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Figure 2.A.3: The upper three panels depict time-varying systemic risk betas, time-varying
VaRs and the product of the two, realized systemic risk betas, for American International
Group (AIG). The lower three panels show the respective three time series for Bank of
America (BAC).
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Systemic Risk Impact of LEH &ML before the Crisis
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Figure 2.A.4: Realized systemic risk betas, i.e., the products of estimated systemic risk
betas and individual VaRs, of Lehman Brothers (LEH, red) and Merrill Lynch (ML, green).
Estimation period is the pre-crisis period, 2000 - mid 2007.
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Figure 2.A.5: Estimated company-specific VaRs of Lehman Brothers (upper panel) and
Merrill Lynch (lower panel). Estimation period is the pre-crisis period, 2000 - mid 2007.
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Chapter 3

Forecasting systemic impact in
financial networks

This chapter is based on Hautsch, Schaumburg, and Schienle (2012b).

3.1 Introduction

The breakdown risk for the financial system induced by the distress of an individual firm

has long been neglected in financial regulation. Up to the financial crisis 2007–2009, this

systemic risk has been exclusively attributed to the idiosyncratic risk of an institution, ab-

stracting from the strong network cross-dependencies in the financial sector causing po-

tential risk spillover effects. In an extensive study for the U.S. financial system, however,

Chapter 2 of this thesis shows that it is mainly the interconnectedness within the financial

sector that determines the systemic relevance of a particular firm. To quantify the systemic

impact of an individual company, the so-called realized systemic risk beta is proposed,

which is the total effect of a company’s time-varying Value at Risk (VaR) on the VaR of the

entire system. Firms’ tail risk is determined from company-specific relevant factors among

other companies’ tail risks, individual balance sheet characteristics, and financial indicators,

where components are selected as being “relevant” via a data-driven statistical regulariza-

tion technique. The resulting individual-specific models give rise to a financial risk net-

work, capturing exposures of financial firms towards the distress of others. These network

risk spill-over channels contain important information for supervision authorities as sources

for systemic risk. The data-driven determination of firms’ systemic relevance from publicly

available data distinguishes the realized systemic risk beta from the number of other re-
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cently proposed methods for refined measurement and prediction of systemic risk, see, e.g.,

Adrian and Brunnermeier (2011), White, Kim, and Manganelli (2012), Huang, Zhou, and

Zhu (2009), Brownlees and Engle (2012), Acharya, Pedersen, Philippon, and Richardson

(2012), Giesecke and Kim (2011), Billio, Getmansky, Lo, and Pelizzon (2012), Koopman,

Lucas, and Schwaab (2011), Engle, Jondeau, and Rockinger (2012), or Schwaab, Koopman,

and Lucas (2001) among many others.

Effective regulation requires models which can be used for forecasting and which are re-

liable even if estimation periods are short. The framework developed in Chapter 2, however,

is not tailored to short-term forecasting of systemic risk and must be adapted for prediction

purposes. Firstly, the systemic risk network is static, i.e., it is estimated once using the en-

tire dataset and then forms the basis for estimation of respective time-varying realized betas.

However, empirical evidence suggests that network links might change over time, especially

in crisis periods. Secondly, in order to exploit additional variation, quarterly balance sheet

characteristics are interpolated by cubic splines over the analyzed time period. Therefore,

out-of-sample forecasting is not possible. Thirdly, the penalty parameter required for the

model selection step is chosen such that a backtest criterion is optimized. VaR backtests,

however, generally rely on counting and analyzing VaR exceedances, which is reasonable

when the time series is long. Though, for short estimation periods, these tests should be

replaced by more adequate quantile versions of F-tests.

In this chapter, we extend the framework from the previous chapter to allow for flexible

systemic risk forecasting. The estimation period is shortened using rolling windows of only

one year of data. This excludes influences of back-dated events on current forecasts while

still pertaining sufficient prediction accuracy. The models are re-estimated each quarter,

resulting in time-varying systemic risk networks. Instead of interpolating, information on

firm-specific balance sheets is only updated when it is published at the end of each quarter.

The model selection penalty is chosen such that the in-sample fit in the respective annual

observation window is optimal. This is examined via an F-test for quantile regression. The

empirical analysis investigates systemic risk in Europe. The data set covers stock prices and

balance sheets of major European banks and insurance companies as well as financial in-

dicators, including country-specific variables, during the period around the recent financial

crisis. We illustrate that our approach could serve as a monitoring tool for regulators as it

captures and effectively predicts systemic relevance over time.

The remainder of the chapter is structured as follows. Section 3.2 outlines the forecast-

ing methodology and gives an algorithm for model selection and estimation of firm-specific

VaRs. Furthermore, the estimation method for realized systemic risk betas is given. Sec-

tion 3.3 describes the dataset, before discussing estimation results and their implications in
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detail in Section 3.3.2. Section 3.4 concludes.

3.2 Forecasting Methodology

Whereas Chapter 2 focuses on a single static network as a basis for estimating systemic im-

pact of financial institutions, we progress by determining time-varying networks in a fore-

casting setting. These allow capturing changing risk spillover channels within the system,

which are tailored to short-term forecasts from the model.

3.2.1 Time-Varying Networks

In a densely interconnected financial system, the tail risk of an institution i at a time point

t is determined not only by its own balance sheet characteristics Zi
t−1 and general market

conditions Mt−1 but also by indications for distress in closely related banks in the system.

For each bank in the system, we count a corresponding return observation as marking a dis-

tress event whenever this return is below the empirical 10% quantile. In such cases, these

extreme returns might induce cross-effects on the riskiness of other banks in the system.

We record these as so-called loss exceedances, i.e., the values of returns in case of an ex-

ceedance of the 10% quantile and zeros otherwise. Accordingly, the set of potential risk

drivers R for a bank i therefore comprises network impacts N−i
t from any other bank in the

system, where each component of N−i
t consists of loss exceedances for any bank but firm i

in the system.

We measure tail risk by the conditional Value at Risk, VaRi, for firm i and by VaRs

for the system, respectively. Using a post-LASSO technique, the large set of potential risk

drivers Rt = (Zi
t−1, Mt−1, N−i

t ) for institution i can be reduced to a group of “relevant” risk

drivers R(i)
t . Selected tail-risk cross-effects from other banks in the system constitute net-

work links from these banks to institution i. Repeating the analysis for all banks i in the sys-

tem, relevant risk channels can be depicted and summarized in a respective network graph.

The recent financial crisis, however, has shown that such network interconnections may

change over time, as the relevance of certain institutions for the risk of others might vary

substantially. Thus adequate short-run predictions of systemic importance should mainly

be based on current dependency structures. We address this issue by a time-dependent se-

lection of relevant risk drivers R(i,t)
t according to the algorithm described below. Driven by

the quarterly publication frequency of companies’ balance sheet information we re-evaluate

the relevance of all potential risk drivers for each institution in the system at the beginning

of each quarter based on data from the respective previous year and incorporate the latest
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balance sheet news. We therefore obtain quarterly time-varying tail risk networks which

reflect the most current information of risk channels within the financial system. They are

tailored for short-term quarterly predictions of the systemic riskiness of firms in the system.

With the relevant risk drivers R(i,t) for firm i and time t in a specific quarter, individual

tail risk can be determined from observations up to one year before t as

V̂aR
i
t = ξ̂ i,t

0 + ξ̂ i,tR(i,t)
t , (3.2.1)

where coefficients ξ̂ are obtained in the post-LASSO step from quantile regression of Xi on

(1, R(i,t)) as part of the procedure described below.

Algorithm for selecting relevant risk drivers and determining their effects in
firms’ tail risk

We adapt the data-driven procedure of Chapter 2 (see the second paragraph in Section

2.A.1), to account for time-variation in tail risk networks and marginal systemic risk con-

tributions. Here, the automatic selection procedure is based on a sequential F-test instead

of a backtest criterion. For details on the tests on joint significance in quantile regression

settings, see e.g. Koenker (2005, Chapter 3) or Gutenbrunner, Jurečková, Koenker, and

Portnoy (1993). Determination of relevant risk drivers R(i,t0) at the beginning of a quarter

t0 uses information of observations within the previous year, the number of which we de-

note by τ. Hence, it is based on approximately 250 observations Rt0−τ, . . . , Rt0 , where each

Rt consists of centered observations of the potential regressors and has K dimensions. We

fix a ν-equidistant grid ∆c = {c1 > . . . > cl = c1 − ν(l − 1) > cL = 0} for values of a

constant c, where c1 is chosen such that the corresponding penalty parameter is sufficiently

large for selecting not more than one regressor into the model. For our purposes, we set

c1 = 30 and ν = 1.

Step 1: For each c ∈ ∆c, determine the penalty parameter λi
t0
(c) from the data in the

following two sub-steps as in Belloni and Chernozhukov (2011):

Step a) Take τ + 1 iid draws from U [0, 1] independent of Rt0−τ, . . . , Rt0 denoted as

U0, . . . , Uτ. Conditional on observations of R, calculate

Λi
t0
= (τ + 1) max

1≤k≤K

1
τ + 1

∣∣∣∣∣ τ

∑
t=0

Rt0−t,k(q− I(Ut ≤ q))
σ̂k
√

q(1− q)

∣∣∣∣∣ .

Step b) Repeat step a) B=500 times generating the empirical distribution of Λi
t0

con-

ditional on R through Λi
t01, . . . , Λi

t0B. For a confidence level α = 0.1 in the

82



selection, set

λi
t0
(c) = c ·Q(Λi

t0
, 1− α|Rt0−t),

where Q(Λi
t0

, 1− α|Rt0−t) denotes the (1− α)-quantile of Λi
t0

given Rt0−t.

Step 2: Run separate l1-penalized quantile regressions for λi
t0
(c1) and λi

t0
(c2) from step 1

and obtain

ξ̃ it0
q (c) = argminξ i

1
τ + 1

τ

∑
t=0

ρq

(
Xi

t0−t + R′t0−tξ
i
)
+ λi

t0
(c)
√

q(1− q)
τ

K

∑
k=1

σ̂k|ξ i
k| ,

(3.2.2)

with the set of potentially relevant regressors Rt0−t = (Rt0−t,k)
K
k=1, componentwise

variation σ̂2
k = 1

τ+1 ∑τ
t=0(Rt0−t,k)

2 and loss function ρq(u) = u(q − I(u < 0)),

where the indicator I(·) is 1 for u < 0 and zero otherwise.

Step 3: Drop all components in R with absolute marginal effects |ξ̃ i
t0
(c)| below a threshold

τ = 0.0001 keeping only the Kit0(c) remaining relevant regressors R(i,t0)(c) for c ∈
{c1, c2}. As c1 > c2, the sets of selected relevant regressors are nested R(i,t0)(c1) ⊆
R(i,t0)(c2) = {R(i,t0)(c1), R(i,t0)(c2\c1)}. If R(i,t0)(c2\c1) is the empty set, restart

Step 2 with λi(c2) and λi(c3) from Step 1. Otherwise re-estimate (3.2.2) without

penalty term for the larger model c2 only with the respective selected relevant uncen-

tered regressors R(i,t0)(c2) and an intercept. This regression yields the post-LASSO

estimates ξ̂ it0
q (c2). Apply an F-test for joint significance of regressors R(i,t0)(c2\c1)

at 5% level. If they are significant, restart Step 2 with λi(c2) and λi(c3) from Step

1b. Continue until additional regressors R(i,t0)(cl+1\cl) from penalty cl to cl+1 are

no longer found to be significant. Then the final model is obtained from cl yielding

the set of relevant regressors R(i,t0)(c2) with corresponding post-LASSO estimates

ξ̂ it0
q (cl) for the coefficients.

3.2.2 Forecasting Systemic Impact

In an interconnected financial system, we measure the systemic impact of a specific bank

i as the total realized effect of its riskiness on distress of the entire financial system given

network and market externalities. This can be empirically determined via

VaRs
t = αs,t + βs|i,t(Zi∗

t−1)V̂aR
i
t + γs,t Mt−1 + θs,tV̂aR

(−i,t)
t , (3.2.3)
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where V̂aR
(−i)

comprises tail risks of all other banks in the system selected as relevant

risk drivers for bank i in the corresponding network topology. The marginal effect βs|i,t of

the risk of company i might vary linearly over time in selected firm-specific balance sheet

characteristics Zi∗
t−1. Coefficients in (3.2.3) can be obtained via standard quantile regression

analogously to (3.2.2) without penalty term. Corresponding to the one-year estimation win-

dow for the time-varying network, we also determine parameters in (3.2.3) at the beginning

of each quarter, based on observations dating back no longer than one year. The systemic

relevance of a company can then be predicted from the beginning of a quarter t0 to the next

quarter t0 + τ̃ as realized beta

β̃
s|i
t0+τ̃|t0− = β̂s|i,t0(Zi∗

t0−1)V̂aR
i
t0

(3.2.4)

where t− denotes information up to time t. Within a quarter, predictions are updated by

β̃
s|i
t+1|t− = β̂s|i,t0(Zi∗

t0−1)V̂aR
i
t (3.2.5)

for any time point t0 ≤ t ≤ t + τ̃.

3.3 Data and Results

3.3.1 Data

Our sample of financial firms comprises 20 European banks and insurance companies. A

list can be found in Table 3.A.1. The dataset covers Europe-based banks deemed as sys-

temically relevant by Financial Stability Board (2011), for which complete data sets over

the considered period are available.1 It includes the ten largest European banks by assets

in 2010. Furthermore, six insurance companies are selected, all belonging (by assets) to

the top 10 insurers in the world in 2010. The regressors explaining the individual Value

at Risk (VaRi) are selected among other companies’ loss exceedances, individual balance

sheet ratios, and several financial indicators, including country-specific variables.

From quarterly balance sheets obtained from Datastream/Worldscope, three key ratios

are calculated: Leverage, correponding to total assets divided by total equity; maturity mis-

match, the quotient of short-term debt and total debt; and size, defined as the logarithm

of total assets. Furthermore, we include quarterly stock price volatility in the set of pos-

1Banco Espirito Santo is the only bank which is not listed by the Financial Stability Board. We
include it because otherwise, financial firms from Southern Europe would be underrepresented.
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sible regressors, which is estimated over the time span between quarterly reports. Instead

of interpolating the data to daily values, we keep them constant until new information is

published.2

The set of financial indicator variables contains the return on EuroStoxx 600, relative

changes of the volatility index VStoxx, and returns on three major bond indices for Eu-

rope: IBOXX Sovereign, containing government bonds, iBOXX Subsovereigns, consisting

of bonds issued by government owned banks, supranationals and other sub-sovereigns, and

iBOXX Corporates. Furthermore, we include changes in three months Euribor, the inter-

bank lending interest rate, and a liquidity spread between three months Eurepo, the average

repo rate reflecting the cost of repurchase agreements, and the three month Bubill (German

government bond rate) as proxy for the risk free rate. To capture aggregate credit quality in

Europe, we also add the change in the one year and five year default probability indices from

Fitch as well as the change in the five year continued series of the credit default swap index

iTraxx Europe. Another two relevant economic indicators are the gold price and relative

changes of the MSCI Europe Real Estate Price Index.

As proxies for the market’s expectations on economic growth and to capture country-

specific effects on individual VaRs, we include several ten year government bond yields

(Germany, United Kingdom, Spain, United States, and Greece) as well as yield spreads

(ten years minus three months yields) of German and U.S. government bonds. Finally,

accounting for the global interconnectedness of financial markets, we include returns on

financial sector indices, FTSE Financials Japan, Asia, and US.

When estimating systemic risk betas in the second stage, a subset of the above macro

financial indicators is required as control variables. Here, we take the changes in the Eu-

roStoxx 600 index, VStoxx, Euribor, iTraXX, the three FTSE Financial indices, the real

estate index, and the spread between Eurepo and the Bubill rate.

3.3.2 Results

Time-varying tail risk networks

Having identified the tail risk drivers for each firm allows us constructing a tail risk network.

Following Chapter 2, we take all firms as nodes in a network and identify a network link

from firm i to firm j whenever the loss exceedance of i is selected as a tail risk driver for

j. Figures 3.A.1 to 3.A.3 show the resulting systemic risk networks for the 20 financial

institutions computed based on one-year rolling windows from 2006 to 2010. In order

2For simplicity, we assume that quarterly balance sheets become public information on fixed
dates: March 31, June 30, September 30 and December 31.
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to illustrate cross-country and inter-country risk channels, we order the institutions in the

graph according to their (main) home countries.

We identify several risk connections which are quite stable over time and seem to be

fundamental risk channels of the European financial network during the period under con-

sideration. An interesting tail risk connection is the link between Royal Bank of Scotland

(RBS) and Barclays. RBS was strongly affected by the break-down of the U.S. housing

and credit markets and realized substantial write-downs in April 2008. In the beginning of

2009, RBS faced a record loss and was bailed out by the UK government which increased

its stake in the company to 70 percent. Conversely, Barclays was relatively well funded un-

til beginning of 2008 and even explored options to take over the defaulting U.S. investment

bank Lehman Brothers. A further bolstering of Barclays’ balance sheet was due to the raise

of new capital by investors in fall 2008. Consequently, Barclays was less exposed to credit

crunches and did not participate in the government’s insurance schemes for toxic assets.

The network analysis, however, reveals that both banks have been deeply connected. Being

bi-directional before the crisis, the links became particularly pronounced and rather one-

directional during the financial crisis. In particular, RBS received substantial tail risk from

Barclays further increasing RBS’s potential losses and making both companies systemi-

cally risky. Interestingly, the strong risk connection between Barclays and RBS vanishes in

the aftermath of the financial crisis which might be a result of RBS’s bailout and ongoing

re-structuring in both banks.

Persistent risk connections are also identified between Deutsche Bank and various big

insurance companies, particularly Allianz as well as between Deutsche Bank and Com-

merzbank. The latter faced significant distress due to investments in toxic assets originating

from the U.S. housing market, and was the first commercial lender in Germany accepting

capital injections from the government. In the beginning of 2009, Commerzbank was partly

nationalised with the government taking a 25% stake. Our analysis reflects that the distress

of Commerzbank also spilled over to Deutsche Bank and thus in turn to big insurances such

as Allianz and Münchener Rück. Hence, governmental support of Commerzbank was an

important step to reduce its systemic risk contribution. This is empirically confirmed by

our analysis as we observe a declining tail risk connectedness of Commerzbank after the

bailout.

Furthermore, the networks reveal persistent connections between UBS and Credit Su-

isse, UBS and Crédit Agricole, Agricole and Société Générale as well as Credit Suisse and

Agricole. The strong interconnections between these Swiss and French banks are likely to

be driven by exposure to the same toxic assets and resulting liquidity shortages stemming

from the U.S. market making these banks facing common funding problems. This hap-
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pened during 2008/09, where all of these banks also received substantial tail risk spillovers

from other competitors. For instance, our analysis reveals that Credit Suisse was subject to

tail risk inflow from Barclays and BNP Paribas which - according to the identified network

connections - spilled over to the ’risk neighbors’ of Credit Suisse. All of these banks re-

ceived bailout packages from the Swiss and French government, respectively. As a possible

consequence of these bailouts and a relaxation of the bank’s funding situation in the after-

math, Credit Suisse’s sensitivity to tail risk inflow from Barclays and BNP Paribas actually

declined in 2009. Likewise, the Spanish bank Santander and the Portugese bank Banco Es-

pirito Santo appear to be deeply interconnected. As discussed below, Santander serves as an

originator and transmitter of systemic risk to various other companies. These dependencies

become particularly visible and pronounced during and after the financial crisis and might

have contributed to the instability and distress of the Spanish banking system in 2012.

Hence, though all these institutions operate on a global level, we still observe a sub-

stantial extent of persistent country-specific risk channels. These effects reflect a strong in-

terconnectedness and consequently inherent instability of national banking systems. These

within-country dependencies are complemented by cross-country linkages and industry-

specific channels. Examples for the latter are tail risk connections prevailing within the

insurance sector including Allianz, AXA, Aviva, Münchener Rück and Aegon. Their inter-

connectedness even increased during the financial crisis, causing a substantial threat for the

system in case of the default of one of these companies.

Our approach, however, also captures interesting time variations in tail risk channels.

In particular, in 2008/09, we observe high fluctuations of network connections. Several risk

channels identified in this period seem to be rather caused by crisis-specific turbulences

and consequently vanished in the aftermath. Examples are connections from Santander

to HSBC, BNP Paribas, Allianz and AXA. These links make Santander systemically quite

risky as the bank obviously produced and transmitted tail risk to various major players in the

system. These findings are confirmed by the estimated systemic risk betas shown below. A

further example is a strong connection between ING and Aviva which built up and increased

through the crisis and vanished thereafter. The Dutch bank ING realized significant losses,

had to cut jobs in 2009 and received capital injections from the Dutch government. Hence,

our analysis shows that substantial tail risk from ING was spreading out to Aviva and in

turn to other insurances.

Analyzing the pure number of outgoing tail risk connections (illustrated by the size of

nodes in the network graphs), we identify Barclays, Santander, AXA, BNP Paribas, ING,

Société Générale and Crédit Agricole as biggest risk transmitters within our sample. Ac-

tually, the latter four were companies which have been bailed out by their governments
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and got partly nationalized. Our analysis indicates that these governmental capital injec-

tions were indeed justifiable as these companies have been (and still are) in the core of the

network and therefore serve as distributors and multipliers of systemic risk. According to

the identified network connections, failure of one of these institutions would substantially

threaten the stability of the financial system.

Systemic risk rankings

Table 3.A.2 reports systemic risk rankings for all quarters between the beginning of 2007

and the end of 2010. They are based on realized systemic risk betas at the end of the

respective foregoing quarter, and therefore contain forecasts of relative systemic relevance.

Prior to the estimation, we conducted a test on joint significance of VaRi and its interaction

with Zi∗, i = 1, ...20, for VaRs, using all five years of data. Apart from two exceptions,

all individual VaRs turn out to be statistically significant for the system’s VaR. The two

exceptions are, on the one hand, Banco Espirito Santo, which is the largest bank in Portugal,

but much less internationally active than the other banks in our sample. On the other hand,

Société Generale is found to be insignificant. We attribute this finding to the fact that in

2008, the bank was affected by large losses induced by the unauthorized propriety trading

of one of its employees. This was a materialization of (idiosyncratic) operational risk, and

may have distorted the test results concerning systemic relevance. We expect that on a

longer horizon, Société Generale’ systemic risk beta would be significant. In the following,

however, we exclude it from the systemic risk rankings, together with Banco Espirito Santo.

It should be noted, that often differences in beta estimates between direct neighboring

firms in the obtained rankings are small and thus not statistically significant. Hence, order-

ings in Table 3.A.2 should rather be seen as an indication for a company’s relative systemic

importance characterizing groups of similar relative systemic impact.3 Figure 3.A.5 illus-

trates the time-varying cross-sectional distribution of the estimated betas. We observe the

overall highest systemic risk betas during the height of the financial crisis. Furthermore, rep-

resentatively for other firms, we depict the estimated systemic impacts of Barclays, Crédit

Agricole, Santander and UBS. It turns out that the respective systemic risk betas move in

locksteps before mid 2008, but strongly diverge during the crisis. Similar relationships are

also shown for other companies and reflect distinct crisis-specific effects.

These effects are supported by Table 3.A.2, revealing strong variations of the relative

systemic riskiness during the crisis. This is obviously induced by a severe instability of the

3At some time points, estimated systemic risk betas become negative. We interpret this finding
as negligible systemic impacts of the respective firm in the respective quarter and therefore omit it
in the ranking.
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financial system during this period and is also confirmed by the high variability of network

connections as discussed above. Conversely, a higher stability of systemic risk patterns over

time is observed in the periods before and after the financial crisis (i.e., 2007 and 2010).

Overall, we identify BNP Paribas, HSBC and Santander as being most risky with the

highest realized risk betas between 2007 and 2010. BNP Paribas was strongly affected

by the credit crunch and an evaporation of liquidity in the funding market. At the end of

2008, the French government agreed to provide financial support Europe’s largest bank.

Our findings reflect that after the bailout, BNP’s systemic riskiness was still comparably

high. According to the network analysis above, this is obviously due its strong intercon-

nectedness making BNP to one of the major originators of tail risk spillovers in 2010. In

contrast, HSBC’s connectedness is only moderate. However, its size and the identified tail

risk connections to Barclays, BNP and Santander make it systemically quite risky. These

connections became obviously quite relevant due to HSBC’s heavy exposure to U.S. hous-

ing and credit markets. Consequently, the bank’s distress induced by significant losses

during the crisis have been spread out in the system resulting in a particularly high sys-

temic riskiness around beginning of 2009. This is backed by the fact that HSBC had to

cut a substantial amount of jobs at beginning of 2009. Our results indicate that also in the

aftermath of the crisis, HSBC still remains systemically quite risky. In case of Santander,

the relative systemic riskiness (compared to other banks) even tends to increase after the

financial crisis (particularly in 2010). This finding might already indicate funding problems

in the Spanish banking market becoming particularly evident in 2012. These results are

in line with the findings of the network analysis above identifying Santander as a deeply

interconnected bank being linked to several insurance companies and (particularly during

the crisis) to other major players like Barclays and HSBC.

Monitoring systemic risk rankings over the course of the financial crisis provides inter-

esting insights into the systemic importance of individual firms under extreme conditions of

market distress. Four prominent examples are RBS, Barclays, Deutsche Bank and HBSC.

According to the estimated systemic risk betas, we classify RBS as belonging to the most

systemically risky companies in 2008. Also Barclays is identified as being systemically

very relevant in several (though not all) periods in 2008/09. The identified network con-

nections revealed that the strong connection between Barclays and RBS was obviously one

driving force of the systemic relevance of both. This is also confirmed by the fact that

the systemic relevance of both (as indicated by the realized betas) declined as the tail risk

connection between both vanishes in 2009. Likewise, Deutsche Bank faces a steady in-

crease of its systemic relevance in 2007 and belongs to the group of systemically most risky

companies in 2008. This is confirmed by the network analysis above showing that particu-
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larly during 2008, Deutsche Bank was deeply interconnected with risk channels to various

major insurance companies. Consequently, a default of Deutsche Bank would have had

dramatic consequences for the insurance industry and thus the stability of the entire sys-

tem. Although Deutsche Bank was not subject to any government bailouts it went through

a process of substantial internal restructuring. This is confirmed by our estimates showing

a decline of Deutsche Bank’s systemic importance during 2009 and 2010.

Finally, for the post-crisis period, we observe a tendency for the insurance companies

becoming relatively more risky. Particularly in 2010, Allianz, Aviva, Axa, Generali and

Münchener Rück reveal relatively high (though not always significant) systemic risk betas.

Likewise, also Société Générale and Credit Suisse are identified as systemically risky in

2010. These findings are confirmed by the network analysis showing a comparably high

connectedness of Société Générale, Axa and Generali.

3.4 Conclusion

In this chapter, we propose a framework for forecasting financial institutions’ marginal con-

tribution to systemic risk based on their interconnectedness in terms of extreme downside

risks. There are four major challenges in this context: Firms’ (conditional) tail risks are

unobserved and must be estimated from data. Determining such individual risk levels ap-

propriately results in high-dimensional models due to the large number of potential net-

work connections. These network dependencies, however, are inherently instable over time.

Therefore forecasting stability and responsiveness require careful balancing. To tackle these

issues, we adapt the two-stage quantile regression approach introduced in Chapter 2 to a

rolling window out-of-sample prediction setting based on time-varying networks.

In a sample of large European banks covering the period 2007 to 2010, the adapted pro-

cedure reveals the dynamic nature of interconnectedness and corresponding risk channels in

the European financial system around and during the financial crisis. The time evolution of

network dependencies provides valuable insights into a bank’s role in the system identifying

originators and transmitters of tail risk over time. Determined relevant tail risk connections

and systemic risk rankings both provide valuable input for regulation. Given the need for

better and more timely market surveillance, our approach can thus serve as a useful vehicle

for providing a continuous assessment of systemic risk dependencies based on market data.
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3.A Appendix

Aegon (Insurance, NL) Deutsche Bank (Bank, DE)
Allianz (Insurance, DE) Generali (Insurance, IT)
Aviva (Insurance, UK) HSBC (Bank, UK)
AXA (Insurance, FR) ING Groep (Bank, NL)
Banco Espirito Santo (Bank, PT) Lloyds Banking Group (UK)
Barclays (Bank, UK) Muenchener Rueck (Insurance, DE)
BNP Paribas (Bank, FR) Royal Bank of Scotland (Bank, UK)
Commerzbank (Insurance, DE) Santander (Bank, ES)
Crédit Agricole (Bank, FR) Société Générale (Bank, FR)
Credit Suisse (Bank, CH) UBS (Bank, CH)

Table 3.A.1: List of included European financial institutions. As most of them provide a
broad range of services, we differentiate between banks and insurance companies according
to their main field of business activities. Furthermore, we state the country their headquar-
ters are located in.
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Table 3.A.2: Systemic risk rankings for 2007 - 2010, based on quarterly realized beta fore-
casts β̃s|i · 100, see equation (3.2.4).4

rank name forecast rank name forecast
Q1.2007 Q2.2007

1 Aegon 0.7667 1 BNP Paribas 1.0964
2 Commerzbank 0.6495 2 UBS 0.434
3 Generali 0.5392 3 Aviva 0.3012
4 Credit Agricole 0.5077 4 Commerzbank 0.276
5 Barclays 0.3703 5 Deutsche Bank 0.2436
6 HSBC 0.3611 6 AXA 0.2324
7 Allianz 0.3492 7 Aegon 0.2095
8 BNP Paribas 0.3016 8 Muenchener Rueck 0.1625
9 Lloyds 0.2887 9 Allianz 0.1252
10 AXA 0.2453 10 ING 0.0914
11 Aviva 0.1888 11 Credit Suisse 0.0865
12 ING 0.163 12 Royal Bank of Scotland 0.051
13 Deutsche Bank 0.1379 13 Santander 0.0393
14 Royal Bank of Scotland 0.0556 14 Barclays 0.0067

Q3.2007 Q4.2007
1 UBS 0.4234 1 Deutsche Bank 0.71
2 HSBC 0.3127 2 Aviva 0.5619
3 Deutsche Bank 0.3068 3 Royal Bank of Scotland 0.5504
4 Credit Suisse 0.2296 4 Credit Agricole 0.4205
5 Generali 0.2087 5 BNP Paribas 0.3934
6 Santander 0.1947 6 Credit Suisse 0.3529
7 Barclays 0.1663 7 AXA 0.3306
8 AXA 0.1425 8 HSBC 0.3203
9 ING 0.1203 9 ING 0.3126
10 Credit Agricole 0.1007 10 Aegon 0.3104
11 Commerzbank 0.0681 11 Muenchener Rueck 0.1954
12 Lloyds 0.0672 12 Allianz 0.1594

13 Commerzbank 0.1045
14 Lloyds 0.0957
15 Santander 0.0779
16 Barclays 0.0109

Q1.2008 Q2.2008
1 BNP Paribas 0.5472 1 AXA 0.9152
2 Barclays 0.487 2 Royal Bank of Scotland 0.8259
3 Santander 0.4507 3 Muenchener Rueck 0.7661
4 Commerzbank 0.4375 4 Lloyds 0.5474
5 Deutsche Bank 0.3819 5 Generali 0.543
6 Royal Bank of Scotland 0.3783 6 Credit Agricole 0.5294
7 Credit Suisse 0.3508 7 BNP Paribas 0.5003
8 AXA 0.2114 8 Deutsche Bank 0.4948
9 Credit Agricole 0.1429 9 HSBC 0.4339
10 Muenchener Rueck 0.1351 10 Commerzbank 0.35
11 Allianz 0.1281 11 Aegon 0.2153
12 Lloyds 0.1148 12 Aviva 0.201
13 Aviva 0.071 13 Barclays 0.1925
14 Aegon 0.0255 14 Santander 0.1582

15 Credit Suisse 0.1427
16 UBS 0.0508
17 Allianz 0.0112

Q3.2008 Q4.2008
1 Santander 1.07 1 HSBC 1.4631
2 Barclays 0.7768 2 Deutsche Bank 0.6341
3 Aviva 0.4461 3 Santander 0.5148
4 Credit Suisse 0.4029 4 Royal Bank of Scotland 0.4998
5 Generali 0.349 5 BNP Paribas 0.3873
6 Muenchener Rueck 0.2384 6 UBS 0.346
7 Deutsche Bank 0.2113 7 Generali 0.3118
8 HSBC 0.1727 8 Muenchener Rueck 0.2926
9 Royal Bank of Scotland 0.167 9 Lloyds 0.0985
10 ING 0.1566
11 BNP Paribas 0.0598

Continued on next page

4Avoiding multicollinearity, we include in Zi∗ only the one component of Zi which exhibits the
lowest correlation with VaRi in the respective interaction term in (3.2.3).
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Table 3.A.2 – Continued from previous page
rank name forecast rank name forecast

Q1.2009 Q2.2009
1 Aegon 2.1546 1 Aegon 2.0523
2 Barclays 1.7557 2 ING 1.4088
3 AXA 1.5601 3 Lloyds 1.3672
4 Aviva 1.5562 4 BNP Paribas 1.3462
5 Allianz 1.3241 5 Santander 1.3259
6 BNP Paribas 0.8262 6 Barclays 1.031
7 Credit Agricole 0.7485 7 Aviva 0.9001
8 HSBC 0.6697 8 HSBC 0.732
9 Santander 0.5945 9 Credit Agricole 0.7251

10 UBS 0.5514 10 Credit Suisse 0.4722
11 Commerzbank 0.2947 11 Muenchener Rueck 0.4417
12 Generali 0.2347 12 Allianz 0.4111
13 Credit Suisse 0.1561 13 AXA 0.2842
14 Royal Bank of Scotland 0.068 14 UBS 0.1028
15 ING 0.0455 15 Royal Bank of Scotland 0.0619

Q3.2009 Q4.2009
1 Commerzbank 1.1065 1 Santander 1.0097
2 Aviva 1.0086 2 Credit Agricole 0.9243
3 ING 0.8852 3 HSBC 0.8437
4 AXA 0.8303 4 BNP Paribas 0.6894
5 Lloyds 0.7041 5 Allianz 0.6225
6 BNP Paribas 0.6744 6 Royal Bank of Scotland 0.6093
7 Santander 0.6615 7 Barclays 0.5571
8 Credit Suisse 0.568 8 Lloyds 0.4588
9 Aegon 0.3393 9 ING 0.3702

10 HSBC 0.284 10 Deutsche Bank 0.3661
11 Credit Agricole 0.1044 11 AXA 0.1541
12 Royal Bank of Scotland 0.0325 12 Generali 0.0858
13 UBS 0.0276 13 Aviva 0.0699

14 Muenchener Rueck 0.0471
Q1.2010 Q2.2010

1 Credit Suisse 1.058 1 Credit Suisse 0.8629
2 Lloyds 1.0418 2 UBS 0.7561
3 Generali 1.0407 3 ING 0.5004
4 UBS 1.0388 4 Aviva 0.4999
5 Aegon 0.9752 5 Generali 0.4217
6 Allianz 0.7554 6 Santander 0.4
7 AXA 0.7471 7 Royal Bank of Scotland 0.3386
8 BNP Paribas 0.6706 8 Aegon 0.2928
9 Santander 0.5692 9 Deutsche Bank 0.2234

10 Commerzbank 0.5583 10 Allianz 0.2227
11 Aviva 0.5208 11 Muenchener Rueck 0.1033
12 HSBC 0.4992 12 Credit Agricole 0.0703
13 ING 0.4722 13 AXA 0.0384
14 Deutsche Bank 0.4712 14 BNP Paribas 0.016
15 Credit Agricole 0.4019
16 Barclays 0.2284
17 Royal Bank of Scotland 0.1944

Q3.2010 Q4.2010
1 Aviva 0.6092 1 BNP Paribas 1.4491
2 Generali 0.6008 2 Generali 0.503
3 HSBC 0.4951 3 Muenchener Rueck 0.4914
4 Santander 0.4588 4 Royal Bank of Scotland 0.4371
5 Credit Suisse 0.4493 5 Santander 0.3784
6 Muenchener Rueck 0.261 6 Aviva 0.3737
7 Aegon 0.2226 7 Allianz 0.3589
8 UBS 0.151 8 ING 0.3017
9 Credit Agricole 0.1475 9 AXA 0.2553

10 ING 0.1452 10 UBS 0.1886
11 AXA 0.1233 11 Commerzbank 0.1858
12 Allianz 0.1148 12 Aegon 0.1367
13 Commerzbank 0.0935 13 Credit Agricole 0.0334
14 BNP Paribas 0.0554
15 Lloyds 0.0426
16 Barclays 0.0345
17 Royal Bank of Scotland 0.0222
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GUTENBRUNNER, C., J. JUREČKOVÁ, R. KOENKER, AND S. PORTNOY (1993): “Tests of

linear hypotheses based on regression rank scores,” Journal of Nonparametric Statistics,

2, 307–331.

HAUTSCH, N., J. SCHAUMBURG, AND M. SCHIENLE (2012a): “Financial Network Sys-

temic Risk Contributions,” CRC 649 Working Paper No. 2012-053.

(2012b): “Forecasting systemic impact in financial networks,” Working Paper.

HELLWIG, M. (2009): “Systemic Risk in the Financial Sector: An Analysis of the

Subprime-Mortgage Financial Crisis,” De Economist, 157, 129–207.

HUANG, X., H. ZHOU, AND H. ZHU (2009): “A framework for assessing the systemic risk

of major financial institutions,” Journal of Banking & Finance, 33, 2036–2049.

IYER, R., AND J.-L. PEYDRIÓ (2011): “Interbank Contagion at Work: Evidence from a

Natural Experiment,” Review of Financial Studies, 24(4), 1337–1377.

JORION, P. (2007): Value at risk: the new benchmark for managing financial risk, 3rd ed.

New York: McGraw-Hill.

102

http://www.financialstabilityboard.org/publications/r_111104bb.pdf


KOENKER, R. (2005): Quantile Regression. Cambridge University Press.

KOENKER, R., AND G. BASSETT (1978): “Regression Quantiles,” Econometrica, 46, 33–

50.

(1982): “Tests of Linear Hypotheses and l1 Estimation,” Econometrica, 50, 1577–

1584.

KOENKER, R., AND Q. ZHAO (1996): “Conditional Quantile Estimation and Inference for

ARCH Models,” Econometric Theory, 12, 793–813.

KOOPMAN, S. J., A. LUCAS, AND B. SCHWAAB (2011): “Modeling frailty correlated

defaults using many macroeconomic covariates,” Journal of Econometrics, 162, 312–

325.

KUESTER, K., S. MITTNIK, AND M. S. PAOLELLA (2006): “Value-at-Risk Prediction: A

Comparison of Alternative Strategies,” Journal of Financial Econometrics, 4, 53–89.

KUPIEC, P. (1995): “Techniques for Verifying the Accuracy of Risk Management Models,”

Journal of Derivatives, 3, 73–84.

LAHIRI, S. (2001): “Effects of block lengths on the validity of block resampling methods,”

Probability Theory and Related Fields, 121.

LEITNER, Y. (2005): “Financial Networks: Contagion, Commitments and Private Sector

Bailouts,” Journal of Finance, 60, 2925–2953.

LI, Q., AND J. S. RACINE (2007): Nonparametric Econometrics. Princeton University

Press.

MACDONALD, A., C. SCARROTT, D. LEE, B. DARLOW, M. REALE, AND G. RUSSELL

(2011): “A flexible extreme value mixture model,” Computational Statistics & Data

Analysis, 55, 2137–2157.

MANGANELLI, S., AND R. F. ENGLE (2001): “Value at risk models in finance,” Discussion

paper, European Central Bank Working Paper Series, Working Paper No. 75.

MCNEIL, A., AND R. FREY (2000): “Estimation of tail-related risk measures for het-

eroscadastic financial time series: an extreme value approach,” Journal of Empirical

Finance, 7, 271–300.

MCNEIL, A. J., R. FREY, AND P. EMBRECHTS (2005): Quantitative Risk Management:

Concepts, Techniques and Tools. Princeton University Press.

103



NIETO, M. R., AND E. RUIZ (2008): “Measuring financial risk: Comparison of alternative

procedures to measure VaR and ES,” Universidad Carlos III de Madrid Working Paper

No. 08-73.

PICKANDS, J. (1975): “Statistical inference using extreme order statistics,” The Annals of

Statistics, 3, 119–131.

POWELL, J. L. (1983): “The asymptotic normality of two-stage least absolute deviations

estimators,” Econometrica, 51, 1569–1575.

RAJAN, R. (2009): “Too systemic to fail: consequences, causes and potential remedies,”

Discussion paper, Written statement to the Senate Banking Committee Hearings.

SCHAUMBURG, J. (2012): “Predicting extreme value at risk: Nonparametric quantile re-

gression with refinements from extreme value theory,” Computational Statistics & Data

Analysis, 56, 4081–4096.

SCHICH, S. (2009): “Insurance Companies and the Financial Crisis,” OECD Journal: Fi-

nancial Market Trends, Vol. 2009/2.

SCHWAAB, B., S. J. KOOPMAN, AND A. LUCAS (2001): “Systemic Risk Diagnostics:

Coincident Indicators and Early Warning Signals,” Discussion paper, European Central

Bank Working Paper Series, Working Paper No. 1327.

SEGOVIANO, M., AND C. GOODHART (2009): “Banking Stability Measures,” Working

Paper 09/04, International Monetary Fund.

SMITH, R. L. (1987): “Estimating the tails of probability distributions,” The Annals of

Statistics, 15, 1174–1207.

TAYLOR, J. W. (2008): “Using Exponentially Weighted Quantile Regression to Estimate

Value at Risk and Expected Shortfall,” Journal of Financial Econometrics, 6, 382–406.

TIBSHIRANI, R. (1996): “Regression Shrinkage and Selection via the Lasso,” Journal of

the Royal Statistical Society, Series B, 58, 267–288.

UPPER, C., AND A. WORMS (2004): “Estimating bilateral exposures in the German inter-

bank market: Is there a danger of contagion?,” European Economic Review, 48(4), 827

– 849.

WHITE, H., T.-H. KIM, AND S. MANGANELLI (2012): “VAR for VaR: Measuring sys-

temic risk by multivariate regression quantiles,” Working Paper.

104



WU, W. B., K. YU, AND G. MITRA (2007): “Kernel Conditional Quantile Estimation for

Stationary Processes with Application to Value at Risk,” Journal of Financial Economet-

rics, pp. 1–18.

YU, K., AND M. JONES (1997): “A comparison of local constant and local linear regression

quantile estimators,” Computational Statistics & Data Analysis, 25, 159–166.

YU, K., AND M. C. JONES (1998): “Local Linear Quantile Regression,” Journal of the

American Statistical Association, 93, 228–237.

ZHOU, C. (2010): “Are banks too big to fail? Measuring systemic importance of financial

institutions,” International Journal of Central Banking, 6, 205–250.

105





List of Figures

1.1 Original and rearranged DKLL estimates . . . . . . . . . . . . . . . . . . . 18

1.2 Autocorrelation functions of standardized nonparametric residuals . . . . . 23

1.3 Graphical comparison of coverage results . . . . . . . . . . . . . . . . . . 26

2.1 Risk network of the U.S. financial system, schematically highlighting key

companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Systemic relevance of five exemplary firms in the U.S. financial system at

two time points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Boxplots of p-values from VaR model backtests . . . . . . . . . . . . . . . 44

2.4 Full network graph for the system of 57 of the largest financial companies

in the U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Pagerank coefficients by sectors . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Pagerank coefficients plotted against realized systemic risk contributions . . 54

2.A.1Full Network graphs of Citigroup (C) and Morgan Stanley (MS) . . . . . . 74

2.A.2Network graph according to industry groups . . . . . . . . . . . . . . . . . 75

2.A.3Example for systemic risk betas, VaRs and realized systemic risk betas: AIG 76

2.A.4Realized systemic risk betas: LEH and ML . . . . . . . . . . . . . . . . . 77

2.A.5VaR time series: LEH and ML . . . . . . . . . . . . . . . . . . . . . . . . 77

3.A.1Estimates of yearly systemic risk network rolled over from Q4/2006 to

Q3/2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.A.2Estimates of yearly systemic risk network rolled over from Q4/2007 to

Q3/2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.A.3Estimates of yearly systemic risk network rolled over from Q4/2008 to

Q3/2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.A.4Estimates of yearly systemic risk network rolled over from Q4/2004 to

Q3/2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.A.5Illustration of time-varying risk rankings . . . . . . . . . . . . . . . . . . . 96

107



List of Tables

1.1 Data summary of the four indices . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Backtest result comparison for original and rearranged DKLL models . . . 19

1.3 Backtesting results for 1% VaR models: Long estimation period . . . . . . 21

1.4 Backtesting results for 1% VaR models: Short estimation period . . . . . . 22

1.5 Remaining autocorrelation and extremal index estimates . . . . . . . . . . 24

1.6 Backtesting results for 0.1% VaR models . . . . . . . . . . . . . . . . . . . 25

1.7 Estimated GARCH parameters for simulation study . . . . . . . . . . . . . 27

1.8 Simulation: Coverages and different loss functions from comparing esti-

mated and true 0.1% quantiles . . . . . . . . . . . . . . . . . . . . . . . . 28

2.A.1List of included U.S. financial institutions . . . . . . . . . . . . . . . . . . 67

2.A.2Exemplary post-LASSO quantile regressions . . . . . . . . . . . . . . . . 68

2.A.3Tail risk cross dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.A.4 p-values for the test on significance of systemic risk betas . . . . . . . . . . 70

2.A.5Ranking of average systemic risk contributions . . . . . . . . . . . . . . . 71

2.A.6Rankings of relevant systemic risk contributions at two different points in

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.A.7Group ranking of systemic risk contributions for the pre-crisis period . . . . 73

2.A.8Estimation and test results for the four case study companies . . . . . . . . 73

3.A.1List of included European financial institutions . . . . . . . . . . . . . . . 91

3.A.2Systemic risk rankings for 2007 - 2010 . . . . . . . . . . . . . . . . . . . . 97

108



Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung
der angegebenen Literatur und Hilfsmittel angefertigt habe.

Berlin, 8. Januar 2013

Julia Schaumburg




