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ZUSAMMENFASSUNG 

Limitierend für pharmakologische Therapien ist oft die Unfähigkeit des Wirkstoffes, 
biologische Membranen zu überwinden, weswegen häufig Transportmoleküle wie z.B.  
zellpenetrierende Peptide (CPPs, cell penetrating peptides) benutzt werden. Von den 
über 100 beschriebenen CPPs wurde bisher nur eine kleine Anzahl systematisch 
verglichen, was die Auswahl des „richtigen“ CPPs für eine Anwendung erschwert. 
Ziel dieser vorliegenden Arbeit war es, das pro-apoptotische Peptid KLA mittels CPPs 
spezifisch in Krebszellen zu transportieren. Untersucht wurden: (I) Verschiedene CPPs 
in unterschiedlichen Zelltypen zur Selektion der „besten“ CPPs; (II) Der Einflusses des 
CPP C-Terminus auf die Internalisierung und zelluläre Verteilung; (III) Der zelluläre 
KLA-Transport mittels CPPs via einer nicht-kovalenten Administration.  
22 verschiedene CPPs wurden in sieben Zelltypen untersucht, wobei Toxizität, 
Zellaufnahme und zelluläre Lokalisation mittels Fluorescein markierten CPPs in 
Fluoreszenzspektroskopie und konfokaler Mikroskopie betrachtet wurden. Abhängig 
von der Zellaufnahme wurden die CPPs in drei Gruppen klassifiziert. Die Untersuchung 
carboxylierter und carboxyamidierter CPP C-Termini ergab, dass in den meisten Fällen 
ein Carboxyamid die zelluläre Aufnahme begünstigte.  
Drei CPPs (MPG, Penetratin und Integrin) wurden ausgewählt, um das pro-apoptotische 
KLA Peptid in zwei Krebszelllinien (MCF-7 Brustkrebszellen und leukämische 
RAW264.7 Makrophagen) im Vergleich zu Fibroblasten (Cos-7) nicht-kovalent zu 
transportieren. Der erfolgreiche KLA-Transport hing vom CPP, dessen C-Terminus und 
der Zelllinie ab. Die Analyse der Viabilität nach CPP:KLA Administration ergab, dass 
MPG-CONH2:KLA (1:2) toxisch für Makrophagen und Brustkrebszellen, aber nicht für 
Fibroblasten war. Die Toxizität konnte der Apoptose zugeordnet werden. 
Die vorliegende Arbeit liefert wichtige Informationen über die Auswahl des passenden 
CPPs für den nicht-kovalenten Transport des pro-apoptotischen KLA-Peptids. 
 
Schlagwörter: Zellpenetrierendes Peptid, KLA Peptid, pro-apoptotisch, nicht-kovalent, 
Peptidtransport 
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SUMMARY 

Limitations in a pharmacological therapy are often due to the inability of drugs to 

overcome the cellular membrane and therefore transporting molecules are being used, 

e.g. cell penetrating peptides (CPPs). Only a few of the over 100 described CPPs have 

been compared systematically making the choice of “the” CPP for a given application 

difficult. 

The goal of the presented work is the CPP mediated delivery of the pro-apoptotic 

peptide KLA in breast cancer cells as proof of principle for a therapeutical application. 

Analysed were (I) Different CPPs in various cell types to select the “best” one, (II) The 

influence of the CPP C-termini on uptake and localisation, (III) The cellular KLA 

delivery via a non-covalent CPP administration. 

22 CPPs were compared in seven cell types thereby looking at toxicity, cellular uptake 

and subcellular localisation using fluorescein labelled CPPs for fluorescence 

spectroscopy and confocal microscopy. The resulting uptake information allowed the 

classification of the CPPs in three main groups. The evaluation of carboxylated and 

carboxyamidated CPP C-termini revealed that a carboxyamide mostly enhanced the 

cellular CPP uptake.  

Three CPPs were selected (MPG, penetratin and integrin) to deliver the pro-apoptotic 

KLA peptide in two cancer cell lines (breast cancer MCF-7 cells and RAW264.7 

macrophages) compared to fibroblasts (Cos-7) via the non-covalent strategy. A 

successful KLA delivery depended on the applied CPP, its C-terminus and the used cell 

line.  

The biological activity of the pro-apoptotic KLA peptide was determined via the cell 

viability (MTT assay). The co-incubation of MPG-CONH2:KLA (1:2) was able to 

induce toxicity in breast cancer cells and leukaemic macrophages, but not in fibroblasts. 

The viability reductions were then assigned to apoptosis. 

This work provides important information for the choice of an adequate CPP for the 

pro-apoptotic KLA peptide delivery and presents the advantage of the non-covalent 

delivery strategy. 

 
Keywords: cell penetrating peptide, KLA peptide, pro-apoptotic, non-covalent, peptide 
delivery
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1. INTRODUCTION 

The observation and modulation of intracellular processes in the context of 

physiological and molecular-pharmaceutical studies is the basis of a specific and 

targeted development of active pharmaceutical agents. Necessary for that end as well as 

for an effective pharmacotherapy, a sufficient concentration of the biological active 

substance is needed at the site of action, which therefore requires an efficient 

internalisation. One of the main obstacles is the translocation over the cell membrane. 

Furthermore, depending on the target site, pharmaceuticals need to be distributed to 

different parts of the body while overcoming additional absorption barriers (e.g. blood-

brain barrier). 

1.1. Problems of Drug Delivery 

The cell membrane protects the cell from the invasion of pathogens and other harmful 

molecules and is needed for the maintenance of the cells inner homeostasis, resulting in 

a well controlled import and export. Only small lipophilic molecules (< 600 Da) are 

able to pass the membrane by passive diffusion, whilst bigger ones have to be 

transported in energy-dependent and independent events [reviewed in (Sawant et al., 

2009)]. 

For a better understanding of intracellular biochemical processes, scientists need to 

translocate various molecules into living cells whilst influencing the cell as little as 

possible in its viability and homeostasis. Different methods have been developed, which 

either permeabilise the plasma membrane for a short amount of time or make use of 

transport molecules, so called carriers. 

A method to overcome the plasma membrane is the microinjection of molecules by 

glass needles into the cytoplasm or nucleus (Capecchi, 1980). Cell plasma membrane 

permeabilisation is done by electroporation (Knight et al., 1986; Rols, 2006) or 

sonoporation (Wyber et al., 1997), in which an externally applied electrical field or 

ultrasonic sound induces pores in the membrane, respectively. Furthermore, pore 

forming molecules (Walev et al., 2001), laser irradiation (Zeira et al., 2003) or the 

“gene pistol” (Wells, 2004) can be used to overcome the cell membrane. These methods 

are unfortunately mostly inapplicable to the therapeutic utilisation for humans and are 

therefore primarily used in laboratories. 

In pharmacology, carriers are therefore highly important and used to transport cargoes 

efficiently to the site of action, which can be a specific cell type, cell compartment or 
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cellular component. In contrast to free, unbound small molecules that passage the cell 

membrane mostly by diffusion or unspecific, adsorptive pinocytosis, carrier-bound 

molecules mostly internalise by receptor-mediated endocytosis. Examples of carriers 

include pH sensitive liposomes and polymers, cationic liposomes, lipids and polymers, 

viral vectors, polymeric nanoparticles and fusogenic peptides (Rawat et al., 2007). 

1.2. Cell Penetrating Peptides 

An increasing popular class of membrane translocating agents is represented by the cell 

penetrating peptides (CPPs), also called protein transduction domains (PTDs) [reviewed 

in (Deshayes et al., 2005; Jarver et al., 2006)]. CPPs are able to translocate over the 

cellular membrane into different cell types in vitro (cell lines, primary cultures or 

tissues) and have even been applied in vivo (mouse, rat) transporting a range of different 

molecules e.g. nucleic acids, PNA, peptides, proteins, liposomes and nanoparticles 

[overview: (Dietz et al., 2004; Langel, 2002; Lindsay, 2002; Sawant et al., 2009)]. 

Work in the CPP area stemmed from the discovery that the third helix of the 

Antennapedia homeodomain, pAntp (43–58) (Derossi et al., 1994) and the trans-

activating transcriptional activator, Tat, a protein encoded by human immunodeficiency 

virus-1 (HIV-1) (Frankel et al., 1988; Green et al., 2003), can cross biological 

membranes. Up to the turn of the millennium, the number of peptides assigned to the 

family of CPPs has increased tremendously (Lindgren et al., 2000). Nowadays, they can 

be divided into three classes: protein-derived peptides, model peptides and designed 

peptides (Zorko et al., 2005). Protein-derived CPPs usually comprise the minimal 

effective sequence segment of the parent translocation protein and are also known as 

protein transduction domains or membrane translocation sequences. Examples are the 

Tat peptide (48–60) derived from the 86-mer Tat protein (Vives et al., 1997) or 

penetratin (43–58) derived from the homeodomain Antennapedia of Drosophila (Joliot 

et al., 2008). Model CPPs comprise sequences designed with the aim of producing well-

defined amphipathic α-helical structures, or mimicking the structures of known CPPs. 

Examples are the model amphipathic peptide (MAP) (Oehlke et al., 1998) or 

polyarginine sequences (Futaki et al., 2001). Designed CPPs are usually chimeric 

peptides containing a hydrophilic and a hydrophobic domain of different origins, such 

as transportan, a fusion peptide of galanin and mastoparan (Pooga et al., 1998a).  

However, no unambiguous definition of CPPs has been proposed, only common 

features have been agreed on; such as (I) CPPs carry a net positive charge at 
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physiological pH and (II) CPPs facilitate the rapid translocation of molecules across 

cellular membranes. Generally, they comprise less than 30 amino acids and contain 

between approximately 17 % [e.g. hCT(9-32)] to 100 % [polyarginines] positively 

charged amino acids. With some exceptions such as polyarginine and integrin, most 

CPPs are amphipathic. Some of them acquire amphipathic characteristics when 

adopting an α-helical structure, as for instance the model peptide MAP (Oehlke et al., 

1998), while others have distinct hydrophobic and hydrophilic parts, such as transportan 

(Yandek et al., 2008). 

As mentioned, CPPs reveal remarkable properties of cell penetration either on their 

own, or as conjugates with a range of other types of biomolecules [reviewed in 

(Lindsay, 2002)]. However, the endocytic mechanism used - clathrin-mediated 

endocytosis (Richard et al., 2005), caveolae-mediated endocytosis (Ferrari et al., 2003; 

Fittipaldi et al., 2003) or macro-pinocytosis (Kaplan et al., 2005; Wadia et al., 2004) - 

defines the migration of these peptides into cells and depends on parameters such as the 

nature of the cationic agent itself and complex formation with cargo, as well as the 

nature and distribution of proteoglycans expressed on the cell surface (Duchardt et al., 

2007; Poon et al., 2007). Most likely CPPs utilise multiple internalisation mechanisms 

in combination (Duchardt et al., 2007). Besides the translocation by endocytosis, it is 

thought that they are also able to overcome the cell membrane by energy-independent 

mechanism, such as micelle and pore formation (Deshayes et al., 2004).  

1.3. The CPPs of This Study 

In this study, 22 different CPPs were chosen as representative cadidates from the three 

different CPP classes (Table 1, page 29). 

SynB1 derives from the antimicrobial peptide protegrin, which was isolated from 

porcine leukocytes and acts against a broad spectrum of microorganisms (Steinberg et 

al., 1997). The amphipathic, linear SynB1 is able to pass biological membranes as well 

as the blood brain barrier and is therefore involved in the development of peptide-

conjugated pharmaceuticals (Rousselle et al., 2000).    

Polyomavirus Vp1 originates from the capsid protein VP1 of this virus. It is able to 

translocate into the nucleus, because the peptide contains a nuclear localisation 

sequence (NLS) as well as a DNA-binding motif (Chang et al., 1993; Murray et al., 

2001). 
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Penetratin results from the Drosophila homeoprotein Antennapedia. Homeoproteins 

belong to the trans-activating factors and were described first in Drosophila 

melanogaster (Gehring, 1987). They consist a DNA-binding motif, the 60 amino acid 

long homeodomain, structured in three α-helices (Qian et al., 1989). The amphipathic 

CPP penetratin (amino acid 43-58) derives from the third helix of this homeodomain 

(Derossi et al., 1994). 

Tat, also called HIV-1 Tat-(48-60), is the most frequently used CPP and stems from the 

transcriptional activator protein of HIV-1, is known to internalise into cells as well as 

the nucleus (Frankel et al., 1988) and can be used as a vehicle for heterologic proteins 

(Fawell et al., 1994). The cell penetrating peptide Tat contains a cluster of basic amino 

acids 49-58 with a nuclear localisation sequence (Ruben et al., 1989).   

Bac1-15 originates from Bac7, which is a bactenicin isolated from the granules of 

bovine neutrophils (Gennaro et al., 1989). Its antimicrobial activity results from the 

increase in membrane permeability resulting in the inhibition of the bacterial respiration 

and ATP (adenosine-5'-triphosphate)-synthesis and therefore also of the protein 

biosynthesis (Skerlavaj et al., 1990). Cationic Bac1-15 was found in the cytoplasm as 

well as the nucleus (Sadler et al., 2002).  

NF-κB is a positively charged NLS of the nucleus factor kappa B, which is involved in 

the regulation of cellular and viral genes (Lenardo et al., 1989) and exhibits cell 

penetrating properties (Ragin et al., 2002). 

SV40, a short, seven amino acid long NLS, stems from the Simian Virus 40 large 

tumour antigen and is able to promote the nuclear accumulation of usually cytoplasmic 

proteins like the β-galactosidase (Kalderon et al., 1984). 

HATF3 is the NLS of the basic region of the human activating transcription factor 

(ATF)-3 (Hai et al., 1989) and internalises into the cell probably by endocytosis (Ragin 

et al., 2002). 

hCT(9-32) derives from the C-terminal domain of human calcitonin, a hormone 

involved in the regulation of the calcium and phosphate balance (Copp, 1970). In 

comparison to the other CPPs its charge is relatively low at physiological pH. After the 

penetration of the cell membrane it is found in the cytoplasm in a punctuated pattern, 

but not in the nucleus (Trehin et al., 2004). 

Rev, also called HIV-1 Rev-(34-50), originates from the trans-activating Rev protein of 

HIV-1 and contains a nuclear localisation sequence (Cochrane et al., 1990) as well as a 

RNA (ribonucleic acid)-binding motif (Bohnlein et al., 1991). 
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pVEC is a peptide stemming from murine, endothelial cadherin, which is a 

transmembrane protein mediating cell contact between neighbouring cells and 

anchoring the actin cytoskeleton with the plasma membrane (Huber et al., 1996). The 

peptide sequence consists of 13 amino acids, which are usually located near the cell 

membrane and five hydrophobic amino acids of the C-terminus of the transmembrane 

region (Elmquist et al., 2001). 

Integrin derives from the hydrophobic region of the cytoplasmic part of the human 

transmembrane protein integrin β3. So far, its cell penetrating properties were described 

being cell type unspecific (Hawiger, 1999). 

DPV6 (Diatos Peptide Vector) stems from PDGF (platelet-derived growth factor), 

belongs to the human Vectocell® penetrating peptides and can interact with 

aminoglycans, like heparin, on the cell surface. It has been described as non-toxic in 

vitro and in vivo and was found in the cytoplasm together with the cargo protein 

maleimid without the detection of a nuclear localisation (De Coupade et al., 2005). 

S413PV is from a 13 amino acid sequence of the dermaseptin S4 peptide, which has cell 

penetrating properties attached to the NLS of SV40 large T antigen (Hariton-Gazal et 

al., 2002). Dermaseptin was isolated from the skin of the frog Phyllomedusa bicolor, 

adopts a α-helical conformation and inhibits the growth of a number of pathogenic 

microorganisms (Mor et al., 1994). 

Transportan consists of amino acids from the neuropeptide galanin and the wasp toxin 

mastoparan linked via a lysine residue. During the cellular uptake transportan is found 

first at the outer membrane and cytoplasmic membrane structures, and later at the 

nuclear membrane and inside the nucleus, where it condenses in sub-structures, 

probably in the nucleoli (Pooga et al., 1998a). 

Pep-1, also known as Chariot™, belongs to the newly constructed peptides. It has a 

hydrophobic tryptophan-rich domain to interact with proteins on the cell membrane and 

a hydrophilic, lysine-rich domain, the NLS of SV-40 large T-Antigen, to reach the 

nucleus fast. Pep-1 is able to penetrate various cell lines and accumulates fast in the 

nucleus (Morris et al., 2001). 

MPG (FP-NLS MPG, model amphipathic peptide) is a synthetic peptide, in which the 

hydrophobic domain of the fusion protein gp41 of HIV was combined with the 

hydrophilic domain of the SV40 large T antigen NLS (Morris et al., 1997). MPG is able 

to transport single and double-stranded oligonucleotides into the nucleus independent of 

endosomal pathways (Vidal et al., 1998). 



1. INTRODUCTION  8 

 

MAP is a designed, amphipathic peptide containing lysine, leucine and alanine residues 

(Oehlke et al., 1996). Its penetration was reported being cell type independent and it 

was found in the nucleus (Oehlke et al., 1998). 

Poly-P, a peptide containing many prolines, is found in the cytoplasm after peptide 

incubation and is reported to show no toxic effects even at high concentrations 

(Fernandez-Carneado et al., 2004). 

R7 and R9, the poly-arginine peptides, are the only non-amphipathic peptides, which 

are able to pass the cell membrane. R9 is able to translocate 100-times more efficient 

than Tat and both peptides are even more resistant to proteases (Wender et al., 2000). 

pVEC-scrambled is the mixed sequence of pVEC and used as a negative control in this 

study, since it is unable to pass the cell membrane (Elmquist et al., 2003). 

1.4. Strategies of CPP Delivery 

1.4.1. Covalent Delivery 

The main purpose of CPPs is their use as delivery vehicle for biological active 

substances into living cells. For that, the cargo is usually attached to the CPP either by 

covalent linkage or tandem synthesis/expression, when the cargo is a peptide or protein 

(Gait, 2003; Nagahara et al., 1998). Here the final localisation of the chimeric molecule 

depends on both cargo and carrier.  

CPPs have been shown to efficiently improve intracellular delivery of various 

biomolecules, including plasmid DNA, oligonucleotides, siRNA (short interfering 

RNA), PNA (peptide nucleic acid), proteins and peptides, as well as liposome 

nanoparticles, into cells both in vivo and in vitro. Short synthetic CPPs have been 

designed to overcome both extracellular and intracellular limitations, trigger the 

movement of a cargo across the cell membrane into the cytoplasm and improve its 

intracellular trafficking, thereby facilitating interactions with the target (Brasseur et al., 

2010; Sawant et al.).  

When CPPs are used to transport other peptides, they are usually synthesised 

continously. Snyder and colleagues synthesised a tumour suppressor p53-derived 

peptide linked to Tat and were able to restore p53 protein activity in cancer cells 

(Snyder et al., 2004). They showed that the CPP did not hinder the therapeutical 

effectiveness of the p53-derived peptide and that it was proteolytically stable.  

If the conjugates are longer than about 50 amino acids, they are either genetically 

expressed in tandem or chemically conjugated. One of the first reports stated the 
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120 kDa β-galactosidase protein expressed in tandem with the Tat peptide was able to 

translocate in all tissue of the mice and even passaged the blood-brain barrier (Schwarze 

et al., 1999).  

Chemical conjugation through disulfide bond formation is particularly interesting. It can 

form between thiol groups of cysteine residues and will be reduced when entering the 

cytoplasm due to the intracellular redox environment followed by the release of the 

cargo (Hallbrink et al., 2001). Efficient and specific coupling, thereby preventing the 

formation of homodimers, can be done by the use of 2-pyridinesulfenyl (SPyr)-

protected cysteine-containing peptides with thiol-unprotected peptides (Schulz et al., 

2000). Unfortunately, due to the lack of glutathione and therefore thiolate anions, 

disulfide cleavage is disfavoured in the acidic endosome, but happens at the cell surface 

and may happen in the early endosome (Feener et al., 1990; Jones, 2007). This needs to 

be taken into consideration, since the CPPs are often endocytosed. 

Coupling proteins or peptides to CPPs with a short proteolytic cleavage site in between 

is another possibility. Recombinant Tat-delivered alpha B-crystallin, a small heat shock 

protein, was delivered into cells and proteolytically cleaved by matrix 

metalloproteinase-1 (MMP-1), which then could be blocked by the treatment with a 

MMP inhibitor (Yang et al., 2011). MMP-2 and -9 activities are associated with tumour 

invasion and metastasis (Egeblad et al., 2002). A specific linker, predominantly 

sensitive to these MMPs, has been used to attach a short cationic CPP sequence to 

neutralising anions (Olson et al., 2009). When the molecule is cleaved by MMP-1 

and -9, the masking anion is detached releasing the cell membrane adhesive CPP 

sequence as well as the cargo and promoting cellular uptake of both. Tsien’s group used 

dendrimers to display many activatable CPPs, which transport magnetic resonance and 

fluorescent probes for tomographic imaging as well as superficial intraoperative 

guidance during surgery. They were able to detect very small tumours and metastasis of 

200 µm. This potential diagnostic agents is promising, since it can be used (I) for a wide 

range of tumours, (II) for all tumour markers, (III) for whole-body scanning as well as 

(IV) for precise, fluorescence-guided surgery. 

One main purpose of CPPs is the delivery of oligonucleotides for a therapeutical 

application. For example, RNA interfering (RNAi) technology is a powerful technique 

for post transcriptional gene silencing, in which short interfering double stranded (ds) 

RNAs (siRNAs) are loaded into the RNA-induced silencing complec (RISC) siRNAi 

complex in  the cytoplasm, which then recognises and degrades target mRNA. The 
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delivery of siRNAs remains a problem, since they are highly negatively charged and 

therefore rejected by the cell membrane. Eguchi and Dowdy linked a RNA-binding 

domain to a CPP, thereby masking the negative charge of the siRNA and were able to 

completely knockdown the target gene in the whole cell population in over 30 cell types 

including primary cells [reviewed in (Eguchi et al.)]. Their peptide transduction 

domain-dsRNA binding domain (PTDDRBD) represents a promising tool for RNAi 

therapy in the future. 

Furthermore, uncharged oligonucleotide analogues, peptide nucleic acids (PNA) and 

phosphorodiamidate morpholino oligomers (PMO, morpholino) are widely used for 

antisense applications, such as steric block ONs for the inhibition of translation. In 

principle, PNAs can be coupled to CPPs either by synthesis in tandem (Simmons et al., 

1997) or through conjugation by thioether or disulfide linkages (Abes et al., 2007; 

Moulton et al., 2004). Here as well the disulfide linkage is very popular and was first 

used by Pooga et al. (Pooga et al., 1998b), who linked PNA, complementary to the 

human galanin receptor type 1 mRNA, to transportan and penetratin suppressing the 

expression of functional galanin receptors. Thioether, disulfide or amide conjugated 

CPP-PMOs have similar nuclear antisense activity (Moulton et al., 2004), but the amide 

linkage might be advantageous, since it requires only one step synthesis and purification 

in comparison to a two step process. In addition, it was found to be more stable in 

human serum than disulfide-linked CPP-PMO (Youngblood et al., 2007). One of the 

most promising CPP-PMO conjugates is used in the treatment of Duchenne muscular 

dystrophy. Avi Biopharma, a company working with CPPs, uses 6-aminohexanoic acid 

spaced oligoarginine [(R-Ahx-R)4] for in vivo steric block splicing correction in the 

treatment of Duchenne Muscular dystrophy (Wang et al., 2010). Further CPPs have 

even made it into clinical trials. CellGate Inc. initiated phase II clinical trials with 

cyclosporine linked to polyarginines in 2003 to treat patients with psoriasis (Rothbard et 

al., 2000; Smith et al., 2003). A phase IIa clinical trial is now in progress in patients 

suffering from acute myocardial infarction for testing PKC (protein kinase C) peptidic 

inhibitors known to be cardioprotective (Bates et al., 2008). In particular the δ-PKC 

inhibitor KAI-9803 (also known as δ-V1-1) leads to reduced damages in 

cardiomyocytes (> 60 % infarct size reduction) and endothelial cells after an ischemic 

insult (Inagaki et al., 2003). 
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Although conjugation methods offer several advantages for in vivo applications, 

including rationalisation and control of the CPP-cargo, they remain limited from the 

chemical point of view, as they risk altering the biological activity of the cargoes. 

1.4.2. Non-Covalent Delivery 

The non-covalent delivery of biomolecules has been reported for several CPPs (Morris 

et al., 2008). It is advantageous, because it simplifies conjugation protocols and 

different cargoes can be delivered without the adjustment of them (although the mixing 

ratio might need some consideration). Furthermore, the non-covalent delivery decreases 

the likelihood of unwanted influences of the CPP on cargo activity as well as of the 

cargo on the cell penetrating properties of the CPPs.  

Different approaches for gene-delivery have been used. Peptides, which are able to 

complex with DNA, associate with peptides that facilitate endosomal escape, such as 

the fusion peptide of HA2 subunit of influenza haemagglutinin (Wagner et al., 1992). 

Other successful gene carriers are MPG (Morris et al., 1999) or the synthetic peptide 

analogue GALA (Gottschalk et al., 1996). Furthermore, Pep-1 was able to deliver 

peptides and proteins non-covalently in vitro (Morris et al., 2001) and in vivo (Gros et 

al., 2006). MPG formed stable non-covalent complexes with siRNA and delivered it 

efficiently into the nucleus of mammalian cells, for which the NLS was essential for 

nuclear delivery, but not for cytoplasmic targeting (Simeoni et al., 2003). Electrostatic 

and hydrophobic interactions are responsible for stable complex-formation of Pep-1 and 

MPG with oligonucleotides or peptides and proteins (Morris et al., 2001; Simeoni et al., 

2003).   

The novel CPP Rath was also able to deliver proteins and nucleic acids in a 

temperature-independent mechanism hereby avoiding endosomal entrapment (Bais et 

al., 2008). It was also capable of delivering large antibodies into primary cells, which is 

thought to be more difficult than the delivery into immortalised cell lines and was non-

cytotoxic at high concentrations (75 µM). Another approach is the inclusion of RNA 

binding domains in the Tat sequence, which then specifically recognises a short RNA 

sequence. The siRNA cargo is designed including the matching RNA sequence and is 

transported into the cells by complex formation (Endoh et al., 2009). The attachment of 

the CPP to the cargo can also be done by using the interactions of avidin and biotin-CPP 

constructs (Pooga et al., 2001). 
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1.4.3. CPP-Modified Liposomes 

Liposomes for the carriage of water-soluble drugs and micelles delivering poorly 

soluble therapeuticals are probably the most popular and well-investigated drug carriers 

(Torchilin, 2005; Torchilin, 2007). When Tat was incorporated in liposomes via a 

spacer molecule, which allowed the Tat peptide to interact with the cell surface, cells 

displayed an enhanced uptake (Pittet et al., 2006). Furthermore, the number of CPP 

molecules (Tat and penetratin) attached to the liposomal surface was proportional to the 

translocation and was dependent on peptide and cell type used. The conjugation of 

CPPs (such as R8) to liposomes was found to enhance their uptake into airway cells 

upon inhalation (Cryan et al., 2006). The incorporation of Tat into micelles was used to 

deliver anticancer drugs to acidic, solid tumours (Sethuraman et al., 2007). 

Besides the incorporation of CPPs in liposomes and micelles, they have been used for 

the modification of solid lipid nanoparticles (no inner aqueous space) and were able to 

enhance the gene transfection in vitro and in vivo compared to polyethylenimine 

nanocarriers (Suk et al., 2006). 

Surprisingly, Tat peptide-modified liposomes (Tatp-lipoplexes), which were prepared 

with small amounts of cationic lipids, complexed with DNA showing higher 

transfection and less toxicity than Lipofectamine® in mouse fibroblasts and cardiac 

myocytes. When injected intratumourally, Tat-liposome-DNA complexes showed 

efficient transfection (Torchilin et al., 2003). For the delivery of siRNA, liposomes 

modified with R8 have been used, which showed very high blood serum stability as 

well as transfection in Lipofectamine 2000-resistant SK-MES-1 lung tumour cells 

(Zhang et al., 2006). 

1.4.4. Internalisation Mechanisms of CPPs 

The internalisation mechanism of many CPPs remains unclear, possibly due to the use 

of different methods in different laboratories, which are probably not comparable, but is 

thought to involve a wide range of possibilities (see Figure 1).  
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 Figure 1. Mechanisms of CPP Uptake. 
Many internalisation mechanisms for the cellular uptake of cell penetrating peptides 
have been suggested. They include energy-dependent endocytotic pathways as well as 
energy-independent translocation by pore formation of lipid membrane destabilisation. 
The figure is taken from (Trabulo et al., 2010). 

The first contact of the CPPs with the cell membrane is driven by electrostatic 

interactions with proteoglycans and syndecans, which are the major components of the 

extracellular matrix. The clustering of glucosaminoglycans (GAGs) triggers the 

remodelling of the actin network and guanosine triphosphate hydrolase (GTPase) 

activation and impacts the membrane fluidity (Gerbal-Chaloin et al., 2007; Ziegler, 

2008). Primary amphipathic peptides, consisting of a sequentially hydrophobic and 

cationic domain such as MPG (Morris et al., 1997), transportan (Pooga et al., 1998a) 

and Pep-1 (Morris et al., 2001) bind to neutral anionic lipid membranes, probably 

through hydrophobic interactions and reduce the surface tension (Ziegler, 2008). They 

penetrate deep in the hydrophobic core without spanning the bilayer. Primary 

amphipathic peptides often self-associate in the head group region, insert into the 

membrane and translocate directly by e.g. pore formation (Deshayes et al., 2006). 

Transportan and MPG lead to membrane leakage already at submicromolar 

concentrations (Barany-Wallje et al., 2007), whereas Pep-1 crosses the membrane 
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without inducing leakage (Weller et al., 2005). Besides the formation of pores, other 

direct penetration mechanisms, which are most likely for primary amphipathic CPPs, 

are the formation of inverted micelles (Derossi et al., 1996), the carpet-like (Pouny et 

al., 1992) and the membrane-thinning model (Lee et al., 2005). 

Secondary amphipathic peptides, such as penetratin (Derossi et al., 1996), show their 

amphipathic secondary structure after the interaction with lipids as helixes (Futaki et al., 

2001) or β-sheets (Oehlke et al., 1997). Their insertion into the bilayer is not very 

pronounced. At low micromolar CPP concentrations high fractions of anionic lipids 

(> 10 %) are needed for membrane binding, not typical in eukaryotic cells (Ziegler, 

2008). The same was reported for non-amphipathic CPPs such as R9 - direct 

translocation was not seen at low micromolar concentrations. Instead it has been 

reported that penetratin and polyarginines bind to the membrane mainly through 

electrostatic interactions and trigger the cellular uptake of energy-dependent 

endocytosis (Murriel et al., 2006). Endocytosis can be subdivided in phagocytosis (large 

particle uptake) and macropinocytosis (solute uptake). In macropinocytosis the outer 

surface of the plasma membrane folds inwards, forming an external macropinocytic 

structure that is enclosed and internalised: the macropinosome. It is unknown whether 

CPPs induce specific macropinocytotic pathways, but quite likely that they utilise 

multiple pathways in the fluid phase as well as non-specific adsorptive endocytosis. In 

receptor-mediated endocytosis, clathrin- or caveolin-mediated mechanisms are 

involved, which bind the extracellular molecule followed by an invagination of the 

membrane and the formation of phagosomes (Jones, 2007). Depending on the 

experimental conditions, a CPP uses mostly more than one pathway (Letoha et al., 

2003). After cellular uptake, the endosomal escape remains a major limitation, but is 

has been reported that CPPs traffic through the endoplasmic reticulum and Golgi 

network into the cytosol (Fischer et al., 2004) and that NLS motifs can localise the 

cargo to the nucleus (Simeoni et al., 2003). The incorporation of endosomal breakers is 

a possibility to escape the endosome through proton sponge effects (Yamaguchi et al.). 

Another possibility is the use of endosomolytic reagents like chloroquine (Veldhoen et 

al., 2006) or endosomolytic peptides, which acidic residues get protonated at a result of 

endosomal acidification leading to the formation of an α-helix, which hydrophobic side 

interacts and destabilises the endosomal membrane (Lundberg et al., 2007). Using 

photosensitisers, which localise in the endosomal membrane and destabilise the 
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membrane upon photostimulation to release the entrapped molecules has also been done 

(Hogset et al., 2004). 

In summary, even after two decades of CPP applications in vitro and in vivo the 

internalisation mechanism of the CPPs alone or together with their cargo remains 

controversial and a main subject in research areas. 

1.5. Pro-Apoptotic Peptides as Therapeutic Tools 

Therapeutic peptides mimicking or inhibiting protein-protein interactions have become 

a promising new class of drugs, because of potential great target specificity, easy 

development and low-prized production (Raucher et al., 2009; Vlieghe et al.). This is 

especially relevant in tumour therapy where the delivery of therapeutic peptides is 

limited due to rapid degradation and poor tumour cell penetration. As a result D-amino 

acids can be introduced to improve stability or they can be attached to carriers to 

improve cellular uptake, e.g. CPPs. Therapeutic peptides are classified in three main 

groups: signal transduction-inhibiting, cell cycle-arresting and necrosis- or apoptosis-

inducing peptides. 

1.5.1. Peptides for Signal Transduction Inhibition 

Peptides that interfere with the proliferative signal transduction cascade either inhibit 

mitogenic signals or restore the activity of tumour suppressor proteins. For example, 

researchers developed peptide inhibitors of extracellular signal-regulated kinase (ERK), 

which is one of the most studied transduction cascades transmitting extracellular signals 

to the nucleus, resulting in the activation of transcription factors which are essential for 

proliferation and differentiation (Kelemen et al., 2002). Attaching penetratin or Tat to 

the inhibitor facilitated the uptake and inhibited ERK activation in stimulated NIH 3T3 

(mouse embryo fibroblast) cells or nerve growth factor-treated PC12 

(pheochromocytoma) cells followed by the inhibition of the activation of E twenty-six 

(ETS)-like transcription factor 1 (Elk-1).  

The tumour suppressor protein p53, whose gene is very often deleted or mutated in 

cancer cells, is a transcription factor important for cell cycle regulation and apoptotic 

response to DNA damage. A C-terminal peptide of p53 (peptide 46) fused to penetratin 

was able to activate p53-mediated transcription in cell lines expressing wild-type and 

certain mutant p53 proteins, but not in null p53 cell lines (Selivanova et al., 1997). It 

could restore the growth-inhibition and apoptosis-induction function of two often 

mutated p53 proteins, which was due to the binding of the peptide to the core as well as 
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to the C-terminal domain of p53, which rehabilitated the sequence-specific DNA 

binding of the p53 protein (Selivanova et al., 1999). Furthermore, the peptide induced 

cell death in several cancer cell lines, such as MCF-7 cells (overexpression of wild-type 

p53), but not in non-malignant cell lines containing wt p53 (Kim et al., 1999). This 

therapeutic anticancer peptide is a promising agent for the induction of apoptosis in 

cancer cells carrying p53 abnormalities. 

1.5.2. Peptides for Cell Cycle Inhibition 

Peptides inhibiting cell cycle progression modulate cyclin and cyclin-dependent kinase 

(Cdk) activity. Cdks are activated by cyclin binding or by other Cdk-activating kinases 

(CAKs) and phosphorylate target proteins, which control cell-cycle specific events like 

spindle formation or chromosome condensation. Cdks are therefore great targets for 

anticancer drugs. The inhibition of Cdks is either due to phosphorylation of inhibitory 

sites or due to the binding of Cdk inhibitors (CKIs). Gondeau et al. designed a peptide 

derived from cyclin A, which was able to form stable complexes with Cdk2-cyclin A 

and inhibited its kinase activity (Gondeau et al., 2005). When coupled to the Tat 

peptide, it inhibited the proliferation of several tumour cell lines (including MCF-7 

cells) with IC50s between 2 µM and 14.2 µM in 48 h incubations. 

1.5.3. Peptides for Apoptosis Induction: the Bcl-2 Protein Family 

The pro-apoptotic peptides inhibit members of the Bcl-2 protein family, mimic Bcl-2 

family members or modulate caspase activity. Apoptosis is crucial for the body’s 

homeostasis and for the elimination of cells containing damaged DNA. It is often 

dysfunctional in cancer cells resulting in uncontrolled proliferation. Therefore the 

development of pro-apoptotic peptides for the selective induction of apoptosis in cancer 

cells is of great interest (Ellerby et al., 1999).  

One possibility is to target protein kinase B (Akt kinase). Completely phosphorylated, 

membrane anchored, activated Akt inhibits key apoptosis proteins by phosphorylation 

(Cardone et al., 1998) and regulates NF-κB-mediated transcription of other inhibitors of 

apoptosis (IAPs) (Barkett et al., 1999), which leads to cellular apoptosis protection and 

uncontrolled cancer cell growth. Akt-mediated protection against apoptosis can be 

stopped by its interaction with the cell membrane or by inhibiting its substrate 

phosphorylation activity. Indeed, Hiromura et al. (Hiromura et al., 2004) was able to 

deliver an Akt-inhibitor peptide by fusing it to the CPP Tat in human T cells, which 

interacted with it and specifically inhibited its kinase activity. This peptide chimer was 
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able to inhibit cell proliferation and anti-apoptosis activity in vitro as well as tumour 

growth in vivo.  

Furthermore, pro-apoptotic peptides can target the anti-apoptotic B-cell lymphoma 2 

(Bcl-2) family proteins (Lutz, 2000). The family of Bcl-2 proteins consists of pro- and 

anti-apoptotic regulator proteins all sharing the Bcl-2 homology 3 (BH3) domain. Pro-

apoptotic Bcl-2 proteins contain either only the BH3 domain [e.g. Bcl-2-associated 

death promoter (BAD) protein] or several domains [e.g. BH1-BH3 in Bcl-2-associated 

X protein (Bax)] which induce apoptosis by promoting cytochrom c release from the 

mitochondria, followed by the activation of caspases mediating the cell death. In cancer 

cells the anti-apoptotic side of the Bcl-2 proteins is overexpressed. Anti-apoptotic 

proteins such as Bcl-2 or Bcl-xL neutralise pro-apoptotic Bax or BH3-only proteins and 

decrease the cell’s susceptibility to cell death. 

In one study, BH3 peptides derived from the pro-apoptotic Bcl-2 family members were 

conjugated to Antennapedia and introduced into head and neck squamous carcinoma 

cell lines, which overexpress the anti-apoptotic protein Bcl-XL (Li et al., 2007). The 

Antp-BH3 peptides colocalised with the mitochondria and induced viability reduction 

and apoptosis. 

With the goal to restore apoptosis in cancer cells, Valero et al. designed a peptide 

encompassing two central helices of the membrane pore-forming domain of the pro-

apoptotic Bcl-2 protein Bax (Valero et al., 2011). This peptide alone was sufficient to 

insert in the mitochondrial outer membrane resulting the loss of the transmembrane 

potential, membrane disruption and cytochrome c release. Furthermore, the peptide 

itself delivered GFP to the mitochondria, induced caspase-dependent apoptosis and was 

even more effective than the widely used pro-apoptotic KLA peptide (discussed in more 

detail later). When coupled to the CPP octaarginine it efficiently penetrated HeLa cells 

and induced toxicity with a LC50 of 15 µM after 24 h, which could be assigned to 

apoptosis induced by the Bax-derived peptide. Moreover, the R8-Bax [106-134] peptide 

showed anticancer activity in tumour-bearing mice. 

1.5.4. Peptides for Apoptosis Induction: The Pro-Apoptotic KLA Peptide 

A widely used pro-apoptotic peptide is the polycationic KLA peptide with the sequence 

(KLAKLAK)2 (Ellerby et al., 1999). Due to their positive charge, pro-apoptotic KLA 

peptides are attracted by negatively charged membranes e.g. mitochondrial membranes, 

where they distort the lipid matrix. Losing the membrane barrier function, mitochondria 

swell and cells undergo apoptosis. Since the eukaryotic plasma membrane has a low 
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transmembrane potential, these peptides usually remain non-toxic outside the cell, but 

induce apoptosis when transported across the plasma membrane (Lemeshko, 2010). 

When KLA was coupled to hepta-arginine, both isoforms (L- and D-) induced 

permeabilisation of the inner and outer membranes of rat liver mitochondria at 3.6 µM. 

Furthermore, they induced mitochondrial aggregation thereby stopping their metabolic 

activity, which was strongly dependent on the inner membrane potential of the 

mitochondria. Therefore, the higher anti-cancer activity of  R7-KLA and r7-kla (D-

isoform) in comparison to just KLA or kla alone is not only due to a better plasma 

membrane penetration (Law et al., 2006), but also due to the presence of arginine-rich 

CPPs, which increase the direct permeabilisation of mitochondrial membranes in a 

potential dependent mechanism. This finding might be important, taking into account 

that plasma and mitochondrial membrane potentials are usually higher in tumour cells 

than in normal cells (about 60 mV higher in the mitochondria of cancer cells) (Chen, 

1988). Coupling the KLA-peptide to tumour homing devices resulted in the disruption 

of mitochondrial membranes, the growth inhibition of human dermal microvessel 

endothelial cells (DMECs) under angiogenic conditions of proliferation and cord 

formation, but not under angiostatic ones and even induced anti-cancer activity in mice 

(Ellerby et al., 1999). 

In another approach the KLA peptide was delivered using a multimeric RGD-containing 

scaffold, which released KLA by disulfide bridge cleavage after internalisation by 

receptor-mediated endocytosis (Foillard et al., 2009). In a different study, KLA was 

coupled to R8 and induced toxicity (IC50) at 2 µM and 4 µM in human myeloid KG1a 

and HeLa cells (Watkins et al., 2009). Furthermore, researchers reckoned some of the 

cytotoxic effects mediated by r8-kla were due to direct effects on the plasma membrane 

and its increased permeability, since they observed cellular propidium iodide entry after 

10 minutes as well as membrane blebbing. 

To selectively induce apoptosis in malignant cells whilst showing little cytotoxicity in 

normal cells, the cytokine TRAIL (tumour necrosis factor-a related apoptosis inducing 

ligand) has been widely used (Hopkins-Donaldson et al., 2000). TRAIL binds to death 

receptors and induces apoptosis. Unfortunately, many tumour cells are resistant to 

TRAIL-induced apoptosis due to e.g. loss of caspase-8 activity (Hopkins-Donaldson et 

al., 2000) or constitutively active Akt protein kinase (Chen et al., 2001). Therefore, the 

use of KLA is of high importance, since it can be used to overcome TRAIL resistance 

(Barua et al., 2010). KLA was used for the chemosensitisation of two TRAIL-resistant 
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human prostate cancer cell lines to death receptor (DR) agonistic antibodies. KLA alone 

had no effect at low concentrations (1-15 µM), but induced swelling necrosis (oncosis) 

at > 30 µM. A KLA concentration of 15-25 µM was then used to sensitise the cells to 

the apoptotic effects of the DR agonists. Pre-incubation with KLA before treatment with 

DR agonistic antibodies resulted in an increase in caspaser-3 cleavage and cytochrome c 

levels. This shows that KLA can be used to sensitise TRAIL-resistant cells to DR-

mediated apoptosis. 

Another study used three triphenyl phosphonium (TPP) cations to deliver KLA 

(Kolevzon et al., 2011). TPPs accumulate in the mitochondria due to the high negative 

mitochondrial potential (Murphy et al., 2007), but are highly affected by its cargo: no 

mitochondrial localization after conjugation to CPPs (Ross et al., 2004). The delivery of 

3-TPP-KLA induced mitochondria-dependent apoptosis in HeLa cells with an IC50 of 

25 µM after 3 hours incubation. Furthermore, the conjugation of three TPPs to the N- or 

C-terminus did not influence the cytotoxic KLA activity. 

KLA has also been used in the fight of obesity (Kolonin et al., 2004). It was coupled to 

a homing peptide of white fat vasculature and was able to ablate white fat in obese mice 

resulting in the upregulation of lipid turnover and an increased metabolic rate followed 

by the reversal of obesity and metabolic normalisation as well as no detection of 

adverse effects. Since the target of the homing peptide also exists in humans, this study 

is promising for the development of targeted drugs to treat human obesity.  

These examples show, that mitochondrial membrane-disrupting peptides like KLA are 

promising tools for future cancer therapies, since they do not rely on the intrinsic 

expression of pro-apoptotic Bcl-2-like proteins and can be used in a wide range of cell 

types. Since they have proven applicability in vivo (Kolonin et al., 2004), their future 

use as therapeutic peptides is very likely.  

1.6. Objective and Strategy 

Major limitations in the clinical implementation of peptide-based drugs have risen from 

their incapacity to cross biological membranes. Cell penetrating peptides are promising 

tools to improve the intracellular delivery of various cargoes including peptides and 

proteins [as reviewed in (Dietz et al., 2004; Sawant et al., 2009)]. However, for a 

therapeutical application (e.g. cancer treatment with pro-apoptotic peptides) it is still a 

challenge to choose “the” appropriated CPP. 
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Nowadays, only a few comparative studies of CPP internalisation have been performed 

(El-Andaloussi et al., 2007; Fischer et al., 2004; Fotin-Mleczek et al., 2005; Maiolo et 

al., 2005; Sarko et al., 2010; Tunnemann et al., 2008; Wender et al., 2000). 

Nevertheless, differences in numerous variables relating to the experimental procedures 

used by various groups make it hard to compare studies and form any conclusions, 

especially about the mechanism of internalisation. These variables include: different 

sources and purity of CPP, label or cargo used, concentration of CPP, cell-type, density 

and stage of cell cycle, incubation time and final end point or read-out. 

With regard to a clinical application of anti-cancer drugs such as biological active 

peptides, the best CPP suited for that application should be determined in vitro. In this 

study the internalisation of the apoptosis-inducing KLA peptide is supposed to be 

achieved via a non-covalent strategy meaning a simple co-incubation procedure of both 

- CPP and KLA peptide. This approach represents a huge advantage for the future 

therapeutic utilisation: (I) It is much easier and quicker to mix the appropriate CPP with 

the corresponding therapeutic peptide instead of newly synthesising the chosen set; (II) 

It is possible to change the pro-apoptotic peptide quickly in case resistance occurs. 

Furthermore, the likelihood of negative influences of the CPP on the activity of the 

cargo peptide, and vice versa, is hopefully reduced by the non-covalent approach. 

Since there has been no large-scale systematic attempt to determine which CPP 

sequence shows optimal cellular uptake, the internalisation of 22 different CPPs will be 

compared in various commonly used cell types. In a first step, the standard assay 

conditions will be defined allowing direct comparison of the measured cellular uptake, 

toxicity and their subcellular localisation (vesicular or evenly distributed). To measure 

cellular CPP uptake, fluorescein labelled CPPs will be used, which can be measured in 

the lysate using a microplate reader and visualised by confocal microscopy. The toxicity 

of the peptides will be assessed by a MTT assay. The resulting uptake information 

should allow the classification of the CPPs by their internalisation rates and help to 

select promising CPPs for efficient KLA-peptide delivery. 

Besides the search for the most promising CPP, the internalisation mechanism will be 

analysed using different endocytosis modulators (e.g. chlorpromazine or nystatin) or 

depleting energy-dependent processes (4°C). Furthermore, the influence of CPP C-

termini (carboxylated versus carboxyamidated) on the peptide’s uptake, cellular 

localisation and toxicity will be analysed due to the fact that CPPs with different C-

termini have been used in various studies (Weller et al., 2005; Zorko et al., 2005). 
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After this intense comparative exploration, a subset of CPPs showing no toxicity, good 

uptake and cytosolic localisation will be chosen for a successful KLA peptide delivery 

in cancer cell lines, such as breast cancer MCF-7 cells and RAW 264.7 macrophages in 

comparison to fibroblasts (Cos-7). Using the co-incubation strategy, the optimal 

molecular mixing ratio of CPP:KLA will be determined. Thereafter, KLA-delivery will 

be assessed by measuring intracellular Cy5-labelled KLA in cell lysates as well as by 

the detection in live cells with confocal microscopy. Since it has been stated that a 

cysteamide at the C-terminus is required for efficient gene transfection (Simeoni et al., 

2003) as well as for protein delivery (Simeoni et al., 2003; Wells, 2004), the influence 

of carboxylated and carboxyamidated CPP C-termini on the delivery of the KLA 

peptide should be evaluated. Finally the activity of the pro-apoptotic peptide will be 

determined using different routinely used methods such as nucleus condensation 

(microscopy), DNA fragmentation (ELISA) or caspase-3 activity (western blot, specific 

substrate cleavage).  

Altogether, this work should give important background information in the choice of the 

adequate CPP for an anti-apoptotic peptide delivery with regards of future in vivo and/or 

clinical applications. 
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2. EXPERIMENTAL PROCEDURES 

2.1. Peptide Synthesis 

The peptides used were synthesised by the Molecular Libraries and Recognition Group 

(Charité, Berlin) automatically (Syro II, MultiSynTech) using the Fmoc standard 

protocol. Peptides with a C-terminal carboxyl group were generated using TentaGel S 

PHB-aa-Fmoc (Rapp Polymere) and with a C-terminal carboxyamide group using 

TentaGel S Ram resin (Rapp Polymere). For standard synthesis Fmoc-aa-OH were used 

with the following side-chain protections: E-, D-(OtBu); S-, T-, Y-(tBu); K-, W-(Boc); 

N-, Q-, H-(Trt); R-(Pbf) (Novabiochem; Bachem). 5(6)-carboxyfluorescein (CF, Fluka) 

coupling was achieved using 1 equiv. N-hydroxybenzotriazole (HOBt) and 1 equiv. di-

isopropylcarbodiimide (DIC) as activators, as reported in (Fischer et al., 2003). 

Coupling of Cyanine 5 (Cy5) was done with 1 equiv. O-Benzotriazole-1-yl-N,N,N',N'-

tetramethyluronium tetrafluoroborate (TBTU) and 2 equiv. N,N-Diisopropylethylamine 

(DIPEA). The crude peptides were purified to > 95 % by preparative HPLC (Waters) 

and their identity was determined by analytical RP-HPLC (Waters) and MALDI TOF 

mass spectrometry (LaserTec BenchTopII, PerSeptive Biosystems). 

The amino acids are mostly given in the single-letter code, but sometimes in the three 

letter code. 

2.2. Cell Culture 

African green monkey kidney (Cos-7), human embryonal kidney (HEK293), human 

cervix carcinoma (HeLa) and Madin-Derby canine kidney (MDCK) cells were cultured 

in phenol red-free (prf) Dulbecco's Modified Eagle medium (DMEM, Invitrogen) 

supplemented with 10 % fetal bovine serum (FBS, Invitrogen) and 1 % 

penicillin/streptomycin (pen/strep, Biochrom AG). Human breast adenocarcinoma cells 

(MCF-7) were cultured in phenol red-free (prf) RPMI 1640 (Invitrogen), 10 % FBS, 

1 % non-essential amino acids (MEM NEAA, Gibco), 1 mM sodium pyruvate (Gibco), 

and 1 % pen/strep. Mouse leukaemic macrophages (RAW 264.7) were cultured in 

RPMI 1640 (prf), 10 % heat inactivated FBS, 0.05 mM L-glutamine (Gibco) and 1 % 

pen/strep. 

RAEC cells were cultured in Endothelial Basal Medium (EBM, PAA), 10 % FBS, 1 % 

pen/strep. All surfaces, e.g. bottom of culture flasks or well-plates, were coated with 

0.2 % gelatine (Invitrogen).  
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The cells were seeded in the appropriate concentrations (see experimental section 

below) and grown until ~ 80 % confluence at the day of the experiment. Unless 

otherwise indicated, solutions were tempered to 37 °C and all incubations were 

performed at 37 °C, 5 % CO2. 

2.3. Cellular Uptake 

Uptake measurements were performed in 6- or 12-well plates (Falcon, BD Biosciences). 

Cells were rinsed twice with PBS (phosphate buffered saline) and 1 ml 10 µM CF-

labelled CPP solutions in medium without FBS were applied for 30 min at 37°C, 5 % 

CO2. Excess CPPs were carefully removed by two rinses with PBS buffer and cells 

were trypsinated for 10 min at 37°C with 200 µl trypsin [0.05 % trypsin/0.02 % EDTA 

(ethylenediaminetetraacetic acid) (w/v) solution (Biochrom AG)]. Cell solutions were 

transferred to eppendorf tubes. Following two washing steps with PBS and 

centrifugation at 4,000 rpm at 4°C for 10 min, cells were lysed in 500 µl RIPA [50 mM 

Tris, 1 mM EDTA, 150 mM NaCl, 1 % (v/v) NP40, 0.5 % (v/v) deoxycholat, 0.1 % 

(w/v) SDS (sodium dodecyl sulfate), pH 7.5; Complete Mini, EDTA-free (Roche 

Diagnostica GmbH) freshly added] for 1 hour at 4°C. Finally, the samples were 

centrifuged at 8,200 rpm at 4°C for 10 min. 

Signal intensities of CF-CPP were determined using 100 µl lysate in a 96 well plates 

(U96PP, Nunc) with a microplate reader [FLUOstar OPTIMA – BMG Labtech 

(excitation: 485 nm and emission: 520 nm)]. 

Later on, 12-well plates were used with half the volumes for each incubation step. 

The total protein contents were determined by a BCA (bicinchoninic acid) assay where 

5 µl sample and 200 µl BCA-reagent (Reagent A: 1 % (w/v) BCA-Na2, 2 % (w/v) 

Na2CO3, 0.16 % (w/v) Na2-Tatrat, 0.4 % NaOH, 0.95 % (w/v) NaHCO3, pH 11.25 and 

reagent B: 4 % (w/v) CuSO4*5H2O; A:B = 50:1) were mixed and incubated for 30 min 

at 37°C in a 96-well plate (Nunc Maxi Sorb). The absorbance at 620 nm was measured 

and thereafter the concentration was calculated using a bovine serum albumin (BSA, 

Sigma-Aldrich) calibration curve. 

2.4. Endocytosis Inhibitor Test 

All endocytosis inhibitors were purchased from Sigma-Aldrich and used with the 

following concentrations: 30 µM chlorpromazine hydrochloride, 100 µM chloroquine 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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diphosphate salt, 10 µM heparin sodium salt all dissolved in H2O, as well as 100 µM 

nystatin dehydrate and 100 nM wortmannin dissolved in DMSO (dimethyl sulfoxide). 

Cells were pre-incubated with different endocytosis inhibitors for 30 min in medium 

without FBS. Then CPPs were added to a final concentration of 10 µM and incubated 

for 30 min.  

Besides the 37°C CPP incubation, incubations at 4°C were also performed. To minimise 

possible side effects, all solutions were pre-chilled to 4°C. 

Excess CPPs and inhibitors were removed by two rinses with PBS and then the cells 

were trypsinated and lysed with RIPA. As described before, CF-intensities and protein 

concentrations were assessed using microtiter plate reader measurements (FLUOstar 

Optima – BMG Labtech). 

2.5. Cellular Delivery of Peptides 

The basic procedure was done as in described in the chapter “2.3 Cellular Uptake”. 

Cells were seeded, washed and co-incubated with CF-CPPs, cyanine 5 (Cy5)-labelled 

KLA or PRC and CF-labelled CPP-KLA or CPP-PRC peptides for 30 min. Different 

concentrations or mixing ratios are shown in the respective figures (Figure 8 and 

Figure 9). If not otherwise indicated, the CPPs and KLA peptide were directly co-

incubated with the cells without a previous pre-incubation step of both peptides only. 

Finally, the peptide solutions were washed off, the cells were lysed and Cy5-intensities 

were measured in the lysate via a microplate reader (FLUOstar Optima – BMG 

Labtech; excitation 640 nm, emission 680 nm). The CF-CPP uptake was monitored as 

well to ensure consistency. The protein content in the lysate was determined using a 

BCA assay.  

2.6. Confocal Laser Scanning Microscopy 

The cellular localisations of CF-labelled CPPs were detected together with the 

membrane-labelling dye trypan blue with a confocal microscope [inverted IX81 

fluorescence microscope equipped with a Fluoview 1000 scanhead (Olympus) and a 

60× (N.A. 1.35) oil-immersion objective at 25°C]. The green CF fluorescence was 

excited with the 488 nm laser line of an Argon-ion laser, while the red trypan blue 

fluorescence was excited with a 543 nm Helium–Neon laser. The system was run in 

sequential scanning mode, where only one laser was active at a time to avoid spectral 
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overlap. The emission of CF was recorded between 500 nm and 530 nm. For trypan 

blue, the emission was recorded from 570 nm to 670 nm.  

To detect the KLA delivery by CPPs, the KLA peptide was labelled with Cy5. Cells 

were incubated with KLA and CPPs at respective concentrations (Cos-7: 10 µM 

Integrin + 10/20 µM KLA; MCF-7: 1 µM Integrin + 1/2 µM KLA; RAW 264.7: 1 µM 

MPG + 1/2 µM KLA) for 30 min, washed and analysed in complete growth medium. 

HOECHST 33342 (Molecular Probes) was used to stain nuclei. The pictures were then 

obtained using a Zeiss Axiovert 200M fluorescence microscope (Carl Zeiss).  

For nuclear morphology analysis, cells (8×104 cells per dish) were seeded and the next 

day incubated with indicated CPP:KLA complexes. Directly after or after 24 h or 48 h 

the cells were stained with 10 µg/ml HOECHST 33342 (Molecular Probes) for 30 min. 

The nuclear morphology was analysed with a Zeiss Axiovert 200M fluorescence 

microscope (Carl Zeiss). 

All measurements were performed with living, non-fixed cells grown in glass bottom 

dishes (World Precision Instruments). 

2.7. MTT Assay 

A good cellular tolerance is highly important for the use of CPPs as delivery reagents. 

Cell viability was determined using the CCK-8 kit (Fluka) as described by the 

manufacturer. In a few words, to test the cytotoxicity of CPPs 5×105cells were seeded in 

96-well microtiter plates (Falcon) and cultivated over night (37°C, 5 % CO2). Then they 

were incubated with peptides for 2 h in FBS-free medium, washed and further incubated 

with the appropriate medium containing FBS and the MTT dye for 4 h. This 

measurement of cell viability is based on the principle that the WST-8 (water soluble 

tetrazolium salt) dye is reduced in cells by dehydrogenases giving a yellow coloured 

product (formazan), which is soluble in the tissue culture medium. The amount of the 

formazan generated by the activity of dehydrogenases in cells is directly proportional to 

the number of living cells. The absorbance of the formazan product at 570 nm was 

measured using a microplate reader (FLUOstar Optima – BMG Labtech). The results 

were normalised to the control (without peptide) which corresponds to 100 % viability. 

Measurements of the pro-apoptotic KLA peptide activity were performed using the 

MTT test as well. Therefore cells were incubated with CPPs (10 µM for Cos-7, 1 µM 

for MCF-7 and RAW 264.7) and KLA (10 or 20 µM for Cos-7, 1 or 2 µM for MCF-7 

and RAW 264.7) alone or as a mixture. The incubation time was 3 h for Cos-7 cells and 
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1 h for MCF-7 and RAW 264.7 cells. The MTT-test was performed after 3 days for 

Cos-7, MCF-7 cells and after different time points (0 to 3 days) for RAW 264.7 cells. 

The results were normalised to the control (without peptide) which corresponds to 

100 % viability. 

2.8. Western Blot Analysis 

To detect cleaved caspase-3, cells were subjected to western blot analysis. MCF-7 and 

Cos-7 cells were seeded 3.2×104 cells/well in 6 well plates. The next day, MCF-7 cells 

were incubated with 1 µM MPG-CONH2 and 2 µM KLA for 1 h or 3 h. Cos-7 cells 

were incubated with 10 µM MPG-CONH2 or Int-COOH and 20 µM KLA for 3 h in 

FBS-free medium. Thereafter, the cells were washed with PBS and left in FBS-

containing medium. Either directly after incubation or after 3 days, cells were harvested 

and lysed with RIPA buffer (Sigma-Aldrich) containing protease inhibitor cocktail 

tablets (Sigma-Aldrich) for 30 min shaking at 4°C. Cell lysates were centrifuged at 

8,000 rcf for 10 min at 4°C. 50 µg proteins [BCA Protein Assay Reagent, Pierce] were 

separated by SDS-PAGE electrophoresis and transferred to a polyvinylidene fluoride 

(PVDF) membrane (BioRad). Blots were blocked with 5 % non-fat dry milk in PBS 

(Gibco), 0.05 % Tween-20 (ICN Biomedicals Inc.) for 1 h and incubated with cleaved 

caspase-3 rabbit monoclonal antibody (Cell Signaling - 1:1,000) as recommended by 

the manufacturer. The next day membranes were incubated with the secondary anti-

rabbit IgG-peroxidase antibody (Sigma-Aldrich - 1:1,000). Afterwards membranes were 

washed and incubated with the anti-actin-peroxidase antibody (Sigma-Aldrich - 

1:50,000). The blots were detected with an enhanced chemiluminescence western 

blotting substrate (Pierce). 

2.9. Caspase-3 Assay  

Cos-7 cells were seeded (8×103 cells/well), washed and incubated with 10 µM Int-

COOH and 10/20 µM KLA for 3 h. Using the Caspase-3 Fluorescence Assay Kit 

(Cayman), the caspase-3 activation was measured the same day using the specific 

caspase-3 substrate N-Ac-DEVD-N’-MC-R110, which generates a fluorescent substrate 

upon cleavage by active caspase-3. Active caspase-3 included in the kit was used as a 

positive control. For detailed instructions see the kit protocol. To ensure that the KLA 

peptide’s Cy5-label is not the cause of cell death, the KLA peptide without the 
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fluorophore was tested in this assay. The caspase-3 inhibitor (N-Ac-DEVD-CHO) was 

diluted in assay buffer and used as described by the manufacturer.  

In parallel, MCF-7 cells were seeded (8×103 cells/well), washed, co-incubated with 

1 µM MPG-CONH2 and 1/2 µM KLA for 3 h and caspase-3 activity was accessed in the 

same way as described for Cos-7 cells. 

2.10. DNA-Fragmentation Assay 

Using the Cell Death Detection ELISA kit (Roche Diagnostics), the DNA fragmentation 

in MCF-7 lysates after CPP and KLA incubation was detected with antibodies against 

histones and DNA as described by the manufacturer. Briefly, MCF-7 cells were seeded 

(2×104 cells/well) in 24-well plates (Falcon) and incubated the next day with 1 µM 

MPG-CONH2 and 2 µM KLA for 1 h. DNA fragmentation was measured using the 

supernatants of MCF-7 lysates after 1 day, 2 days or 3 days at 405 nm and 490 nm 

(Tecan). The absorbance values (A405-A490) were normalised to those of untreated cells 

to calculate the nucleosomal enrichment factor. 0.5 µM staurosporine (STS, Sigma-

Aldrich) was used as a positive control.  

2.11. Annexin V/Propidium Iodide Flow Cytometric Analysis 

In apoptotic cells phosphatidylserine (PS) is translocated from the cytoplasmic side of 

the cell membrane to the extracellular side, where fluorescein isothiocyanate (FITC)-

labelled annexin V can bind to it with high affinity. Including propidium iodide (PI) in 

the staining procedure ensures a discrimination between dead, necrotic and apoptotic 

cells. MCF-7 cells were seeded (1.6×105 cells/well) in 12-well plates and the next day 

incubated with 1 µM MPG-CONH2 and 2 µM KLA for 1 h. Cells were harvested 

directly after peptide incubation or after 1 day or 2 days, stained using the FITC-

annexin V/Dead Cell Apoptosis Kit V13242 (Invitrogen) and analysed with a 

BDFACSCanto (BD). 0.5 µM STS were included as positive controls. 

2.12. Statistical Analysis 

All values are expressed as mean ± SEM. Multiple comparisons between groups were 

assessed by one-way ANOVA with Newman-Keuls post hoc test. Probability values 

< 0.05 were accepted as statistically significant and the P values were noted as: not 

significant (ns) for P > 0.05 and * for P < 0.05, ** P < 0.001 and *** P < 0.0001. Data 

was analysed using GraphPad Prism (GraphPad Software, San Diego California USA).  



3. RESULTS  28 

 

3. RESULTS 

3.1. Basic Conditions 

22 different CPPs (Table 1, page 29) were selected covering the three main CPP 

families (protein-derived, designed or model CPPs) to evaluate their cellular uptake in 

four most utilised epithelial cell lines (Cos-7, HEK293, HeLa, MDCK). As negative 

control one CPP was synthesised in a scrambled version (pVEC-scrambled). A 

literature screen showed that groups used different concentrations ranging from 1 µM to 

50 µM (Lebleu et al., 2008; Pujals et al., 2008) without getting toxic side effects 

(Duchardt et al., 2007; Tunnemann et al., 2008). By using a concentration of ≥ 10 µM 

Durchardt et al. showed a significant enhancement of cellular uptake. After the 

performance of time dependent assays, a 30 min incubation time proved sufficient and 

that longer incubation times of 45 min or 60 min only increased the CPP uptake little 

(factor 1.4, data not shown). Therefore and keeping toxicity in mind, the analytical 

evaluation of the CPP uptake was started using a CPP concentration of 10 µM and an 

incubation time of 30 min as standard incubation condition unless otherwise stated. 

CPPs are highly positively charged peptides and therefore stick very well to the 

negatively charged plasma membrane on the cellular outside. To avoid these false 

positive uptake signals a trypsinisation step should be carried out before fluorescence 

measurements (flow cytometry or plate reader). For the microscopic evaluation an 

extra-cellular fluorescence quencher should be added to the cells (e.g. trypan blue to 

quench green fluorescence) (Green et al., 1988; Mueller et al., 2008; Richard et al., 

2003). 

Also, the use of living, non-fixed cells during microscopy is highly important, because 

formaldehyde or methanol fixation prior to a microscopic analysis can lead to an 

artificial redistribution of the CPP in the nucleus (Melikov et al., 2005; Richard et al., 

2003). At low CPP-concentration (≤ 10 µM), fixation can lead to broad cytoplasmic and 

nuclear localisation instead of a vesicular distribution in live-cell imaging.  
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Table 1: Peptide Names and Sequences 

Peptide Name Sequence AA pI MW [Da]  Reference 

 Protein-derived 
 CPPs 

SynB1 RGGRLSYSRRRFSTSTGR 18 12.30 2460 (Rousselle et al., 2000) 
Polyomavirus Vp1 APKRKSGVSK 10 11.26 1417 (Saphire et al., 2000) 
Penetratin RQILIWFQNRRMKWKK 16 12.31 2591 (Derossi et al., 1994) 
Tat GRKKRRQRRRPPQ 12 12.70 2078 (Vives et al., 1997) 
Bac1-15 RRIRPRPPLPRPRP 14 12.70 2123 (Sadler et al., 2002) 
NF-kB VQRKRQKLMP 10 12.02 1643 (Ragin et al., 2002) 
SV40 T antigen PKKKRKV 7 11.33 1242 (Lanford et al., 1986) 
HATF3 ERKKRRRE 8 11.55 1517 (Ragin et al., 2002) 
hCT(9-32) LGTYTQDFNKFHTFPQTAIGVGAP 24 6.74 2970 (Trehin et al., 2004) 
Rev TRQARRNRRRRWRERQR 17 12.60 2797 (Futaki et al., 2001) 
pVEC  LLIILRRRIRKQAHAHSK 18 12.48 3206 (Elmquist et al., 2001) 

 

 

 

 

Integrin VTVLALGALAGVGVG 15 5.49 2456 (Zhang et al., 1998) 
 Designed CPPs 

 

DPV6 GRPRESGKKRKRKRLKP 17 12.19 1656 (De Coupade et al., 2005) 
S413PV ALWKTLLKKVLKAPKKKRKV 20 11.51 2437 (Mano et al., 2005) 
Transportan GWTLNSAGYLLGKINLKALAALAKKL 27 10.18 2736 (Pooga et al., 1998a) 
Pep-1 KETWWETWWTEWSQPKKKRKV 21 9.82 3201 (Morris et al., 2001) 
MPG GALFLGWLGAAGSTMGAWSQPKKKRKV 27 11.33 2237 (Morris et al., 1997) 

 Model CPPs MAP KLALKLALKALKAALKLA 18 10.60 3208 (Oehlke et al., 1998) 
poly-P VRLPPPVLRPPPVLRPPP 18 12.30 2357 (Fernandez-Carneado et al., 2004) 
R7 RRRRRRR 7 12.78 1471 (Wender et al., 2000) 
R9 RRRRRRRRR 9 12.90 1783 (Wender et al., 2000) 

 Others pVEC-scrambled IAARIKLRSRQHIKLRHL 18 12.48 2569 (Elmquist et al., 2003) 
Footnote: CPPs were synthesised as amide (-CONH2) or as carboxyl (-COOH). Furthermore, CPPs were N-terminally labelled with (5/6) 
carboxyfluorescein (CF-) for uptake and microscopic analyses. The theoretical isoelectric point (pI) was calculated with the ProtParam tool 
(http://web.expasy.org/protparam/). 
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3.2. Evaluation of Cellular Uptake: 22 CPPs in 4 Cell Lines 

3.2.1. Viability Test of the 22 CPPs 

First of all, the potential cellular toxicity of the 22 different CPPs was examined, since 

this is crucial to their use as effective delivery vehicles. To provide information about 

acute toxicity, cells were incubated for two hours with 22 CF-labelled CPPs at 

concentrations of 1 µM - 50 µM (Annex - Table 5). Afterwards, the cells were washed, 

incubated with the vital MTT dye and the formazan formation was detected at 570 nm. 

Most of the CPPs showed no cytotoxicity even at high concentrations (100 ± 20 % 

viability). S413PV was the only peptide that lowered the viability substantially at 10 µM 

(HeLa 64 ± 24 % viability and MDCK 33 ± 16 % viability) and at ≥ 25 µM for all cells. 

Also, at 25 µM transportan and MAP decreased the cell viability. For example, 

transportan caused strong reductions at 25 µM in Cos-7, HeLa and MDCK cells (20 – 

0 %) but had a lower effect on HEK293 cells (~ 50 %). The decreasing cell viabilities 

induced by these three CPPs are not surprising due to the fact that they are postulated to 

penetrate the cell by pore formation (Matsuzaki, 1996). However, to assess cytotoxic 

effects of the CPPs in the MTT assay, the incubation time was prolonged to 2 h. Most 

CPPs seem to have no influence on cell viability even under these extreme conditions.  

Altogether, these results substantiate the used standard conditions (10 µM CPP for 

30 min) to analyse the internalisation properties of the 22 CPPs. 

3.2.2. Comparing Cellular CPP Uptake and Distribution 

The cellular uptake rates of the 22 CPPs were quantified in Cos-7, HEK293, HeLa and 

MDCK cells by fluorescence measurements using a microplate reader (Figure 2, 

page 31). Although all 22 CPPs are known from the literature and are supposed to have 

cell penetrating properties, they do not show the same degree of cellular uptake. 
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Figure 2. CPP Uptake in Cos-7, HEK293, HeLa and MDCK Cells. 
Cells, which were 80 % confluent, were washed and incubated with 10 µM CF-CPPs 
for 30 min at 37°C. After further washing and trypsinisation (10 min at 37°C) to avoid 
the measurement of membrane bound, but not internalised CPPs, the cells were lysed. 
The CPP amount in the lysate was quantified via the peptide’s CF-label (excitation: 
485 nm and emission: 520 nm) and normalised to the total protein content using a BCA 
assay (absorbance measurement at 620 nm). Classification corresponds to low 
(< 500 SI/mg protein), medium (500 – 1,000 SI/mg protein) and high (> 1,000 SI/mg 
protein) internalisation. The data represents the mean ± S.E.M. (n≥3). 

Figure 2 shows that the degree of cellular penetration varies highly. First of all, the used 

negative control pVEC-scrambled did not show any internalisation compared to 

untreated cells. Altogether, the CPPs can be classified in three groups showing low 

(< 500 SI/mg protein), medium (500 – 1,000 SI/mg protein) and high (> 1,000 SI/mg 

protein) cellular uptake. Surprisingly there are a large number of 14 CPPs in the first 

group with low or nearly no cellular penetration in the tested cell lines (for instance 

hCT(9-32), Tat or Pep-1). The second group with medium cellular uptake in most cell 

lines comprises four CPPs including Rev, S413PV, R9 and integrin. CPPs with high 

uptake rates in most cells are the four commonly used CPPs MPG, penetratin, MAP and 

transportan. The overall lower cellular uptake of Tat compared to penetratin and the 

polyarginines was confirmed (Fischer et al., 2004; Wender et al., 2000) as well as the 

efficiency of R9 compared to R7 for HeLa and HEK293 cells, which is in accordance 

with Tunnemann et al. (Tunnemann et al., 2008). 
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Interestingly, integrin prefers HEK293 cells (3-fold higher SI/mg protein compared to 

the other cells), penetratin HeLa cells (3-fold higher uptake) and transportan MDCK 

cells (2-fold higher uptake). Amongst the 22 CPPs used, none internalises in Cos-7 cells 

better than in the other cell lines.  

To investigate the subcellular localisation of the 22 CPPs, microscopic experiments 

were performed using representing candidates from the three determined uptake-groups: 

polyomavirus Vp1 as an example of a CPP with low cellular uptake, integrin and R9 as 

examples of medium uptake and MAP, MPG, penetratin and transportan as examples of 

high uptake rates (Figure 2). Tat was included, because it is widely used in the scientific 

community. 

Figure 3 (page 33) summarises the distribution of an exemplarily subset of eight CPPs 

within the four cell lines. In the control picture (without CPPs) no self-fluorescence of 

the cells was measured (Figure 3, 1st panel). Additionally, to avoid misinterpretation due 

to extracellular CPP fluorescence bound to cell membranes or working materials, trypan 

blue solution was added during each CLSM (confocal laser scanning microscopy) 

measurement (only shown in the last panel). Trypan blue is unable to translocate intact 

cell membranes, which makes it a selective quencher for extracellular bound 

fluorophores (Foerg et al., 2007; Hed et al., 1987). 

First of all, by subjectively comparing the fluorescence pictures, the results obtained by 

the microplate reader could clearly be reproduced (Figure 2). CPPs showing low 

(polyomavirus Vp1) and high (penetratin, transportan, and MAP) cellular uptake also 

show low or bright green fluorescent signals in the CLSM pictures. 

Tat mainly shows a vesicular distribution in all cells, and furthermore, a diffuse 

cytoplasmic and additionally nucleic localisation in the case of HeLa and MDCK cells 

(Figure 3, 3rd panel). Due to the additional cytoplasmic and nucleic distribution in HeLa 

and MDCK cells, the quantity of internalised CPPs seems to be higher than in the other 

two cell lines, which does not correspond to the approximately equal distribution 

measured by the microplate reader (Figure 2). At this juncture, it can only be postulated 

that nuclear located CPP could not be exactly measured in cell lysates. 

Penetratin (Figure 3, 4th panel) displays a punctuated dispersion within the three cells, as 

is also observed for the smac-penetratin construct used in HeLa cells (Fotin-Mleczek et 

al., 2005). A similar distribution of R9 was observed in Cos-7, HEK293 and HeLa cells, 

with a pronounced cytoplasmic and nucleic distribution found most strongly in MDCK 

cells (Figure 3, 5th panel). 
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Figure 3: Cellular Distribution of Eight Example CPPs in Cos-7, HEK293, HeLa 
and MDCK Cells.  
As control, the four cell lines without peptide incubations are shown (no CF-staining at 
488 nm) with the corresponding phase contrast images. The four different cell types are 
treated with 10 µM of the CF-labelled CPPs for 30 min. For each condition CF-
fluorescence (488 nm) and phase contrast images are shown. For transportan (last row) 
the vital trypan blue staining (543 nm) is merged with the CF-images. The white bars 
represent 10 µm. 

The fluorescence of MAP (Figure 3, 6th panel) and of MPG (Figure 3, 7th panel) in the 

CSLM pictures appears evenly distributed throughout the cytosol and nucleus, 

accompanied by a punctuated pattern, suggesting that non-endocytotic as well as 

endocytotic modes of uptake are involved.  

Integrin seems to be mostly located close to the cell membrane, especially in Cos-7 and 

HeLa cells, which is in agreement with Zhang et al. (Zhang et al., 1998) (Figure 3, 

8th panel). Transportan plays a special role in the cellular uptake. Using the microplate 
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reader, extremely high incorporations were recorded. Images of confocal microscopy 

show not only cytoplasmic vesicles, but also intense cell damages (Figure 3, 2nd shot of 

transportan). 20-30 % of the cells reveal a huge intracellular accumulation of 

transportan correlating with the trypan blue staining and independent of the cell types. 

This lytic characteristic of transportan was also clearly demonstrated in the viability test 

showing a high cytotoxic effect with a concentration up to 25 µM (Annex - Table 5). 

The similar phenomenon could be observed in 5 % of the HeLa cells incubated with 

MAP (data not shown). 

3.2.3. Influence of Endocytosis Modulators on the Cellular Uptake 

To gain more insights into the mechanism(s) by which CPPs are taken up by cells, eight 

CPPs from Figure 3 as well as four others were selected and tested with chemical 

inhibitors to block specific endocytotic pathways, compete with membrane associated 

HSPGs or inhibit endosome acidification or fusion. Cells were pre-treated with the 

chemicals (Table 2) for 30 min before the main incubation (10 µM CPPs + inhibitors) 

and analysed using a microplate reader.  

Table 2: Endocytosis Modulation 

 Treatment Concentration Consequence 
       37°C - Standard condition 
 4°C - Inhibition of energy-dependent processes 
 Chlorpromazine 30 µM Inhibition of clathrin-dependent endocytosis 
 Chloroquine 100 µM Inhibition of endosome acidification 
 Nystatin 100 µM Disrupt caveolar structure and function 
 Heparin 10 µM Competitor of cell membrane-associated HSPGs 
 Wortmannin 100 nM Inhibition of endosome fusion 
Footnote: The concentrations given in the table are the concentrations used in this study. 
Additionally, a brief description of the proposed exerted effect on endocytosis is given 
for each substance. HSPGs: heparin sulfate proteoglycans. 

Besides the standard conditions at 37°C, energy-dependant pathways were tested by 

measuring CPP uptakes at 4°C. Chlorpromazine was used as a clathrin-dependent 

endocytosis inhibitor and nystatin disrupts caveolar structures and functions. 

Chloroquine was utilised inhibiting the acidification of endosomes, and the fungal 

metabolite wortmannin inhibiting fluid phase uptake and the homotypic fusion of early 

endosomes (Jones, 2007). Furthermore, heparin was used as a competitor of cell 

membrane-associated heparin sulfate proteoglycans (HSPGs), which are known to 

mediate the first interaction with CPPs (Ziegler, 2008).  
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Comparing the four cell lines, the most positive effects were seen with heparin (58 %), 

chloroquine (58 %) and at 4 °C (48 %), suggesting an energy- and clathrin-dependent 

pathway for uptake. By looking at the overall results, the most frequent negative effects 

were observed in HEK293 cells, at temperatures of 4 °C (58 %), with nystatin (50 %) 

and wortmannin (58 %) reflecting an energy- and caveolin-dependent pathway. A more 

equal distribution of positive and negative effects was found for HeLa and MDCK cells. 

Altogether, most of the inhibitors used seem to have weak consequences for the cellular 

uptake: 44 % of the conditions have no effect on Cos-7, 50 % on HEK293, 63 % on 

HeLa and 70 % on MDCK cells. These results were confirmed by confocal microscopic 

analysis (Mueller et al., 2008).  

Altogether, adding different endocytosis modulators mostly did not change the cellular 

uptake as well as the subcellular CPP localisation. 

3.3. Evaluation of CPP Uptake in Other Cell Types 

Having completed the analytical evaluation of the 22 CPPs in four cell lines, three 

additional cell types were selected to confirm the results. The adenocarcinoma cell line 

MCF-7 and the leukaemic macrophagic cell line RAW 264.7 were chosen as examples 

of cancerous cell lines as well as the aortic endothelial cells RAEC [kindly provided by 

Dr. Martina Seifert (IMI, Charité)], as an example for primary cells. The same 22 CPPs 

were analysed quantitatively by microplate reader measurements and qualitatively by 

confocal microscopy as described in the previous chapter. 

The cytotoxicity of CPPs is very important for their use as delivery vehicles. Therefore 

all three cell types were incubated with the peptides in different concentrations (1 µM – 

50 µM) for two hours and the cellular viability was determined using the MTT assay. 

Fortunately, most of the CPPs did not influence the cellular viability even at a high 

concentration of 25 µM in MCF-7, RAW 264.7 and RAEC cells. Here again, especially 

S413PV revealed toxic properties at 10 µM or 25 µM (Annex - Table 7). Since much 

shorter incubation times in the uptake experiments were used (30 min compared to 2 h 

applied here) a 10 µM peptide solution seems to be non-toxic. 
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Figure 4. Comparison of CPP Uptake in MCF-7, RAW 264.7 and RAEC Cells. 
80 % confluent cells were incubated with 10 µM CF-CPPs for 30 min at 37°C. The cells 
were then washed and treated with trypsin (10 min at 37°C) to avoid the measurement 
of membrane bound, but not internalised CPPs. After cell lysis, the CPP amount was 
quantified via the peptide’s CF-label (excitation: 485 nm and emission: 520 nm) and 
normalised to the total cellular protein content using a BCA assay (absorbance 
measurement at 620 nm). The data represents the mean ± S.E.M. (n≥3). 

As in the previously analysed cell lines (Figure 2), the 22 CPPs show very different 

uptake properties (Figure 4) and can be classified in the same three main internalisation 

groups although with some exceptions. The CPP group of high uptake rates 

(> 1,000 SI/mg protein for MPG, penetratin, MAP, transportan) also shows high 

penetration in the MCF-7, RAW264.7 and RAEC cells. Also, CPPs that internalised 

poorly in the previous four cell lines, (< 500 SI/mg protein), show mostly low uptake 

rates here as well (e.g. polyomavirus Vp1, hCT(9-32) and Tat). Only the two CPPs 

Pep-1 and pVEC switch their classification group showing here a higher cellular 

penetration in the new three analysed cell types (see arrows in Figure 4). 

Interestingly, some CPPs such as MPG, S413PV, MAP, R9, Rev and pVEC penetrated 

MCF-7 cells better compared to the other tested cells. Transportan penetrates primary 

aortic cells about 8-fold better than the other two cell lines (27,389 ± 6,873 SI/mg 
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protein versus 3,374 ± 433 SI/mg protein in MCF-7 and 3,520 ± 664 SI/mg protein in 

RAW 264.7) and even better than Cos-7, HEK293, HeLa and MDCK cells. 

The cellular location of the CPPs was analysed by confocal microscopy using a subset 

of six CPPs. This time polyomavirus Vp1 and transportan were not included, because 

Vp1 shows no significant uptake and transportan seems to be cytotoxic as shown in 

Figure 3 (upper panel). 

Figure 5. Cellular Distribution of Six CPPs in MCF-7, RAW 264.7 and RAEC 
Cells. 
MCF-7, RAW 264.7 and RAEC cells were incubated with 10 µM CPPs for 30 min, 
washed and analysed by confocal microscopy. Trypan blue was added to quench 
extracellular fluorescence (data not shown). For each condition the phase contrast image 
as well as the CF-CPP staining (488 nm) is shown. The white bars represent 10 µm. 

First of all, the control pictures (Figure 5, 1st panel) show no auto-fluorescence of the 

living, non-fixed cells and furthermore the cells incubated with the CPPs seem to be 



3. RESULTS  38 

 

healthy in every condition tested. The CLSM pictures confirmed the measurements 

done with the microplate reader. Strong uptake values as for penetratin in RAEC cells 

resulted in strong fluorescent signals. The only discrepancy was observed with integrin 

showing an internalisation in MCF-7 cells, but obviously no intracellular fluorescence 

by microscopic detection. 

Altogether, the distribution of the CPPs in the three cell types exhibits a punctuated 

pattern throughout the cytoplasm, which suggests an entrapment of the peptides in 

endosomal vesicles. In some cases (R9 in MCF-7 and S413PV in RAW264.7) a nuclear 

and cytoplasmic distribution of the CPPs was observed. However, the microscopically 

visualised results correspond mainly to the fluorescence measurements by microplate 

reader as previously shown for Cos-7, HEK293, HeLa and MDCK cells (Figure 3). 

3.4. Influence of the CPPs C-Terminus on the Cellular Uptake 

Different studies have been using CPPs with different C-termini (Weller et al., 2005; 

Zorko et al., 2005) and it has been stated that a cysteamide at the C-terminus is required 

for efficient transfection (Simeoni et al., 2003). There has never been a systematic 

evaluation of the influence of the C-terminus on CPP uptake and intracellular 

localisation. Based on the analytical evaluation of 22 CPPs in seven cell type, six CPPs 

were selected (penetratin, Tat, integrin, S413PV, MPG and R9) and synthesised with a 

carboxyamidated (-CONH2) or carboxylated (-COOH) C-terminus to analyse its 

influence on the cellular internalisation and its intracellular distribution. Tat was chosen 

as an example of a CPP with low uptake and also because it is often used in the CPP 

community, S413PV, R9, penetratin and integrin as examples of medium cellular uptake 

and MPG as a CPP with high internalisation properties (according to the classification 

in Figure 2 and Figure 4) (Mueller et al., 2008; Mueller et al., 2011). These CPPs were 

analysed in comparison to each other in the seven cell types used before (chapters 3.2 

and 3.3). 

First of all, the potential cytotoxic effects of the carboxyamidated CPPs were 

determined using the MTT-viability assay (Annex - Table 8). Interestingly, 

carboxyamidated CPPs appear more toxic than carboxylated CPPs. The most toxic 

effects are seen in HeLa cells, beginning at 25 µM (penetratin, Tat, S413PV, R9 and 

MPG). Again S413PV - here in the carboxyamidated version - shows the highest toxicity 

in all cell lines (at 25 µM but sometimes also at 10 µM). Interestingly, integrin reveals 

the lowest influence on cell viability. 



3. RESULTS  39 

 

With the exception of S413PV, no toxicity was observed for carboxyamidated CPPs in 

primary RAEC cells, which is in contrast to carboxylated CPPs, where the most viablity 

reductions were seen in this cell line. 

Figure 6. Cellular Uptake of CPPs with Carboxylated or Carboxyamidated 
C-Terminus. 
Cos-7, HEK293, HeLa, MDCK, MCF-7, RAW 264.7 and RAEC cells were incubated 
for 30 min with the six selected CF-CPPs having either a carboxylated or 
carboxyamidated C-terminus. Then the cells were washed, trypsinised, lysed and 
analysed by microplate reader. The data shown are the mean ± SEM (n=3). 
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All together carboxyamidated CPPs are more toxic to the seven tested cell types than 

carboxylated CPPs, but surprisingly less cytotoxic to the primary RAEC cells than 

carboxylated CPPs. 

Having found that 30 min incubations of 10 µM peptide solutions had no cytotoxic 

effect on most cell types independent of the CPPs’ C-termini, their cellular uptake was 

evaluated and compared to the one of carboxylated CPPs. In analogue to previous 

experiments, cells were incubated with the CF-labelled CPPs and their internalisation 

was quantified by fluorescence measurements in the lysate using a microplate reader.  

The uptake measurements shown in Figure 6 clearly revealed a strong influence of the 

CPP C-terminal character on CPP cellular uptake. The internalisation of the 

carboxyamidated form of penetratin, R9 and integrin is extremely improved in most cell 

types compared to the carboxylated form, e.g. CF-Pen-COOH is internalised with 

311 ± 22 SI/mg protein whereas CF-Pen-CONH2 penetrates at 7,811 ± 1,591 SI/mg 

protein in MDCK cells. In contrast, the uptake of Tat and S413PV is nearly not 

influenced when changing the C-terminus in all analysed cells. Interestingly, the MPG 

uptake rises in most cell lines when carboxyamidated MPG is used (3-fold to 20-fold), 

but shows no significant difference in MCF-7 cells and the primary RAEC cells (e.g. 

6,944 ± 1,831 SI/mg protein for CF-MPG-COOH versus 4,674 ± 1,344 SI/mg protein 

for CF-MPG-CONH2 in RAEC cells). With the exception of RAEC cells, 

CF-MPG-CONH2 is the CPP showing the highest uptake (from 7,008 ± 1,043 SI/mg 

protein in HEK293 to 14,882 ± 4,351 SI/mg protein in MCF-7) when compared to other 

CPPs in that cell type. 

In summary, regarding the seven analysed cell types, the C-terminus change from a 

carboxylate to a carboxyamide enhances the cellular CPP uptake in about 59 % of the 

cases. 

Here again, as mentioned before, the cells were incubated with CF-labelled CPPs and 

analysed by confocal microscopy to determine if the different C-termini might have an 

influence on the CPP’s sub-cellular distribution. Before picture acquisition, the cells 

were incubated with trypan blue as vital dye and as a quencher of extracellular bound 

CF-CPPs. As exemplified in Figure 7, the cellular internalisation of penetratin, S413PV 

and MPG (green fluorescence) in the seven cell lines as a merged picture with the 

trypan blue staining (red fluorescence) is shown as well as the bright field images. The 

uptake values of the CF-measurements by microplate reader are given in the left lower 

corners. 
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Figure 7. Cellular Distribution of Carboxylated or Carboxyamidated CPPs in Cos-7, HEK293, HeLa, MDCK, MCF-7, RAW 264.7 and 
RAEC Cells.  
Cells were treated with 10 µM of the CF-labelled CPPs for 30 min. For each condition, the overlay of CF-staining (green fluorescence) and trypan 
blue stain (red fluorescence) as well as the phase contrast images are shown. The uptake values measured by microplate reader are given in the left 
lower corner. The white bars represent 10 µM. 
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First of all, the control pictures (Figure 7, 1st panel) show no intrinsic fluorescence in 

the green CF channel. Furthermore, intact cell membranes indicated by the trypan blue 

staining (red fluorescence) correspond to no toxicity of the used CPPs under the applied 

conditions (10 µM, 30 min incubation). Subjectively looking at the images of the 

different cell types, most of them confirmed the measurements done with the microplate 

reader, e.g. CF-Pen-CONH2 in HeLa and CF-MPG-COOH in MDCK cells clearly show 

a stronger fluorescence signal.  

It was not possible to identify a change in the subcellular localisation of the CPPs when 

altering the C-termini for most cell lines - they showed a punctuated pattern throughout 

the cytoplasm, which probably resulted from uptake via endocytosis (Jones, 2008). 

However, MCF-7 cells exhibit a different distribution for carboxylated and 

carboxyamidated penetratin, S413PV and MPG. The carboxyamidated peptides were 

localised not only in the vesicles, probably the endosomes, as seen for their 

carboxylated forms, but also diffused in the cytoplasm as well as in the nucleus. The 

same can be observed for Tat and R9 in RAW 264.7 cells (data not shown) and for 

S413PV in MDCK cells. Only RAEC cells show no altered subcellular distribution after 

a CPP C-terminal change.  

In summary, the conformation of the C-terminus has an influence on (I) the cellular 

CPP uptake (carboxyamidated CPPs > carboxylated CPPs) and in a few cases on (II) the 

CPP’s cellular localisation depending on the CPP and cell line. 

3.5. Cellular Delivery of the Pro-Apoptotic KLA Peptide 

The main purpose of CPPs is their use as delivery vehicles for e.g. biological active 

peptides. To prove their therapeutic applicability by a simple co-incubation with the 

CPPs (non-covalent strategy) into the mammalian breast cancer MCF-7 cells and the 

leukaemic macrophages RAW264.7 compared to the fibroblastic Cos-7, the pro-

apoptotic peptide KLA (Table 3, page 43) (Ellerby et al., 1999) was chosen to be 

delivered into cells keeping a potential application in cancer therapy in mind. 

Additionally, another peptide sequence was used (PRC) to analyse the influence of 

amino acid composition of the cargo for the CPP based cellular non-covalent delivery. 
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Table 3: Cargo Peptides 

 Name Sequence Reference 
 KLA KLAKLAKKLAKLAK (Raucher et al., 2009) 
 PRC ANSRWQTSII (Vouilleme et al., 2010) 
Footnote: Peptides were synthesised with N-terminal Cy5-labels for uptake and 
microscopic analyses. 

3.5.1. Optimal Mixing Ratio for the Non-Covalent Delivery of the KLA 
Peptide 

To ensure the best cellular delivery of the KLA peptide, the optimal mixing ratio was 

determined using MPG-CONH2:KLA and Int-CONH2:KLA in Cos-7 cells (both CPPs 

show high internalisations in Figure 6). The cells were co-incubated with Cy5-labelled 

KLA and CF-labelled CPP-CONH2 in different molar ratios (20:1 to 1:2 for CPP:KLA) 

as well as with KLA and CPP alone (Figure 8A). Interestingly, the internalisation was 

dramatically reduced using ratios of 10:1 or 20:1 (CPP:KLA) which are typical ratios 

for CPP:oligonucleotide mixtures (Said Hassane et al., 2009). Furthermore, a 30 min 

pre-incubation of the CPP:KLA mixture before adding to the cells did not increase the 

KLA uptake (Figure 8A, page 44). 

In detail, an increased cellular uptake of the KLA-peptide was observed when incubated 

with the appropriated same amount of CPP compared to the incubation without one. For 

example, incubating Cos-7 cells with KLA together with MPG-CONH2 or Int-CONH2 

roughly doubled or tripled the amount of uptake [e.g. 390 ± 95 Cy5-SI/mg protein for 

KLA alone versus 1,106 ± 230 Cy5-SI/mg protein for Int-NH2:KLA (1:2)]. To check 

the transportation capacity of a CPP with low cellular uptake, the Tat peptide was 

chosen and applied using the co-incubation strategy. The results shown in Figure 8A 

clearly demonstrate that co-incubating Tat with KLA did not improve the 

internalisation, confirming the importance of the CPP selection for cargo delivery. 
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Figure 8. Mixing Ratios of the KLA (A) or PRC (B) Peptide and CPPs. 
Mixing ratios of the (A) KLA or (B) PRC peptide and CPPs: Cos-7 cells were incubated with 10 µM CPP and different concentrations of the KLA 
or PRC peptide for 30 min. For all conditions, the peptides were co-incubated; only in (A) MPG-CONH2:KLA solutions were pre-incubated for 
30 min. The Cy5-KLA/PRC uptake was measured and normalised to the total protein concentration (Cy5-SI/mg protein). The CF-CPP uptake was 
also monitored to ensure consistency (data not shown). The maximal uptake was reached using CPP:KLA mixture ratios of 1:1 and 1:2. n.d. means 
‘not determined’. Data shown are the mean ± SEM (n=3). 
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The same mixing ratios resulted in high uptake amounts when a different arbitrary 

chosen peptide was used (PRC, Table 3, Figure 8B). Therefore it is likely that this 

phenomenon was not dependent on the KLA sequence as cargo (positively charged, 

helix conformation) (Ellerby et al., 1999). Even though the overall uptake amounts were 

much smaller for PRC than for KLA, its internalisation was doubled or tripled when co-

incubated with MPG-CONH2 or Int-CONH2 at a ratios of 1:1 or 1:2 compared to the 

internalisation without a CPP as vehicle [104 ± 26 Cy5-SI/mg protein for Cy5-PRC 

alone versus 310 ± 69 Cy5-SI/mg protein for MPG-CONH2:Cy5-KLA (1:2)]. Here as 

well, the internalisation was rather dependent on the used CPP as well as on its C-

terminal conformation. 

These results suggest that mixing ratios of 1:1 and/or 1:2 (CPP:peptide) are the best 

choices for the delivery of a peptide co-incubated with a CPP. However to find the best 

CPP for peptide delivery into a certain cell type using the simple co-incubation strategy 

seems to be rather difficult. It can be believed that a high CPP uptake and a 

carboxyamidated C-terminus are advantageous for a successful peptide delivery – 

however, this should always be tested. 

For all following experiments the ratios CPP:KLA (1:1) and (1:2) were chosen to 

evaluate the uptake and induce pro-apoptotic effects of the transduced KLA peptide. 

3.5.2. Cellular Delivery of the KLA Peptide 

Having found the optimal mixing ratios (1:1 or 1:2), Cos-7, MCF-7 and RAW 264.7 

cells were incubated with KLA together with MPG, integrin or penetratin. Here as well 

the influence of the C-terminus was evaluated, since it has been stated, that a C-terminal 

cysteamide is important for plasmid and cysteamine for protein delivery (Simeoni et al., 

2003; Wells, 2004). To evaluate the influence of the CPP C-terminus on peptide 

delivery, it was tested in both versions (carboxylated versus carboxyamidated) 

(Figure 9). 
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 Figure 9. Cellular Delivery and Distribution of the Pro-Apoptotic KLA Peptide 
Co-Incubated with a CPP. 
(A) KLA delivery by CPPs in Cos-7, MCF-7 and RAW 264.7 cells: Cos-7, MCF-7 and 
Raw 264.7 cells were incubated with CPPs and KLA as described before. “1×” means 
1 µM or 10 µM and “2×” means 2 µM or 20 µM peptide concentration depending on 
the cell lines. The delivery of the KLA peptide was successfully enhanced when co-
incubating it with a CPP in all cell lines. Notice the strong enhancement with Int-COOH 
in Cos-7 and MPG-CONH2 in RAW 264.7 cells. Data shown are the mean ± SEM 
(n=3).         
(B) Cellular distribution of the KLA peptide: Combinations of CF-CPP and Cy5-KLA 
with the symbol # in Figure 9A were analysed under the microscope. Trypan blue was 
added to ensure cell viability, but omitted when KLA was present to avoid spectral 
overlaps. Nuclei were stained with HOECHST 33342. CF-CPPs are visualised in green, 
trypan blue and Cy5-KLA in red. The scale bars represent 10 µm. 

The KLA-delivery in Cos-7 cells is mainly possible with penetratin and integrin. 

However, the internalisation depends on the C-terminus of the CPP, especially in the 

case of integrin. A 5- to 6-fold increase was observed in the KLA uptake with Int-

COOH compared to Int-CONH2 at both ratios (5,085 ± 803 Cy5-SI/mg protein versus 

987 ± 197 Cy5-SI/mg protein for ratio 1:1 and 5,737 ± 705 Cy5-SI/mg protein versus 

1,106 ± 230 Cy5-SI/mg protein for ratio 1:2). 

When applying the same conditions of KLA delivery (10 µM CPP with 1:1 or 1:2 

ratios) in MCF-7 and RAW 264.7 cells, they rapidly detached making the analysis of 

the results difficult. For that reason, these assays were performed using a 10-fold diluted 
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concentrate (1 µM CPP with ratio 1:1 or 1:2). As observed for the Cos-7 cells, an 

enhancement of the KLA internalisation was seen in both cell lines depending on the 

CPP C-terminus, even if the signal was weaker due to lower peptide concentrations. The 

best results were seen with MPG-COOH:KLA (1:2) (423 ± 61 Cy5-SI/mg protein; 3-

fold increase compared to KLA alone) for MCF-7 and MPG-CONH2:KLA (1:2) 

(73 ± 67 Cy5-SI/mg protein 2.5-fold increase compared to KLA alone) for RAW 264.7 

cells. 

Using confocal microscopy the results found by microtiter plate reader measurements 

were confirmed: high uptake corresponded to high fluorescence signals in the analysed 

cells (Figure 9B). For example, the vast difference in transportation capability of both 

forms of integrin was confirmed for Cos-7 cells (Int-COOH:KLA >> Int-CONH2:KLA). 

The higher delivery by Int-CONH2 at a ratio of 1:2 compared to 1:1 in MCF-7 cells as 

well as MPG-CONH2 1:2 in relation to 1:1 in RAW 264.7 cells were also validated. 

Looking at the pictures in greater detail, a huge accumulation of CF-Int-COOH:Cy5-

KLA around the nucleus of Cos-7 cells appeared (merged distribution in orange, 

Figure 9B). Also a strong cellular accumulation of CF-Int-CONH2:Cy5-KLA (1:2) in 

MCF-7 and CF-CPP:Cy5-KLA (1:2) in RAW 264.7 cells were seen, which correspond 

to the values measured in the uptake tests - even at a low concentration (1 µM CPP). 

Interestingly, the cellular distribution seemed to be mainly cytosolic, hinting towards a 

potential entrapment in endosomal vesicles. Since there was also a diffuse signal 

detectable surrounding the vesicles, it is also assumable that KLA is able to escape the 

endosomal entrapment. 

In summary, the KLA peptide was successfully delivered in adenocarcinoma cells 

(MCF-7), leukaemic macrophages (RAW 264.7) and fibroblasts (Cos-7) using the non-

covalent co-incubation approach. In order to obtain high delivery rates, different cell 

lines required different CPPs. The conformation of the CPP’s C-terminus also played a 

crucial role for an effective translocation of the KLA peptide over the cell membrane. 

3.5.3. Activity of the CPP-Delivered Pro-Apoptotic KLA Peptide 

To evaluate the activity of the pro-apoptotic KLA peptide introduced by MPG, integrin 

or penetratin, the MTT-test was utilised to assess the cell viability using the same 

conditions as in the KLA delivery experiments (Figure 10, page 49). A value of 100 % 

corresponds to no cytotoxic effect of the peptides and viable cells, whereas values lower 

than 80 % viability represent a cytotoxic effect. 
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First of all, CPPs and the KLA peptide themselves caused no toxicity in the tested cell 

lines.  

In Cos-7 cells, most combinations of CPPs and KLA did not lower the cell viability 

significantly (Figure 10A). A detectable pro-apoptotic effect with a cell viability 

reduction of 32 % (P < 0.001 versus KLA alone) was only observed with the 

combination of 10 µM Int-COOH and 20 µM KLA. 

In MCF-7 cells, seven out of the twelve different applied conditions show a reduction in 

cell viability although using 10-fold lower concentrations than in Cos-7 cells 

(Figure 10B). The highest effects were given by MPG-COOH:KLA (1:2) and 

MPG-CONH2:KLA (1:2) with reductions of 32 % (P < 0.001 versus KLA alone) and 

42 % (P < 0.001 versus KLA alone), respectively. This is in agreement with the results 

of the cellular uptake, where both were amongst the combinations with the highest 

delivery rates. 

In RAW 264.7 cells, the toxic effects of KLA delivered by different CPPs and changing 

ratios were not as obvious as in MCF-7 cells. Using the same condition as applied for 

the MCF-7 cells (MTT detection after 3 days), no pro-apoptotic effect could be 

observed for any of the used mixing partners (Annex - Figure 15). Therefore, the 

toxicity of the KLA peptide was evaluated with reduced periods after peptide 

incubation. Measuring the cell viability directly after peptide incubation, a viability 

reduction of 27 % (P < 0.05 versus KLA alone) with 1 µM MPG-CONH2 + 2 µM KLA 

was determined (Müller et al., 2011); a combination which caused toxicity in MCF-7 

cells as well. Toxicity was also observed using 1 µM Pen-CONH2 + 2 µM KLA with a 

viability reduction of 26 % (P < 0.05 versus KLA alone). 

Cancerous MCF-7 and macrophagic RAW 264.7 cells showed the highest induction of 

apoptosis with MPG-CONH2:KLA (1:2), which was not found in fibroblastic Cos-7 

cells even at a 10-fold higher concentration. 

 



 
 
3. RESULTS                  49 

 

 
Figure 10. Viability after CPP:KLA Incubation.  
Cells were incubated with the CPP:KLA mixture and the cell viability was detected after 3 days (Cos-7 and MCF-7) or directly after peptide 
incubation (RAW 264.7) using the MTT-test. 100 % cell viability corresponds to no toxic effect of the peptides. In Cos-7 cells the mixture of 10 µM 
Int-COOH + 20 µM KLA reveals a toxic effect of 32 % (P < 0.05). The mixture of 1 µM MPG-CONH2 + 2 µM KLA reveals a toxic effect of 42 % 
(P < 0.001) for MCF-7 and of 27 % (P < 0.05 %) for RAW 264.7. Data shown are the mean ± SEM (n=3). 
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To ascribe the viability reductions measured with the MTT tests to pro-apoptotic effects 

of the CPP:KLA mixtures, the nuclear morphology of Cos-7, MCF-7 and RAW 264.7 

cells was observed to detect nuclear pyknosis, which is a sign of cells undergoing 

apoptosis. Cells were treated with the conditions that showed toxic effects in the MTT 

assay and stained with HOECHST 33342 (Figure 11). 

 
 
Figure 11. Nuclear Condensation after CPP:KLA Incubation.  
Cells were incubated with the CPP:KLA mixtures and stained with Hoechst 33342 after 
the indicated time periods. Arrows point to condensed chromatin. Condensed chromatin 
was revealed in cells treated with the conditions that showed toxic effects in the MTT 
tests. The scale bar represents 20 µm.  

Cos-7 cells showed no altered nuclei in the control picture or when incubated with 

MPG-CONH2:KLA (1:2) (no effect in MTT assay), but condensed chromatin was found 

after the incubation with Int-CONH2:KLA (1:2) (white arrows in Figure 11A). In 
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MCF-7 cells nuclear pyknosis was clearly visible after the incubation with 

MPG-CONH2:KLA (1:2) after 2 days and even more pronounced after 3 days 

(Figure 11B). When incubating RAW 264.7 cells with MPG-CONH2:KLA (1:2), 

degenerated cell nuclei were only detectable at the day of the incubation (Figure 11C), 

but not after 3 days (data not shown). Furthermore, using the Int-COOH:KLA (1:2) 

condition no effect was identifiable, which coincides with the MTT assays. All tested 

conditions showing reduced cell viabilities in the MTT assays were correlated to 

apoptosis as revealed by nuclear pyknosis. 

3.5.4. Caspase-3 Detection: No Activation in MCF-7 Cells 

In respect to the treatment of cancer, a main goal was to deliver the pro-apoptotic KLA 

peptide in breast adenocarcinoma cells. The induction of apoptosis mainly results in the 

activation of caspases and finally in DNA fragmentation. Previously it has been 

reported that the KLA peptide activates caspase-3 in cell-free systems (rat liver 

mitochondria in cytosolic extracts of DMECs) (Ellerby et al., 1999). On that account, 

the identification of caspase-3 activity by measuring its substrate specific cleavage was 

promoted (Caspase-3 Fluorescence Assay Kit, Cayman) or its activation by self-

proteolysis or cleavage by other upstream caspases (western blot using cleaved-

caspase-3 antibody) in MCF-7 cells. Unfortunately, there was no caspase-3 activity 

detectable with both assays even with different incubation periods (partly shown in 

Figure 12A). 

To confirm the functionality of both assays, Cos-7 cells were used as reference and also 

to show that both methods can be used to detect activated caspase-3.  
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Figure 12. Caspase-3 Detection after the Incubation with CPP:KLA. 
(A) Cleaved caspase-3 detection by western blot: Cos-7 and MCF-7 cells were 
incubated with the peptides (1 hour or 3 hours) and cell lysates (directly after or after 
3 days incubation) were subjected to western blot analysis. Antibodies against ß-actin 
(internal control) and cleaved caspase-3 were used. Cleaved caspase-3 was detected in 
Int-COOH:KLA (1:2) treated Cos-7 cells directly after the incubation (0 days) and after 
3 days. All lysates of MCF-7 cells were negative for cleaved caspase-3. 
(B) Caspase-3 activity measurements: Cos-7 cells were treated with the peptides, lysed 
and the given to the specific caspase-3 substrate. A 2-fold increase using 
Int-COOH:KLA-Cy5 (P < 0.001 versus KLA-Cy5 alone) was detected, which could be 
inhibited using N-Ac-Asp-Glu-Val-Asp-CHO as inhibitor (P < 0.05). Cy5-labelling of 
KLA has no effect on caspase-3 activity. Data shown are the means ± SEM (n=3). 

In Cos-7 cell lysates active caspase-3 was not detectable in untreated cells at day 0 and 

3, as well as when incubated with the peptides alone (Figure 12A). After the incubation 

with MPG-CONH2:KLA (1:2) Western blots show no cleaved caspase-3 after 0 and 

3 days. Caspase-3 was only activated by the mixture of Int-COOH:KLA (1:2) at both 
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time points measured. Both results are in agreement with the viability reductions in the 

MTT assay (Figure 10) and nuclear condensation (Figure 11). 

The incubation with the CPP and the KLA peptide alone had no effect on caspase-3 

activation in Cos-7 cells determined by the Caspase-3 Fluorescence Assay Kit 

(Figure 12B). By using the combination Int-COOH:KLA (1:2) we detected elevated 

levels of caspase-3 activity. Curiously, the difference between ratios 1:1 and 1:2 is not 

as pronounced as observed in Figure 9B and Figure 10A. Nevertheless, the activation of 

caspase-3 is specific and could be reversed using the caspase-3 inhibitor (N-Ac-Asp-

Glu-Val-Asp-CHO; P < 0.05). Finally, by using unlabelled KLA peptide co-incubated 

with Int-COOH the caspase-3 activity was not significantly reduced (P > 0.05) showing 

that Cy5-labelling has no influence on the assay procedure. 

However, to determine if apoptosis is induced in MCF-7 cells after MPG-CONH2:KLA 

treatment other methods should be applied (see next section). 

3.5.5. KLA-Peptide Induced Apoptosis 

The mixture MPG-CONH2:KLA (1:2) caused toxicity in MCF-7 cells (MTT test: 42 % 

toxicity) and led to nuclear chromatin condensation. To further investigate this viability 

reduction and to assign it to apoptosis, the annexin V labelling and the detection of 

DNA fragmentation was assessed using the peptide mixture in comparison with the 

apoptosis inducing agent staurosporin (STS) (Liu et al., 2008). Early apoptosis can lead 

to the displacement of phosphatidylserine at the outer cell membrane which can be 

detected by FITC-labelled annexin V staining and analysed by flow cytometry. Co-

staining with propidium iodine (PI) allows the clear determination of apoptotic cells (in 

contrast to necrotic ones). 

MPG-CONH2:KLA treated MCF-7 cells revealed in the annexin V/PI stain the same 

amount of induced apoptosis as compared to STS-treated cells at day 0 (0.5 µM STS: 

50 ± 27 % versus MPG-CONH2:KLA: 41 ± 8 %) and at day 1 (0.5 µM STS: 85 ± 27 % 

versus MPG-CONH2:KLA: 68 ± 22 %) (Figure 13A, page 54). However, the pro-

apoptotic effect of the KLA-peptide on early apoptosis is lost after day 2 (0.5 µM STS: 

124 ± 54 % versus MPG-NH2:KLA: 26 ± 16 %). 
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Figure 13. Apoptosis Detection in MCF-7 Cells. 
(A) Annexin V: 0, 1 and 2 days after the incubation with 0.5 µM STS and MPG-
CONH2:KLA (1:2) MCF-7 cells were stained with annexin V/PI. The percentage of 
apoptotic cells is shown in the right graph. At day 0 and 1, the amount of apoptotic cells 
is equally induced with 0.5 µM STS or with the pro-apoptotic peptide mixture (P=ns). 
(B) DNA fragmentation (ELISA): A quantitative immunoassay using anti-histone/anti-
DNA antibodies was performed after the incubation with the conditions stated in the 
figure. MCF-7 cells show an increase in mono- and oligonucleosomes up to 3 days after 
the incubation with MPG-CONH2:KLA (1:2) (+ 35 % related to 2 µM KLA, P=0.01). 

Apoptotic cell death goes along with the cleavage of double stranded DNA into mono- 

and oligonucleosomes tightly complexed with core histones. To reassure the pro-

apoptotic properties of the MPG-CONH2:KLA (1:2) mixture in MCF-7 cells, DNA 

fragmentation was measured with the Cell Death Detection ELISA kit. The enrichment 

factors of mono- and oligonucleosomes were significantly increased 3 days after the 

incubation with MPG-CONH2:KLA (1:2) compared to just the incubation with 2 µM 

KLA (+35 % increase in relation to 2 µM KLA, P < 0.01; Figure 13B). 

Using annexin V stain and DNA fragmentation assay, signs of early as well as late 

apoptosis in MCF-7 cells were measured induced by the MPG-CONH2:KLA (1:2) 

mixture, which corresponds to the first results of the MTT assays and nucleus 

condensation measurements.  
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4. DISCUSSION 

Successful and effective cellular delivery remains one of the main obstacles in the 

medical field. The use of cell penetrating peptides (CPPs) has become one of the most 

important tools for the internalisation of a wide range of molecules including 

pharmaceuticals (Dietz et al., 2004; Langel, 2011; Sawant et al., 2009). They are 

usually rich in basic amino acid residues and often derived from proteins that are 

involved in signal transduction. Today, due to their high potential to efficiently cross 

membranes and transport cargoes, characterising and optimising CPPs has been a major 

goal of many different studies (Fotin-Mleczek et al., 2005; Gupta et al., 2005; 

Torchilin, 2007).  

For that reason, defined experimental conditions should be established for the 

measurements of cellular CPP uptake, a necessary step for reproducibility and avoiding 

artefacts. Approximately 100,000 cells per millilitre (depending on the cell line) should 

be seeded one day before the experiment in order to reach about 80 % confluence on the 

day of measurement (12-well plates). Within one experiment, the same number of cells 

should always be seeded, since the uptake of CPPs depends on the peptide to cell ratio 

(Hallbrink et al., 2004). In general, cells should not reach the confluent state to assure a 

complete internalisation without any hindrance by tight junction formation. For 

example, endocytotic internalisation was remarkably reduced especially in confluent 

Madin-Darby canine kidney (MDCK) epithelial cells. This effect was shown to be 

compound-unspecific, since other compounds (FITC-dextran, Tetramethylrhodamine 

isothiocyanate (TRITC)-transferrin etc.), known to be internalised by endocytosis, lost 

their internalisation efficiency (Foerg et al., 2007). Also, trypsinisation or trypan blue 

quenching (depending on the method of measurement) after CPP incubation is required 

to avoid the measurement of external, membrane-bound CPPs. Finally, to acquire 

images for confocal microscopy, the cells should be viable (not fixed) due to the fact 

that formaldehyde or methanol fixation leads to cellular redistribution of the CPPs. 

Toxic effects should be kept at a minimum if CPPs are used as drug delivery vehicles. 

For that reason and deduced from literature, for uptake experiments a final CPP 

concentration of 1 µM to 10 µM was used and an incubation time of 30 minutes. 

To understand the mechanism(s) of cellular CPP uptake better, specific endocytotic 

pathways, the acidification or fusion of endosomes or all energy-dependent uptake 

routes can be specifically and individually blocked. The internalisation rates of the 

tested CPPs was mostly uninfluenced and never completely shut down, but sometimes 
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depending on CPP and cell line significantly reduced or even increased. Since CPPs 

often use different routes of uptake simultaneously (Letoha et al., 2003), the blocking of 

one pathway might have resulted in the internalisation via a different route. However, at 

low concentrations (1 µM to 10 µM) CPPs seem to internalise via endocytosis (Abes et 

al., 2006; Duchardt et al., 2007). Unfortunately, combinations of different endocytosis 

inhibitors are toxic for the cells, making clear conclusions difficult. To fully understand 

internalisation pathways of the used CPPs, different techniques such as light scattering, 

microscopy (electromagnetic spectrum and atomic force microscopy), optical 

spectroscopies (circular dichroism, fourier transform infrared, fluorescence and rapid 

kinetics) in association with investigations dealing with peptide-lipid interactions 

(monolayer and langmuir films) need to be used (Deshayes et al., 2005; Morris et al., 

2008). 

4.1. Comparison of 22 CPPs in Seven Different Cell Types 

For the delivery of the pro-apoptotic KLA peptide, the best CPP should be chosen. This 

is difficult, since a systematic evaluation of more than 11 different CPPs in more than 

six cell lines has never been done before (El-Andaloussi et al., 2007; Fischer et al., 

2004; Fotin-Mleczek et al., 2005; Maiolo et al., 2005; Sarko et al., 2010; Tunnemann et 

al., 2008; Wender et al., 2000). Therefore, 22 CPPs were evaluated in six cell lines and 

primary cells. The toxicity was analysed first, since it is crucial for the peptides’ future 

use as delivery vehicles. Applying the CPPs for 4 hours at a concentration of 10 µM, no 

cytotoxicity (viability < 70 %) was observed in Cos-7, HEK293, HeLa, MDCK, 

MCF-7, RAW 264.7 and RAEC cells (Annex - Table 5 and Table 7). Only S413PV 

revealed toxic effects at this concentration, which were not detectable in the CSLM 

pictures when using an incubation time of 30 min. At high concentrations toxic effects 

were observed on cell membranes and organelles as shown for transportan. 20-30 % of 

the cells revealed a huge accumulation of transportan (Figure 3, last row), which 

correlated with the vital dye trypan blue staining independently of the cell type. This is 

not surprising, since transportan penetrates the cell membrane by creating short-lived 

pores (Matsuzaki et al., 1996).  

The analytical evaluation of the CPP internalisation in the seven different cell types 

(Cos-7, HEK293, HeLa, MDCK, MCF-7, RAW 264.7, RAEC) resulted in a 

classification into three groups (Figure 2 and Figure 4) of which the first one comprises 

surprisingly the most CPPs: (I) CPPs with low cellular uptake [< 500 SI/mg protein; 

such as hCT(9-32), Tat, Pep-1]; (II) CPPs with medium internalisation (500 – 



4. DISCUSSION  57 

 

1,000 SI/mg protein; e.g. Rev, S413PV, R9 and integrin); (III) CPPs with high cellular 

uptake (> 1,000 SI/mg protein; MPG, penetratin, MAP and transportan). 

Table 4: Uptake Classification of 22 CPPs in Seven Cell Types 

CPPs Uptake C
os
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E
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7 

R
A

W
 2

64
.7

 

R
A

E
C

 

 pVEC-scrambled 

Low 
 

< 500  
SI/mg protein 

 
 Polyomavirus Vp1        
 poly-P        
 NF-kB        
 SV40        
 HATF3        
 hCT(9-32)        
 SynB1        
 DPV6        
 Tat        
 Pep-1        
 Bac1-15        
 R7        
 pVEC         
 Rev 

Medium 
500 - 1,000 

SI/mg protein 

       
 S413PV        
 R9        
 Integrin        
 MPG 

High 
> 1,000 

SI/mg protein 

 
 Penetratin        
 MAP        
 Transportan        

Footnote: The internalisation of the 22 CPPs in the seven cell types can be classified in 
low (marked white), medium (marked grey) and high (marked black) cellular uptake. 
Even if transportan seems to be the more efficient CPP for all cell types, it should be 
taken into account that it is the most cytotoxic CPP (see Table 5 and Table 7 in the 
annex). 

Altogether breast cancer cells show the highest uptake rates of all tested cells whereas 

MDCK cells show the lowest. 

Comparing the results, some agreements with published reports can be found, but also 

some basic differences. For example, the commonly used CPPs such as penetratin, 

MAP and R9, also show the highest signal intensities in the analytical measurements, 

which is in agreement with the literature. The results of MCF-7 cells coincide with the 
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ones of Sarko et al (Sarko et al.), where the uptake hierarchy is defined by MAP > 

penetratin > R9, although they measured a higher uptake of Tat than of R9. 

Furthermore, lower uptake of Tat compared to penetratin and polyarginines was 

confirmed by different reports (Fischer et al., 2004; Wender et al., 2000) as well as the 

better internalisation of R9 compared to R7 (Tunnemann et al., 2008). 

When looking at the cellular CPP distribution, it was mainly of a punctuated pattern 

throughout the cytoplasm probably resulting from an entrapment of the CPPs in 

endosomes. Some CPPs were also located evenly disseminated in the cytoplasm and 

nucleus such as R9 in Cos-7, MDCK and MCF-7 cells suggesting endocytotic and non-

endocytotic uptake routes (Jiao et al., 2009; Vives et al., 2008). Moreover, it has been 

speculated that often more than one uptake pathway is possible, dependent on factors 

such as the peptide concentration applied, the cell line used, the cargo attached and the 

overall incubation conditions (Jiao et al., 2009; Tunnemann et al., 2008; Walther et al., 

2009). This is in agreement with the measurement of different endocytosis inhibiting 

agents during cellular uptake revealing no distinguishing or mainly weak information on 

the internalisation mechanism [details in Table 3 of (Mueller et al., 2008)]. 

 

To compare the uptake of the seven adherent cell types to a suspension cell line, Julia 

Triebus’ results for the uptake of the 22 CPPs in human T-lymphocytes (Jurkat) are 

presented in Figure 14, page 59 (published in her diploma thesis: Quantitative and 

qualitative analysis of cell penetrating peptides in immune cells, FU Berlin, 2009). 

The classification of the CPPs in the three uptake groups (low, medium and high) is 

completely different in the suspension Jurkat cells. Here, the first group (low uptake: 

mean fluorescence < 2,500) comprises only two CPPs and the control peptide pVEC-

scrambled, whereas eleven CPPs are grouped in the third class (high uptake: mean 

fluorescence > 5,000). Many CPPs classified in the first group in the adherent cells 

show high uptake rates in the suspension cells [e.g. HATF3 or hCT(9-32)], which could 

be due to the larger cell surface area exposed to the CPPs. Surprisingly the uptake of 

transportan is low (2,031 ± 469 mean fluorescence), which used to be high in all the 

other adherent cell types.  
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Figure 14. CPP Uptake in Suspension Jurkat Cells. 
1×106 Jurkat cells were washed and incubated with 10 µM CF-CPPs for 30 min at 37°C. 
The cells were then washed and treated with trypsin (10 min at 37°C) to avoid the 
measurement of membrane bound, but not internalised CPPs. A total of 10,000 events 
were recorded on a FACS Canto II (BD Biosciences). In each analysis, nonviable (PI+) 
cells have been excluded. The uptake of a given CF-CPP into cells was assessed by the 
change of the median fluorescence of a cell sample treated with the peptide compared 
with an untreated control sample. The results are expressed as the mean change in 
median fluorescence ± standard deviation (n=3). 

Altogether the cellular CPP uptake in suspension cells seems to be extremely different 

compared to the uptake in adherent cells - another proof for the importance to compare 

and select the optimal CPP for the desired application.  

However, predicting cell penetrating properties of CPPs by analysing their primary 

amino acid sequence or the structural conformation is still a great challenge. For 

example, CPPs with similar isoelectric points (pI) show different uptake activities. For 

example, penetratin (pI = 12.31) shows high cellular internalisation in comparison to the 

low activity of poly-P (for sequence see Table 1, page 29) with the same pI value (pI = 

12.30). These results demonstrate that the positive charges of CPPs (pI = 10 - 12), 

which are postulated to be important for the interaction with HSPGs on the cell surface, 

are not always the portal guiding endocytosis (Poon et al., 2007). On the other hand, 
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CPPs with a low pI such as integrin (pI = 5.49) revealed good internalisation, especially 

in HEK293 cells. 

The only point, which can be ruled out, is the correlation of the amino acid order within 

the primary sequence. pVEC’s uptake in HeLa cells was 301 ± 53 SI/mg protein, 

whereas the scrambled version showed practically no uptake (53 ± 9 SI/mg protein). A 

similar effect could be observed with S413PV (ALWKTLLKKVLKA-PKKKRKV) and 

SV40 T antigen (PKKKRKV): only the addition of the N-terminal, cell penetrating 

sequence induces the cell internalisation properties in most cell lines (Mano et al., 

2005). These results imply that the sequence and amphipacity of the CPP plays a more 

important role in cellular uptake than the accumulation of positive charge. However, it 

is also difficult to argue with the three dimensional structure since α-helices (e.g. 

transportan (Lindberg et al., 2001) as well as β-structures (e.g. penetratin (Magzoub et 

al., 2003) are reported to be important for cellular internalisation via membrane 

perturbation. 

4.2. Importance of the C-Terminus 

The analysis of the 22 CPPs in the seven cell types shows the importance of the 

appropriate CPP choice for a distinct application. Based on these results, six CPPs were 

selected, namely Tat, S413PV, R9, penetratin, integrin and MPG for further 

investigations. By trying to optimise their cellular uptake, the influence of the 

C-terminus (-COOH versus -CONH2) on the internalisation was evaluated after the 

determination of the toxicity of CPP-CONH2. The carboxyamidated form heavily 

enhanced the ability of CPP penetration for most, but not all tested CPPs (Figure 6). In 

primary RAEC cells only Int-CONH2 internalised better than its carboxylated form, 

whereas the uptake rates of the other CPPs remained the same. Carboxyamidated CPPs 

are more toxic to the six cell lines than carboxylated CPPs with HeLa cells showing the 

most toxic effects. S413PV-CONH2 caused the most viability reductions, though they 

are not linked to higher internalisation rates. Surprisingly, carboxyamidated CPPs are 

less toxic to primary RAEC cells, but the reduced toxicity of CPP-CONH2 in RAEC 

cells cannot be explained by lower internalisation rates. Tat, being one of the most 

frequently used CPPs, shows again very low uptake rates independent of its C-terminus. 

However, the cellular distribution of the CPPs was not altered in the vast majority of 

cases when changing the C-termini (Figure 7). CPPs were mostly detected in a 

punctuated pattern hinting towards endosomal entrapment. Taken together, depending 
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on the CPP and cell line the C-terminus influences the cellular CPP uptake, toxicity and 

in a few cases the cellular localisation. 

4.3. Delivery of the Pro-Apoptotic KLA Peptide by CPPs 

CPPs are proven vehicles for the intracellular delivery of macromolecules such as 

oligonucleotides, peptides and proteins, low-molecular-weight drugs, nano-particles and 

liposomes (Langel, 2011). Even if there is no “golden rule” for the CPP application, the 

importance of CPPs for controlled and targeted delivery of therapeutic and imaging 

agents is very clear.  

In this study, the delivery of the pro-apoptotic KLA peptide in breast adenocarcinoma 

cells, leukaemic macrophages and fibroblasts using the three best CPPs (MPG, integrin 

and penetratin) was compared and their therapeutic applicability was proven. 

Nowadays, the development and analysis of CPPs conjugated to anti-cancer drugs to 

serve as potential new chemotherapeutic agents becomes the focus of attention. In order 

to offer an alternative to covalent methods, a strategy for the delivery of the pro-

apoptotic KLA peptide (Ellerby et al., 1999) into mammalian cells on the basis of a 

simple co-incubation with the appropriate CPP was proposed. 

After determining the optimal mixing ratios (1:1 and 1:2 of CPP:KLA), a 2- to 3-fold 

enhancement of the KLA uptake was demonstrated (Figure 8A). Unfortunately, a 

general rule for a successful KLA delivery was not perceived; different cell types 

needed different CPPs with different C-termini to deliver the KLA peptide effectively. 

Furthermore, the CPP uptake did not necessarily correlate with the KLA uptake. For 

example, MPG-CONH2 having the highest internalisation properties in all cell lines 

(Figure 6), showed only an improvement of the KLA delivery in RAW264.7 cells 

compared to the other employed CPP:KLA pairs in all other cell lines (Figure 9A). In 

contrast, the Int-COOH:KLA mixture (1:1 or 1:2) revealed the best KLA delivery in 

Cos-7 cells, although Int-COOH alone seemed to have nearly no penetration ability 

(Figure 2). CLSM confirmed the measurements done before; KLA was successfully 

delivered into the cells, but showed mostly a punctuated pattern, which might have been 

due to endosomal entrapment (Abes et al., 2006). Besides, a diffuse KLA-distribution 

was observed probably resulting from an endosomal KLA release (Figure 9B). By 

simply mixing the CPP and KLA peptides, it is highly likely to have had no proper 

complex formation as shown for CPP:ON complexes (Andaloussi et al., 2011) nor a 

formation of aggregates as reported in (Kamei et al., 2008). The KLA peptide was 

presumably endocytosed together with the CPP. Over the last years, it became clear that 
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CPPs are internalised at low concentrations via energy-dependent mechanisms 

(Brasseur et al., 2010). Therefore, it can be assumed that the internalisation of the KLA 

peptide was facilitated by the endocytosis of the CPPs.  

However, by looking at the pro-apoptotic properties of the internalised KLA peptide in 

MTT assays (Figure 10), one combination could be depicted, which was toxic to 

macrophages and cancer cells, but showed no toxicity in fibroblasts. The mixture of 

MPG-CONH2:KLA (1:2) resulted in 42 % toxicity (P < 0.001 versus KLA alone) in 

MCF-7 cells and in 36 % toxicity (P < 0.05 versus KLA alone) in RAW 264.7 cells. 

This is particularly interesting since 10-fold lower concentrations were used as in the 

incubations with Cos-7 cells. For the Cos-7 cells only the combination of 

Int-COOH:KLA (1:2) revealed a reduction in cell viability of 32 %. These results were 

validated when microscopically examining the nuclear condensation, which is a 

hallmark of apoptosis. For the conditions causing toxicity in the MTT-viability 

measurements, a distinguished nucleus condensation in all three cell lines was detected 

(Figure 11). Furthermore, the KLA peptide induced active caspase-3 in Cos-7 cells, but 

not in MCF-7 cells. Contradictory results are presented in the literature, showing the 

detection of active Caspase-3 in MCF-7 cells (Wang et al., 2009; Yang et al., 2006) or 

the lack of caspase-3 due to a deletion in the CASP-3 gene (Janicke, 2009). These 

findings show the importance of apoptosis validation by different methods. Later the 

toxic effects in MCF-7 cells were assigned to apoptosis by annexin V stain and DNA-

fragmentation assay. 

To cross-validate the co-incubation approach, the toxicity of covalently coupled CF-

MPG-KLA was determined in MCF-7 cells. Using the CF-MPG-KLA construct at a 

5 µM concentration, a viability reduction could be clearly detected (39 % toxicity at 

day 0 and 44 % at day 1) - a phenomenon which was not obeserved at a 1 µM 

concentration. Since KLA is not even 1/3 of the CF-MPG-KLA sequence, the effective 

KLA concentration correspond to ~ 1.7 µM which is in the same range as in the co-

incubation of MPG-CONH2:KLA (1:2) (2 µM). These results confirm the non-covalent 

strategy as being as effective as the covalent approach and furthermore hint towards an 

advantage of the co-incubation strategy in an enclosed incubation environment, because 

of its simplicity in its application. 

The comparison with published reports to validate the results is difficult, because the 

internalisation is usually done by a covalent linkage of the KLA peptide to CPPs (Cai et 

al., 2010; Watkins et al., 2009), to homing peptides (Ellerby et al., 1999) or to self 
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assembling fibres (Standley et al., 2010). Nevertheless, in all cases researchers used 

covalent-bound peptide concentrations comparable to this study (1 - 10 µM) (Futaki et 

al., 2001; Pooga et al., 2001; Snyder et al., 2004) or even higher (50 µM in (Dutot et 

al., 2009). By using the simple co-incubation strategy to administrate the KLA peptide 

in a low micromolar range (1 µM CPP + 2 µM KLA) - a pro-apoptotic effect of the 

KLA peptide was obtained ranging between 25 % and 60 %, which is in the same scope 

of induced toxicity as described in the other studies (Cai et al., 2010; Ellerby et al., 

1999; Watkins et al., 2009). 

All together, the simple co-incubation strategy enabled the introduction of the pro-

apoptotic KLA peptide in the carcinoma cell line MCF-7 and in the macrophagic cell 

line RAW264.7, both involved in cancer development and metastasis formation. For 

these cell lines a 36 % and 42 % cell viability reduction was reached, which coincides 

with the effect of KLA covalently coupled to CPPs (Cai et al., 2010; Watkins et al., 

2009) or with KLA nanofibres (Standley et al., 2010) even though much shorter 

incubation times were used. More importantly, this effect was not observable in 

fibroblastic Cos-7 cells even at 10-fold higher concentrations. 

In summary, the co-incubation strategy may hold many benefits such as the 

combinatorial potential of different CPPs with different pro-apoptotic peptides, the use 

of targeting devices and associated cost savings due to shorter peptide sequence. These 

advantages are highly relevant in regard to a therapeutic application of pro-apoptotic 

peptides in cancer treatment. In the case of an occurring resistance to one therapeutic 

peptide, it can be quickly and easily replaced when the mixture is applied. 
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5. CONCLUSION 

Despite the high number of biological applications using CPPs, the precise mechanism 

of entry still appears controversial and certainly requires further investigations. 

Contradictory results are often reported, and could stem from experimental variations: 

e.g. diversity of the CPP sequences, the wide variety of cell lines studied, the differing 

protocols applied to investigate the entry mechanism, etc. 

A comparative screen using 22 CPPs in seven cell types under standardised conditions 

revealed the categorisation of the CPPs by their behaviour into three main groups 

showing high, medium and low cellular uptake. Also, the C-terminus of the CPPs is 

able to influence its uptake, toxicity and sometimes even its sub-cellular localisation. 

Compared to a carboxylated C-terminus, a carboxyamidated enhances the cellular 

uptake often. Furthermore, CPPs are able to deliver a second peptide by a simple co-

incubation. Here as well, the delivery depends on CPP, C-terminus and cell type. Inside 

the cell, the delivered peptide is sometimes, but not always functionally active, here 

shown by the reduced cell viability caused by the pro-apoptotic KLA peptide, which 

was assigned to apoptosis in later tests. The activity of the KLA peptide did not 

correlate with its uptake rates. 

This co-incubation approach represents a huge benefit for the future therapeutic 

utilisation: (I) It is much easier and quicker to co-incubate the appropriate CPP with the 

corresponding therapeutic peptide instead of newly synthesising the chosen set; (II) It is 

possible to change the pro-apoptotic peptide quickly in case resistance occurs. 

These results show the difficulty scientists have when working with CPPs. Which CPP 

is the “best” one for the application? The comparison of different CPPs in the respective 

cell line is advisable whilst taking the C-terminus into account. This is aggravated by 

the fact that a chosen CPP might be perfect in its toxicity and uptake properties, but 

might not show the expected transportation capabilities. Therefore it is recommended to 

always include more than one CPP in the evaluation process. 
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7. ANNEX 

Table 5. Viability Test of 22 CPPs in Cos-7, HEK293, HeLa and MDCK Cells. 

 
Footnote: Measurement of the viability using the CCK-8 solution (Fluka). 100 % shows no influence of the CPPs. Four different CPP 
concentrations were used (1, 10, 25 and 50 µM) for each cell line. The data represent the mean of 3-5 independent experiments ± the standard 
deviation; bold data indicated a viability ≤ 70 %. 

CPPs 1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM

 pVEC-scrambled 79 ± 24 80 ± 8 90 ± 9 37 ± 8 72 ± 11 78 ± 26 74 ± 19 82 ± 29 103 ± 18 99 ± 15 102 ± 22 76 ± 15 103 ± 7 95 ± 22 94 ± 10 93 ± 10

 Polyomavirus Vp1 106 ± 15 81 ± 9 106 ± 24 89 ± 1 108 ± 26 90 ± 15 97 ± 17 88 ± 16 102 ±  22 88 ± 3 90 ± 4 91 ± 20 95 ± 11 106 ±13 122 ±24 98 ± 11

 poly-P 104 ± 03 106 ± 15 94 ± 21 47 ± 10 87 ± 19 96 ± 23 82 ± 10 80 ± 9 92 ± 18 94 ± 21 92 ± 10 107 ± 20 98 ± 7 97 ± 10 99 ± 8 106 ± 7

 NF-kB 102 ± 05 98 ± 10 67 ± 27 54 ± 25 93 ± 8 111 ± 0 89 ± 3 70 ± 9 103 ± 9 90 ± 12 90 ± 18 95 ± 15 104 ± 12 98 ± 20 102 ± 22 101 ± 11

 SV40 105 ± 17 101 ± 29 103 ± 23 87 ± 14 106 ± 14 88 ± 9 104 ± 20 109 ± 9 87 ± 12 86 ± 6 89 ± 1 86 ± 18 101 ± 2 86 ± 8 102 ± 21 100 ± 6

 HATF3 71 ± 01 83 ± 22 49 ± 16 39 ± 20 80 ± 16 76 ± 5 88 ± 17 81 ± 9 87 ± 15 100 ± 28 101 ± 10 105 ± 27 104 ± 20 102 ± 7 114 ± 15 120 ± 25

 hCT(9-32) 118 ± 21 110 ± 4 111 ± 4 92 ± 10 89 ± 24 89 ± 2 78 ± 12 83 ± 25 95 ± 17 108 ± 10 100 ± 10 96 ± 10 96 ± 1 93 ± 8 102 ± 1 108 ± 13

 SynB1 108 ± 11 86 ± 11 96 ± 21 104 ± 4 109 ± 22 81 ± 17 90 ± 15 80 ± 3 105 ± 16 105 ± 21 87 ± 25 96 ± 25 100 ± 8 102 ± 11 99 ± 8 103 ± 19

 DPV6 97 ± 07 83 ± 9 88 ± 10 93 ± 14 104 ± 20 115 ± 6 134 ± 7 114 ± 1 94 ± 8 92 ± 20 106 ± 16 102 ± 9 112 ± 13 84 ± 10 106 ± 18 117 ± 12

 Tat 105 ± 12 99 ± 6 115 ± 10 93 ± 2 82 ± 15 83 ± 15 90 ± 13 94 ± 8 100 ± 20 80 ± 16 63 ± 22 50 ± 10 100 ± 0 100 ± 5 106 ± 6 100 ± 14

 Pep-1 98 ± 01 97 ± 15 93 ± 19 78 ± 11 87 ± 12 99 ± 1 81 ± 9 91 ± 18 96 ± 15 98 ± 17 104 ± 18 109 ± 27 106 ± 20 104 ± 19 105 ± 10 100 ± 14

 Bac1-15 116 ± 17 91 ± 14 105 ± 2 100 ± 12 88 ± 21 104 ± 9 90 ± 13 73 ± 21 95 ± 15 99 ± 11 81 ± 27 88 ± 23 86 ± 9 89 ± 13 89 ± 11 93 ± 16

 R7 91 ± 12 97 ± 4 93 ± 8 94 ± 7 89 ± 14 84 ± 0 80 ± 9 69 ± 11 97 ± 14 87 ± 17 93 ± 26 97 ± 24 105 ± 7 101 ± 22 103 ± 12 110 ± 16

 pVEC 98 ± 26 91 ± 5 78 ± 9 52 ± 12 79 ± 14 71 ± 18 68 ± 12 52 ± 15 114 ± 26 112 ± 17 116 ± 30 94 ± 24 101 ± 9 102 ± 4 102 ± 4 97 ± 2

 Rev 114 ± 10 101 ± 11 98 ± 3 98 ± 20 94 ± 25 93 ± 26 78 ± 28 26 ± 13 85 ± 7 94 ± 16 74 ± 15 34 ± 0 94 ± 1 100 ± 10 76 ± 12 51 ± 11

 S413PV 97 ± 23 89 ± 17 63 ± 21 12 ± 27 94 ± 9 95 ± 6 50 ± 26 11 ± 17 105 ± 12 64 ± 24 0 0 106 ± 4 33 ± 16 11 ± 1 5 ± 2

 R9 91 ± 19 102 ± 8 108 ± 13 88 ± 17 99 ± 18 89 ± 10 72 ± 22 78 ± 9 92 ± 14 111 ± 1 98 ± 19 73 ± 23 104 ± 15 91 ± 6 81 ± 12 61 ± 25

 Integrin 97 ± 4 119 ± 16 117 ± 12 106 ± 3 76 ± 7 75 ± 1 95 ± 11 105 ± 15 96 ± 1 113 ± 22 98 ± 9 118 ± 25 105 ± 5 110 ± 4 101 ± 0 99 ± 4

 MPG 108 ± 15 101 ± 2 116 ± 5 132 ± 5 97 ± 14 100 ± 17 95 ± 26 118 ± 16 99 ± 17 96 ± 13 111 ± 26 103 ± 15 103 ± 5 102 ± 6 83 ± 9 90 ± 12

 Penetratin 114 ± 10 99 ± 7 110 ± 23 114 ± 11 113 ± 17 141 ± 11 105 ± 25 101 ± 17 94 ± 16 95 ± 22 76 ± 3 72 ± 26 98 ± 5 89 ± 10 112 ± 9 120 ± 19

 MAP 99 ± 25 106 ± 11 55 ± 23 6 ± 7 107 ± 17 110 ± 7 113 ± 3 83 ± 16 92 ± 26 99 ± 19 34 ± 10 6 ± 10 102 ± 1 97 ± 14 66 ± 10 46 ± 14

 Transportan 104 ± 12 86 ± 15 20 ± 25 0 90 ± 5 97 ± 7 50 ± 29 14 ± 11 108 ± 21 88 ± 19 0 0 102 ± 60 116 ± 13 14 ± 1 7 ± 2

HeLa MDCKCos-7 HEK293
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Table 6. Effects of Endocytosis Modulators on Cellular Uptake - Raw Data. 

Footnote: The cells were treated with the reagents at the given concentrations and later CPPs (10 µM) were added to the medium. The cells were 
incubated for another 30 min and subjected to quantification (for more details see 2.4 Endocytosis Inhibitor Test). The data represent the mean of 
3-5 independent experiments ± the standard deviation. 

 C
el

l l
in

es

 C
on

di
tio

ns

 Cos-7 37°C 20 ± 5 60 ± 10 34 ± 6 64 ± 11 129 ± 10 95 ± 20 481 ± 132 145 ± 42 51 ± 1 1,411 ± 116 472 ± 114 1,600 ± 393 7,349 ± 18
4°C 18 ± 5 123 ± 22 123 ± 18 197 ± 23 134 ± 118 301 ± 47 217 ± 23 374 ± 66 58 ± 12 614 ± 113 534 ± 138 4,127 ± 479 24,813 ± 115
Chlorpromazine 16 ± 3 77 ± 4 52 ± 20 46 ± 11 49 ± 4 279 ± 47 344 ± 99 144 ± 20 51 ± 23 738 ± 118 975 ± 138 875 ± 98 9,533 ± 592
Chloroquine 20 ± 3 226 ± 43 67 ± 10 190 ± 12 164 ± 24 529 ± 122 320 ± 32 800 ± 212 47 ± 13 1,435 ± 232 718 ± 200 4,309 ± 920 10,109 ± 2,236
Nystatin 16 ± 3 119 ± 16 20 ± 2 23 ± 2 23 ± 5 49 ± 4 479 ± 27 128 ± 38 38 ± 8 507 ± 138 357 ± 27 1,668 ± 61 7,388 ± 1,061
Heparin 20 ± 4 144 ± 23 226 ± 19 255 ± 18 344 ± 31 477 ± 17 208 ± 58 325 ± 28 29 ± 2 377 ± 43 414 ± 43 1,677 ± 119 19,844 ± 5,408
Wortmannin 17 ± 3 41 ± 12 31 ± 9 29 ± 8 30 ± 8 96 ± 18 157 ± 18 99 ± 21 86 ± 8 236 ± 14 386 ± 114 569 ± 57 27,805 ± 4,067

 HEK293 37°C 23 ± 6 42 ± 1 95 ± 21 125 ± 4 189 ± 3 645 ± 145 689 ± 179 713 ± 190 1,638 ± 360 928 ± 171 1,269 ± 137 2,795 ± 677 6,197 ± 799
4°C 19 ± 5 97 ± 26 36 ± 7 34 ± 1 68 ± 7 211 ± 24 135 ± 24 214 ± 44 205 ± 45 1,240 ± 195 798 ± 121 18,761 ± 3,000 18,862 ± 2,919
Chlorpromazine 18 ± 3 204 ± 39 62 ± 12 30 ± 9 36 ± 3 378 ± 99 519 ± 44 477 ± 109 79 ± 14 588 ± 27 1,380 ± 331 1,422 ± 259 8,412 ± 201
Chloroquine 21 ± 4 136 ± 9 64 ± 15 60 ± 16 145 ± 21 438 ± 75 792 ± 121 461 ± 7 1,908 ± 153 783 ± 25 1,084 ± 274 2,210 ± 598 17,034 ± 1,732
Nystatin 19 ± 4 61 ± 6 76 ± 15 47 ± 8 39 ± 5 108 ± 17 984 ± 68 165 ± 8 70 ± 16 571 ± 129 1,042 ± 69 1,949 ± 356 2,589 ± 542
Heparin 20 ± 5 250 ± 16 128 ± 5 150 ± 25 589 ± 154 761 ± 83 362 ± 27 637 ± 76 779 ± 29 2,386 ± 479 324 ± 56 4,661 ± 968 11,838 ± 3,794
Wortmannin 11 ± 3 40 ± 11 59 ± 8 24 ± 5 39 ± 8 117 ± 23 348 ± 4 112 ± 22 930 ± 183 519 ± 102 492 ± 45 552 ± 22 25,970 ± 3,059

 HeLa 37°C 21 ± 4 53 ± 9 81 ± 9 59 ± 11 48 ± 7 715 ± 217 1,052 ± 172 1,409 ± 322 595 ± 35 1,257 ± 160 3,335 ± 831 4,199 ± 361 10,529 ± 1,047
4°C 21 ± 5 63 ± 10 107 ± 24 90 ± 3 104 ± 13 267 ± 56 808 ± 198 839 ± 159 173 ± 40 1,068 ± 209 1,374 ± 326 4,798 ± 304 19,985 ± 4,514
Chlorpromazine 22 ± 4 66 ± 15 32 ± 5 100 ± 15 92 ± 2 113 ± 12 1,017 ± 207 1,774 ± 296 51 ± 23 1,517 ± 361 1,178 ± 175 3,121 ± 216 7,709 ± 1,731
Chloroquine 20 ± 6 154 ± 18 55 ± 9 117 ± 26 215 ± 63 697 ± 104 1,447 ± 305 2,011 ± 339 1,071 ± 313 1,209 ± 270 3,415 ± 51 1,388 ± 379 21,840 ± 4,276
Nystatin 21 ± 6 127 ± 36 43 ± 5 102 ± 17 106 ± 26 502 ± 137 411 ± 98 578 ± 123 859 ± 94 1,396 ± 237 1,294 ± 141 5,534 ± 570 21,635 ± 2,816
Heparin 19 ± 6 328 ± 85 262 ± 74 312 ± 95 405 ± 56 545 ± 115 1,134 ± 123 345 ± 56 61 ± 13 194 ± 18 1,734 ± 424 569 ± 106 14,634 ± 3,406
Wortmannin 17 ± 3 46 ± 2 42 ± 12 27 ± 3 45 ± 4 135 ± 15 780 ± 99 224 ± 44 1,211 ± 221 749 ± 75 597 ± 179 1,084 ± 180 29,113 ± 1,025

 MDCK 37°C 17 ± 5 61 ± 9 28 ± 4 28 ± 5 32 ± 8 65 ± 6 686 ± 110 66 ± 15 274 ± 39 435 ± 59 311 ± 22 839 ± 108 4,637 ± 78
4°C 15 ± 3 55 ± 16 20 ± 3 25 ± 7 45 ± 3 57 ± 12 1,064 ± 153 68 ± 7 96 ± 27 574 ± 78 715 ± 72 245 ± 26 13,036 ± 2,744
Chlorpromazine 19 ± 6 83 ± 7 47 ± 8 40 ± 8 49 ± 6 168 ± 45 650 ± 187 220 ± 62 156 ± 20 706 ± 57 556 ± 98 1,472 ± 436 19,713 ± 1,654
Chloroquine 20 ± 4 51 ± 9 27 ± 3 30 ± 4 26 ± 7 114 ± 7 188 ± 53 81 ± 16 23 ± 7 285 ± 50 359 ± 78 1,430 ± 190 28,270 ± 3,237
Nystatin 18 ± 2 46 ± 13 31 ± 6 26 ± 1 26 ± 4 58 ± 8 1,008 ± 179 63 ± 11 46 ± 6 199 ± 20 936 ± 135 6,618 ± 1,768 6,046 ± 688
Heparin 20 ± 4 62 ± 17 27 ± 3 29 ± 3 53 ± 1 45 ± 13 46 ± 12 144 ± 38 84 ± 25 209 ± 61 549 ± 96 2,691 ± 798 22,499 ± 1,930
Wortmannin 22 ± 3 33 ± 1 34 ± 1 31 ± 7 33 ± 8 49 ± 10 448 ± 65 69 ± 9 726 ± 194 534 ± 107 386 ± 72 1,106 ± 284 23,952 ± 4,476
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Table 7. Viability Test of 22 CPPs in MCF-7, RAW264.7 and RAEC Cells. 

 
Footnote: Measurement of the viability using the CCK-8 solution (Fluka). 100 % shows no influence of the CPPs. Four different CPP 
concentrations were used (1, 10, 25 and 50 µM) for each cell line. The data represent the mean of 3-5 independent experiments ± the standard 
deviation; bold data indicated a viability ≤ 70 %. 

 CPPs 1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM
 pVEC-scrambled  84 ± 10  83 ± 10  88 ± 23 112 ± 12 98 ± 5 103 ± 11 100 ± 11 89 ± 6 95 ± 4 72 ± 18 65 ± 19 65 ± 15
 Polyomavirus Vp1 107 ± 14 101 ± 5 89 ± 8  93 ± 19  94 ± 10  93 ± 10 92 ± 9 94 ± 13 89 ± 8 99 ± 12 106 ± 12 97 ± 4
 poly-P  97 ± 15 101 ± 11  96 ± 21 102 ± 26 112 ± 15 101 ± 5 103 ± 8 102 ± 8 111 ± 15 107 ± 6 91 ± 8 89 ± 23
 NF-kB 105 ± 14 97 ± 4  88 ± 12  91 ± 24  87 ± 10  95 ± 8 96 ± 8 95 ± 13 90 ± 5 70 ± 20 76 ± 19 83 ± 11
 SV40  91 ± 22  96 ± 7  88 ± 10  89 ± 24  98 ± 16  96 ± 10 92 ± 10 94 ± 11 87 ± 18 61 ± 6 75 ± 11 79 ± 17
 HATF3  95 ± 12 101 ± 6 106 ± 21  71 ± 22 102 ± 13  87 ± 15 61 ± 9 52 ± 6 83 ± 12 73 ± 12 73 ± 15 74 ± 13
 hCT(9-32) 101 ± 10 98 ± 8  86 ± 17  84 ± 25 106 ± 12 105 ± 6 96 ± 6 96 ± 9 85 ± 16 73 ± 17 69 ± 18 76 ± 12
 SynB1 105 ± 20 96 ± 8 110 ± 19 100 ± 27 100 ± 22  95 ± 20 86 ± 19 89 ± 17 98 ± 29 97 ± 20 105 ± 32 103 ± 9
 DPV6 86 ± 3 99 ± 8  99 ± 10 127 ± 5 94 ± 4  87 ± 10 86 ± 14 89 ± 15 90 ± 15 110 ± 19 81 ± 24 68 ± 1
 Tat  92 ± 17 105 ± 11  95 ± 17  86 ± 9 88 ± 7 89 ± 9 88 ± 14 88 ± 16 96 ± 15 103 ± 20 91 ± 11 66 ± 15
 Pep-1  94 ± 23 103 ± 10 100 ± 20 113 ± 10  95 ± 13 94 ± 2 92 ± 7 98 ± 7 95 ± 12 103 ± 10 102 ± 15 97 ± 23
 Bac1-15  86 ± 20 106 ± 16 109 ± 24 117 ± 5 97 ± 7 92 ± 7 87 ± 10 90 ± 12 90 ± 22 90 ± 7 89 ± 11 85 ± 19
 R7  97 ± 11 104 ± 3  88 ± 21   84 ± 15 100 ± 8 95 ± 3 88 ± 10 76 ± 1 124 ± 15 134 ± 38 132 ± 33 125 ± 27
 pVEC  97 ± 16 105 ± 8 102 ± 24  129 ± 13 101 ± 9 101 ± 9 98 ± 3 60 ± 6 85 ± 85 65 ± 20 76 ± 11 73 ± 13
 Rev 100 ± 14  96 ± 8  86 ± 25  35 ± 8   98 ± 10  93 ± 4 81 ± 10 62 ± 6 89 ± 4 70 ± 16 67 ± 20 71 ± 18
 S413PV  94 ± 17   56 ± 16 0 0  88 ± 7   72 ± 17 46 ± 8 43 ± 10 103 ± 19 90 ± 18 78 ± 11 66 ± 5
 R9 123 ± 7  98 ± 4 105 ± 17  69 ± 11  99 ± 9 100 ± 2 92 ± 8 90 ± 12 92 ± 4 70 ± 12 65 ± 13 74 ± 9
 Integrin  98 ± 13 104 ± 7 110 ± 3 124 ± 30  98 ± 6  94 ± 3 99 ± 3 95 ± 6 97 ± 6 78 ± 18 90 ± 7 92 ± 11
 MPG 107 ± 18 104 ± 8  99 ± 15 109 ± 32 102 ± 10 103 ± 6 95 ± 13 74 ± 7 83 ± 17 76 ± 11 75 ± 13 79 ± 13
 Penetratin  94 ± 13 103 ± 3 103 ± 29 112 ± 19  87 ± 9 82 ± 11 59 ± 12 52 ± 6 98 ± 9 106 ± 12 98 ± 16 102 ± 8
 MAP  95 ± 14 94 ± 7  77 ± 21 16 ± 4  88 ± 9 76 ± 5 72 ± 17 59 ± 9 105 ± 8 117 ± 36 84 ± 16 22 ± 4
 Transportan 97 ± 5 95 ± 2  90 ± 12   74 ± 16   88 ± 10 82 ± 13 75 ± 14 64 ± 7 86 ± 16 105 ± 27 73 ± 18 51 ± 14

MCF-7 RAW 264.7 RAEC



7. ANNEX  83 

 

Table 8. Toxicity of the Carboxyamidated CPPs. 

Footnote: Measurement of the viability using the CCK-8 solution (Fluka). 100 % shows 
no influence of the CPPs. Four different CPP concentrations were used (1, 10, 25 and 
50 µM) for each cell line. The data represent the mean of 3-5 independent experiments 
± the standard deviation; bold data indicated a viability ≤ 70 %. 

 CPPs
 Penetratin 98 ± 22 95 ± 21 62 ± 19 53 ± 11 79 ± 11 79 ± 11 67 ± 4 65 ± 17
 Tat 93 ± 16 87 ± 15 75 ± 18 78 ± 7 93 ± 20 102 ± 14 101 ± 14 107 ± 24
 S413PV 92 ± 22 93 ± 22 73 ± 20 23 ± 3 84 ± 14 76 ± 14 44 ± 3 35 ± 10
 R9 119 ± 18 99 ± 13 94 ± 18 96 ± 16 81 ± 7 98 ± 21 84 ± 21 51 ± 12
 MPG 100 ± 24 94 ± 6 102 ± 18 92 ± 6 89 ± 5 77 ± 1 75 ± 5 57 ± 4
 Integrin 89 ± 15 99 ± 6 100 ± 7 91 ± 0 87 ± 20 84 ± 19 73 ± 20 57 ± 9

 CPPs
 Penetratin 93 ± 14 86 ± 24 42 ± 5 10 ± 2 93 ± 4 89 ± 8 87 ± 10 87 ± 10
 Tat 71 ± 4 79 ± 24 61 ± 9 48 ± 13 96 ± 6 93 ± 19 98 ± 3 87 ± 10
 S413PV 80 ± 12 39 ± 12 0 ± 0 0 ± 0 95 ± 8 75 ± 13 31 ± 12 0 ± 0
 R9 103 ± 5 76 ± 10 52 ± 13 13 ± 3 110 ± 12 100 ± 18 74 ± 21 53 ± 7
 MPG 85 ± 3 82 ± 13 49 ± 10 39 ± 7 91 ± 18 89 ± 10 73 ± 20 52 ± 10
 Integrin 101 ± 6 125 ± 24 116 ± 26 94 ± 5 97 ± 5 99 ± 5 94 ± 9 66 ± 15

 CPPs
 Penetratin 95 ± 19 96 ± 20 97 ± 24 24 ± 2 99 ± 5 79 ± 4 39 ± 2 30 ± 1
 Tat 114 ± 12 123 ± 20 114 ± 12 88 ± 20 98 ± 4 93 ± 6 94 ± 2 85 ± 12
 S413PV 131 ± 2 65 ± 8 0 ± 0 0 ± 0 92 ± 10 37 ± 3 28 ± 1 29 ± 1
 R9 127 ± 19 90 ± 0 78 ± 9 38 ± 10 97 ± 4 88 ± 3 51 ± 3 31 ± 2
 MPG 111 ± 20 106 ± 31 93 ± 26 76 ± 21 96 ± 5 90 ± 8 58 ± 5 34 ± 2
 Integrin 108 ± 12 105 ± 11 98 ± 11 90 ± 14 97 ± 4 95 ± 5 96 ± 5 89 ± 4

 CPPs
 Penetratin 100 ± 2 96 ± 6 99 ± 6 100 ± 5
 Tat 99 ± 3 95 ± 6 96 ± 3 96 ± 5
 S413PV 94 ± 2 94 ± 2 73 ± 14 0 ± 2
 R9 90 ± 5 90 ± 8 91 ± 5 95 ± 7
 MPG 95 ± 4 92 ± 1 89 ± 4 89 ± 3
 Integrin 108 ± 10 106 ± 9 100 ± 12 103 ± 12

RAEC
1 µM 10 µM 25 µM 50 µM

1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM
MCF-7 RAW 264.7

1 µM 10 µM 25 µM 50 µM
HeLa MDCK

1 µM 10 µM 25 µM 50 µM

Cos-7 HEK293
1 µM 10 µM 25 µM 50 µM 1 µM 10 µM 25 µM 50 µM
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Figure 15. Viability after CPP:KLA in RAW 264.7 Cells Depending on the Incubation Duration. 
CPP and KLA were simultaneously incubated for 1 h with RAW 264.7 cells and cell viability was detected using the MTT-test. 100 % cell viability 
corresponds to no toxic effect of the peptides. The cell viability was measured immediately after peptide incubation and removal of the peptides 
solution (0 days) (A), as well as 1 day (B) or 2 days (C) later. The highest pro-apoptotic effect of the KLA peptide is seen directly after the 
incubation and is probably a short-time effect or due to a fast growth of the remaining unaffected cells. Data shown are the means ± SEM (n=3). 
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