator in Equation 7.18.
As for the path length operator, we assume we find an end node with equal probability
and thus divide the number of tuples to represent all paths starting at a start node by
the number of nodes in the graph.

|Ψ(low)(s, t,G, l)|∗ = s · t · path_tuples(G, l)
n

(7.18)

Experimental Validation

We validate Equation 7.18 using again the experimentally determined result sizes of the
generated graphs from Chapter 6. The figures (data not shown here) show a similar

125

7. GRIcano

 1000

 10000

 100000

 1e+06

 1e+07

10 100 1000

A
v
g

.
n

u
m

b
e

r
tu

p
le

s

Number nodes

Number of tuples for method ’all’ on graphs with maxium path length less than 8

random
scale-free

card_path_len(s, t, G, l) random
card_path_len(s, t, G, l) scale-free

(a) Increasing number of nodes, avg. outdegree
= 2.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

100 150 200 250 300 350 400 450 500

A
v
g

.
n

u
m

b
e

r
tu

p
le

s

Number edges

Number of tuples for method ’all’ on graphs with 100 nodes and maxium path length less than 8

random
scale-free

card_path_len(s, t, G, l) random
card_path_len(s, t, G, l) scale-free

(b) Increasing avg. outdegree, n = 100.

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 2 4 6 8 10 12

A
v
g

.
n
u

m
b

e
r

tu
p

le
s

Maximum path length

Number of tuples for method all on graphs with 250 nodes and 500 edges

random
scale-free

card_path_len(s, t, G, l) random
card_path_len(s, t, G, l) scale-free

(c) Increasing path length, n = 250, m = 500.

020406080100

 0

 20

 40

 60

 80

 100

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Number of nodes for method ’set AB’ on scale-free graphs with 100 nodes and max. path length less than 8

S
iz

e
S

et
 B

scale-free
card_path_len(s, t, G, l)

Size Set A

(d) Varying sizes of sets, n = 100, m = 200.

Figure 7.4.: Average number of tuples and estimated cardinality of path length queries.
Figures 7.4(a) and 7.4(b) show the figures for all possible node pairs of
different graphs using a given maximal path length of 8. Figure 7.4(c)
shows the numbers for varying path lengths on graphs with 250 nodes and
500 edges, averaged over all node pairs of a graph. Figure 7.4(d) shows the
number of tuples for varying set sizes.

behavior as for path length queries. They confirm the cardinality estimates work well.

7.1.5. Validation on Real World Graphs

We validate our cardinality estimates postulated for synthetic graphs using the biological
graphs given in Table 6.1 (page 100). Figure 7.5 shows the experimentally determined
result sizes and estimated cardinalities on different real-world graphs to answer queries
for a given pair of nodes. Figure 7.5(a) shows that our estimates work well for reachability
queries on metabolic networks (KEGG, Reactome, BioCyc), while for the smaller graphs
from NetPath we severely overestimate the size of the result set. This behavior may be
caused by the average degree, which is close to 1 for graphs from NetPath. Figure 7.5(b)
shows the cardinality estimates for path length queries also work well for metabolic

126

7.2. Cost Functions

networks, while we again overestimate the number of paths for graphs from NetPath.

 0

 0.2

 0.4

 0.6

 0.8

 1

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athaliana

BioC
yc Ecoli

BioC
yc H

sapiens

C
a

rd
in

a
lit

y

Datasources

Determined and estimated cardinality for pairs of nodes on real world graphs

Exp. determined
Estimated

(a) Reachability queries.

 0.001

 0.01

 0.1

 1

 10

 100

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athalia

BioC
yc Ecoli

BioC
yc H

sapiens

C
a

rd
in

a
lit

y

Datasources

Determined and estimated cardinality for pairs of nodes (l<6) on real world graphs

Exp. determined
Estimated

(b) Path length queries (length < 6).

Figure 7.5.: Average number of tuples and estimated cardinality to answer queries for
pairs of nodes on real-world graphs.

7.2. Cost Functions
The goal of cost-based query optimization in RDBMS is to execute queries as efficiently
as possible [Cha98]. For query optimization possible plans receive a cost value, which is
essentially the sum of the predicted cost values of all individual steps. The plan with
lowest predicted cost is used for execution. In this work we consider the time required
to answer a query as sole efficiency criteria. Thus, our cost functions should roughly
emulate the time required to compute the result.
The cost functions depend on the algorithm used to compute the result. For the

reachability and distance operator we provide cost functions for the recursive query
strategy, GRIPP, and the transitive closure in Section 7.2.1 and 7.2.2. For the path
length and path operator only the first two possibilities may be used, for which we
provide cost functions in Section 7.2.3 and 7.2.4. For the two index-based methods,
GRIPP and TC, the query optimizer requires apart from the cost function itself also the
information if the indexes have been created to judge if they may be used.
Cost functions generally require formulas to estimate CPU and IO costs [Cha98]. In

this work we consider these two factors in the following equations, but we also use
some simplifications. We assume uniform access cost for relations, i.e., accessing a small
relation is as expensive as accessing a large one. In addition we do not take caching or
sequential IO into account.

7.2.1. Reachability Queries
To answer reachability queries we provide cost functions for three different algorithms,
namely for TC, GRIPP, and recursive query strategy. Equations 7.19 – 7.21 show the
cost functions for a given set of start and end nodes.

127

7. GRIcano

Costφ(TC)(s, t,G) = s · t · IO_cost (7.19)
Costφ(GRIPP)(s, t,G) = s · t · 2.2 · IO_cost + s · t · 2.2 · CPU_cost (7.20)

Costφ(recursive)(s, t,G) = s · t · (
√
m− n · n

m
+ 1) · IO_cost (7.21)

The terms IO_cost and CPU_cost depend on the system configuration and may be
determined experimentally. For all equations we do not model the size of the input
relation or access mode, as we assume uniform access cost. Thus, our cost model is
merely based on the complexity of the algorithms.
In Equation 7.19 the cost for querying TC is given. For each pair of nodes we have

to access the transitive closure once and perform a lookup if the node pair is present in
TC. No further processing is required.
Answering reachability queries using GRIPP requires on average 2.2 recursive calls,

regardless the size or shape of the graph (see Figure 6.2(a)). During each of these calls
we have to consider the reachable instance set and determine the next hop node to use.
As we assume this computation to occur in main memory we capture the cost of this
additional computation by the second summand in Equation 7.20.
For the recursive query strategy the situation is more complicated. We assume the

query time and thus the cost is proportional to the number of recursive calls. This
number may range from one call for a node without outgoing edges to (n − 1) calls on
a graph with n nodes. We could argue on average we require (n/2) recursive calls to
answer u w for any node pair u,w. Based on the experimentally determined values
presented in Figure 6.2(a) on page 103 we found the number of recursive calls to be
proportional to

√
m− n for graphs with constant outdegree. Figure 6.3(a) on page 104

shows that the degree is also dependent on the average outdegree. Thus, we add the
second factor (n/m) in Equation 7.21, which reflects the fact that the higher the degree
of a graph is, the less calls are required.

Set of Start Nodes To evaluate reachability queries we also have implementations
that return all reachable nodes given a set of start nodes. As these implementations are
slightly different from the ones described by the cost functions above we have to define
three more cost functions given in Equations 7.22, 7.23, and 7.24.

Costφ(TCSingle)(s,G) = s · IO_cost (7.22)
Costφ(GRIPPSingle)(s,G) = s · 3 · IO_cost + s · 3 · CPU_cost (7.23)

Costφ(recursiveSingle)(s,G) = s · (
√
m · n

m
+ 1) · IO_cost (7.24)

For the transitive closure we have to query TC once for each node in the set of start
nodes. Thus, Equation 7.22 holds. For GRIPP we have to perform an exhaustive search
for which no longer 2.2 calls on average are sufficient. We require on average 3.0 recursive

128

7.2. Cost Functions

calls as experimental data from Section 6.3 show. For the recursive query strategy we
also require more calls for the exhaustive search as Equation 7.24 shows. Using the
experimental data from Section 6.3 we found calls ∼ (

√
m · n/m+ 1).

Experimental Validation

We evaluate our proposed cost functions using the observed query times from Section 6.3.
Figure 7.6(a) shows the observed query times for reachability queries given a pair of
nodes, while Figure 7.6(b) shows the predicted cost. For IO_cost we use 1, for CPU_cost
0.001.
The figures show we are able to determine which algorithm is best suited for a given

number of nodes in most cases. Only for very small graphs (less than 500 nodes) we
overestimate the cost of the recursive query strategy and thus would never choose this
algorithm if indexes are created. Choosing GRIPP does not significantly prolong the
execution time of a query, as the difference in terms of query time between querying
recursively and GRIPP is not big.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

s
e
c
)

Number of nodes

Average query time for method ’pair’ on graphs

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(a) Average query times.

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06

E
s
ti
m

a
te

d
 c

o
s
t

Number of nodes

Estimated cost for method ’pair’ on graphs

cost_rec(s,t,G)
cost_gripp(s,t,G)

cost_tc(s,t,G)

(b) Estimated costs.

Figure 7.6.: The figures show the actual query times and estimated costs for different
graphs to answer reachability queries for a given pair of nodes.

For a given set of start nodes Figure 7.7 shows we correctly estimate that using the
recursive query strategy is worst. We underestimate the cost of querying TC compared
to querying GRIPP. As already stated in Section 6 it may be due to sizes of the input
relation, with TC being over two orders of magnitude larger than GRIPP. We currently
do not take this factor in our cost model into account, as from our perspective the
proposed functions work sufficiently well to suggest a good algorithm.

7.2.2. Distance Queries

For distance queries we may use three different implementations, namely GRIPP, the
recursive query strategy, and querying TC. Again, querying TC for distances is done in
constant time as Equation 7.25 shows. To deduce the cost function for the recursive query

129

7. GRIcano

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Size set A

Query times for method ’set A’ on graphs with 1000 nodes

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(a) Average query times.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

E
s
ti
m

a
te

d
 c

o
s
t

Size set A

Estimated cost for method ’set A’ on graphs with 1000 nodes

cost_rec_single(s,n,m)
cost_gripp_single(s,n,m)

cost_tc_single(s,n,m)

(b) Estimated costs.

Figure 7.7.: The figures show the actual query times and estimated costs for different
graphs to answer reachability queries for a set of start nodes.

strategy we consider the figures in Section 6.3. They show the recursive query strategy
requires almost the same time to answer distance queries without length restriction as
to answer reachability queries. Thus, CostΦ(recursive)(s, t,G) = Costφ(recursive)(s, t,G).
For GRIPP the situation is more complicated. The number of recursive calls for GRIPP
is (n/m) times the number of calls for the recursive query strategy as we may use
knowledge from the GRIPP index structure. On the other hand, in each call we have
to invest more work to update the path lengths for all instances found in the current
reachable instance set. We assume we have to update on average information for m/2
instances. Equation 7.26 shows our proposed cost function for GRIPP.

CostΦ(TC)(s, t,G) = Costφ(TC)(s, t,G) (7.25)

CostΦ(GRIPP)(s, t,G) = s · t · (
√
m− n · n

m
+ 1) · n

m
· IO_cost

+ s · t · (
√
m− n · n

m
+ 1) · n

m
· m2 · CPU_cost (7.26)

CostΦ(recursive)(s, t,G) = Costφ(recursive)(s, t,G) (7.27)

Set of Start Nodes Equations 7.28, 7.29, and 7.30 show the proposed cost functions
for the three algorithms that take a set of start nodes and return the distances for
all reachable end nodes. Just like for reachability queries the algorithms perform an
exhaustive search. We account for this fact by using (

√
m · n/m) as term to estimate

the number of recursive calls.

130

7.2. Cost Functions

CostΦ(TCSingle)(s,G) = Costφ(TCSingle)(s,G) (7.28)

CostΦ(GRIPPSingle)(s,G) = s ·
(√

m · n
m

)
· n
m
· IO_cost

+ s ·
(√

m · n
m

)
· n
m
· m2 · CPU_cost (7.29)

CostΦ(recursiveSingle)(s,G) = Costφ(recursiveSingle)(s,G) (7.30)

Distance with Length Restriction In Equations 7.31 – 7.33 we define cost functions to
answer distance queries with length restriction. The cost function for querying TC with
length restriction is equal to CostΦ(TC)(s, t,G). For the recursive query strategy and
GRIPP we use function seen_nodes(G, l) developed for cardinality estimates of distance
queries with length restriction in Equation 7.3 on page 120 to estimate the number of
recursive calls. Both strategies use a bi-directional search. Thus, nodes up to length
(l/2 − 1) are used in forward and reverse direction for recursive calls. For GRIPP we
have to perform (n/m) less calls, as we only use tree instances, but in each call we have
to perform on average (m/2) updates.

CostΦlow(TC)(s, t,G, l) = CostΦ(TC)(s, t,G) (7.31)

CostΦlow(GRIPP)(s, t,G, l) = s · t · 2 · seen_nodes
(
G,

l

2 − 1
)
· n
m
· IO_cost

+ s · t · 2 · seen_nodes
(
G,

l

2 − 1
)
· n
m
· m2 · CPU_cost

(7.32)

CostΦlow(recursive)(s, t,G, l) = s · t · 2 · seen_seen
(
G,

l

2 − 1
)
· IO_cost (7.33)

For distance queries with length restrictions that have a set of start nodes as input we
may use Equations 7.32 and 7.33 in modified form. We omit the terms t and 2 and do
not divide l by 2, thus leaving s · seen(G, l − 1) as first factor. As this step is straight
forward, we omit the equations at this point.

Experimental Validation

We use the experimentally determined query times for answering distance queries given
in Section 6.3.2 to validate our proposed cost functions. As for reachability queries we
assume IO_cost = 1 and CPU_cost = 0.001.
Figures 7.8(a) and 7.8(b) show that we correctly estimate using TC is always best. The

cost functions would predict an advantage of GRIPP over the recursive query strategy
for vary small graphs, which is not the case as Figure 7.8(a) shows. As the absolute time
difference is only marginal it does not significantly prolong the query time. The cost
functions also work well for a constant number of nodes and increasing number of edges

131

7. GRIcano

(data not shown). Figures 7.9(a) and 7.9(b) show the query times for varying numbers
of start and end nodes. Here as well the cost estimates are able to predict the fastest
algorithm to use.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Number nodes

Query times for method ’pair’ on graphs

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(a) Determined query time.

 1

 10

 100

 1000

 10 100 1000 10000

E
s
ti
m

a
te

d
 c

o
s
t

Number of nodes

Estimated cost for method ’pair’ on graphs

cost_rec(s,t,n,m)
cost_gripp(s,t,n,m)

cost_tc(s,t,n,m)

(b) Estimated cost.

Figure 7.8.: Comparison of query times and estimated costs to answer distance queries
for a pair of nodes on graphs with increasing number of nodes and outde-
gree = 2. Please note, for the cost estimate of distance queries the cost
estimates are identical for random and scale-free graphs as the maximum
outdegree and the number of nodes without outgoing edges is not input to
the equations.

Figure 7.10 shows the experimentally determined query times and predicted cost to
answer distance queries with length restriction. Here as well, we are able to predict that
using TC is best. When comparing GRIPP and the recursive query strategy we correctly
identify the latter to be the better strategy for larger graphs. Only for very small graphs
(n ≤1,000) we prefer to use GRIPP instead of the recursive query strategy. For these
graphs the query times for both strategies are in the same order, and thus, choosing the
unfavorable algorithm may not have a huge impact on the query time.

7.2.3. Path Length Queries

For answering path length queries we have two different implementations. We either
recursively traverse the graph or query GRIPP. For both implementations it is important
how many calls are required. In both cases the number is correlated to the number of
paths found, for which Equation 7.12 (page 123) gives an estimate for a single start
node. Equations 7.34 and 7.35 show the cost functions for the recursive query strategy
and GRIPP to answer path length queries. We assume we require (n/m) less calls for
GRIPP than for the recursive query strategy. For a given set of end nodes we have to
compare the result of each start node with the set of end nodes. This factor is reflected
in the second term.

132

7.2. Cost Functions

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 200

 400

 600

 800

 1000

 1200

 1400

Query times for method ’set AB’ on random graphs with 1000 nodes

S
iz

e
S

et
 B

A

v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

recursive (random)
GRIPP (random)

TC (random)

Size Set A

(a) Determined query time.

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0

 50000

 100000

 150000

 200000

 250000

Estimated cost for method ’set AB’ on random graphs with 1000 nodes

S
iz

e
S

et
 B

 E

s
ti
m

a
te

d
 c

o
s
t

cost_rec(s,t,n,m)
cost_gripp(s,t,n,m)

cost_tc(s,t,n,m)

Size Set A

(b) Estimated cost.

Figure 7.9.: Query times and estimated cost to answer distance queries for a varying
number of start and end nodes on random graphs with n=1,000, m= 2,000.

 0.001

 0.01

 0.1

 10 100 1000

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Number of nodes

Query times for method ’pair low’ with l<6

recursive (random)
GRIPP (random)

TC (random)
recursive (scale-free)

GRIPP (scale-free)
TC (scale-free)

(a) Determined query time (l<6).

 1

 10

 100

 1000

 10 100 1000

E
s
ti
m

a
te

d
 c

o
s
t

Number of nodes

Estimated cost for method ’pair low’ with l<6

cost_rec_low(s,t, G,l), random
cost_gripp_low(s,t, G, l), random

cost_tc_low(s, t, G, l), random
cost_rec_low(s, t, G, l), scale-free

cost_gripp_low(s,t, G,l), scale-free
cost_tc_low(s, t, G, l), scale-free

(b) Estimated cost (l<6).

Figure 7.10.: Query times and estimated cost to answer distance queries with length
restriction (l<6) on different graphs with outdegree=2.

Costψ(recursive)(s, t,G, l) = s · seen_paths(G, l) · IO_cost
+ s · log t · CPU_cost (7.34)

Costψ(GRIPP)(s, t,G, l) = s · seen_paths(G, l) · n
m
· IO_cost

+ s · log t · CPU_cost (7.35)

Experimental Validation

To validate Equations 7.34 and 7.35 we use the experimentally determined query times
from Chapter 6. Figure 7.11 shows we are able to correctly predict that GRIPP is
slightly better to answer path length queries given a pair of nodes. We are also able

133

7. GRIcano

to model the influence of the graph type, i.e., we correctly predict that answering path
length queries on scale-free graphs is more costly than on random graphs of the same
size. Figure 7.12 shows the influence of the number of start and end nodes. These figures
undermine the statement that the number of end nodes (Size Set B) has no significant
influence on the cost of a query.

 0.001

 0.01

 0.1

 1

 10

0 2 4 6 8 10 12

A
v
g
.

q
u

e
ry

 t
im

e
 (

s
e
c
)

Query times for method ’pair’ on graphs with n = 1,000 and m = 2,000

recursive (random)
GRIPP (random)

recursive (scale-free)
GRIPP (scale-free)

(a) Determined query time.

 1

 10

 100

 1000

0 2 4 6 8 10 12

E
s
ti
m

a
te

d
 c

o
s
t

Estimated cost for method ’pair’ on graphs with n = 1,000 and m = 2,000

cost_rec(s,t, G, l) (random)
cost_gripp(s,t, G, l) (random)
cost_rec(s,t, G, l) (scale-free)

cost_gripp (s,t,G, l) (scale-free)

(b) Estimated cost.

Figure 7.11.: Determined query times and predicted cost for path length queries for a
pair of nodes on graphs with n=1.000, m=2.000 and varying path length.

020406080100

 0

 20

 40

 60

 80

 100

 0

 2

 4

 6

 8

 10

 12

Query times for method ’set AB’ on graphs with n=100 and l<8

S
iz

e
S

et
 B

GRIPP (random)
GRIPP (scale-free)

Size Set A

(a) Determined query time.

020406080100

 0

 20

 40

 60

 80

 100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Estimated cost for method ’set AB’ on graphs with n=100 and l<8

S
iz

e
S

et
 B

cost_gripp(s, t, G, l) (random)
cost_gripp(s, t, G, l) (scale-free)

Size Set A

(b) Estimated cost.

Figure 7.12.: Determined query times and predicted cost for path length queries on
graphs with n=100, m=200 and varying number of start and end nodes.

7.2.4. Path Queries

In the following we provide cost functions for the different implementations to answer
path queries. As for path length queries available implementations are querying recur-
sively or GRIPP. Remember, path queries return all nodes of a path. To account for this
fact we add the term |Ψ(low)(s, t,G, l)|∗) ·CPU_cost in comparison to the equations for
path length queries, as we have to process more output.

134

7.3. GRIcano

CostΨ(recursive)(s, t,G, l) = s · seen_paths(G, l) · IO_cost
+ (s · log t+ |Ψ(low)(s, t,G, l)|∗) · CPU_cost (7.36)

CostΨ(GRIPP)(s, t,G, l) = s · seen_paths(G, l) · n
m
· IO_cost

+ (s · log t+ |Ψ(low)(s, t,G, l)|∗) · CPU_cost (7.37)

Experimental Validation

Again, we validate Equation 7.36 and 7.37 using the experimentally determined values
from Section 6.3. The figures for path queries are similar to the curves for path length
queries and thus omitted.

7.2.5. Validation on Real World Graphs

We validate the cost functions postulated for generated graphs using the presented real-
world graphs. Figure 7.13 shows the experimentally determined query times and pre-
dicted cost for reachability queries for a pair of nodes on real-world graphs. As the figures
show, the proposed cost functions correctly predict that using TC, when available, is
always favorable. For small graphs from NetPath the cost function favors GRIPP over
the recursive query strategy, while the experimentally determined query times show an
advantage of the recursive query strategy over GRIPP. This advantage is marginal and
thus may not severely prolong the query time. For distance queries the cost functions
correctly predict using GRIPP is always slowest (data not shown).
Figure 7.14 shows that the measured query times and predicted cost for path length

queries with length < 6 for pairs of nodes on real-world graphs. The figures show we
correctly predict that for graphs from NetPath GRIPP is fastest for answering path
length queries. For metabolic networks we predict GRIPP is better than the recursive
strategy, which is not supported by the experimentally determined query times. We
also predict that we have highest cost for the graph ’BioCyc A. thaliana’, while the
experimental data show we require most time to answer path length queries on the
graph of KEGG. These figures show we may have to rethink about the cost functions for
path length and path queries, by possibly also taking other key figures of graphs, such
as diameter or radius [ARS+08], into account.

7.3. GRIcano
We implemented a novel prototype of a graph query optimizer, called GRIcano. This
prototype is constructed according to Figure 2.3 in Section 2.3 on page 20.
The first step of query processing is query parsing. We use SableCC [htt11a] to parse

the PQL query into an internal representation. Using this representation we create the
input file for the query optimizer. The optimizer is based on the Volcano framework
presented in Section 2.4. We extended this framework for the algebraic operators and

135

7. GRIcano

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athaliana

BioC
yc Ecoli

BioC
yc H

sapiens

A
v
g

.
q

u
e
ry

 t
im

e
 (

s
e

c
)

Datasources

Query times for pairs of nodes on real world graphs

GRIPP
Recursive

TC

(a) Determined query time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athaliana

BioC
yc Ecoli

BioC
yc H

sapiens

E
s
ti
m

a
te

d
 c

o
s
t

Datasources

Estimated costs for pairs of nodes on real world graphs

GRIPP
Recursive

TC

(b) Estimated cost.

Figure 7.13.: Determined query times and predicted cost for reachability queries for a
pair of nodes on real-world graphs.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athaliana

BioC
yc Ecoli

BioC
yc H

sapiens

A
v
g

.
q
u
e
ry

 t
im

e
 (

s
e
c
)

Datasources

Query times for pairs of nodes (l<6) on real world graphs

GRIPP
Recursive

(a) Determined query time.

 10

 100

 1000

 10000

 100000

N
etPath KitR

eceptor

N
etPath N

otch

N
etPath TG

F-beta

N
etPath TN

F-alpha

KEG
G

R
eactom

e

BioC
yc Athalia

BioC
yc Ecoli

BioC
yc H

sapiens

E
s
ti
m

a
te

d
 c

o
s
t

Datasources

Estimated costs for pairs of nodes (l<6) on real world graphs

GRIPP
Recursive

(b) Estimated cost.

Figure 7.14.: Determined query times and predicted cost for path length queries (l< 6)
on real-world graphs given a pair of nodes.

rewrite rules presented in Chapter 4. An excerpt of the model specification may be found
in Appendix E. We use the algorithms presented in Chapter 5 as implementations for
our proposed operators. The third input to Volcano is the cost model, for which we have
to provide information about the expected cardinalities of operators, the estimated cost,
and applicability of an algorithm. In Appendix F we provide the C code to specify this
information in Volcano. The output of the query optimizer is then parsed and a stored
procedure for the execution in an RDBMS is created. To show how GRIcano works we
provide Example 7.1.

Example 7.1 (Query optimization in GRIcano).
SELECT C, E
FROM kegg
LET node A, node B, node C, node E, path P, path Q, path R
WHERE A.Name = ’Salicylate’

136

7.3. GRIcano

AND B.Name = ’Alcohol’
AND C.Type LIKE ’Reaction’
AND P.path = A[->]C
AND P.length < 5
AND Q.path = B[->]C
AND R.path = C[->]E
AND R.length = 1
AND E.Type LIKE ’Compound’;

A

B

C E

P.length<5

R.length=1

name=’Salidylate’

name=’Alcohol’

type LIKE ’Reaction’ type LIKE ’Compound’

Figure 7.15.: The query graph for the PQL query form Example 7.1 that returns chemical
compounds (in node variable E) produced by a reaction (node variable C),
which may directly or indirectly be influenced by a combined intake of
alcohol and aspirin, as salicylate is the first degradation product of aspirin.

The PQL query in Example 7.1, for which Figure 7.15 shows the query graph, re-
turns chemical compounds (in node variable E) produced by a reaction (node variable
C), which is directly or indirectly influenced by a combined intake of alcohol and as-
pirin, as salicylate is the first degradation product of aspirin. It is well known that the
combination of those two drugs is harmful [PHH83] and should thus be avoided.
Figure 7.16 shows the original, not optimized query plan that is input to the extended

Volcano query optimizer. For this plan Volcano estimates the cost of execution to 9.5·1013

IO plus 1.3 · 1012 CPU units using GRIPP as implementation for every path operator.
After cost-based query optimization Volcano returns the plan presented in Figure 7.17.
In the optimized plan all path operators are replaced by reachability, distance and path
length operators. The optimized plan has with 183, 431 IO plus 5.0 ·109 CPU units much
lower estimated cost than the original plan.
In the optimized plan Volcano proposes to use implementations of GRIPP for φstart,

Φstart, and ψstart. For the distance operator this is surprising, as we determined experi-
mentally in Section 6.3 that the recursive implementation has advantages over GRIPP.
The explanation is simple when considering Equations 7.26 and 7.27. In our cost model
IO cost of GRIPP is lower, while the CPU cost is much higher than for the recursive
query strategy. As Volcano considers both cost types separately and first considers
only IO as decision criteria, GRIPP is chosen over the recursive strategy. In this point

137

7. GRIcano

Figure 7.16.: Original query tree before optimization. The estimated cost of execution
of this plan is 9.5 ·1013 IO plus 1.3 ·1012 CPU units. The figures in brackets
show the estimated cardinality for each step. The path operators are shown
in red and Nodes X stands for Node X ./ Label X.

we should either rethink our cost model for Φ or alter the cost comparison of Volcano
towards a combined cost function.
In Figure 7.17 we also show the estimated and actual cardinalities of intermediate

result sets. Note, we estimate the cardinalities of φstart, Φstart, and ψstart quite well. On
the other hand, our cardinality estimates of ./ and δ do not work well in all cases. The
reason is that we did not focus on theses cardinality estimates and used simple functions.
Using more elaborate functions should overcome this problem.
The optimized expression tree given in Figure 7.17 is used as input to create a stored

procedure, which may be used to execute the query inside an RDBMS. The query returns
5, 442 reaction – compound pairs in about 5 seconds. In this list we may identify 3, 464
unique compounds. This number may be too large for manual inspection, but, provided
a table of toxic or harmful agents we are able to use this result as input to a further
query.

7.3.1. Experimental Evaluation

We experimentally evaluate GRIcano using 16 exemplary queries, which are given in
Appendix G. We use three queries for each query type, i.e., reachability (r), distance

138

7.3. GRIcano

Figure 7.17.: Rewritten query tree after cost-based query optimization by GRIcano. Vol-
cano estimates that this plan has costs of 183, 431 IO and 5.0 · 109 CPU
units. The path operators are again shown in red. The labels on edges are
the actual cardinalities (in brackets the estimated ones) of intermediate
results.

(d), path length (l), and path (p). The three queries have the following general form.

SELECT A, B / P
FROM network
LET node A, node B, path P
WHERE A.Type = value

AND B.Type = value
AND P.path = A[->]B
AND P.length {< =} x

For query type 1 we use a condition that selects one node into node variable A, for
query type 2 it select a small set (5 nodes), and for query type 3 it selects a larger set
(some 500 nodes). For node variable B we use a condition that selects a larger set (some
2, 000 nodes) for all three queries. Volcano correctly identifies the different sizes of the
sets. For reachability, distance, and path length queries we use A, B in SELECT, only

139

7. GRIcano

for path queries we use P. We omit the path length condition for reachability queries,
set the length to < n for distance and path queries and = n for path length queries.
Queries 1 and 3 use KEGG, Query 2 uses Reactome. In addition, we created 4 complex
queries (c). The query from Example 7.1 is labeled c2. For c3 we use a similar query,
but return paths between nodes. Query c4 uses KEGG and Intact together.
All 16 queries were parsed, optimized in Volcano, embedded into a stored procedure,

and then executed inside an RDBMS. The parsing and query optimization in Volcano
takes a few milliseconds for queries with up to two path variables. For queries involving
three and more path variables, of which the path operator of some path variables may be
rewritten to a path length, distance, or reachability operator, the optimization may take
up to some seconds. One possibility to improve the optimization time is to consider the
addition of dedicated pruning strategies for the newly proposed operators to Volcano.
For each query type Volcano exchanges the path operator Ψ of the original plan. For

reachability queries r1 – r3 Volcano exchanges Ψ to φstart, and for distance queries d1 –
d3 Φstart(low) is used. For path length queries l1 – l3 Ψ is exchanged to ψstart, and for
path queries p1 – p3 to Ψstart. For the complex queries c1 – c4 Ψ is replaced by Volcano
to the expected operators.
Table 7.2 shows the estimated cost of execution for r1 – r3 for the optimized plan

using the reachability operator φstart and for the non-optimized plan using Ψ (with a
maximum path length of 10 for cost estimation). The table shows the actual execution
time of the optimized query. As we do not have an implementation that computes paths
of infinite length, we cannot provide an execution time for the plan containing Ψ. The
table also shows r3 takes longest, as the cost estimates predict.

Query 1 Query 2 Query 3
Estimated cost

IO CPU IO CPU IO CPU
r: Optimized φstart 615 1.3 · 108 608 7.7 · 105 7, 989 1.8 · 1011

Non-optimized Ψ 9.5 · 1013 1.3 · 1012 3.6 · 1013 6.3 · 1011 9.5 · 1013 1.5 · 1012

Query time (sec)
r: Optimized φstart 1.2 1.1 56.8

Table 7.2.: This table shows the estimated cost of execution for r1 – r3 for the optimized
plan (φstart) and for the non-optimized plan (Ψ) for reachability queries. In
addition, we give the query times for the execution of the optimized plan.

Table 7.3 shows the effect of query rewriting on estimated cost and execution time
for d1 – d3, l1 – l3, and p1 – p3. The basis for all these queries are plans that contain
the path operator Ψ, from which the output is joined with the sets of selected nodes for
path variables A and B. This means, we have to compute for each node of the graph all
paths of length < n and then discard all paths whose start or end node does not fulfill
the condition. For Reactome (Query 2) this takes less than two hours, while for KEGG
the computation did not finish within three hours.
The figures in Table 7.3 show that the optimizer correctly identifies it is advantageous

to rewrite the expression from the non-optimized version (NodesA ./A=start Φ) to Φstart.

140

7.3. GRIcano

The query times as well as estimated cost are orders of magnitude lower than those of
the original plan. The reason is that we only compute paths starting at selected nodes
for node variable A, which is a small subset of all nodes in the graph. The data also show
using the path length operator is cheaper than using the path operator, while using the
distance operator has lowest estimated cost for the same length restriction. This fact is
also supported by the experimentally determined query times. Table 7.3 also shows we
underestimate the cost for Query 1 and overestimate the cost for Query 2. The reason
is that the cost functions are based on averages, but individual nodes may exceed or fall
below this average. For Query 1 we found a node, which exceeds this average, while in
the set of input nodes for Query 2 several nodes fall below this average.

Query 1 Query 2 Query 3
Estimated cost

IO CPU IO CPU IO CPU
d: Optimized Φstart 2.1 · 105 5.2 · 106 9.6 · 107 9.3 · 109 2.0 · 107 5.2 · 109

l: Optimized ψstart 9.8 · 105 9.2 · 103 1.3 · 108 1.7 · 106 9.8 · 108 1.1 · 107

p: Optimized Ψstart 9.8 · 105 1.8 · 104 1.3 · 108 3.5 · 106 9.8 · 108 2.1 · 107

Non-optimized Ψ 1.7 · 1010 1.4 · 108 4.6 · 1010 5.6 · 108 1.7 · 1010 1.5 · 108

Query time (sec)
d: Optimized Φstart 3.6 0.7 13.8
l: Optimized ψstart 24.0 0.3 110.8
p: Optimized Ψstart 47.0 0.8 161.0
Non-optimized Ψ > 10, 000 6007.0 > 10, 000

Table 7.3.: This table shows the estimated cost of execution of d1 – d3, l1 – l3, and
p1 – p3 for the optimized plans (Φstart, ψstart, and Ψstart) and for the non-
optimized plan (Ψ) for distance, path length, and path queries. In addition,
the query times for the execution of the different plans are given.

Figure 7.18(a) shows the expected and experimentally determined cardinalities of the
16 exemplary queries. We predict the highest cardinalities for r1 – r3, which is also
supported by the experimental values. The high difference between expected and actual
cardinality is caused by the deficiency of the cardinality estimates for the de-duplication
operator δ. Another observation is that the experimentally determined cardinalities for
d1 – d3, l1 – l3, and p1 – p3 do not correspond well with the predicted ones. An
explanation is that the equations for the cardinality estimates, like the functions for cost
estimates, are based on averages. The cardinality estimates for complex queries work
quite well, except for Query c2, for which the problem with δ may be accounted.
In Figure 7.18(b) we contrast the estimated costs (IO + 0.001 CPU) with the average

query time of 10 query executions inside the RDBMS, which are partly already given
in Table 7.2 and 7.3. We estimate the cost of execution for c1 – c3 quite well and
from manual inspection the rewritten plans contain the expected operators. Only for
c4 we severely underestimate the cost compared to query execution time. Although the
rewritten plan looks as expected, a reason may be that we use KEGG and Intact as
data graphs. We assume the estimates for KEGG work well, while for Intact, a network

141

7. GRIcano

that only contains undirected edges, our cost estimates may be far off as we only used
directed graphs as basis for our cost functions. Clearly, this provides potential for further
improvement.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

r1 r2 r3 d1 d2 d3 l1 l2 l3 p1 p2 p3 c1 c2 c3 c4

C
ar

di
na

lit
y

Query Number

Determined and estimated cardinality for optimized PQL queries

Exp. determined
Estimated

(a) Estimated and observed cardinalities.

 0.1

 1

 10

 100

 1000

r1 r2 r3 d1 d2 d3 l1 l2 l3 p1 p2 p3 c1 c2 c3 c4

Q
ue

ry
 ti

m
es

 (
se

c)

E
st

im
at

ed
 c

os
t (

IO
 +

 0
.0

01
 C

P
U

)

Query Number

Determined query times and estimated costs for PQL queries

Exp. determined (y)
Estimated (y2)

(b) Estimated cost and observed query times.

Figure 7.18.: Comparison of estimated cardinalities and cost to experimentally deter-
mined cardinalities and query times on exemplary PQL queries optimized
by GRIcano.

To get an insight into the quality of the selected plan we use Query c2 and enforce
Volcano to apply certain algorithms or operators when creating the optimized plan. Ta-
ble 7.4 shows the expected cost and actual query time of different plans. The figures
show the execution of only one query plan (Φstartrec) is faster than the best plan cho-
sen by Volcano (labeled as ’original’). In the plan with the fastest execution time the
algorithm for Φstart is the recursive query strategy instead of GRIPP. As we already
mentioned, Volcano takes as first decision criteria IO cost. For Φstart the IO cost of the
recursive query strategy is higher than the cost for GRIPP, while CPU cost is lower. For
the remaining operators using the recursive query strategy is, as predicted by the cost
functions, worse than using GRIPP.
Table 7.4 also shows the effect of not allowing the optimizer to use certain operators,

which was enforced in Volcano by deleting rewrite rules. The query times show none of
the alternative plans with different operators beats the original best plan. The plan, for
which we disabled the rewrite rules for all operators to exchange an operator op to opstart

even has an execution time that is two orders of magnitude slower than the execution
time of the original plan. This leads us to the assumption that one of the most important
rewrite strategies is to restrict the number of start and target nodes early during query
execution, i.e., pushing the selection operator down. Although in most cases IO and
CPU cost are only marginally higher than for the original plan, we are able to determine
the plan that is executed as one of the fastest. And this is the most important criteria
when optimizing for query times.
Based on the presented experiments we believe the cost-based optimizer created by

Volcano, which uses the presented cardinality estimates from Section 7.1 and cost func-
tions from Section 7.2 is able to propose a good execution plan. We showed that the

142

7.4. Related Work

Query plan Cost IO Cost CPU Query time (sec)
original 183, 400 4978.9 · 106 5.2
Algorithm exchange
φstart rec 183, 900 4978.9 · 106 17.1
Φstart rec 186, 000 4976.0 · 106 2.4
ψstart rec 183, 600 4978.9 · 106 15.8
Operator exchange
no φ 183, 900 4995.3 · 106 17.1
no Φ 284, 600 4976.0 · 106 5.3
no ψ 183, 400 4979.0 · 106 17.6
no opstart 287, 400 4976.0 · 106 1, 131.5

Table 7.4.: Estimated cost and query execution times for different optimized plans when
enforcing Volcano to use certain algorithms or operators or Query c2.

optimizer avoids very time consuming plans by rewriting the algebra expression and
choosing fast algorithms for the operators.

7.4. Related Work
Cost-based query optimization in RDBMS is a well researched topic [SAC+79, HFLP89,
GM93, Ioa96]. There exist cost functions and cardinality estimates for the classic re-
lational algebra operators selection, projection, and join. The situation is different for
cost-based query optimization of graph queries. Only few researchers target this topic.
In the following we discuss these works.

7.4.1. Cardinality and Cost Estimates
To estimate the result size of reachability queries and general recursive Datalog queries
Lipton and Naughton present in [LN89] and refine in [LN90] an adaptive sampling al-
gorithm. They suggest to estimate the result size based on the given query Q only at
query time. They assume the input of Q may be partitioned and each of these partitions
returns a subset of the result. To estimate the result sizes they partition the input and
continuously use partitions to compute the result until a predetermined cost parameter
(for example time for sampling) is exceeded. The advantage of this method is that the
cardinality estimate is based on the actual input set and thus may produce a better
estimate than |φ(s, t,G)∗|, which we propose in Equation 7.1. The disadvantage is that
estimating the result size for input partitions also requires time, which may in some
cases even exceed the actual query time.

7.4.2. Rule-based Query Optimization
In [BR86] Bancilhon and Ramakrishnan review query optimization strategies for deduc-
tive databases. All strategies under review use a rule-based rewrite strategy. The aim
of all those strategies is to push the selection operator as deep as possible.

143

7. GRIcano

Buneman and colleagues also present in [BDHS96] rule-based optimization strategies
for their graph query language UnQL and their proposed calculus. Their main focus
also lies on pushing the selection operation as far down as possible.
Odonez proposes in [Ord05] a similar strategy for the execution of graph queries in

RDBMS using recursive views to answer reachability queries on trees and DAGs. For
general graphs a length condition must be given to ensure termination. Their opti-
mization strategy also enforces the pushing of the selection operator as deep as possible.
In [Ord10] the authors show the effect of the different optimization strategies on different
types of graphs.
In general these rule-based strategies should allow for an efficient execution of graph

queries. In Section 7.3 we also identified that restricting the set of start and target nodes
early during query execution as important rewrite strategy. Although the proposed
rule-based strategies may work in many cases, we believe using the cost-based query
optimization, which we propose in this work, allows for more flexibility in choosing the
order of the different operators.

7.4.3. Cost-based Query Optimization

The first cost-based query optimization methods for graphs have been proposed for
XML documents. Frasincar et al. [FHP02] and Cheng et al. [CYD07] optimize the
order of the execution of XPath steps. Both approximate the cost through the expected
size of an intermediate result, i.e., the larger the result size, the higher the cost. To
estimate the cardinality they use frequencies of node labels involved in an XPath step.
In [WPJ03b] and [WPJ02] Wu et al. show that frequencies of node labels may not predict
the cardinality of an XPath step well enough. Thus, they propose a so called position
histogram, which must be created for each unique label in the graph. In [WPJ03a]
they use the cardinality and cost estimates that may be computed from these position
histograms for cost-based query optimization of XML queries. In addition, their research
shows limiting query optimization to left-deep plans may not select the most efficient plan
in the XML setting using their algorithms, but full dynamic programming with different
pruning strategies should be employed. Volcano does not specifically produce left-deep
plans, as it uses what the authors call a directed dynamic programming approach, which
prunes more costly sub-plans early during query optimization regardless their position
in the tree.
McHugh and Widom present in [MW99] the query processor of Lore, an XML data-

base. Their cardinality estimates are based on an index of pre-computed paths of up to
length k. This index may become quite large with growing k and growing number of
different labels. Thus, in [AAN01] Aboulnaga et al. propose an index, which summarizes
XML documents while computing the statistics for paths. All these optimizations and
estimates only work if there are few different labels for nodes, which is the case in XML
documents. In addition, position histograms and document summarization only work
well on tree structured data. As biological networks are general graphs and each node has
an individual label the proposed cardinality estimates are not applicable in our setting.
In recent years cost-based query optimization is also used to find matching subgraphs

144

7.4. Related Work

in a given data graph, which we discuss in the following. He and Singh want to find
isomorphic subgraphs for a query graph in a data graph [HS08]. They consider each
edge of the query graph separately and optimize the order in which edges of the query
graph are mapped to edges in the data graph. They approximate the cost through the
expected size of an intermediate result. To estimate this size they use the frequency of
the edge label divided by the frequencies of their adjacent node labels.
Zhao and Han argue it is not efficient to match the query graph edge by edge to the

data graph [ZH10]. Their approach is to create subgraphs of the query graph and match
these entirely to the data graph. To quickly reduce the number of possible matching
points they propose an index structure called neighborhood signature, for which they
index the vicinity of each node up to a predefined distance k. Using this index structure
a cardinality estimate for each subgraph, i.e., how many possible matches this subgraph
has, may be gained. To obtain the complete result all subgraphs of the query graph have
to be joined, where the cardinality estimates are basis for the optimization of the join
order.
In [ZCÖ09] Zou and colleagues do not target the problem of finding isomorphic sub-

graphs, but assume each edge in the query graph maps to a path of up to length k in
the data graph. They argue the frequencies of node and edge labels are not sufficient to
estimate the number of possible matches for each edge in the query graph. They propose
sampling to estimate connectivity for different distances and use this information for a
correction factor of the cardinality estimate. The cardinality estimate is used as input
for the cost functions for their proposed algorithms. The goal is to optimize the order
in which paths bound to two adjacent edges of the query graph are joined.
All three methods to optimize the search for matching subgraphs in a data graph also

rely on the assumption that nodes in the data graph share few distinct node labels. As
mentioned before, in biological networks each node has a unique label, and thus the
presented methods for cardinality estimation may not be applicable.
In [Kos09] Koschmieder targets the problem of finding regular path expressions in large

graphs. Their approach is to first determine the exact number of node mappings for each
node in the regular path expression. Starting with the node with the lowest number of
mappings they extend the search along the edges in the regular path expression. A
disadvantage of this approach is that it is only possible to extend paths starting from
one initial node. In our approach we allow for different start points, whose paths may
then be joined according to the cardinality and cost estimates.

145

8. Conclusion and Outlook
This chapter concludes this thesis and provides an outlook on possible improvements for
cost-based query optimization for graph queries.

8.1. Summary
In this thesis we present GRIcano, a system that efficiently executes graph queries. For
GRIcano we assume graphs are stored and queried using relational database management
systems (RDBMS). We presented in Chapter 3 the syntax and semantics of an extended
version of the pathway query language PQL to express graph queries. We employ ideas
from RDBMS to improve the performance of query execution. Thus, the core of GRIcano
is a cost-based query optimizer that is created using the Volcano optimizer generator
presented in Section 2.4. In this thesis we made contributions to all three required
components of the optimizer, the relational algebra, implementations, and cost model.
In Chapter 4 we argued that relational algebra operators alone are not sufficient to

express graph queries. Thus, we first presented new operators to rewrite PQL queries
to algebra expressions. We proposed the reachability φ, distance Φ, path length ψ, and
path operator Ψ. In addition, we provided rewrite rules for the newly proposed operators
in combination with standard relational algebra operators that may be used to rewrite
expressions and exchange operators.
Secondly, we provided implementations for each proposed operator in Chapter 5. The

main contribution is GRIPP, an index structure that efficiently executes reachability
queries on very large graphs, containing directed edges. The advantage of GRIPP over
other existing index structures, which we reviewed in that chapter, is that GRIPP is
able to answer reachability queries for a given pair of nodes on average in constant time
regardless the size or shape of the graph, while the created index is in the size of the
graph. For example, using GRIPP to answer reachability queries for a given pair of
nodes is on average only about 3 times slower than using the transitive closure (TC). In
comparison, GRIPP is up to 30 times faster than the recursive query strategy. We also
show we may employ GRIPP and the recursive query strategy, which we also present in
Chapter 5, to provide implementations for all four proposed operators.
The third component of Volcano is the cost model, which requires cardinality esti-

mates for the proposed operators and cost models for the used implementations. Based
on extensive experimental evaluation of the proposed implementations on generated ran-
dom and scale-free graphs presented in Chapter 6 we present functions to estimate the
cardinality of the φ, Φ, ψ, and Ψ operator in Chapter 7. In addition, we deduced func-
tions for the presented algorithms to estimate the cost of execution. The novel approach
is that these functions only use key figures of the graph, which are number of nodes

147

8. Conclusion and Outlook

and edges, degree of the node with highest outdegree, and number of nodes with zero
outdegree.
We finally present the effectiveness of GRIcano using exemplary graph queries on real

biological networks. The experiments conducted show the cost-based query optimizer
created by Volcano is able to suggest a very efficient plan for graph query execution.

8.2. Future Work
This thesis contains several aspects for which an improvement may be proposed.

PQL Extension

In Chapter 3 we describe an extended version of PQL. This query language already
allows users to express various graph queries, but it lacks the capability to formulate
regular expressions for paths. An example for a regular path expression is to look for
paths that lead from a chemical compound A to another compound B over two to four
reaction-compound edges, including at least one edge, which contains a self-catalyzing
reaction R. Using PQL we are not able to express this query. This is a deficiency of the
current version of PQL. Thus, regular path expressions may be incorporated in a future
version.
The proposed operators in Chapter 4 are sufficient to rewrite PQL statements to

algebra expressions. Although, if PQL is extended for regular path expressions, an
adaption of the path operator Ψ may become necessary.

Improved Algorithms for Graph Queries

A hugh improvement potential offer implementations for the proposed operators, es-
pecially for the distance Φ, path length ψ, and path operator Ψ. For the reachability
operator φ we believe our proposed GRIPP index offers a very good compromise between
query time and index size. Compared to other query methods for answering reachabil-
ity queries we still believe using GRIPP is one of the best choices to efficiently answer
reachability queries on different graph types and sizes in RDBMS.
When considering implementations for the distance operator Φ the situation is differ-

ent. In this case GRIPP has disadvantages over the competing recursive query strategy.
Even the recursive query strategy is up to orders of magnitude slower than querying the
transitive closure (TC). From my point of view, an interesting challenge for the future
is to develop an index structure that is smaller than TC and less costly to create, but
which also allows answering distance queries efficiently, possibly even in constant time.
Recently developed algorithms to answer distance queries are interesting [CY09], but
we believe there is still potential for improvement. To find efficient implementations
for path length and path queries the situation is even more complex and also requires
attention.
In this work we focused on graphs with directed, unlabeled, and unweighted edges. For

other graph types, e.g., for graphs with undirected edges, other types of algorithms may

148

8.2. Future Work

be favorable. Thus, when developing new algorithms one should also consider graphs
with other types of edges.

Cardinality Estimates and Cost Functions

In Chapter 7 we developed functions to estimate the cardinality of the different opera-
tors and costs of the execution of algorithms. These functions are based on extensive
measurements on generated scale-free and random graphs with directed edges. Thus, for
further validation and improvement of the functions it is inevitable to test them on other
graph types and shapes. It may even become necessary to extend the equations for other
key figures of the graph, such as size and number of connected components, the network
diameter, radius, centralization, heterogeneity, or clustering coefficient [ARS+08]. The
result of such a validation might be that different functions could be needed for different
types of graphs, even when employing the same algorithm.

GRIcano

We presented a prototypic implementation of GRIcano in Chapter 7. This prototype may
be improved in several ways. First, it currently does not support the grouping operator,
which is essential to express PQL queries that contain a HAVING clause. We believe the
prototype already shows the prove of concept, even with this deficiency. Second, the
estimates of the classical relational algebra operators may need improvement to better
estimate the result size of join, selection, or de-duplication operators.
We saw in Section 7.3 the evaluation of graph queries may be very time consuming,

especially computing paths between sets of nodes. If we incorrectly estimate the sizes
of input sets we may choose an unfavorable plan for query execution. We currently rely
on static and predefined selectivity information of relations to estimate the number of
selected nodes. A first improvement would be to use the estimations of an RDBMS,
which are hopefully better. Still, these estimations may not always be correct. Thus,
for a future implementation it may be prudent to revisit the ideas of dynamic query
optimization [KD98], adapt them for graph query optimization, and then accommodate
them in GRIcano.
Currently, GRIcano returns the result of a graph query as relation. A user may expect

as answer to a graph query a result graph, i.e., a representation containing nodes and
edges. Thus, we may consider to extend an existing bioinformatics package for biological
network visualization such as Cytoscape [SOR+11].
An important feature of GRIcano is its modular design principle that allows for an easy

extension of the system to include new implementations for the proposed operators. If
new and more efficient algorithms for answering distance, path length or path queries are
developed they may easily be included if cost functions are provided, which are designed
similar to the cost functions presented in Section 7.2. Overall, we believe GRIcano is
an important first step in cost-based graph query optimization and more contributions
may and should be made in this area.

149

A. Strongly Connected Component

A.1. Kosaraju’s Algorithm
Algorithm A.1 presents Kosaraju’s algorithm, which performs two depth-first searches.
The first depth-first search assigns every node in the reverse graph of G a postorder
value. In the second depth-first search on the forward graph we assign every node the
number of the strongly connected component. All nodes with the same number are in the
same strongly connected component. As Algorithm A.1 only performs two depth-first
searches the runtime is O(|V |+ |E|).
Given a graph G = (V,E) and strongly connected components C1, C2, . . . , Cn of G.

We may construct the component graph GC by representing every strongly connected
component Ci as node in GC and add edges between Ci and Cj , with i 6= j, if at least
one node in Ci has a directed edge to at least one node in Cj .

Theorem A.1. The resulting graph GC forms a DAG.

Proof A.1. Let us assume GC is not cycle-free. Therefore, there must exist two nodes
u, v ∈ V for which holds u v and v u. According to Definition 2.10 these two nodes
must be contained in one strongly connected component, i.e., no such nodes exist.

151

A. Strongly Connected Component

Algorithm A.1: Kosaraju’s algorithm to compute strongly connected components
of G.
Data: graph G

1 traversed ← ∅
2 pp_count ← 0
3 comp_count ← 0
4 FUNCTION strongly-connected
5 foreach u ∈ V do
6 if u /∈ traversed then
7 depth-first-reverse(u)
8 end
9 end

10 traversed ← ∅
11 foreach u ∈ V, ordered by postorder, descending do
12 if u /∈ traversed then
13 depth-first-forward(u)
14 comp_count ← comp_count + 1
15 end
16 end
17 end
18 FUNCTION depth-first-reverse(u)
19 traversed ← traversed ∪ u
20 foreach v ∈ parents(u) do
21 if v /∈ traversed then
22 depth-first-reverse(v)
23 end
24 end
25 upost ← pp_count ++
26 end
27 FUNCTION depth-first-forward(u)
28 traversed ← traversed ∪ u
29 ucomp ← comp_count
30 foreach v ∈ children(u) do
31 if v /∈ traversed then
32 depth-first-forward(v)
33 end
34 end
35 end

152

B. Rewrite Rules for Operators

B.1. Path Operator

B.1.1. Restriction on Start and End Node

Equations B.1 – B.3 show the rewrite rules if restriction on start and end nodes are
given.

Ψstart
cond, start=A.node_id(Nodes A, Edge)

:= σstart=A.node_id(Nodes A×Ψcond(Edge))
= Nodes A ./A.node_id=start Ψcond(Edge)

(B.1)

Ψend
cond, end=B.node_id(Edge, Nodes B)

:= σend=B.node_id(Ψcond(Edge)× Nodes B)
= Ψcond(Edge) ./end=B.node_id Nodes B

(B.2)

Ψboth
cond, start=A.node_id AND end=B.node_id(Nodes A, Edge, Nodes B)

:= σstart=A.node_id AND end=B.node_id(Nodes A×Ψcond(Edge)× Nodes B)
= Nodes A ./A.node_id=start Ψcond(Edge) ./end=B.node_id Nodes B

(B.3)

B.1.2. Path Operator and Other Operators

Equations B.4 – B.6 show rewrite rules for Ψ in combination with other operators.

σsel_cond(Ψstart
cond(Nodes, Edge)) = Ψstart

cond(σsel_cond(Nodes), Edge)
if sel_cond contains only conditions on attributes of Nodes

(B.4)

σsel_cond(Ψend
cond(Edge, Nodes)) = Ψend

cond(Edge, σsel_cond(Nodes))
if sel_cond contains only conditions on attributes of Nodes

(B.5)

153

B. Rewrite Rules for Operators

σsel_cond(Ψboth
cond(Nodes A, Edge, Nodes B)) =

σsel_cond_A(σsel_cond_B(Ψboth
cond(Nodes A, Edge, Nodes B))) =

σsel_cond_A(Ψboth
cond(Nodes A, Edge, σsel_cond_B(Nodes B))) =

Ψboth
cond(σsel_cond_A(Nodes A), Edge, σsel_cond_B(Nodes B))

if sel_cond_A contains only conditions on attributes of Nodes A and
sel_cond_B contains only conditions on attributes of Nodes B and
sel_cond = sel_cond_A AND sel_cond_B

(B.6)

Equations B.7 – B.10 show the rewrite rules to push the join into Ψ.

R ./R.attr op A.attr Ψstart
cond(Nodes A, Edge)

= Ψstart
cond((R ./R.attr op A.attr Nodes A), Edge)

(B.7)

R ./R.attr op B.attr Ψend
cond(Edge, Nodes B)

= Ψend
cond(Edge, (R ./R.attr op B.attr Nodes B))

(B.8)

R ./R.attr op A.attr Ψboth
cond(Nodes A, Edge, Nodes B)

= Ψboth
cond((R ./R.attr op A.attr Nodes A), Edge, Nodes B)

(B.9)

R ./R.attr op B.attr Ψboth
cond(Nodes A, Edge, Nodes A))

= (Ψboth
cond(Nodes A, Edge, (R ./R.attr op B.attr Nodes B))

(B.10)

B.2. Path Length Operator

B.2.1. Restriction on Start and End Node

Equations B.11 – B.13 show the rewrite rules if restriction on start and end nodes are
given.

ψstart
cond, start=A.node_id(Nodes A, Edge)

:= σstart=A.node_id(Nodes A× ψcond(Edge))
= Nodes A ./A.node_id=start ψcond(Edge)

(B.11)

154

B.2. Path Length Operator

ψend
cond, end=B.node_id(Edge, Nodes B)

:= σend=B.node_id(ψcond(Edge)× Nodes B)
= ψcond(Edge) ./end=B.node_id Nodes B

(B.12)

ψboth
cond, start=A.node_id AND end=B.node_id(Nodes A, Edge, Nodes B)

:= σstart=A.node_id AND end=B.node_id(Nodes A× ψcond(Edge)× Nodes B)
= Nodes A ./A.node_id=start ψcond(Edge) ./end=B.node_id Nodes B

(B.13)

B.2.2. From Path Operator Ψ to Path Length Operator ψ

Equations B.14 and B.15 show the rewrite rule to rewrite an expression containing Ψ to
an expression containing ψ.

δ(πA(Ψcond(Edge))) = πA(ψcond(Edge))

if A = {start, end, length}
(B.14)

δ(γA,count(path_id)(Ψcond(Edge))) = γA,count(path_id)(ψcond(Edge))

if A = {path_id, start, end, length}
(B.15)

Using Equation B.14 and Equations B.11 – B.13 we can deduce the rewrite rules for
Ψstart to ψstart, Ψend to ψend, and Ψboth to ψboth.

B.2.3. Path Length Operator and Other Operators

Equations B.16 – B.18 shows the rewrite rule to push the selection operator to Nodes.

σsel_cond(ψstart
cond(Nodes, Edge)) = ψstart

cond(σsel_cond(Nodes), Edge)
if sel_cond contains only conditions on attributes of Nodes

(B.16)

σsel_cond(ψend
cond(Edge, Nodes)) = ψend

cond(Edge, σsel_cond(Nodes))
if sel_cond contains only conditions on attributes of Nodes

(B.17)

155

B. Rewrite Rules for Operators

σsel_cond(ψboth
cond(Nodes A, Edge, Nodes B)) =

σsel_cond_A(σsel_cond_B(ψboth
cond(Nodes A, Edge, Nodes B))) =

σsel_cond_A(ψboth
cond(Nodes A, Edge, σsel_cond_B(Nodes B))) =

ψboth
cond(σsel_cond_A(Nodes A), Edge, σsel_cond_B(Nodes B))

if sel_cond_A contains only conditions on attributes of Nodes A and
sel_cond_B contains only conditions on attributes of Nodes B and
sel_cond = sel_cond_A AND sel_cond_B

(B.18)

Equations B.7 – B.10 show the rewrite rules to push the join into ψ.

R ./R.attr op A.attr ψ
start
cond(Nodes A, Edge)

= ψstart
cond((R ./R.attr op A.attr Nodes A), Edge)

(B.19)

R ./R.attr op B.attr ψ
end
cond(Edge, Nodes B)

= ψend
cond(Edge, (R ./R.attr op B.attr Nodes B))

(B.20)

R ./R.attr op A.attr ψ
both
cond(Nodes A, Edge, Nodes B)

= ψboth
cond((R ./R.attr op A.attr Nodes A), Edge, Nodes B)

(B.21)

R ./R.attr op B.attr ψ
both
cond(Nodes A, Edge, Nodes A))

= (ψboth
cond(Nodes A, Edge, (R ./R.attr op B.attr Nodes B))

(B.22)

B.3. Distance Operator

B.3.1. Restriction on Start and End Node

Equations B.23 – B.25 show the rewrite rules if restriction on start or end nodes are
given.

Φstart
cond, start=A.node_id(Nodes A, Edge)

:= σstart=A.node_id(Nodes A× Φcond(Edge))
= Nodes A ./A.node_id=start Φcond(Edge)

(B.23)

156

B.3. Distance Operator

Φend
cond, end=B.node_id(Edge, Nodes B)

:= σend=B.node_id(Φcond(Edge)× Nodes B)
= Φcond(Edge) ./end=B.node_id Nodes B

(B.24)

Φboth
cond, start=A.node_id AND end=B.node_id(Nodes A, Edge, Nodes B)

:= σstart=A.node_id AND end=B.node_id(Nodes A× Φcond(Edge)× Nodes B)
= Nodes A ./A.node_id=start Φcond(Edge) ./end=B.node_id Nodes B

(B.25)

B.3.2. From Path Operator Ψ to Distance Operator Φ

Equation B.26 shows the rewrite rule to rewrite an expression containing Ψ to an ex-
pression containing φ.

πA(Ψcond(Edge)) = πA(φcond(Edge))

if A = {start, end} and cond = [->] | [-] | [<->], (length_cond)?

with length_cond := length op n (AND length op n)* and op := < | ≤
(B.26)

Using Equation B.26 and Equations B.23 – B.25 we can deduce the rewrite rules for
Ψstart to φstart, Ψend to φend, and Ψboth to φboth.

B.3.3. Distance Operator and Other Operators

Equations B.27 – B.27 show the rewrite rule to push the selection operator to Nodes.

σsel_cond(Φstart
cond(Nodes, Edge)) = Φstart

cond(σsel_cond(Nodes), Edge)

if sel_cond contains only conditions on attributes of Nodes

(B.27)

σsel_cond(Φend
cond(Edge, Nodes)) = Φend

cond(Edge, σsel_cond(Nodes))

if sel_cond contains only conditions on attributes of Nodes

(B.28)

157

B. Rewrite Rules for Operators

σsel_cond(Φboth
cond(Nodes A, Edge, Nodes B)) =

σsel_cond_A(σsel_cond_B(Φboth
cond(Nodes A, Edge, Nodes B))) =

σsel_cond_A(Φboth
cond(Nodes A, Edge, σsel_cond_B(Nodes B))) =

Φboth
cond(σsel_cond_A(Nodes A), Edge, σsel_cond_B(Nodes B))

if sel_cond_A contains only conditions on attributes of Nodes A and
sel_cond_B contains only conditions on attributes of Nodes B and
sel_cond = sel_cond_A AND sel_cond_B

(B.29)

Equations B.30 – B.33 show the rewrite rules to push the join into Φ.

R ./R.attr op A.attr Φstart
cond(Nodes A, Edge)

= Φstart
cond((R ./R.attr op A.attr Nodes A), Edge)

(B.30)

R ./R.attr op B.attr Φend
cond(Edge, Nodes B)

= Φend
cond(Edge, (R ./R.attr op B.attr Nodes B))

(B.31)

R ./R.attr op A.attr Φboth
cond(Nodes A, Edge, Nodes B)

= Φboth
cond((R ./R.attr op A.attr Nodes A), Edge, Nodes B)

(B.32)

R ./R.attr op B.attr Φboth
cond(Nodes A, Edge, Nodes A)

= Φboth
cond(Nodes A, Edge, (R ./R.attr op B.attr Nodes B))

(B.33)

B.4. Reachability Operator

B.4.1. Restriction on Start and End Node

Equations B.34 – B.36 show the rewrite rule if restrictions on the start or end node are
given.

φstart
cond, start=A.node_id(Nodes A, Edge)

:= σstart=A.node_id(Nodes A× φcond(Edge))
= Nodes A ./A.node_id=start φcond(Edge)

(B.34)

158

B.4. Reachability Operator

φend
cond, end=B.node_id(Edge, Nodes B)

:= σend=B.node_id(φcond(Edge)× Nodes B)
= φcond(Edge) ./end=B.node_id Nodes B

(B.35)

φboth
cond, start=A.node_id AND end=B.node_id(Nodes A, Edge, Nodes B)

:= σstart=A.node_id AND end=B.node_id(Nodes A× φcond(Edge)× Nodes B)
= Nodes A ./A.node_id=start φcond(Edge) ./end=B.node_id Nodes B

(B.36)

B.4.2. From Path Operator Ψ to Reachability Operator φ

Equation B.37 shows the rewrite rule to rewrite an expression containing Ψ to an ex-
pression containing φ.

δ(πA(Ψcond(Edge))) = πA(φcond(Edge))
if A = {start, end} and cond = [->] | [-] | [<->]

(B.37)

Using Equation B.37 and Equations B.34 – B.36 we can deduce the rewrite rules for
Ψstart to φstart, Ψend to φend, and Ψboth to φboth.

B.4.3. Reachability Operator and Other Operators

Equations B.38 – B.36 show the rewrite rules to push down the selection operator.

σsel_cond(φstart
cond(Nodes, Edge)) = φstart

cond(σsel_cond(Nodes), Edge)
if sel_cond contains only conditions on attributes of Nodes

(B.38)

σsel_cond(φend
cond(Edge, Nodes)) = φend

cond(Edge, σsel_cond(Nodes))
if sel_cond contains only conditions on attributes of Nodes

(B.39)

159

B. Rewrite Rules for Operators

σsel_cond(φboth
cond(Nodes A, Edge, Nodes B)) =

σsel_cond_A(σsel_cond_B(φboth
cond(Nodes A, Edge, Nodes B))) =

σsel_cond_A(φboth
cond(Nodes A, Edge, σsel_cond_B(Nodes B))) =

φboth
cond(σsel_cond_A(Nodes A), Edge, σsel_cond_B(Nodes B))

if sel_cond_A contains only conditions on attributes of Nodes A and
sel_cond_B contains only conditions on attributes of Nodes B and
sel_cond = sel_cond_A AND sel_cond_B

(B.40)

Equations B.41 – B.44 show the rewrite rules to push the join into φ.

R ./R.attr op A.attr φ
start
cond(Nodes A, Edge)

= φstart
cond((R ./R.attr op A.attr Nodes A), Edge)

(B.41)

R ./R.attr op B.attr φ
end
cond(Edge, Nodes B)

= φend
cond(Edge, (R ./R.attr op B.attr Nodes B))

(B.42)

R ./R.attr op A.attr φ
both
cond(Nodes A, Edge, Nodes B)

= φboth
cond((R ./R.attr op A.attr Nodes A), Edge, Nodes B)

(B.43)

R ./R.attr op B.attr φ
both
cond(Nodes A, Edge, Nodes A)

= φboth
cond(Nodes A, Edge, (R ./R.attr op B.attr Nodes B))

(B.44)

160

C. Additional Algorithms for GRIPP

C.1. Relational Schema for Storing GRIPP

The GRIPP index as well as the stop nodes are stored in relations. Figure C.1 shows the
database schema to store the GRIPP index as well as the stop nodes. The instance type
of a node is stored as special attribute in the index table. For stop nodes we store apart
from the node_id also the pre- and postorder value and the depth of the tree instance
of that stop node.

GRIPP
node_id
preorder
postorder
depth
edge_id
instance_type

Stop_nodes
node_id
preorder
postorder
depth

Figure C.1.: The database schema to store the GRIPP index structure and stop nodes.

C.2. Stop Node List for GRIPP

To create the list of stop nodes we would have to check the reachable instance set of
every node. As this is too time consuming we test only selected nodes. We are especially
interested in nodes whose reachable instance set covers many instances. Therefore, we
only consider child nodes c of the virtual root node as stop node candidates. In addition
for every c we compute the size of RIS(c), |RIS(c)|, which is basically cpost − cpre/2. We
only consider c as stop node candidate if |RIS(c)| ≥ t, with t being a cut-off value. For
our experiments we use the cut-off value t = 0.0005·max(|RIS(c)|), which we determined
empirically as tradeoff between the number of nodes we must evaluate during the stop
node list generation and the number of stop nodes found. Furthermore, we only consider
a node as stop node candidate if it is a potential hop node, i.e., if it has a non-tree instance
in IND(G). For a stop node candidate s we check if the tree instance h′ of any hop node
in RIS(s) is also in RIS(s). If that is not the case, h′ is sibling to s and s is not a stop
node; otherwise, s is a stop node and is added to the list of stop nodes. Algorithm C.1
shows the procedure to compute the list of the stop nodes. The child nodes to the root
node are retrieved according to the size of their reachable instance sets.

161

C. Additional Algorithms for GRIPP

Algorithm C.1: The algorithm to compute the stop node list
1 PROCEDURE compute_stop_nodes(root_node)
2 t ← 0
3 while cand ← next(children(root_node)) // order by |RIS |
4 do
5 if t = 0 then
6 t ← post(cand) −pre(cand)
7 end
8 if post(cand) −pre(cand) > 0.0005·t
9 AND hasNon-tree(cand) AND stopNodeCond(cand) then

10 STOP_NODES ← STOP_NODES ∪ (node(cand), pre(cand), post(cand));
11 end
12 end
13 end
14 FUNCTION stopNodeCond(cand)
15 forall the non_tree_inst ∈ RIS(cand) do
16 tree_inst ← getTree(non_tree_inst)
17 if tree_inst /∈ RIS(cand) then return false
18 end
19 return true
20 end

C.3. Reachability for Sets of Nodes
The function given in Algorithm C.2 is a variation of Algorithm 5.2 presented on page
79. To find all reachable nodes from u we basically use every possible hop node unless
this hop node has already been used or is successor to a used hop node. In addition,
we add each hop node to a list of reachable nodes, which initially is empty. To get
all reachable nodes we have to add an additional step. This step starts in line 22 of
Algorithm C.2. The idea is to find all tree instances in the reachable instance set of the
hop node h. To avoid that we retrieve nodes multiple times we skip all intervals of used
hop nodes that lie in RIS(h) (line 23).

162

C.3. Reachability for Sets of Nodes

Algorithm C.2: Function to find all nodes that are reachable from u using GRIPP.
1 used_hops ← ∅; used_stops ← ∅; reached_nodes ← ∅
2 FUNCTION reachability(u) RETURNS boolean
3 used_hops ← used_hops ∪ (u)
4 if u ∈ STOP_NODES then
5 used_stops ← used_stops ∪ (u)
6 else
7 while non_tree_inst ← nextStop(RIS(u)) do
8 tree_inst ← getTreeInst(non_tree_inst)
9 reachability(tree_inst)

10 end
11 if isInRIS(u, used_stops) then return
12 H1 ... Hn ← getUsedHopsInRIS(u)

// skip ranges
13 non_tree_instances ← getNonTreeInst(RIS(u) \ RIS(H1) \ ... \ RIS(Hn))
14 foreach non_tree_inst ∈ non_tree_instances do
15 tree_inst ← getTreeInst(non_tree_inst)
16 if !hasChildren(tree_inst) then continue

// if new hop has been used as hop
17 if tree_inst ∈ used_hops then continue

// if new hop is in a RIS of a used hop
18 if isInRIS(tree_inst, used_hops) then continue

// otherwise call recursively
19 reachability(tree_inst)
20 end
21 end

// now add all tree instances that are reachable
22

23 min_pre ← pre(u); reached_nodes ← reached_nodes ∪ (u)
24 foreach inst ∈ getTreeInRIS(u) do
25 if min_pre < pre(inst) then
26 if inst ∈ used_hops then
27 min_pre ← post(inst)
28 else
29 reached_nodes ← reached_nodes ∪ (inst)
30 end
31 end
32 end
33 end

163

D. Graph Properties

No. nodes No. edges Max. degree SD(Max.
degree) Zero degree SD (Zero

degree)
25 50 4.6 0.80 3.0 2.19
50 100 5.4 0.49 5.6 1.50

100 200 6.2 0.75 12.0 1.67
250 500 6.2 0.40 33.8 4.49
500 1,000 7.6 0.49 68.8 5.78

1,000 2,000 7.8 0.40 135.6 12.56
2,500 5,000 8.8 1.17 339.8 11.02
5,000 10,000 8.8 0.40 680.4 19.64
10,000 20,000 9.6 1.20 1,346.8 13.48
25,000 50,000 10.0 0.89 3,385.4 20.36
50,000 100,000 9.8 0.40 6,753.6 53.80

100,000 200,000 11.2 0.75 13.520.2 75.82
250,000 500,000 11.4 0.80 33,945.0 173.87
500,000 1,000,000 11.8 0.40 67,666.0 134.70

1,000,000 2,000,000 11.4 0.49 135,198.0 251.99
2,500,000 5,000,000 11.8 0.40 338,272.4 313.53

5,000 5,000 6.8 0.75 1,839 40.10
5,000 7,500 8.4 1.02 1,108.4 13.51
5,000 10,000 8.8 0.40 680.4 19.64
5,000 12,500 10.8 0.98 407.0 11.26
5,000 15,000 10.8 0.75 240.6 2.42
5,000 17,500 11.6 0.80 153 14.42
5,000 20,000 13.6 0.49 83.8 9.79
5,000 25,000 15.2 1.17 31.8 6.73
5,000 30,000 16.2 1.17 14.0 2.68
5,000 40,000 20.0 1.67 1.6 0.45
5,000 50,000 22.8 1.17 0.2 0.40

Table D.1.: Key figures for different random graphs (Max. degree = outdegree of the
nodes with highest outdegree; Zero degree = number of nodes with an out-
degree 0). The figures are an average over five generated graphs for each
graph type and its standard deviation (SD).

165

D. Graph Properties

No. nodes No. edges Max. degree SD (Max.
degree) Zero degree SD (Zero

degree)
25 50 5.6 0.49 2.8 0.40
50 100 7.2 0.75 7.6 1.85
100 200 10.8 1.17 14.6 3.01
250 500 16.6 2.15 36.8 5.27
500 1,000 23.6 5.28 82.2 5.27

1,000 2,000 28.2 3.31 156.4 5.08
2,500 5,000 48.6 7.47 393.4 14.87
5,000 10,000 58.8 1.17 794.2 18.06

10,000 20,000 91.8 5.98 1,567.2 43.21
25,000 50,000 169.2 13.53 4,005.2 51.70
50,000 100,000 190.4 20.16 7,983.8 29.25
100,000 200,000 237.8 22.23 15,839.2 76.09
250,000 500,000 412.2 27.71 39,672.6 204.22
500,000 1,000,000 599.0 33.08 79,475.8 174.39

1,000,000 2,000,000 778.4 46.50 158,780.8 146.05
2,500,000 5,000,000 1,077.6 251.16 397,531.2 368.72

5,000 5,000 33.4 6.12 1935.4 39.55
5,000 7,500 53.0 11.78 1346.8 33.67
5,000 10,000 58.8 1.17 794.2 18.06
5,000 12,500 67.2 10.17 563.4 24.74
5,000 15,000 90.4 9.60 335.2 18.10
5,000 17,500 96.4 11.98 245.0 4.05
5,000 20,000 118.2 10.94 149.0 12.70
5,000 25,000 136.4 13.03 66.6 6.59
5,000 30,000 149.6 14.18 27.8 1.83
5,000 40,000 184.2 14.13 6.0 0.63
5,000 50,000 245.0 24.44 1.4 1.85

Table D.2.: Key figures for different scale-free graphs (Max. degree = outdegree of the
nodes with highest outdegree; Zero degree = number of nodes with an out-
degree 0). The figures are an average over five generated graphs for each
graph type and its standard deviation (SD).

166

E. Model Specification for Volcano

In Listing E.1 we show an excerpt of the file model.input, which holds the model spec-
ifications for Volcano. We omit the rewrite rules for the standard relational algebra
operators SELECT, JOIN, and PROJECT. We also omit the code for operator and algo-
rithm definitions, implementation and transformation rules for the different varieties of
LENGTH, DISTANCE, and REACHABILITY operators as these are very similar to the pre-
sented code for the PATH operator.

Listing E.1: Excerpt from model.input, the model specification for Volcano
−− Define operators and their arities .
−− Set base operators
%operator SELECT 1
%operator JOIN 2
−− ... and more (PROJECT, DISTINCT)

−− Paths operators
%operator PATHS 1
%operator PATHS_START 2
%operator PATHS_END 2
%operator PATHS_BOTH 3
−− ... and more (LENGTHS, DISTANCE, REACHABILITY)

−− Define algorithms and their arities .
−− the normal ones
%algorithm FILTER 1
%algorithm HASH_JOIN 2
%algorithm MERGE_JOIN 2
−− ... and more (PROJECT, DISTINCT, SORT)

−− for the paths
%algorithm PATHS_REC 1
%algorithm PATHS_GRIPP 1
%algorithm PATHS_START_REC 2
%algorithm PATHS_START_GRIPP 2
%algorithm PATHS_END_REC 2
%algorithm PATHS_END_GRIPP 2
%algorithm PATHS_BOTH_FW_REC 3
%algorithm PATHS_BOTH_FW_GRIPP 3
%algorithm PATHS_BOTH_RV_REC 3
%algorithm PATHS_BOTH_RV_GRIPP 3
−− ... and more (LENGTHS, DISTANCE, REACHABILITY)

−− Implementation rules − which algorithm is an implementation for which operator
−− the normal rules

167

E. Model Specification for Volcano

%impl_rule (SELECT ?op_arg1 (?1)) −> (FILTER ?al_arg1 (?1))
%impl_rule (JOIN ?op_arg1 (?1 ?2)) −> (HASH_JOIN ?al_arg1 (?1 ?2))
%impl_rule (JOIN ?op_arg1 (?1 ?2)) −> (MERGE_JOIN ?al_arg1 (?1 ?2))
−− ... and more (PROJECT, DISTINCT)

−− the path rules
%impl_rule (GRAPH_GET ?op_arg1 ()) −> (GRAPH_SCAN ?al_arg1())
%impl_rule (PATHS ?op_arg1 (?1)) −> (PATHS_REC ?al_arg1 (?1))
%impl_rule (PATHS ?op_arg1 (?1)) −> (PATHS_GRIPP ?al_arg1 (?1))
%impl_rule (PATHS_END ?op_arg1 (?1 ?2)) −> (PATHS_END_REC ?al_arg1 (?1 ?2))
%impl_rule (PATHS_END ?op_arg1 (?1 ?2)) −> (PATHS_END_GRIPP ?al_arg1 (?1 ?2))
%impl_rule (PATHS_START ?op_arg1 (?1 ?2)) −>

(PATHS_START_REC ?al_arg1 (?1 ?2))
%impl_rule (PATHS_START ?op_arg1 (?1 ?2)) −>

(PATHS_START_GRIPP ?al_arg1 (?1 ?2))
%impl_rule (PATHS_BOTH ?op_arg1 (?1 ?2 ?3)) −>

(PATHS_BOTH_FW_REC ?al_arg1 (?1 ?2 ?3))
%impl_rule (PATHS_BOTH ?op_arg1 (?1 ?2 ?3)) −>

(PATHS_BOTH_FW_GRIPP ?al_arg1 (?1 ?2 ?3))
%impl_rule (PATHS_BOTH ?op_arg1 (?1 ?2 ?3)) −>

(PATHS_BOTH_RV_REC ?al_arg1 (?1 ?2 ?3))
%impl_rule (PATHS_BOTH ?op_arg1 (?1 ?2 ?3)) −>

(PATHS_BOTH_RV_GRIPP ?al_arg1 (?1 ?2 ?3))
−− ... and more (LENGTHS, DISTANCE, REACHABILITY)

−− Rewrite rules − how to rewrite the expressions
−− SELECT and JOIN non−interference.
%trans_rule (SELECT ?op_arg1 ((JOIN ?op_arg2 (?1 ?2))))

−> (JOIN ?op_arg3 ((SELECT ?op_arg4 (?1)) ?2))
%cond_code
{{

LOGICAL_PROPERTY ∗right;

eq_class_logical_property(?2, right);

if (select_in_set(&(?op_arg1−>select), right))
REJECT;

}}
%appl_code
{{

/∗ Just copy over ∗/
copy_operator_arg(?op_arg3, ?op_arg2);
copy_operator_arg(?op_arg4, ?op_arg1);

}}
−− ... and more (Combinations of SELECT, JOIN, PROJECT, DISTINCT)

−− join and paths can be rewritten to paths start
−− if the join condition contains start_node
%trans_rule (JOIN ?op_arg1 (?1 (PATHS ?op_arg2 (?2))))

−>! (PATHS_START ?op_arg3 (?1 ?2))

168

%cond_code
{{

char str [80];
strcpy(str , ?op_arg2−>paths.name);
strcat (str , ".start_node");

if (strcmp(?op_arg1−>join.attr2, str) !=0 && strcmp(?op_arg1−>join.attr1, str) != 0)
REJECT;

}}
%appl_code
{{

//printf("Rewrite from paths to paths start\n");
copy_operator_arg(?op_arg3, ?op_arg2);

?op_arg3−>paths_start.terms = ?op_arg2−>paths.terms + 1;

strcpy(?op_arg3−>paths_start.cond[?op_arg2−>paths.terms].attr, ?op_arg1−>join.attr1);
strcpy(?op_arg3−>paths_start.cond[?op_arg2−>paths.terms].attr2, ?op_arg1−>join.attr2);
?op_arg3−>paths_start.cond[?op_arg2−>paths.terms].op = ?op_arg1−>join.op;

if (?op_arg2−>paths.terms > 0)
?op_arg3−>paths_start.op[?op_arg2−>paths.terms−1] = AND_OP;

}}

−− join and paths can be rewritten to paths end
−− if the join condition contains end_node
%trans_rule (JOIN ?op_arg1 (?1 (PATHS ?op_arg2 (?2))))

−>! (PATHS_END ?op_arg3 (?2 ?1))
%cond_code
{{

char str [80];
strcpy(str , ?op_arg2−>paths.name);
strcat (str , ".end_node");
if (strcmp(?op_arg1−>join.attr2, str) !=0 && strcmp(?op_arg1−>join.attr1, str) != 0)
REJECT;

}}
%appl_code
{{

//printf("Rewrite from paths to paths end\n");
copy_operator_arg(?op_arg3, ?op_arg2);
?op_arg3−>paths_end.terms = ?op_arg2−>paths.terms + 1;

strcpy(?op_arg3−>paths_end.cond[?op_arg2−>paths.terms].attr, ?op_arg1−>join.attr1);
strcpy(?op_arg3−>paths_end.cond[?op_arg2−>paths.terms].attr2, ?op_arg1−>join.attr2);
?op_arg3−>paths_end.cond[?op_arg2−>paths.terms].op = ?op_arg1−>join.op;

if (?op_arg2−>paths.terms > 0)
?op_arg3−>paths_end.op[?op_arg2−>paths.terms−1] = AND_OP;

}}

−− join, join and paths can be rewritten to paths both
−− if one join condition contains end_node and the other start_node
%trans_rule (JOIN ?op_arg1 ((JOIN ?op_arg2(?1 (PATHS ?op_arg3 (?2)))) ?3))

−>! (PATHS_BOTH ?op_arg4 (?1 ?2 ?3))
%cond_code

169

E. Model Specification for Volcano

{{
char start [80];
char end[80];
strcpy(start , ?op_arg3−>paths.name);
strcat (start , ".start_node");
strcpy(end, ?op_arg3−>paths.name);
strcat (end, ".end_node");

if (NOT (strcmp(?op_arg2−>join.attr2, start) == 0 &&
strcmp(?op_arg1−>join.attr1, end) == 0))

REJECT;
}}
%appl_code
{{

//printf("Rewrite from paths to paths both\n");
copy_operator_arg(?op_arg4, ?op_arg3);

?op_arg4−>paths.terms = ?op_arg3−>paths.terms + 2;

strcpy(?op_arg4−>paths.cond[?op_arg3−>paths.terms].attr, ?op_arg2−>join.attr1);
strcpy(?op_arg4−>paths.cond[?op_arg3−>paths.terms].attr2, ?op_arg2−>join.attr2);
?op_arg4−>paths.cond[?op_arg3−>paths.terms].op = ?op_arg2−>join.op;

if (?op_arg3−>paths.terms > 0)
?op_arg4−>paths.op[?op_arg3−>paths.terms−1] = AND_OP;

strcpy(?op_arg4−>paths.cond[?op_arg3−>paths.terms+1].attr, ?op_arg1−>join.attr1);
strcpy(?op_arg4−>paths.cond[?op_arg3−>paths.terms+1].attr2, ?op_arg1−>join.attr2);
?op_arg4−>paths.cond[?op_arg3−>paths.terms+1].op = ?op_arg1−>join.op;

if (?op_arg3−>paths.terms > 0)
?op_arg4−>paths.op[?op_arg3−>paths.terms] = AND_OP;

}}
−− ... and more (LENGTHS, DISTANCE, REACHABILITY)

−− rewrite from PATHS to others
%trans_rule (PROJECT ?op_arg1 ((PATHS ?op_arg2 (?1))))

−>! (PROJECT ?op_arg3 ((REACHABILITY ?op_arg4 (?1))))
%cond_code
{{

int i ;
int found = 0;
char str1 [80];
char str2 [80];
char str3 [80];
strcpy(str1 , ?op_arg2−>paths.name);
strcat (str1 , ".node_id");
strcpy(str2 , ?op_arg2−>paths.name);
strcat (str2 , ".position");
strcpy(str3 , ?op_arg2−>paths.name);
strcat (str3 , ".length");

for (i = 0; i != ?op_arg1−>project.terms; i++) {
if (strcmp(?op_arg1−>project.term[i].attr, str1)==0

170

OR strcmp(?op_arg1−>project.term[i].attr, str2)==0
OR strcmp(?op_arg1−>project.term[i].attr, str3)==0) {

found = 1;
}

}
if (found == 1) {
REJECT;

}
for (i = 0; i != ?op_arg2−>reachability.terms; i++) {

if (strcmp(?op_arg2−>reachability.cond[i].attr, str1)==0
OR strcmp(?op_arg2−>reachability.cond[i].attr, str2)==0
OR strcmp(?op_arg2−>reachability.cond[i].attr, str3)==0) {

found = 1;
}

}
if (found == 1) {
REJECT;

}
}}
%appl_code
{{

//printf("Rewrite from paths to reachability \n");

copy_operator_arg(?op_arg3, ?op_arg1);
copy_operator_arg(?op_arg4, ?op_arg2);

}}
−− ... and more (PATHS TO LENGTHS, DISTANCE, REACHABILITY for START, END, BOTH)

171

F. Cost and Cardinality Functions for
Volcano

In Listing F.1 we show an excerpt of the file dbi.c, which holds C code for Volcano. In dbi.c the user
has to specify the expected cardinality as system property and resulting schema as logical property for
each operator. In addition, the user has to provide for each algorithm its physical properties (e.g., if the
output is sorted), the cost, the applicability, and the input properties.

In Listing F.1 we show these for the defined operator REACHABILITY and one of its implementations
REACHABILITY_GRIPP.

Listing F.1: Excerpt from dbi.c, the C source to specify cardinality of operators and cost
and applicability of algorithms for Volcano

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−− dbi.c −−−−−−−−−−−−−−−−−∗/
#include "../optgen/opt_defs.h"
#include "../optgen/global.h"
#include "dbi_gen.h"
#include "dbi.h"
#include "../optgen/opt.h"

−− additional definition and assignments

/∗∗
∗ derive_REACHABILITY_sys_prop
∗
∗ This routine determines the resulting system properties of getting all paths
∗∗/
STATUS derive_REACHABILITY_sys_prop(oa, input_sys_prop, input_log_prop,

derived_sys_prop)
OPERATOR_ARGUMENT ∗oa;
SYSTEM_PROPERTY ∗input_sys_prop[];
LOGICAL_PROPERTY ∗input_log_prop[];
SYSTEM_PROPERTY ∗derived_sys_prop;
{

double card = 0.0;
double exponent = 0.0;

derived_sys_prop−>record_width = 2 ∗ LONG_WIDTH;
exponent = (double)(input_log_prop[0]−>pql.graph.no_edges−

input_log_prop[0]−>pql.graph.no_nodes)/
(double)input_log_prop[0]−>pql.graph.no_nodes;

card = (double)input_log_prop[0]−>pql.graph.no_nodes ∗ (1.0 − exp(−exponent));
derived_sys_prop−>cardinality = card ∗ (double)input_log_prop[0]−>pql.graph.no_nodes;
return (OKAY) ;

}

−− one derive_OPERATOR_sys_prop for each defined operator

173

F. Cost and Cardinality Functions for Volcano

/∗∗
∗ derive_REACHABILITY_log_prop
∗
∗ This routine determines the resulting logical properties (shape of relation) of reachability
∗∗/
STATUS derive_REACHABILITY_log_prop(oa, input_log_prop, derived_log_prop)
OPERATOR_ARGUMENT ∗oa;
LOGICAL_PROPERTY ∗input_log_prop[];
LOGICAL_PROPERTY ∗derived_log_prop;
{

/∗ Sanity check − insure no null pointers ∗/
if (oa == NULL OR derived_log_prop == NULL OR input_log_prop == NULL)

return (ERR_NULL_POINTER) ;

∗derived_log_prop = ∗input_log_prop[0];

/∗ Initialize the derived logical property vector ∗/
strcpy(derived_log_prop−>gen.name, Internal_set);
derived_log_prop−>gen.object_type = MIXED_SET;
// get the schema start_node, end_node

derived_log_prop−>rel.arity = 2;

strcat (strcpy(derived_log_prop−>rel.attr[0].name, oa−>reachability.name), ".start_node");
derived_log_prop−>rel.attr[0].attr_type = INTEGER;
derived_log_prop−>rel.attr[0].attr_width = LONG_WIDTH;
derived_log_prop−>rel.attr[0].btree_avail = FALSE;
derived_log_prop−>rel.attr[0].domain_min.int_value = 0;
derived_log_prop−>rel.attr[0].domain_max.int_value =

input_log_prop[0]−>pql.graph.no_nodes;
derived_log_prop−>rel.attr[0].selectivity =

(double)1.0/(double)input_log_prop[0]−>pql.graph.no_nodes;
derived_log_prop−>rel.attr[0].unique =

input_log_prop[0]−>pql.graph.no_nodes;

strcat (strcpy(derived_log_prop−>rel.attr[1].name, oa−>reachability.name), ".end_node");
derived_log_prop−>rel.attr[1].attr_type = INTEGER;
derived_log_prop−>rel.attr[1].attr_width = LONG_WIDTH;
derived_log_prop−>rel.attr[1].btree_avail = FALSE;
derived_log_prop−>rel.attr[1].domain_min.int_value = 0;
derived_log_prop−>rel.attr[1].domain_max.int_value =

input_log_prop[0]−>pql.graph.no_nodes;
derived_log_prop−>rel.attr[1].selectivity =

(double)1.0/(double)input_log_prop[0]−>pql.graph.no_nodes;
derived_log_prop−>rel.attr[1].unique =

input_log_prop[0]−>pql.graph.no_nodes;

return (OKAY) ;
}

−− one derive_OPERATOR_log_prop for each defined operator

/∗∗

174

∗ derive_REACHABILITY_GRIPP_phy_prop
∗
∗ This routine determines the resulting physical properties (e.g. sort) of a gripp
∗∗/
STATUS derive_REACHABILITY_GRIPP_phy_prop(aa, input_pv, sys_prop, log_prop,

input_sys_prop, input_log_prop, needed_pv, derived_pv)
ALGORITHM_ARGUMENT ∗aa;
PROPERTY_VECTOR ∗input_pv[];
SYSTEM_PROPERTY ∗sys_prop;
LOGICAL_PROPERTY ∗log_prop;
SYSTEM_PROPERTY ∗input_sys_prop[];
LOGICAL_PROPERTY ∗input_log_prop[];
PROPERTY_VECTOR ∗needed_pv;
PROPERTY_VECTOR ∗derived_pv;
{

/∗ Sanity check ∗/
if (aa == NULL OR input_pv == NULL OR input_log_prop == NULL OR

derived_pv == NULL)
return (ERR_NULL_POINTER);

/∗ The property vector matches that of the input ∗/
∗derived_pv = ∗input_pv[0];
return (OKAY) ;

}
−− one derive_ALGORITHM_phy_prop for each defined algorithm

/∗∗
∗ cost_REACHABILITY_GRIPP
∗
∗ This routine determines the cost of reachability gripp.
∗∗/
STATUS cost_REACHABILITY_GRIPP(aa, sys_prop, log_prop, input_sys_prop,

input_log_prop, needed_pv, derived_pv, input_pv, cost)
ALGORITHM_ARGUMENT ∗aa;
SYSTEM_PROPERTY ∗sys_prop;
LOGICAL_PROPERTY ∗log_prop;
SYSTEM_PROPERTY ∗input_sys_prop[];
LOGICAL_PROPERTY ∗input_log_prop[];
PROPERTY_VECTOR ∗needed_pv;
PROPERTY_VECTOR ∗derived_pv;
PROPERTY_VECTOR ∗input_pv[];
COST ∗cost ;
{

double term;

/∗ If derived_pv == NULL, then this is just an "estimated" cost. ∗/
if (derived_pv == NULL)
{

∗cost = zero_cost;
return OKAY;

} /∗ if ∗/

term = 3.0;
cost−>set = 1;

175

F. Cost and Cardinality Functions for Volcano

cost−>cost.io = (double)input_log_prop[0]−>pql.graph.no_nodes ∗ term ∗ IO_COST;
cost−>cost.cpu = (double)input_log_prop[0]−>pql.graph.no_nodes ∗ term ∗ CPU_COST;
//printf("Cost io for reachability gripp: %4.2f ", cost−>cost.io);
//printf("Cost cpu for reachability gripp: %4.2f\n", cost−>cost.cpu);

return (OKAY) ;
}
−− one cost_ALGORITHM for each defined algorithm

/∗∗
∗ do_any_good_REACHABILITY_GRIPP
∗
∗ This routine determines whether the given filter will satisfy the
∗ physical property requirements.
∗∗/
STATUS do_any_good_REACHABILITY_GRIPP(current_operator, oa, needed_pv,

sys_prop, log_prop, excl_pv, input_operator, ret_value)
OPERATOR ∗current_operator;
OPERATOR_ARGUMENT ∗oa;
PROPERTY_VECTOR ∗needed_pv;
SYSTEM_PROPERTY ∗sys_prop;
LOGICAL_PROPERTY ∗log_prop;
PROPERTY_VECTOR ∗excl_pv;
OPERATOR input_operator[];
ALGO_APPL_RETURN ∗ret_value;
{

// only apply the gripp algorithm if gripp is available
if (log_prop−>pql.graph.gripp_fw_avail == TRUE) {
ret_value−>apply_truth_value = TRUE;
ret_value−>reestimate_cost = TRUE;
ret_value−>algorithm_argument.reachability_gripp = oa−>reachability;
ret_value−>process_input_count = 1;

}
else {
ret_value−>apply_truth_value = FALSE;

}
return (OKAY);

}
−− one do_any_good_ALGORITHM for each defined algorithm

/∗∗
∗ get_input_pv_REACHABILITY_GRIPP
∗
∗ This routine requests property vectors for the input to a filter
∗ operator.
∗∗/
STATUS get_input_pv_REACHABILITY_GRIPP(aa, needed_pv, excl_pv, input_id,

iteration , input_pv, input_excl_pv, input_sys_prop, input_log_prop,
input_ret_pele, input_ret_cost, fail)

ALGORITHM_ARGUMENT ∗aa;
PROPERTY_VECTOR ∗needed_pv;
PROPERTY_VECTOR ∗excl_pv;
int input_id;
int iteration ;

176

PROPERTY_VECTOR ∗input_pv[];
PROPERTY_VECTOR ∗input_excl_pv[];
SYSTEM_PROPERTY ∗input_sys_prop[];
LOGICAL_PROPERTY ∗input_log_prop[];
PHY_EXPR_LIST_ELEM ∗input_ret_pele[];
COST ∗input_ret_cost[];
BOOLEAN ∗ fail ;
{

/∗ Initialize property vectors ∗/
init_property_vec(input_pv[input_id]);
init_property_vec(input_excl_pv[input_id]);

/∗ Paths doesn’t care about input sort property vectors , but passes them ∗/
/∗ through from the output. Excluded property vectors are likewise . ∗/
copy_property_vec(input_pv[0], needed_pv);
copy_property_vec(input_excl_pv[0], excl_pv);
return (OKAY);

}
−− one get_input_pv_ALGORITHM for each defined algorithm

−− additional code for printing

177

G. Exemplary Queries for GRIcano

Listing G.1: Examplary queries used in Section 7.3

−− 3 x reachability
−− get all reactions catalyzed by a given enzyme
−− query r1
SELECT A, B
FROM kegg
LET node A, node B, path P
WHERE A.Name = ’phenylalanine 4-monooxygenase’

AND P.path = A[−>]B
AND B.Type LIKE ’Reaction’;

−− which enzymes may be influenced
−− query r2
SELECT A, B
FROM reactome
LET node A, node B, path P
WHERE A.Name = ’%nitrophenol%’

AND A.Type LIKE ’Compound’
AND P.path = A[−>]B
AND B.Type LIKE ’Enzyme’;

−− query r3
SELECT A, B
FROM kegg
LET node A, node B, path P
WHERE A.Class LIKE ’Nucleotidyltransferases’

AND P.path = A[−>]B
AND B.Type LIKE ’Enzyme’;

−− 3 x distance
−− get all reactions catalyzed by a given enzyme
−− query d1
SELECT A, B
FROM kegg
LET node A, node B, path P
WHERE A.Name = ’phenylalanine 4-monooxygenase’

AND P.path = A[−>]B
AND P.length < 6
AND B.Type LIKE ’Reaction’;

−− given a single compound, which are the enzymes responsible for degradation
−− query d2
SELECT A, B

179

G. Exemplary Queries for GRIcano

FROM reactome
LET node A, node B, path P
WHERE A.Name LIKE ’%nitrophenol%’

AND A.Type LIKE ’Compound’
AND P.path = A[−>]B
AND P.length < 7
AND B.Type LIKE ’Enzyme’;

−− query d3
SELECT A, B
FROM kegg
LET node A, node B, path P
WHERE A.Class LIKE ’Nucleotidyltransferases’

AND P.path = A[−>]B
AND P.length < 6
AND B.Type LIKE ’Enzyme’;

−− 3x path length
−− query l1
SELECT A, B
FROM kegg
LET node A, node B, path P
WHERE A.Name = ’phenylalanine 4-monooxygenase’

AND P.path = A[−>]B
AND P.length = 5
AND B.Type LIKE ’Reaction’;

−− given a single compound, which are the enzymes responsible for degradation
−− query l2
SELECT A, B
FROM reactome
LET node A, node B, path P
WHERE A.Name LIKE ’%nitrophenol%’

AND A.Type LIKE ’Compound’
AND P.path = A[−>]B
AND P.length = 6
AND B.Type LIKE ’Enzyme’;

−− query l3
SELECT A, B
FROM kegg
LET node A, node B, path P
WHERE A.Class LIKE ’Nucleotidyltransferases’

AND P.path = A[−>]B
AND P.length = 5
AND B.Type LIKE ’Enzyme’;

−− 3 x paths
−− query p1
SELECT P
FROM kegg
LET node A, node B, path P

180

WHERE A.Name = ’phenylalanine 4-monooxygenase’
AND P.path = A[−>]B
AND P.length < 6
AND B.Type LIKE ’Reaction’;

−− given a single compound, which are the enzymes responsible for degradation
−− query p2
SELECT P
FROM reactome
LET node A, node B, path P
WHERE A.Name LIKE ’%nitrophenol%’

AND A.Type LIKE ’Compound’
AND P.path = A[−>]B
AND P.length < 7
AND B.Type LIKE ’Enzyme’;

−− query p3
SELECT P
FROM kegg
LET node A, node B, path P
WHERE A.Class LIKE ’Nucleotidyltransferases’

AND P.path = A[−>]B
AND P.length < 6
AND B.Type LIKE ’Enzyme’;

−− complex queries
−−query c1
SELECT P
FROM kegg
LET node A, node B, path P
WHERE A.name = ’L-Arginine’

AND B.name = ’L-Proline’
AND P.path = A[−>]B
AND P.length < 5;

−− given two compounds, what may be the result after a reaction
−− query c2
SELECT C, E
FROM kegg
LET node A, node B, node C, node E, path P, path Q, path R
WHERE A.Name = ’Salicylate’

AND B.Name = ’Alcohol’
AND C.Type LIKE ’Reaction’
AND P.path = A[−>]C
AND P.length < 5
AND Q.path = B[−>]C
AND R.path = C[−>]E
AND R.length = 1
AND E.Type LIKE ’Compound’;

−− given two compounds, what may be the result after a reaction, get all paths
−− query c3

181

G. Exemplary Queries for GRIcano

SELECT P, Q, R
FROM kegg
LET node A, node B, node C, node E, path P, path Q, path R
WHERE A.Name = ’Salicylate’

AND B.Name = ’Alcohol’
AND C.Type LIKE ’Reaction’
AND P.path = A[−>]C
AND P.length < 5
AND Q.path = B[−>]C
AND Q.length < 5
AND R.path = C[−>]E
AND R.length = 1
AND E.Type LIKE ’Compound’;

−− query c4
SELECT A, D
FROM kegg, intact
LET node A IN kegg, node B IN kegg, path P IN kegg,

path Q IN intact, node C IN intact, node D IN intact
WHERE B.Name = ’fatty-acid synthase’

AND P.path = A[−>]B
AND C.Name = A.Name
AND Q.path = C[−>]D
AND Q.length < 3;

182

Bibliography
[AAN01] Aboulnaga, Ashraf; Alameldeen, Alaa R.; Naughton, Jeffrey F.: Estimating the Selec-

tivity of XML Path Expressions for Internet Scale Applications. In: Proceedings of the
27th International Conference on Very Large Data Bases (VLDB), pp. 591–600. Morgan
Kaufmann, 2001.

[ABE09] Alkhateeb, Faisal; Baget, Jean-François; Euzenat, Jérôme: Extending SPARQL with reg-
ular expression patterns (for querying RDF). In: J. Web Sem., volume 7(2):pp. 57–73,
2009.

[Abi97] Abiteboul, Serge: Querying Semi-Structured Data. In: Proceedings of the 6th International
Conference on Database Theory (ICDT), volume 1186 of Lecture Notes in Computer Sci-
ence, pp. 1–18. Springer, 1997.

[ABJ89] Agrawal, Rakesh; Borgida, Alexander; Jagadish, H. V.: Efficient Management of Transitive
Relationships in Large Data and Knowledge Bases. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 253–262. ACM Press, 1989.

[AG05] Angles, Renzo; Gutierrez, Claudio: Survey of Graph Database Models. Technical Report
TR/DCC-2005-10, Computer Science Department, Universidad de Chile, 2005.

[Agr88] Agrawal, Rakesh: Alpha: An Extension of Relational Algebra to Express a Class of Recur-
sive Queries. In: IEEE Transactions on Software Engineering, volume 14(7):pp. 879–885,
1988.

[Ahl06] Ahl, Stephan: Visuelle Graphanfragen für biologische Netzwerke. Diplomarbeit, Freie
Universität zu Berlin, Institut für Informatik, 2006.

[AJ87] Agrawal, Rakesh; Jagadish, H. V.: Direct Algorithms for Computing the Transitive Clo-
sure of Database Relations. In: Proceedings of the 13th International Conference on Very
Large Data Bases (VLDB), pp. 255–266. Morgan Kaufmann, 1987.

[AJW+08] Alberts, Bruce; Johnson, Alexander; Walter, Peter; Lewis, Julian; Raff, Martin; Roberts,
Keith; Orme, Nigel: Molecular Biology of the Cell. Taylor & Francis, 5th edition, 2008.

[AQM+97] Abiteboul, Serge; Quass, Dallan; McHugh, Jason; Widom, Jennifer; Wiener, Janet L.:
The Lorel Query Language for Semistructured Data. In: Int. J. on Digital Libraries,
volume 1(1):pp. 68–88, 1997.

[ARS+08] Assenov, Yassen; Ramírez, Fidel; Schelhorn, Sven-Eric; Lengauer, Thomas; Albrecht,
Mario: Computing topological parameters of biological networks. In: Bioinformatics,
volume 24(2):pp. 282–284, Jan 2008.

[AS92] Amann, Bernd; Scholl, Michel: Gram: A Graph Data Model and Query Language. In:
Proceedings of the European Conference on Hypertext Technology (ECHT), pp. 201–211.
ACM Press, 1992.

[BA99] Barabási, Albert-Lázló; Albert, Réka: Emergence of Scaling in Random Networks. In:
Science, volume 286(5439):pp. 509 – 512, Oct 1999.

[Bay72] Bayer, Rudolf: Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms.
In: Acta Inf., volume 1:pp. 290–306, 1972.

[BBH03] Bader, Gary D; Betel, Doron; Hogue, Christopher W V: BIND: the Biomolecular Inter-
action Network Database. In: Nucleic Acids Research, volume 31(1):pp. 248–250, Jan
2003.

183

Bibliography

[BDHS96] Buneman, Peter; Davidson, Susan B.; Hillebrand, Gerd G.; Suciu, Dan: A Query Lan-
guage and Optimization Techniques for Unstructured Data. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 505–516. ACM Press,
1996.

[Bec04] Beckett, Dave: RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/rdf-
syntax-grammar/, Feb 2004.

[BFM06] Bast, Holger; Funke, Stefan; Matijevic, Domagoj: TRANSIT: Ultrafast Shortest-Path
Queries with Linear-Time Preprocessing. In: Proceedings of the 9th DIMACS Implemen-
tation Challenge — Shortest Path. DIMACS, 2006.

[BFS00] Buneman, Peter; Fernandez, Mary F.; Suciu, Dan: UnQL: A Query Language and Al-
gebra for Semistructured Data Based on Structural Recursion. In: VLDB Journal, vol-
ume 9(1):pp. 76–110, 2000.

[BKS02] Bruno, Nicolas; Koudas, Nick; Srivastava, Divesh: Holistic Twig Joins: Optimal XML
Pattern Matching. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 310–321. ACM Press, 2002.

[BMR99] Beech, David; Malhotra, Ashok; Rys, Michael: A Formal Data Model and Al-
gebra for XML. http://www-db.stanford.edu/dbseminar/Archive/FallY99/malhotra-
slides/malhotra.pdf, 1999.

[BN05] Borodina, Irina; Nielsen, Jens: From genomes to in silico cells via metabolic networks. In:
Current Opinion in Biotechnology, volume 16(3):pp. 350–355, Jun 2005.

[BO04] Barabási, Albert-László; Oltvai, Zoltán N: Network biology: understanding the cell’s func-
tional organization. In: Nature Reviews Genetics, volume 5(2):pp. 101–113, Feb 2004.

[BPSM+06] Bray, Tim; Paoli, Jean; Sperberg-McQueen, C. M.; Maler, Eve; Yergeau, François: Exten-
sible Markup Language (XML) 1.0 (Fourth Edition). http://www.w3.org/TR/2006/REC-
xml-20060816/, Sep 2006.

[BR86] Bancilhon, François; Ramakrishnan, Raghu: An Amateur’s Introduction to Recursive
Query Processing Strategies. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 16–52. ACM Press, 1986.

[BS03] Bornholdt, Stefan; Schuster, Heinz Georg: Handbook of Graphs and Networks. Wiley-VCH,
2003.

[BT99] Beeri, Catriel; Tzaban, Yariv: SAL: An Algebra for Semistructured Data and XML. In:
Informal Proceedings of ACM SIGMOD Workshop on The Web and Databases (WebDB),
pp. 37–42. 1999.

[CCS00] Christophides, Vassilis; Cluet, Sophie; Siméon, Jérôme: On Wrapping Query Languages
and Efficient XML Integration. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 141–152. ACM Press, 2000.

[CF04] Cooper, Colin; Frieze, Alan M.: The Size of the Largest Strongly Connected Component
of a Random Digraph with a Given Degree Sequence. In: Combinatorics, Probability &
Computing, volume 13(3):pp. 319–337, 2004.

[CGK05] Chen, Li; Gupta, Amarnath; Kurul, M. Erdem: Stack-based Algorithms for Pattern
Matching on DAGs. In: Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB), pp. 493–504. ACM Press, 2005.

[Cha98] Chaudhuri, Surajit: An Overview of Query Optimization in Relational Systems. In:
Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), pp. 34–43. ACM Press, 1998.

[CHKZ03] Cohen, Edith; Halperin, Eran; Kaplan, Haim; Zwick, Uri: Reachability and Distance
Queries via 2-Hop Labels. In: SIAM J. Comput., volume 32(5):pp. 1338–1355, 2003.

184

Bibliography

[CKNL07] Cheng, James; Ke, Yiping; Ng, Wilfred; Lu, An: FG-Index: Towards Verification-Free
Query Processing on Graph Databases. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 857–872. ACM Press, 2007.

[CLR01] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.: Introduction to Algorithms.
MIT Press, 2001.

[CM90] Consens, Mariano P.; Mendelzon, Alberto O.: GraphLog: a Visual Formalism for Real Life
Recursion. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pp. 404–416. ACM Press, 1990.

[CMS02] Chung, Chin-Wan; Min, Jun-Ki; Shim, Kyuseok: APEX: an adaptive path index for XML
data. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 121–132. ACM Press, 2002.

[CY09] Cheng, Jiefeng; Yu, Jeffrey Xu: On-line exact shortest distance query processing. In: Pro-
ceedings of the 12th International Conference on Extending Database Technology (EDBT),
volume 360 of ACM International Conference Proceeding Series, pp. 481–492. ACM Press,
2009.

[CYD07] Cheng, Jiefeng; Yu, Jeffrey Xu; Ding, Bolin: Cost-Based Query Optimization for Multi
Reachability Joins. In: Proceeding of the 12th International Conference on Database Sys-
tems for Advanced Applications (DASFAA), volume 4443 of Lecture Notes in Computer
Science, pp. 18–30. Springer, 2007.

[CYL+06] Cheng, Jiefeng; Yu, Jeffrey Xu; Lin, Xuemin; Wang, Haixun; Yu, Philip S.: Fast Compu-
tation of Reachability Labeling for Large Graphs. In: Proceedings of the 10th International
Conference on Extending Database Technology (EDBT), volume 3896 of Lecture Notes in
Computer Science, pp. 961–979. Springer, 2006.

[CYL+08] Cheng, Jiefeng; Yu, Jeffrey Xu; Lin, Xuemin; Wang, Haixun; Yu, Philip S.: Fast computing
reachability labelings for large graphs with high compression rate. In: Proceedings of the
11th International Conference on Extending Database Technology (EDBT), volume 261 of
ACM International Conference Proceeding Series, pp. 193–204. ACM Press, 2008.

[CYY+07] Chen, Chen; Yan, Xifeng; Yu, Philip S.; Han, Jiawei; Zhang, Dong-Qing; Gu, Xiaohui: To-
wards Graph Containment Search and Indexing. In: Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB), pp. 926–937. ACM Press, 2007.

[DA93] Dar, S.; Agrawal, R.: Extending SQL with Generalized Transitive Closure. In: IEEE
Transactions on Knowledge and Data Engineering, volume 5(5):pp. 799–812, 1993.

[DAJ91] Dar, Shaul; Agrawal, Rakesh; Jagadish, H. V.: Optimization of Generalized Transitive
Closure Queries. In: Proceedings of the Seventh International Conference on Data Engi-
neering (ICDE), pp. 345–354. IEEE Computer Society, 1991.

[Dat03] Date, Chris J.: An Introduction to Database Systems. Addison-Wesley, 8th edition, 2003.
[DD97] Date, Chris J.; Darwen, Hugh: A Guide to the SQL Standard. Addison-Wesley Longman,

1997.
[DFF+07] Draper, Denise; Fankhauser, Peter; Fernández, Mary; Malhotra, Ashok; Rose, Kristof-

fer; Rys, Michael; Siméon, Jérôme; Wadler, Philip: XQuery 1.0 and XPath 2.0 Formal
Semantics. http://www.w3.org/TR/xquery-semantics/, Jan 2007.

[DJG+02] DeRose, Steven; Jr., Ron Daniel; Grosso, Paul; Maler, Eve; Marsh, Jonathan; Walsh,
Norman: XML Pointer Language (XPointer). http://www.w3.org/TR/xptr/, Aug 2002.

[DMO01] DeRose, Steve; Maler, Eve; Orchard, David: XML Linking Language (XLink) Version 1.0.
http://www.w3.org/TR/xlink/, June 2001.

[DNR09] Dries, Anton; Nijssen, Siegfried; Raedt, Luc De: A query language for analyzing networks.
In: Proceedings of the 18th ACM Conference on Information and Knowledge Management
(CIKM), pp. 485–494. ACM Press, 2009.

185

Bibliography

[DS87] Dietz, Paul; Sleator, Daniel: Two algorithms for maintaining order in a list. In: Proceedings
of the 19th annual ACM Symposium on Theory of computing (STOC), pp. 365–372. ACM
Press, 1987.

[DSB08] Detwiler, Landon T; Suciu, Dan; Brinkley, James F: Regular paths in SparQL: querying
the NCI Thesaurus. In: AMIA Annu Symp Proc, pp. 161–165, 2008.

[EB06] Eckman, Barbara A.; Brown, P. G.: Graph data management for molecular and cell
biology. In: IBM J. Res & Dev., volume 50(6):pp. 545 – 560, Nov 2006.

[ER60] Erdös, P.; Rényi, A.: On the Evolution of Random Graphs. In: Publ. Math. Inst. Hungar.
Acad. Sci., volume 5:pp. 17 – 61, 1960.

[FFLS97] Fernandez, Mary F.; Florescu, Daniela; Levy, Alon Y.; Suciu, Dan: A Query Language for
a Web-Site Management System. In: SIGMOD Record, volume 26(3):pp. 4–11, 1997.

[FHP02] Frasincar, Flavius; Houben, Geert-Jan; Pau, Cristian: XAL: An Algebra For XML Query
Optimization. In: Thirteenth Australasian Database Conference on Database Technologies
(ADC), volume 5 of CRPIT. Australian Computer Society, 2002.

[FSW00] Fernández, Mary F.; Siméon, Jérôme; Wadler, Philip: An Algebra for XML Query. In:
Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical
Computer Science (FST TCS), volume 1974 of Lecture Notes in Computer Science, pp.
11–45. Springer, 2000.

[GM93] Graefe, Goetz; McKenna, William J.: The Volcano Optimizer Generator: Extensibility
and Efficient Search. In: Proceedings of the Ninth International Conference on Data En-
gineering (ICDE), pp. 209–218. IEEE Computer Society, 1993.

[GMUW02] Garcia-Molina, Hector; Ullman, Jeffrey D.; Widom, Jennifer: Database Systems: The
Complete Book. Prentice Hall, 2002.

[GP99] Gulutzan, Peter; Pelzer, Trudy: SQL-99 Complete, Really. Mcgraw-Hill Professional, 1999.
[Gra95] Graefe, Goetz: The Cascades Framework for Query Optimization. In: IEEE Data Eng.

Bull., volume 18(3):pp. 19–29, 1995.
[Gru02] Grust, Torsten: Accelerating XPath location steps. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp. 109–120. ACM Press, 2002.
[GS02] Giugno, Rosalba; Shasha, Dennis: GraphGrep: A Fast and Universal Method for Querying

Graphs. In: Proceedings of the 16th International Conference on Pattern Recognition
(ICPR) - Volume 2, pp. 112–115. 2002.

[Gut84] Guttman, Antonin: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, pp.
47–57. ACM Press, 1984.

[Güt94] Güting, Ralf Hartmut: GraphDB: Modeling and Querying Graphs in Databases. In: Pro-
ceedings of the 20th International Conference on Very Large Data Bases (VLDB), pp.
297–308. Morgan Kaufmann, 1994.

[GV07] Georgiadis, Haris; Vassalos, Vasilis: Xpath on steroids: exploiting relational engines for
xpath performance. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 317–328. ACM Press, 2007.

[GvKT03] Grust, Torsten; van Keulen, Maurice; Teubner, Jens: Staircase Join: Teach a Relational
DBMS to Watch its (Axis) Steps. In: Proceedings of the 29th International Conference on
Very Large Data Bases (VLDB), pp. 524–525. Morgan Kaufmann, 2003.

[GvKT04] Grust, Torsten; van Keulen, Maurice; Teubner, Jens: Accelerating XPath evaluation in
any RDBMS. In: ACM Trans. Database Syst., volume 29:pp. 91–131, 2004.

[GW97] Goldman, Roy; Widom, Jennifer: DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In: Proceedings of the 23rd International Confer-
ence on Very Large Data Bases (VLDB), pp. 436–445. Morgan Kaufmann, 1997.

186

Bibliography

[GW02] Groff, James R; Weinberg, Paul N.: SQL: The Complete Reference. McGraw-Hill, second
edition edition, 2002.

[Ham82] Hamilton, A. G.: Numbers, sets and axioms: the apparatus of mathematics. Cambridge
University Press, 1982.

[HFLP89] Haas, Laura M.; Freytag, Johann Christoph; Lohman, Guy M.; Pirahesh, Hamid: Exten-
sible Query Processing in Starburst. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 377–388. ACM Press, 1989.

[HH07] Hartig, Olaf; Heese, Ralf: The SPARQL Query Graph Model for Query Optimization. In:
Proceedings of the 4th European Semantic Web Conference (ESWC 2007), volume 4519 of
Lecture Notes in Computer Science, pp. 564–578. Springer, 2007.

[HLQR07] Heese, Ralf; Leser, Ulf; Quilitz, Bastian; Rothe, Christian: Index Support for SPARQL.
Poster Paper at European Semantic Web Conference (ESWC), 2007.

[HNM+00] Helden, J van; Naim, A; Mancuso, R; Eldridge, M; Wernisch, L; Gilbert, D; Wodak,
SJ: Representing and analysing molecular and cellular function using the computer. In:
Journal of Biological Chemistry, volume 381(9-10):pp. 921–935, 2000.

[HS06] He, Huahai; Singh, Ambuj K.: Closure-Tree: An Index Structure for Graph Queries. In:
Proceedings of the 22nd International Conference on Data Engineering (ICDE), p. 38.
IEEE Computer Society, 2006.

[HS08] He, Huahai; Singh, Ambuj K.: Graphs-at-a-time: query language and access methods
for graph databases. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 405–418. ACM Press, 2008.

[htt08] http://exist.sourceforge.net/index.html: Open Source Native XML Database. Web-Page,
2008.

[htt11a] http://sablecc.org/: SableCC. Web-Page, June 2011.
[htt11b] http://www.biocarta.com/genes/index.asp: BioCarta - Charting Pathways ofLife. Web-

Page, June 2011.
[HWYY05] He, Hao; Wang, Haixun; Yang, Jun; Yu, Philip S.: Compact reachability labeling for

graph-structured data. In: Proceedings of the 14th ACM Conference on Information and
Knowledge Management (CIKM), pp. 594–601. ACM Press, 2005.

[Ioa86] Ioannidis, Yannis E.: On the Computation of the Transitive Closure of Relational Op-
erators. In: Proceedings of the 12th International Conference on Very Large Data Bases
(VLDB), pp. 403–411. Morgan Kaufmann, 1986.

[Ioa96] Ioannidis, Yannis E.: Query Optimization. In: ACM Comput. Surv., volume 28(1):pp.
121–123, 1996.

[Ioa03] Ioannidis, Yannis E.: The History of Histograms (abridged). In: Proceedings of the 29th In-
ternational Conference on Very Large Data Bases (VLDB), pp. 19–30. Morgan Kaufmann,
2003.

[JLKH01] Jenssen, TK; Laegreid, A; Komorowski, J; Hovig, E: A literature network of human genes
for high-throughput analysis of gene expression. In: Nat Genet, volume 28(1):pp. 21–28,
May 2001.

[JLST01] Jagadish, H. V.; Lakshmanan, Laks V. S.; Srivastava, Divesh; Thompson, Keith: TAX: A
Tree Algebra for XML. In: Proceedings of the 8th International Workshop on Database
Programming Languages (DBPL), volume 2397 of Lecture Notes in Computer Science, pp.
149–164. Springer, 2001.

[JTGV+05] Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D’Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal,
B.; Gopinath, G. R.; Wu, G. R.; Matthews, L.; Lewis, S.; Birney, E.; Stein, L.: Reactome:
a knowledgebase of biological pathways. In: Nucleic Acids Research, volume 33(Database
issue):pp. D428–32, Jan 2005.

187

Bibliography

[JXRF09] Jin, Ruoming; Xiang, Yang; Ruan, Ning; Fuhry, David: 3-HOP: a high-compression in-
dexing scheme for reachability query. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 813–826. ACM Press, 2009.

[JXRW08] Jin, Ruoming; Xiang, Yang; Ruan, Ning; Wang, Haixun: Efficiently answering reachability
queries on very large directed graphs. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 595–608. ACM Press, 2008.

[KAC+02] Karvounarakis, Gregory; Alexaki, Sofia; Christophides, Vassilis; Plexousakis, Dimitris;
Scholl, Michel: RQL: a declarative query language for RDF. In: Proceedings of the 11th
International World Wide Web Conference (WWW), pp. 592–603. 2002.

[KD98] Kabra, Navin; DeWitt, David J.: Efficient Mid-Query Re-Optimization of Sub-Optimal
Query Execution Plans. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 106–117. ACM Press, 1998.

[KGK+04] Kanehisa, Minoru; Goto, Susumu; Kavashima, Shuichi; Okuno, Yasushi; Hattori,
Masahiro: The KEGG resource for deciphering the genome. In: Nucleic Acids Research,
volume 32(Database issue):pp. D277–D280, 2004.

[KGKN02] Kanehisa, Minoru; Goto, Susumu; Kawashima, Shuichi; Nakaya, Akihiro: The KEGG
databases at GenomeNet. In: Nucleic Acids Research, volume 30(1):pp. 42–46, Jan 2002.

[KGS04] Koyutürk, Mehmet; Grama, Ananth; Szpankowski, Wojciech: An efficient algorithm for
detecting frequent subgraphs in biological networks. In: Bioinformatics, volume 20 Suppl
1:pp. i200–i207, Aug 2004.

[KJ07] Kochut, Krys; Janik, Maciej: SPARQLeR: Extended Sparql for Semantic Association
Discovery. In: Proceedings of the 4th European Semantic Web Conference (ESWC 2007),
volume 4519 of Lecture Notes in Computer Science, pp. 145–159. Springer, 2007.

[KK04] Kuramochi, Michihiro; Karypis, George: An Efficient Algorithm for Discovering Frequent
Subgraphs. In: IEEE Transactions on Knowledge and Data Engineering, volume 16(9):pp.
1038–1051, 2004.

[KMR+10] Kandasamy, Kumaran; Mohan, S. Sujatha; Raju, Rajesh; Keerthikumar, Shivakumar;
Kumar, Ghantasala S Sameer; Venugopal, Abhilash K; Telikicherla, Deepthi; Navarro,
J. Daniel; Mathivanan, Suresh; Pecquet, Christian; Gollapudi, Sashi Kanth; Tattikota,
Sudhir Gopal; Mohan, Shyam; Padhukasahasram, Hariprasad; Subbannayya, Yashwanth;
Goel, Renu; Jacob, Harrys K C; Zhong, Jun; Sekhar, Raja; Nanjappa, Vishalakshi;
Balakrishnan, Lavanya; Subbaiah, Roopashree; Ramachandra, Y. L.; Rahiman, B. Ab-
dul; Prasad, T. S Keshava; Lin, Jian-Xin; Houtman, Jon C D; Desiderio, Stephen; Re-
nauld, Jean-Christophe; Constantinescu, Stefan N; Ohara, Osamu; Hirano, Toshio; Kubo,
Masato; Singh, Sujay; Khatri, Purvesh; Draghici, Sorin; Bader, Gary D; Sander, Chris;
Leonard, Warren J; Pandey, Akhilesh: NetPath: a public resource of curated signal trans-
duction pathways. In: Genome Biol, volume 11(1):p. R3, 2010.

[KOMK+05] Karp, Peter D; Ouzounis, Christos A; Moore-Kochlacs, Caroline; Goldovsky, Leon; Kaipa,
Pallavi; Ahrén, Dag; Tsoka, Sophia; Darzentas, Nikos; Kunin, Victor; López-Bigas, Núria:
Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. In:
Nucleic Acids Research, volume 33(19):pp. 6083–6089, 2005.

[Kos09] Koschmieder, Andre: Hauptspeicherbasierte Bearbeitung von Pfadanfragen an große
Graphen. Diplomarbeit, Humboldt-Universität zu Berlin, Institut für Informatik, 2009.

[KPV+06] Krull, Mathias; Pistor, Susanne; Voss, Nico; Kel, Alexander; Reuter, Ingmar; Kronen-
berg, Deborah; Michael, Holger; Schwarzer, Knut; Potapov, Anatolij; Choi, Claudia; Kel-
Margoulis, Olga; Wingender, Edgar: TRANSPATH: an information resource for storing
and visualizing signaling pathways and their pathological aberrations. In: Nucleic Acids
Res, volume 34(Database issue):pp. D546–D551, Jan 2006.

[KRBV06] Kotz, Samuel; Read, Campbell B.; Balakrishnan, N.; Vidakovic, Brani: Encyclopedia of
Statistical Sciences. John Wiley & Sons, 2006.

188

Bibliography

[KSBG02] Kaushik, Raghav; Shenoy, Pradeep; Bohannon, Philip; Gudes, Ehud: Exploiting Local
Similarity for Indexing Paths in Graph-Structured Data. In: Proceedings of the 18th Inter-
national Conference on Data Engineering (ICDE), pp. 129–140. IEEE Computer Society,
2002.

[KYHJ02] Kim, Beom Jun; Yoon, Chang No; Han, Seung Kee; Jeong, Hawoong: Path finding strate-
gies in scale-free networks. In: Physical Review E Statistical, Nonlinear, and Soft Matter
Physics, volume 65(2 Pt 2):p. 027103, Feb 2002.

[LAC+04] Lemer, Christian; Antezana, Erick; Couche, Fabian; Fays, Frédéric; Santolaria, Xavier;
Janky, Rekin’s; Deville, Yves; Richelle, Jean; Wodak, Shoshana J: The aMAZE Light-
Bench: a web interface to a relational database of cellular processes. In: Nucleic Acids
Research, volume 32 Database issue:pp. D443–448, Jan 2004.

[Les05a] Leser, Ulf: A Query Language for Biological Networks. In: Bioinformatics, volume 21
Suppl 2:pp. ii33–ii39, Sep 2005.

[Les05b] Leser, Ulf: A Query Language for Biological Networks. Technical Report 187, Humboldt-
Universität zu Berlin, Institut für Informatik, 2005.

[Lis07] Liske, Peter: Auswertung regulärer Pfadausdrücke in Graphen. Diplomarbeit, Humboldt-
Universität zu Berlin, Institut für Informatik, 2007.

[LMR87] Lu, Hongjun; Mikkilineni, Krishna P.; Richardson, James P.: Design and Evaluation of
Algorithms to Compute the Transitive Closure of a Database Relation. In: Proceedings
of the Third International Conference on Data Engineering (ICDE), pp. 112–119. IEEE
Computer Society, 1987.

[LN89] Lipton, Richard J.; Naughton, Jeffrey F.: Estimating the Size of Generalized Transitive
Closures. In: Proceedings of the 15th International Conference on Very Large Data Bases
(VLDB), pp. 165–171. Morgan Kaufmann, 1989.

[LN90] Lipton, Richard J.; Naughton, Jeffrey F.: Query Size Estimation by Adaptive Sampling.
In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pp. 40–46. ACM Press, 1990.

[LÖ09] Liu, Ling; Özsu, M. Tamer, editors: Encyclopedia of Database Systems. Springer US, 2009.
[LR78] LaPaugh, Andrea S.; Rivest, Ronald L.: The Subgraph Homeomorphism Problem.

In: Conference Record of the Tenth Annual ACM Symposium on Theory of Computing
(STOC), pp. 40–50. ACM Press, 1978.

[LT09] Leser, Ulf; Trißl, Silke: Graph Management in the Life Sciences. In: Liu, Ling; Özsu,
M. Tamer, editors, Encyclopedia of Database Systems, pp. 1266–1271. Springer US, 2009.

[Lu87] Lu, Hongjun: New Strategies for Computing the Transitive Closure of a Database Relation.
In: Proceedings of the 13th International Conference on Very Large Data Bases (VLDB),
pp. 267–274. Morgan Kaufmann, 1987.

[Mai83] Maier, David: The Theory of Relational Databases. Computer Science Press, 1983.
[MS99] Milo, Tova; Suciu, Dan: Index Structures for Path Expressions. In: Proceedings of the 7th

International Conference on Database Theory (ICDT), volume 1540 of Lecture Notes in
Computer Science, pp. 277–295. Springer, 1999.

[MW89] Mendelzon, Alberto O.; Wood, Peter T.: Finding Regular Simple Paths in Graph
Databases. In: Proceedings of the 15th International Conference on Very Large Data
Bases (VLDB), pp. 185–193. Morgan Kaufmann, 1989.

[MW99] McHugh, Jason; Widom, Jennifer: Query Optimization for XML. In: Proceedings of the
25th International Conference on Very Large Data Bases (VLDB), pp. 315–326. Morgan
Kaufmann, 1999.

[Ord05] Ordonez, Carlos: Optimizing recursive queries in SQL. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 834–839. ACM Press, 2005.

189

Bibliography

[Ord10] Ordonez, Carlos: Optimization of Linear Recursive Queries in SQL. In: IEEE Trans.
Knowl. Data Eng., volume 22(2):pp. 264–277, 2010.

[PBBS10] Przymus, Piotr; Boniewicz, Aleksandra; Burzańska, Marta; Stencel, Krzysztof: Recursive
Query Facilities in Relational Databases: A Survey. In: Database Theory and Applica-
tion, Bio-Science and Bio-Technology, volume 118 of Communications in Computer and
Information Science, pp. 89–99. Springer, 2010.

[PHH83] Puurunen, J.; Huttunen, P.; Hirvonen, J.: Interactions between ethanol and acetylsal-
icylic acid in damaging the rat gastric mucosa. In: Acta Pharmacol Toxicol (Copenh),
volume 52(5):pp. 321–327, May 1983.

[PPT95] Paredaens, Jan; Peelman, Peter; Tanca, Letizia: G-Log: A Graph-Based Query Language.
In: IEEE Trans. Knowl. Data Eng., volume 7(3):pp. 436–453, 1995.

[Pri04] Price, Jason: Oracle Database 10g SQL. Mcgraw-Hill Professional, 2004.
[PS08] Prud’hommeaux, Eric; Seaborne, Andy: SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/, January 2008.
[RDM+06] Rother, Kristian; Dunkel, Mathias; Michalsky, Elke; Trißl, Silke; Goede, Andrean; Preiss-

ner, Robert: A structural keystone for drug design. In: Journal of Integrative Bioinfor-
matics, 2006.

[RHDM86] Rosenthal, Arnon; Heiler, Sandra; Dayal, Umeshwar; Manola, Frank: Traversal recursion:
a practical approach to supporting recursive applications. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 166–176. ACM Press,
1986.

[RMT+04] Rother, Kristian; Müller, Heiko; Trißl, Silke; Koch, Ina; Steinke, Thomas; Preissner,
Robert; Frömmel, Cornelius; Leser, Ulf: Columba: Multidimensional Data Integration
of Protein Annotations. In: Proceedings of the First International Workshop on Data In-
tegration in the Life Sciences (DILS), volume 2994 of Lecture Notes in Computer Science,
pp. 156–171. Springer, 2004.

[SAC+79] Selinger, Patricia G.; Astrahan, Morton M.; Chamberlin, Donald D.; Lorie, Raymond A.;
Price, Thomas G.: Access Path Selection in a Relational Database Management System.
In: Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 23–34. ACM Press, 1979.

[Sch04] Schaefer, Carl F: Pathway databases. In: Annals of the New York Academy of Sciences,
volume 1020:pp. 77–91, May 2004.

[Sed04] Sedgewick, Robert: Algorithms in Java - Part 5. Addison-Wesley, third edition edition,
2004.

[SH07] Suderman, Matthew; Hallett, Michael: Tools for visually exploring biological networks.
In: Bioinformatics, volume 23(20):pp. 2651–2659, Oct 2007.

[SHZ04] Sohler, Florian; Hanisch, Daniel; Zimmer, Ralf: New methods for joint analysis of biolog-
ical networks and expression data. In: Bioinformatics, volume 20(10):pp. 1517–1521, Jul
2004.

[SL05] Strömbäck, Lena; Lambrix, Patrick: Representations of molecular pathways: an evaluation
of SBML, PSI MI and BioPAX. In: Bioinformatics, volume 21(24):pp. 4401–4407, Dec
2005.

[SÖÖ99] Sheng, Lei; Özsoyoglu, Z. Meral; Özsoyoglu, Gultekin: A Graph Query Language and Its
Query Processing. In: Proceedings of the 15th International Conference on Data Engineer-
ing (ICDE), pp. 572–581. IEEE Computer Society, 1999.

[SOR+11] Smoot, Michael E; Ono, Keiichiro; Ruscheinski, Johannes; Wang, Peng-Liang; Ideker,
Trey: Cytoscape 2.8: new features for data integration and network visualization. In:
Bioinformatics, volume 27(3):pp. 431–432, Feb 2011.

190

Bibliography

[STW04] Schenkel, Ralf; Theobald, Anja; Weikum, Gerhard: HOPI: An Efficient Connection In-
dex for Complex XML Document Collections. In: Proceedings of the 9th International
Conference on Extending Database Technology (EDBT), volume 2992 of Lecture Notes in
Computer Science, pp. 237–255. Springer, 2004.

[SWG02] Shasha, Dennis; Wang, Jason T. L.; Giugno, Rosalba: Algorithmics and applications of
tree and graph searching. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 39–52. ACM Press, 2002.

[SZ05] Sohler, Florian; Zimmer, Ralf: Identifying active transcription factors and kinases from
expression data using pathway queries. In: Bioinformatics, volume 21 Suppl 2:pp. ii115–
ii122, Sep 2005.

[THC+99] Tavazoie, S; Hughes, JD; Campbell, MJ; Cho, RJ; Church, GM: Systematic determination
of genetic network architecture. In: Nat Genet, volume 22(3):pp. 281–285, Jul 1999.

[TL05] Trißl, Silke; Leser, Ulf: Querying Ontologies in Relational Database Systems. In: Pro-
ceedings of the Second International Workshop on Data Integration in the Life Sciences
(DILS), volume 3615 of Lecture Notes in Computer Science, pp. 63–79. Springer, 2005.

[TL06] Trißl, Silke; Leser, Ulf: GRIPP - Indexing and Querying Graphs based on Pre- and Pos-
torder Numbering. Technical Report 207, Humboldt-Universität zu Berlin, Institut für
Informatik, 2006.

[TL07] Trißl, Silke; Leser, Ulf: Fast and Practical Indexing and Querying of Very Large Graphs.
In: Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 63–79. ACM Press, 2007.

[TL10] Trißl, Silke; Leser, Ulf: Estimating Result Size and Execution Times for Graph Queries.
In: Proceedings of the Workshop on Querying Graph Structured Data (GraphQ). 2010.

[Tri05] Trißl, Silke: Anfragen in Ontologien in relationalen Datenbanken (German). In: Proceed-
ings of the 17. GI-Workshop über ’Grundlagen von Datenbanken’. 2005.

[Tri07] Trißl, Silke: Cost-based Optimization of Graph Queries. In: Proceedings of the SIGMOD
/PODS PhD Workshop on Innovative Database Research (IDAR). 2007.

[TRM+05] Trißl, Silke; Rother, Kristian; Müller, Heiko; Steinke, Thomas; Koch, Ina; Preissner,
Robert; Frömmel, Cornelius; Leser, Ulf: Columba: an integrated database of proteins,
structures, and annotations. In: BMC Bioinformatics, volume 6(1):p. 81, Mar 2005.

[TVB+02] Tatarinov, Igor; Viglas, Stratis; Beyer, Kevin S.; Shanmugasundaram, Jayavel; Shekita,
Eugene J.; Zhang, Chun: Storing and querying ordered XML using a relational database
system. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 204–215. ACM Press, 2002.

[TZL07] Trißl, Silke; Zipser, Florian; Leser, Ulf: Applying GRIPP to XML Documents containing
XInclude and XLink Elements. In: Berliner XML Tage. 2007.

[VDS+07] Vastrik, Imre; D’Eustachio, Peter; Schmidt, Esther; Joshi-Tope, Geeta; Gopinath, Gopal;
Croft, David; de Bono, Bernard; Gillespie, Marc; Jassal, Bijay; Lewis, Suzanna; Matthews,
Lisa; Wu, Guanming; Birney, Ewan; Stein, Lincoln: Reactome: a knowledge base of
biologic pathways and processes. In: Genome Biol, volume 8(3):p. R39, 2007.

[vMJS+05] von Mering, Christian; Jensen, Lars J; Snel, Berend; Hooper, Sean D; Krupp, Markus;
Foglierini, Mathilde; Jouffre, Nelly; Huynen, Martijn A; Bork, Peer: STRING: known and
predicted protein-protein associations, integrated and transferred across organisms. In:
Nucleic Acids Research, volume 33(Database issue):pp. D433–D437, Jan 2005.

[Wag06] Wagner, Christoph: Indexstrukturen für Graphen zur Unterstützung von Erreichbarkeits-
und Distanzanfragen in Datenbanken (German). Diplomarbeit, Humboldt-Universität zu
Berlin, Institut für Informatik, 2006.

[War62] Warshal, Stephenl: A Theorem on Boolean Matrices. In: Journal of the ACM, vol-
ume 9(1):pp. 11–12, 1962.

191

Bibliography

[War75] Warren, Henry S.: A Modification of Warshall’s Algorithm for the Transitive Closure of
Binary Relations. In: Commun. ACM, volume 18(4):pp. 218–220, 1975.

[WHY+06] Wang, Haixun; He, Hao; Yang, Jun; Yu, Philip S.; Yu, Jeffrey Xu: Dual Labeling: An-
swering Graph Reachability Queries in Constant Time. In: Proceedings of the 22nd Inter-
national Conference on Data Engineering (ICDE), p. 75. IEEE Computer Society, 2006.

[WPJ02] Wu, Yuqing; Patel, Jignesh M.; Jagadish, H. V.: Estimating Answer Sizes for XML
Queries. In: Proceedings of the 8th International Conference on Extending Database Tech-
nology (EDBT), volume 2287 of Lecture Notes in Computer Science, pp. 590–608. Springer,
2002.

[WPJ03a] Wu, Yuqing; Patel, Jignesh M.; Jagadish, H. V.: Structural Join Order Selection for
XML Query Optimization. In: Proceedings of the 19th International Conference on Data
Engineering (ICDE), pp. 443–454. IEEE Computer Society, 2003.

[WPJ03b] Wu, Yuqing; Patel, Jignesh M.; Jagadish, H. V.: Using histograms to estimate answer
sizes for XML queries. In: Inf. Syst., volume 28(1-2):pp. 33–59, 2003.

[XSD+02] Xenarios, Ioannis; Salwínski, Lukasz; Duan, Xiaoqun Joyce; Higney, Patrick; Kim, Sul-
Min; Eisenberg, David: DIP, the Database of Interacting Proteins: a research tool
for studying cellular networks of protein interactions. In: Nucleic Acids Research, vol-
ume 30(1):pp. 303–305, Jan 2002.

[YC10] Yu, Jeffrey Xu; Cheng, Jiefeng: Graph Reachability Queries: A Survey. In: Managing
and Mining Graph Data, volume 40 of The Kluwer International Series on Advances in
Database Systems, pp. 181–215. Springer, 2010.

[YCZ10] Yildirim, Hilmi; Chaoji, Vineet; Zaki, Mohammed Javeed: Grail: Scalable reachability in-
dex for large graphs. In: Proceedings of the VLDB Endowment (PVLDB), volume 3(1):pp.
276–284, 2010.

[YS07] Yang, Qingwu; Sze, Sing-Hoi: Path Matching and Graph Matching in Biological Networks.
In: Journal of Computational Biology, volume 14(1):pp. 56–67, 2007.

[YYH04] Yan, Xifeng; Yu, Philip S.; Han, Jiawei: Graph indexing: a frequent structure-based
approach. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 335–346. ACM Press, 2004.

[YYH05] Yan, Xifeng; Yu, Philip S.; Han, Jiawei: Graph indexing based on discriminative frequent
structure analysis. In: ACM Trans. Database Syst., volume 30(4):pp. 960–993, 2005.

[ZCÖ09] Zou, Lei; Chen, Lei; Özsu, M. Tamer: DistanceJoin: Pattern Match Query In a Large
Graph Database. In: Proceedings of the VLDB Endowment (PVLDB), volume 2(1):pp.
886–897, 2009.

[ZH10] Zhao, Peixiang; Han, Jiawei: On Graph Query Optimization in Large Networks. In:
Proceedings of the VLDB Endowment (PVLDB), volume 3(1):pp. 340–351, 2010.

[ZHY07] Zhang, Shijie; Hu, Meng; Yang, Jiong: TreePi: A Novel Graph Indexing Method. In:
Proceedings of the 23rd International Conference on Data Engineering (ICDE), pp. 966–
975. IEEE, 2007.

[ZL07] Zou, Lei; 0002, Lei Chen; Lu, Yansheng: Top-K Subgraph Matching Query in A Large
Graph. In: Proceedings of the First Ph.D. Workshop at CIKM (PIKM), pp. 139–146. ACM
Press, 2007.

[Zwi98] Zwick, Uri: All Pairs Shortest Paths in Weighted Directed Graphs – Exact and Almost
Exact Algorithms. In: Proceedings of the FOCS Conference, pp. 310–319. 1998.

192

Erklärung
Hiermit erkläre ich,

• dass ich die vorliegende Arbeit mit dem Titel “Cost-based Optimization of Graph Queries in Rela-
tional Database Management Systems” selbstständig und nur unter Verwendung der angegebenen
Literatur und Hilfsmittel angefertigt und sie an keiner anderen Universität eingereicht habe,

• dass ich keinen Doktorgrad im Fach Informatik besitze,
• und dass mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät II der

Humboldt-Universität zu Berlin vom 17.01.2005, zuletzt geändert am 13.02.2006, veröffentlicht
im Amtlichen Mitteilungsblatt Nr. 34/2006, bekannt ist.

Berlin, den 10.08.2011
Silke Trißl

193

	Introduction
	Queries on Graphs
	Motivation
	Contribution
	Structure of this Work

	Definitions and Terminology
	Graphs
	Definitions
	Storage and Traversal

	Relational Algebra
	Algebra and Relations
	Operators
	Equivalence Rules

	Cost-Based Query Optimization
	Query Processing
	Implementation of Operators
	Cost Function and Query Optimization

	Volcano

	Graph Queries
	Data Model
	Graph Queries
	Query Graph
	Evaluation of Graph Queries

	Pathway Query Language
	Graphs in PQL
	Syntax
	PQL and Non-graph Relations

	PQL Semantics
	Semantics of Node Conditions
	Semantics of Path Conditions
	Semantics of HAVING Conditions
	Semantic of the Subgraph Specification
	Conversion to Relational Algebra

	Related Work

	Operators for Graph Queries
	Operators for Nodes
	Operators for Paths
	Path Operator, Psi
	Reachability operator, phi
	Path Length Operator, psi
	Distance Operator, Phi
	Summary

	Related Work

	Implementations for Operators
	GRIPP
	Index Structure
	Reachability Queries
	Distance Queries
	Path Length and Path Queries

	Other Index Structures
	Transitive Closure
	Dual Labeling
	Label + SSPI

	RDBMS Capabilities
	Recursive Strategies
	Summary
	Related Work

	Performance of GRIPP
	Experimental Setup
	Generated Graphs
	Real-world Graphs
	Implementation Details

	Index Creation
	Query Performance
	Reachability Queries
	Distance Queries
	Path Length Queries
	Path Queries
	Comparison of Query Types
	Summary

	GRIcano
	Cardinality Estimates
	Reachability Operator
	Distance Operator
	Path Length Operator
	Path Operator
	Validation on Real World Graphs

	Cost Functions
	Reachability Queries
	Distance Queries
	Path Length Queries
	Path Queries
	Validation on Real World Graphs

	GRIcano
	Experimental Evaluation

	Related Work
	Cardinality and Cost Estimates
	Rule-based Query Optimization
	Cost-based Query Optimization

	Conclusion and Outlook
	Summary
	Future Work

	Strongly Connected Component
	Kosaraju's Algorithm

	 Rewrite Rules for Operators
	Path Operator
	Restriction on Start and End Node
	Path Operator and Other Operators

	Path Length Operator
	Restriction on Start and End Node
	From Path Operator Psi to Path Length Operator psi
	Path Length Operator and Other Operators

	Distance Operator
	Restriction on Start and End Node
	From Path Operator Psi to Distance Operator Phi
	Distance Operator and Other Operators

	Reachability Operator
	Restriction on Start and End Node
	From Path Operator Psi to Reachability Operator phi
	Reachability Operator and Other Operators

	Additional Algorithms for GRIPP
	Relational Schema for Storing GRIPP
	Stop Node List for GRIPP
	Reachability for Sets of Nodes

	Graph Properties
	Model Specification for Volcano
	Cost and Cardinality Functions for Volcano
	Exemplary Queries for GRIcano

