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3 Methods 

LAI is defined as the one-sided green leaf area per unit ground area in deciduous canopies, 

or as the projected needleleaf area per unit ground area in conifer canopies (Watson 1947; 

Chen and Black 1992). We assessed the LAI values in each of the 105 stands. The LAI 

value per stand was derived by averaging 3 single measurements (digital hemispheric 

photographs), taken in the center of the plots (Figure A-1). 

 

Figure A-1: Field data collection. 105 even-aged spruce plantation stands were randomly selected from SBI 
districts and re-sampled based on a simplified procedure of the Polish Forestry Service. Sample design for 
every selected stand was based on three plots. For every plot the following parameters were collected: 
diameter at the breast height, tree height, the number of trees per plot, as well as three hemispherical photos 
were taken. On the figure, the dependency of pixel-wise extracted LAI values with tree height were 
illustrated. 

Single measurements varied between 0.51 and 3.96 LAI units and averaged LAI per 

polygon ranged from 0.66 to 2.69 LAI units. We used an Olympus C-8080 Wide Zoom 

camera with a Raynox DCR-CF 185PRO convertor to take photographs at 1 m above 

ground. The photographs were processed in the Hemisfer software package developed by 

The Swiss Federal Institute for Forest, Snow and Landscape Research (Schleppi et al. 

2011) (Figure A-2). Thresholds for a binary mask separating sky and canopy pixels were 

calculated based on the method suggested by Nobis and Hunziker (2005). LAI was 
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estimated from transmitted radiation after Miller (1967), resulting in LAI for hemisperical 

sky views of 7°, 23°, 38°, 53° and 68°. Finally, as suggested by Leblanc and Chen (2001), 

all but the widest angle for LAI modeling and prediction was applied, for different solar 

zenith angles and LAI values. 

 

Figure A-2: Fish-eye photography (left) and binary sky-canopy mask (right). 

Predictor datasets 

We defined three groups of predictors: stand-based (inventory), pixel-based (satellite), and 

combined predictors. The inventory predictor set (INVE) consisted of volume of trees per 

hectare, canopy cover, stem density and relative density (as a dimensionless index), tree 

age, tree height, tree form factor, growing stock per tree and stump surface at 1.37 m 

height. The satellite predictor set (TMTO) was based on 6 Landsat TM bands (the visible, 

NIR and short-wave infrared (SWIR) wavelength regions), its derivates (Tasseled Cap 

[TC] brightness, greenness and wetness, Disturbance Index [DI] after Healey et al. (2005), 

and NDVI), as well as three topographic factors (elevation, slope and direct solar radiation 

extracted from the DEM). A third setup (ALL) combined all pixel- and stand-based 

information. 

As the proportion of hemispherical sky-view depends on canopy height in the respective 

plots, LAI values measured in the field varied with different fields of view (Figure A-1). 

However, since LAI calculations yield a dimensionless index of leaf area in m2 per m2 of 

ground surface, the base area from which it is calculated does not influence LAI values. 

Nevertheless, because our goal was to predict LAI per pixel, we had to extract reflectance 

from the number of pixels that corresponds with the area covered by LAI measurements in 
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the field. Reflectance values were therefore weighted depending on the respective pixel 

fraction. We applied this procedure to all pixel-based data derived for every plot and finally 

averaged results for each stand. 

Modeling technique 

Ensemble non-parametric algorithms have currently received considerable attention in 

ecological modeling applications (Prasad et al. 2006; Araújo and New 2007). One well 

established ensemble algorithms is Random Forests (RFs) (Breiman 2001). RF is a robust, 

non-parametric modeling technique employing the Classification and Regression Tree 

(CART) algorithm (Morgan and Sonquist 1963; Breiman et al. 1984) providing well-

supported and readily interpreted output and predictions (Cutler et al. 2007). Ensemble 

models such as RF models consist of many independently trained regression trees, where 

for each tree, a bootstrap sample of the training data is chosen. The algorithm randomly 

samples a small set of explanatory variables at each node and chooses the best split from 

among them (Liaw and Wiener 2002). The regression tree grows until it reaches the largest 

possible size and is left un-pruned. The whole process is frequently repeated based on new 

bootstrap samples and the final prediction is a weighted plurality vote or the average from 

predicting all regression trees. Additionally, RF provides a hierarchical list of the relative 

predictive strength of multiple independent variables. RF requires no assumption of 

normality, simultaneously incorporates both categorical and continuous data, and produces 

easily interpretable results (Prasad et al. 2006; Francke et al. 2008; Casalegno et al. 2010). 

Accuracy assessment 

The prediction error was estimated based on a 10-fold cross-validation. Then, Pearson’s 

correlations, the degree of determination for R-squared, and root mean squared errors 

(RMSE) between observed and predicted values were calculated. Further, model’s 

prediction potentials were explored by plotting and comparing changes in density functions 

(distribution of observed and modeled LAI values) from models based on the three 

predictor sets (INVE, TMTO, and ALL). 

4 Results 

We compared the different model performances for calculating LAI with and without 

satellite-based data. We also evaluated the respective importance of individual predicting 

variables in each model. 
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Model performance 

Our results suggest that TMTO models were the most predictive for LAI (Figure A-3, 

Table A-1). R2 values for cross-validated LAI estimates ranged from 0.30 to 0.33 for the 

ALL and TMTO models, respectively (Table A-1), and were statistically significant 

(P <0.05). The INVE model was the least predictive, with an R2 of about 0.03, and was not 

significant (P = 0.063). Our model fits (Table A-2) had R2 values as low as 0.04 for the 

INVE, but reached 0.31 for the ALL, and 0.34 for the TMTO models. 

ALLTMTOINVE ALLTMTOINVE

 

Figure A-3: Correlation coefficients for LAI prediction based on the INVE, TMTO, and ALL models. 

Pearson’s correlation coefficients for LAI prediction ranged from 0.18 for the INVE model 

to 0.57 for the TMTO model (Figure A-3, Table A-1). Moreover, we observed the effect of 

model saturation with LAI, which effectively limited the predictive range for high LAI 

values. Comparing RMSE statistics, we obtained the lowest RMSE for the TMTO model 

with 0.25, followed by the ALL model with an error of 0.26, and the INVE model with an 

error of 0.31. 

Table A-1: Cross-validated results for LAI models. 

 Model 
 ALL TMTO INVE 
Pearson's correlation 0.55 0.57 0.18 
R-squared 0.30 0.33 0.03 
p 1.04E-09 2.73E-10 0.06307 
MSE 0.07 0.06 0.10 
RMSE 0.26 0.25 0.31 
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Table A-2: Model fit for LAI estimates. 

 Model 
 ALL TMTO INVE 
Pearson's correlation 0.56 0.58 0.20 
R-squared 0.31 0.34 0.04 
p 7.54E-10 1.31E-10 0.04328 
    
The model’s density functions (Figure A-4) revealed partial over- and underestimates by all 

of the models, with the TMTO model having a better overall agreement between observed 

and predicted LAI values compared to the INVE and ALL models. 

 

Figure A-4: Density functions of observed (solid line) and predicted values of LAI for different models: 
INVE (dot-dashed line), TMTO (dotted line), and ALL (long-dashed line). 

Variable importance 

Comparing the predictor’s importance (Figure A-5, Table A-3), we observed that 

spectrally-based variables from Landsat data were dominant in the ALL model. Moreover, 

the two most important predictors – the visible red and green Landsat bands, respectively – 

were identically ranked in the TMTO model, with DI being identified as the third most 

important predictor. Random permutation of TM band 3 (visible red) increased the relative 

error by 12% for the ALL model and by 14% for the TMTO model. Permutation of 

remaining predictor variables resulted in %IncMSE by 8 to 10%. The strongest predictors 

of LAI in the INVE model (Figure A-5, Table A-3) were stem density and canopy cover. 

Permutation of those parameters decreased the model’s predictive accuracy by 7-9%. 
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Table A-3: Relative importance of the predictors measured in increase of mean squared error [in %]. 

 Model 
Predictor ALL TMTO INVE 
B105c 7.43 6.78   
B205c 10.19 10.74   
B305c 11.85 13.17   
B405c 5.49 6.92   
B505c 5.12 6.03   
B605c 8.03 7.34   
TC105c 6.07 6.04   
TC205c 7.16 8.33   
TC305c 3.99 5.81   
DI05c 6.41 9.16   
Elevation 2.04 -0.33   
NDVI05c 6.91 8.85   
Hillshade 1.48 0.72   
Slope 0.47 2.73   
Age 6.56  5.39 
Height -0.12  5.55 
dbh 2.76  3.22 
ZW 1.12  7.68 
V_HA 1.38  4.64 
L_HA 2.55  8.75 
F 0.03  2.80 
G 2.01  4.04 
V 1.74  3.60 
ZD 3.69   6.84 
    

ALLTMTOINVE ALLTMTOINVE

 

Figure A-1: Predictor’s importance ranking for LAI prediction based on INVE, TMTO, and ALL models. 
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5 Discussion 

The ability to assess forest productivity and its spatial dynamic using LAI as a proxy could 

enable more accurate evaluations of the role of forests in the local to regional carbon 

balance. Although field inventories yield high quality and accuracy, they are spatially and 

temporally constrained, and thus do not fulfill the requirements of continuous forest 

monitoring. Therefore, remote sensing approaches could provide an alternative solution. 

Our results show that LAI values measured for multiple spruce plantations in the Western 

Carpathians covered only a narrow range compared to LAI values for spruce stands 

reported by other authors (Nilson et al. 1999; Lucas et al. 2000; Asner et al. 2003). This 

phenomenon can be explained by: (1) even-aged stand types (typically simple one-story 

condition), and (2) poor health conditions of spruce plantations in the Western Carpathians. 

The latter is evidenced by reduced tree vigor, decline and mortality, and thus low live 

crown ratio and foliar area. Similarly narrow LAI ranges are reported by Chen et al. (2002) 

for fire-devastated conifer forests in Radisson, Canada. Hence, we assume that the 

applicability of our approach would be limited to forest stands with relatively low forest 

vigor, as well as simple forest structure, such as even-aged forests.  

Our measurements within “homogenous” inventory plots varied by up to 3.96 LAI units in 

extreme cases. This is a result most likely due to highly variable tree vigor/crown density. 

Sample densities in standard forest inventory procedures of the Polish Forest Service – 

which we adopted for reasons of comparability – may therefore not be sufficient to 

describe such variable stand conditions, and reported mean values are not necessarily 

representative. 

TMTO-based estimates cover only about one-third of the observed LAI values in our study 

area. There are three possible explanations for this phenomenon. First, we might not have 

had enough reference samples in the higher LAI range. Second, the algorithm might 

introduce a tendency to predict towards the mean of the reference data, which would be in 

line with results by Blackard et al. (2008) and Reese et al. (2002). Third, the reference LAI 

measurements were conducted under varying weather conditions. While we carefully 

screened our field data and eliminated the potentially compromising measurements of 

which we were aware, we cannot completely rule out that our dataset included inaccurate 

LAI measurements. The importance of a large reference sample for capturing the whole 

LAI range as well as the role of data proofing cannot be disregarded. The latter is 
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particularly important for filtering inaccurate readings related to variable weather 

conditions. 

Spectral ranges between 0.63µm and 0.69µm (visible red), as well as 0.52µm and 0.60µm 

(visible green), were best related to LAI. This is similar to findings by Nilson et al. (1999) 

and Eklundh et al. (2001). In contrast to other authors (Fang and Liang 2003; Stenberg et 

al. 2004), the inclusion of the SWIR band (1.55-1.75μm) – known to be sensitive to 

understory effect – did not substantially improved our LAI estimates. However, SWIR 

predictive strength could have been stronger if more reference samples by open canopy 

condition and understory vegetation would have been gathered. Neither the INVE, nor the 

ALL models improved the accuracy of LAI estimates. We therefore believe that polygon-

wise average SBI data is not representative for very local canopy measurements such as 

LAI. 

While the evaluation of different models’ predictive power was facilitated by the 

availability of reference data and a homogeneous forest structure, few uncertainties remain. 

First, explanatory variables from SBI and Landsat data, as well as reference LAI data 

might not perfectly match each other due to temporal differences. Generally, SBI data are 

collected in 10-year intervals independently for every forest district. For three districts in 

our study area, the latest SBI data updates were available for 2003, 2004 and 2007, 

respectively. Thus, some discrepancies might have occurred. One acute example concerns 

the extent of wind-throw after the high intensity storms in November 2004 and following 

sanitary cutting in 2005 and 2006. Landsat imagery from early September 2005 might also 

not reflect the total extent of these sanitary measures. Finally, time discrepancies between 

SBI, Landsat and field-based LAI estimates (2006, 2007) might not reflect exactly the 

same forest condition. 

Second, the model tends to slightly overestimate lower and underestimate higher LAI 

values. Similar tendency has also been observed in other studies, for instance where 

regression tree techniques (Blackard et al., 2008) or k-Nearest Neighbor (kNN) algorithms 

(Reese et al., 2002) were applied. The bias of high LAI values is likely due to the limited 

sensitivity of Landsat data (as a passive sensor) to reproduce the canopy structure in dense 

forests. Here LAI can lead to saturated measurements. Few studies reported the tendency 

of spectral-based models to saturate already by moderately high LAI of ~3 (Turner et al. 

1999). One potential method to overcome the saturation effect could consider including 
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texture measures as additional model variable (Wulder et al. 1998), as these measures 

include information about structural attributes of forest stands. 

Further, we presume that the tendency of our model to bias lower LAI estimates is related 

to the confounding effect of understory in sparse forests. The more open the canopy, the 

stronger the influence of understory vegetation on remotely-based LAI predictions 

(Rautiainen 2005; Eriksson et al. 2006). Consequently, we recommend including 

information that describes local canopy closure and defoliation (here texture measure could 

provide important insights), as well as information on understory structure to aid further 

modeling development. 

Summarizing, the inventory-based approach failed in terms of highly accurate prediction of 

coniferous LAI. In contrast, the solely satellite-based approach performed the most 

accurate LAI estimates and has obvious advantages for determining their spatial variability. 

Moreover, results suggest that spectral and topography data combined with stand-inventory 

did not improved LAI estimates. Our findings demonstrated that stand level inventories are 

not representative for very local canopy measurements and average the variability within 

stands. They therefore cannot compliment remote sensing LAI models. We believe that 

texture measures could improve the predictive strength of our satellite-based model 

towards high-resolution LAI mapping at the local to regional scale, suggesting further 

investigations with additional texture variables. 
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1 Introduction 

This supplementary material provides additional information to Chapter IV and describes 

the relationship among biomass loss (abrupt and gradual) identified for the Western 

Carpathians and site characteristics (topographic factors and averaged forest stand age). 

2 Data and methods 

This analysis is based on the coniferous forest map (spruce-dominated stands) and the 

maps of abrupt and gradual biomass decrease, from Chapter IV of this thesis. Both biomass 

loss maps are characterized by onset year, magnitude and duration of the change, which 

were used for the further analysis. The averaged tree age map at the inventory stand level 

was provided by the Polish State Forest Holding. The topographical factors were calculated 

from the resampled 30 m digital elevation model (Chapter IV). 

The magnitude of biomass loss was defined as “severe”, “moderate” and “low” when the 

relative magnitude of biomass change was above 75%, 50-75%, and below 50%, 

respectively. Duration of gradual biomass loss was divided into four classes: ≤10 years, 11-

15 years, 16-20 years, and above 20 years. The area and the magnitude of abrupt and 

gradual biomass decrease were summarized for six elevation zones (≤400 m, 401-600 m, 

601-800 m, 801- 1000 m, 1001-1200 m, and >1200 m), seven slope zones (≤5°, 6-10°, 11-

15°, 16-20°, 21-25°, 26-30°, and >30°), as well as eight 45° facing slope zones (N, NE, E, 

SE, S, SW, W, and NW). Finally, the area of abrupt changes and forest inventory stand age 

were compared. 

3 Results 

Generally, coniferous forest in the study region mostly covers the lower montane zone 

(~400 m to 1200 m), with the highest forested fraction between 601 m and 800 m. This 

elevation zone experienced remarkable abrupt and gradual biomass losses (Figure B-1a). 

However, when comparing the area of abrupt and gradual biomass loss at the altitude 

between 401-600 m, 601-800 m and 801-1200 m, gradual decrease entailed ~72%, ~65%, 

and 50% more area than abrupt changes, respectively. 
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Regarding the magnitude of biomass loss, areas of abrupt changes experienced higher 

relative magnitudes along entire elevation gradients than areas of gradual changes (Figure 

B-1b). While the fraction of low gradual biomass decrease was clearly predominant over 

all elevation zones, the fraction of severe gradual loss increased from 22% (≤400 m) to 

57% (up to 1200 m) (Figure B-1b). 
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Figure B-1: Distribution of coniferous forest fraction, abrupt and gradual biomass decrease (a) and 
corresponding relative magnitude of severe, moderate and low biomass loss by elevation zones (b); 
coniferous forest fractions, abrupt and gradual biomass decrease (c) and corresponding relative magnitude of 
severe, moderate and low biomass loss by slope zones (d). 
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Slope zones between 11° and 20° comprise most of the coniferous forests in the study site 

and have been predominantly affected by biomass loss (Figure B-1c). Similarly, biomass 

losses due to gradual change affected more forested area than due to abrupt changes. This 

difference in biomass loss increased from 38% for up to 5° slope to ~200% of biomass loss 

in the 26°-30° slope zone. While the area affected by severe and moderate abrupt changes 

decreased from ~57% to 30% with increasing slope zone, gradual changes maintained a 

stable rate for all magnitude classes and slope zones (Figure B-1d). 

Overall, areas with south, southwestern, and southeastern facing slopes showed higher 

fraction of abrupt biomass loss than gradual loss (Figure B-2a). However, independent of 

the pace of change, similar southern facing slopes (S, SW and SE) were disproportionally 

more affected by severe biomass loss than by changes of moderate or low magnitude 

(Figure B-2b). Regarding the averaged tree age, more than half of the forested area consists 

of stands between 71 and 110 years (Figure B-3). Disturbances were clearly predominant 

in the spruce averaged stand age between 91 and 120 years. 
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Figure B-2: Distribution of coniferous forest fraction, abrupt and gradual biomass decrease (a) and 
corresponding relative magnitude of severe, moderate and low biomass loss by facing slope (b). 
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Figure B-3: Fractions of abrupt biomass loss versus averaged stand age (status 2009). 
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Figure B-4: Area of gradual biomass decrease (a) and corresponding relative magnitude of severe, moderate 
and low biomass loss in relation to duration of change (b); duration of gradual biomass decrease by elevation 
zone (c) and by slope zone (d); coniferous forest fractions, and duration of gradual biomass decrease by 
facing slope (e). 
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