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Certainly no subject or field is making more progress on so many fronts at the present moment, than
biology, and if we were to name the most powerful assumption of all, which leads one on and on in an

attempt to understand life, it is that all things are made of atoms, and that everything that living things
do can be understood in terms of the jigglings and wigglings of atoms. – Richard Phillips Feynman

[1]





Abstract

This thesis investigates the excitation energy transfer in pheophorbide a complexes. The
P4 and the P16 molecule consist of four and sixteen pheophorbide a molecules, respectively,
which are covalently bound to a DAB dendrimer of the first (P4) and third (P16) generation.
The PN complexes in explicit ethanol solution are investigated utilizing a mixed quantum-
classical methodology. Classical molecular dynamics simulations are carried out in order
to generate nuclei trajectories of the system. The time-dependent Schrödinger equation is
solved for the first excited electronic chromophore complex state, the particular Hamilto-
nian depends parametrically on the classical nuclear coordinates. This coordinate depen-
dence consists of two parts. The first part is the electrostatic contribution, containing the
electrostatic couplings of each pheophorbide a with the other pheophorbide a molecules,
the DAB dendrimer and the solvent. The second part is the vibrational contribution, con-
taining the potential energy fluctuation of each pheophorbide a due to vibration. In this
thesis a method is introduced which allows the computation of this vibrational contribu-
tion in harmonic approximation, utilizing the second derivatives of the respective potential
energy surfaces. The method is compared with other common approaches to compute this
vibrational contribution, and the high quality of the method is proven.

Three different ansatzes were utilized to compute the time development of the excitation
energy transfer within the chromophore complexes. First of all, the expansion coefficients
that result from the solution of the time-dependent Schrödinger equation are utilized to
compute averaged time-dependent populations. Secondly, the expansion coefficients are
used to compute excitation energy transfer rates in second order of the excitonic coupling.
Thirdly, the time scale of the excitation energy transfer is derived from the delay-time de-
pendent transient anisotropy. The transient anisotropy is calculated by solving the time-
dependent Schrödinger equation, including the transitions between the electronic ground
and first excited chromophore complex state as well as the transitions between the elec-
tronic first and second excited chromophore complex state. Therefore, the electromagnetic
field is included directly in the Hamiltonian of the system. The temporal behaviour of the
excitation energy transfer is exactly the same for the three approaches.

In addition, the molecular dynamics data are utilized to compute linear and transient
spectra of the chromophor complexes’ Qy band. For a single pheophorbide a in ethanol,
additionally the Qx band and the vibrational progression are computed. Furthermore, the
linear absorption of pheophorbide a and P16 next to a gold nanoparticle is studied, and the
amplification of the molecular absorption signal due to the presence of the nanoparticle
can be shown. Finally, a new method is introduced to treat distance and conformation
dependent screening of the excitonic coupling parametrically within a mixed quantum-
classical description.
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Zusammenfassung

Die Arbeit untersucht den Anregungsenergietransfer in supramolekularen Phäophorbid-
a-Komplexen. Das P4- und das P16-Molekül bestehen aus vier beziehungsweise sechzehn
Phäophorbid-a-Molekülen, die kovalent an DAB-Dendrimere der ersten (P4) und dritten
(P16) Generation gebunden sind. Die PN-Komplexe in explizitem Lösungsmittel werden im
Rahmen einer gemischt quanten-klassischen Methode untersucht. Klassische Molekular-
dynamik-Simulationen werden durchgeführt, um Kerntrajektorien zu berechnen. Die zeit-
abhängige Schrödingergleichung wird für den ersten elektronisch angeregten Chromophor-
komplex-Zustand gelöst, der entsprechende Hamiltonoperator hängt parametrisch von den
Kernkoordinaten ab. Diese Abhängigkeit von den Kernkoordinaten besteht aus zwei An-
teilen. Der erste Anteil ist der elektrostatische Beitrag. Dieser enthält die entsprechende
elektrostatische Kopplung der Phäophorbid-a-Moleküle mit den anderen Phäophorbid-a-
Molekülen des Komplexes, mit dem DAB-Dendrimer und mit den Lösungsmittelatomen.
Der zweite Anteil ist der Schwingungsbeitrag. Dieser enthält die schwingungsbedingte
Energiefluktuation für jedes Phäophorbid-a-Molekül des Chromophorkomplexes. In dieser
Arbeit wird eine Methode vorgestellt, die die Berechnung dieses Schwingungsbeitrags in
harmonischer Näherung ermöglicht. Dabei werden die zweiten Ableitungen der entspre-
chenden Potentialenergieflächen des Moleküls benötigt. Die Methode wird mit anderen
gängigen Ansätzen, den Schwingungsbeitrag zu berechnen, verglichen. Die Qualität der
Methode wird bewiesen.

Es werden drei verschiedene Ansätze benutzt, um das Zeitverhalten des Anregungsener-
gietransfers innerhalb der Chromophorkomplexe zu berechnen. Die Expansionskoeffizien-
ten, die von der Lösung der zeitabhängigen Schrödingergleichung resultieren, werden zu-
nächst benutzt, um Anregungsenergietransferraten in zweiter Ordnung der exzitonischen
Kopplung zu erhalten. Des weiteren werden die Expansionskoeffizienten verwendet, um
gemittelte zeitabhängige Populationen zu berechnen. Zudem wird die Zeitskala des An-
regungsenergietransfers aus der zeitabhängigen transienten Anisotropie erhalten. Die Be-
rechnung der transienten Anisotropie beruht auf der Lösung der zeitabhängigen Schrö-
dingergleichung, welche Übergänge zwischen dem elektronischen Grund- und ersten ange-
regten Zustand beziehungsweise Übergänge zwischen dem elektronisch ersten und zwei-
ten angeregten Zustand durch explizite Betrachtung des elektromagnetischen Feldes ent-
hält. Für alle drei Ansätze ergibt sich der gleiche zeitliche Verlauf des Anregungsenergie-
transfers.

Die Molekulardynamik-Trajektorien werden zudem benutzt, um lineare und transiente
Spektren der Qy-Banden der Chromophorkomplexe zu berechen. Für ein einzelnes Phäo-
phorbid-a-Molekül in Ethanol werden zustzlich die Qx-Bande und die Schwingungspro-
gression berechnet. Außerdem wird die lineare Absorption von Phäophorbid a and P16
neben einem Gold-Nanopartikel untersucht, die erwartete Verstärkung des Absorptionssi-
gnals durch die Präsenz des Nanoteilchens wird gezeigt. Abschließend wird eine neue Me-
thode vorgestellt, die es erlaubt, die abstands- und konformationsabhängige Abschirmung
der exzitonischen Kopplung parametrisch in die gemischt quanten-klassische Methode zu
integrieren.
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1 Introduction

The excitation energy transfer (EET) between two chromophores or within large complexes of
chromophores plays a fundamental role in science. The pioneering work of Theodor Förster on
fluorescence resonance energy transfer (FRET), that describes an EET due to the dipole-dipole
coupling of the involved molecules, provided the basis for a high number of applications. It
helped to understand the primary processes of photosynthesis in bacteria and higher plants
[8]. Moreover, FRET can be utilized to measure the distance between chromophores in sev-
eral systems that are interesting in biology and chemistry [9]. It can be used, for example, to
detect protein-protein interactions and protein conformational changes [10]. Furthermore, the
formation of artificial light-harvesting antennae as an application in photovoltaics has given
promising results [11, 12].

A detailed understanding of the EET dynamics in supramolecular complexes is essential
for decoding light-harvesting in natural systems as well as developing and improving light-
harvesting for artificial photosynthesis. In [13, 14] wavelike energy transfer in photosynthetic
systems through quantum coherence was proven. The investigations on helical arranged por-
phyrin polymers in [15] or on linked porphyrin arrays in [16] are examples for the utiliza-
tion of pump-probe spectra to uncover EET in artificial chromophore complexes. In [17] light-
harvesting assemblies were constructed by displaying chromophores on a rod assembly of the
tobacco mosaic virus coat protein, the EET was investigated with time-resolved fluorescense
spectroscopy. EET in highly ordered systems were examined in [18, 19]. The so-called J-
aggregates, or H-aggregates differ according to the mutual orientation of the chromophore
transition dipole moments.

EET in supramolecular systems which consist of chromophores bound to dendrimeric struc-
tures were presented in [20] (utilizing single molecule spectroscopy) and in [21] (utilizing en-
semble measurements). In [22] supramolecular pheophorbide a (Pheo) complexes PN, where N
is the number of Pheos bound to the repetitively branched diaminobutane (DAB) dendrimer,
were investigated.

Within this thesis the P4 and P16 are studied theoretically. The two Pheo complexes are good
model systems to study EET. The theoretical description of those supramolecular complexes,
treating the complex and the solvent in atomic detail, is to unravel details about the EET within
those systems that are not accessible to corresponding experiments.

To ensure a full understanding of EET experiments a theoretical approach is necessary that
treats the system in atomic detail. If EET between chromophores is analyzed, not only the chro-
mophores themselves, but also the solvent or protein environment has to be taken into account
[23]. The computational time of pure quantum mechanical ab initio methods scale with the
number of atoms Nat from (Nat)2log(Nat) up to (Nat)4 for Hartree-Fock and density functional
theory (DFT) methods [24, 25] or even higher in more sophisticated electron structure calcula-
tions [25]. P4 and P16 consist of 370 as well as 1558 atoms. Beyond that the solvent molecules
are to be treated directly. It is obvious that EET for such systems can not be treated purely
quantum mechanically.

A general overview on the theory of EET within molecular systems is given in [26]. The
method of choice for the computation of EET and optical spectra of PN systems is the mixed
quantum-classical description. Within this framework the motion of the nuclei is treated clas-
sically by molecular dynamics (MD) simulations. The electronic wave function is calculated
quantum mechanically by solving the time-dependent Schrödinger equation (TDSE).

A critical task within mixed quantum-classical methods is computing the energy gap fluc-
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1 Introduction

tuation caused by intramolecular vibration and electrostatic coupling to the solvent molecules.
Those fluctuations affect optical properties (as the linear absorption linewidth), which can be
measured experimentally.

In order to compute the vibrational part of this energy gap fluctuation, different methods
have been proposed. Commonly used is the semiempirical ZINDO (Zerner’s intermediate ne-
glect of differential overlap) method [27, 28, 29, 30] used to compute the energy gap for each
MD snapshot. In [27] the photoexcitation spectrum of an isolated protonated amino acid was
calculated and compared with respective experiments. In [28] the EET in the light-harvesting
system II was studied. The same authors published 2-dimensional spectra of the FMO (Fenna-
Matthews-Olsen) light-harvesting complex in [29]. A very similar method was used in [30] to
compute electronic-vibrational coupling in the photosynthetic reaction center of purple bac-
teria. Computationally more demanding DFT calculations were utilized in [31] to obtain the
vibrational part of the energy gap function from each MD snapshot to investigate long-lived
coherences in the FMO complex. However, none of the methods cited above result in a perfect
agreement with the respective experimentally measured absorption linewidth.

In this thesis, a new method is presented to compute the energy gap fluctuation from MD
simulations. The energy gap fluctuation is calculated in harmonic approximation to the single
atom vibrations utilizing the MD data and precalculated Hessian matrices. The approach re-
quires only one electronic structure calculation to obtain the harmonic potential energy surface
(PES) for each considered electronic Pheo state, which in this thesis are the electronic ground
state, the first excited electronic state and the second excited electronic state. Within this the-
sis only FRET will be treated [2], the Dexter transfer [3] is assumed to contribute only a small
correction [4, 5, 6, 7] to the FRET and is therefore neglected.

The appropriateness of the calculated energy gap function is proven by the comparison be-
tween calculated and measured linear absorption spectra. Furthermore, possible sources of
error are demonstrated and analyzed.

Being able to adequately calculate energy gap fluctuations of the Pheo molecule, the EET
dynamics in the complexes P4 and P16 can be investigated. The excitonic coupling between the
Pheos within the PN complex is treated via the Coulomb interaction between atomic transition
partial charges [32].

Within this thesis three different approaches are utilized to determine the time scale of the
EET for P4 and P16.

The most straight forward approach is to solve the TDSE for each MD sample. The result-
ing expansion coefficients are squared and afterwards averaged. Secondly, Förster-like EET
rates are computed from the MD simulations in second order of the excitonic coupling. The
EET rates are used with standard rate equations to compare the resulting population dynam-
ics with the solution of the TDSE. The third approach on computing EET dynamics within P4
complexes is the computation of pump-probe spectra. In order to compute pump-probe spec-
tra the overall time-dependent polarization is required. The calculation of nonlinear response
functions is circumvented by directly solving the TDSE including the electromagnetic field of
the pump and probe pulse. The solution of this TDSE includes all orders of the polarization.
Additionally, two different methods to obtain the polarization in probe pulse direction from
the overall polarization are applied. The time scale of EET can then be analyzed by calculating
the transient anisotropy.

The outline of this thesis is as follows: after an introduction to the PN complexes in Chap. 2
the mixed quantum-classical methodology is introduced in Chap. 3. The equations of motion
for the expansion coefficients of the chromophore complex (CC) wave function are derived.
Respective quantum formulas are translated to their mixed quantum-classical analogs. It will
be shown how linear absorption, transient absorption and EET rates may be calculated from
classical nuclei trajectories within the dynamic classical limit (DCL). The required methods
utilized within this thesis will be discussed in Chap. 4. The method to calculate the energy
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gap fluctuation from MD trajectories is explained and all sources of error are investigated and
analyzed. The results of these calculations will be shown in Chap. 5.

The additional chapters 6 and 7 treat subjects which are related to the content of this thesis
but organized separately for the reason of a better overwiew. Both chapters include introduc-
tion, theory, methods and results for the particular subject as a whole.

In Chap. 6 the available MD data for Pheo and P16 are utilized to study the coupling between
the respective molecule and a metal nano particle (MNP). The TDSE is solved for the combined
Pheo-MNP system. While the MNP is treated via parameters taken from recent experiments
[33], the molecule (Pheo and P16) is treated in atomic resolution. The respective calculations
result in absorption amplifications of the combined molecule-MNP system compared to the
molecular absorption that is in the same order of magnitude as measured in related experi-
ments for similar molecules [33].

Finally, Chap. 7 will complete this thesis, discussing the screening of excitonic coupling.
It is known that this screening depends not only on the distance of two chromophores, but
also on their mutual orientation. Orientation dependent screening has not been treated within
a mixed quantum-classical description so far. Distance dependent screening was utilized in
[28, 29]. One possibility to compute orientation and distance dependent screening between two
chromophores for fixed mutual chromophore conformations is the Poisson-TrEsp (transition
charges from electrostatic potentials) method [34, 35]. In this thesis, for the first time a method is
introduced that makes it possible to treat distance and orientation dependent screening within
a mixed quantum-classical description. This is achieved by fitting Poisson-TrEsp calculated
distance and orientation dependent screening between chromophores to screening functions
that describe the screening between single atoms. The method is applied for the computation
of P16 linear absorption.
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2 The PN dendrimer - a supramolecular complex

2.1 Pheophorbide a and PN

The chromophore complexes that are investigated theoretically in this thesis are two differ-
ent Pheo complexes and a single molecule of Pheophorbide a (Pheo) in ethanol solution. The
respective molecules were studied experimentally in the group of Beate Röder [22, 36].

2.1.1 The Pheo molecule

Pheo is a free-base tetrapyrrole. The structure of Pheo is shown in Fig. 2.1. Pheo is a chloro-
phyll decomposition product. The molecule is known due to its applicability in photodynamic
therapy. More details concerning photodynamic therapy will be given in the following section.

2.1.2 The P4 and P16 supramolecular complex

The P4 and the P16 supramolecular complex consists of Pheo molecules that are covalently
bound to (poly(propylene imine)) diaminobutane (DAB) dendrimers. The first synthesis of
DAB dendrimers was presented in [37], a nuclear magnetic resonance (NMR) study of the
structure and conformation of DAB dendrimers in solution was presented in [38]. P4 consists
of four Pheos that are bound to a DAB-4 dendrimer (1st generation) and P16 consists of sixteen
Pheos that are bound to a DAB-16 dendrimer (3rd generation). Both DAB dendrimer structures
are shown in Fig. 2.2.

The Pheo molecules are covalently bound to the dendrimer by peptide bonds. These systems
show a large independence with respect to their mutual orientation (cf. [39]). In Fig. 2.3 and
2.4, P4 and P16, respectively, are shown. A DAB dendrimer with N connected Pheos is called
PN within this thesis, the DAB dendrimer itself will be referred to as dendrimer.

The PN chromophore complexes as carriers for photosynthesizers

Originally the Pheo dendrimers were planned as carriers of Pheo in photodynamic therapy
[40]. The enhanced permeability and retention (EPR) effect [41] was to be used to ensure that
the Pheo dendrimers get into the cancer tissue. The principal idea of the EPR effect is that
the endothelial cells of tumor cells show wide fenestrations compared to healthy tissue. Those
wide fenestrations allow the dendrimers to enter the pathogenic but not the healthy cells.

Inside the cancer tissue, the molecules were to be irradiated with visible light. This irra-
diation excites the Pheo molecules (or in general the photosensitizer) to the S1-state. Chro-
mophores that are suitable photosensitizers in photodynamic therapy may traverse an inter-
system crossing (ISC) to the triplet state T1 [40] with a relatively high probability. This photo-
sensitizer in the triplet state can exchange an electron with an oxygen molecule in the triplet
state (the energetic ground state of O2). After this exchange, the photosensitizer returns to the
S0-state and oxygen is in the singlet state. The singlet oxygen reacts fast with components of
the cell, this process will finally destroy the cell.

However, since the PN systems did not show a controlled behavior after irradiation and
were separated into many different molecules, they were no longer interesting for medical
appliance. Nevertheless, they are a nice model system to study excitation energy transfer. The
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2 The PN dendrimer - a supramolecular complex

Figure 2.1: Single Pheo molecule. The color code for the atom types is H: white, C: green, N: blue, O:
red.

Figure 2.2: Left: the DAB-4 dendrimer (1st generation), right: the DAB-16 dendrimer (3rd generation).
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2.2 Optical spectra of Pheo, P4, and P16

Figure 2.3: P4 molecule. This conformation was utilized as initial conformation for the P4 MD runs. The
color code for the atom types is H: white, C: green, N: blue, O: red.

time scales of competing processes to the EET within the complexes are orders of magnitude
slower. These processes are fluorescense (4.3× 107s−1), internal conversion (1.3× 106s−1) and
intersystem crossing (1.08× 108s−1) [40]. The availability of Pheo and PN to the group of Beate
Röder allow a fast comparison of experimental and theoretical results.

2.2 Optical spectra of Pheo, P4, and P16

2.2.1 Linear absorption of Pheo, P4, and P16

As predicted by the four-orbital theory [42, 43], the Pheo Qy and Qx band split. This splitting
is due to a symmetry breaking by the hydrogen atoms [40, 42]. The Qy and Qx bands represent
the two first excited electronic states of Pheo. The other excitations accumulate in the Soret
band of Pheo (Fig. 2.5).

The synthesis and the linear absorption measurements of Pheo, P4 and P16 were performed
by Steffen Hackbarth. The data from previous measurements were published in [22].

2.2.2 Transient absorption spectroscopy

In the group of Beate Röder a transient absorption spectrometer is set up, which can be utilized
to measure transient absorption spectra of the PN complexes in ethanol. The results of those
measurements will enable a comparison of the transient absorption calculations done for this
work (as for the transient anisotropy, results in Sec. 5.2.3) with experimental results. Unfor-
tunately, at the moment this work is finished, transient absorption measurements for the PN
chromophore complexes could not yet be carried out.
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2 The PN dendrimer - a supramolecular complex

Figure 2.4: P16 molecule. The dendrimer is only represented by its bonds. The color code for the atom
types is H: white, C: green, N: blue, O: red.

Figure 2.5: Measured absorption of Pheo (black), P4 (red), and P16 (green) in ethanol (cf. [22]).
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2.2 Optical spectra of Pheo, P4, and P16

2.2.3 Linear absorption of the Pheo dimer

Some predictions concerning the optical properties of the PN complexes can be made by inter-
preting the linear absorption spectra of Pheo dimers. Respective studies are presented in [36].
In this reference the scalar transition dipole moments of the single Pheo and the Pheo dimer
were measured. The respective values of dM = 3.6± 0.2 for the monomer and dD = 4.6± 0.6
for the dimer indicate (within the margin of error) that the oscillator strength of the dimer can
be interpreted in terms of the oscillator strengths of two single Pheos which build up the dimer.
The oscillator strengths fM for the monomer and fD for the dimer are proportional to d2

M and
d2

D, respectively. A dimer contains the double number of molecules compared to a monomer.
Thus, the relation d2

D = 2d2
M holds, if the linear absorption of the Pheo dimer can be explained

in terms of the linear absorption of two single Pheos. Within the margin of error the measure-
ments presented in [36] confirm this relation. This indicates that Dexter couplings between
the two Pheos have no large influence on the single Pheo wave functions, even when dimer
formation occurs.
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3 The mixed quantum-classical methodology

3.1 Introduction

3.1.1 Approximate quantum descriptions

The propagation in time of a quantum mechanical system can only be calculated numerically
for systems with a few degrees of freedom. For larger systems, semiclassical theories have to
give approximate descriptions for the quantum propagator. Those approximate descriptions
depend on a partly classical treatment of the system. However, those semiclassical theories
have to include quantum effects as much as possible, despite the fact that a part of the system
is treated classically. In this section some of those approximations will be introduced.

Semiclassical and quasiclassical approaches

The starting point for the short introduction to semiclassical theories is a semiclassical equa-
tion that was formulated in the late twenties of the twentieth century. It gives the transition
matrix element between an initial position state |qi〉 and a final position state |q f 〉. The time-
propagation is realized by the propagator e−iHt/h̄, with the Hamiltonian H. The standard semi-
classical approximation for this transition is given by the Van Vleck-Gutzwiller propagator
[44, 45]

〈qi|e−iHt/h̄|q f 〉vVG = ∑
traj

(2πih̄)−N/2
∣∣∣∣det

(
∂q f

∂pi

)∣∣∣∣−1/2

eiS(q f ,qi)/h̄−iπν/2. (3.1)

The sum includes all trajectories with the starting point q0 = qi at t = 0, ν is the Maslov index
that counts the zeros in the determinant. S(q f , qi) is the classical action along the respective tra-
jectory. The Van Vleck-Gutzwiller propagator is the result of a stationary phase approximation
to the Feynman path integral representation of the quantum propagator. A further description
can be found in [46].

In 1970 Miller expressed the final positions q f in Eq. 3.1 in terms of the initial momenta pi
and yielded the so-called semiclassical initial value representation (SC-IVR) [47, 48]. The name
IVR results from the fact that the computation of matrix elements can be achieved by an inte-
gration over the initial coordinates and momenta of the system. Since it is not the aim of this
thesis to discuss semiclassical theories in general, the equations that are derived from Eq. 3.1
or are connected to Eq. 3.1 will not be given here. They can be found in the respective refer-
ences. A lot of SC-IVR approaches include a balanced treatment of the positions and momenta.
Those Herman-Kluk (HK) or coherent state SC-IVR methods [49, 50] have the property that the
coherent states are localized in both coordinate and momentum space [45]. Furthermore, the
HK-IVR does not cause singularities for real trajectories [51].

The problem in the application of SC-IVR is the strong oscillatory nature of the integrand
[45] in Eq. 3.1, this oscillatory behavior also holds for the HK-IVR. It results in the mutual
cancellation of positive and negative parts of the integrand and thus in a very bad convergence
of the numerics. One way of partially circumventing this sign problem [45] is applying the IVR
idea to time-correlation functions of the form

CAB(t) = tr
(

AeiHt/h̄Be−iHt/h̄
)

. (3.2)
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3 The mixed quantum-classical methodology

A and B are some arbitrary operators. Inserting a semiclassical propagator (like the Van Vleck-
Gutzwiller propagator in Eq. 3.1) for the quantum propagators in Eq. 3.2 results in an integral
over the two phase spaces {q0, p0} and {q′0, p′0}.

From this point several kinds of approximations can be performed. Two of them will be
discussed below.

The first approximation is linearizing the equation with respect to the difference variables
p′0 − p0 as well as q′0 − q0 [52]. This approximation results in a quasiclassical single phase
space integral that makes use of Wigner-transforms [53] of the operators A and B. The approx-
imation is called linearized SC-IVR (LSC-IVR) or Wigner averaged classical limit. The word
quasiclassical denotes that the only difference between the LSC-IVR and a classical formula is
the correct quantum mechanical initial state in the LSC-IVR. This approach was later utilized
by Shi and Geva [54, 55, 56], who compared several semi- and quasiclassical approaches and
stated that the LSC-IVR approach gives qualitatively good results, even when compared to a
much more computationally demanding method. It has to be mentioned here that the maxi-
mum entropy analytic continuation (MEAC) method [57] further enhances the quality of the
LSC-IVR.

The second possible approximation to the double phase space integral in Eq. 3.2 was sug-
gested by Makri and Thompson. They evaluated the forward and backward time propagation
in Eq. 3.2 in a single step [58]. This method is called forward-backward IVR (FB-IVR) and elim-
inates the dominant terms of the classical action (between forward and backward path) and
thus lacks the sign problem of the standard IVR. A review about the FB-IVR and other IVR
methods is given in [59].

Another approach, which will be mentioned but not discussed in detail, is the Gaussian
wavepacket method invented by Heller [60]. The heavy particles are decomposed into time-
dependent wavepackets. Those wavepackets follow classical or nearly classical trajectories. A
simplification of this method was the later proposed frozen Gaussian approximation (FGA)
[61]. In the FGA the form of all Gaussian wave packets is kept fixed. The correlation is not
reached for every single Gaussian wave packet, but it is achieved collectively by the superpo-
sition of several nearby packets [61].

All the methods discussed above have in common that, with present day computers, they
are not capable of describing systems that have the size of the PN systems in explicit solvent.
The first reason is the large number of molecules in those systems that would require a mas-
sive computer power. The second reason is the fact that the direct treatment of a molecular
system in a FB-IVR approach requires either the full quantum treatment of all present particles
or approximations with respect to the interaction between bonded atoms. The former is not
possible for large systems (PN in solution) and the latter requires the knowledge of a variety of
parameters.

Molecular dynamics approaches

The alternative to the semiclassical treatment of the nuclei is the classical treatment of all atoms
via MD simulations. There exist mainly two types of MD simulations. The first type of simula-
tion is called Ehrenfest dynamics. The nuclei move on one single PES that is a mean field with
respect to the possible electronic states [62]. The second type of methods are so-called surface
hopping approaches. The first of those surface hopping approaches was proposed by Tully
[63, 64]. The system propagates on a PES that belongs to a specific electronic state. At certain
points in time the system jumps to another PES.

The comparison of an Ehrenfest and a surface hopping approach, applied to a simple one-
dimensional curve-crossing model, showed the superiority of the surface-hopping approach
[63]. The calculated transmission and reflection probabilities matched the result of the accurate
wave packet propagation [65] best. For complicated systems with multiple quantum degrees of
freedom the surface hopping approach requires the computation of a large ensemble of trajec-
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3.1 Introduction

tories to achieve decoherence [66]. An alternative option is to damp the coherence [66, 67]. The
method introduced by Tully in [63] is referred to as MDQT (molecular dynamics with quan-
tum transitions) in literature. It was, for example, utilized to compute vibrational relaxation of
the amide I mode of N-Methylacetamide in D2O ([68] and references therein). Necessary for a
MDQT calculation are the PESs of the important states. Those PESs have to be calculated first.
Then the respective force fields have to be derived. For large supramolecular complexes this is
hardly feasible. There exist calculations of excitation energy transfer in a so-called phenylene
ethynylene dendrimer without solvent in [69]. The simulation time for this molecule was 40
fs. This time scale was long enough to show excitation energy transfer within the dendrimer.
The application of this model to larger systems in direct solution seems not to be possible with
present day computers.

The motion on a respective PES is most easily done utilizing classical force fields. The atoms
are treated as classical particles. This is justified due to the Born-Oppenheimer approximation
[70] (cf. Sec. 3.1.2). The interaction between the nearest neighbors within a molecule as well
as the non-bonded (electrostatic and van der Waals) interaction to the solvent is approximated
via a large set of parameters (cf. Sec. 3.1.5). Classical force fields represent Ehrenfest dynamics
in the electronic ground state. Beside the classical force fields, there exist several approaches
that treat the nuclear motion ab initio, without introducing force parameters. However, the
basis for such approaches is also the separation of nuclear and electron degrees of freedom.
There exist a variety of methods. While in Ehrenfest dynamics the electronic problem is solved
after each time-step in order to compute the forces to the nuclei [62], within the Car Parinello
(CP) method [71] nuclei and electronic wave function are propagated simultaneously. It com-
bines MD with density functional theory (DFT), the electronic degrees of freedom are treated as
dynamic variables utilizing a Lagrangian. Therefore, a fictitious electron mass has to be intro-
duced, to make sure that the system stays in the electronic ground state. Details for different ab
initio MD methods are given in [62]. The possibility of applying Car Parinello MD to systems
of the same size as PN in direct solution (several ten thousands of atoms) seems hardly possible.
The system size that is managable with CP methods is a several hundred atoms system at most
[72].

Besides the Ehrenfest and surface hopping approaches discussed above there exist approaches
that treat quantum effects for systems with many degrees of freedom. Such an approach us-
ing Bohmian trajectories was proposed in [73]. Even though the approach was just applied to
a simple model system, the authors claim that the approach would even work for larger sys-
tems. It was later utilized for the calculation of pump-probe spectra of I2 in rare gas in [74]. The
comparison with experimental results showed quite promising results.

Mixed quantum-classical approaches

The method of choice when large molecular systems including the solvent are to be investi-
gated is the mixed quantum-classical description. Within such an approach the nuclear dynam-
ics are calculated utilizing classical force fields (cf. Sec. 3.1.5), making it possible to treat sys-
tems including several ten thousand atoms. The electronic problem is then computed quantum
mechanically, parametrically dependent on the nuclear coordinates. Different mixed quantum-
classical approaches can be found in [27, 29, 30, 31, 55, 75]. The several mixed quantum-classical
methods differ in the approaches that are utilized to derive the electronic gap function from the
classical coordinates. Details concerning this approaches can be found in Sec. 3.5. Often such
approaches utilize the dynamical classical limit (DCL) to translate full quantum formulas into
mixed quantum-classical formulas (cf. Sec. 3.1.3). Those mixed quantum-classical formulas
that can be computed utilizing the energy gap functions allow the computation of a variety of
optical properties of the system.

However, there exist as well approaches that compute the nuclei trajectories utilizing ab
initio MD. Such an approach is introduced in [76]. In this reference, pump-probe spectra of I2
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in rare-gas environments are computed.

Comparison between different approaches

In 2005 and 2008 Shi and Geva published two papers comparing three different methodologies
translating quantum formulas into mixed quantum-classical expressions that may utilize MD
simulation trajectories [55, 56]: the DCL (cf. Sec. 3.1.3), the LSC-IVR, and the FB-IVR. The DCL
includes an Ehrenfest MD simulation in the electronic ground state and is therefore applica-
ble to a variety of molecular systems in solution. LSC-IVR and FB-IVR need the calculation
of excited state PESs. Shi and Geva considered only mono-atomic particles. There exist IVR
computations for small molecular systems. [77] treats I2 in an argon-cluster, where potential
between the iodine atoms is treated by a morse potential. [78] shows the computation of the
vibrational spectra of CO2 introducing IVR molecular dynamics (IVR-MD). The application to
more complex molecules is difficult. The method is not capable of treating large systems (as PN
in solution) with present day computers.

The model system used by Shi and Geva consisted of a two state nonpolar monoatomic chro-
mophore in a solvent of 25 nonpolar atoms in a 2D MD simulation, interacting via a Lennard-
Jones potential. It is important to mention here that indeed the FB-IVR methods are not capable
to treat such large systems as PN in ethanol, while the application of the LSC-IVR approach
would in principle be possible even for large molecular systems, given that the averaged PES
(average between electronic ground and first excited state PES) is available for the particular
system. The computation of such an averaged PES and the respective force field parameters is
not trivial. Therefore, such a computation is no option for solvated PN systems.

However, the results of Shi and Geva are pleasant concerning the quality of the DCL. For the
calculation of the linear absorption it worked as well as the other approaches. Only the results
for 2D spectra gave different results, since the wave function propagation in the first excited
electronic state is not covered within the DCL.

3.1.2 The Born-Oppenheimer approximation

Ehrenfest MD is based on the Born-Oppenheimer ansatz [26, 62, 70]

ΦBO(r, R; t) = ∑
k

ξk(R; t)φk(r, R). (3.3)

The total wave function separates into the electronic wave functions φk(r, R) and the vibronic
expansion coefficients ξk(R; t) [26]. In the Born-Oppenheimer ansatz in Eq. 3.3 the parametric
time-dependence of the wave function ΦBO(r, R; t) is due to the parametric time-dependence
of the vibronic expansion coefficients ξk(R; t). If Eq. 3.3 is inserted into the TDSE

ih̄
∂

∂t
Φ(r, R, t) = HΦ(r, R, t), (3.4)

a coupled equation for the expansion coefficients ξk(R; t) in the different electronic states can
be derived. The neglection of the non-adiabatic coupling finally decouples this equation. This
approximation is called the Born-Oppenheimer approximation [26].

3.1.3 The dynamical classical limit

For the calculation of molecular optical properties the respective quantum formula have to be
translated into a mixed quantum-classical form. It is well known that this translation is not
unambiguous [55, 56]. The possible translation methods compete in both the conservation of
the system’s quantum properties and its numerical cost. The great advantage of the DCL is its
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easy application to full quantum formulas. The trace expression of the quantum formulas is
approximated as a multiple integral over initial vibrational coordinates weighted by the ther-
mal distribution [26]. Those vibrational coordinate trajectories can be computed with classical
force fields. In Sec. 3.6 it will be explained in detail how the DCL can be achieved for the linear
absorption full quantum formula.

3.1.4 Ehrenfest dynamics

After inserting the Born-Oppenheimer ansatz (Eq. 3.3 in Sec. 3.1.2) into the TDSE (Eq. 3.4) and
neglecting the non-adiabatic coupling, the TDSE for the electronic Hamiltonian Hel reads

ih̄
∂

∂t
Φ(r, R(t), t) = Hel(R(t))Φ(r, R(t), t). (3.5)

Both the Hamiltonian and the wave function depend parametrically on the nuclei positions
R(t). The electronic positions r are assumed to adapt instantaneously to the R(t). The wave
function depends on R(t) as well as on the electron coordinates r and is explicitly time-dependent.
R and r both define a set of coordinates, that means
R(t) = {R1(t), R2(t), R3(t), ...} and r = {r1, r2, r3, ...}. The equation of motion for the nuclei
reads

Mi
∂2

∂t2 Ri(t) = −∇i〈Φ(r, R(t))|Hel(R(t))|Φ(r, R(t))〉, (3.6)

where i is the index for the nuclei. The force experienced by the nuclei is dependent on the
actual electronic state. The trajectories Ri(t) may be computed utilizing MD simulations. The
right hand side of Eq. 3.6 represents a mean field with respect to the possible electronic states.
In honor of Paul Ehrenfest, who addressed the question how quantum mechanics affect the
Newton’s equations of motion [79], this approach is called Ehrenfest dynamics. One specific
form of Ehrenfest dynamics are Ehrenfest dynamics in the electronic ground state. If the re-
spective electronic ground state expectation value in 3.6 is approximated by non-bonded as
well as next neighbor interactions, a classical MD force field is derived.

3.1.5 Classical force fields

The great advantage of classical MD simulations is the possibility to simulate very large sys-
tems (up to a hundred thousands of atoms for several nanoseconds or even more with special
mainframe computers [80]). How to derive the equation of motion for the nuclei (Eq. 3.6) for a
classical force field in the electronic ground state, is nicely shown in [62]. The derivation within
this reference will shortly be summarized below.

One starts with the stationary Schrödinger equation for some set of coordinates R. The Born-
Oppenheimer approximation (cf. Sec. 3.1.2) to decouple the equations of motion has already
been made. The stationary electronic Schrödinger equation then reads

Hel(r; R)Φk(r; R) = EkΦk(r; R). (3.7)

Contrary to Eq. 3.5, the wave function in the stationary Schrödinger equation is not time-
dependent. The Ek are the eigenenergies of the stationary Schrödinger equation, the Φk(r; R)
are the respective eigenfunctions, which, like the electron Hamiltonian itself, depend paramet-
rically on the set of nuclear coordinates R.

The next approximation is made via restricting the total electronic wave function Φ to the
electronic ground state CC wave function φ0 for the Hamiltonian Hel(r; R). This ground state
classical path approximation will be further discussed in Sec. 3.1.6.

While restricting the total electronic wave function Φ to the electronic ground state φ0, it has
to be demanded that the nuclei move on a single potential energy surface U0(R(t)) of the form
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U0(R(t)) =
∫

drφ∗0 Helφ0 = E0(R(t)). (3.8)

The energy E0(R) that depends on the set of coordinates R can be calculated by solving the
time-independent Schrödinger equation

Hel(r; R)φ0(r; R(t)) = E0φ0(r; R(t)). (3.9)

Eq. 3.8 can be utilized to give the equations of motion

MiR̈i = −∇iU0(R(t)), (3.10)

i being the index counting the nuclei. Eq. 3.10 coincides with Eq. 3.6 in the electronic ground
state.
In the next step the ground state potential U0(R) depending on the actual coordinates R is
approximated. This approximation depends on the interaction between bonded atoms and
additionally on the electrostatic and van der Waals interaction between non-bonded atoms.
Thus, the potential may be written as

Ug(R(t)) ≈ Uapprox
g (R(t)) = ∑

2 neighbors
vij(Ri, Rj) + ∑

3 neighbors
vijk(Ri, Rj, Rk)

+ ∑
more neighbors

... + non-bonded interaction.
(3.11)

The first term sums over all interactions between two atoms that are covalently bound, the
second term sums over all three atoms that are directly connected and so on. The vij and vijk
are the respective energy coefficients. The non-bonded interaction is determined by Coulomb
and van der Waals interactions. For the most classical force fields, two atoms with a direct
connection within a molecule, which adds up to four bonds and more, are treated as non-
bonded. How the potential Uapprox

g (R(t)) is expressed in terms of bonds, angles and dihedrals
will be discussed in Sec. 4.1.2. Eq. 3.10 then reads

MiR̈i = −∇iU
approx
g (R(t)). (3.12)

The respective approximations that are made within the AMBER force field will be discussed
in Sec. 4.1.2.

3.1.6 The ground state classical path approximation

The force field contains the forces on each nucleus, and it depends on the actual electronic state
of the system. The main aim in this thesis is the calculation of EET and optical properties, like
for example pump-probe spectra. If a chromophore absorbs a photon, the new electronic state
affects the forces on the nuclei, Eq. 3.6. However, a classical MD simulation does not include
electronic state dependent changes to the force field.

In many systems the ground state classical path approximation can be made. This approx-
imation assumes that the change of the electronic state has only a weak effect on the motion
of the nuclei [64]. For the large systems discussed in this thesis this approximation has to be
made, since a force field for the excited electronic states is not available.

However, the ground state classical path approximation does not affect linear absorption
calculations (cf. Sec. 3.6), since a vertical absorption to the electronic first excited state PES can
be assumed. In this case, the nuclei motion on the PES of the first excited electronic state is
of no importance. A comparison by Shi and Geva [55] between the absorption line shape in
the DCL and the line shapes computed with other semiclassical approximations (cf. Sec. 3.1.1)
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3.2 The chromophore complex wave function

Figure 3.1: The singly excited P4. The bars at each chromophore represent the actual state of the chro-
mophore (electronic ground or first excited state). One chromophore is excited while the others are in
the electronic ground state. The figure is a graphical interpretation of Eq. 3.14.

confirmed the high quality of the DCL when linear absorption is computed.

3.2 The chromophore complex wave function

In the following section, the wave function for the PN complexes will be introduced. The in-
terchromophore electron exchange can be neglected. This is due to the fact that the averaged
distance between the chromophores is about 10 Å or larger. It has to be mentioned here that
there exist distances smaller than 10 Å. In those situations Dexter transfer [3] may become a
small correction to the Foerster-type EET, but is neglected. Thus, one can write the CC elec-
tronic wave function as the product of the single chromophore electronic ground state wave
functions

φ0(r; R) = ∏
m

ψmg(rm; Rm). (3.13)

The semicolon suggests the parametrical dependence on the nuclear coordinates. Accord-
ingly the singly excited CC states are written

φm(r; R) = ψme(rm; Rm) ∏
n 6=m

ψng(rn; Rn). (3.14)

The CC wave function, with chromophore m being in the first excited electronic state, is writ-
ten as the product of the single chromophore wave functions. The wave function of chro-
mophore m is the first excited electronic wave function, the wave functions of the other Pheos
are wave functions in the electronic ground state. A graphical interpretation of Eq. 3.14 is given
in Fig. 3.1. In the figure, one specific chromophore (the molecules are treated as two level sys-
tems) is in the electronic first excited state, while the others remain in the electronic ground
state.

For the calculation of nonlinear optical effects, such as nonlinear absorption in a pump-probe
scheme, the treatment of the second excited CC states is required. The excitation energy of the
first excited electronic state of Pheo ∆Eg→e is 1.86 eV. The energy ∆Ee→ f that is necessary to
excite Pheo from the first excited to the second excited electronic state is 0.44 eV. Thus, it is
not possible to excite a population from the first to the second excited electronic state with the
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same laser that may excite a population from the electronic ground to the first excited state
(with a frequency ωg→e = ∆Eg→e/h̄). There exists an excited state in the Soret band of Pheo at
2× 1.86 = 3.72eV. There is a possibility that such a higher excited state relaxes to the second
excited electronic state. However, in the model for the second excited CC states such excitations
are neglected. With this approximation, the second excited electronic state of the Pheo CC in
the molecular basis always contains two Pheos in the first excited electronic state and never a
Pheo in the second excited electronic state, chromophores m and n excited:

φmn(r; R) = ψme(rm; Rm)ψne(rn; Rn) ∏
p 6=m,n

ψpg(rp; Rp), (3.15)

with n > m. It is important to state that within a definition n 6= m, Eq. 3.14 would give
φmn(r; R) ≡ φnm(r; R). It is therefore important to introduce the condition n > m. In this way,
no additional CC wave function is introduced that is identical to another one. As for the first
excited electronic state, the product ansatz in Eq. 3.15 demands the Dexter-type energy transfer
to be neglected.

Higher excitations are of no relevance for the investigations carried out in this work. The
pump pulse energies in the performed calculations would result in populations of the third
excited state that are too low to give a significant effect (cf. Sec. 3.8). Eqs. 3.13, 3.14 and 3.15
give the CC wave function, when it is in its electronic ground state, when only chromophore
m is excited or when chromophores m and n are excited. In a system where optical transitions
are allowed and excited states higher than the second excited state are neglected, the total CC
wave function reads

Φ(t) = A0(t) | φ0〉+ ∑
m

Am(t) | φm〉+ ∑
m,n

Amn(t) | φmn〉 = ∑
α

Aα(t) | φα〉, (3.16)

again with n > m. For reasons of simplification one may summarize the A0(t), Am(t) and
Amn(t) as Aα(t). Note that the Aα(t) depend additionally on the nuclei coordinates R. This
dependence will not be explicitly denoted in the following text. The complex superposition
coefficients Aα(t) are normalized by

∑
α

|Aα(t)|2 = 1. (3.17)

The total CC wave function Φ(t) is defined by its components φ0, φm, and φmn. On the other
hand, one may define the CC wave functions Φa(t) with a ∈ {g, e, f } (compare with the Φk in
the stationary SE in Eq. 3.7). Now, Eq. 3.16 can be rewritten as

Φ(t) ≈ φ0(t) + φe(t) + φ f (t). (3.18)

3.2.1 Frenkel excitons

An exciton is a bound state of an electron and a hole. In solid state physics a Frenkel exciton
(as opposed to a Wannier-Mott exciton, [81]) is an exciton with a strong Coulomb coupling. In
the case of the Frenkel exciton, electron and hole are located on the same atom, but this atom
can be found everywhere in the crystal [81].

The expansion of the Frenkel exciton concept to chromophore complexes (CCs) is straightfor-
ward. The electron hole pair is located on the same molecule, but this molecule can be found
everywhere in the CC. Thus, the electron hole pair in semiconductor physics corresponds to
the S1 state of a chromophore (in this picture, the electron in the lowest unoccupied molecular
orbital is bound to the hole in the highest occupied molecular orbital). The S1 state indicates
the first excited electronic state (of Pheo). More precisely, the eigenstate of the singly excited
CC including N chromophores at the conformation R, is a superposition of the N possible first
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3.3 The CC Hamiltonian

Figure 3.2: As in Fig. 3.1 the singly excited P4 CC is shown. The excited state is drawn as a superposition
over the four possible singly excited Pheo states. The bars at each chromophore represent the population
of the electronic state of the chromophore, which is partly in the electronic ground and partly in the
electronic excited state. The figure is a graphical interpretation of Eq. 3.19.

excited CC states (where one particular chromophore is excited)

φe(R) = ∑
m

Am(R) | φm〉, (3.19)

with the expansion coefficients Am(R). Eq. 3.19 implies that the position of the excitation within
the CC is not defined. This is shown graphically in Fig. 3.2. Like in Fig. 3.1 the CC is in the first
excited electronic state, but the position of the excitation may be located everywhere in the CC,
being delocalized.

3.3 The CC Hamiltonian

The Hamiltonian of the system has to include all electrostatic interactions of the CC and the
surrounding solvent molecules, the vibrational potential energy, the kinetic energy, and the in-
teraction with the external electromagnetic field. From here on, the notation of former work
done by our group is utilized (cf. [39, 75, 82, 83, 84, 85]). For different Pheos the mutual chro-
mophore wave function overlapping and exchange effects can be neglected due to the compar-
atively large distances between the Pheos. This can be written as

〈ψma|ψnb〉 = δm,nδa,b, (3.20)

with ψma being the electronic wave function of chromophore m in state a, a ∈ {g, e}, with g
denoting the electronic ground state, e the electronic excited state. Electronic coordinates of
chromophore m will be abbreviated by rm, nuclear coordinates of chromophore m by Rm. The
total Hamiltonian of the CC is written

HCC(t) = Tnuc + VCC − µ̂E(t), (3.21)
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3 The mixed quantum-classical methodology

with the kinetic energy operator of all involved nuclear coordinates Tnuc = ∑m Tm, the dipole
operator µ̂ = ∑m µ̂m, the electric field strength E and the potential

VCC = ∑
m

Hel
m +

1
2 ∑

m,n
Vmn. (3.22)

Hel
m is the single chromophore electronic Hamiltonian of chromophore m, while the Vmn in-

clude all Coulomb interactions between chromophores m and n: the interaction between elec-
trons Vel-el

mn , the interaction between electrons and nuclei Vel-nuc
mn and Vnuc-el

mn and the interaction
between nuclei Vnuc-nuc

mn .

Till now, only the CC Hamiltonian and wave functions were discussed. In this thesis a CC in
ethanol solution is investigates. Thus, the Hamiltonian in Eq. 3.21 has to include contributions
due to the solvent molecules. Eq. 3.22 then reads

VCC = ∑
m

Hel
m + ∑

ξ

Hel
ξ +

1
2 ∑

m,n
Vmn +

1
2 ∑

ξ,ζ
Vξζ + ∑

m,ξ
Vmξ . (3.23)

The ξ and ζ count the solvent molecules. Eq. 3.23 covers all interactions of the CC and the
solvent. Since the Hamiltonian includes all solvent molecules, the CC wave functions in Eqs.
3.13,3.14,3.15 have to be multiplied by the solvent wave function ∏ξ ψξg(rξ ; Rξ). The solvent
molecules ξ remain in the electronic ground state.

Thus, the CC Hamiltonian HCC(t) is first separated into an explicitly time-dependent part
Hfield(t) and one part that only implicitly depends on the time via the coordinates R. HCC(t)
can then be approximated (higher excited electronic states than the second are neglected) [82]:

HCC(t) = HCC + Hfield(t)

≈ 〈φ0|HCC|φ0〉|φ0〉〈φ0|+ ∑
m,n
〈φm|HCC|φn〉|φm〉〈φn|

+ ∑
m,k

∑
n>m,l>k

〈φmn|HCC|φkl〉|φmn〉〈φkl |

+ ∑
m
(〈φm| − µ̂E(t)|φ0〉|φm〉〈φ0|+ H.c.)

+ ∑
m

∑
n>m

(〈φmn| − µ̂E(t)|φm〉|φmn〉〈φm|+ H.c.).

(3.24)

µ̂ is the dipole operator that can be written as

µ̂ = ∑
m

dm|φ0〉〈φm|+ ∑
m

∑
n>m

dn|φm〉〈φmn|+ ∑
m

∑
n<m

dn|φm〉〈φnm|+ H.c.. (3.25)

The CC part of the Hamiltonian can be rewritten as

HCC ≈ H0 + H1 + H2, (3.26)

with the electronic ground state Hamiltonian

H0 = 〈φ0|HCC|φ0〉|φ0〉〈φ0|. (3.27)

The part treating the first excited electronic states is written as

H1 = ∑
m,n
〈φm|HCC|φn〉|φm〉〈φn|, (3.28)
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3.3 The CC Hamiltonian

while the part of the Hamiltonian that treats the second excited states is given by

H2 = ∑
m,k

∑
n>m,l>k

〈φmn|HCC|φkl〉|φmn〉〈φkl |. (3.29)

To solve the TDSE for the expansion coefficients Aα (cf. Sec. 3.2), the matrix elements given
above have to be calculated. The matrix elements in H0, H1 and H2 contain all electrostatic
interactions between the chromophores, the dendrimer and the surrounding solvent molecules,
moreover the vibrational potential and kinetic energy, and will further be explained in Sec. 3.4.

3.3.1 Kinetic energy

Since the Hamiltonian HCC contains the operator of kinetic energy Tnuc, the Hamiltonians H0,
H1 and H2 (Eqs. 3.27, 3.28, 3.29) contain matrix elements of the kinetic energy Tnuc. This matrix
elements are of the form 〈φ0|Tnuc|φ0〉, 〈φm|Tnuc|φn〉 and 〈φmn|Tnuc|φkl〉 [83]. In the next step, the
operator of non-adiabatic coupling is defined as [26, 83]

Θ̂mab = 〈ψmg|Tm|ψmg〉+ ∑
i

1
Mi
〈ψma|Pi|ψmb〉Pi. (3.30)

Mi and Pi are the mass and momentum of the ith nucleus. The matrix element Θmaa is defined
as

Θmaa = 〈ψma|Θ̂maa|ψma〉. (3.31)

With the definition of the operator of non-adiabatic coupling, the matrix elements of the
kinetic energy given above can be rewritten as [83]

〈φ0|Tnuc|φ0〉 = ∑
m
(Tm + Θmgg), (3.32)

〈φm|Tnuc|φn〉 = δm,n

(
Tnuc + Θmee + ∑

m′ 6=m
Θm′gg)

)
, (3.33)

and

〈φmn|Tnuc|φkl〉 = δmkδnl

(
Tnuc + Θmee + Θnee + ∑

m′ 6=m,n
Θm′gg)

)
. (3.34)

In this thesis the operator of non-adiabatic coupling is neglected. It has to be stated that this is
an approximation. The motivation for this approximation is the assumption that the differential
operator (with respect to the nuclei coordinates) Pi acts only weakly on the state |ψmb〉 (which
only depends parametrically on the nuclei coordinates), in this case all matrix elements of the
operator of non-adiabatic coupling disappear.

3.3.2 Potential energy due to intramolecular vibration

The potential energy due to the molecular conformation can be computed in harmonic approx-
imation as [26]

Uvib
ma (Rm) = h̄ωa + ∑

µ,ν
κa

µν(Rmµ − Ra
mµ,0)(Rmν − Ra

mν,0). (3.35)

h̄ωa denotes the energy minimum of the respective PES. κa denotes the Hessian matrix, the
second derivative of the PES, in the electronic state a. Eq. 3.35 only holds for small devia-
tions Rmµ − Ra

mν,0. Rm is the actual conformation of the mth molecule, Ra
mµ,0 is the equilibrium

conformation of chromophore m in the electronic state a. Rmµ defines the µth coordinate of
chromophore m. It is important to understand that µ does not count the atom number i, but a
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3 The mixed quantum-classical methodology

coordinate. This may be for example the x-coordinate of atom number i.

3.3.3 Coulomb interaction

The matrix elements within H0, H1 and H2 (Eqs. 3.27, 3.28, 3.29) contain all electrostatic in-
teraction energies between the individual chromophores, the dendrimer and the surrounding
solvent molecules.

In general, the Coulomb interaction between two chromophores may be written as

Jmn(ab, cd) =
∫

drmdrnψ∗ma(rm)ψ
∗
nb(rn)Vmnψnc(rn)ψmd(rm). (3.36)

Vmn covers the complete Coulomb interaction between the chromophores m and n, and ψma is
the electronic wave function of chromophore m in the electronic state a.

The meaning brackets (ab, cd) in Eq. 3.36 can be explained as follows: if a = b and c = d,
this is the Coulomb interaction between two chromophores in the states a and c; if a 6= b, the
transition density of chromophore m while it changes its electronic state from a to b is denoted.
The interaction between transition densities will be utilized later to describe electronic state
transitions of the single chromophores via excitation energy transfer (cf. Sec. 3.3.3) within the
CC.

To compute the couplings Jmn(ab, cd), the electronic charge density

ζm
ab(x) = eNm

∫
drδ(x− rq)ψ

∗
ma(r)ψmb(r). (3.37)

is introduced. In the formula for ζm
ab, Nm is the number of electrons in chromophore m. In

Eq. 3.37, the treatment of the charge density instead of the linear combination of products
of wave functions decreases the actual phase space under consideration to the 3-dimensional
Cartesian space.

Fitting the electronic charge density to partial charges

The electronic charge density of the chromophores can be fitted to partial charges located on
the positions of the nuclei Ri, as shown in [32]. However, the notation of [83] will be used since
it is better aligned with the notation of the rest of this thesis. In order to simplify the formulas,
new W-potentials are introduced. For the electron-electron interaction one may write

Wel-el(x− x′) =
e2

4πε0

1
|x− x′| . (3.38)

The W-potential for the electron-nucleus coupling is written as

Wel-nuc
m (x) =

e2

4πε0
∑

i

Zi

|x− Ri|
. (3.39)

The index m means that the nuclei of chromophore m are considered. Zi is the atomic number
and Ri the position of atom i. According to the definitions given above the W-potential for the
nucleus-nucleus interaction is

Wnuc-nuc
mn (x) =

e2

4πε0
∑
i,j

ZiZj

|Ri − Rj|
. (3.40)
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3.3 The CC Hamiltonian

With the definition of the single electron density of chromophore m, ζm
ab(x) (Eq. 3.37), the gen-

eral interaction between two chromophores m and n can be written as

Jmn(ab, cd) =
∫

d3xd3x′ζm
ad(x)W

el-el(x− x′)ζm
bc(x

′)+

+ δcbe
∫

d3xζm
ad(x)W

el-nuc
n (x)

+ δade
∫

d3x′ζn
cb(x

′)Wel-nuc
m (x)

+ δadδcbe2Wnuc-nuc
mn .

(3.41)

The charge density of the chromophore m is defined as

nm
ab(x) = ζm

ab(x)− δa,b ∑
i∈m

eZiδ(x− Ri). (3.42)

It consists of the nuclei charge contribution (nucleus i contributes the charge eZi at position Ri)
and the contribution of the electronic charge density ζm

ab(x) (Eq. 3.37). Inserting Eq. 3.42 into
Eq. 3.41 results in

Jmn(ab, cd) =
1

4πε0

∫
dxdx′

nm
ad(x)n

n
bc(x

′)

|x− x′| . (3.43)

The interactions between charge densities in Eq. 3.43 can be fitted to respective partial charges
[32], as will be shown below.

Partial charges

Quantum-chemical computations may give the charge density nm
ab(x) of a system. However, the

knowledge of the charge density does not help to compute the Coulomb interaction between
two molecules for specific MD snapshots. The solution for this problem is the definition of a
set of partial charges {qmi(ab)}. The partial charge qmi(ab) is located at the position of atom i of
molecule m, Rmi. The qmi(ab) are chosen that way that the potential of the set of qmi(ab) equals
the potential of the charge density nm

ab(x). There exist different methods to derive the partial
charges from the charge density. The most common methods are explained and compared in
[86].

Interaction between Pheos in the electronic ground state

While treating the Coulomb interaction of chromophores in the electronic ground state, Eq. 3.36
can be rewritten as

Jmn(gg, gg) =
∫

drmdrnψ∗mg(rm)ψ
∗
ng(rn)Vmnψng(rn)ψmg(rm). (3.44)

The computation of the (electrostatic) coupling between chromophores and solvent molecules
can be done in a uniform manner. The respective interaction between the electronic ground
state charge densities is then given by

Jmn(gg, gg) =
1

4πε0

∫
dxdx′

nm
gg(x)nn

gg(x′)
|x− x′| . (3.45)

The interaction between partial charges reads

Jmn(gg, gg) =
1

4πε0
∑
i,j

qmi(gg)qnj(gg)
|Rmi − Rnj|

. (3.46)
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Interaction between Pheos in the excited states

According to Eq. 3.46, the interaction between two Pheos in the states a and c can be written as

Jmn(ac, ca) =
1

4πε0
∑
i,j

qmi(aa)qnj(cc)
|Rmi − Rnj|

, (3.47)

with a, c ∈ {g, e, f }, the electronic ground state g, the electronic first excited electronic state e,
and the second excited electronic state f . If both chromophores are in the electronic ground
state (a = g, c = g), Eq. 3.46 is reproduced.

Excitonic coupling

If Eq. 3.36 is translated to the interaction between two transition densities, it may be rewritten
as

Jmn(ac, ac) =
1

4πε0

∫
dxdx′

nm
ac(x)nn

ca(x′)
|x− x′| . (3.48)

Both transition densities are represented by the charge density nm
ab, since the interaction be-

tween those two transition densities leads to the de-excitation (excitation) of chromophore m
from the state a to the state c, while chromophore n is excited (de-excited) from the electronic
state c to the state a at the same time. In the current consideration, the charge density nm

ab is
identified with the charge density nm

eg. Only the excitonic coupling between the Pheos in the
electronic ground state and the Pheos in the first excited electronic state is taken into consider-
ation.

From the transition densities, the respective transition partial charges may be calculated [32],
and the excitonic coupling can be written as a sum of Coulomb interactions between those
transition partial charges:

Jmn(ac, ac) =
1

4πε0
∑
i,j

qmi(ac)qnj(ac)
|Rmi − Rnj|

. (3.49)

It has to be mentioned that (if the distance between both chromophores is large) this description
is equivalent with the description of the excitonic coupling via the dipole-dipole interaction
between transition dipole moments dm and dn. If the distance between the chromophores is
much shorter than 10 Å, the description given above is the much better, since no approximation
is included (cf. [75]). In terms of the transition partial charges, the transition dipole moment dm
may be written as

dm = ∑
i

qmi(ac)Rmi. (3.50)

For this thesis, the Pheo transition dipole moment (as well as the respective partial charges)
was normalized to the measured transition dipole moment of chlorophyll a (there exists no
measurement for Pheo). The π-electron system is the same for both molecules, only one chain
is longer for chlorophyll a. Thus, the assumption that the transition dipole moments of both
molecules are the same is reasonable. The value of the transition dipole moment is 4.6 D.

Coupling between covalently bound molecules

The electrostatic interaction is interpreted as an intermolecular interaction, for example the in-
teraction between chromophore m and chromophore n or the interaction between chromophore
m and the dendrimer. This picture is not completely correct, since the dendrimer structure is
covalently bound to each chromophore. Thus, the PN complex is one molecule. The Coulomb
interaction between each chromophore and the dendrimer contributes to the energy gap func-
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Figure 3.3: Left hand side: the energy gap for a single Pheo in vacuum. The respective electronic ground
state level and the first excited state level are drawn. Right hand side: P4 in explicit ethanol solution. It
is illustrated that the respective electronic ground and excited state energies are shifted towards lower
energies. The shift is not the same for each Pheo due to the different conformations of the respective
solvent shells.

tion. But a sum over all Coulomb interactions between all atoms i of Pheo m and all atoms j
of the dendrimer will assume a non-bonded Coulomb coupling between two atoms that are
actually covalently bound. This electrostatic Coulomb coupling between the two covalently
bound atoms will introduce an effective energy amount of about 5 meV. However, this energy
is nearly constant and does not contribute to the energy gap fluctuation, but only to the energy
shift. This energy shift can be corrected by the value given above. This, however, is not impor-
tant, since the peak position in absorption calculations (linear or nonlinear) has to be corrected
anyway (cf. Sec. 5.1.2).

3.4 Computation of the Hamiltonian matrix elements

The description of the CC Hamiltonian parts H0 and H1 will follow mainly [82]. The description
of the Hamiltonian part H2 is new, but adopts the notation of the two previous subsections for
H0 and H1 [82].

The electronic ground and excited state energies of a chromophore within a CC in solution
depend on the interactions of the chromophores with each other, with the dendrimer and with
the solvent. This is illustrated in Fig. 3.4.2. It shows the electronic ground and first excited state
for a single Pheo in vacuum and P4 in ethanol. The respective energy shifts due to solvent and
dendrimer coupling have to be treated by the respective Hamiltonians H0, H1 and H2.

3.4.1 Electronic ground state matrix element

Next, the part H0 of the CC Hamiltonian (cf. Eq. 3.27) will be defined. It can be rewritten as

H0 = H0|φ0〉〈φ0| (3.51)
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with

H0 = ∑
m

Hmg + ∑
ξ

Hξg +
1
2 ∑

m,n
Jmn(gg, gg) + ∑

m,ξ
Jmξ(gg, gg) +

1
2 ∑

ξ,ζ
Jξζ(gg, gg). (3.52)

Here the Hmg are the single Pheo Hamiltonians in the electronic ground state (they include
the Pheo PES and the kinetic energy operator Tm), the Hξg are the solvent molecule (ethanol)
Hamiltonians in the electronic ground state. The Jmn(gg, gg) describe the Coulomb coupling
between two Pheos m and n in the electronic ground state, the Jmξ(gg, gg) describe the Coulomb
interaction between Pheo m and solvent molecule ξ, both in the electronic ground state, and
the Jξ,ζ(gg, gg) treat the Coulomb interaction between the ground state solvent molecules ξ and
ζ. The notation (gg, gg), which simply means that both molecules are in the electronic ground
state, was explained in detail in Sec. 3.3.3.

3.4.2 First excited electronic state matrix elements

The H1 part of the Hamiltonian can be written as

H1 = ∑
m,n

(δm,nH0 +Hmn) |φm〉〈φn|. (3.53)

H0 was explained above and covers all molecules’ electronic ground state PESs and interac-
tions as well as the kinetic energy operators Tm. The diagonal part of H1 can be written as the
respective Hamiltonian of the system in the ground state plus an additional term Hmn. This
term may be written as

Hmn = δm,nHmeg + (1− δm,n)Jmn(eg, eg). (3.54)

The non-diagonal term Jmn(eg, eg) describes the excitonic coupling between the Pheo molecules.
The notation in the brackets (eg, eg) was explained in detail in Sec. 3.3.3. The diagonal part of
Hmn introduces the Hmeg (cf. Sec. 3.5). Hmeg introduces the change of vibrational energy and
Coulomb coupling energies due to the single excited chromophore m in comparison to the
ground state matrix elementH0. It reads

Hmeg = Hme − Hmg + ∑
n 6=m

[Jmn(eg, ge)− Jmn(gg, gg)]

+ ∑
ξ

[
Jmξ(eg, ge)− Jmξ(gg, gg)

]
.

(3.55)

This can be understood as follows: the term Hme − Hmg = Uvib
eg + ∆Eg→e describes the dif-

ference between the electronic first excited and the ground state for chromophore m. The ki-
netic energy operator Tm is included in Hme as well as Hmg and thus vanishes. The term de-
pends on the conformation of chromophore m. This intramolecular contribution to the energy
gap function Ueg(t), Uvib

eg (t), is intensively discussed in Sec. 3.3.2. The next term of Eq. 3.55,
∑n 6=m [Jmn(eg, ge)− Jmn(gg, gg)] gives the energy difference of the Pheo m Coulomb coupling
to the other Pheos n 6= m between the case when Pheo m is in the electronic excited state and
the case when it is in the electronic ground state. The term ∑ξ

[
Jmξ(eg, ge)− Jmξ(gg, gg)

]
= Usol

eg
gives the energy difference of the Pheo m Coulomb coupling to the solvent molecules ξ between
the case when Pheo m is in the electronic excited state and the case when it is in the electronic
ground state. This term summarizes the energy gap fluctuation due to solvent coupling Usol

eg
and is discussed in Sec. 4.3.1.

When solving the TDSE (Eq. 3.4) for the first excited electronic CC state, the CC state is
approximated as a superposition of product states (cf. Eqs. 3.19, 3.16) The Hamiltonian can be
treated as an N × N-matrix, when the PN complex is treated. The respective electronic ground
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and second excited state expansion coefficients are set to zero:

φe(t) = ∑
m

Am(t) | φm〉. (3.56)

This equation is in principle identical to Eq. 3.19. In Eq. 3.56 the explicit time-dependency of
the wave function is denoted. The respective TDSE is

ih̄
∂

∂t
φe(t) = H1φe(t). (3.57)

Inserting Eq. 3.56 into Eq. 3.57 and multiplying with 〈phim | and 〈phi0 | from the left, gives

ih̄
∂

∂t
Am(t) = ∑

n
(δm,nH0(t) +Hmn(t))An(t). (3.58)

Matrix elements of the form 〈phi0 | ∂/∂t | phi0〉, 〈phi0 | ∂/∂t | phim〉 and 〈phim | ∂/∂t | phin〉
are neglected [83]. This is reasonable if wave function overlap can be neglected and EET takes
place on a picosecond time scale. With the ansatz

Ãm(t) = Am(t)exp
((∫ t

0
dτ(H0(τ) + ∆Eg→e)

)
/h̄
)

(3.59)

Eq. 3.58 becomes

ih̄
∂

∂t
Ãm(t) = ∑

n
(Hmn(t)− δm,n∆Eg→e)Ãn(t). (3.60)

The solution of Eq. 3.60 has the advantage thatH0(t) has not to be included in the computation.
The populations calculated with Eq. 3.60 give the same result as the populations computed with
Eq. 3.58, since the phase factor vanishes when the population Pm(t) = |Am(t)|2 = |Ãm(t)|2 is
calculated.

3.4.3 Second excited electronic state matrix elements

As mentioned in Sec. 3.2 second excitations of a single chromophore are neglected in this thesis.
The Hamiltonian which acts upon the second excited states is written as

H2 = ∑
m,n,k,l

(δm,kδn,lH0 +Hmn,kl) |φmn〉〈φkl |. (3.61)

The second excited electronic states |φmn〉 were defined in Eq. 3.15. For the second excited
electronic CC wave function φmn(r; R) the condition n > m holds, which avoided the definition
of two CC wave functions φmn(r; R) and φnm(r; R) that would be identical (Sec. 3.2). In the
definition of H2, H0 (Eq. 3.52) is included. It contains all the molecular PESs and interactions
between molecules in the electronic ground state as well as the kinetic energy operators Tm.
The respective changes of conformational energy and interaction energy to the solvent, when
two chromophores of the CC are in the first excited state, are introduced by the matrix element

Hmn,kl = δm,kδn,lHmn f g + δm,k(1− δn,l)Jnl(eg, eg) + δn,l(1− δm,k)Jmk(eg, eg). (3.62)

The first term of the matrix element δm,kδn,lHmn f g introduces the changes of the PESs and molec-
ular interaction (including coupling to solvent, dendrimer and other Pheos) when two Pheos
are in the first excited instead of the electronic ground state (the delta-functions make sure that
this part only has an effect to the diagonal matrix elements). The last two terms of Eq. 3.62
treat the excitonic coupling between chromophores n and l as well as m and k. The Hmn f g are
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written as

Hmn f g = Hme − Hmg + Hne − Hng

+ ∑
k 6=m,n

[Jmk(eg, ge) + Jnk(eg, ge)− Jmk(gg, gg)− Jnk(gg, gg)]

+ Jmn(ee, ee)− Jmn(gg, gg)

+ ∑
ξ

[
Jmξ(eg, ge) + Jnξ(eg, ge)− Jmξ(gg, gg)− Jnξ(gg, gg)

]
.

(3.63)

The first part of Eq. 3.63, Hme − Hmg + Hne − Hng describes the change of (coordinate depen-
dent) energy for the two excited chromophores in comparison to the (coordinate dependent)
energy of the same chromophores in the electronic ground state. In the electronic ground state
matrix element H0 (Eq. 3.52) the term 1

2 ∑m,n Jmn(gg, gg) covers all the mutual Coulomb in-
teractions, while all chromophores are in the electronic ground state. Another term in H0,
1
2 ∑ξ,ζ Jξ,ζ(gg, gg) treats the Coulomb interaction of the chromophores in the electronic ground
state with the solvent molecules in the electronic ground state. Since two of the Pheos are in
the electronic excited state for that case, the change to the Coulomb interaction energy has to
be treated. The term ∑k 6=m,n [Jmk(eg, ge) + Jnk(eg, ge)− Jmk(gg, gg)− Jnk(gg, gg)] introduces the
change of the Coulomb coupling of the two excited chromophores with other chromophores k,
compared to the case when the two chromophores m and n are in the electronic ground state.
The term Jmn(ee, ee) − Jmn(gg, gg) treats the change of the Coulomb energy between the two
electronic excited Pheos.
Finally, the term ∑ξ

[
Jmξ(eg, ge) + Jnξ(eg, ge)− Jmξ(gg, gg)− Jnξ(gg, gg)

]
treats the change of

the Coulomb interaction energy due to the solvent coupling to the excited chromophores. The
CC wave function for the second excited electronic state can be written as

φ f (t) = ∑
m,n

Amn(t) | φmn〉, (3.64)

with n > m. This is a superposition over N(N − 1)/2 independent doubly excited CC wave
functions. The respective Hamiltonian matrixHmn,kl is a N(N − 1)/2× N(N − 1)/2 matrix.

3.5 Energy gap function

The calculation of the fluctuation of the energy gap function Ueg(t) is a very sensitive part
within a mixed quantum-classical calculation. Ueg(t) introduces the parametrical dependence
on the MD generated nuclei coordinates to the electronic Hamiltonian Hel. The energy gap
consists of the intramolecular vibrational part Uvib

eg (t) and the part due to solvent coupling
Usol

eg (t):
Ueg(t) = Uvib

eg (t) + Usol
eg (t). (3.65)

The two parts of the energy gap function have been introduced previously in Eq. 3.55 and are
presented separately now. The vibrational part of the energy gap function for chromophore m
is

Uvib
eg (t) = (Hme(t)− Hmg(t))− ∆Eg→e = ∑

m
(Ume(t)−Umg(t))− ∆Eg→e, (3.66)

with the transition energy between the electronic states ∆Eg→e. The difference between the
vibrational Hamiltonians is expressed by the difference of the respective potential energy sur-
faces. Utilizing Eq. 3.35 that gives the potential energy of chromophore m in the electronic state
a in harmonic approximation, the result for the energy gap function in harmonic approximation
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3.5 Energy gap function

is

Uvib
eg (t) = ∑

µ,ν

(
κe

µν(Rmµ(t)− Re
mµ(t))(Rmν(t)− Re

mν(t))

− κ
g
µν(Rmµ(t)− Rg

mµ(t))(Rmν(t)− Rg
mν(t))

)
.

(3.67)

Rg(t) and Re(t) are not fixed equilibrium conformations as the Rg
0 and Re

0 in Eq. 3.35, but they
are time-dependent reference trajectories. That means, they follow the translation, rotation and
low frequency bending modes of the molecule (cf. Sec. 4.4).

The energy gap function due to solvent coupling for chromophore m is written as

Usol
meg(t) = ∑

n 6=m
[Jmn(eg, ge)− Jmn(gg, gg)] + ∑

ξ

[
Jmξ(eg, ge)− Jmξ(gg, gg)

]
. (3.68)

A variety of methods for the calculation of the terms Uvib
eg (t) and Usol

eg (t) can be found in the
literature. All methods have the computation of solute and solvent conformations by MD sim-
ulation in common. These conformations are used to calculate the energy gap function due to
the solute-solvent coupling. In the most methods also the energy fluctuation due to intramolec-
ular vibration is calculated utilizing the trajectories. In some papers the intramolecular vibra-
tion is added via an additional broadening term including a respective broadening parameter
[75, 82, 87]. In the group of Kleinekathöfer, the intramolecular and the intermolecular part is
calculated using the ZINDO (Zerner’s intermediate neglect of differential overlap) method, a
semiempirical method which was originally parameterized for chromophores [27, 28, 29]. In
the group of Shi the vibrational broadening was included parametrically via the calculation
of the Huang-Rhys factors for the optimized structures with (TD)DFT [30]. In the group of
Aspuru-Guzik the vertical excitation was calculated utilizing TDDFT, on BLYP level with a
321G basis set [31]. The utilization of ZINDO and (TD)DFT computations to compute Ueg(t)
has the disadvantage that the electronic structure calculations have to be done for a lot of snap-
shots of the MD simulation. Thus, the computational cost of the respective methods is very
high. Another disadvantage is that there is a general problem to compute energy level values
for large molecular systems utilizing quantum-chemical methods [88].

There exist mainly two approaches for the calculation of the solvent coupling part Usol
eg (t) on

the gap function fluctuation Ueg(t). In the approaches of Kleinekathöfer’s and Aspuru-Guzik’s
group the chromophore wave function interacts with the solvent partial charges. The group of
Shi calculated the solvent coupling by the same approach. They also computed Usol

eg (t) via the
Coulomb coupling of partial charges. This is the same method that is utilized within this thesis
(cf. Sec. 3.3.3).

The linear absorption linewidth that will be discussed in Sec. 3.6 is strongly dependent on the
quality of the energy gap function Ueg(t). The line shape that was computed in the Shi group
had to be additionally broadened to get the experimental linewidth of bacteriochlorophyll a
(BChl a) and bacteriopheophytin (BPhe) [30]. The linewidth of B800 and B850 computed in
[28] was too narrow, as well. The linear absorption results of the Aspuru-Guzik for the FMO
(Fenna-Matthews-Olsen) light-harvesting complex appear to be somewhat more accurate [31].
Even though, the linewidths of the single sites do not match the experimental result perfectly.

It was stated by Renger and co-workers that the coupling between partial charges is influ-
enced by the dielectric medium ([35] and references therein), which may increase or decrease
the respective coupling. However, in average the coupling will be decreased. None of the
above-cited references, including our own publications about excitation energy transfer [39]
and pump-probe spectroscopy [85], treat this screening effect in conformational detail. In
[28, 29] the screening is included in terms of a constant screening factor Fscr. In Chap. 7 a
method will be introduced that is able to treat the screening between two chromophores m and
n in dependence on their distance and on their mutual atomic conformation. This method bases
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3 The mixed quantum-classical methodology

on the Poisson-TrEsp-method [34, 35]. Within this thesis, distance and conformation dependent
screening will be treated in Chap. 7.

The method that was utilized to compute the energy gap fluctuation Ueg(t) in this thesis will
be explained in Sec. 3.5.

3.6 Calculation of linear absorption

Utilizing the standard expression of the dipole-dipole correlation function the absorption cross-
section for a system consistent of N chromophores can be written as [82]

I(ω) = Re
∫ ∞

0
dteiωt

N

∑
m,n

trvib

{
R̂0〈φ0|eiH0t/h̄|φ0〉d0m〈φm|e−iH1t/h̄|φn〉dn0

}
. (3.69)

The formula was derived in [89] from the standard formulation of the absorption cross-section
for a single chromophore. As in Eq. 3.69, this can be written as the Fourier transform of the
chromophores dipole-dipole correlation function [82, 90, 91, 92, 93].

According to [82], Eq. 3.69 can be translated into its mixed quantum-classical form using the
DCL. Therefore Eq. 3.69 is rewritten as

I(ω) = Re
∫ ∞

0
dteiωt

N

∑
m,n

trvib

{
R̂0eiH0t/h̄d0m〈φm|e−iH1t/h̄|φn〉dn0

}
= Re

∫ ∞

0
dteiωt

N

∑
m,n

trvib

{
R̂0d(0)0m(t)e

iH0t/h̄〈φm|S1(t, 0)|φn〉dn0

}
.

(3.70)

The S-operator (scattering matrix) is defined as [82]

S1(t, 0) = T̂exp
(
− i

h̄

∫ t

0
dτ[H(0)

1 (τ)−H0Π1]

)
. (3.71)

The time-dependent quantities d(0)0m(t) and H(0)
1 (t) represent d0m and H1 in the interaction repre-

sentation [26]: H(0)
1 (t) = exp[iH0t/h̄]H1exp[−iH0t/h̄]. The same holds for the transition dipole

moment d(0)0m(t), for which the higher index (0) is dropped from here on. Π1 is the projection
operator to all first excited states of the CC (Π1 = ∑N

m |φm〉〈φm|).
Carrying out the DCL to Eq. 3.70 results in a replacement of the trace-expression over the

statistical operator R̂0 with an ensemble average over the initial conditions of the MD samples.
This ensemble average over the MD simulation initial conformations will be introduced as
〈...〉ther. Finally, one may replace the matrix element for the S-operator as [82]

Ãm(t; n) = 〈φm|S1(t, 0)|φn〉. (3.72)

This finally gives for the absorption cross section [82]

I(ω) = Re
∫ ∞

0
dteiωt ∑

m,n
〈d0m(t)Ãm(t; n)dn0〉ther. (3.73)

The index ’ther’ denotes the thermal averaging (due to the MD simulations). How to carry out
the calculation of 〈d0m(t)Ãm(t; n)dn0〉ther from the MD simulations will be explained in Sec. 4.5.
Within this thesis, for the transition dipole moments holds: d0m = dm0 = dm.

The PESs of the ethanol molecules do not have to be included since in the frequency region of
14500-15500 cm−1 for the Qy band and 17500-19000 cm−1 for the Qx band, ethanol only absorbs
weakly by high OH overtones [94].
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3.6 Calculation of linear absorption

In order to compute linear absorption curves that show the absorption intensity (as will be
utilized in Chap. 5), the absorption cross section in Eq. 3.73 has to be multiplied by the energy
of the respective photons. Thus, the intensity is proportional to ω × I(ω). This however, has
only a weak influence on the line shape of the Qy band.

3.6.1 Linear absorption of the Qx band

The Qx band of Pheo represents the second excited electronic state of Pheo. The computation
of the Qx band for a single Pheo in ethanol is the only calculation within this thesis, for which
the second excited state denotes the S2 state of a single Pheo. When chromophore complexes
are described, a second excited state always denotes a CC which includes two singly excited
Pheos (S1-state). The absorption cross section calculation for the Qy band in Eq. 3.73 can as
well be executed for the Qx band, if the second derivatives of the PES may be computed. The
Qx absorption may not be calculated for Pheo complexes within this thesis, since the transition
partial charges (or the transition dipole moments) are not available. In principle, those may
be calculated utilizing electronic structure calculations. However, the expansion coefficients
Ã f

1(t; 1) (index 1 indicates that only a single Pheo is simulated, f indicates the second excited
electronic state) have to be computed for a TDSE of the form

ih̄
∂

∂t
Ã f

1(t; 1) = (H1 f g − ∆Eg→ f )Ã f
1(t; 1). (3.74)

∆Eg→ f is the transition energy between the electronic ground and second excited state. H1 f g −
∆Eg→ f = U f g(t), according to Eq. 3.55, is the energy gap function for a single Pheo in its second
excited electronic state. This energy gap function can be written as

U f g(t) = Uvib
f g (t) + Usol

f g (t). (3.75)

The two parts of the energy gap function in the second excited electronic state are written as

Uvib
f g (t) = Hm f − Hmg − ∆Eg→ f , (3.76)

and

Usol
f g (t) = ∑

n 6=m
[Jmn( f g, g f )− Jmn(gg, gg)] + + ∑

ξ

[
Jmξ( f g, g f )− Jmξ(gg, gg)

]
. (3.77)

To compute the respective energies, the Hessian matrices and the partial charges in the second
excited electronic state are necessary. The Qx band absorption cross section in Eq. 3.73 includes
the transition dipole moments d f

m(t)d
f
n. Those are not known for the second excited electronic

state of Pheo. However, the electronic structure calculations provide the oscillator strengths
f osc
a of the first two excited electronic states a = g and a = f . Utilizing the oscillator strengths,

the product d f
1(t)d

f
1 can thus be written in terms of the dm(t)dn:

d f
1(t)d

f
1 =

f osc
f

f osc
e

d1(t)d1. (3.78)

Finally, Eq. 3.73 for the linear absorption cross section of the Qy band of a CC can be reformu-
lated to give the Qx band for a single Pheo:

I(ω) =
f osc

f

f osc
e

Re
∫ ∞

0
dteiωt〈d1(t)Ã f

1(t; 1)d1〉. (3.79)
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3 The mixed quantum-classical methodology

3.6.2 Vibrational progression

In a linear absorption curve of one respective electronic transition, several peaks may be ob-
servable. Those peaks are generally called vibrational satellites.

The explanation starts with the line shape function for a system that may be described by
independent harmonic oscillators. The absorption cross section (Sec. 3.6) is proportional to
the line shape function. The line shape function for the system that consists of independent
harmonic oscillators is written [26] as

D =
1

2πh̄

∫ ∞

−∞
dtei(ω−ωeg)t+G(t) (3.80)

with the transition frequency ωeg between the electronic ground and first excited state of the
chromophore and the time-dependent function

G(t) = ∑
ξ

(
ge(ξ)− gg(ξ)

)2
[
(e−iωξ t − 1)(1 + n(ωξ)) + (eiωξ t − 1)n(ωξ)

]
. (3.81)

(
ge(ξ)− gg(ξ)

)2 is the so-called Huang-Rhys factor [95], ξ counts the vibrational modes of the
system (the number of independent harmonic oscillators that couple to the electronic transi-
tion) and n(ωξ) is the Bose-Einstein distribution function.

According to [26], the line shape function for a single vibrational coordinate coupling to the
electronic transition between two shifted harmonic PESs can be rewritten by expanding the
exponential functions:

D =
1
h̄

e−∆g2(1+n(ωvib))
∞

∑
M,N=0

1
M!

[∆g2(1 + n(ωvib))]
M

× 1
N!

[∆g2n(ωvib)]
Nδ(ω−ωeg − (M− N)ωvib).

(3.82)

This equation can be reformulated as

D =
∞

∑
M,N=0

DMN , (3.83)

with

DMN =
1
h̄

e−∆g2(1+n(ωvib))
1

M!
[∆g2(1 + n(ωvib))]

M

× 1
N!

[∆g2n(ωvib)]
Nδ(ω−ωeg − (M− N)ωvib).

(3.84)

The singleDMN determine the different vibrational satellites. When a mixed quantum-classical
computation is carried out, the quantum character of the line shape function is not conserved
as a whole. Since the trajectories of the nuclear coordinates are calculated utilizing standard
MD simulations, the form of the line shape functionD changes. In what follows, the line shape
function will be calculated for a system with harmonic PESs, while a thermal distribution of
the normal modes is assumed. This assumption will result in the same vibrational progression
as the absorption line shape calculated from an MD simulation of the respective system would
show. The result of this ’classical’ calculation of the line shape function will be compared with
Eq. 3.82.

The starting point of the following computation is the mixed quantum-classical form of the
line shape function (cf. Eq. 3.73). For simplification, only one mode couples to the electronic
transition (the generalization to more modes is straightforward). The index ξ is dropped. The
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3.6 Calculation of linear absorption

line shape function has the form

Dcl =
1
Z Re

∫ ∞

0
dtei(ω−ωeg)t

∫ ∫
dxgdpgexp

− p2
g

2 + 1
2 ω2

vibx2
g

kT

 e−iη(t). (3.85)

The argument in the numerator is the total energy of the harmonic mode that couples to the
transition. The normalization function Z is written as

Z =
∫ ∫

dxgdpgexp

− p2
g

2 + 1
2 ω2

vibx2
g

kT

 =
2πkTh̄

ωvib
. (3.86)

The function

η(t) =
1
h̄

∫ t

0
dτ
[
Ue(x(τ))−Ug(x(τ))

]
(3.87)

is the time integral over the energy gap function Ueg(x(t)) = Ue(x(t)) − Ug(x(t)). The first
exponential function in Eq. 3.85 contains the Boltzmann averaging of the initial coordinates
and momenta with respect to the Hamilton function of a harmonic oscillator. The energy gap
function Ue(x(t))−Ug(x(t)) in harmonic approximation can be written as

Ue(x(t))−Ug(x(t)) =
1
2

ω2
vib(x2

e − x2
g) + 2x(t)(xg − xe), (3.88)

where xe and xg are the equilibrium positions of the coordinates for the respective electronic
state. The general solution of the oscillator equation x(τ) that has to be inserted into Eq. 3.88,
is

x(t) = xgcos(ωt) +
pg

ωvib
sin(ωt). (3.89)

As the integration over the time τ in Eq. 3.87 is done, η(t) gives

η(t) =
ω2

vib
2h̄

[
(x2

e − x2
g)t + 2(xg − xe)

(
xgsin(ωvibt)

ωvib
−

pg(cos(ωvibt)− 1)
ω2

vib

)]
. (3.90)

With this information about η(t), the integral (over the coordinate and momentum space) in
Eq. 3.85 may be calculated. The exponential function (cf. Eqs. 3.88, 3.89) contains one term
linear in x0 and one term linear in p0. The Boltzmann function in Eq. 3.85 contains one term
quadratic in x0 and one term quadratic in p0. After completing the square, the phase space
integration in Eq. 3.85 reduces to the calculation of Gaussian integrals and gives the line shape
function after thermal averaging. Like in [26], the variable ga was introduced as x2

a = ga
2h̄

ωvib
,

with a ∈ g, e. After expanding the cosine function, Dcl reads

Dcl =
1
h̄

e−∆g2 kT
h̄ωvib

∞

∑
M,N=0

1
M!

[
∆g2 kT

h̄ωvib

]M 1
N!

[
∆g2 kT

h̄ωvib

]N

× δ(ω−ωeg −ωvib(g2
e − g2

g)− (M− N)ωvib).

(3.91)

This equation can be rewritten (according to Eq. 3.83 for the full quantum line shape function)
to get

Dcl =
∞

∑
M,N=0

Dcl
MN , (3.92)
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with

Dcl
MN =

1
h̄

e−∆g2 kT
h̄ωvib

1
M!

[
∆g2 kT

h̄ωvib

]M 1
N!

[
∆g2 kT

h̄ωvib

]N

× δ(ω−ωeg −ωvib(g2
e − g2

g)− (M− N)ωvib).
(3.93)

TheDcl
MN give the different vibrational satellites for the classical computed line shape function.

The classically calculated line shape function is shifted by ωvib(g2
e − g2

g).
The linear absorption formula in the DCL (Eq. 3.73) depends on classical molecular dynam-

ics. The resulting vibrational progression will be a classical one. To correct this error a correc-
tion factor fMN can be computed and multiplied with the respective vibrational satellite. fMN
is defined as

fMN =
DMN

Dcl
MN

. (3.94)

Note that fMN = fMN(ωvib, T) depends on the vibrational frequency ωvib and the temperature
T. In Sec. 5.1.2 this correction will be utilized to compute the quantum amplitude for the first
vibrational satelliteD10. It has to be noted thatD01 (in comparison toD10, note the permutation
of the index) is very small (compare to theDMN in Eq. 3.83). This is due to the fact that the Bose-
Einstein distribution gives a very small value for T at room temperature. This correction factor
f10 gives quite satisfactory results when the computed linear absorption is compared to the
experimental curve (the results will be given in Sec. 5.1.2).

3.7 EET rates

In this section, the formulas for EET rates between Pheos within a PN complex will be derived
in the DCL. In the present discription, a dilute solution of PN complexes in ethanol is assumed.
Thus, EET between chromophores bound to different complexes may be neglected. If the den-
drimers are close to each other, this approximation does not hold. A respective description of
exciton states that belong to different complexes is given in [96]. However, for PN complexes
in ethanol, this approximation is reasonable.

The most important quantity for the calculation of the EET rate between two chromophores
is the excitonic coupling. The computation of the excitonic coupling evolved during the last
decade [32, 97, 98, 99, 100]. However, the utilization of quantum chemical methods overes-
timates the chromophore transition dipole moment [32] and thus the effect of the transition
partial charges that are fitted to the potential of the transition densitiy. The factor of overesti-
mation can be found by comparing computed and measured values of the vacuum transition
dipole moment. A large number of chromophore transition dipole moments was measured by
Knox and Spring [101].

The use of the dipole-dipole coupling for the computation of the EET rate results in a 1/X6
mn

dependence of the transition rate, with Xmn being the distance of the centers of molecules m and
n. This 1/X6

mn dependence is known from classical Förster theory [2]. More involved ansatzes
than the Förster theory are rather rare in present literature [102, 103, 104]. In this thesis, the EET
rate is given in second order of the excitonic coupling (like in Förster theory), but the excitonic
coupling itself is not assumed to be constant, but it varies with the conformational change of
the system.

The full quantum rate for the EET from molecule m to molecule n [32, 39, 105] is

km→n = 2Re
∫ ∞

0
dtCm→n(t). (3.95)
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3.7 EET rates

According to [39, 106] the correlation function Cm→n(t) can be written as

Cm→n(t) =
1
h̄2 trvib

{
R̂meiHmt/h̄ Jmne−iHnt/h̄ Jnm

}
. (3.96)

Comparing with the notation in Eq. 3.48, the excitonic coupling between chromophores m and
n may be written as Jmn = Jmn(ge, ge) = Jmn(eg, eg). For the strength of the excitonic cou-
pling between two chromophores m and n it is not important which of the chromophores is
initially excited. Hm and Hn are Hamiltonians for the singly excited CC, where the respective
chromophores m or n are excited (diagonal parts of the Hamilton matrix in Eq. 3.53):

Hm = H0 +Hmeg. (3.97)

If both chromophores m and n are sufficiently far away from each other, they do not share
any common vibrational modes [39]. Therefore, it is assumed that the molecules m and n
described by the Hamiltonians Hme and Hne are characterized by separate vibrational modes.
The Hamiltonians Hmg and Hme cover the intramolecular vibration and the coupling to the
solvent (cf. Eq. 3.55) for chromophore m (the indices g, e describe the actual electronic state
of chromophore m). The correlation function for a respective mutual orientation and distance
between two molecules m and n (with respective excitonic coupling Jmn) can be written as [39]

Cm→n(t) =
|Jmn|2

h̄2 Cme→g(t)Cng→e(t), (3.98)

where
Cme→g(t) = trvib

{
R̂meeiHmet/h̄e−iHmgt/h̄

}
(3.99)

describes the de-excitation of chromophore m and

Cng→e(t) = trvib

{
R̂ngeiHngt/h̄e−iHnet/h̄

}
(3.100)

describes the excitation of chromophore n. R̂me and R̂ng are the respective ground and excited
state statistical operators.

If the single-molecule correlation functions are Fourier-transformed, the rate between chro-
mophores m and n can be given in the standard form of Förster theory [39]:

km→n =
|Jmn|2

2πh̄2

∫
dωCme→g(−ω)Cng→e(ω). (3.101)

As argued in [39] the frequency integral corresponds to the spectral overlap of the emission
spectrum of chromophore m and the absorption spectrum of chromophore n.

3.7.1 Rate equations in the dynamical classical limit

The starting point for the translation of the correlation function to the DCL is Eq. 3.96. It may
be rewritten as [39]

Cm→n(t) = trvib

{
R̂m J(m)

mn (t)eiHmt/h̄e−iHnt/h̄ Jnm

}
. (3.102)

This is possible with the definition of [39] (cf. Sec. 3.6)

J(m)
mn (t) = eiHmt/h̄ Jmne−iHmt/h̄. (3.103)
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In order to carry out the dynamical classical limit, the product of time-evolution operators in
Eq. 3.102 is replaced by the S-operator [26, 39]. The S-operator can be written as [39]

S(t, 0) = eiHmt/h̄e−iHnt/h̄ = T̂exp
(
− i

h̄

∫ t

0
dτeiHmτ/h̄[Hn − Hm]e−iHmτ/h̄

)
. (3.104)

The S-operator S(t, 0) is related to the S-operator S1(t, 0) in Eq. 3.71, utilized for the computa-
tion of linear absorption in Sec. 3.6. While S(t, 0) is the propagator for a transition between two
CC states | φm〉 and | φn〉, S1(t, 0) is the propagator for a transition between electronic ground
state | φ0〉 and electronic first excited state | φe〉 (Eq. 3.56). Then the correlation function reads
[39]

Cm→n(t) = trvib

{
R̂m J(m)

mn S(t, 0)Jnm

}
. (3.105)

The dynamical classical limit is done by approximating the S-operator (Eq. 3.104) as [39]

S(t, 0) = exp [−iηn(t, 0) + iηm(t, 0)] , (3.106)

with
ηm(t, 0) =

1
h̄

∫ ∞

0
dτHmeg(Rm(τ)) (3.107)

and
ηn(t, 0) =

1
h̄

∫ ∞

0
dτHneg(Rn(τ)). (3.108)

The Hmeg were defined in Eq. 3.55. The indices m or n at a set R of classical nuclear coordi-
nates indicate that the respective chromophore m or n is excited. This has to be treated by the
respective force field that is utilized to get the particular coordinate set. Finally, the utilization
of the ground state classical path approximation (cf. Sec. 3.1.6) makes it possible to drop the
requirement of using excited state force fields.

In order to obtain the semiclassical equation for the transition rate from Eq. 3.95 together with
Eq. 3.106, one has to approximate the trace together with the equilibrium statistical operator.
This trace is replaced by the thermal average with respect to different initial conformations of
the CC during the MD simulation (cf. Sec. 4.1.6). This thermal average will be denoted by the
angle bracket 〈...〉ther. The Jmn(t) are the time-dependent couplings between chromophores m
and n during the simulation. The result for the transition rate in the DCL is [39]

kDCL
m→n = 2Re

∫ ∞

0
dtCDCL

m→n(t), (3.109)

with
CDCL

m→n(t) =
1
h̄2

〈
SDCL(t, 0)J(m)

mn (t)Jmn(0)
〉

ther
. (3.110)

This equation automatically gives kDCL
m→n = kDCL

n→m. Detailed balance is not fulfilled. This is only
an acceptable approximation if the energy levels of all involved chromophores do not differ too
much. The CCs observed here contain identical molecules which can be assumed to have the
same energy. Of course, there is some slight energy difference, since all chromophores couple
somewhat differently to their solvation shell. However, this energy difference is negligible
compared to kbT at room temperature (T being the temperature, kb the Boltzmann constant).
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3.8 Calculation of transient absorption

3.7.2 Further approximations to the transfer rates

If the Jmn(t) is assumed to be time-independent, the rate km→n can be calculated in approxima-
tion by utilizing the correlation function [39]

Capp.1
m→n(t) =

|Jmn|2

h̄2 〈SDCL(t, 0)〉ther . (3.111)

The respective rate calculated with this approximation will be denoted as kapp.1
m→n. The approx-

imation is possible if the mutual orientation and distance between two chromophores m and
n does not change dramatically during the simulation time. Since the CC structure does not
change too much for a simulation time of 10 ps, the restriction to such short time scales permits
this approximation.
A further approximation is possible if the energy gap fluctuations of both chromophores m and
n are uncorrelated. 〈SDCL(t, 0)〉 may be factorized into two independent contributions. The
respective rate using this second approximation (which will be denoted as kapp.2

m→n) is calculated
via integrating the correlation function Capp.2

m→n [39]:

Capp.2
m→n(t) =

|Jmn|2

h̄2

〈
eiηm(t,0)

〉 〈
e−iηn(t,0)

〉
ther

. (3.112)

Obviously, the rate kapp.2
m→n corresponds to the EET rate given in Eq. 3.101.

3.8 Calculation of transient absorption

In the following section, the formula for the computation of the transient absorption will be
derived. A widespread approach is calculating the third order optical response via the respec-
tive nonlinear response function (cf. [107, 108, 109]). Two dimensional spectra calculated via
nonlinear response functions are shown in [110, 111].

To circumvent the computation of a function with a triple time-dependence [85] in this thesis,
the transient absorption is calculated by solving the TDSE directly, including the electromag-
netic field. With this approach the time-dependent polarization can be calculated directly. This
polarization can then be utilized to calculate an absorption spectrum of a probe pulse, after an
initial pump pulse has excited the system. The approach of directly calculating the total polar-
ization has already been presented by the Geva group in [112] (for a two-level chromophore in
a mono-atomic liquid). However, the P4 system in solution that will be the model system for
transient absorption in this thesis is a much more complex system.

It is important to remind that the previously defined second excited state wave function of
the CC always reckons two chromophores of the CC in the first excited electronic state. The
double excitation of one chromophore in the complex is not allowed (additional comments
have been made in Sec. 3.2).

In the current model the excitation of the CC from the electronic ground state to the first
excited electronic state and the excitation from the first excited electronic state of the CC to
the second excited electronic state of the CC is treated. An excitation of more than two Pheos
within the complex is neglected. This approximation is reasonable, since for the utilized field
strengths the total population of the second excited state of the CC is much smaller than the
population of the first excited state. The population of a third excited electronic state of the CC,
even if it was allowed, would be very small.

The respective TDSE is written

−ih̄
∂

∂t
Φ(t) = (H0 + H1 + H2 + Hfield(t))Φ(t). (3.113)
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3 The mixed quantum-classical methodology

The CC wave function Φ(t) was defined in Eq. 3.2 and includes the electronic ground, first
excited and second excited state. The respective matrix elements H0, H1 and H2 were explained
in Sec. 3.3. The electromagnetic field Hamiltonian Hfield was already included in Eq. 3.24, but
is given here again to improve the understandability of the following text:

Hfield(t) = −∑
m
(〈φm|µ̂E(t)|φ0〉|φm〉〈φ0|+ H.c.)

−∑
m

∑
n>m

(〈φmn|µ̂E(t)|φm〉|φmn〉〈φm|+ H.c.).
(3.114)

The dipole operator µ̂ was defined in Eq. 3.25. For P4, the CC wave function Φ(t) is a superpo-
sition over eleven states, one ground state, four different first excited and six different second
excited electronic states. Together with the definitions of H0, H1 and H2 (Eqs. 3.27, 3.28, 3.29)
and the CC wave function Φ(t) (Eq. 3.2), the TDSE in Eq. 3.113 can be rewritten in terms of the
expansion coefficients Aα. This gives the three equations

−ih̄
∂

∂t
A0(t) = H0(t)A0(t)−∑

m
d∗m(t)E(t)Am(t), (3.115)

−ih̄
∂

∂t
Am(t) = ∑

k
Hmk(t)Ak(t)− dm(t)E(t)A0(t)

− ∑
n>m

d∗n(t)E(t)Amn(t)− ∑
m>n

d∗n(t)E(t)Anm(t),
(3.116)

and

−ih̄
∂

∂t
Amn(t) = ∑

k,l
Hmn,kl(t)Akl(t)

− ∑
n>m

dn(t)E(t)Am(t)− ∑
n>m

dm(t)E(t)An(t).
(3.117)

The definition of the Amn(t) in Sec. 3.2 demands that n > m, to avoid two definitions Amn(t)
and Anm(t) of the same expansion coefficient.

Similar to Eq. 3.59, an ansatz to the expansion coefficients was made that eliminates the phase
factor caused by the transition energy ∆Eg→e, the electronic ground state interactions as well
as the kinetic energy operators Tm, all included in H0. The ansatz is different for the electronic
ground, first and second excited state expansion coefficient:

Ã0 = A0exp
(

i
∫ t

0
dτH0(τ)/h̄

)
, (3.118)

Ãm = Amexp
(

i
[∫ t

0
dτ
(
H0(τ) + ∆Eg→et

)]
/h̄
)

, (3.119)

and

Ãmn = Amnexp
(

i
[∫ t

0
dτ
(
H0(τ) + 2∆Eg→et

)]
/h̄
)

. (3.120)

Inserting Eqs. 3.118 and 3.119 into Eq. 3.115 gives

ih̄
∂

∂t
Ã0(t) = ∑

n
(H0(t))Ã0(t)−∑

m
d∗m(t)E(t)Ãm(t)e−i∆Eg→et/h̄. (3.121)
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3.8 Calculation of transient absorption

Inserting Eqs. 3.118, 3.119 and 3.120 into Eq. 3.116 yields

ih̄
∂

∂t
Ãm(t) = ∑

n
(Hmn(t)− δm,n∆Eg→e)Ãn(t)− dm(t)E(t)ei∆Eg→et/h̄ Ã0(t)

− ∑
n>m

d∗n(t)E(t)e
−i∆Eg→et/h̄ Ãmn(t)− ∑

m>n
d∗n(t)E(t)e

−i∆Eg→et/h̄ Ãnm(t).
(3.122)

Inserting Eqs. 3.119 and 3.120 into Eq. 3.117 gives

−ih̄
∂

∂t
Ãmn(t) = ∑

k,l
(Hmn,kl(t)− 2δm,kδn,l∆Eg→e)Ãkl(t)

− ∑
m<n

d∗n(t)E(t)e
i∆Eg→et/h̄ Ãm(t)− ∑

n>m
d∗m(t)E(t)e

i∆Eg→et/h̄ Ãn(t).
(3.123)

The electromagnetic field E(t), which is already included in the formulas given above, is
written as

E(t) = Epu(t)eiΨpu + Epr(t)eiΨpr + c.c., (3.124)

with
E p(t) = epEp(t)e−iωpt, p ∈ {pu,pr}, (3.125)

with the pump and probe beam frequencies ωpu, ωpr, the respective phases Ψpu, Ψpr, with
the polarization vectors of the pump and the probe beam epu and epr and the respective field
envelopes Epu and Epr. The formulas for the electromagnetic field (Eqs. 3.124 and 3.125) are
inserted into the Eqs. 3.121, 3.122 ,3.123 for the expansion coefficients Ãα(t). At this point the
so-called rotating wave approximation [113] is applied. All terms that include an exponential
function of the form exp(2iωpt) or exp(−2iωpt) (those terms oscillating with high frequency)
are neglected [114].

3.8.1 Time-dependent polarization

After solving Eq. 3.113, the calculated time-dependent wave function Φ(t) can be utilized to
calculate the time-dependent dipole moment expectation value defined as [85]

d(t, E) = 〈〈Φ(R(t), t, E)|µ̂|Φ(R(t), t, E)〉〉ther = 〈〈Φ(t)|µ̂|Φ(t)〉〉ther . (3.126)

The t- and E-dependence in Φ(t) = Φ(R(t), t, E) denotes that the calculated expansion coeffi-
cients Ãα(τ) (cf. Eq. 3.2 for the CC wave function) at time t = τ depend directly on the actual
MD trajectory and the field envelope between t = 0 and t = τ. The thermal average 〈...〉ther is
carried out with respect to the equilibrium distribution of nuclear coordinates. In terms of the
expansion coefficients Ãα(t), the dipole moment expectation value reads [85]

d(t, E) = 〈∑
α,β

dαβ Ã∗α(t, E)Ãβ(t, E)〉ther. (3.127)

The polarization (dipole density) is then calculated as

P(t, E) = nCCd(t, E), (3.128)

with the CC density nCC. However, to calculate transient absorption spectra, the probe pulse
polarization in signal direction has to be derived from the overall polarization d(t, E). In the
next step, two different methods will be presented, which allow to carry out this calculation.
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3 The mixed quantum-classical methodology

3.8.2 Signal polarization, method I

Dohmke and co-workers proposed a method [113] that will be mainly utilized within this the-
sis. According to the two beams in Eq. 3.124, a power expansion with respect to the polarization
at some point r is carried out. This power expansion can be written as [113, 115]

P(r, t) = ∑
m,n

ei(mkpur+nkprr)P(mn)(t). (3.129)

Here, for once, m and n do not count chromophores, they run over all integers and the P(mn)(t)
are the polarization amplitudes of the different spectroscopic signals in the direction mkpu +
nkpr. If the phases Ψp are defined as Ψp = kpr, with p ∈ {pu,pr}, Eq. 3.129 can be interpreted
as a Fourier transform [115, 116]:

P(t; Ψpu, Ψpr) = ∑
m,n

ei(mΨpu+nΨpr)P(mn)(t). (3.130)

Such an interpretation would yield the following conclusion: if P(t; Ψpu, Ψpr) is known for the
whole Ψpu,Ψpr configuration space, the respective inverse Fourier transform would generate
all amplitudes P(mn) [115]. In practice, it is only possible to compute P(t; Ψpu, Ψpr) for a finite

set of phases
(

Ψl
pu, Ψl′

pr

)
. If N different values P(t; Ψl

pu, Ψl′
pr) are calculated for N different

combinations of
(

Ψl
pu, Ψl′

pr

)
, N different values of the polarization amplitudes P(mn) may be

calculated via the following equation [115]:

P(t; Ψl
pu, Ψl′

pr) = ∑
[m,n]

ei(mΨl
pu+nΨl′

pr)P(mn)(t). (3.131)

[m, n] indicates a finite sum over m and n, according to the N different pairs of
(

Ψl
pu, Ψl′

pr

)
.

It was shown in [113] that (if the rotating wave approximation is used) only a signal into the
direction mkpu + (1−m)kpr appears. If higher order terms (m, n > 2) are neglected, Eq. 3.131
can be rewritten as [115]

P(t; Ψl
pu, Ψl′

pr) = eiΨl
pu P(10)(t) + eiΨl′

pr P(01)(t)

+ ei(2Ψl
pu−1Ψl′

pr)P(2−1)(t) + ei(−Ψl
pu+2Ψl′

pr)P(−1+2)(t).
(3.132)

P(10) is the polarization due to the pump pulse, P(01) is the polarization due to the probe pulse
and the P(2−1) and P(−1+2) represent combined contributions in the directions 2kpu − kpr as

well as −kpu + 2kpr. If for the pairs
(

Ψl
pu, Ψl′

pr

)
the values (0, 0), (π/2, 0), (π, 0), (3π/2, 0)

are chosen, the following result can be derived for the polarization in probe pulse direction
[113, 115]:

P(01) =
1
4
(P(t; 0, 0) + P(t; π/2, 0) + P(t; π, 0) + P(t; 3π/2, 0)) . (3.133)

If the additional approximation that both pulses are not overlapping in time can be made,
Eq. 3.133 can further be simplified. In this case only two contributions have to be calculated
[113]. However, in this work always Eq. 3.133 will be utilized. This rendered it possible to cal-
culate the polarization in probe pulse direction for overlapping as well as for non-overlapping
pulses.
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3.8 Calculation of transient absorption

3.8.3 Signal polarization, method II

Another very intuitive approach for the calculation of the signal polarization was suggested by
Pullerits and co-workers in [117, 118]. It is assumed that a lot off CCs are distributed in space,
each numbered by the index j. The polarization in probe pulse direction kpr is then calculated
via

P(kpr, t) = ∑
j

eikprrj P(rj, t; E(rj, t)). (3.134)

At first, the local polarization at a lot of points rj is calculated. Of course, at each point rj the
local electromagnetic field E(rj, t) has a different phase. The summation over all the different
local polarizations with the local phase prefactors eikprrj gives the polarization in probe pulse di-
rection. However, since the eikprrj depend very sensitively on rj and fluctuate between negative
and positive values, the convergence of this method is extremely bad. Millions of local polar-
izations have to be taken into account to achieve a convergence of the formula (cf. Sec. 5.2.3).

3.8.4 Differential transient absorption

The frequency dependent transient absorption after the delay time tdelay can be written as [85,
113]

∆S(ω, tdelay) = 2ωIm
[
E∗pr(ω)∆P(kpr, ω)

]
, (3.135)

with the frequency ω, the Fourier transformed electromagnetic field

Epr(ω) =
∫ ∞

−∞
dteiωtEpr(t), (3.136)

and the Fourier transformed differential polarization in probe pulse direction

∆P(kpr, ω) =
∫ ∞

−∞
dteiωt∆P(kpr, t). (3.137)

The differential polarization in probe pulse direction can be written as

∆P(kpr, t) = P(kpr, t; Epu 6= 0)− P(kpr, t; Epu = 0). (3.138)

The differential polarization is simply the polarization of the system when a pump pulse was
present, minus the polarization of the system, when the pump pulse was absent.

It should be mentioned here that Eq. 3.135 follows directly (via Fourier transform) from the
formula for the total energy that is dissipated or gained by the probe pulse in a medium [85,
113]:

S =
∫ ∞

−∞
dtĖ∗pr(t)P(kpr, t). (3.139)

3.8.5 Transient anisotropy

In the last section, the differential transient absorption ∆S(ω, tdelay) (Eq. 3.135) was introduced.
Next, it will be distinguished between the case when pump and prope pulse polarization are
parallel (epu ‖ epr) and the case when they are orthogonal (epu ⊥ epr). The respective differen-
tial transient absorptions are noted ∆S‖ and ∆S⊥. From ∆S‖ and ∆S⊥ the transient anisotropy
r can be calculated. The computation of r gives a quantity that may be compared directly to
experimental measurements. It is written as (cf. [9])

r =
∆S‖ − ∆S⊥

∆S‖ + 2∆S⊥
. (3.140)
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3 The mixed quantum-classical methodology

3.9 Analytical calculation of the transient anisotropy

In this section, the transient anisotropy will be calculated analytically. In order to shorten the
formulas, the projection operators for the different electronic states are introduced. The projec-
tion operator for the electronic ground state reads

Π0 =| φ0〉〈φ0 | . (3.141)

The projection operator for the first excited electronic states of the CC is

Π1 = ∑
m
| φm〉〈φm |, (3.142)

while the projection operator for the second excited electronic states can be written as

Π2 = ∑
n>m
| φmn〉〈φmn | . (3.143)

It is also useful to have the following definitions of H0, H1 and H2 (Eqs. 3.27, 3.28 , 3.29):

H0 = H0Π0, (3.144)

H1 = H1Π1, (3.145)

and
H2 = H2Π2. (3.146)

The first equation, Eq. 3.144, corresponds to Eq. 3.51.

3.9.1 The density operator after pump pulse excitation

For the subsequent computation of the transient absorption line shape, the density operator
after pump pulse excitation has to be computed. Due to the relatively short pump pulse time
of 12 fs full width half maximum (FWHM) and the pump pulse field strength of 2.5×108 V/m,
only the first excited electronic state of the CC will be populated significantly (about 10 percent
of the P4 molecules are singly excited after the pump pulse, the population of the second excited
electronic CC state is almost two orders of magnitude lower). In approximation, the excitation
of the second excited CC state by the pump pulse can be neglected. The respective Hamiltonian
is written as

Heg
CC(t) = H0Π0 +H1Π1 − E(t)µ̂. (3.147)

The higher index ge indicates that only the electronic ground and first excited state are treated.
The electromagnetic field was defined in Eq. 3.124, the dipole operator µ̂ in 3.25. With the
projection operators Π0 and Π1 and the restriction to the electronic ground and first excited
state, µ̂ may be approximated as

µ̂eg = Π0µ̂Π1 + Π1µ̂Π0 = µ̂
eg
01 + µ̂

eg
10. (3.148)

The equation of motion for the density operator Ŵ(t) may be written as [26]

ih̄
∂

∂t
Ŵ(t) = Heg

CC(t)Ŵ(t)− Ŵ(t)Heg
CC(t). (3.149)
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3.9 Analytical calculation of the transient anisotropy

Since only the electronic ground state and the first excited state are considered, the statistical
operator may be written as sum over matrix elements Ŵuv, with

Ŵuv(t) = ΠuŴ(t)Πv, (3.150)

and u, v ∈ 0, 1. Inserting this definition of the statistical operator into the equation of motion
(Eq. 3.149) gives the four coupled equations

ih̄
∂

∂t
Ŵ00(t) = H0Ŵ00(t)− E(t)µ̂eg

01Ŵ10(t)− Ŵ00(t)H0 + E(t)Ŵ01(t)µ̂
eg
10, (3.151)

ih̄
∂

∂t
Ŵ10(t) = H1Ŵ10(t)− E(t)µ̂eg

10Ŵ00(t)− Ŵ10(t)H0 + E(t)Ŵ11(t)µ̂
eg
10, (3.152)

ih̄
∂

∂t
Ŵ01(t) = H0Ŵ01(t)− E(t)µ̂eg

01Ŵ11(t)− Ŵ01(t)H1 + E(t)Ŵ00(t)µ̂
eg
01, (3.153)

and
ih̄

∂

∂t
Ŵ11(t) = H1Ŵ11(t)− E(t)µ̂eg

10Ŵ01(t)− Ŵ11(t)H1 + E(t)Ŵ10(t)µ̂
eg
01. (3.154)

The integration of these four equations, with the definition
Uu(t− t0) = exp(−itHu/h̄) and the initial condition Ŵuv(t0) = δu,0δv,0), gives

Ŵ00(t) = U0(t− t0)Ŵ00(t0)U+
0 (t− t0)

+
i
h̄

∫ t

t0

dτE(τ)U0(t− τ)
(
µ̂

eg
01Ŵ10(τ)− Ŵ01(τ)µ̂

eg
10

)
U+

0 (t− τ),
(3.155)

Ŵ10(t) =
i
h̄

∫ t

t0

dτE(τ)U1(t− τ)
(
µ̂

eg
10Ŵ00(τ)− Ŵ11(τ)µ̂

eg
10

)
U+

0 (t− τ), (3.156)

Ŵ01(t) =
i
h̄

∫ t

t0

dτE(τ)U0(t− τ)
(
µ̂

eg
01Ŵ11(τ)− Ŵ00(τ)µ̂

eg
01

)
U+

1 (t− τ), (3.157)

and

Ŵ11(t) =
i
h̄

∫ t

t0

dτE(τ)U1(t− τ)
(
µ̂

eg
10Ŵ01(τ)− Ŵ10(τ)µ̂

eg
01

)
U+

1 (t− τ). (3.158)

For short times t the matrix elements of the statistical operator Ŵ(t) can be computed up to the
second order in the field strength E(t). This is due to the initial condition Ŵuv(t0) = δu,0δv,0.
The non-diagonal matrix elements are thus proportional to E(t). Eqs. 3.156, 3.157 can be ap-
proximated as

Ŵ10(t) ≈
i
h̄

∫ t

t0

dτU1(t− τ)
[
E(τ)µ̂eg

10

]
Ŵ00(τ)U+

0 (t− τ) (3.159)

and

Ŵ01(t) ≈
i
h̄

∫ t

t0

dτU0(t− τ)Ŵ00(τ)
[
E(τ)µ̂eg

01

]
U+

1 (t− τ). (3.160)

The diagonal matrix elements Ŵ00(t) and Ŵ11(t) are thus quadratic in the field strength (cf. Eqs. 3.155,
3.158). Inserting Eqs. 3.159, 3.160 for the non-diagonal elements into Eqs. 3.155, 3.158 results in

Ŵ00(t) ≈ 1− 1
h̄2 ∑

k,l

[
epud∗k

] [
epudl

] ∫ t

t0

dτ1

∫ τ1

t0

dτ2E(τ1)E(τ2)

×
[
〈φk|U1(τ1 − τ2)|φl〉U+

0 (τ1 − τ2) + U0(τ1 − τ2)〈φk|U+
1 (τ1 − τ2)|φl〉

] (3.161)
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and

Ŵ11(t) ≈
1
h̄2 ∑

k,l

[
epudk

] [
epud∗l

] ∫ t

t0

dτ1

∫ τ1

t0

dτ2E(τ1)E(τ2)U1(t− τ1)

×
(
|φk〉U0(τ1 − τ2)〈φl |U+

1 (τ1 − τ2) + U1(τ1 − τ2)|φk〉U+
0 (τ1 − τ2)〈φl |

)
×U+

1 (t− τ1)

= ∑
m,n

Wmn(t)|φm〉〈φn|.

(3.162)

The submatrix Wmn(t) that replaces the statistical operator matrix element for the first excited
electronic state Ŵ11(t) is written as

Wmn(t) =
1
h̄2 ∑

k,l

[
epudk

] [
epud∗l

] ∫ t

t0

dτ1

∫ τ1

t0

dτ2E(τ1)E(τ2)

× [〈φm|U1(t− τ1)|φk〉U0(τ1 − τ2)〈φl |U+
1 (t− τ2)|φn〉

+ 〈φm|U1(t− τ2)|φk〉U+
0 (τ1 − τ2)〈φl |U+

1 (t− τ1)|φn〉].

(3.163)

W00(t) as well as Wmn(t) are quadratic in the electromagnetic field. This is the important mes-
sage from the formulas given above. The scalar dipole moments are defined as

dm = epudm. (3.164)

The delay time is very short (premise) and the coupling is small (in average about 1-2 meV for
P4). The matrix elements 〈φm|U1(t− τ1)|φn〉may be approximated as
〈φm|U1(t− τ1)|φn〉 = δm,n〈φm|U1(t− τ1)|φn〉. With the scalar dipole moments dm, the Wmn(t)
in Eq. 3.163 may be written as

Wmn(t) = dmd∗nXmn. (3.165)

Eq. 3.165 will later be utilized. The explicit form of the Xmn will then be of no importance.
However, the Xmn are written as

Xmn =
1
h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2E(τ1)E(τ2)

× [〈φm|U1(t− τ1)|φm〉U0(τ1 − τ2)〈φn|U+
1 (t− τ2)|φn〉

+ 〈φm|U1(t− τ2)|φm〉U+
0 (τ1 − τ2)〈φn|U+

1 (t− τ1)|φn〉].

(3.166)

The considerations about the statistical operator after pump pulse excitation will be utilized
to compute the transient absorption line shape due to the probe pulse excitation in the next
subsection.

3.9.2 Transient absorption line shape

In order to obtain the transient absorption line shape I(ω), the time-dependent term [26]

I(t) = tr
{

µ̂U
[
µ̂, Ŵ

]
U+
}

(3.167)

has to be calculated. This is the dipole-dipole correlation function for the statistical operator
after pump pulse excitation. The Fourier transform of this term gives the absorption line shape
I(ω). In Eq. 3.167 tr{...} denotes the calculation of the trace over the electronic and vibrational
coordinates, [..., ...] is the commutator, and U = exp[−iHt/h̄] is the time evolution operator. µ̂
is the dipole operator that was given in detail in Eq. 3.25. If only the statistical operator matrix
element of the electronic ground state Ŵ00 is populated, the Fourier transform of Eq. 3.167
gives the linear absorption line shape. If other matrix elements than Ŵ00 are populated due to
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3.9 Analytical calculation of the transient anisotropy

a pump pulse excitation, Eq. 3.167 gives the transient absorption line shape for the probe pulse.
Since the sum Π0 + Π1 + Π2 projects on the complete Hilbert space of the system that is

considered here, it can be inserted everywhere into Eq. 3.167. Higher excited states than the
second excited electronic state are neglected (cf. Sec. 3.2). Thus, the commutator reads

[µ̂, Ŵ] = µ̂Ŵ − Ŵµ̂ =

= (Π0 + Π1 + Π2)µ̂(Π0 + Π1 + Π2)(Ŵ00Π0 + Ŵ11Π1)

− (Ŵ00Π0 + Ŵ11Π1)(Π0 + Π1 + Π2)µ̂(Π0 + Π1 + Π2)

= −Π1Ŵ11Π1µ̂Π2 + Π2µ̂Π1Ŵ11Π1 −Π1Ŵ11Π1µ̂Π0

+ Π0µ̂Π1Ŵ11Π1 −Π0Ŵ00Π0µ̂Π1 + Π1µ̂Π0Ŵ00Π0

+ non-diagonal terms.

(3.168)

The statistical operator is separated into its parts acting upon the ground and first excited elec-
tronic state of the system. In the last subsection, it was assumed that the pump pulse may not
excite the CC to a state higher than the first excited CC state. The respective statistical operator
matrix elements after pump pulse excitation were calculated earlier in this section (Eqs. 3.155,
3.158, 3.159, 3.160). Their concrete form is of no importance for the following calculations, as
will become clear later in this section. Important is the linearity in E(t) for the non-diagonal
matrix elements and the quadratic dependence on E(t) for the diagonal matrix elements.

Only the diagonal matrix elements with respect to the electronic state are taken into account
here. This is due to the fact that the non-diagonal matrix elements of Ŵ(t) depend linearly on
E(t). As will become clear later in this section, terms linear in E(t) (as well as linear in [E(τ)µ̂eg

01])
will disappear because of the ensemble averaging. Ensemble averaging means computing the
trace with respect to the electronic and vibrational states.

According to Eq. 3.167 the dipole operator and the time evolution operators act upon the
commutator (Eq. 3.168); taking the trace, the expression results in

tr{µ̂U[µ̂, Ŵ]U+} = tr{−Π2µ21U1Ŵ11µ12U+
2 Π2 + Π1µ12U2µ21Ŵ11U+

1 Π1

−Π0µ01U1Ŵ11µ10U+
0 Π0 + Π1µ10U0µ01Ŵ11U+Π1

−Π1µ10U0Ŵ00µ01U+
1 Π1 + Π0µ01U1µ10Ŵ00U+

0 Π0 + non-diagonal terms}.
(3.169)

The Fourier transform of the trace expression in Eq. 3.167 gives the transient absorption line
shape. In order to calculate the differential transient absorption, the absorption line shape of
the probe pulse has to be computed for two cases. In the first case no pump pulse was active
before the probe pulse, the whole population is at the electronic ground state, before the probe
pulse interacts with the system. In the second case the pump pulse was active and excited some
population of the system to the first excited electronic state. The same procedure is done in re-
spective measurements of the differential transient absorption. Thus, the differential transient
absorption line shape may be written as (cf. [82, 89])

∆Spr(ω) = Re
∫ ∞

0
dte−iωt (tr{µ̂U[µ̂, Ŵ(Epu 6= 0)]−U+} − tr{µ̂U[µ̂, Ŵ(Epu = 0)]−U+}

)
.

(3.170)
Next, the transient anisotropy (calculated after Eq. 3.140) for very short and for very long de-

lay times tdelay is calculated analytically utilizing Eq. 3.170 and Eq. 3.169, under the premise of
a small excitonic coupling. After inserting Eq. 3.169 into Eq. 3.170 the resulting equation is in-
serted into the formula for the transient anisotropy, Eq. 3.140. The idea is to bring Eq. 3.169 into
a form that is a multiplication of a function f (d) of the scalar transition dipole moments d and a
Fourier integral over the respective matrix elements. This is possible via some approximations
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3 The mixed quantum-classical methodology

which will be justified in the next step.
The first approximation is that EET between chromophores that are bound to different P4

complexes, is neglected. This is an appropriate assumption when a dilute solution is investi-
gated. The second approximation that has to be made is that the dipole moments of the Pheos
in P4 are not correlated. This means that the P4 structure is so flexible that the orientation of
chromophore 1 in average does not affect the orientations of the chromophores 2, 3 and 4. This
approximation is valid, as can be seen, when the average product of the dipole moments of
each Pheo pair within P4 is computed. It is 54.7 degrees for each pair. This means that the
approximation given above is reasonable (cf. [9]).

The probe pulse absorption in Eq. 3.172 includes a sum over terms proportional to did∗j . Thus,
the trace expression is proportional to sums of the terms dmd∗ndid∗j ; in the following considera-
tions the dipole moments are real.

With the above-mentioned approximation, the ensemble average over a term of the form
dmdndidj becomes zero if a single index occurs only one time in the product. That means for
example, if m 6= n, m 6= i, m 6= j. An ensemble average over dm will then give zero (integral
over the cosine from 0 to 2π):

〈dm〉ther = 0. (3.171)

The conformational independence of the single dipole moments reduces an ensemble aver-
age over dmdndidj to the form 〈dmdndidj〉 = 〈dm〉〈dn〉〈di〉〈dj〉, if the indices are all different.
Thus, in Eq. 3.172 only those parts have to be considered, which are proportional to terms of
the form dmdmdidi. Utilizing this approximation, in App. A it will be shown that Eq. 3.169 may
be written as

tr{µ̂U[µ̂, Ŵ]U+} = tr{2Im ∑
i,k,q

∑
j>i

∑
l>k

[
(

Ŵlqdjd∗k + Ŵkqd∗j dl

)
〈φq | U+

1 | φi〉

+
(
Ŵkqdid∗l + Ŵlqdid∗k

)
〈φq | U+

1 | φj〉]〈φi,j | U2 | φkl〉+
+ 2Im ∑

i
∑

k
∑

q
did∗kŴkq〈φq | U+

1 | φi〉〈φ0 | U0 | φ0〉+

+ 2Im ∑
i

∑
k

Ŵ00did∗k 〈φi | U1 | φk〉〈φ0 | U+
0 | φ0〉}.

(3.172)

The first two lines on the right hand side of Eq. 3.172 describe the second excited state absorp-
tion, the third line describes the stimulated emission and the last line covers the excitation of
the first excited state.

The transient anisotropy for very short delay times

With the approximation that the excitonic coupling between the chromophores is (relative)
small (below 10 meV, which is reasonable for the very most P4 conformations), Eq. 3.172 may
be further simplified. Details can be found in App. B. One may write

tr{µ̂U[µ̂, Ŵ]U+} ≈ 4tr{Im ∑
i
[(1−Wii(tdelay → 0))didie

it
h̄ (∆Eg→e)]}, (3.173)

with the transition energy ∆Eg→e between the electronic ground and first excited state. It has
to be noted that not only the small excitonic coupling but also the independence of the single
Pheos’ dipole moments results in Eq. 25 (cf. App. A). It is mentioned here again (cf. App. B)
that a small excitonic coupling denotes a coupling that is responsible for an EET that is slow
compared to the dephasing time of the averaged TDSE expansion coefficients. Eq. 25 reveals
that the dip in the transient absorption is due to the −Wii in Eq. 25, that means it is due to the
previous excitation of chromophores by the pump pulse.

This result can be directly inserted into the formula for the differential transient absorption
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3.9 Analytical calculation of the transient anisotropy

(Eq. 3.170), which is then written as

∆Spr(ω; tdelay → 0) = Re
∫ ∞

0
dte−iωt(tr{µ̂U[µ̂, Ŵ(Epu 6= 0, tdelay → 0)]−U+}

− tr{µ̂U[µ̂, Ŵ(Epu = 0, tdelay → 0)]−U+})

≈ −4Re
∫ ∞

0
dte−iωt〈Im

[
∑

i
Wii(tdelay → 0)didie

it
h̄ (∆Eg→e)

]
〉ther.

(3.174)

The trace expression was substituted by the thermal average 〈...〉. It is possible to rewrite
the diagonal statistical operator matrix elements as Wii(tdelay → 0) = Xii(tdelay → 0)dpu

i dpu
i

(Eq. 3.166). di is the scalar dipole moment of chromophore i with respect to the pump pulse
polarization êpu:

∆Spr(ω; tdelay → 0) = −4 ∑
i
〈d2

i dpu
i

2〉therRe
∫ ∞

0
dte−iωtIm

[
Xii(tdelay → 0)e

it
h̄ (∆Eg→e)

]
. (3.175)

As mentioned earlier, the mutual conformation of the chromophores is not restricted. This
means that the averaging of the scalar dipole moments will give the same result for the different
chromophores 1, 2, and so on:

∆Spr(ω; tdelay → 0) = −4N〈d2
1dpu

1
2〉therRe

∫ ∞

0
dte−iωtIm

[
∑

i
Xii(tdelay → 0)e

it
h̄ (∆Eg→e)

]
(3.176)

d1 is the scalar dipole moment (with respect to the probe pulse polarization) of chromophore 1.
If Eq. 3.140 is used together with Eq. 3.176, the transient anisotropy for very short delay times
is calculated in approximation as

r(tdelay → 0) ≈ 〈d
4
1〉ther − 〈d2

1(d
⊥
1 )

2〉ther

〈d4
1〉ther + 2〈d2

1d⊥1
2〉ther

, (3.177)

where d⊥1 is the scalar dipole moment with respect to the pump beam polarization, if the pump
beam polarization is perpendicular to the probe pulse polarization. In what follows, the ther-
mal average with respect to the scalar dipole moments will be carried out. The dipole moment
of chromophore i can be written as

di = d

sin(θi)cos(ϕi)
sin(θi)sin(ϕi)

cos(θi)

 . (3.178)

θi and ϕi are the spherical coordinate angles of the dipole moment of chromophore i. The
polarization vector of the probe pulse may be written without loss of generality (w.l.o.g.) as

epr =

0
0
1

 . (3.179)

The polarization vector of the pump pulse in the case of orthogonal polarization of pump and
probe beam may be written (w.l.o.g.) as

e⊥pr =

0
1
0

 . (3.180)
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Together with the definitions in Eqs. 3.179 and 3.180, the dipole moment of chromophore i is(
diepr

)2
= d2cos(θi)

2 (3.181)

for the probe pulse polarization and(
die⊥pu

)2
= d2sin(θi)

2sin(ϕi)
2 (3.182)

for an orthogonal pump pulse polarization. For the calculation of the anisotropy r for very
short delay times the following averages will be used. The spherical volume element sin(θ)) is
used, the integral is carried out over the unit sphere:

〈d4
1〉ther =

1
4π

d4
∫ π

0

∫ 2π

0
sin(θ1)cos(θ1)

4dϕ1dθ1 = d4 1
5

, (3.183)

〈d1
2d⊥1

2〉ther =
1

4π
d4
∫ π

0

∫ 2π

0
sin(θ1)

3cos(θ1)
2sin(ϕ1)

2dϕ1dθ1 = d4 1
15

. (3.184)

With Eqs. 3.183 and 3.184, Eq. 3.177 gives

r(tdelay → 0) ≈ 〈d
4
1〉ther − 〈d2

1(d
⊥
1 )

2〉ther

〈d4
1〉ther + 2〈d2

1d⊥1
2〉ther

= 0.4. (3.185)

The range of anisotropy values is between rmin = −0.2 and rmax = 0.4 [9]. A value of r = 0.4
can be expected, if no EET took place [119]. Thus, r = 0.4 is the expected result for very short
delay times.

The transient anisotropy for very long delay times

In the next step, the transient anisotropy for very long delay times tdelay → ∞ is calculated.
This means that tdelay, on the one hand, is long enough for the formation of an equilibrium
distribution of the excitation energy. On the other hand, it is small enough to prevent the sin-
gle chromophore from loosing the energy via other mechanisms than excitation energy trans-
port: fluorescense (4.3 × 107s−1), internal conversion (1.3 × 106s−1) or intersystem crossing
(1.08× 108s−1) [40]. An appropriate choice for a very long delay time would be between 30
and 40 ps (cf. [85]). However, in what follows, the formulation tdelay → ∞ will be utilized.
As mentioned above, the EET beween chromophores bound to different PN complexes is ne-
glected. To calculate the transient anisotropy for tdelay → ∞, Eq. 3.174 is the starting point. All
the approximations of this section made till Eq. 3.174 hold for the long delay times limit. That
means in particular the independence of mutual orientations between the single chromophores.
The differential transient absorption reads

∆Spr(ω; tdelay → ∞) = −4Re
∫ ∞

0
dte−iωt〈Im

[
∑

i
Wii(tdelay → ∞)didie

it
h̄ (∆Eg→e)

]
〉ther. (3.186)

Of course, the matrix elements shortly after pump pulse excitation
Wii = Wii(tdelay → 0) can not be used. But the Wii(tdelay → ∞) can be calculated from the
Wii(tdelay → 0) since one may assume that the excitation energy is equally distributed over
the CC after a very long delay time tdelay → ∞. Thus, one may write (with the number of
chromophores in the PN complex N)

Wii(tdelay → ∞) =
1
N ∑

j
Wjj(tdelay → 0). (3.187)
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According to Eq. 3.176, Eq. 3.186 may be written as

∆Spr(ω; tdelay → ∞) = −4〈∑
j

d2
j dpu

1
2〉therRe

∫ ∞

0
dte−iωtIm

[
∑

i
Xii(tdelay → 0)e

it
h̄ (∆Eg→e)

]
.

(3.188)
Eq. 3.140 together with Eq. 3.188 is used to calculate the transient anisotropy for very long delay
times:

r(tdelay → ∞) ≈
〈∑j d2

j d2
1〉ther − 〈∑j d2

j (d
⊥
1 )

2〉ther

〈∑j d2
j d2

1〉ther + 2〈∑j d2
j d⊥1

2〉ther

. (3.189)

Due to the independence of different chromophores’ dipole moments one may rewrite Eq. 3.189
as

r(tdelay → ∞) ≈ 〈d4
1〉ther + (N − 1)〈d2

1〉ther〈d2
2〉ther − 〈d2

1d⊥1
2〉ther − (N − 1)〈d2

1〉ther〈d⊥2
2〉ther

〈d4
1〉ther + (N − 1)〈d2

1〉ther〈d2
2〉ther + 2

(
〈d2

1d⊥1
2〉ther + (N − 1)〈d2

1〉ther〈d⊥2
2〉ther

)
(3.190)

with the scalar dipole moment d2 of chromophore 2, w.l.o.g.. Choosing this second index to
be 2 is arbitrary. It is only important that the index is different from 1. For the calculation of
the anisotropy r for very long delay times the following integrals will be used to compute the
ensemble average. Note again the use of the spherical volume element sin(θ), the integrals are
carried out over the unit sphere:

〈d2
1〉ther =

1
4π

d2
∫ π

0

∫ 2π

0
sin(θ1)cos(θ1)

2dφ1dθ1 = d2 1
3

, (3.191)

〈d⊥1
2〉ther =

1
4π

d2
∫ π

0

∫ 2π

0
sin(θ1)

3sin(φ1)
2dφ1dθ1 = d2 1

3
. (3.192)

Together with the Eqs. 3.183, 3.184, 3.191, and 3.192 give the transient anisotropy (Eq. 3.190)

r(tdelay → ∞) ≈ 0.4
N

, (3.193)

which gives a transient anisotropy value for long delay times of 0.1 for P4, as was calculated in
Sec. 5.2.3 utilizing the mixed quantum-classical methodology.
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4 Methods

4.1 Molecular dynamics simulations

4.1.1 Utilized programs

There exist several MD force fields, which include the necessary parameters to carry out the
simulation of PN complexes in ethanol solution. The most commonly used are CHARMM
(chemistry at Harvard macromolecular mechanics) [120], AMBER (assisted model building
with energy refinement) [121] and GROMACS (Groningen machine for chemical simulations)
[122]. In the tradition of our group it was straightforward to utilize the existing input files for
Pheo and P4 in ethanol [75, 82, 83, 87]. Thus, the MD simulations of Pheo, P4 and P16 solved
in ethanol have been carried out with the NAMD (not (just) another molecular dynamics pro-
gram) program package [123]. The AMBER force field [121] was used with the PARM99 and
GAFF parameter sets [124]. Parameters for the ethanol solvent model were taken from [125].

The simulations were done for a single PN within a finite solvent box. The electrostatic inter-
actions between all partial charges of the system were computed by the particle mesh Ewald
method (PME) [126]. This is necessary since the Coulomb interaction is a long range inter-
action. Each molecule couples to molecules that are located a few boxes away. In order to
apply the PME method, periodic boundary conditions are used. The PME method interpolates
the reciprocal space Ewald sums [127] and analyzes the resulting convolutions via fast Fourier
transformations.

4.1.2 MD parameters

As mentioned above, the GAFF (general AMBER force field) is used. GAFF was a further de-
velopment of the Parm99 force field [128]. In Sec. 3.1.5 it was shown that the conformational
energy of an atomic system at a specific conformation can be approximated as the sum over re-
spective few neighbor interaction energies. One contribution to this sum covers the interaction
between next neighbors. In the meaning of this thesis, bonded atoms denote two atoms that
are directly connected by covalent bonds. Essential for the molecular conformational energy
due to bonded interaction are two atoms that are covalently bound, two atoms that are both
covalently bound to a third atom (1− 3) and two atoms with two additional covalently bound
atoms between them (1− 4). An additional contribution to the total energy sum is the interac-
tion between non-bonded atoms. It covers the Coulomb and van der Waals interaction. This
non-bonded interaction is calculated for all pairs of atoms, even though there exists a direct
connection of covalent bonds between the atoms. If two atoms are bonded (by less than four
bonds) the non-bonded interaction is scaled by a factor of 1/1.2 [128]. This is often referred to
as 1-4 scaling.

The total force field energy calculated as the sum over bonded and non-bonded interaction
energies is

EFF = Ebonds + Eangles + Edihedrals + ECoul + EvdW. (4.1)

Here, the bond energy Ebonds covers the 1− 2 interaction. The 1− 3-interaction is treated by
the angle energy Eangles and and the 1− 4-interaction by the dihedral energy Edihedrals. The two
parts of the non-bonded interaction are the Coulomb interaction between all pairs of atoms
ECoul and the respective van der Waals interaction between all atom pairs EvdW. More detailed
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information about the generalized AMBER force field is given in [116]. The notation of this
reference is utilized within this whole section.

Bond parameters

The bond energy is written as

Ebonds = ∑
bonds

kij(Rij − Req
ij )

2. (4.2)

Rij is the actual distance between two atoms i and j and Req
ij is the respective equilibrium dis-

tance between those two atoms. The equilibrium distance denotes the distance for which the
energy contribution of this atom pair becomes minimal. kij is the respective force constant,
which determines how much a variation of the distance between the two atoms affects the
increase of the total energy. The potential is harmonic in the difference between actual atom
distance and equilibrium distance Rij − Req

ij .

Angle parameters

The anglular energy is
Eangles = ∑

angles
kijk(θijk − θ

eq
ijk)

2. (4.3)

If three atoms are numbered by i, j and k, θijk is the angle between the bonds i− j and j− k. θ
eq
ijk is

the respective equilibrium angle and kijk is the force constant. The angle potential arising from
three single atoms is harmonic in the difference between the actual angle and the respective
equilibrium angle θijk − θ

eq
ijk.

Dihedral parameters

The effect of torsion to the interaction energy is summarized in the term

Edihedrals = ∑
dihedrals

vn

2
[
1 + cos(nψ− λijkl)

]
. (4.4)

The multiplicity n gives information on the periodicity of the respective torsional movement of
the atoms i, j, k and l. The force constant for the respective torsion depends on the multiplicity
n. The phase angle for the torsion is λijkl .

Improper torsion parameters

Even though improper torsions are generally part of the AMBER force field [121], they are not
part of GAFF [124]. Improper torsions summarize single atom out of plane motions in reference
to a plane defined by three other atoms. It belongs to the 1− 4 interaction. In the GAFF the
respective energy contribution due to improper torsions is included within the other parts of
the energy sum, mainly in the angle- and dihedral term.

Non-bonded interaction

The non-bonded interactions consist of the Coulomb interaction, on the one hand, and the van
der Waals interaction, on the other hand.
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The Coulomb energy between two partial charges qi and qj (of atoms i and j), with the dis-
tance Rij is computed as

ECoul
ij =

1
4πε0

qiqj

Rij
, (4.5)

ε0 being the vacuum permittivity.
The van der Waals energy between two atoms i and j can be written by a Lennard-Jones

potential [121]

EvdW
ij = εij

(Req
ij

Rij

)12

− 2

(
Req

ij

Rij

)6
 . (4.6)

The equilibrium distance (in the Lennard-Jones potential) Req
ij between two atoms i and j is

given by
Req

ij =
(

Req
i + Req

j

)
/2. (4.7)

Req
i is the equilibrium distance in the Lennard-Jones potential between two atoms of the same

atom type as atom i. Accordingly the well depth εij is computed as [121]

ε
eq
ij =

√
ε

eq
i ε

eq
j , (4.8)

with the well depths ε
eq
i and ε

eq
j of the individual atom types of the atoms i and j.

4.1.3 Numerical integration

For constant energy simulations NAMD uses the Velocity Verlet algorithm. The positions of
all atoms at time n∆t, n ∈ N are the R(n∆t), and the velocities are denoted as v(n∆t). The
positions and velocities at time (n + 1)∆t, R((n + 1)∆t) and v((n + 1)∆t) can be computed, if
the forces on the atoms F(n∆t) are known, M is the set of masses [123]:

v((n + 1/2)∆t) = v(n∆t) + M−1F(n∆t)∆t/2,
r((n + 1)∆t) = r(n∆t) + v((n + 1/2)∆t)∆t,
F((n + 1)∆t) = F(r((n + 1)∆t)),

v((n + 1)∆t) = v((n + 1/2)∆t) + M−1F((n + 1)∆t)∆t/2.

(4.9)

The Verlet algorithm is symplectic and time reversible. It conserves the linear and angular
momentum and requires only one computation of F per time-step [123].

Such a simulation represents a microcanonical (NVE) ensemble with a constant number of
atoms (N), constant volume (V) and constant energy (E).

4.1.4 NVT and NPT ensemble

The integrator of an MD simulation has to generate a correct ensemble distribution for the
respective temperature and pressure. To generate the Boltzmann distribution for an NVT en-
semble (with a constant number of atoms (N), volume (V) and temperature (T)), NAMD utilizes
a stochastic Langevin equation of the form [123, 129]

Mv̇ = F(R)− γv +

√
2γkbT

M
G(t), (4.10)

with the friction coefficient γ and the gaussian random force G(t). The treatment of a Langevin
equation within a Velocity Verlet algorithm was introduced in [129].
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Like the temperature, also the pressure in a box of molecules does fluctuate. The respective
ensemble is an NPT ensemble with constant number of atoms (N), pressure (P) and tempera-
ture (T). During the years different approaches were invented to treat this fluctuation. NAMD
utilizes a combination of the Nose-Hoover constant pressure method that was proposed in
[130] and the piston fluctuation control suggested in [131]. The equations of motion that are
solved in NAMD are given in [132].

4.1.5 Computation of MD trajectories

NAMD is able to compute trajectories in parallel. The program may use several cores of a
computer, or a computer network, to compute a single MD trajectory. However, for this thesis
each MD trajectory was computed on a single core, since those calculations were more effective.
The calculation of a single trajectory, using eight cores in parallel, would increase the velocity of
the simulation by a factor of about 5 to 6 (cf. [133], the explicit solvent test case). The calculation
of eight different single trajectories on separate cores thus generates more MD data at the same
time. Of course, the calculated trajectories finally do not represent one single trajectory. This,
however, is not neccessary in order to achieve ensemble average, if the single trajectories are
much longer than the time scale of conformational change within the system.

The time scale of conformational change for a P4 complex is between 50 and 100 ps (the
conformations are more or less stable on a 10 ps time scale and start to change after about
50ps). After a few 100 ps the conformations of the single runs are completely different. The
time scale of the conformational change of the P4 complex leads to the conclusion that the
single trajectories have to last at least a few nanoseconds to produce the required ensemble
average.

Each production run was started simultaneously on eight cores. The respective initial con-
formations were the same for the eight Pheo and P4 runs. For P16, long (8 ns) simulations with
the same initial conformations and short (1.3 ns) simulations with (16) different initial confor-
mations, were carried out (Sec. 4.1.6). Even though the time scale of conformational change is
the same for P16 as for P4, a complete ensemble average is not possible for this system within
8 ns, since the conformational space of P16 is much larger than the conformational space of P4.
Thus, for P16 the usage of the same initial conformations does not lead to an adequate ensemble
average of the complex conformations. Nevertheless, the symmetry of the P16 molecule makes
sure that no complete ensemble average for P16 is necessary (explained in detail in Sec. 4.1.6)
to calculate reasonable results for the linear absorption (Sec. 5.3.1) and the excitation energy
transfer (Sec. 5.3.2).

NAMD configuration file

The NAMD configuration file contains all the informations for NAMD program package needed
run an MD simulation. It contains the name of the input and output sizes, the dimension and
position of the periodic box (in solvent simulations), the size of the PME grid, the parameters
for the temperature and pressure control, possible approximations for the simulation of the
hydrogen atoms, the step length, restrictions for the non-bonded interaction and finally the
simulation length and respective output files.

The most of those parameters are standard for NAMD simulations with the AMBER force
field (information on which parameters should be used can be found in [134]). Since the po-
sition of the hydrogen atoms affects directly the calculation of the vibrational energy, an MD
time-step of 1 fs was used, and the hydrogen motion was not restricted.
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Minimization, heating and equilibration

After setting up the box, including solute and solvent, a minimization was carried out. This
minimization ensures that the nuclei positions of the different molecules are not too close to
prevent large forces in the beginning of the simulation. The minimization, of course, acts
upon the structure of the molecules themselves. The Pheo molecules were all optimized with
DFT (cf. Sec. 4.2), while the dendrimer was optimized with the Hartree-Fock method, and the
ethanol structure was taken from the NAMD developers [125].

The default minimization method in NAMD uses a conjugate gradient and line search algo-
rithm. Details on the algorithm can be found in [132].

After minimizing the box, it is subsequently heated from 0 K to the simulation temperature
(in the production runs this temperature was T = 300 K). The heating was carried out by in-
creasing the MD simulation temperature by 1 K each 30 fs till the set temperature is reached.
While doing this, a constant pressure control was utilized to resize the box, when the tempera-
ture increases. If the system is heated too much and the box size is not adjusted via the constant
pressure control during the heating, the MD simulation will result in extreme forces on the box
walls, which will lead to an extremely fast enlargement of the box, and the respective forces
will no longer represent a pressure of 1 bar. For 300 K heating without constant pressure con-
trol no such behavior, but only a readjustment of the box size during the first picoseconds was
observed. For 1000 K heating, the mentioned problems occured.

Since the heating of the box is a non-equilibrium process, the heated box should be simulated
at 300 K for some time. This additional equilibration run prevents possible non-equilibrium be-
havior of the nuclei trajectories to effect the calculations of excitation energy transfer or optical
properties. A simulation time of 50 ps was used to finalize the equilibration of the system.

Production runs

After the equilibration, the production runs were started. Each production run lasted 10 ps, and
after this time the final coordinates and velocities were saved to start another MD simulations
with this final coordinate and velocity files as input files. Since the calculation on each core
produced 10 ns long trajectories, 1000 MD parts (each 10 ps long) were computed per core.
The reason for this partitioning of the MD data is twofold. On the one hand, a simulation can
easily be restarted if a computer crashes, without loosing too much time and data. On the other
hand, the trajectories require a lot of memory. When a system with more than 30000 atoms is
simulated, terabytes of data are produced within a week. It is therefore necessary to calculate
the energy gap function (cf. Sec. 3.5) after 10 ps of simulated time, and delete the respective
MD trajectory afterwards.

4.1.6 Ensemble average

Ensemble average for Pheo and P4

For reaching an adequate ensemble average for a single Pheo in ethanol and the P4 complex
in ethanol, respectively, 80 ns MD simulations were produced. For both cases the MD data
consists of eight times 10 ns, starting with the same initial condition. The quality of the ensem-
ble average could be tested by calculating the respective average transition rates to the other
chromophores (cf. Sec. 5.2.2). Since the error range is below 10 % (cf. Fig. 5.18), the ensemble
average is satisfying. If the ensemble average is good for the P4 systems, it is also good for the
single Pheo in ethanol. It should be mentioned that the actual simulation data of 80 ns for P4
do not show a formation of a dimer consistent of two Pheo molecules. Simulations of artifi-
cial Pheo dimer conformations within a P4 complex indicated that such dimers may be stable.
This could mean that for the P4 systems dimer formations have to be simulated independently,
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Figure 4.1: Sketch of a one-dimensional PES. The red circle indicates the initial conformation. Left panel:
at 300 K (kbT = 0.026 eV), only a part of the conformational space can be explored. Right panel: at 1000
K (kbT = 0.087 eV), all of the conformations can occur.

since the energy barrier between both conformations is too high to be overstepped during a 10
ns MD simulation at 300 K.

Ensemble average for P16

As argued in Sec. 4.1.5, the simulations of P16 in ethanol will not give a good ensemble average,
if the simulations are started with the same intitial conformation. Even though the time scale of
conformational change is the same as for P4, the P16 is much more complex than the P4 system
and thus has a much larger conformational space. This may not be explored within several
nanoseconds of MD simulation.

In what follows, it will be stated why the determination of the complete P16 conformational
space is not necessary to calculate ensemble-averaged optical properties. Afterwards it will be
explained, how the ensemble average may be improved by calculating different initial confor-
mations of P16 at 1000 K.

The distribution of mutual conformations for two Pheo pairs m, n, and k, l of the P16 CC
is not the same after 10 ns of simulation. This, however, does not necessarily mean that the
optical properties calculated from this MD data are erroneous.

The symmetry of P16 ensures that ensemble average of the computed spectra converges faster
than the ensemble average for the conformation of the whole molecule. The excitonic coupling
between the Pheos is largest for molecules that are spatially near to each other. The average of
the mutual conformations of the spatially near Pheos is more important for the calculation of
the systems’ optical properties than the ensemble average of the complete CC. If the distribu-
tion of mutual orientations is similar for those Pheo pairs within P16 that are spatially near to
each other, the computation of the optical properties as well as of the EET within P16 will give
reasonable results.

High temperature simulation

It is possible to improve the conformational ensemble average by choosing initial conforma-
tions of the whole system. Those initial conformations were calculated utilizing high temper-
ature MD simulations. This is twofold, on the one hand, the conformational change at 1000 K
is much faster, on the other hand, 300 K simulations may be restricted to local minima of the
PES. This is illustrated in Fig. 4.1. The temperature of 1000 K was chosen, since a formation
and de-formation of Pheo dimers within P16 was observed at this temperature within 100 ps.
At 300 K a formation and de-formation of Pheo dimers could only be observed after several
nanoseconds.
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Figure 4.2: Sketch of a one-dimensional PES after a 1000 K MD simulation. The red circle indicates a
conformation that does not occur within a 300 K simulation. During the equilibration run, the confor-
martion adapts to the actual temperature.

Hence, eight 2.5 ns long MD simulations of P16 in ethanol at 1000 K were executed to obtain
different initial conformations for the room temperature simulations. If enough MD simula-
tions at 1000 K have been done, the respective conformational average converts against the
1000 K conformational ensemble average. It was found within this thesis that the variety of
conformations within the 1000 K MD data is quite satisfactory. This will be shown in Sec. 5.3.2.
After the 1000 K simulations, various conformations from the 1000 K simulation are taken as
initial conformations for respective 300 K simulations. The idea is borrowed from the simu-
lated annealing method [135]. Low-temperature protein motion was studied in this reference
by cooling down hight temperature systems. Slow cooling yielded low energy structures with
an atomic fluctuation much closer to experimental levels than earlier simulations.

However, for this thesis no cooling was done, and the high temperature conformations were
directly used as input for a 100 ps long equilibration run. This relatively long equilibration
was done to prevent the system from staying in a conformation that does in general not occur
at 300 K. This is illustrated in Fig. 4.2. The result of this equilibration run gave the initial
conformations for the 300 K MD simulations.

4.2 Electronic structure calculations

The execution of electronic structure calculations was not part of this thesis. Since such cal-
culations are not an area of expertise in our group, the accurate computation of the quantum
chemical properties of Pheo required to be done by an expert.

The Hessian matrices for the Pheo ground, first and second excited electronic state and the
respective nuclear equilibrium configurations were computed with the Gaussian09 program
package [136] by our co-worker Alexander Kulesza. Those Hessian matrices, partial charges
and equilibrium conformations were used as input for the calculation of the energy gap func-
tion Ueg(t) (Sec. 3.5).

The Hessian matrix, the ground state structure, and the atomic partial charges of Pheo were
determined using density functional theory (DFT). The excited state properties were obtained
utilizing linear response time-dependent DFT (TDDFT). Those methods are implemented in
the Gaussian09 program package [136]. For all computations, the hybrid B3LYP functional for
exchange and correlation [137, 138, 139] was used together with the 6-311(d,p) AO basis sets
[140]. It was proven in [141] that this method gives accurate results for the heat of formation
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and isomerization energies of organic molecules. The stationary points were fully optimized
and characterized by vibrational frequency calculations. This (standard) procedure ensured
that the computed structures represent minima of the Pheo PES. The coupling to the solvent
was taken into account (for the ground, first and second excited electronic states) via the po-
larizable continuum model (PCM, [142, 143, 144]), making use of the dielectric constant for
ethanol. The atomic partial charges (that were fitted to the potential of the Pheo charge den-
sity) were obtained by the CHelpG [145] method. They reproduce the experimentally measured
molecular dipole moment and were earlier utilized in MD simulations [146, 147]. The partial
charges of the dendrimer were computed by a former group member [75]. Electron structure
calculation for the dendrimer were carried out using the Hartree-Fock method implemented
in Gaussian09 [136] together with the 6-31 AO basis set. The AMBER internal RESP method
[121] was used to fit the partial charges to the potential of the charge density. Besides the RESP
and the CHelpG method, there exist other methods for the fitting of the electrostatic potential
to atomic partial charges. It was shown in [86] that changing the choice of the fitting method
does not result in crucial deviations of the molecular dipole moment. The transition partial
charges were computed by Madjet (computations were done for [75]) with the TrEsp method
[32]. DFT (TDDFT) with the hybrid B3LYP functional and the 6-31(d,p) AO basis set were uti-
lized to compute the electronic structure for the ground and first excited electronic state. The
TrEsp method [32] was used to fit the transition density to respective transition partial charges.
The transition dipole moment (and thus the transition partial charges) was fitted against the
experimental value for the Chl a transition dipole moment of 4.6 D [101].

4.2.1 Estimation of the Stokes shift

The Stokes shift for Pheo in ethanol is about 10 nm (0.03 eV) [22]. Utilizing the energies from
the (TD)DFT calculations of the electronic ground and first excited state for the optimized con-
formations of both electronic states, the Stokes shift S may be calculated as

S = 2Ereorg = Ee(Rg)− Eg(Rg)−
(
Ee(Re)− Eg(Re)

)
, (4.11)

with Rg being the optimized Pheo nuclei positions in the electronic ground state and Re be-
ing the positions of the nuclei in the first excited electronic state. The energies calculated
by (TD)DFT with Gaussian09, the B3LYP exchange-correlation function and the 6-311G(d,p)
basis set are Ee(Rg) = 53089.550 eV, Eg(Rg) = 53091.584 eV, Ee(Re) = 53089.598 eV and
Eg(Re) = 53091.542 eV. Ereorg is the reorganization energy. The Stokes shift is then calculated as
S = 0.09 eV, which is larger than the experimental value of about 0.03 eV [22] . The reader has
to consider a standard error of quantum-chemical energy calculations of 0.1 eV for molecular
systems (even with a large basis set) [88]. Taking this error into account, the difference between
the calculated Stokes shift and the experimental value is not very surprising. It is important to
note that this deviation does not allow to make a statement on the quality of optimized struc-
tures and for the Hessian matrices (for all involved electronic states). On the one hand, the
Stokes shift is calculated as a difference between two energy differences, both with an error
of about 0.1 eV. On the other hand, electronic structure calculations are known to reproduce
molecular normal mode vibrations with a much smaller error [88].

Another possibility to estimate the reorganization energy (and therefrom the Stokes shift)
is the averaged energy gap function 〈Ueg〉 [84]. The vibrational part of Ueg(t) is written as
Uvib

eg (t) = Uvib
e (t)−Uvib

g (t) (cf. Eq. 3.67). The respective average 〈Uvib
eg 〉 can be related to the

reorganization energy. The gap function due to solvent coupling Usol
eg (t) gives a small correction

to this reorganization energy (about -0.01 eV). Thus, the equation for the Stokes shift S can be
approximated by S ≈ 2〈Ueg〉 (cf. Eq. 4.11). The Stokes shift that can be estimated from the 80
ns of MD data is 0.08 eV (0.09 eV without the correction due to the solvent coupling) and thus
corresponds to the value that was computed from (TD)DFT calculations. The difference to the
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value that was presented in [84] is due to the much larger amount of MD data that were used
for this thesis.

4.3 Energy gap fluctuation and transition coupling from MD
trajectories

In a mixed quantum-classical methodology the TDSE has to be solved. The Hamiltonian
in such a method depends parametrically on the classical computed nuclei trajectories. The
Hamiltonian matrix elements in terms of the systems’ nuclei positions is described in Sec. 3.4.
Within this thesis the DCL (Sec. 3.1.3) is utilized to translate full quantum formulas to mixed
quantum-classical expressions. In order to compute those expressions and to compute ab-
sorption spectra (linear or nonlinear), the TDSE has to be solved. The respective diagonal
Hamiltonian matrix elements include the energy gap function Ueg(R(t)) (for the Pheo Qx band
U f g(R(t))), cf. Eqs. 3.60 and 3.121 to 3.123.

The energy gap function Uag(R(t)) was defined in Sec. 3.4.2 and consists of the energy
gap fluctuation due to solvent coupling Usol

ag (R(t)) and the energy gap fluctuation due to in-
tramolecular vibration Uvib

ag (R(t)) with a ∈ {g, e}:

Uag(R(t)) = Usol
ag (R(t)) + Uvib

ag (R(t)). (4.12)

4.3.1 Computing energy fluctuation due to solvent coupling

The energy gap fluctuation of Pheo m due to solvent coupling Usol
m,ag(R(t)) is defined as (cf. Eq. 3.55)

Usol
m,ag(R(t)) = ∑

ξ

[
Jmξ(bg, gb)− Jmξ(ag, ga)

]
. (4.13)

∑ξ

[
Jm,ξ(bg, gb)− Jm,ξ(ag, ga)

]
gives the energy difference of the Coulomb coupling to the sol-

vent molecules ξ (in the state g) between the cases when the chromophore m is in the elctronic
state b and the case when it is in the electronic state a. When the energy gap for Pheo m is
computed utilizing Eq. 4.13, the other Pheos n 6= m and the dendrimer are treated like solvent
molecules. Usol

m,ag(R(t)) can easily be calculated from the MD trajectories if the electronic par-
tial charges of the solvent in the electronic ground state and the electronic partial charges of the
chromophore in the electronic states a and b are known.

When computing Usol
m,ag(R(t)), one has to be careful when interpreting the resulting energy

fluctuations. The Coulomb coupling Jm,ξ(ag, ga) between chromophore m in the state a and
solvent molecule ξ in the state g is a long range interaction. The MD simulation, however, only
includes a finite number of solvent molecules. In Fig. 4.3 the energy fluctuation due to solvent
coupling Usol

m,ag(R(t)) was computed for different cutoff lengths for the Coulomb interaction.
Even though the cutoff lengths do not vary a lot, the gap functions look completely different.

However, that does not mean that advanced methods (like PME, cf. Sec. 4.1.1) have to be
utilized to compute the electrostatic coupling for an infinite solvent box. Fig. 4.4 shows the
histograms over the energy gaps from Fig. 4.3. It can be seen that the fluctuation of the energy
gap function does not vary for the different cutoff lengths. Since the fluctuation of the energy
gap is the aim of the computation, it is adequate to compute the electrostatic coupling for a
finite box. It has to be taken care that chromophore m couples to the solvent molecules as if it
was located in the center of the periodic box.

4.3.2 Computing the transition couplings

The transition coupling between two Pheos m and n is calculated via summing up the Coulomb
interactions between the sets of transition partial charges qm(ge) and qn(ge) (Eq. 3.49). For

59



4 Methods

Figure 4.3: Energy gap function (for a 10 ps MD sample) of a single Pheo due to ethanol solvent coupling
for four different cutoff lengths. Black: 15 Å, green: 16 Å, blue: 17 Å, red: 18 Å.

Figure 4.4: Energy gap histogram over the energy gap functions shown in Fig. 4.3. Black: 15 Å, green:
16 Å, blue: 17 Å, red: 18 Å. The full lines represent averages over 5 neighboring values, making it easier
to compare the results.
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Figure 4.5: One-dimensional PESs of the electronic ground state (Ug) and the electronic excited state (Ue).
The positions Rg

0 and Re
0 indicate the respective equilibrium conformations of the electronic ground and

excited state. The yellow line represents the vertical excitation. The red region indicates the energy
margin due to intramolecular vibration

every MD time step, Eq. 3.49 is calculated for each Pheo pair m, n in order to compute the
time-dependent transisition couplings (excitonic coupling) Jmn(t).

4.4 Intramolecular vibration in harmonic approximation

Eq. 3.67 calculates the vibrational energy gap function of a molecule in harmonic approxima-
tion. The main idea is illustrated in Fig. 4.5. The fluctuation of the energy gap between elec-
tronic ground and first excited state PES has to be computed for ensemble-averaged confor-
mations R of the respective molecule. In order to carry out this calculation, the actual coordi-
nates R, the Hessian matrix elements κa

uv (a = g, e( f )) and the Pheo reference trajectories Ra

(cf. Sec. 3.5) are necessary. While the coordinates are taken from the MD trajectory, the Hes-
sian matrices were calculated by our co-workers (Sec. 4.2). The Pheo reference trajectories are
not just spatially rotated equilibrium conformations (of the corresponding electronic states g, e)
but the Pheo molecules underly bending modes at low frequency which may not be described
within the harmonic approximation.

One additional comment has to be made in the beginning. The aim of this section is the cal-
culation of the energy gap function due to intramolecular vibration. The word ’intramolecular’
refers to a single Pheo, even though Pheo is covalently bound to the dendrimer in the case of
P4 and P16. This is reasonable, since the approach has to work the same for covalently and
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Figure 4.6: The normal vector of Pheo is defined by the average of the normal vectors defined by the
two planes spanned by nitrogen atoms 1, 2, and 3, as well as 1, 3, and 4. The arrows (normal vectors)
indicate the possible deforming of the Pheo plane, the maximum working angle is about 5 percent. To
guarantee stability, the normal vector is additionally time-averaged over 1 ps.

non-covalently bound supramolecular complexes.
The formula for the energy due to intramolecular vibration was given in Eq. 3.35. If the

Hessian matrix elements (for the electronic ground and first excited state) and the equlibrium
conformation of the electronic ground state are known (computed with (TD)DFT), the energy
for a small deviation from the equlibrium conformation can be computed directly from Eq. 3.35.
However, after a few dozen femtoseconds of MD simulation the deviations are not small any-
more. On the one hand, the Pheo molecule is translated and rotated in space, and on the other
hand, it underlies several bending modes. The bending modes are the crucial problem in the
computation of the energy fluctuation in the electronic ground state. If there were no bending
modes, only the rotation of the Pheo molecule had to be corrected to calculate the deviations
between the MD trajectory and the equilibrium conformation. Since there are bending modes,
this is not possible.

Eq. 3.35 calculates the vibrational energy gap function in harmonic approximations. Con-
trary to Eq. 3.35, it does not depend on the equlibrium conformations Rg

0 and Re
0, but on the ref-

erence trajectories Rg(t) and Re(t) that undergo the translations, rotations and bending modes
of the molecules. Thus, Eq. 3.35 may compute the energy gap function for the whole MD data,
if the reference trajectories Rg(t) and Re(t) can be specified.

4.4.1 Rotation of the Pheo molecule

Since the Hessian matrix elements that are utilized in Eq. 3.35 were calculated for a defined
spatial orientation, the coordinate system of the MD Pheo has to be rotated back. This back
rotation is necessary, because the Hessian matrix elements κµν give the raise of energy (the unit
is energy per length square) for a displacement of coordinate µ and coordinate ν. Remember
that µ and ν do not count the Natoms atoms of the molecule, but the 3Natoms coordinates that
include all the Cartesian coordinates of all Natoms atoms. If the Pheo of the MD trajectory is not
rotated back to the orientation in which the (TD)DFT calculations of the Hessian matrices were
done (see Sec. 4.2), the resulting energy gap fluctuation will not represent the correct energy
fluctuation.

Nevertheless, Pheo is not rigid during the simulation, and normal as well as in-plane axes
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Figure 4.7: Molecular bending deforms the plane structure of Pheo.

have to be determined. Those are necessary to calculate the respective angles in between the
Pheo normal and in-plane vectors during the MD simulation and the normal and in-plane
vectors of the Pheo orientation that was used for the electronic structure calculations. This is
necessary for the adequate back rotation of Pheo to this orientation. The first in-plane axis is
defined as the average connecting line (averaged over 1 ps - the time scale of Pheo rotation
in ethanol is about 100 ps) between the two hydrogen bound nitrogen atoms. This axis is the
most stable in the Pheo molecule (see Fig. 4.7). The normal axis is defined as the respective
normalized averaged vector (also averaged over 1 ps), orthogonal to both normalized vectors
connecting the opposed pairs of nitrogen and such (in average) defining the Pheo plane. An
illustration of this description can be found in Fig. 4.6.

There have to be made some additional remarks considering the Pheo side chains. The atoms
in the ring (that means within the extended π-electron system) are relatively rigid. There is
some bending of the ring, which makes it impossible to treat the system as rigid, but the plane
working angle α (cf. Fig. 4.7) does not exceed 5%. For the side chains such a constraint is not
existent. On the other hand, the heigh flexibility of the side chains affects the respective Hessian
matrix elements in such a way that they are nearly coordinate independent. This makes the
above-explained procedure applicable for the whole Pheo molecule - the quasi rigid molecular
plane and the high mobile side chains.

4.4.2 Molecular bending

Without molecular bending modes, the reference trajectory of Pheo could simply be described
by the equilibrium structure that was time-dependently translated and rotated in space. The
harmonic approximation will only give a correct result, if two conditions are fulfilled: on the
one hand, the molecules’ intramolecular vibrations must have a harmonic character (that seems
to be valid for Pheo [84]); on the other hand, the deviation between MD conformation and equi-
librium conformation must not include deviations due to molecular bending, but only devia-
tions due to the vibration of all atoms around their actual equilibrium position. The presence
of molecular bending changes those equilibrium positions in time. Thus, the assumption of a
rigid Pheo reference trajectory leads to large errors if the molecular vibration involves bend-
ing modes. At each time step the molecular conformation has its own atomic equilibrium
positions and Hessian matrix elements. The molecular conformations of two points in time,
that are very close to each other, have rather similar atomic equilibrium positions and Hessian
matrix elements. To calculate the energy fluctuation due to intramolecular vibrations, further
approximations have to be made.

First: the equilibrium structure Hessian matrix elements κa
µν are used for all possible geome-
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Figure 4.8: Scheme of the time-dependent averaging procedure. After appointing the consecutive max-
ima of each coordinate trajectory, the respective distances in femtoseconds between adjacent maxima at
tn,1 and tn+1,1, kmax

n are calculated. At the center point between two maxima tc
n, the trajectory is averaged

over the neighboring kmax
n x-coordinate values.

tries. The molecular bending indeed changes the positions of single atoms dramatically. But
the geometry change itself (and with it the change of the PES and its derivatives) is rather small
(compare with the molecular beding in Fig. 4.7). One can imagine a 2-dimensional figure of a
molecule on a sheet of paper. If the sheet of paper is curled slightly, the angles between neigh-
boring atoms are only changed slightly, but the positions of the outer atoms of the molecule are
changed dramatically.

Second: the energy fluctuation due to molecular bending is not treated. The approximation
is necessary, since there is no direct way to calculate this energy fluctuation due to molecular
bending. The approximation is possible because it can be assumed that the slow molecular
bending proceeds on a much more flat potential energy surface than the much faster single
atomic vibrations, since the system has much more time to adopt to the respective minimum
energy geometry.

4.4.3 Electronic ground state Pheo reference trajectory

The electronic ground state Pheo reference trajectory can be interpreted as a trajectory of actual
(local) equilibrium structures that have their origin in the molecular bending. The calculation
of the respective reference trajectory of Pheo m (in the electronic ground state) Rg

m(t) exploits
the fact that the equilibrium conformations at two close points in time do not deviate too much.

The intramolecular vibration is separated into the bending modes and the single atom vibra-
tions. A single atom at some time t0 will per definition vibrate around its actual equilibrium
conformation. The electronic ground state Pheo reference trajectory can be calculated by a re-
spective averaging of the MD trajectories. It has to be mentioned here that this non-direct cal-
culation of Rg

m(t) leads to no additional errors in general, even though there will occur numeric
errors during the average procedure.

Moving window averaging

A moving window average is an average where the actual value of a function g(t0) at t = t0 is
given as the average of some function f (tn) at time tn = t0 + n∆t with some finite time step ∆t.
The moving window averaged function F can be calculated as F = ∑N

n=−N f (tn)/(2N + 1).
The averaging procedure is applied to every coordinate of every atom. In what follows,

one coordinate (for example the x-coordinate) of an arbitrary atom is discussed. The time-
dependency may be as in in Fig. 4.8. To obtain the current average x-coordinate, the x-coordinates
of the neighboring points in time are averaged.
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Figure 4.9: The x-coordinate of carbon atom number 1 within the porphyrin ring. Black line: trajectory
during the MD simulation, red line: reference trajectory.

If the average x-coordinate (like in Fig. 4.8) has to be computed from an MD trajectory, an
additional problem occurs: the periods of oscillation for the single coordinates in a molecule
like Pheo adopt very fast in time. Extreme changes, like an increase or decrease of the actual
period of oscillation Tµ(t) (of some coordinate µ) to 50 % within a single oscillation period,
are possible. Hence, the varying of the length of the respective moving window over time is
essential.

Moving window average with time-dependent window length

To apply a moving window average with time-dependent window length, the time and coor-
dinate dependent period of oscillation Tµ(t) for coordinate µ at time t has to be calculated for
every coordinate for the whole time of the simulation. In the following discussion, the index µ
is dropped for the matter of simplicity.

For every coordinate the program searches all occurring maxima within the trajectory (search-
ing the minima would be equivalent). According to Fig. 4.8, the points in time between two
neighboring maxima are defined as the temporal center points tc

n, and the maxima are nu-
merated by an index n. The period of oscillation for such a temporal center point tc

n, T(tc
n) is

defined by the distance between the two neighboring maxima at tn,1 and tn+1,1 (cf. Appendix
C). The period of oscillation for the points in time between the tc

n is linearly interpolated. A
more detailed decription on how to compute the ground state reference trajectory is given in
App. C.

Before this computation can be done, the distance between the single maxima that were
detected during the first run has to be checked. From the number of maxima in the trajectory
of coordinate µ an approximate average period of oscillation for this coordinate 〈T〉approx is
calculated. This number is only an approximation for the following reason: it was mentioned
earlier that the intramolecular vibration can be separated into the bending modes and single
atom vibrations. It was also written that the bending mode periods of oscillation are much
longer than the single atom periods of oscillation (cf. Fig. 4.10), which in general makes it
possible to separate both. However, due to the fact that the bending modes have a much larger
effect on the atomic positions, a bending mode may superpose the period of oscillation of some
coordinate in that way that the maxima (and the following minima) disappear and only an
inflection point remains. The program recognizes if the actual period of oscillation at some
time tc

n is twice or more the approximate average period of oscillation, which occurs when
T(tc

n) > 2〈T〉approx. If the maximum period of oscillation is exceeded, respective additional
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Figure 4.10: The same result as in Fig. 4.10 is shown, only for a longer simulation time. The different
time scales of molecular bending can clearly be seen.

maxima are assumed between the corresponding maxima. The general idea is to assume rather
too many than too few maxima, since the error is quadratic in the deviation between Pheo MD
and Pheo reference trajectory. In any case, the program was tested with different maximum
periods of oscillation and the results depend only weakly on them.

On the one hand, the search for inflection points itself would circumvent this procedure. On
the other hand, this is much more complicated than the search for extrema. And it has to be
mentioned that the period of oscillation of an H atom is about 10 fs, while the time-step of
the MD simulation is 1 fs. This makes the numerical search for inflection points much more
error-prone.

The result of the averaging can be seen in Fig. 4.10 for a larger time scale and in Fig. 4.9 for
a few hundred femtoseconds. In the ground state reference trajectory the molecular bending
modes affect the position of a single atom much more than the single atom vibration.

4.4.4 Electronic first excited state Pheo reference trajectory

To compute the energy gap function, the potential energy for Pheo not only for the electronic
ground state but also for the electronic first excited state is necessary. This requires the knowl-
edge of the Pheo reference trajectory in the electronic first excited state Re(t). As mentioned
in Sec. 3.1, a ground state classical path approximation is utilized in this thesis. This means,
all MD simulations have been executed in the electronic ground state. Thus, the calculation of
Re(t) is not possible in the same way as for Rg(t). In what follows, an method is proposed that
makes it possible to compute Re(t) directly from Rg(t). It was stated earlier in this section that
the all Pheo conformations from the MD trajectories have to be rotated - adapted to the Pheo
orientation in the (TD)DFT calculation (Sec. 4.2) - to calculate the excited electronic state Pheo
reference trajectory. The deviation vectors ∆Req between the electronic first excited (Re

0) and
electronic ground state (Rg

0) Pheo equilibrium conformations were computed as

∆Req =
{

∆Req
1 , ∆Req

2 , ...
}
= Re

0 − Rg
0 . (4.14)

Adding these deviation vectors ∆Req to the (back-rotated) Pheo reference trajectory in the
electronic ground state Rg(t) gives a good approximation for the Pheo reference trajectory in
the electronic first excited state Re(t). The utilization of this approximation can be justified in a
similar manner as the utilization of the equilibrium conformation Hessian matrix elements for
all conformations (cf. Sec. 4.4.2): a 2-dimensional figure of a molecule on a sheet of paper was
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4.4 Intramolecular vibration in harmonic approximation

Figure 4.11: The incidence of vibrational periodicities for all atoms of a single Pheo (for the whole MD
data of 80 ns).

Figure 4.12: Left panel: the incidence of vibrational wave numbers (calculated from the periodicities in
Fig. 4.11) for all atoms of a single Pheo (cf. Fig. 4.11). Right panel: IR spectrum of a single Pheo in the
electronic ground state calculated from the DFT normal mode analysis.

imagined. Slightly curling the sheet of paper changes the angles between neighboring atoms
only a bit. This illustration, of course, is no prove. A variety of electronic structure calculations
for different MD conformations would be necessary to actually prove the approximation.

4.4.5 Errors within the energy gap function calculation

In the following subsection, all approximations within the method to compute the vibrational
part of the energy gap function Uvib

eg (t) will be discussed in detail. Aside from the possible
errors, some results are shown that indicate the quality of the new approach to compute Uvib

eg (t)
in harmonic approximation.

In the beginning, it has to be mentioned that the energy gap function can be utilized to
compute the linear absorption lineshape as derived in Sec. 3.6. Those spectra can be compared
with respective linear absorption experiments, as will be done in Sec. 5.1.2. The linewidths of
the calculated Qy and Qx bands agree perfectly with the experiment. The same holds for the
vibrational satellites. Much more details and results will be given in Sec. 5.1.2, it has only to be
mentioned here that those results indicate the good quality of the method.
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Figure 4.13: Energy fluctuation of a 10 ps MD sample for a single Pheo in ethanol. Black line: electronic
ground state energy fluctuation due to intramolecular vibration calculated in harmonic approximation
(cf. Sec. 4.4). Red line: electronic excited state energy fluctuation calculated in harmonic approximation.
Green line: energy gap function. Blue line: conformation dependent energy during the simulation due
to the MD force field.

Influence of the quality of the trajectories

Fig. 4.11 shows the histogram over the vibrational periodicities that occur in the MD data. The
vibrational periodicity at each time t for every coordinate µ can be calculated with the same
program that is utilized to compute the reference trajectories (cf. Sec. 4.4.3). This periodicities
can be recalculated as wave numbers. In Fig. 4.12 the incidence of this wave numbers within
the MD data for a single Pheo is compared with the IR spectrum of the Pheo electronic ground
state. The IR intensities were calculated by the Gaussian09 program package within the normal
mode analysis that was necessary to compute the Hessian matrices (Sec. 4.2). The first order
IR intensities are calculated by Gaussian09 as |dµel/dQν|2 [148]. µel is the static dipole moment
of the molecule, and the Qν determine the normal mode coordinates. In order to compute the
vibrational absorption spectra, the IR intensities are convoluted with Gaussian functions with
a FWHM of 15 cm-1. This convolution is a usual procedure when computing IR spectra [149].

Note that only the wave numbers ought to be compared in Fig.4.12. The IR spectrum can
not be correlated directly with the incidence of the respective frequencies within Pheo MD
simulations. Nevertheless, the occurrences of the wave numbers in both panels of Fig.4.12 seem
worth to be shown in this thesis and indicate a good quality of the force field. The IR spectrum
shows a gap that does not occur in the left frame of Fig.4.12. However, it can not be expected
from a classical force field to reproduce the eigenfrequencies of a quantum-mechanical system
without diviances.

Influence of the quality of the Hessian matrices

The conformational energy in harmonic approximation (cf. Eq. 3.35) is linear dependent on the
respective Hessian matrix elements. The error of the vibrational modes (and thus the average
error of the Hessian matrix elements) can in general be assumed to be well below 10 % due to
error cancellation [88].

The quality of the Hessian matrices can also be shown by comparing the vibrational energy
fluctuation in harmonic approximation with the conformational energy fluctuation due to the
MD force field. In terms of the MD force field, the conformation dependent MD (force field)
energy EFF of Pheo is given as the sum over next neighboring atom interaction energies as well
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4.4 Intramolecular vibration in harmonic approximation

Figure 4.14: Energy fluctuation of a 10 ps MD sample for a single Pheo in ethanol. Black line: electronic
ground state energy due to intramolecular vibration in harmonic approximation. Full blue line: con-
formational energy due to the MD force field. Dashed blue line: conformational energy due to the MD
force field, shifted up in energy by 3 eV.

as the non-bonded interactions within Pheo (cf. Eq. 4.1). Note that the intramolecular forces due
to an MD force field consist of non-bonded (cf. Sec. 4.1.2) and bonded contributions, while the
Hessian matrix includes all the interactions within the molecule. This conformation dependent
MD energy can be compared with the Pheo energy due to intramolecular vibration, calculated
in harmonic approximation (Eq. 3.35 with Pheo being in the electronic ground state). Fig. 4.13
shows the electronic ground and excited state energy fluctuation, the energy gap function and
the MD conformational energy for a 10 ps MD sample.

The MD conformational energy is shifted against the electronic ground state energy in har-
monic approximation. However, the absolute value of the potential energy can not be assumed
to be the same for the MD force field and the electronic structure calculation. Important for
the MD force field is the effective force on the nuclei. The comparable quantity between both
approaches is the resulting potential energy fluctuation.

In Fig. 4.14 the MD conformational energy is shifted up by 3 eV to make the respective energy
fluctuation more comparable with the fluctuation of the vibrational energy Uvib

g (t) calculated in
harmonic approximation (cf. Eqs. 3.66, 3.67). Fig. 4.15 shows the difference between the shifted
MD conformational energy and the calculated vibrational energy in detail. The similarity of
both curves is remarkable. This result not only indicates the high quality of the Hessian ma-
trices, but it shows that the calculation of the whole electronic ground state energy fluctuation
is very good. This includes the calculation of the MD trajectories, the quality of the reference
trajectories and the neglecting of the bending modes that will be discussed in what follows.

Influence of the quality of the reference trajectories

In Sec. 4.4.3, the Figs. 4.10 and 4.9 showed the MD trajectory of a C atom from the porphyrin
ring and its respective component of the electronic ground state Pheo reference trajectory. Es-
pecially Fig. 4.9 shows that the time-dependent moving window method works. Of course, the
calculation of the reference trajectory is not error-free. This is clear when looking at the fast
changing vibrational frequencies of the single coordinate trajectories. However, the errors for
the difference ∆R can be estimated to be below 10 - 20 % in average (cf. Fig. 4.9). The most
crucial argument is that the errors occur in both directions, that is why a large part of the total
error disappears due to error cancellation.
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Figure 4.15: Same result as in Figs. 4.13 and 4.14. Black line: electronic ground state energy due to
intramolecular vibration. Dashed blue line: conformational energy due to the MD force field, shifted up
in energy by 3 eV. The similarity is remarkable.

Influence of the neglection of molecular bending modes

It has been indicated indirectly in Fig. 4.15 that the influence of neglecting the molecular bend-
ing modes on the quality of the energy fluctuation is rather small. Nevertheless, further in-
vestigations support this thesis. The method introduced in Sec. 4.4 to calculate the energy gap
fluctuation generates the Pheo reference trajectories. In order to compute the force field ener-
gies of the reference trajectory as well as force field energies of the MD trajectory, the NAMD
internal method ’NAMD energy’ was utilized [132]. Fig. 4.16 shows the conformational energy
fluctuation of a 10 ps MD run as well as the conformational energy fluctuation of the respec-
tive electronic ground and excited state Pheo reference trajectories due to the MD force field.
In Fig. 4.17, the conformational energy fluctuation of the electronic ground reference trajectory
is shifted. This makes a direct comparison between the conformational energy fluctuations of
the MD trajectory and the reference trajectory possible. The energy fluctuation of the reference
trajectory is considerably smaller.

Fig. 4.18 shows the respective histogram over the energy fluctuations from Fig. 4.16 (confor-
mational energy of the MD run and of the reference structure trajectory). It can be seen that
the width of the energy distribution calculated from the reference structure trajectory is half as
broad as the width calculated from the MD trajectory. The histograms over this energies are
approximately normal distributed. It is further assumed that the energy distribution of the ref-
erence structure represents the energy fluctuation due to molecular bending and the energy dis-
tribution of the MD trajectory represents the energy fluctuation due to the complete intramolec-
ular vibrations. For the distribution of a sum of two normal distributed random numbers the
following two statements hold: firstly, the resulting distribution is also normally distributed;

secondly, for the width of a general Gaussian distribution one may write Γtotal =
√

Γ2
b + Γ2

iv,
where Γb and Γiv are the widths of the distributions of two random numbers. Γtotal is identi-
fied with the conformational energy distribution due to the complete intramolecular vibration,
and Γb is identified with the energy distribution due to molecular bending (energy distribu-
tion of the reference structure). For Γtotal = 2Γb (linewidths can be estimated from Fig. 4.18),
Γiv = 0.87Γtotal is obtained.

Since Γiv represents the intramolecular vibrational energy distribution width without molec-
ular bending, it is obvious that there is some dependency of the MD conformational energy on
the reference structure energy fluctuation. Alltogether, this discussion provides an indication
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4.4 Intramolecular vibration in harmonic approximation

Figure 4.16: Energy fluctuation of a 10 ps MD sample for a single Pheo in ethanol. Black line: confor-
mational energy of the MD trajectory. The red and green line show the conformational energies of the
respective electronic ground and first excited state reference structures.

Figure 4.17: Energy fluctuation of a 10 ps MD sample for a single Pheo in ethanol. Black line: confor-
mational energy of the MD trajectory. Dashed red line: shifted conformational energy of the electronic
ground state reference structure.

71



4 Methods

Figure 4.18: Energy fluctuation histogram from a 10 ps MD sample for a single Pheo in ethanol. Black:
conformational energy of the MD trajectory. Red: conformational energy of the respective electronic
ground state reference structure.

that neglecting the molecular bending energy fluctuation leads to an error of the total energy
fluctuation. This error is proportional to the value of slightly above 10 % (Γiv = 0.87Γtotal).

The above discussion relates the intramolecular vibrational energy fluctuation in the elec-
tronic ground state without molecular bending with the total intramolecular energy fluctuation
in the electronic ground state (including molecular bending). Actually, the effect of molecular
bending on the gap function has to be considered. Fig. 4.13 showed the electronic ground and
first excited state energy fluctuations and the respective energy gap function. In this figure it is
obvious that the low frequency energy fluctuation for the electronic ground and excited state
energy have no effect on the energy gap. This indicates that the error received when the low
frequency bending modes are neglected is not about 10 %, but probably much smaller.

Influence of the quality of the optimized structures

Fig. 4.19 shows the effect of a change of the deviation vectors ∆Req between the optimized
electronic ground state and the optimized excited state structure (Rg

0 and Re
0) on the fluctuation

of the energy gap functions for a 10 ps trajectory of Pheo in ethanol. The deviation vectors ∆Req

are multiplied with the number f , with
f = {0.5, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5}.

The resulting energy fluctuation linewidths are shown in Fig. 4.19. The dependence of the
energy gap fluctuation computation on the quality of the deviance vectors is acceptable. A
respective error of 10 % for the deviation vectors ∆Req (cf. Eq. 4.14) changes the width of the
distribution by about 5 %. A larger error than 10 % for the complete set of deviation vectors
is not expected. However, this is not proven here. At this point, it is not clear which part
a possible error cancellation would have, if the deviation vectors ∆Req

µ have different errors
for different coordinates µ. Nevertheless, concerning the other contributions to the error of
the gap function, the quality of the optimized structures seems to be one of the most error-
prone parts of the gap function calculation. This is interesting, since the quality of this part of
the calculation can be controlled somehow by choosing the best possible quantum chemistry
method or basis set. The calculation done by our co-workers with (TD)DFT, a B3LYP-exchange-
correlation potential and the 6-311(d,p) basis set is at a very high level. But concerning the
rapidly enhancing quality of computing machines, even the utilization of larger basis sets may
be possible in the future.
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4.4 Intramolecular vibration in harmonic approximation

Figure 4.19: Histograms over the energy gap fluctuations of Pheo in ethanol for different deviation
vectors f ∆Req. The real number f acts as a factor on ∆Req (cf. Eq. 4.14). Black: f=1.0, light blue: f=0.9,
dark blue: f=1.1, light green: f=0.8, dark green: f=1.2, magenta: f=0.5, violet: f=1.5. The full lines show
respective averages over five neighboring values.

Figure 4.20: Pheo equilibrium conformations. The black structure shows the MD force field equilibrium
conformation of Pheo. The respective equilibrium conformations of the electronic ground state, first
excited and second excited state are drawn in cyan, blue and green.
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Figure 4.21: Pheo equilibrium conformations. The black structure shows the MD force field equilibrium
conformation of Pheo. The respective equilibrium conformations of the electronic Hartree-Fock ground
state and the CIS first excited state are drawn in cyan and blue.

To underline the importance of the equilibrium structures for the different excited states,
Fig. 4.20 and Fig. 4.21 have to be compared. While Fig. 4.20 shows the equlibrium structures
calculated by our co-workers (electronic ground, first, and second excited state), Fig. 4.21 shows
the equlibrium structures for Hartree-Fock and configuration interaction singles (CIS) calcula-
tions (Hartree-Fock for the electronic ground state and CIS for the electronic first excited state,
both with the 6-31* basis set), previously calculated by a former group member. Both figures
additionally include the MD minimum conformation. The difference of the structures calcu-
lated with Hartree-Fock and CIS are extremely large. The respective energy for the excited
state calculated with the deviation vectors ∆Req between the ground and the excited electronic
state has an equivalently large error. This illustrates how important the appropriate computa-
tion of the molecular equilibrium geometries in the electronic ground, first excited, and second
excited state is.

Other influences on the quality

The calculation of the excited state reference structure via the deviation vectors ∆Req (cf. Eq. 4.14)
between electronic ground and excited state equilibrium structures (Rg

0 and Re
0, respectively)

depend on the appropriate back-rotation of the MD Pheo orientation to the Pheo orientation
of the electronic structure calculations. In order to carry out this back-rotation, the calcula-
tion of the plane normal vector of Pheo is necessary. The procedure is explained in detail in
Sec. 4.4.1. In the calculation a respective Savitzky-Golay average of the time-dependent normal
vector is done. A Savitzky-Golay average performs a local polynomial regression [150] on the
time-dependent normal vector. The average is taken over 1 ps. Fig. 4.22 shows the energy fluc-
tuation due to intramolecular vibration, calculated via Eq. 3.35. One curve is calculated with
Pheo normal vectors that are averaged over 1 ps, while the other curve uses an average win-
dow of 100 fs. Both curves give nearly the same result. The effect on the energy gap fluctuation
is marginal.
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4.5 Solving the TDSE utilizing molecular dynamics trajectories

Figure 4.22: Energy gap fluctuation for a single Pheo in ethanol. Green line: energy gap function for a
10 ps MD sample. The normal vector of the molecule was Savitzky-Golay smoothed over 1 ps. Orange
dashed line: same result for the molecular normal vector averaged over 100 fs. The difference between
both curves is very small.

4.5 Solving the TDSE utilizing molecular dynamics trajectories

The computation of optical properties, linear absorption, or transient absorption (cf. Secs. 3.6
and 3.8) requires the computation of the CC wave function expansion coefficients Ãα (cf. Eq. 3.16).
For the computation of linear absorption only those Ãα become finite which represent a singly
excited wave function. However, in the following section it will be clarified how the solution
of the TDSE is derived from the nuclear trajectories.

As described in Secs. 4.4 and 4.3.1, for each chromophore m the energy gap function Umeg(t)
is computed. For each chromophore pair m and n, the transition coupling Jmn(t) is computed.

For all PN systems, MD data of 8 trajectories, each with a length of 10 ns (8 ns for P16), are
available. For P16 additional MD data were produced (16 runs with different initial conforma-
tions). In what follows, it will be described how the TDSE can be solved for the available MD
data.

4.5.1 Solving the TDSE for singly excited PN systems

Starting with the first MD sample length (200 fs of MD data) of PN in ethanol, the values for the
energy gap function Ueg(t; tMD = 0) and the transition couplings Jmn(t; tMD = 0) are inserted
into the TDSE for the expansion coefficients (Eq. 3.60), with tMD being the time in the MD
trajectory that is the initial time (t = 0) for the solution of the TDSE (Eq. 3.60). Eq. 3.60 is then
solved for the N different initial conditions Ãα(t = 0) = 1. If the chromophores within a CC are
excitonically coupled, this initial condition does not represent the initial electronic excited state
of a CC shortly after the excitation. The electronic excited state will then be a superposition
over different Ãα, since the CC is excited to an excitonic state. However, for P4 and P16 it is
assumed that single Pheos are excited (concerning the time scale of the EET transfer above 1
ps, this approximation seems to be reasonable). The sample length of 200 fs is chosen because
of the good convergency of the respective dipole-dipole correlation function after the ensemble
averaging. The dipole-dipole correlation function vanishes after about 50 fs due to dephasing.
The length of the MD sample (sample length) will be referred to as ∆tsample in what follows.
∆tsample has to be larger than 50 fs, since this is the convergence time of the averaged expansion
coefficients Ãα.

After solving the TDSE for N times (for N different initially excited Pheos) for the first MD
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sample, the MD time tMD is set to tMD = toffset. The expansion coefficients thus depend para-
metrically on tMD, which is indicated in the definition Ãm(t; n, tMD) (cf. Eq. 3.59). The offset-
time toffset must not be larger than 200 fs, otherwise some MD data are not utilized for the
computation. However, it is possible to choose toffset < ∆tsample. The respective procedure
will be called ’nesting’ in this thesis, each part of the trajectory is then utilized several times
to increase the convergence of the method. Whether nesting is required or not depends on the
available MD data. If linear absorption for 80 ns of MD data is computed, nesting will not be
neccessary. If 10 ps of the MD simulation are utilized to compute the averaged expansion coef-
ficients (for example, to compute a conformation dependent transition rate), nesting has to be
used to achieve convergence. If not otical properties but populations are to be calculated from
the solution of the TDSE, the sample length was set to ∆tsample = 10 ps. In this case, nesting is
also necessary.

After solving the TDSE for all available MD data, the averaged expansion coefficients are
written as

Ãav
m (t; n) =

1
K

K

∑
k

Ãm(t; n, ktoffset). (4.15)

K counts, how often the TDSE was solved. The formula for the linear absorption in Eq. 3.73
includes the term 〈d0m(t)Ãm(t; n)dn0〉. Since the scalar dipole moment d0m(t) changes only
marginally in time, this term converges as fast as the averaged expansion coefficients (Eq. 4.15).
After 50 fs, the dipole-dipole correlation function approaches zero. Thus, the choice of ∆tsample =
200 fs is justified for the computation of linear absorption (and also for the computation of EET
rates).

4.5.2 Solving the TDSE including the electromagnetic field for P4

The solution of the TDSE including the electromagnetic field directly requires the solution of
the coupled Eqs. 3.121, 3.122 and 3.123. The procedure is exactly the same as for a singly
excited P4 complex. However, the MD sample time ∆tsample has to be long enough to include
the pump and probe beam and some time (50 fs) before the maximum of the pump pulse (finite
width of the pulses) and after the maximum of the probe pulse (200 fs, cf. Sec. 4.5.1). Thus, the
sample length is computed as ∆tsample = tdelay + 250 fs with the delay time tdelay. The pump
pulse arrives at t = 50 fs, and the full width half maximum value for both the pump and the
probe beam is 12 fs. To achieve convergence for MD data of 80 ns, the offset-time is chosen as
toffset = 100 fs.
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5 Pheo, P4 and P16: EET and optical properties

In this chapter, the results of the mixed quantum-classical calculations, utilizing the formulas
explained in Chap. 3 and the methods of Chap. 4, are presented. In the first section, the results
for the single Pheo in ethanol are shown. In the following sections, P4 and P16 are discussed.

5.1 The single Pheo molecule in ethanol solution

5.1.1 The energy gap function

Figure 5.1: Energy gap fluctuation of a single Pheo in ethanol for a 10 ps MD sample. Black line: energy
gap fluctuation due to intramolecular vibration Uvib

eg (t) (Eq. 3.66). Red line: energy gap fluctuation due
to solvent coupling Usol

eg (t) (Eq. 3.68). Published in [84].

The energy gap function is the key to the optical properties of the system, if the DCL is
used to translate the full quantum formulas to their mixed quantum-classical representations
(cf. Sec. 3.5). Fig. 5.1 shows the energy gap function for a 10 ps MD run and compares the
intramolecular and intermolecular contributions. The intramolecular vibrational contribution
dominates the contribution due to solvent coupling. Two statements concerning the energy
gap fluctuation in Fig. 5.1 have to be made.

Firstly, compared to the energy gap function shown in Fig. 5.1, in the calculations in the group
of Kleinekathöfer not the intramolecular but the intermolecular contribution to the energy gap
function dominates [28]. Note that an intramolecular contribution denotes the vibrational con-
tribution of a single Pheo, whereas the intermolecular contribution denotes the electrostatic
coupling to the other Pheos, the dendrimer, and the solvent. In the group of Shi, who used the
same method for the solvent coupling contribution (ZINDO) as the Kleinekathöfer group, the
intramolecular vibration dominates (vibrational broadening is included parametrically utiliz-
ing Huang-Rhys factors [30]). On the other hand, the line shape for the Qy absorption, which
depends on the energy gap function fluctuation, has to be broadened in the calculations of Shi
(as well as the B800/B850 absorption in [28]), while ZINDO calculations on Pheo in ethanol
(Fig. 5.2) show a far too broad linewidth. The ZINDO energy gap function on Pheo was kindly
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5 Pheo, P4 and P16: EET and optical properties

Figure 5.2: Linear absorption of the Qy band of Pheo dissolved in ethanol. Black line: experimental
result. Green line: linear absorption calculated as explained in Secs. 3.6 and 3.5 (the vibrational part
of the energy gap function is calculated in harmonic approximation). Red curve: linear absorption
result obtained from the energy gap function that was computed utilizing ZINDO (in the group of
Kleinekathöfer).

provided by the group of Kleinekathöfer. It has to be mentioned here that only a short MD
trajectory (100 ps) was calculated in order to test ZINDO with Pheo in ethanol, which is is the
only reason for the bad convergence of the lineshape in Fig. 5.2.

Secondly, there are several indications that the calculation of the energy gap fluctuation due
to solvent coupling Usol

eg is much more error-prone than the calculation of the intramolecular
contribution. The classical force field does not include polarization effects directly. Even if
screening is treated (cf. Sec. 7.3), polarization may have an influence on the partial charges
themselves and therefore on the nuclei trajectories. The most error-prone part in the compu-
tation of Usol

eg is the calculation of the difference between partial charges {qa
mi − qg

mi}, with a
being either the first or second excited electronic state (the difference between partial charges
is included in the formula for Usol

eg , Eq. 3.68). The comparison of the partial charge data used
by Zhu in [75, 82, 83, 87] (calculated with the B3LYP exchange-correlation potential and a 6-
31G(d,p) basis set, without PCM) and the partial charge data calculated by Kulesza (B3LYP,
6-311**, PCM) shows a difference in the energy fluctuation amplitude of nearly 50 %. Such a
large difference, dependent on slight changes of the basis set, reveals a large problem, rating
the quality of the ∆qi values. The ∆qi may be normalized by respective measured values from
Stark experiments [32]. Stark-hole burning experiments may yield the difference of the elec-
trostatic dipole moments in the electronic ground and first excited state ∆dstat

eg . However, there
exist Stark hole-burning experiments for chlorophyll a (optical properties are about the same as
for Pheo), but the data for f ×∆dstat

eg differ by about 50% (from 0.5 D to 0.8 D) [151, 152], f being
the local field correction factor that can not be measured directly. Assuming a Lorentzian local
field correction ( fLorentz = (ε(ωeg) + 2)/3) [153], the measured ∆dstat

eg values for chlorophyll a
differ from 0.4 D to 0.6 D (the dielectric constant ε(ωeg) for ethanol is 1.86, and ωeg is the tran-
sition frequency). ∆dstat

eg for Pheo in ethanol, calculated from the partial charges utilized in this
thesis (DFT, B3LYP, 6-311**, PCM), is 0.5 D, indicating a good quality of the DFT calculations.

If the solvent coupling contribution to the energy gap function becomes important, a high
level computation of the partial charges has to be carried out, to prevent large errors when the
partial charge difference is computed.
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5.1 The single Pheo molecule in ethanol solution

Figure 5.3: Linear Qy band absorption of Pheo in ethanol. Black line: experimental absorption for Pheo
in ethanol. Red line: linear absorption calculated without the intramolecular vibration. Green line:
linear absorption result for the complete energy gap function. The peak maxima were fitted to the
experimental result. 80 ns of MD simulation were utilized to achieve the ensemble average.

5.1.2 Linear absorption

Fig. 5.3 shows the result for the calculation of the linear absorption line shape function for the
Qy band absorption of a single Pheo in ethanol solution. The position of the maximum was
taken as a parameter, while the linewidth itself was calculated without any free parameters.
The perfect agreement with the experimental curve indicates the very good quality of the en-
ergy gap function calculation. The difference between calculated and measured curve at the
high energy wing is due to a vibrational progression. The vibrational progression is included
within the mixed quantum-classical calculation, but with a classical amplitude. This classical
amplitude is a factor 1/ fMN(ωvib, T) smaller than the quantum mechanically calculated am-
plitude of the vibrational progression (cf. Sec. 3.6.2). It is important to mention that the factor
fMN(ωvib, T) depends explicitly on the vibrational frequency ωvib and on the temperature T
(cf. Eq. 3.94 in Sec. 3.6.2). In Fig. 5.4, the absorption linewidths for the Qy and the Qx band
are shown. This results were calculated utilizing 80 ns of MD simulation (8 times 10 ns started
with the same initial conformation).

The solution of the TDSE from the MD data and the respective averaging of the expansion co-
efficients have been explained in Sec. 4.5. The averaged expansion coefficient can be interpreted
as the respective S-operator matrix elements (cf. Sec. 3.6) and be inserted into the equation for
the linear absorption cross section (Eq. 3.73).

When the mixed quantum-classical vibrational progression is to be adjusted by the correc-
tion factors fMN(ωvib, T), the single peaks have to be fitted to Gaussian functions. Inhomo-
geneous broadening dominates against homogeneous broadening, thus the line shapes can be
approximated as Gaussian shaped. After the fitting, the contributions of the main peak and the
satellites can be seperated.

The upper panels in Fig. 5.4 show the results of the respective calculation with Eqs. 3.73 and
3.79 for a single Pheo in ethanol. The red lines show different Gaussian fits for the calculated
absorption curves.

The Qy and Qx peaks are mainly Gaussian line shaped. Only the wings of the absorption
curves have to be fitted with at least one additional Gaussian function to receive the mixed
quantum-classically calculated result. When looking at the wings of the Qx peak in the right
upper panel of Fig. 5.4, on both sides of the main peak a vibrational progression is observable.
This vibrational progression is also there for the Qy peak in the left upper panel of Fig. 5.4, but
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5 Pheo, P4 and P16: EET and optical properties

Figure 5.4: Linear absorption of Pheo in ethanol, computed from 80 ns of MD simulation. Left panels: Qy
band, right panels: Qx band. The lower panels show the lower parts of the respective absorption band
in detail. Red dotted line: single Gaussian fit for the lineshape. Red full line: fit containing two Gaussian
functions for the main peak and one Gaussian function for each vibrational satellite. Red dashed line:
fit containing four Gaussian functions for the main peak and one Gaussian function for each vibrational
satellite (only for the Qy band). The maximum of the main peaks was taken as parameter from [22].
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5.1 The single Pheo molecule in ethanol solution

it is much weaker.
In what follows, a very simplified picture is considered: if the vibrational progression is

caused by a single vibronic coordinate that couples to the transition, this will result in a main
peak with equidistant vibrational satellites on both sides of the main peak (cf. Sec. 3.6.2), with
a distance in energy of h̄ωvib. In this approximation a Gaussian shaped main peak will be
accompanied by Gaussian shaped vibrational progression peaks that have the same linewidth.
However, in the experimental and in the calculated spectra the distance between the peaks is
not equidistant. Furthermore, the linewidths are not the same.

Vibrational progression

The fitting of the main and of the two vibrational peaks on the high energy wing (quantum me-
chanically calculated vibrational progression occurs on the high energy wing, cf. Eq. 3.84) with
Gaussian functions enables to separate the single peaks and to quantify their respective ampli-
tudes. The classically derived amplitude of the vibrational progression can then be corrected
utilizing the factor fMN derived in Sec. 3.6.2 (cf. [154]).

The vibrational progressions of the Qx and the Qy band in Fig. 5.4 and the respective fits can
be observed in much more details in the two lower panels. It can be seen that the calculation
result can be fitted properly with one Gaussian function for each satellite and two Gaussian
functions for the Qx main peak as well as with four Gaussian functions for the Qy main peak.
For the fitting of the Qy main peak, more Gaussian functions are necessary, since the vibrational
satellites have a much lower amplitude. If the amplitude of the vibrational peak is small, the
contibution of the main peak at the frequency of the vibrational peak becomes of importance.
Moreover, if the frequency is far away from the resonance energy (15015 cm−1 for the Qy band),
the single Gaussian fit approximates the respective part of the lineshape rather inadequately.

It has to be stated here that on the one hand, the fitting of the main peak with more Gaussian
functions yields a better agreement with the calculated result. But on the other hand, for weak
vibrational progression (as for the Qy band), it is not clear which part of the total absorption
cross section belongs to which peak (main peak or vibrational satellite).

In Fig. 5.5, the Gaussian fits shown in the Fig. 5.4 are utilized to calculate the Pheo (in ethanol)
absorption spectrum in the optical range (except the Soret band). The positions of the main
peaks were used as fit-parameters from the experiment [22]. The maximum of Qy main band
intensity was normalized to 1. The ratio between the Qy band and the Qx band intensity was
computed from the oscillator strengths that were calculated with DFT (cf. Sec. 4.2). In order
to correct the mixed quantum-classical vibrational progression, the vibrational satellites were
increased by the frequency-dependent factor f01(ωvib, T) (cf. Sec. 3.6.2). This was done for
all the four fitted vibrational peaks. The underlying assumption is that the two vibrational
progression peaks of each band (Qx and Qy band) consist of a variety of vibrational modes
coupling to the electronic transition, not only the two vibrational modes that correspond to
the two visible vibrational satellites. Thus, the whole vibrational progression is given as a
first order vibrational progression of all the vibrational modes that couple to the electronic
transition. The respective result matches the experimentally measured absorption curve [22]
quite well.

In Fig. 5.5, the dashed green line shows a spectrum which was computed by overestimating
the vibrational satellites by a factor of 2. This was done to demonstrate that the linewidths of
the first vibrational satellites have the same linewidths as the measured vibrational satellites.
Those are broader than the Qx and Qy main peaks. This indicates that not only two, but a
variety of vibrational modes couple to the electronic transitions. The two second vibrational
satellites (the second satellite of the Qy main peak and the one of the Qx main peak) are both
multiplied by the factor f01, not by the factor f02. Nevertheless, the second visible vibrational
satellite for both of the electronic transitions is modelled quite well. This indicates that this
second visible satellite in the experiment consists of two contributions. The first contribution is
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5 Pheo, P4 and P16: EET and optical properties

Figure 5.5: Linear absorption of Pheo in ethanol. The only parameters utilized for the calculated curves
are the maxima of the two peak positions taken from [22]. Black line: experimental result. Red lines:
single Gaussian fit functions from the calculated results including the Qy band, the Qx band, and all
vibrational satellites (cf. Fig. 5.4). Dashed green line: sum over the red lines. Dotted green line: same
result as dashed green line, but the vibrational satellites are multiplied with a factor of 2. This makes it
possible to compare the linewidths of the first vibrational satellites which match the experimental result
quite well.

due to a vibrational progression of hydrogen vibrational modes (the wave number is about 3000
cm-1) and the second contribution is due to a second order vibrational progression of carbon
and nitrogen vibrational modes. This, however, can not be determined conclusively within this
work, since the contributions of the first and the second order vibrational progressions can not
be seperated.

Finally, the high energy wing of the Qy band is to be discussed. Fig. 5.3 shows that the
computed lineshape matches the measured lineshape, aside from the high energy wing of the
peak. Considering the results of this section, it seems to be clear that low frequency vibrational
modes as well couple to the electronic transition. The vibrational progression due to this low
frequency modes thus affects the main peak itself. This low frequency vibrational progression
can not be seperated from the main peak. Thus, it can not be amplified by a factor f01(ωvib, T)
in order to correct the mixed quantum-classical vibrational progression.
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5.2 The P4 dendrimer

5.2 The P4 dendrimer

Figure 5.6: P4 in ethanol conformation and exci-
tonic couplings. Upper panel: P4 conformation
of run 6, after 790 ps. Middle panel: 10 ps MD
trajectory starting with the conformation of the
upper panel. Black: excitonic coupling between
Pheos 1 - 2, red: 1 - 3, green: 1 - 4, blue: 2 - 3, ma-
genta: 2 - 4, orange: 3 - 4. Lower panel: excitonic
coupling for the first nanosecond of the MD tra-
jectory (run 1), same color code as for the middle
panel.

The EET within P4 and the optical properties of
P4 depend on the very different possible P4 con-
formations, which account for a large number of
different sets of excitonic couplings between the
single Pheos that are bound to the dendrimer.

Figs. 5.6 and 5.7 show P4 conformations from
different MD runs. 8 runs (all of them 10 ns
long) were carried out, starting from the same
initial conformation (shown in Fig. 2.3). The
time scale of the conformational change in the P4
system at 300 K is about 50 ps. Thus, starting the
8 different MD runs from the same initial con-
formation is not expected to affect the quality
of the ensemble average dramatically. The cho-
sen initial conformation was an unfolded one
to increase the accessible conformational space
within a preferably short simulation time.

At this point, a comment concerning the
phrase ’ensemble average’ has to be made. By
the means of this thesis, the ’quality of the en-
semble average’ implies, how well the accessible
MD data reproduce the ensemble average that
occurs in a respective experiment.

The conformations shown in Figs. 5.6 and 5.7
indicate the flexibility of the P4 dendrimer. Be-
side the P4 conformations, the respective ex-
citonic coupling between the single Pheos is
shown. While each of the middle panels shows
the excitonic coupling between the four chro-
mophores within a simulation time of 10 ps (on
this time scale, the P4 conformation can be as-
sumed to remain stable), the lower panels show
the excitonic coupling for the simulation time of
one complete nanosecond. While the excitonic
couplings in the middle panels of Figs. 5.6 and
5.7 are relatively stable, the excitonic coupling
between Pheos 1 and 4 on the lower panels of
Fig. 5.7 is fluctuating on a picosecond time scale,
with an amplitude of several meV.

The conformations shown in Figs. 5.6 and 5.7 represent only a very small part of a large
amount of possible P4 conformations. It will be shown in this section that the optical properties
of P4 are highly affected by the very different conformations that emerge during the trajectories.

Fig. 5.8 shows not only the excitonic coupling between the four Pheos, but also the energy
gap function due to intramolecular vibration and solvent coupling for the conformation shown
in the left upper panel of Fig. 5.7. The solvent coupling also includes the coupling to the den-
drimer structure. Fig. 5.8 demonstrates that the fluctuation of the energy gap function due to
intramolecular vibration dominates the total energy fluctuation. The energy values of the ex-
citonic couplings are rather small. For some special conformations, values about 30 meV are
possible, but for the most parts of the simulation data it is between -10 and 10 meV (compare
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with the middle panels of Figs. 5.6 and 5.7), and the averaged absolute value of the excitonic
coupling is below 2 meV.

5.2.1 Linear absorption

The linear absorption of the Qy band of P4 in ethanol was calculated from Eq. 3.73. The result is
shown in Fig. 5.9 and compared to the single Pheo absorption. The maxima of the absorption
curves are parameters taken from the Pheo in ethanol linear absorption experiment. Taking the
P4 in ethanol peak position as parameter for the respective curve would not help comparing the
line shapes for Pheo and P4 absorption. However, the linear absorptions of Pheo and P4 differ
basically due to the excitonic coupling in P4, which is of no importance in a dilute solution of
Pheo in ethanol. The coupling of the Pheo molecules to the dendrimer in P4 gives no significant
broadening effect compared to the coupling of a single Pheo to its ethanol solvation shell. This
was proven by calculating the linear absorption without excitonic coupling between the Pheos.
The resulting absorption linewidths for P4 and for Pheo in ethanol are exactly the same.

The broadening of the P4 absorption linewidth is due to the excitonic coupling between the
Pheos. However, this broadening is rather weak. It can be explained as follows: in a simple
model of two two-level systems with the same energy levels and thus the same excitation en-
ergy ∆E = E1 − E0 and coupled by the excitonic coupling J, two excitonic energy levels are
formed [26]. They have the energies E(1)

exc = ∆E + J and E(2)
exc = ∆E− J. In P4 four instead of

two Pheos are coupled. The maximum energy splitting, if more than two chromophores are
involved, may be larger than 2J (for a linear chain of molecules with next neighbor interac-
tion it is 4J [26]). There exist innumerable P4 conformations and thus countless combinations
of the mutual excitonic couplings between the Pheos in P4. In the experiment, not the linear
absorption line shape of a single P4 conformation but a line shape averaged with respect to
all possible P4 conformations is measured. Thus, during the P4 MD simulations an acceptable
ensemble average with respect to all possible P4 conformations has to be achieved.

The measured spectrum of Pheo and P4 was shown in Fig. 2.5. A direct comparison with
the calculated data is not shown. The experimentally measured linewidths are broader than
the calculated ones. The first idea was that there could exist dimer formations within the PN
complexes with a much enhanced excitonic coupling that does not occur in the previous simu-
lations. Artificial dimer and Pheo stack formations were created that were more or less stable
within a nanosecond of MD simulation. However, the calculeated linear absorption for P4
molecules that included dimer conformations was in general not much broader than the linear
absorption calculated for P4.

The broadening in the P4 and P16 linear absorption measurements compared to the linear
absorption of Pheo was more than 200 cm−1. In principle, such a broadening may occur due
to an excitonic coupling. The maximum exciton splitting in a system with multiple two-level-
systems, excitonically coupling with J, is here approximated as 4J (this is the maximum energy
splitting for the linear chain [26]). For an average excitonic coupling of 10 meV (such a value
is possible for Pheo dimers with parallel transition dipole moments), the broadening can be
approximated as 322 cm-1. However, the averaged coupling that was calculated from the MD
simulations was about 1-2 meV, resulting in a maximum broadening of 32-64 cm-1. This corre-
sponds to the result shown in Fig. 5.9.

It is possible that the measured samples of P4 and P16 in ethanol included unknown contri-
butions (Pheo may have reacted during the synthesis). Another hint is the linear absorption
measurement for pyropheophorbide a (Pyropheo) molecular systems in [155]. The linear ab-
sorption lineshapes for the different system sizes (one, two and six Pyropheos bound) do not
vary as dramatically as in [22]. Besides, in [36], a linear absorption of Pheo dimers was mea-
sured that featured a smaller linewidth than the P2 linear absorption in [22].

This may also be the reason for the absorption shift of P4 to smaller energies in comparison
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Figure 5.7: P4 in ethanol conformations and excitonic couplings. Left panels: MD run 1, after 990 ps,
right panels: MD run 4, after 990 ps. Upper panels: P4 conformations. Middle panels: 10 ps MD
trajectory starting with the conformation of the upper panels. Black: excitonic coupling between Pheos
1 - 2, red: 1 - 3, green: 1 - 4, blue: 2 - 3, magenta: 2 - 4, orange: 3 - 4. Lower panels: excitonic coupling for
the first nanosecond of the MD trajectory (run 1), same color code as for the middle panel.
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5 Pheo, P4 and P16: EET and optical properties

Figure 5.8: Intramolecular vibrational energy gap (black), the solvent coupling energy gap (red) and the
excitonic couplings (all in green) for a 10 ps MD trajectory of P4 in ethanol. The black and the red line
show the result for Pheo 1 (cf. Fig. 2.3). Run 1, beginning after 990 ps.

Figure 5.9: Linear absorption for P4 (red) and Pheo (black) in ethanol, both calculated from 8 times 10 ns
of MD simulation. Peak maxima were shifted to 15015 cm-1 (Pheo in ethanol experimental value).
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Figure 5.10: Correlation function for the EET between chromophores 1− 2. Full lines: Eq. 3.112 was
utilized, dashed lines: Eq. 3.111 was utilized. Black line and grey dashed line: the result was calculated
from 8 times 100 ps of MD data. Red line and orange dashed line: the result was calculated from 8 times
1 ns. Both approximations finally yield the same result, though it is shown that Eq. 3.112 converges
faster.

to the Pheo absorption. The excitonic coupling shifts the P4 peak slightly to higher energies in
the calculations (this is not shown in Fig. 5.9, as the peak position was taken as a parameter
from the Pheo absorption). The respective peak shift from the solvent coupling, that is not
the same for Pheo and P4, converges very bad. Thus, the result from the available MD data is
ambiguous. In any case, a shift as shown in the measured curve can be ruled out.

5.2.2 EET rates

In the following subsection, the results for the EET rate calculations are presented. Utilizing
Eq. 3.109 (derived and explained in Sec. 3.7), the EET rate between two Pheos m and n within
the P4 CC may be computed. The formula for the EET rate km→n in Eq. 3.109 includes the
square of the excitonic coupling Jmn between the two chromophores and the correlation func-
tion Cm→n(t). This correlation function can be approximated either by Eq. 3.111 or by Eq. 3.112.

Before discussing the results for the EET rates, the two approximations for Cm→n(t), Capp1
m→n(t)

and Capp1
m→n(t), are discussed. The first important result is that both approximations give the

same result, if the correlation function is converged. The convergence is much faster for Eq. 3.112.
In Fig. 5.10, the result for the averaged correlation function (beween the Pheo pair 1, 2) is
shown for two different simulation times for each of the two approximations (〈Capp.1

m→n(t)〉ther

and 〈Capp.2
m→n(t)〉ther). After altogether 8 ns of simulations both methods give the same result.

After 800 ps of MD simulation Eq. 3.111 did not finally converge. Nevertheless, the difference
to the result of Eq. 3.112 is not dramatical. The results have been computed utilizing a sample
length ∆tsample = 200 fs and an offset time toffset = 200 fs. That means that every MD snapshot
is used once in the transfer rate calculation. More details are given in Sec. 4.5. Decreasing the
offset-time toffset would make sure that both the Eqs. 3.111 and 3.112 converge faster.

Fig. 5.11 shows the averaged correlation function, calculated via Eq. 3.112 for the Pheo pairs
m, n. It can be seen in Fig. 2.3 (which shows the P4 structure) that the Pheo pair 1, 2 has a shorter
connection (shorter dendrimer chain between the Pheos) than the pairs 1, 3 or 1, 4, respectively.
The same holds for the Pheo pair 3, 4 in comparison with the pairs 3, 1 and 3, 2. Still, that does
not mean that at any P4 conformation the Pheo pair 1, 2 is spatially closer then the Pheo pairs
1, 3 or 1, 4. But in average, this statement is true.
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5 Pheo, P4 and P16: EET and optical properties

Figure 5.11: Correlation functions calculated utilizing Eq. 3.112 and 8 times 1 ns of MD data. Black line:
chromophores 1− 2, red dashed line: 3 - 4, green dotted line: other pairs (not distinguishable). The
figure is from [39].

Figure 5.12: Correlation functions calculated utilizing Eq. 3.112 and 8 times 10 ns of MD data. Black line:
chromophores 1− 2, red dashed line: 3 - 4, green dotted line: all others (not distinguishable).
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5.2 The P4 dendrimer

Figure 5.13: EET rates calculated from 80 times 50 ps of MD simulations with the same initial P4 confor-
mation. Shown is the rate between chromophore 1 and chromophore 2. Black: calculated via Eq. 3.112,
red: calculated via Eq. 3.111. Both differ only weakly. It is shown that even if the initial P4 conformation
is the same, the results for the transfer rate between two chromophores calculated from different runs
vary greatly.

In Fig. 5.11 the correlation for the Pheo pairs 1, 2 as well as 3, 4 are shown in different colors.
The correlation functions between the four other pairs of Pheo are drawn in the same color
since they are nearly indistinguishable. Fig. 5.11 indicates that there is some dependency of the
correlation function on the Pheo pair. However, the result in Fig. 5.12 shows that this is not
the case. The figure shows in principle the same result as Fig. 5.11, but the achieved ensemble
average for Fig. 5.12 is much better. For this calculation of Fig. 5.12 the whole data of eight
times 10 ns were utilized. The correlation functions of all the different Pheo pairs have the
same shape. The reason for the slight but significant difference in Fig. 5.11 is the fact that the
ensemble average of the P4 system was not reached after 8 times 1 ns of MD simulation.

Utilizing the whole data of MD simulations (eight times 10 ns) and applying formula 3.109 to-
gether with Eq. 3.111, the ensemble-averaged transfer rates 〈kmn〉ther were calculated. Ensemble-
averaged means that the whole available MD data including all the different P4 conforma-
tions are utilized to compute 〈kmn〉ther. The ensemble-averaged EET rates have values between
1011/s and 4× 1011/s.

Dependence of the transfer rate on the correlation function approximation compared to its
dependence on the conformational change

Before further discussing the transfer rate, some additional results will be presented that may
help to give some further insight on how the calculated rates depend on the conformation and
on the approximation for the correlation function (Eq. 3.111 or 3.112). Beside the 80 ns of MD
simulation data, for P4 80 additional MD runs, each run starting with the same initial confor-
mation were executed. The atom trajectories between t = 10 ps and t = 50 ps were utilized to
compute the respective rates utilizing Eq. 3.109 for the transfer rate, with both Eqs. 3.111 and
3.112 for the correlation functions. The result is shown in Fig. 5.13. The results for Eqs. 3.111
and 3.112 are nearly similar. Since the convergence of Eq. 3.111 is much better, this approxima-
tion can be utilized to compute rates for even shorter MD time slices (such as 10 ps, which will
be utilized later). Furthermore, it is obvious that the EET rates differ greatly for the particular
simulations. This indicates that within the 50 ps of simulation the P4 conformation must have
changed. The EET rate depends on the distance Xmn between the centers of Pheos m and n
with kmn ∝ 1/X6

mn (compare with Sec. 3.7). This dependence results in the fact that even small
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Figure 5.14: EET within P4. The EET rates calculated for 1 ns of simulation are drawn, each point repre-
sents 10 ps of simulation utilized to calculate the rate. Shown are the rates between black: chromophore
1 - chromophore 2, red: 1 - 3, green: 1 - 4, blue: 2 - 3, magenta: 2 - 4, orange: 3 - 4.

conformational changes can result in dramatical changes of the rates.

Conformation dependent transfer rates

Henceforward, the transfer rates computed from the 8 times 10 ns of simulation will be dis-
cussed. The rates, calculated with Eq. 3.109 from the whole MD data, represent ensemble-
averaged rates. Those ensemble-averaged rates are averaged rates computed for a lot of dif-
ferent P4 conformations. The foregoing discussion indicates that EET rates can be calculated
utilizing Eq. 3.109 for the rate and Eq. 3.112 for the correlation function even for short MD slices
of 10 ps. Within such a short time slice the P4 molecule has a more or less stable conformation.
Thus, the transfer rates calculated for short parts of the MD trajectory during which the con-
formation is stable will be referred to as conformation dependent rates. Fig. 5.14 shows the
conformation dependent rates for the first ns of MD run 1.

The rates for the several 10 ps MD pieces were calculated for the first nanosecond of (each
of) the eight MD runs. The conformation dependent rates of the whole MD data of 80 ns were
printed to a histogram shown in Fig. 5.15. The figure does not only show the rate histogram
for the six different chromophore pairs but also the average over this six histograms. The
logarithmic scale denotes that the occurring transfer rates between the Pheo of P4 molecules
vary by six to seven orders of magnitude.

Solving the rate equation utilizing the ensemble-averaged transfer rate

The DCL formula for the rate, Eq. 3.109 together with the correlation function from Eq. 3.112,
gives the transfer rates kDCL

m→n in second order to the excitonic coupling Jmn between two chro-
mophores m and n. It is necessary to compare the respective results with the solution of the
TDSE, in order to confirm the quality of the calculated EET rates. The populations calculated
from the solution of the TDSE for a single 10 ps MD sample oscillate due to the excitonic cou-
pling between all Pheos. This was shown in [83]. In the ensemble average (average over the
complete MD data), dephasing occurs and the populations reveal the time-dependence of the
EET as can be seen in Fig. 5.16 (cf. [39]).

However, in order to compare the populations computed from the solution of the TDSE with
the populations resulting from the calculated EET rates, one may use the rates 〈kmn〉ther to solve
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Figure 5.15: EET within P4. A histogram over the EET rates between all chromophores for MD data of
8 times 10 ns. Black: chromophore 1 - chromophore 2, red: 1 - 3, green: 1 - 4, blue: 2 - 3, magenta: 2 - 4,
orange: 3 - 4. The thick line shows an average over all rates.

the respective rate equation for the populations Pm(t)

∂

∂t
P〈k〉m (t; l) = − ∑

n 6=m
(〈kmn〉therPm(t; l)− 〈knm〉therPn(t; l)) , (5.1)

with the four different initial conditions Pm(0; l) = δm,l . The index l indicates that chromophore
l was excited at t = 0. The results for the 8 times 1 ns are given in Fig. 5.16. Comparing the
populations of the primary excited chromophores in Fig. 5.16 makes clear that the ensemble
average achieved during the MD simulations is acceptable, but not perfect. One has to expect
from the symmetry of the P4 molecule that the distribution of the conformation dependent
transfer rates k12 and k34, k13 and k24, as well as k14 and k23, are the same, when the ensemble
average is achieved. Thus, the resulting time-dependent populations Pm(t; m) calculated from
Eq. 5.1 are to be the same for every initial excited Pheo m.

The populations derived from the rate equation Eq. 5.1 have to be compared with the result
of the TDSE for the Am

∂

∂t
Am(t; l) = −∑

n
Hmn(R)An(t; l). (5.2)

Therefore, the complete MD data were sliced into Nslices = 8000 parts of 10 ps length. The
TDSE was then solved for each part i, with the initial conditions equivalent to those for the rate
equations Ai

m(0; l) = δm,l , where again l indicates the chromophore that was excited at t = 0.
Finally, the populations were averaged:

Pm(t; l)TDSE =
1

Nslices

Nslices

∑
i

∣∣∣Ai
m(t; l)

∣∣∣2 . (5.3)

Fig. 5.16 compares the result of the TDSE Pm(t; 1)TDSE with the solution of the rate equa-
tions Pm(t; 1)〈k〉 for the averaged rates 〈kmn〉ther. The result of the solution of the TDSE gives a
slower decay than the solution of the rate equations (Eq. 5.1) for the averaged rates 〈kmn〉ther.
This, however, is not surprising, since the rate equation was solved for the MD averaged rates
〈kmn〉ther. The first panels in Figs. 5.6 and 5.7 indicated the variety of P4 conformations within
the ensemble average. The highly flexible structure of P4 that changes on a 50-100 ps time scale
(compare with Fig. 5.14) results in a variety of transition rates depending on the P4 confor-
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Figure 5.16: EET within P4. Dashed lines: solution of the rate equations, utilizing the mean rates cal-
culated from 8 times 1 ns of MD data. The rate equations were solved four times, each with the initial
condition that chromophore 1 is excited at t=0. Solid lines: averaged populations, calculated from the
TDSE, solved with the equivalent initial condition (Ãm(t = 0, 1) = δm,1). With respect to Fig. 2.3 the
color code is black: Pheo 1 (initially excited), red: Pheo 2, green: Pheo 3, blue: Pheo 4.

Figure 5.17: EET within P4. Dashed lines: solution of the rate equations, utilizing the rates calculated
from each 10 ps MD piece of overall 8 ns MD of data (eight times 1 ns). For each 10 ps MD piece the
rate equations were solved with the initial condition that chromophore 1 is excited at t=0. Finally, the
populations were averaged. Solid lines: averaged populations, calculated from the TDSE, solved with
the equivalent initial condition (Ãm(t = 0, 1) = δm,1). Color code as in Fig. 5.16. For comparison, the
population curves for the initially excited chromophores 2, 3 and 4 are drawn in grey (Ãm(t = 0, n) =
δm,n, n > 1).

92



5.2 The P4 dendrimer

mation. Thus, the energy transfer dynamics of the system can not be described by averaged
rates.

Solving the rate equation for the conformation dependent rates

The dynamics have to be described by the conformation dependent rates ki
mn. The ki

mn were
calculated for different conformations i. Like for the solution of the TDSE, the MD data for
the eight times 1 ns were sliced into 8000 parts of 10 ps length, since the conformations of P4
are nearly stable on this time scale and the approximated correlation function in Eq. 3.112 is
converged after 10 ps. For each time slice i the respective rates ki

mn were calculated. For each
set of ki

mn the respective rate equation

∂

∂t
Pi

m(t; l) = − ∑
n 6=m

(
ki

mnPi
m(t; l)− ki

nmPi
n(t; l)

)
(5.4)

was solved, again with the initial conditions Pi
m(0; l) = δm,l . Finally, the averaged populations

P{ki}
m (t; l) (compare with the populations P〈k〉m (t; l) that were calculated for the averaged rates
〈km→n〉) were obtained:

P{ki}
m (t; l) =

1
N ∑

i
Pi

m(t; l). (5.5)

Fig. 5.17 shows the result for the P{ki}
m (t; 1) and compares it with PTDSE

m (t; 1). The figure
shows a perfect agreement of both the rate equation and the TDSE solutions, which allows the
following two conclusions. First, the calculation of the rates in second order to the coupling is
a very good approximation. The dynamics resulting from the rate description are the same as
for the dynamics resulting from solving the TDSE. The solution of the TDSE in turn treats all
orders of the excitonic coupling between the single Pheos. Second, the EET dynamics depend
on the contribution of every P4 conformation. The attempt to describe the EET dynamics with
averaged rates Pm(t; 1)〈k〉 fails, which can be seen clearly in Fig. 5.16. When comparing the
populations of the different initially excited Pheos in 5.17, four different curves can be seen.
Due to the symmetry of the P4 system one would expect four similar curves, when ensemble
average is reached. This is due to the fact that the EET dynamics within P4 should be the
same, regardless of which Pheo was initially excited. This is obviously not the case after 1 ns of
simulation for each of the 8 MD runs.

In Fig. 5.18, the populations calculated from the solution of the TDSE for the whole data of
MD simulation (80 ns) are shown. The respective result for the rate equations is not printed in
Fig. 5.18, the respective curves match the populations calculated from the solution of the TDSE
perfectly. In comparison with Fig. 5.17 one may see that the achieved ensemble average is
much better in Fig. 5.18. While the blue and red curves show the populations of the Pheos that
are neighbors of the Pheo excited at t = 0, the green curve shows the population of the Pheo
molecule that is the diagonal counterpart to the primarily excited Pheo. What is meant with a
’diagonal counterpart’ can be seen in Fig. 2.3. The Pheo pairs 1, 2 and 2, 3 and 3, 4 as well as 4, 1
are directly neighboring, while the pairs 1, 3 and 2, 4 are the respective diagonal counterparts.
It can be seen from Fig. 5.18 that the ensemble average describes the population transfer to
next neighbors (Pheo pairs 1, 2 and 2, 3 and 3, 4 as well as 4, 1) very well. On the other hand,
the population transfer between the two Pheo pairs 1, 3 and 2, 4, respectively (indicated by the
green lines), does not fully agree for the available MD data. The population transfer between
the Pheo molecules 1, 3 (2, 4) will additionally depend on the respective conformations of the
Pheos 2, 4 (1, 3) that may serve as bridge molecules in the EET between the Pheo molecules
1, 3 (2, 4). The population transfer between the Pheos 1, 3 will be the same as the population
transfer between the Pheos 2, 4, if the ensemble average is achieved for the whole conformation
of P4. However, the ensemble average is good enough to make a clear statement concerning
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Figure 5.18: EET within P4. Averaged populations calculated from the TDSE, solved with the initial
condition Ãm(t = 0, n) = δm,n. The populations of the initially excited Pheos are drawn in black.
The populations of the other Pheos are drawn in red, green and blue. The green curves represent the
populations of the diagonal counterparts to the initially excited Pheos. The achieved ensemble average
is much better than after 8 times 1 ns of MD simulation.

the time scale of EET. The time when the population of the initially exited Pheo reaches a value
of 1/N + (1− 1/N)/e (represents a decrease to 1/e if N goes to infinity) is about 2 to 3 ps.

5.2.3 Differential transient absorption

To calculate the transient absorption from polarization in probe pulse direction, Eq. 3.135 was
utilized. The polarization in probe pulse direction was calculated from the time-dependent
total polarization via Eq. 3.133 (Eq. 3.134 was only utilized for the curve in Fig. 5.22). The
time-dependent total polarization was calculated utilizing Eqs. 3.128 and 3.127. The TDSE was
solved and the respective expansion coefficents were utilized to compute the time-dependent
polarization. It was explained in Sec. 4.5 how the TDSE was solved directly including the
electromagnetic field.

Fig. 5.19 shows the envelopes of the Gaussian-like pump and probe beam, as it was utilized
in the calculations of the transient absorption. In the calculations done for this thesis, the field
strength of the pump pulse was 2 × 108 V/m, the field strength of the pump pulse 5 × 106

V/m. 2× 108 V/m is a very strong laser pulse, however, the intensity of the pump pulse was
chosen to excite about 10 % of the P4 molecules. The high percentage of pump pulse excited
P4 molecules ensures a good convergence of transient absorption curves. It does not change
the kinetics of the EET. The intensity of the probe pulse is much smaller than that of the pump
pulse. A small probe pulse intensity is necessary to ensure that the probe pulse absorption
obeys the Beer-Lambert law [40].

After the time-dependent dipole moment d(t, E) (and therefrom the total polarization P(t, E))
was calculated with the Eqs. 3.128 and 3.127, the polarization in probe pulse direction P(kpr, t)
was calculated using the two methods suggested in Sec. 3.8.1 (Eqs. 3.133 and 3.134).

Calculation of the differential transient absorption utilizing method I

The transient absorption was computed for two different set-ups of pump and probe pulse
polarization vectors. In the first set-up pump and probe beam polarization vectors are parallel,
in the second one they are orthogonal.
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Figure 5.19: Illustration of the laser beam envelope at the probe. The pump pulse has a much higher
field strength than the probe pulse.

Figure 5.20: P4 in ethanol differential transient absorption for parallel pump and probe beams is shown
for three different delay times. Black: tdelay = 150 fs, red: tdelay = 250 fs, green: tdelay = 750 fs.
Published in [85].

Fig. 5.20 shows the differential transient absorption for the P4 complex for three different de-
lay times, with a set-up of parallel pump and probe pulse polarization vectors. All curves show
a dip, which decreases when the delay time becomes larger. A differential transient absorption
shows the probe pulse absorption after a pump pulse excited the system minus the probe pulse
absorption without a pump pulse acting on the system. A dip in the differential transient ab-
sorption thus means that the Qy band absorption of the probe pulse without previous pumping
is stronger than the respective probe pulse absorption with previous pumping. The explana-
tion of this result is easy: when the pump pulse arrives at the probe, it does not excite arbitrary
Pheos, but it excites those chromophore more likely, whose transition dipole moments have
a small angle with the electromagnetic field polarization vector. A parallel probe pulse that
arrives shortly after the pump pulse excites the same Pheos with higher probability, but only
those that were not yet excited by the pump pulse. This is the reason why the probe pulse
excites less Pheos and shows less linear absorption if there was a pump pulse present.

For longer delay times between pump and probe pulse, EET occurs between the Pheos of the
CC. This is due to the excitonic coupling between the Pheos. The Pheos that are excited by the
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Figure 5.21: P4 in ethanol differential transient absorption for orthogonal pump and probe beams is
shown for three different delay times. Black: tdelay = 150 f s, red: tdelay = 250 f s, green: tdelay = 750 f s.
Published in [85].

pump pulse are in average characterized by their transition dipole moment. The EET gives rise
to an excitation energy redistribution. Thus, for large supramolecular complexes, after long
delay times the transition dipole moments of the excited Pheos are not related to the transition
dipole moments of the initially excited Pheos. A parallel probe pulse could now excite more
chromophores than before the energy redistribution. This is the reason why the dip in Fig. 5.20
decreases when the delay time increases.

The explanation of Fig. 5.21 is similar. The dip is small for short delay times and grows with
increasing delay time. At very short delay times, no energy transfer took place. The pump
pulse again excites those chromophores with the highest probability which were oriented along
the pump pulse polarization vector. The orthogonal probe pulse now excites chromophores
with highest probability whose transition dipole moments are oriented orthogonal to those
excited by the pump pulse. This leads to the following statement: if the delay time is very
short, mainly those chromophores are excited which only have a very low probability to be
excited by the probe pulse. This is the reason why the dip is very low. However, it is important
to note that in any case there will be a dip, if a pump pulse was present.

After very long delay times, the probability for a Pheo being in the first excited electronic
state does not depend on its transition dipole moments angle with the electromagnetic field
polarization. Hence, for very long delay times (assuming that there is no energy loss) both par-
allel and orthogonal pump and probe pulse setup will give the same dip. It should be possible
to observe this in femtosecond transient absorption experiments, since the competing mech-
anisms as de-excitation or internal conversion in Pheo happen on larger time scales (cf. [40]).
Respective experiments for P4 are planned but have not yet been carried out (Sec. 2.2). The
complete reorganization of the excitation energy in the P4 complex happens on a time scale of
about 20 ps.

Calculation of the differential transient absorption utilizing method II

The result for the probe pulse absorption after initial pump pulse excitation (the delay time
was 100 fs) is given in Fig. 5.22. The calculation was done as follows: for a time slice length
of ∆tsample = 350 fs the total polarization was computed via Eqs. 3.128 and 3.127. A prefactor
eiθr with the random phase 0 < θr < 2π was multiplied to each computed value of the total
polarization. In order to ensure a large number of total polarization values, the offset time toffset

was set to 1 fs (cf. Sec. 4.5.1). That means that each timestep t of each MD run was utilized 350
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Figure 5.22: P4 in ethanol transient absorption. Black line: transient absorption after pump and probe
pulse utilizing Eq. 3.133 for the polarization amplitude in probe pulse direction P(kpr, t). Red line:
transient absorption obtained utilizing Eq. 3.134 for the calculation of P(kpr, t). The difference between
both curves (green line) is due to the bad convergence of Eq. 3.134. The delay time was 100 fs.

times in order to solve the TDSE (cf. Sec. 4.5.1), since 1 fs was the MD simulation time step.
Alltogether nearly 24 million time slices (using 8 times 3 ns of the MD data) were utilized to
calculate the polarization amplitude in probe pulse direction P(kpr, t).

Fig. 5.22 compared the differential transient absorption lineshapes, calculated utilizing the
methods I and II (Eqs. 3.133 and 3.134). It is obvious that the convergence of Eq. 3.134 (method
II) is very bad. It has to be stated that the computation of Eq. 3.133 was about a factor 100
faster than the computation of Eq. 3.134. However, the correlation function did not completely
converge. Nevertheless, it can be seen from Fig. 5.22 that both methods yield the same result
(same linewidth of the probe pulse absorption). The differential curve between the absorption
curves calculated by the two different methods indicates the bad convergence of Eq. 3.134.
Hence all transient absorption results presented in this thesis were calculated utilizing method
I (Dohmke, Eq. 3.133).

Transient anisotropy

The transient anisotropy is a quantity that may be computed from the differential transient
absorption. In order to compute the transient anisotropy from Eq. 3.140 the computation of
the differential transient absorption has to be carried out for parallel as well as for orthogonal
polarized pump and probe beams. Fig. 5.23 shows the calculated result for the transient ab-
sorption. For chromophores in an isotropic medium, the anisotropy has a value between -0.2
and 0.4 [9]. In the calculations that have been carried out for this thesis, the anisotropy is 0.4
for very short delay times and approaches a value of 0.1 for long delay times (>10 ps). An
anisotropy value of 0.4 means that no conformational change of the molecule occured between
the pump and the probe pulse [9]. In a lot of experiments such a change of the average tran-
sition dipole moment would be due to rotational motion [9]. In the P4 system the rotational
motion occurs on a much longer time scale (above 100 ps) than the excitation energy transfer.
Thus, nearly all the changes of the anisotropy values in the P4 system on the observed time
scale of below 10 ps are due to excitation energy transfer.

Thus, the calculated value of approximately 0.4 for short time scales can be explained. For
longer time scales a redistribution of the excitation energy occurs. An anisotropy value of 0.0
would exhibit that there is no dependency of the chromophores conformation after the delay
time on its conformation during the pump pulse [9]. This, however, is never the case in P4.
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Figure 5.23: The P4 in ethanol transient anisotropy is drawn for eight different delay times. Published
in [85].

After a long delay time tdelay the first excited state population of the initially excitated Pheo
is 0.25, since P4 consists of four Pheos. The remaining population of the first excited state
is equally distributed over the other three Pheos. The mutual orientations of the Pheos are
completely uncorrelated (the average angle between the transition dipole moments of different
Pheos is ≈ 54.7◦ (cf. [9]). The transition dipole moment is not correlated with the initial excited
Pheo transition dipole moment, if the excitation is located on one of the other three Pheos in
P4. Thus, the transient anisotropy computation in Sec. 3.9 that results in Eq. 3.193 (r = 0.1
for P4 after long delay times) can be verified by the computed anisotropy values. This can be
explained as follows: after long delay times, the population of the first excited electronic state
of the initially excited Pheo is 0.25, and the corresponding anisotropy is 0.4. For the remaining
population of the first excited electronic state, the respective anisotropy value is zero, since the
conformations and thus the transition dipole moments of the single Pheos are in average not
correlated. The transient anisotropy value for very long delay times is thus r∞ = 0.1. The above
considerations are also valid if the EET dynamics are observed in a coherent scheme, however,
the respective considerations in terms of populations are more complicated. In the end, they
give the same result.

In what follows, the EET time scale, that is revealed by the delay time dependent transient
anisotropy, is compared with the solution of the TDSE and with the solution of the rate equa-
tions (Sec. 5.2.2). The anisotropy value r(t) has to be identified with a respective population
Pr(t). Taking into account the above discussions and thus knowing the anisotropy values
r(0) = 0.4 and r(∞) = 0.1 it occurs to be straightforward to multiply r(t) by a factor 2.5 in
order to identify the value of the anisotropy with the population of a chromophore in P4 that
was excited at t = 0. Hence, the population shortly after the excitation is Pr(0) ≈ 1 and the
population after a very long delay time is Pr(∞) = 0.25, which is exactly the expected result
that is additionally confirmed by the solution of the TDSE in Sec. 5.2.2.

Fig. 5.24 shows the populations resulting from the three available methods to calculate EET
(TDSE, EET rates, and transient anisotropy). The results of all three approaches agree perfectly.
The delay time dependent transient anisotropy uncovers the EET dynamics as well as the pop-
ulations calculated from the TDSE. At the same time it gives a value that can be measured by
respective experiments. Experimental measurements of the transient absorption and thus the
transient anisotropy of P4 are planned.
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Figure 5.24: The time-dependent populations of an initially excited Pheo in P4 computed from the tran-
sient anisotropy (red diamonds), from the TDSE (black) and from the conformation dependent rates
(green) are compared. The results match perfectly.

5.3 The P16 dendrimer

5.3.1 Linear absorption

The Qy band linear absorption of P16 in ethanol is calculated from Eq. 3.73. The first part of
the MD data for P16 in ethanol includes eight MD runs per 8 ns, all starting from the same
initial conformation. The linear absorption result computed from these MD data is shown in
Fig. 5.25. The maxima of the three calculated absorption curves are parameters, taken from the
maximum of the Pheo in ethanol linear absorption experiment. As can be seen from Fig. 2.5, the
Qy band maxima of P4 and P16 are shifted to lower energies in the experiment. However, the
figure reveals the broadening due to the excitonic coupling, and the energy shifts of the maxima
are not the object of investigation. The broadening due to the excitonic coupling increases
significantly with the number of Pheos attached to the dendrimer. However, this broadening
is not very strong (cf. Sec. 5.2). For P16 in ethanol the linewidth increases about 20 % against
the result for Pheo in ethanol. This rather small broadening compared to the experimentally
observed broadening in Fig. 2.5 has been discussed in Sec. 5.2.1 for P4. The same argumentation
holds for P16. Probably the broad linewidths in the experiment result from impurities in the
measured samples, since the filtration for the PN complexes is very complicated [22].

5.3.2 Excitation energy transfer

It has been shown in Sec. 5.2.2 for the P4 dendrimer that all the information about the EET
is gained by solving the TDSE. For the P4 system it was discussed that the ensemble average
should be adequate for the eight runs a 8 ns of simulation (each started with the same initial
conformation). That this does not hold for P16 is indicated in Fig. 5.26. 8 times 8 ns of MD
simulation were utilized to solve the TDSE. The figure shows the time-dependent populations
of each chromophore m that was excited at t = 0. It is not necessary to distinguish between the
different initially excited chromophores m. But it is possible to compare the different decays of
the initially excited chromophores (16 curves for the sixteen different initial conditions Pm(0) =
1). Further it is possible to observe the curves of the chromophores which are the next neighbors
to the initially excited chromophores. If one follows the branches of P16 from the CC center to
the single chromophores (cf. denrimer structure in Fig. 2.2), the two Pheos which are connected
by the last two branches are defined as the next neighbors. They do not necessarily have the
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Figure 5.25: Linear absorption of P16 (green), P4 (red), and Pheo (black) in ethanol. P16 was computed
from the total MD data of 64 ns, while for P4 and Pheo 8 times 10 ns of MD data have been used. Peak
maxima were shifted to 15015 cm-1 (Pheo in ethanol experimental value).

closest spacial distance to each other at any time of the CC trajectory.
The achieved ensemble average for the 8 times 8 ns of MD simulation (in the following dis-

cussion referred to as MD data I) is not very good, as can be seen from Fig. 5.26. The curves
that are computed with different initial conditions, concerning the fact which Pheo was excited
at t = 0, show completely different decays of the populations.

To reach ensemble average, high temperature simulations (1000 K for 2.5 ns) were carried
out (as explained in Sec. 4.1.6) to obtain 16 different conformations of P16 in ethanol that were
utilized as initial conformations for 300 K runs. The result is shown in Fig. 5.27. The ensemble
average for 16 runs a 1.3 ns (in the following discussion referred to as MD data II) is much
better than for the simulation runs started from the same initial conformation (MD data I).

Fig. 5.27 shows a satisfactory ensemble average. Additionally, it allows some comparison
with the EET observed within P4. The EET is obviously faster in the case of P16, the complete
excitation energy is distributed over all Pheos after 5 ps. This indicates a much stronger exci-
tonic coupling in average. This much stronger excitonic coupling is consistent with the broader
absorption linewidth of P16 compared to P4. This excitonic coupling in average is stronger due
to the fact that the number of Pheos per volume is higher for Pheos attached to the P16 den-
drimer compared to Pheos connected to a P4 dendrimer. This holds even though the dendrimer
structure in P16 is larger than the one in P4 (310 instead of 58 atoms). The average population
of a previously excited Pheo reaches the value 1/N + (1− 1/n)/e after 0.25 ps for MD data I
and 0.3 ps for MD data II (cf. Fig. 5.28). Nevertheless, for both simulation data the population
is not equally distributed after 3 ps. This is due to the fact that the excitation energy is at first
distributed around the nearest Pheos. After the time of about 0.3 ps the excitation energy is
located around the originally excited Pheos and their neighbors. It needs additional 5 ps to
distribute the excitation energy equally over the CC.

Fig. 5.28 compares the EET dynamics that were calculated from the MD data I to the EET
dynamics calculated from MD data II. It can be seen that the EET from both simulation data is
approximately the same. As was shown in Fig. 5.27, the ensemble average for the different ini-
tial conformations (MD data II) was much better than the ensemble average that was achieved
by the MD runs that were started with the same initial conformation (MD data I). Nevertheless,
the EET time scale derived from both MD data seems to be reliable.

Finally, the MD data II are utilized to compute conformation dependent rates, as done in
Sec. 5.2.2. The correlation function was calculated as done in Eq. 3.112. The resulting rates
were used to solve the rate equations, Eq. 5.4. The resulting populations for each conformation
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Figure 5.26: EET within P16. The populations were computed from the solution of the TDSE, calculated
from MD data I. The black curves show the populations of the initially excited Pheos. The red curves
show the population for the Pheos that are located next to the respective initially excited Pheos.

Figure 5.27: EET within P16. The populations were computed from the solution of the TDSE, calculated
from MD data II. Same color code as in Fig. 5.26.
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Figure 5.28: EET within P16. Black line: averaged populations of the respective initially excited Pheos
within P16, calculated from MD data II. Red line: averaged populations of the initially excited Pheos
within P16, calculated from MD data I (cf. Figs. 5.26, 5.27).

are averaged and compared with the populations from the solution of the TDSE. The compar-
ison is shown in Fig. 5.29. Even though the averaged rates in P16 are larger than 1012/s, the
EET dynamics calculated from EET rates (that are computed in second order of the excitonic
coupling) match the result of the TDSE very well.

102



5.3 The P16 dendrimer

Figure 5.29: EET within P16. Comparison between the solution of the TDSE and conformation dependent
rates. Black lines: populations of an initially excited Pheo within P16, calculated from the solution of the
TDSE (from MD data II). Red lines: populations calculated from conformation dependent rates. Even
for P16 with an average EET rate between two Pheos of more than 1012/s, the conformation dependent
rates, computed in second order of the excitonic coupling, describe the EET dynamics quite well.
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6 Pheo and P16 near metal nano particles

6.1 Introduction

During the last decade it has become of increasing interest to study the optical properties of
chromophores near MNPs. The strong coupling between the chromophores and the surface
plasmons of the MNP has led to previously unexpected optical properties of the combined
chromophore - MNP system. A recent overview about this topic and plasmonics in general can
be found in [156]. [157] gives hints that the coupling between an MNP and dye molecules at
the MNP surface changes the exciton spectrum of the dye aggregate. In [158], the chlorophyll
absorption was enhanced, when the photosystem I was attached to spherical silver and gold
MNPs.

Also, experimental results concerning molecular monolayers deposited on thin metal films
should be mentioned. In 2004, a strong excitonic coupling between a cyanide dye J-aggregate
and a thin silver film [159] (a J-aggregate is a dye that shows a shift to longer wavelengths
when aggregating, which was firstly described by Jelley [160]). In 2006, the strong coupling
between a J-aggregate and nano-voids within a gold film was measured [161]. In [162], the
strong coupling between a dye mono-layer and a nanostructured silver film was detected.

Furthermore, it was shown experimentally in [163] that MNPs can be utilized for spatiotem-
poral control of optical excitations. The MNP induced spatiotemporal localization of the exci-
tation energy was discussed theoretically in [164].

In the last few years, several theoretical approaches have been developed concerning chro-
mophores, or chromophore complexes near MNPs. In [157, 165, 166] a single-resonance dielec-
tric function was utilized to describe the chromophore-MNP system. In [167, 168] the Maxwell
equations were solved for an ensemble of transition dipole moments (representing the chro-
mophores) around an MNP. In our group the interaction between a supramolecular complex
(SC) and an MNP was studied [169, 170]. In the model applied, all components of the combined
SC-MNP system were treated in a complete quantum description.

This chapter aims to utilize the available simulations of Pheo and P16 in ethanol to simulate
the case when those molecules are located on the surface of a spherical metal nano particle
(MNP) (cf. [171]). Whenever an MNP is mentioned in the following discussion, a spherical
MNP is meant. The TDSE which has to be solved for such a combined CC-MNP system is
quite similar to the one that has been solved already. The changes that have to be made will be
discussed in the next section.

6.2 The PN-MNP Hamiltonian and singly excited wave function

In the following section, linear absorption and excitation energy transfer will be discussed for
the combined PN-MNP system (cf. [172]). As explained in Secs. 3.6 and 3.7 those calculations
require the solution of the TDSE. The first excited state Hamiltonian Hmol-MNP

1 (cf. Eq. 3.53) for
the molecule-MNP system as well as the respective singly excited CC-MNP states |ψB〉 have to
be defined. The Hamiltonian Hmol-MNP

1 can be derived from H1 (Eq. 3.53) as follows [170]:

Hmol-MNP
1 = H1 + ∑

I
(H0 + h̄(Ω1 −Ω0))|ψmol-MNP

I 〉〈ψmol-MNP
I |

+ ∑
m,I

(VmI |ψmol-MNP
m 〉〈ψmol-MNP

I |+ H.c.).
(6.1)
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H0 was defined in Eq. 3.52 and describes the static interactions between each Pheo with all the
other molecules of the system (the other Pheos, the dendrimer and the solvent molecules) in
the electronic ground state. Additionally, it includes the kinetic energy operators Tm. VmI is
the coupling energy between chromophore m and the MNP. The MNP ground state energy is
Ω0. The respective excited state energy is Ω1. |ψmol-MNP

I 〉 is the first excited state of the CC-
MNP system, when the excitation is located at the MNP. The first excited electronic state of the
combined CC-MNP system is denoted as |ψmol-MNP

B 〉. If one of the chromophores in the CC is
excited, |ψmol-MNP

B 〉 can be written as

|ψmol-MNP
m 〉 = |Ψme〉 ∏

n 6=m
|Ψng〉|0〉. (6.2)

The reader should compare this definition with the first excited CC wave function |ψm〉 that was
defined for the CC system in Eq. 3.14. |0〉 indicates that the MNP is in the electronic ground
state.

The CC-MNP wave function for the first electronic excited state |ψmol-MNP
B 〉 localized at the

MNP is written as
|ψmol-MNP

I 〉 = ∏
n
|Ψng〉|I〉. (6.3)

The first excited state of the MNP is threefoldly degenerated with transition dipole moments
in the direction of the three Cartesian coordinate axes ei, i ∈ {x, y, z} [169]. This threefold de-
generacy allows the electron cloud in the MNP to couple to each chromophore dipole moment,
no matter in what direction it points to. The general wave function of the CC-MNP system is a
superposition over the N + 3 different singly excited wave functions of the CC-MNP system (N
single excited CC-MNP wave functions for each chromophore of PN and three singly excited
CC-MNP wave functions for the 3 different wave functions |ψmol-MNP

I 〉):

|Ψmol-MNP〉 = ∑
B

Amol-MNP
B |ψmol-MNP

B 〉. (6.4)

In order to solve the TDSE with the Hamiltonian Hmol-MNP
1 and to compute the expansion

coefficients within |Ψmol-MNP〉, the couplings between the chromophores and the MNP, VmI
(cf. Eq. 6.1), have to be determined.

As described in detail in Sec. 3.3.3, the excitonic coupling Jmn between two chromophores m
and n is calculated via the interactions between the respective transition partial charges. For
small distances between the chromophores this picture is more precise than the description via
the dipole-dipole coupling between the chromophores transition dipole moments.

However, the description of the excitonic coupling via dipole-dipole coupling is a good ap-
proximation for the excitonic coupling between the chromophores and the MNP, if the distance
between the center of the MNP and the chromophore is larger than one nanometer. It is written

VmI = ([dMNPeId∗m]− 3[nm,MNPdMNPeI ][nm,MNPd∗m])/|Rm,MNP|3. (6.5)

nm,MNP is defined as nm,MNP = Rm,MNP/|Rm,MNP|, while Rm,MNP is the distance vector between
the center of chromophore m and the center of the MNP. The scalar dipole moment of the
MNP dMNP may be calculated for spherical MNPs with some approximations. This, however,
is beyond the scope of this thesis. Here, a value for dMNP will be used that was measured in
recent experiments [33] for gold MNP with a radius of rMNP = 30 nm. The value for the MNP
dipole moment was dMNP = 3800 D.

With all parts of the Hamiltonian Hmol-MNP
1 being defined, the TDSE can be solved for the

available MD data. The related equations of motions for the expansion coefficients (cf. Sec. 3.4.2)
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are written (the higher index ’mol-MNP’ is dropped)

ih̄
∂

∂t
Ãm(t) = ∑

n
(Hmn(t)− δm,n∆Eg→e)Ãn(t) + ∑

I
VmI(t)ÃI(t), (6.6)

and
ih̄

∂

∂t
ÃI(t) = h̄

(
ωI −ωeg − iγI

)
+ ∑

m
VIm(t)Ãm(t). (6.7)

The dephasing rate γI is chosen to produce the linewidth of the experimentally utilized gold
MNPs [33]. The value of γI = 0.18 eV reproduces the measured MNP linewidth. It has to be
mentioned that a measured linewidth may be affected by the size distribution of the MNPs.
This, however, is neglected. ωI is the transition frequency between the electronic ground and
first excited electronic state of the MNP. ωI is also taken from the MNP linear absorption mea-
surements [33].

Solving this TDSE requires the same procedure as solving the TDSE for a CC without MNP
(cf. Sec. 4.5). For 100 fs of the MD simulation the TDSE is solved for all possible initial condi-
tions ÃB(t = 0) = 1. After this is done the next 100 fs long MD sample is used to solve the
TDSE and so on. The resulting ÃB(t) can then be utilized to compute the linear absorption
spectrum.

6.3 Linear absorption of Pheo and P16 next to a MNP

For the computation of linear absorption, Eq. 3.73 is adapted to include the linear absorption of
the combined molecule-MNP system. The linear absorption cross section can then be calculated
as

I(ω) = Re
∫ ∞

0
dteiωt ∑

A,B
〈dA(t)ÃA(t; B)dB〉, (6.8)

with A, B ∈ {{m}, {I}}. The time-dependence of the dipole moment dI(t) is neglected. This
approximation is necessary, since in this description, no information on the fluctuation of the
MNP transition dipole moment is available. This results in dI(t) = dMNP.

6.3.1 Amplification of the Pheo and P16 linear absorption signal

In order to compute the amplification of the linear absorption signal, the Qy band absorption
for Pheo and P16 is calculated with and without the coupling to a neighboring MNP. If only one
P16 and one MNP are considered, the molecular absorption is lower by orders of magnitude,
compared to the MNP absorption (due to the enormous dipole moment of the MNP that is by
three orders of magnitude larger than the Pheo dipole moment). In Figs. 6.1 and 6.2, not the
linear absorption of the molecule-MNP system, but the difference between the molecule-MNP
linear absorption and the linear absorption of the MNP is shown. This makes it possible to
compare the linear absorption due to the coupling between the molecule and the MNP with
the linear absorption of a single molecule.

The absorption spectra show several features. The absorption peak of the molecule is fol-
lowed by a dip that is supposed to be a Fano resonance [173]. Fano resonances result from the
interaction between continuous states and discrete energy levels. A similar, but smaller, feature
is observable at the MNP resonance frequency. At the time of the finishing of this thesis, not all
features of the molecule-MNP linear absorption in Figs. 6.1 and 6.2 could be defined.

The amplification factor of the Qy band linear absorption was 62 for Pheo and 47 for P16. This
is reasonable, as will be discussed next.

The dipole moment of a single Pheo is perpendicular to the connection line between Pheo
and the MNP center. According to Eq. 6.5 the average absolute value of the coupling is dMNPdm.
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6 Pheo and P16 near metal nano particles

Figure 6.1: Qy band linear absorption for the Pheo-MNP system in ethanol. Black line: linear absorption
band calculated for a Pheo molecule. Red line: difference between the linear absorption of Pheo next to
a MNP and the linear absorption of the MNP.

Figure 6.2: Qy band linear absorption for the P16-MNP system in ethanol. Black line: linear absorption
calculated for a P16-molecule. Red line: difference between the linear absorption of P16 next to a MNP
and the linear absorption of the MNP.
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6.3 Linear absorption of Pheo and P16 next to a MNP

Figure 6.3: Qy band linear absorption for a MNP covered with molecules in ethanol. Black line: lin-
ear absorption band of the MNP. Red line: linear absorption of 10000 Pheos on the surface of a MNP.
Green line: linear absorption of 930 P16 molecules on the surface of an MNP. The respective numbers of
molecules on the MNP surfaces are chosen to cover the complete surface of the MNP with a radius of 30
nm.

This is not the case for the Pheos within P16 - their mutual orientation is assumed to be arbitrary.
This assumption is reasonable concerning the discussion for P4 in Sec. 5.2. According to Eq. 6.5,
the average absolute value of the coupling is also dMNPdm (the average of cosine square was
calculated in Eq. 3.191 as 2/3). On the other hand, the Pheos in P16 are further away from the
MNP. If the average distance between a Pheo within P16 and the MNP center is 32 nm (the
diameter of P16 is about 4 nm), the presented results for the amplification of linear absorption
are reasonable.

6.3.2 Linear absorption for a large number of molecules coupled to the MNP

In experimental measurements the proportion between the number of MNPs and the number
of molecules in general is not 1 : 1. In most cases the number of molecules exceeds the number
of MNPs by a factor of Nmol/NMNP [33], with the respective numbers of molecules Nmol and
the number of MNPs NMNP.

In terms of the above introduced methodology that treats the molecules in atomic detail
and the MNP parametrically, linear absorption experiments with systems including a single
MNP coupling to hundreds of molecules may be simulated in two ways. On the one hand, the
TDSE can be solved for the whole system, including the excitonic coupling between each Pheo
and the MNP and including the excitonic coupling between neighboring Pheos on the MNP
surface (each Pheo may be represented by another part of the MD data). On the other hand,
the coupling between neighboring molecules may be neglected; it has to be assumed that the
MNP couples to each molecule, regardless of the presence of the other molecules. However,
in what follows, this approximation is made. The number of Pheos on the MNP surface is
chosen to be 10000. On the one hand, this is the number that was utilized in recent experiments
[33] (with another porphyrin - tetraphenylporphyrin). On the other hand, 10000 is exactly the
number of Pheos that cover the surface of the MNP (using a diameter of 1 nm for Pheo). The
number of P16 molecules that cover an MNP with a radius of 30 nm was calculated to be 930
(using a diameter of 4 nm for P16).

The linear absorption curves for the MNP covered with Pheo, on the one hand, and P16, on
the other hand, is shown in Fig. 6.3. The results look very similar for both molecules. Concern-
ing the calculated amplification of the Pheo and P16 linear absorption due to the presence of
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6 Pheo and P16 near metal nano particles

Figure 6.4: Qy and Qx band linear absorption for the Pheo-MNP system in ethanol. Full black line:
Qy linear absorption band calculated for a single Pheo. Full red line: Qx linear absorption band. The
respective dashed lines show the differences between the Pheo-MNP Qy and Qx band linear absorption
lineshapes and the linear absorption lineshape of the MNP.

the MNP and the fact that the number of Pheos within 930 P16 molecules is 14880, the result is
reasonable.

6.3.3 Linear absorption of the Qx band

Utilizing the theory that was discussed in Sec. 3.6.1, additionally to the Qy band, the Qx band for
Pheo next to an MNP is calculated. Since the Qx band is in resonance with the MNP absorption,
the amplification of the absorption signal is expected to be larger than for the Qy band. In
Fig. 6.4 the differences between the respective Pheo-MNP Qy and Qx band linear absorption
lineshapes and the linear absorption lineshape of the MNP are shown. For the Qx band, the
peak is overlayed by a deep dip. In Fig. 6.5 the Qy and Qx band linear absorption for an MNP
that is covered with 10000 Pheos is shown. As in the foregoing section, the interaction between
the Pheos was neglected. It can be seen that the dip at the Qx band position is overlayed by the
MNP absorption. In respective experiments, the MNP absorption is additionally affected by
scattering effects [33]. Thus, Fig. 6.5 shows that the treatment of the Qx band can be neglected
for this system, even though the Qx band is resonant with the MNP absorption.
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6.3 Linear absorption of Pheo and P16 next to a MNP

Figure 6.5: Qy and Qx band linear absorption for a MNP covered with Pheo molecules in ethanol. Black
line: linear absorption of the MNP. Red line: Qy linear absorption of 10000 Pheos on the surface of a
MNP. Green line: combined Qx and Qy band linear absorption of 10000 Pheos on the surface of an MNP.
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7 Screening in supramolecular complexes

7.1 Introduction

It was explained in the chapters 3 and 4 how to derive optical properties of a CC in solution
from classical MD simulations. The key to those computations was the calculation of the energy
gap function Ueg

m (t) of chromophore m (cf. Sec. 4.3).
However, even if the energy gap functions Ueg

m (t) can be calcuted in good approximation,
the quality of the CC description depends strongly on the quality of the transition couplings
Jmn between two chromophores m and n (Sec. 4.3.2). As discussed earlier in Sec. 4.3.2, the
transition density of a chromophore can be translated to respective transition partial charges
{qtr

i } = {qi(ge)}. As explained in Sec. 3.3.3, the transition partial charges have to be normalized
to an experimental value of the transition dipole moment [32]. Then Eq. 3.49 can be utilized to
compute the coupling energy Jmn between two chromophores m and n.

However, this formula neglects the screening of partial charges via the surrounding medium.
The two chromophores m and n interact not only with themselves, but with all the other
molecules around. This electrostatic coupling to the other molecules effectively changes the
coupling between the chromophores m and n. The coupling Jmn is screened.

There exist mainly two approaches to compute the screening within large chromophore com-
plexes in solution. The method that will be utilized within this thesis was proposed by the
group of Renger and computes the transition density of a chromophore without taking the
specific conformation of the surrounding medium into account [34, 35]. The effective poten-
tial of the respective transition partial charges is computed by solving the Poisson equation.
Other approaches of the group that compute the transition densities, taking the surrounding
medium into account, can be found in [174, 175, 176]. A more sophisticated but also much more
computationally expensive ansatz has been pursued in the group of Menucci. In their ansatz,
the conformation of each solvent and protein molecule near the chromophore contributes to
the screening, which is obtained by DFT computations of the electronic coupling between two
chromophores, involving solvent and protein molecules [23, 177, 178].

The following chapter refers to the work of the Renger group. The computation is much more
practicable. It can be utilized to compute the screening for a lot of chromophore pairs with
different distance and mutual orientation. This data will be utilized to find a fitting procedure
that includes not only the distance dependence (as utilized for example in [28, 29]), but also the
conformational dependence of the screening between two chromophores (cf. [179]).

7.2 Calculation of the screening factor utilizing the Poisson-TrEsp
method

The screening factor Fscr
mn for the excitonic coupling between two chromophores m and n is then

defined as
Fscr

mn =
Jscr
mn

Jmn
. (7.1)

The unscreened excitonic coupling Jmn (according Chap.3, the notation Jmn witout brackets
refers to the excitonic coupling Jmn(eg,eg)) is computed via the sum over the Coulomb interac-
tions between transition partial charges (Eq. 3.49, cf. Sec. 3.3.3).
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7 Screening in supramolecular complexes

Figure 7.1: The sketch illustrates the principal idea for computing the potential of a chromophore from
transition partial charges. The partial charges were put into chromophore shaped cavities sketched by
the white area. The dielectric constant within and outside the cavity were set to ε = 1 (white) and ε = 2
(gray), respectively.

7.2.1 Poisson-TrEsp calculations

The computation of the screened excitonic coupling between two chromophores by the Poisson-
TrEsp (transition charges from electrostatic potentials) method [34, 35] was invented in the
group of Thomas Renger. The method utilizes the possibility to relate the excitonic coupling be-
tween two chromophores to the Coulomb coupling of the respective transition partial charges.
This isomorphism was derived in [180].

The chromophores’ transition partial charges (cf. Sec. 3.3.3) were obtained from electronic
structure calculations. The partial charges were put into chromophore shaped cavities. This is
illustrated in Fig. 7.1. The dielectric constant ε inside the cavity was set to ε = 1, and outside
the cavity the dielectric constant was set to ε = 2 [34, 176]. For comparison, the dielectric
constant for water and for visible light is εH2O = 1, 77, for the protein structure it is about
εprotein ≈ 2.3 [178]. Treating the environment as a dielectric medium neglects the conformation
of the surrounding molecules in atomic detail ([174, 175] include such a description at the cost
of longer computational time).

For the transition partial charges inside the cavity, the Poisson equation was solved to com-
pute the potential Ψm(r) of the charges outside of the cavity:

∇ (ε(r)∇Ψm(r)) = −4π ∑
i

qmi(ge)δ(r− Rmi). (7.2)

According to the notation of Chap. 3, qtr
mi is the transition partial charge of atom i at chro-

mophore m. Rmi is the position of this atom. The potential Ψm(r) may then be utilized to
compute the screened excitonic coupling Jscr

mn as [34]

Jscr
mn = ∑

i
Ψm(Rni)qni(ge). (7.3)

The screenend Coulomb coupling Jscr
mn is calculated by multiplying the potential of chromophore
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7.2 Calculation of the screening factor utilizing the Poisson-TrEsp method

Figure 7.2: Photosystem I consists of 96 chlorophyll a molecules. The screening factors were calculated
by Thomas Renger for each chromophore pair within photosystem I.

m at each atom position Rni of chromophore n with the transition partial charge of the respec-
tive ith atom of chromophore n, qni(ge).

115



7 Screening in supramolecular complexes

7.2.2 Poisson-TrEsp results for Photosystem I

Figure 7.3: Screening factors of chromophore pairs within
Photosystem I depending on the distance between the
chromophore centers. The scaling in the panels is differ-
ent, but all three panels show the same result. The fluctu-
ation of the screening factors is due to the fact that the
screening is not only distance dependent, but distance
and conformation dependent. The computation was per-
formed by Thomas Renger and the results are taken with
permission from [35]

The TrEsp and the Poisson-TrEsp meth-
ods were utilized to compute the exci-
tonic coupling within a Photosystem I
trimer [35]. For the parameterization
of the later defined screening functions
f ij
mn, the excitonic couplings between the

chromophores within a photossytem I
monomer were utilized. The respec-
tive couplings Jmn without screening ef-
fect and the Jscr

mn that include screen-
ing were calculated by Thomas Renger
with the TrEsp [32] and the Poisson-
TrEsp method [34]. The respective re-
sults for the screening factors are shown
in Fig. 7.3. The screening factors are
drawn against the distance between the
chromophore pairs. The high fluctua-
tion of the distance dependent screening
factors is due to the fact that the screen-
ing is not only distance, but distance und
conformation dependent. The screen-
ing factors are shown for three different
orders of magnitude. Screening factors
whose absolute value exceeds a value of
1 will be referred to as off-size screening
factors. The reason for the appearance of
those off-size screening factors has to be
clarified.

7.3 Fitting
of the Poisson-TrEsp
calculated screening factor

7.3.1 Fitting procedure

Next, the fitting of the Poisson-TrEsp
data as calculated in the group of
Thomas Renger to chlorophyll a molecules
will be introduced. The screened tran-
sition partial charge interaction Jscr

ij be-

tween atom i on chromophore m and atom j on chromophore n with the distance Rij
mn is written

as

Jscr
ij =

1
4πε0

f ij
mnqiqj

Rij
mn

, (7.4)

with the definition of the screening functions

f ij
mn = f ij

mn(ε(r)) = ∑
k

Fk
0 e−Rij

mn/Rk
0 . (7.5)
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7.3 Fitting of the Poisson-TrEsp calculated screening factor

Note that the screening functions are not directly related to the screening factor Fscr
mn defined in

Eq. 7.1.

The screening functions f ij
mn for each atom pair i, j (with atom i from molecule m and atom

j from molecule n) include the effect of the environment on the coupling between transition
partial charges indirectly via infinite sets of parameters Fk

0 and Rk
0. The screened excitonic

coupling between the chromophores m and n can be written as sum over the interactions Jscr
ij :

Jscr
mn = ∑

i,j
Jscr
ij . (7.6)

No approximation was made so far. However, the screening functions have to be approxi-
mated in order to obtain computable functions. It was found within this thesis that the follow-
ing approximation of the screening functions gave good results:

f ij
mn = ∑

k
Fk

0 e−Rij
mn/Rk

0 ≈ f̃ ij
mn = F1

0 e−Rij
mn/R1

0 + F2
0 e−Rij

mn/R2
0 + RmnC1

0 + C2
0 . (7.7)

Rmn is the distance of the centers of the porphyrin rings. f̃ ij
mn includes only two instead of

an infinite number of exponential functions. It was found that the last term RmnC1
0 + C2

0 is
necessary to minimize the diviations between the Poisson-TrEsp calculated screening factors
Fscr

mn and the approximated screening factors F̃scr
mn . The approximated screening factors F̃scr

mn are
computed as

F̃scr
mn =

J̃scr
mn

Jmn
, (7.8)

with
J̃scr
mn = ∑

i,j
J̃scr
ij , (7.9)

and

J̃scr
ij =

1
4πε0

f̃ ij
mnqiqj

Rij
mn

. (7.10)

The screening functions f̃ ij
mn include five free parameters. For an initial choice of the five

parameters, the Jscr
ij and from those the F̃scr

mn were computed for all chromophore pairs within
Photosystem I. The values of the F̃scr

mn were compared with the Fscr
mn that were computed with the

Poisson-TrEsp method in the Renger group. Only those chromophore pairs were considered
which fulfilled 0 < F̃scr

mn < 1 and 0 < Fscr
mn < 1. The inclusion of the off-size screening factors

would cause a domination of the fitting procedure by a small amount of chromophore pairs.
For each chromophore pair that is included in the fitting procedure, the test function χ was
defined as

χ(F1, F2, R1, R2, C1, C2) = ∑
m,n

(
F̃scr

mn − Fscr
mn
)2 . (7.11)

This test function χ was minimized to get the set of parameters {F1
0 , F2

0 , R1
0, R2

0, C1
0 , C2

0} whose
generated screening factors F̃scr

mn match the Poisson-TrEsp generated screening factors Fscr
mn best.

The parameter set {F1, F2, R1, R2, C} represents a respective non-optimized parameter set.
The minimization of the parameter set was done numerically. The initial choice of R1 and R2

is approximately given by the occurring distances of the chromophores. For P16 the screening
factors should give qualitatively good results for distances between one and five nanometers (4
nm is the diameter of P16). For the parameters F1 and F2 the relation F1 + F2 < 1 holds, which
means that there is always some screening between two transition partial charges. The initial
value of C was set to zero.

The numerical parameter search in the 6-dimensional parameter space was done afterwards,
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7 Screening in supramolecular complexes

Figure 7.4: Shown are the approximated photosystem I screening factors against the Poisson-TrEsp re-
sults for two different regimes (screening factors between 0 and 1 as well as off-size screening factors).
Both figures give the same result. Black squares: screening factors computed utilizing Poisson-TrEsp,
red spheres: fitted screening factors.

and the parameters were optimized one after another. This was done repeatedly till a minimum
was found. The complete 6-dimensional parameter space exhibits a very large number of local
minima. A lot of parameter searches with different initial parameter sets {F1, F2, R1, R2, C1, C2}
and varying order of parameter optimizing were executed. The set {F1

0 , F2
0 , R1

0, R2
0, C1

0 , C2
0}

that minimized χ(F1, F2, R1, R2, C1, C2)2 was utilized to compute the screening between Pheo
molecules in the P16 CC. The respective values are F1

0 = 3, F2
0 = 5.7, R1

0 = 2.5, R2
0 = 23,

C1
0 = 0.0055 and C2

0 = 0.006.

7.3.2 Quality of the fitted screening

In order to prove the quality of the approach, Fig. 7.4 shows the approximated screening factors
compared to the Poisson-TrEsp calculated screening factors. It is obvious that the distribution
of the approximated screening factors against the chromophore pair distance (the distribution
is due to the conformational dependence of the screening) is the same as the distribution of
the Poisson-TrEsp calculated screening factors. This, of course, is not a surprise, since the
distribution of the screening factors was the leading aim of the fit. More surprising is the fact
that also the values for the off-size screening factors (the screening factors F >> 1 or F << 0)
are matched very well.

To prove that not only the distribution of screening factors in dependence of the mutual chro-
mophore distance is obtained well by the method, the mean difference between Poisson-TrEsp
and fitted data was computed. For excitonic couplings above 1 meV the mean difference be-
tween Poisson TrEsp and the fitted screening factors was ∆F ≈ 0.067. For excitonic couplings
above 10 meV the difference was ∆F ≈ 0.037. This is a very satisfying result concerning the dis-
tribution of the screening factors. The larger the excitonic coupling between the chromophores,
the better the matching between the fitted screening factors and the Poisson-TrEsp data.

7.4 Results

7.4.1 Off-size screening factors and distance dependent screening factors

When the full Poisson-TrEsp data are observed, some pairs of chromophores exhibit screening
factors that are much larger than 1 or even smaller than 0. This holds also for the fitted screening
factors. These off-size screening factors can be explained by the formation of specific mutual
conformations of the chromophores m and n, which can be seen in Fig. 7.5. If Jmn is equal to
zero, the screened value Jscr

mn is not necessarily zero, since the screening changes the effective
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7.4 Results

Figure 7.5: Excitonic coupling Jmn between two chromophores 1 and 2 (P16 in ethanol) for 10 ps of MD
simulation. This MD sample was chosen, since the sign of the excitonic coupling changes within the
example. Black curve: excitonic coupling without any screening effects. Red curve: excitonic coupling
including the screening effect calculated with the new method. It can be seen that the screening factor
changes in this MD sample (screening factor was defined as the quotient between the red and the black
curve). When the excitonic coupling becomes small or switches its sign, the screening factor may become
extremely large. This is due to the fact that the two curves cross the J=0 point at different times. This
explains the appearance of off-size screening factors.

interaction of the sets of transition partial charges {qtr
i }m and {qtr

i }n. This is due to the fact that
the different atom pairs are screened differently, which may lead to an ’effective polarization’.
This effective polarization differs for unequal mutual conformations of the Pheos m and n.
This explains the distribution of the screening factors, when distance dependent screening is
examined. Furthermore this effective polarization may result in off-size screening factors, if the
unscreened excitonic coupling Jmn is near zero.

7.4.2 Linear absorption for different screening methods

The optimized parameter set {F1
0 , F2

0 , R1
0, R2

0, C1
0 , C2

0} that gives the screening functions f̃ ij
mn was

computed for Photosystem I. This system consists of chlorophyll a molecules. Chlorophyll
a is very similar to Pheo. The porphyrin structure is the same, only side chains vary. Be-
sides, the chlorophyll a molecules within Photosystem I contain a magnesium base, while the
Pheo molecules in P16 are free base molecules. For the screening of the molecules these dif-
ferences should give no crucial effect. The dielectric constant of ethanol is εethanol = 1.86, and
the dielectric constant of the Pheo molecules can be approximated by the chromophore value
εchromophore ≈ 2.3 given in [178]. The environmental dielectric constant of ε = 2.0 thus seems a
good choice for P16 in ethanol. The parameter set {F1

0 , F2
0 , R1

0, R2
0, C1

0 , C2
0} for the approximated

screening functions f̃ ij
mn was utilized to compute the screening between the Pheos in P16. With

this data the linear absorption from Eq. 3.73 was calculated.
Additionally, the linear absorption was computed for two other approaches taking the screen-

ing of excitonic coupling into account. The first of those approaches simply assumes a constant
screening of each coupling. In order to do that, the average value (for chromophore distances
between one and five nanometers) of Fscr = 0.61 was chosen. The second approach assumes
an exponential dependence of the screening factor in dependence on the chromophores’ center
distance. The chromophore center distances between one and five nanometers give a screening
factor function of Fscr(Rmn) = 0.39exp(−Rmn/7Å) + 0.61exp(−Rmn/2000Å) that approximates
the available data best.

The result is shown in Fig. 7.6. The linear absorption linewidths for the four (including the

119



7 Screening in supramolecular complexes

Figure 7.6: The P16 in ethanol linear absorption for five different calculation modalities: no screen-
ing factor (black), no excitonic coupling (magenta), screening factor with the constant value of 0.61
(green), screening factor defined by a double-exponential distance dependent function (blue), and the
new method which treats the screening distance and conformation dependent (red).

neglecting of screening) different screening factor methods vary only slightly. The approach
that assumes an exponential dependence of the screening factor on the chromophores’ center
distance approximates the result of the new method best. However, when linar absorption is to
be computed, utilizing the new method that accounts for distance and conformation dependent
screening is only meaningful if the error for the energy gap fluctuation and thus the error for the
single molecules’ absorption linewidth can be assumed to be small. As discussed in Sec. 5.1.1,
this is the case for Pheo.

7.4.3 Solution of the TDSE for different screening methods

The optimized parameter set {F1
0 , F2

0 , R1
0, R2

0, C1
0 , C2

0} together with the MD data II was utilized
to solve the TDSE for P16. Again, the four different screening methods introduced in the last
subsection are compared. Fig. 7.7 shows the mean time-dependent populations for the four
screening methods, each calculated as average from the 16 different population curves of the
respective initially excited Pheos: P(t) = ∑16

m Pm(t; m)/16. Here, Pm(t; n) is the time-dependent
population of chromophore m, when chromophore n was initially excited. The figure shows
that the screening of excitonic coupling decelerates the EET within P16. Furthermore, it shows
that the explicit treating of distance and conformation dependent screening results in a much
faster EET than the two other screening methods. This underlines the importance of the con-
formation dependent screening.
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7.4 Results

Figure 7.7: EET within P16. Mean time-dependent populations of the initially excited Pheo, calculated
from the solution of the TDSE for different screening methods: no screening factor (black), screening
factor with the constant value of 0.61 (green), screening factor defined by a double-exponential distance
dependent function (blue), and the new method which treats the screening distance and conformation
dependent (red).
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8 Summary

In this thesis the theoretical investigation of excitation energy transfer in the chromophore com-
plexes P4 and P16 in ethanol solution was presented. PN is a dendrimer with N covalently
bound pheophorbide a molecules. A mixed quantum-classical methodology was utilized to
calculate optical properties of the system. Classical molecular dynamics simulations were car-
ried out to compute the nuclei trajectories.

The key to the results shown in this thesis was to compute the intramolecular part of the en-
ergy gap fluctuation for a single pheophorbide a in harmonic approximation. In order to realize
this, reference trajectories of each relevant electronic state had to be calculated from the respec-
tive molecular dynamics trajectories. The second derivatives of the potential energy surface
were computed by co-workers from thoretical chemistry. The method is much less computa-
tionally expensive than other common methods and nonetheless yields an unmatched quality
of the computed energy gap function, at least for the system considered in this thesis. The in-
termolecular part of the energy gap fluctuation was obtained in a standard way by computing
the Coulomb interactions between respective atomic partial charges.

Utilizing the energy gap fluctuation, the time-dependent Schrödinger equation for the chro-
mophore complex wave function was solved, parametrically dependent on the nuclei coordi-
nates. The expansion coefficients from the solution of the time-dependent Schrödinger equa-
tion were utilized to compute optical properties of the systems in the dynamic classical limit.
Linear absorption was computed for Pheo, P4 and P16 in ethanol. The linear absorption line
shape of Pheo matches the measured linewidth perfectly, without introducing any free param-
eters. The same holds for the Qy band absorption. Unfortunately, no measurements of pure P4
and P16 in ethanol have been carried out until now.

The time development of excitation energy transfer was investigated by three approaches.
Firstly, the expansion coefficients from the solution of the time-dependent Schrödinger equa-
tion were averaged for many initial conformations of the chromophore complex. From those
averaged expansion coefficients populations were computed. Secondly, Förster-like excitation
energy transfer rates were computed in second order of the excitonic coupling. It could be
shown how the presence of multiple conformations of the supramolecular complex affects the
excitation energy transfer within the complex. The respective population dynamics can not
be described by a set of averaged rates. The third approach was the calculation of transient
absorption for P4, utilizing different delay times between the pump and probe beam. The
calculation of nonlinear response functions was circumvented by solving the time-dependent
Schrödinger equation including the electromagnetic field. From the transient absorption, tran-
sient anisotropy was computed and related to respective populations. The time development of
excitation energy transfer is the same for the three approaches. On the one hand, the computed
transient anisotropy is a quantity that may be directly compared with experimental results. On
the other hand, the solution of the time-dependent Schrödinger equation, constricted to the
first excited electronic state, gives the same information about the excitation energy transfer
dynamics. The latter is much easier to compute within a mixed quantum-classical methodol-
ogy.

In addition, the existing molecular dynamics data were utilized to compute optical properties
of the molecular systems coupling to metal nano-particles. The respective properties of the
nano-particles were introduced parametrically. The computation of linear absorption of the
combined Pheo-nano-particle (P16-nano-particle) system shows the expected amplification of
the molecules’ linear absorption. Calculations including the Qy and Qx band showed that the
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8 Summary

Pheo Qx band absorption plays only a minor role in the Pheo-nano-particle absorption. On the
one hand, the Qx band absorption is more amplified than the Qy band absorption (since the Qx
energy is in resonance with the nano-particle excitation energy). On the other hand, this effect
is small compared to the large nano-particle absorption curve.

Furthermore, within this thesis a method was introduced to incorporate distance and confor-
mation dependent screening to the mixed quantum-classical methodology. This was achieved
by finding screening functions for the interaction between single atoms that finally yield the
distance and conformation dependent screening between chromophore pairs as calculated from
the Poisson-TrEsp (transition charges from electrostatic potentials) method [34, 35]. In previ-
ous mixed quantum-classical approaches only distance dependent screening could be treated.
It was shown that the distance and conformation dependent screening yields much faster EET
dynamics than the distance dependent screening, or the screening with a constant number.

The newly introduced methods, especially the method to compute the intramolecular energy
gap fluctuation in harmonic approximation, give powerful tools within a mixed quantum-
classical method. The calculation of excitation energy transfer within supramolecular com-
plexes depends on both the accurate computation of the energy gap fluctuation as well as the
appropriate description of the excitonic coupling. Within this thesis, two corresponding meth-
ods were proposed and successfully applied to the supramolecular complex P16. The methods
may also enhance the quality of excitation energy transfer computations for other supramolec-
ular systems.
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Appendix A

1 Computing the correlation function

The computation starts with the definition of the correlation function in Eq. 3.169:

tr{µ̂U[µ̂, Ŵ]U+} = tr{−Π2µ21U1Ŵ11µ12U+
2 Π2 + Π1µ12U2µ21Ŵ11U+

1 Π1

−Π0µ01U1Ŵ11µ10U+
0 Π0 + Π1µ10U0µ01Ŵ11U+Π1

−Π1µ10U0Ŵ00µ01U+
1 Π1 + Π0µ01U1µ10Ŵ00U+

0 Π0 + non-diagonal terms}.
(1)

The first of the six terms in Eq. 1 reads as follows:

tr{Π2µ21U1Ŵ11µ12U+
2 Π2}

= tr{∑
i

∑
j>i

dj〈φi | U1 ∑
q

∑
k

Wqk | φq〉〈φk | ∑
l>k

dl | φk〉〈φkl | U+
2 | φij〉

+ ∑
i

∑
j>i

di〈φj | U1 ∑
q

∑
k

Wqk | φq〉〈φk | ∑
l>k

dl | φk〉〈φkl | U+
2 | φij〉

+ ∑
i

∑
j>i

dj〈φi | U1 ∑
q

∑
k

Wqk | φq〉〈φk | ∑
l<k

dl | φk〉〈φl,k | U+
2 | φij〉

+ ∑
i

∑
j>i

di〈φj | U1 ∑
q

∑
k

Wqk | φq〉〈φk | ∑
l<k

dl | φk〉〈φl,k | U+
2 | φij〉}.

(2)

The term covers the stimulated emission. It treats a CC which was in the first excited electronic
state after the pump pulse and contributes to the second excited state absorption via the dipole
operator matrix element µ21 (cf. Eq. 3.50). The projection operators were translated into the
single chromophore basis (cf. Eqs. 3.13, 3.14, 3.15).

The second part of Eq. 1 (in the following, the statistical operator matrix elements Wij always
denote the respective statistical operator matrix elements Wij(tdelay → 0) after very short delay
times)

tr{Π1µ12U2µ21Ŵ11U+
1 Π1}

= tr{∑
i

∑
j>i

dj〈φij | U2 ∑
k

∑
l>k

dk | φkl〉〈φl |∑
q

Wlq | φl〉〈φq | U+
1 | φi〉

+ ∑
i

∑
j>i

dj〈φij | U2 ∑
k

∑
l>k

dl | φkl〉〈φk |∑
q

Wkq | φk〉〈φq | U+
1 | φi〉

+ ∑
j

∑
i<j

di〈φij | U2 ∑
k

∑
l>k

dk | φkl〉〈φl |∑
q

Wlq | φl〉〈φq | U+
1 | φj〉

+ ∑
j

∑
i<j

di〈φij | U2 ∑
k

∑
l>k

dl | φkl〉〈φk |∑
q

Wkq | φk〉〈φq | U+
1 | φj〉}

(3)

covers the part next of Eq. 5 which treats the population being in the first excited electronic state
after pump and probe pulse excitation. Eq. 3 is related to the dipole operator matrix element
µ21. The equation treats the part of the population which is not part of the second excited state
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absorption. It is the counterpart to Eq. 2. The third term in Eq. 1

tr{Π0µ01U1Ŵ11µ10U+
0 Π0}

= tr{∑
i

di〈φi | U1 ∑
m,n

Wmn | φm〉〈φn |∑
j

dj | φj〉〈φi | U1 | φm〉〈φ0 | U+
0 | φ0〉}

= tr{∑
i

∑
j

∑
m

didjWmj〈φi | U1 | φm〉〈φ0 | U+
0 | φ0〉}

(4)

treats the stimulated emission due to the dipole operator matrix element µ01. The fourth part
of Eq. 1 is written

tr{Π1µ10U0µ01Ŵ11U+
1 Π1}

= tr{∑
i
〈φi |∑

j
dj | φj〉〈φ0 | U0 ∑

k
dk | φ0〉〈φk | ∑

m,n
Wmn | φm〉〈φn | U+

1 | φi〉}

= tr{∑
i

di〈φ0 | U0 | φ0〉 ∑
k,m,n

dk〈φk |Wmn | φm〉〈φn | U+
1 | φi〉}

= tr{∑
i

di〈φ0 | U0 | φ0〉∑
m,n

dm〈φm |Wmn | φm〉〈φn | U+
1 | φi〉}

= tr{∑
i

di〈φ0 | U0 | φ0〉∑
m,n

dmWmn〈φn | U+
1 | φi〉}.

(5)

Eq. 5 covers the part of the population of the CC which is in the first excited electronic state
after pump and probe pulse excitation. The equation is related to the dipole operator matrix
element µ01 and treats the part of the first excited electronic state population which was not
part of stimulated emission. It is the counterpart to Eq. 4. The term

tr{Π1µ10U0Ŵ00µ01U+
1 Π1}

= tr{∑
i
〈φi |∑

j
dj | φj〉〈φ0 | U0Ŵ00 ∑

k
dk | φ0〉〈φk | U+

1 | φi〉}

= tr{Ŵ00 ∑
i

di〈φ0 | U0 | φ0〉∑
k

dk〈φk | U+
1 | φi〉}

(6)

covers the population of the CC which is in the first excited state after the probe pulse, but was
in the electronic ground state after the pump pulse. It is related to the dipole operator matrix
element µ10 and represents the part of the population which was excited from the electronic
ground to the first excited state.

Finally the sixth and last part of Eq. 1

tr{Π0µ01U1µ10Ŵ00U+
0 Π0} = tr{∑

i
di〈φi | U1 ∑

j
dj | φj〉〈φ0 | Ŵ00U+

0 | φ0〉}

= tr{∑
i

∑
j

Ŵ00didj〈φi | U1 | φj〉〈φ0 | U+
0 | φ0〉}

(7)

covers the CC population which has been in the electronic ground state after the pump pulse
and remains there after the probe pulse. It is the counterpart to Eq. 6.
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1 Computing the correlation function

Inserting Eqs. 2, 3, 4, 5, 6, 7 into Eq. 1 gives

tr{µ̂U[µ̂, Ŵ]U+}
= tr{∑

i
∑
j>i

∑
k

∑
l>k

∑
q
(
(
Wlqdjdk + Wkqdjdl

)
〈φq | U+

1 | φi〉+(
Wkqdidl + Wlqdidk

)
〈φq | U+

1 | φj〉)〈φij | U2 | φkl〉
−∑

i
∑
j>i

∑
k

∑
l>k

∑
q
(
(
Wqldjdk + Wqkdjdl

)
〈φj | U1 | φq〉+(

Wqkdidl + Wqldidk
)
〈φi | U1 | φq〉)〈φkl | U+

2 | φij〉
+ ∑

i
∑

k
∑

q
didkWkq〈φq | U+

1 | φi〉〈φ0 | U0 | φ0〉

−∑
i

∑
k

∑
q

didkWqk〈φi | U1 | φq〉〈φ0 | U+
0 | φ0〉

+ ∑
i

∑
k

Ŵ00didk〈φi | U1 | φk〉〈φ0 | U+
0 | φ0〉

−∑
i

∑
k

Ŵ00didk〈φk | U+
1 | φi〉〈φ0 | U0 | φ0〉}

= tr{2Im ∑
i,k,q

∑
j>i

∑
l>k

(
(
Wlqdjdk + Wkqdjdl

)
〈φq | U+

1 | φi〉

+
(
Wkqdidl + Wlqdidk

)
〈φq | U+

1 | φj〉)〈φij | U2 | φkl〉
+ 2Im ∑

i
∑

k
∑

q
didkWkq〈φq | U+

1 | φi〉〈φ0 | U0 | φ0〉

+ 2Im ∑
i

∑
k

Ŵ00didk〈φi | U1 | φk〉〈φ0 | U+
0 | φ0〉}.

(8)

The first two terms on the right hand side of Eq. 8 arise from the Eqs. 3, 2 and treat second
excited state absorption. The third and the fourth term in Eq. 8 stem from Eqs. 5, 4 and cover
stimulated emission. The last two terms in Eq. 8 arise from Eqs. 6, 7 which are related to the
excitation of first excited electronic states of the CC.
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2 Computing the transient absorption for very short delay times

In the following the approximation is made that the mutual orientation of the Pheos is equally
distributed. The starting point is Eq. 3.172:

tr{µ̂U[µ̂, Ŵ]U+}
= tr{2Im ∑

i,k,q
∑
j>i

∑
l>k

(
(
Wlqdjdk + Wkqdjdl

)
〈φq | U+

1 | φi〉

+
(
Wkqdidl + Wlqdidk

)
〈φq | U+

1 | φj〉)〈φij | U2 | φkl〉
+ 2Im ∑

i
∑

k
∑

q
didkWkq〈φq | U+

1 | φi〉〈φ0 | U0 | φ0〉

+ 2Im ∑
i

∑
k

Ŵ00didk〈φi | U1 | φk〉〈φ0 | U+
0 | φ0〉}.

(9)

The first term in Eq. 9 will be discussed in the end, since additional approximations will be
necessary to simplify this term. The middle term on the right hand side of Eq. 9 corresponds to
the stimulated emission. It can then be written as

2tr{Im ∑
i

∑
k

∑
q

didkWkq〈φq | U+
1 | φi〉〈φ0 | U0 | φ0〉〉ther

= 2tr{Im ∑
i

didiWii〈φi | U+
1 | φi〉〈φ0 | U0 | φ0〉

+ Im ∑
i

∑
k 6=i

∑
q

didkWkq〈φq | U+
1 | φi〉〈φ0 | U0 | φ0〉

+ Im ∑
i

∑
k

∑
q 6=i

didkWkq〈φq | U+
1 | φi〉〈φ0 | U0 | φ0〉}

= 2tr{Im ∑
i

didiWii〈φi | U+
1 | φi〉〈φ0 | U0 | φ0〉

+ Im ∑
i

∑
k 6=i

didkWki〈φi | U+
1 | φi〉〈φ0 | U0 | φ0〉}.

(10)

The sum over the k 6= i is small since the averaging over the ensemble will give only a finite
value for q = i. The sum over the q 6= i has to be separated into two parts. The part q 6= i, k
is negligible, since it disappears in the ensemble-average. The part q 6= i, q = k becomes zero.
The matrix element 〈φi | U+

1 | φk〉 itself becomes finite during the propagation in time, since
the first excited state φi is propagated via the time evolution operator U+

1 . However, the term
vanishes during the ensemble averaging due to the single appearance of index i.

In the following, the last term in Eq. 9 is considered. It is responsible for the excited state
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absorption. After the ensemble-average this term can be rewritten as

2tr{Im ∑
i

∑
k

Ŵ00didk〈φi | U1 | φk〉〈φ0 | U+
0 | φ0〉ther

= 2tr{Im ∑
i

∑
k

∑
q
(1−∑

q 6=i
Wqq)didk〈φi | U1 | φk〉〈φ0 | U+

0 | φ0}

= 2tr{Im ∑
i
(1−Wii)didi〈φi | U1 | φi〉〈φ0 | U+

0 | φ0

+ Im ∑
i
(1−∑

q 6=i
Wqq)didi〈φi | U1 | φi〉〈φ0 | U+

0 | φ0}.

(11)

The first of the two terms on the right hand side of Eq. 11 covers the part where all indices are
the same. In the second part, the matrix element of the statistical operator has another index
than the dipole operator matrix element. All sums in Eq. 11 with k 6= i become zero since the
ensemble-average of a single dk gives zero.

Before discussing the first term on the right hand side of Eq. 9, some additional consider-
ations have to be made. Therefore, the eigenstates |α〉 of the Hamiltonian H1 as well as the
eigenstates |β〉 of the Hamiltonian H2 are defined. The respective eigenenergies are εα and εβ.
The product with the localized states |φm〉 and |φmn〉, respectively, are written as

〈α|φm〉 = Aα
m, (12)

and
〈β|φmn〉 = Aβ

mn. (13)

With the completeness relation terms of the form 〈φm | U+
1 | φn〉〈φij | U2 | φkl〉 can be written

as
〈φm | U+

1 | φn〉〈φml | U2 | φnl〉 = ∑
α,β

e−
it
h̄ (εα−εβ)Aα

m(t)(Aα
n(t))

∗Aβ
ij(t)(Aβ

kl(t))
∗. (14)

When the ensemble-average is executed, those terms 〈φm | U+
1 | φn〉〈φij | U2 | φkl〉 that include

non-diagonal matrix elements with m 6= n, i 6= k or j 6= l will dephase very fast compared
to the diagonal parts. In the following the approximation will be made that those terms are
neglected.

The first term on the right hand side of Eq. 9 which treats the second excited state absorption
can then be rewritten. The first ≈ neglects non-diagonal matrix elements of the statistical op-
erator. Those non-diagonal matrix elements would result in fast dephasing terms of the form
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2 Computing the transient absorption for very short delay times

〈φm | U+
1 | φn〉〈φij | U2 | φkl〉

2tr{Im ∑
i,k,q

∑
j>i

∑
l>k

(
(
Wlqdjdk + Wkqdjdl

)
〈φq | U+

1 | φi〉〈φij | U2 | φkl〉

+
(
Wkqdidl + Wlqdidk

)
〈φq | U+

1 | φj〉〈φij | U2 | φkl〉)}
≈ 2tr{Im(∑

i,k
∑
j>i

∑
l>k

(
(
Wlldjdk〈φl | U+

1 | φi〉+ Wkkdjdl〈φk | U+
1 | φi〉

)
〈φij | U2 | φkl〉

+ ∑
i,k

∑
j>i

∑
l>k

(
Wkkdidl〈φk | U+

1 | φj〉+ Wlldidk〈φl | U+
1 | φj〉

)
〈φij | U2 | φkl〉))}

= 2tr{Im(∑
i

∑
j>i

Wiidjdj〈φi | U+
1 | φi〉〈φij | U2 | φij〉

+ ∑
i

∑
j<i

Wiidjdj〈φi | U+
1 | φi〉〈φji | U2 | φji〉

+ ∑
i

∑
j>i

∑
k 6=i,k<j

Wiidjdj〈φi | U+
1 | φk〉〈φij | U2 | φkj〉

+ ∑
i

∑
j>i

∑
k 6=i,k>j

Wiidjdj〈φi | U+
1 | φk〉〈φij | U2 | φjk〉

+ ∑
i

∑
j<i

∑
k 6=i,k<j

Wiidjdj〈φi | U+
1 | φk〉〈φji | U2 | φkj〉

+ ∑
i

∑
j<i

∑
k 6=i,k>j

Wiidjdj〈φi | U+
1 | φk〉〈φji | U2 | φjk〉

+ ∑
i

∑
j>i

∑
l 6=j,l>i

Wiidjdl〈φi | U+
1 | φi〉〈φij | U2 | φil〉

+ ∑
i

∑
j>i

∑
l 6=j,l<i

Wiidjdl〈φi | U+
1 | φi〉〈φij | U2 | φli〉

+ ∑
i

∑
j<i

∑
l 6=j,l>i

Wiidjdl〈φi | U+
1 | φi〉〈φji | U2 | φil〉

+ ∑
i

∑
j<i

∑
l 6=j,l<i

Wiidjdl〈φi | U+
1 | φi〉〈φji | U2 | φli〉

+ ∑
i

∑
j>i

Wijdjdi〈φi | U+
1 | φi〉〈φij | U2 | φij〉

+ ∑
i

∑
j<i

Wijdjdi〈φi | U+
1 | φi〉〈φji | U2 | φji〉)}.

(15)

The first ten terms on the right hand side of Eq. 15 include a statistical operator matrix el-
ement that is diagonal. The last two terms in Eq. 15 include the only non-disappearing non-
diagonal matrix elements. The other terms that include non-diagonal matrix elements either
contain an odd number of one particular index or they include matrix elements of the form
〈φi | U+

1 | φk〉〈φij | U2 | φkj〉. As stated above, those terms dephase fast and are neglected.
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Eq. 15 can then be simplified to

2tr{Im ∑
i,k,q

∑
j>i

∑
l>k

(
(
Wlqdjdk + Wkqdjdl

)
〈φq | U+

1 | φi〉〈φij | U2 | φkl〉

+
(
Wkqdidl + Wlqdidk

)
〈φq | U+

1 | φj〉〈φij | U2 | φkl〉)}
≈ 2tr{Im(∑

i
∑
j>i

Wiidjdj〈φi | U+
1 | φi〉〈φij | U2 | φij〉

+ ∑
i

∑
j<i

Wiidjdj〈φi | U+
1 | φi〉〈φji | U2 | φji〉

+ ∑
i

∑
j>i

Wijdjdi〈φi | U+
1 | φi〉〈φij | U2 | φij〉

+ ∑
i

∑
j<i

Wijdjdi〈φi | U+
1 | φi〉〈φji | U2 | φji〉)}.

(16)

Inserting the right hand sides of Eqs. 10, 11, 16 into Eq. 9 gives

tr{µ̂U[µ̂, Ŵ]U+} ≈ 2tr{Im(∑
i

∑
j>i

Wiidjdj〈φi | U+
1 | φi〉〈φij | U2 | φij〉

+ ∑
i

∑
j<i

Wiidjdj〈φi | U+
1 | φi〉〈φji | U2 | φji〉

+ ∑
i

∑
j>i

Wijdjdi〈φi | U+
1 | φi〉〈φij | U2 | φij〉

+ ∑
i

∑
j<i

Wijdjdi〈φi | U+
1 | φi〉〈φji | U2 | φji〉

+ ∑
i

didiWii〈φi | U+
1 | φi〉〈φ0 | U0 | φ0〉

+ ∑
i

∑
j 6=i

didjWji〈φi | U+
1 | φi〉〈φ0 | U0 | φ0〉

+ ∑
i
(1−Wii)didi〈φi | U1 | φi〉〈φ0 | U+

0 | φ0〉

+ ∑
i
(1−∑

j 6=i
Wjj)didi〈φi | U1 | φi〉〈φ0 | U+

0 | φ0〉)}.

(17)

In the following the eigenstates |α〉 and |β〉 of the Hamiltonians H1 and H2 are utilized again.
The eigenstate for the electronic ground state is |0〉. The eigenenergy of the electronic ground
state is denoted ε0. The diagonal matrix elements can be written (according to Eq. 14)

〈φm | U1 | φm〉 = ∑
α

e−
it
h̄ εα Aα

m(t)(Aα
m(t))

∗ (18)

for the first excited electronic CC states and

〈φmn | U2 | φmn〉 = ∑
α,β

e−
it
h̄ εβ Aβ

mn(t)(Aβ
mn(t))∗ (19)

for the second excited electronic CC states.
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2 Computing the transient absorption for very short delay times

With this definitions Eq. 17 can be rewritten in terms of the excitonic CC eigenenergies as

tr{µ̂U[µ̂, Ŵ]U+} ≈ 2tr{Im ∑
i

∑
α

[Wiididie−
it
h̄ (εα−ε0)Aα

m(t)(Aα
m(t))

∗

+ (1−Wii)didie
it
h̄ (εα−ε0)Aα

m(t)(Aα
m(t))

∗

+ (1−∑
j 6=i

Wjj)didie
it
h̄ (εα−ε0)Aα

m(t)(Aα
m(t))

∗

+ ∑
β

∑
j 6=i

Wjjdidie
it
h̄ (εβ−εα)Aα

m(t)(Aα
m(t))

∗Aβ
mn(t)(Aβ

mn(t))∗

+ ∑
β

∑
j 6=i

Wijdjdie
it
h̄ (εβ−εα)Aα

m(t)(Aα
m(t))

∗Aβ
mn(t)(Aβ

mn(t))∗

+ ∑
j 6=i

Wjididje−
it
h̄ (εα−ε0)Aα

m(t)(Aα
m(t))

∗]}.

(20)

The probability Pm(t) that a CC in the initial state | φm〉 (at t = t0) will be in the same state
after time t is defined as

Pm(t) = ∑
α

Aα
m(t)(Aα

m(t))
∗. (21)

Accordingly the probability Pmn(t) that a CC in the initial state | φmn〉 (at t = t0) will be in the
same state after time t is written

Pmn(t) = ∑
β

Aβ
mn(t)(Aβ

mn(t))∗. (22)

With this definitions of the Pm(t) and Pmn(t), Eq. 17 can be simplified by making the following
approximation: if the excitonic coupling between the chromophores is small (below 10 meV) it
can be assumed that

εβ − εα ≈ εα − ε0 ≈ ∆Eg→e. (23)

The transition energy ∆Eg→e was defined in Sec. 3.2. Furthermore, the above defined prob-
abilities Pm(t) and Pmn(t) vary slowly for small excitonic coupling. The ensemble-averaged
correlation function vanishes fast due to dephasing after about 50 fs (compare with Sec. 4.5.1).
Thus it can be assumed that during the dephasing time tdephasing the following relation holds:

Pm(tdephasing) ≈ Pmn(tdephasing) ≈ 1. (24)

Therefore, for very small excitonic couplings, Eq. 20 can be further simplified to

tr{µ̂U[µ̂, Ŵ]U+} ≈ 4tr{Im ∑
i
[(1−Wii)didie

it
h̄ (∆Eg→e)]}. (25)

The time scale of EET within P4 is about 1-10 ps, dependent on the respective conformation.
Thus, if the correlation function vanishes after 50 fs, the respective excitonic couplings within
P4 (1-10meV) can be assumed to be small.
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3 Computing the electronic ground state reference trajectories

The following explanation on how to compute the ground state reference trajectories is mainly
based on [84], the respective notation is slightly changed to match the notation utilized in this
thesis. The coordinate index µ is dropped for simplification.

The ground state reference trajectory Rg(tj) at the discrete time tj = j∆t of the MD trajectory
(time step ∆t = 1 fs) is to be computed. The time and coordinate dependent period of oscilla-
tion, denoted as T(tj) = lj∆t (lj discretizes Tj), is utilized to calculate the value of the ground
state reference trajectory at time tj:

Rg(tj) =
1
lj

{(lj−1)/2}

∑
n=−{(lj−1)/2}

R(tj + n∆t) +
{(lj − 1)/2}

2lj

(
R(tj − lj∆t/2

)
+ R(tj + lj∆t/2)

)
. (26)

{(lj− 1)/2} defines the floor function, mapping the real number (lj− 1)/2 to the largest integer
which is not greater than (lj − 1)/2. In the following, j will be determined by the tuple n(j)
and kn(j) as j(n(j), kn(j)). n(j) counts the maxima of the trajectory until the time tj and kn(j)
is the number of time steps between the actual time tj and the last maximum at tn,1 (note

kn(j) = 1, ..., k(max)
n , below the index j will be dropped for n and kn). All maxima of the trajectory

have the index kn = 1 by definition. Hence, j may be calculated from n and kn by

j =
n−1

∑
n′=0

k(max)
n′

∑
kn′=1

1 + kn . (27)

In the following, the time arguments tc
n = jc∆t are introduced, which are positioned in the

centers between the n’th and (n + 1)’th maximum of the trajectory, i.e. jc = {(j(n, 1) + j(n +

1, 1))/2}. Since the time interval between the n’th and (n + 1)’th maximum is k(max)
n ∆t, the

averaging time lj∆t for the time point tc
n can be identified with k(max)

n ∆t. The lj in between may
be calculated by a linear interpolation between two neighboring jc:

lj = k(max)
n +

 (j− jc)
(

k(max)
n+1 − k(max)

n

)
k(max)

n+1 + k(max)
n

+
1
2

 , (28)

with tc
n/∆t < j < tc

n+1/∆t.
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